WorldWideScience

Sample records for internal plasma currents

  1. Plasma confinement in a magnetic field of the internal ring current

    International Nuclear Information System (INIS)

    Shafranov, Vitaly; Popovich, Paul; Samitov, Marat

    2000-01-01

    Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)

  2. Plasma current profile during current reversal in a tokamak

    International Nuclear Information System (INIS)

    Huang Jianguo; Yang Xuanzong; Zheng Shaobai; Feng Chunhua; Zhang Houxian; Wang Long

    1999-01-01

    Alternating current operation with one full cycle and a current level of 2.5 kA have been achieved in the CT-6B tokamak. The poloidal magnetic field in the plasma is measured with two internal magnetic probes in repeated discharges. The current distribution is reconstructed with an inversion algorithm. The inverse current first appears on the weak field side. The existence of magnetic surfaces and rotational transform provide particle confinement in the current reversal phase

  3. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10 19 - 10 20 m -3 ), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm 2 . The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications

  4. Plasma internal inductance dynamics in a tokamak

    International Nuclear Information System (INIS)

    Romero, J.A.

    2010-01-01

    A lumped parameter model for tokamak plasma current and inductance time evolution as a function of plasma resistance, non-inductive current drive sources and boundary voltage or poloidal field coil current drive is presented. The model includes a novel formulation leading to exact equations for internal inductance and plasma current dynamics. Having in mind its application in a tokamak inductive control system, the model is expressed in state space form, the preferred choice for the design of control systems using modern control systems theory. The choice of system states allows many interesting physical quantities such as plasma current, inductance, magnetic energy, and resistive and inductive fluxes be made available as output equations. The model is derived from energy conservation theorem, and flux balance theorems, together with a first order approximation for flux diffusion dynamics. The validity of this approximation has been checked using experimental data from JET showing an excellent agreement.

  5. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  6. Internal modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  7. Plasma position from ring current measurements in Extrap T1

    International Nuclear Information System (INIS)

    Brunsell, P.; Jin Li.

    1989-11-01

    The inductive coupling between the plasma and the four octupole field coils in the Extrap T1 device is utilized as a means of estimating the plasma position. The current in each octupole ring as well as the plasma current is measured by a Rogowski coil and the ring - plasma mutual inductance is then computed assuming axisymmetric plasma displacements. The obtained position is in agreement with internal magnetic probe measurements. The time - evolution of the plasma position for different external vertical and toroidal field strengths is studied. For the present discharge parameter a vertical field of about .008 T is found to give an almost radially stationary plasma. The results are compared with a simple equilibrium model

  8. Axisymmetric MHD simulation of ITB crash and following disruption dynamics of Tokamak plasmas with high bootstrap current

    International Nuclear Information System (INIS)

    Takei, Nahoko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Shimada, Ryuichi; Nakamura, Yukiharu; Kawano, Yasunori; Ozeki, Takahisa; Tobita, Kenji; Sugihara, Masayoshi

    2004-01-01

    Axisymmetric MHD simulation using the Tokamak Simulation Code demonstrated detailed disruption dynamics triggered by a crash of internal transport barrier in high bootstrap current, high β, reversed shear plasmas. Self-consistent time-evolutions of ohmic current bootstrap current and induced loop voltage profiles inside the disrupting plasma were shown from a view point of disruption characterization and mitigation. In contrast with positive shear plasmas, a particular feature of high bootstrap current reversed shear plasma disruption was computed to be a significant change of plasma current profile, which is normally caused due to resistive diffusion of the electric field induced by the crash of internal transport barrier in a region wider than the internal transport barrier. Discussion based on the simulation results was made on the fastest record of the plasma current quench observed in JT-60U reversed shear plasma disruptions. (author)

  9. Study on possibility of plasma current profile determination using an analytical model of tokamak equilibrium

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Hiraki, Naoji

    1996-01-01

    The possibility of determining the current profile of tokamak plasma from the external magnetic measurements alone is investigated using an analytical model of tokamak equilibrium. The model, which is based on an approximate solution of the Grad-Shafranov equation, can set a plasma current profile expressed with four free parameters of the total plasma current, the poloidal beta, the plasma internal inductance and the axial safety factor. The analysis done with this model indicates that, for a D-shaped plasma, the boundary poloidal magnetic field prescribing the external magnetic field distribution is dependent on the axial safety factor in spite of keeping the boundary safety factor and the plasma internal inductance constant. This suggests that the plasma current profile is reversely determined from the external magnetic analysis. The possibility and the limitation of current profile determination are discussed through this analytical result. (author)

  10. The use of internal transport barriers in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Challis, C D [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2004-12-01

    Internal transport barriers (ITBs) can provide high tokamak confinement at modest plasma current. This is desirable for operation with most of the current driven non-inductively by the bootstrap mechanism, as currently envisaged for steady-state power plants. Maintaining such plasmas in steady conditions with high plasma purity is challenging, however, due to MHD instabilities and impurity transport effects. Significant progress has been made in the control of ITB plasmas: the pressure profile has been varied using the barrier location; q-profile modification has been achieved with non-inductive current drive, and means have been found to affect density peaking and impurity accumulation. All these features are, to some extent, interdependent and must be integrated self-consistently to demonstrate a sound basis for extrapolation to future devices.

  11. International conference on plasma physics

    International Nuclear Information System (INIS)

    Silin, V.P.; Sitenko, A.G.

    1985-01-01

    A brief report on the 6th International conference on plasma physics and on the 6th International Congress on plasma waves and plasma instabilities, which have taken place in summer 1984 in Losanne, is presented. Main items of the conference are enlightened, such as the general theory of a plasma, laboratory plasma, thermonuclear plasma, cosmic plasma and astrophysics

  12. Plasma-current structures of plasma focus during the current disruption

    International Nuclear Information System (INIS)

    Krokhin, O.N.; Kalachev, N.V.; Malafeev, Yu.S.; Nikulin, V.Ya; Polukhin, S.N.; Tsybenko, S.P.

    2000-01-01

    The results are presented of an investigation of the plasma structures arising during the current disruption in the Dense Plasma Focus (DPF). The study was performed using the laser-shadow and interferometry methods together with measurements of current and X-ray radiation. An analysis of the experimental results shows that for the construction of a multi mega-amperes current disruption device, the Filippov type of DPF (in comparison with the Mather type) is to be preferred since the processes occurring in the X-ray regime are much faster than in the pinch regime, and this type of plasma focus is geometrically more suitable for the assembly of such a current disrupter.This disrupter is now under construction, based on the 'Tulip' DPF installation

  13. Magnetic fields and uniformity of radio frequency power deposition in low-frequency inductively coupled plasmas with crossed internal oscillating currents

    International Nuclear Information System (INIS)

    Tsakadze, E.L.; Ostrikov, K.; Tsakadze, Z.L.; Vladimirov, S.V.; Xu, S.

    2004-01-01

    Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz) inductively coupled plasma source with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z , H r , and H φ ) and two electric (E φ and E r ) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic (E) and electromagnetic (H) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ('pancake') antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data

  14. Noncircular plasma shape analysis in long-pulse current drive experiment in TRIAM-1M

    International Nuclear Information System (INIS)

    Minooka, Mayumi; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1991-01-01

    Plasma cross section was noncircularized and the plasma shape was analyzed in order to study the characteristics of the plasma in long-pulse current drive experiments in high-field superconducting tokamak TRIAM-1M. Filament approximation method was adopted, since on-line processing by data processing computer is possible. The experiments of the noncircularization were carried out during 30-to 60-sec discharges. As a result, it became clear that D-shape plasma of elongation ratio 1.4 was maintained stably. By the analysis the internal inductance and poloidal beta were assessed, and so informations about the plasma current profile and internal pressure were obtained. (author)

  15. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  16. Real-time control of current and pressure profiles in tokamak plasmas

    International Nuclear Information System (INIS)

    Laborde, L.

    2005-12-01

    Recent progress in the field of 'advanced tokamak scenarios' prefigure the operation regime of a future thermonuclear fusion power plant. Compared to the reference regime, these scenarios offer a longer plasma confinement time thanks to increased magnetohydrodynamic stability and to a better particle and energy confinement through a reduction of plasma turbulence. This should give access to comparable fusion performances at reduced plasma current and could lead to a steady state fusion reactor since the plasma current could be entirely generated non-inductively. Access to this kind of regime is provided by the existence of an internal transport barrier, linked to the current profile evolution in the plasma, which leads to steep temperature and pressure profiles. The comparison between heat transport simulations and experiments allowed the nature of the barriers to be better understood as a region of strongly reduced turbulence. Thus, the control of this barrier in a stationary manner would be a remarkable progress, in particular in view of the experimental reactor ITER. The Tore Supra and JET tokamaks, based in France and in the United Kingdom, constitute ideal instruments for such experiments: the first one allows stationary plasmas to be maintained during several minutes whereas the second one provides unique fusion performances. In Tore Supra, real-time control experiments have been accomplished where the current profile width and the pressure profile gradient were controlled in a stationary manner using heating and current drive systems as actuators. In the JET tokamak, the determination of an empirical static model of the plasma allowed the current and pressure profiles to be simultaneously controlled and so an internal transport barrier to be sustained. Finally, the identification of a dynamic model of the plasma led to the definition of a new controller capable, in principle, of a more efficient control. (author)

  17. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    Science.gov (United States)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  18. Proceedings of the 1984 international conference on plasma physics

    International Nuclear Information System (INIS)

    Tran, M.Q.; Verbeek, R.J.

    1985-01-01

    The 1984 ICPP, held in Lausanne, Switzerland, is the third biennial conference of the series ''International conferences on plasma physics''. A complete spectrum of current plasma physics from fusion devices to interstellar space was presented, even if most of the papers were of direct interest for fusion. This is the second part of the conference

  19. Effects of the finite pressure of plasma on internal kink mode

    International Nuclear Information System (INIS)

    Oliveira, G.M.G. de.

    1980-01-01

    The objective of this work is to study the stability of the Internal Kink and Central Kink modes in ideal MHD cylindrical plasma due to the pressure variations and the different current profiles. It was used the σ Euler equation derived by Goedbloed and Sakanaka. Its analysis is based on the boundary layer method, where the effects due to the plasma inertia are only considered in a boundary layer in the neighborhood of the surface where the perturbation is parallel to the field lines. For the internal Kink mode a numerical analysis is also done by integrating the Euler equation. It was calculated the growth rate of the two modes for the different pressure ans current profiles. It was verified that for both, the Internal Kink and Central Kink modes, the growth rate becomes larger as the derivative of these profiles increases. However, for the Internal Kink mode, one obtains a reduction of up to 50% in the growth rate calculated by Rosenbluth et al. For the Central Kink mode, one notices that the growth rate is proportional to β of the plasma and to the derivatives of the pressure and current. (author) [pt

  20. RF Current Drive in Internal Transport Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Basiuk, V.; Huysmans, G. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA-Cadarache, 13 - St Paul-lez-Durance (France); Decker, J.; Bers, A.; Ram, A.K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2005-07-01

    The current drive problem in regimes with internal transport barrier is addressed using a fast solver of the electron drift kinetic equation which may be used for arbitrary tokamak plasma magnetic equilibrium and any type of electron radio-frequency wave. Parametric studies are performed for the Lower Hybrid and Electron Cyclotron waves. (authors)

  1. Measurement of toroidal plasma current in RF heated helical plasmas

    International Nuclear Information System (INIS)

    Besshou, Sakae

    1993-01-01

    This report describes the measurement of toroidal plasma current by a semiflexible Rogowski coil in a helical vacuum chamber. A Rogowski coil measures the toroidal plasma current with a resolution of 0.1 kA, frequency range of up to 1 kHz and sensitivity of 6.5 x 10 -9 V · s/A. We measured the spontaneous toroidal plasma current (from -1.2 to +1.2 kA) under electron cyclotron resonance heating at 0.94 T toroidal field in the Heliotron-E device. We found that the measured direction of toroidal plasma current changes its sign as in the predicted behavior of a neoclassical diffusion-driven bootstrap current, depending on the horizontal position of the plasma column. We explain the observed plasma currents in terms of the compound phenomenon of an ohmic current and a neoclassical diffusion-driven current. The magnitude of the neoclassical current component is smaller than the value predicted by a collisionless neoclassical theory. (author)

  2. Current fundamental science challenges in low temperature plasma science that impact energy security and international competitiveness

    Science.gov (United States)

    Hebner, Greg

    2010-11-01

    Products and consumer goods that utilize low temperature plasmas at some point in their creation touch and enrich our lives on almost a continuous basis. Examples are many but include the tremendous advances in microelectronics and the pervasive nature of the internet, advanced material coatings that increase the strength and reliability of products from turbine engines to potato chip bags, and the recent national emphasis on energy efficient lighting and compact fluorescent bulbs. Each of these products owes their contributions to energy security and international competiveness to fundamental research investments. However, it would be a mistake to believe that the great commercial success of these products implies a robust understanding of the complicated interactions inherent in plasma systems. Rather, current development of the next generation of low temperature plasma enabled products and processes is clearly exposing a new set of exciting scientific challenges that require leaps in fundamental understanding and interdisciplinary research teams. Emerging applications such as liquid-plasma systems to improve water quality and remediate hazardous chemicals, plasma-assisted combustion to increase energy efficiency and reduce emissions, and medical applications promise to improve our lives and the environment only if difficult science questions are solved. This talk will take a brief look back at the role of low temperature plasma science in enabling entirely new markets and then survey the next generation of emerging plasma applications. The emphasis will be on describing the key science questions and the opportunities for scientific cross cutting collaborations that underscore the need for increased outreach on the part of the plasma science community to improve visibility at the federal program level. This work is supported by the DOE, Office of Science for Fusion Energy Sciences, and Sandia National Laboratories, a multi-program laboratory managed and operated

  3. Determination of plasma spot current and arc discharge plasma current on the system of plasma cathode electron sources using Rogowski coil technique

    International Nuclear Information System (INIS)

    Wirjoadi; Bambang Siswanto; Lely Susita RM; Agus Purwadi; Sudjatmoko

    2015-01-01

    It has been done the function test experiments of ignitor electrode system and the plasma generator electrode system to determine the current spot plasma and arc discharge plasma current with Rogowski coil technique. Ignitor electrode system that gets power supply from IDPS system can generate the plasma spot current of 11.68 ampere to the pulse width of about 33 μs, this value is greater than the design probably because of electronic components used in the IDPS system was not as planned. For the plasma generator electrode system that gets power from ADPS system capable of producing an arc discharge plasma current around 103.15 amperes with a pulse width of about 96 μs, and this value as planned. Based on the value of the arc discharge plasma current can be determined plasma electron density, which is about 10.12 10"1"9 electrons/m"3, and with this electron density value, an ignitor electrode system and a plasma generator system is quite good if used as a plasma cathode electron source system. (author)

  4. Numerical simulation on current spike behaviour of JT-60U disruptive plasmas

    International Nuclear Information System (INIS)

    Takei, N; Nakamura, Y; Tsutsui, H; Yoshino, R; Kawano, Y; Ozeki, T; Tobita, K; Tsuji-Iio, S; Shimada, R; Jardin, S C

    2004-01-01

    Characteristics and underlying mechanisms for plasma current spikes, which have been frequently observed during the thermal quench of JT-60U disruptions, were investigated through tokamak simulation code simulations including the passive shell effects of the vacuum vessel. Positive shear and reversed shear (PS and RS) plasmas were shown to have various current spike features in the experiments, e.g. an impulsive increase in the plasma current (positive spike) in the majority of thermal quenches, and a sudden decrease (negative spike), that has been excluded from past consideration, as an exception. It was first clarified that the shell effects, which become significant especially at a strong pressure drop due to the thermal quench of high β p plasmas, play an important role in the current spike in accordance with the initial relation of the radial location between the plasma equilibria and the vacuum vessel. As a consequence, a negative current spike may appear at thermal quench when the plasma is positioned further out from the geometric centre of the vacuum vessel. It was also pointed out that a further lowering in the internal inductance, in contradiction to previous interpretation in the past, is a plausible candidate for the mechanism for positive current spikes observed even in RS plasmas. The new interpretation enables us to reason out the whole character of current spikes of JT-60U disruptions

  5. Eddy currents in a nonperiodic vacuum vessel induced by axisymmetric plasma motion

    International Nuclear Information System (INIS)

    DeLucia, J.

    1985-12-01

    A method is described for calculating the two-dimensional trajectory of a vertically or horizontally unstable axisymmetric tokamak plasma in the presence of a resistive vacuum vessel. The vessel is not assumed to have toroidal symmetry. The plasma is represented by a current-filament loop that is free to move vertically and to change its major radius. Its position is evolved in time self-consistently with the vacuum vessel eddy currents. The plasma current, internal inductance, and poloidal beta can be specified functions of time so that eddy currents resulting from a disruption can be modeled. The vacuum vessel is represented by a set of current-filaments whose positions and orientations are chosen to model the dominant eddy current paths. Although the specific application is to TFTR, the present model is of general applicability. 7 refs., 4 figs., 2 tabs

  6. High current plasma electron emitter

    International Nuclear Information System (INIS)

    Fiksel, G.; Almagri, A.F.; Craig, D.

    1995-07-01

    A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current, small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications

  7. Current-driven turbulence in plasmas

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1977-10-01

    Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research

  8. Profile formation and sustainment of autonomous tokamak plasma with current hole configuration

    International Nuclear Information System (INIS)

    Hayashi, N.; Takizuka, T.; Ozeki, T.

    2005-01-01

    We have investigated the profile formation and sustainment of tokamak plasmas with the current hole (CH) configuration by using 1.5D time-dependent transport simulations. A model of the current limit inside the CH on the basis of the Axisymmetric Tri-Magnetic-Islands equilibrium is introduced into the transport simulation. We found that a transport model with the sharp reduction of anomalous transport in the reversed-shear (RS) region can reproduce the time evolution of profiles observed in JT-60U experiments. The transport becomes neoclassical-level in the RS region, which results in the formation of profiles with internal transport barrier (ITB) and CH. The CH plasma has an autonomous property because of the strong interaction between a pressure profile and a current profile through the large bootstrap current fraction. The ITB width determined by the neoclassical-level transport agrees well with that measured in JT-60U. The energy confinement inside the ITB agrees with the scaling based on the JT-60U data. The scaling means the autonomous limitation of energy confinement in the CH plasma. The plasma with the large CH is sustained with the full current drive by the bootstrap current. The plasma with the small CH and the small bootstrap current fraction shrinks due to the penetration of inductive current. This shrink is prevented and the CH size can be controlled by the appropriate external current drive (CD). The CH plasma is found to respond autonomically to the external CD. (author)

  9. Studies of the disruption prevention by ECRH at plasma current rise stage in limiter discharges/Possibility of an internal transport barrier producing under dominating electron transport in the T-10 tokamak

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Borshegovskij, A.A.; Chistyakov, V.V.

    2001-01-01

    'Studies of the Disruption Prevention by ECRH at Plasma Current Rise Stage in Limiter Discharges' - Studies of disruption prevention by means of ECRH in T-10 at the plasma current rise phase in limiter discharges with circular plasma cross-section were performed. Reliable disruption prevention by ECRH at HF power (P HF ) min level equal to 20% of ohmic heating power P OH was demonstrated. m/n=2/1 mode MHD-activity developed before disruption (with characteristic time ∼ 120 ms) can be considered as disruption precursor and can be used in a feedback system. 'Possibility of an Internal Transport Barrier Producing under Dominating Electron Transport in the T-10 Tokamak' - The reversed shear experiments were carried out on T-10 at the HF power up to 1MW. The reversed shear in the core was produced by on-axis ECCD in direction opposite to the plasma current. There are no obvious signs of Internal Transport Barriers formation under condition when high-k turbulence determines the electron transport. (author)

  10. Effect of antenna capacitance on the plasma characteristics of an internal linear inductively coupled plasma system

    International Nuclear Information System (INIS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young

    2008-01-01

    This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power

  11. Estimation of post disruption plasma temperature for fast current quench Aditya plasma shots

    International Nuclear Information System (INIS)

    Purohit, S.; Chowdhuri, M.B.; Joisa, Y.S.; Raval, J.V.; Ghosh, J.; Jha, R.

    2013-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electromagnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. It is observed that thermal quench is followed by a sharp current decay. Fast current quench disruptive plasma shots were investigated for ADITYA tokamak. The current decay time was determined for the selected shots, which were in the range of 0.8 msec to 2.5 msec. This current decay information was then applied to L/R model, frequently employed for the estimation of the current decay time in tokamak plasmas, considering plasma inductance and plasma resistivity. This methodology was adopted for the estimation of the post disruption plasma temperature using the experimentally observed current decay time for the fast current quench disruptive ADITYA plasma shots. The study reveals that for the identified shots there is a constant increase in the current decay time with the post disruption plasma temperature. The investigations also explore the behavior post disruption plasma temperature and the current decay time as a function of the edge safety factor, Q. Post disruption plasma temperature and the current decay time exhibits a decrease with the increase in the value Q. (author)

  12. Current filaments in turbulent magnetized plasmas

    DEFF Research Database (Denmark)

    Martines, E.; Vianello, N.; Sundkvist, D.

    2009-01-01

    gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events......Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed....

  13. Surface currents associated with external kink modes in tokamak plasmas during a major disruption

    Science.gov (United States)

    Ng, C. S.; Bhattacharjee, A.

    2017-10-01

    The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.

  14. External kink mode stability of tokamaks with finite edge current density in plasma outside separatrix

    International Nuclear Information System (INIS)

    Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.

    1996-01-01

    Large pressure gradients and current density at the plasma edge and accompanying edge-localized MHD instabilities are typical for H-mode discharges. Low-n external kink modes are a possible cause of the instabilities. The paper mostly deals with external kink modes driven by a finite current density at the plasma boundary (so called peeling modes). It was shown earlier that for a single axis plasma embedded into vacuum the peeling modes are stabilized when separatrix is approaching the plasma boundary. For doublet configurations a finite current density at the internal separatrix does not necessarily lead to external kink instability when the current density vanishes at the boundary. However, a finite current density at the plasma boundary outside the separatrix can drive outer peeling modes. The stability properties and structure of these modes depend on the plasma equilibrium outside the separatrix. The influence of plasma shear and pressure gradient at the boundary on the stability of the outer peeling modes in doublets is studied. The stability of kink modes in divertor configurations with plasma outside the separatrix is very sensitive to the boundary conditions set at open field lines. The choice of the boundary conditions and kink mode stability calculations for the divertor configurations are discussed. (author) 4 figs., 5 refs

  15. Proceedings of the 1984 International Conference on plasma physics

    International Nuclear Information System (INIS)

    Tran, M.Q.; Verbeek, R.J.

    1985-01-01

    The 1984 ICPP, held in Lausanne, Switzerland, is the third biennial conference of the series ''International conferences on plasma physics''. A complete spectrum of current plasma physics from fusion devices to interstellar space was presented, even if most of the papers were of direct interest for fusion. The conference stressed the important role that ''basic plasma physics'' must play in fusion research. Recent theoretical and experimental developments in tokamaks, stellarators, mirrors, reversed field pinches, and other fusion devices were reported. The successful operation of two newly-built large tokamak devices, JET and TFTR, holds the promise that a host of new results of decisive importance for fusion research will become available in the next few years. This is the first part of the conference

  16. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  17. Magnetoacoustic waves in current-carrying plasmas

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1980-04-01

    The results of theoretical and experimental investigations of the characteristics of magnetoacoustic waves in non-uniform, current-carrying plasmas are reviewed. Dissipative MHD and collisionless theories are considered. Also discussed is the use of magnetoacoustic waves in plasma diagnostics and plasma heating

  18. Tokamak plasma current disruption infrared control system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1987-01-01

    This patent describes a device for magnetically confining a plasma driven by a plasma current and contained within a toroidal vacuum chamber, the device having an inner toroidal limiter on an inside wall of the vacuum chamber and an arrangement for the rapid prediction and control in real time of a major plasma disruption. The arrangement is described which includes: scanning means sensitive to infrared radiation emanating from within the vacuum chamber, the infrared radiation indicating the temperature along a vertical profile of the inner toroidal limiter. The scanning means is arranged to observe the infrared radiation and to produce in response thereto an electrical scanning output signal representative of a time scan of temperature along the vertical profile; detection means for analyzing the scanning output signal to detect a first peaked temperature excursion occurring along the profile of the inner toroidal limiter, and to produce a detection output signal in repsonse thereto, the detection output signal indicating a real time prediction of a subsequent major plasma disruption; and plasma current reduction means for reducing the plasma current driving the plasma, in response to the detection output signal and in anticipation of a subsequent major plasma disruption

  19. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  20. Current control necessary for toroidal plasma equilibrium

    International Nuclear Information System (INIS)

    Nagao, S.

    1987-01-01

    It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt

  1. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  2. Global plasma oscillations in electron internal transport barriers in TCV

    Energy Technology Data Exchange (ETDEWEB)

    Udintsev, V S; Sauter, O; Asp, E; Fable, E; Goodman, T P; Turri, G; Graves, J P; Zucca, C [Association Euratom-Confederation Suisse, EPFL/SB/CRPP, Station 13, CH-1015, Lausanne (Switzerland); Scarabosio, A [Max-Planck Institut fuer Plasmaphysik, IPP-EURATOM Association, Garching (Germany); Zhuang, G [Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2008-12-15

    In the Tokamak a Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q {>=} 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  3. Global plasma oscillations in electron internal transport barriers in TCV

    Science.gov (United States)

    Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team

    2008-12-01

    In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  4. The formation of metallic plasmas in transient capillary discharges at high current

    International Nuclear Information System (INIS)

    Wyndham, E S; Favre, M; Aliaga-Rossel, R

    2006-01-01

    We report observations of the formation of a metallic plasma in a high aspect ratio z-pinch confined within a ceramic capillary. A series of experiments on different capillary geometries was undertaken in which titanium metal rings were used to promote the formation of a titanium plasma through preferential ablation. In an initial vacuum a titanium seed plasma is formed in the hollow cathode (HC) volume by a low energy laser spark. This pre-ionizing plasma is assisted in its expansion into the z-pinch volume by the electron beams generated by a pre-ionizing discharge in the capillary, due to the HC effect. Further intense e-beam activity occurs on applying the main driver current to the capillary electrodes before the discharge impedance abruptly drops to give rise to an ensuing high current z-pinch. A segmented titanium ring structure within the capillary promotes metal ablation. The discharges are performed in tubes of 60 to 110 mm length and 3 and 5 mm effective internal diameter. The main discharge current is provided from a small pulsed power switched coaxial line, at up to 150 kA. The generator may be configured to deliver two different rates of current rise and this is found to have a significant effect on the plasma dynamics. The plasma properties are obtained from observations of the axial x-ray emission. The diagnostics used are filtered Si diodes, filtered time-resolved multi-pinhole camera images and the time resolved soft x-ray spectrum from 3 to 20 nm. While a single species metal plasma is not obtained, a very significant proportion of Ti is achieved in the higher rate of current rise configuration. The fraction of Ti diminishes for the longest length discharges and for the larger diameter tube diameter, as does the observed z-pinch uniformity. There is a weak dependance of the electron temperature with tube geometry, but the plasma density falls substantially in the longer discharges. This coincides with diminished effectiveness of the transient HC

  5. Characteristics of disruptive plasma current decay in the HT-2 tokamak

    International Nuclear Information System (INIS)

    Abe, Mitsushi; Takeuchi, Kazuhiro; Otsuka, Michio

    1993-01-01

    Motions of plasma current channel and time evolutions of eddy current distribution on the vacuum vessel during disruptive plasma current decay were studied experimentally in the Hitachi tokamak HT-2. The plasmas are vertically elongated and circularly shaped plasmas. A disruptive plasma current decay has three phases. During the first phase, a large displacement of the plasma position without plasma current decay is observed. Rapid plasma current decay is observed during the second phase and the decay rate is roughly constant with time. The eddy current distribution is like that due to the shell effect which creates a poloidal field to reduce the plasma displacement. During the third phase, the plasma current decays exponentially. The second phase is observed in slightly elongated and high plasma current (> 20 kA) circularly shaped plasmas. The plasma current decay rates in the second phase depend on the plasma cross sectional shape, but they do not in the third phase. The magnetic axis moves from the plasma area to the vacuum vessel wall between the second and third phases. (author)

  6. Asymmetric SOL Current in Vertically Displaced Plasma

    Science.gov (United States)

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  7. Internal magnetic probe measurements of MHD activity and current profiles in a tokamak

    International Nuclear Information System (INIS)

    Giannone, L.; Cross, R.C.

    1987-01-01

    Mirnov oscillations and plasma disruptions in the TORTUS tokamak have been studied by using both internal and external magnetic probe arrays. The internal probe was also used to measure the plasma current distribution so that results could be compared with resistive tearing mode calculations. The growth of m = 3, 4 and 5 modes was found to be consistent with linear tearing mode theory before a disruption but not after it. The observed mode amplitudes, typically b θ /B θ ∼ 5%, were much larger than theoretical estimates based on the magnetic energy available to drive the modes. Despite the presence of large islands near the limiter, most of the disruptions observed were associated with rapid growth of internal modes. (author). 23 refs, 14 figs

  8. Internal magnetic probe measurements of MHD activity and current profiles in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Cross, R C; Hutchinson, I H

    1987-01-01

    Mirnov oscillations and plasma disruptions in the TORTUS tokamak have been studied by using both internal and external magnetic probe arrays. The internal probe was also used to measure the plasma current distribution so that results could be compared with resistive tearing mode calculations. The growth of m = 3, 4 and 5 modes was found to be consistent with linear tearing mode theory before a disruption but not after it. The observed mode amplitudes, typically b/sub theta//B/sub theta/ approx. 5%, were much larger than theoretical estimates based on the magnetic energy available to drive the modes. Despite the presence of large islands near the limiter, most of the disruptions observed were associated with rapid growth of internal modes. (author). 23 refs, 14 figs.

  9. Experimental studies of coaxial plasma gun current

    International Nuclear Information System (INIS)

    Price, D.W.

    1988-01-01

    In this investigation of a coaxial plasma gun, plasma sheath currents and related behavior are examined. Plasma behavior in the gun affects gun characteristics. Plasma gun applications are determined by the plasma behavior. The AFWL PUFF capacitor bank (72 μF, 29 nH, 120 kV) drives the plasma gun using a deuterium fill gas. The gas breakdown site is isolated from the dielectric/vacuum interface in the AFWL system. Two gas values deliver gas in the system. The first delivers gas from the gun breech and the second optional valve delivers gas to the gun muzzle. Currents and voltages are measured by Rogowski coils, B probes and capacitive voltage probes. A O-D slug model is used to predict the current, inductance, gun voltage and plasma sheath velocity. The slug model assumes the sheath transits the gun with all mass in the sheath. In the snowplow mode, the plasma sheath is thin with a sharp current rise and drop. Our system operated in a transition mode between the snowplow and deflagration modes with early snowplow behavior and late deflagration behavior. Neutrons are produced in a plasma pinch at the gun muzzle, indicating snowplow behavior. The slug theory models overall gun behavior to experimental accuracy. Experimental results are compared to four theories for plasma sheath velocities: the Alfven collisionally limited model, the Rosenbluth model, the Fishbine saturated model and a single particle drift model. Experimental velocities vary from 10 5 to 10 6 m/s. Only the single particle drift and the slug model calculations are of the right magnitude (8 x 10 5 m/s). The Fishbine and the Rosenbluth models predict slower velocities (2 x 10 5 m/s). The Alfven model is not applicable to this system

  10. The role of surface currents in plasma confinement

    International Nuclear Information System (INIS)

    Webster, Anthony J.

    2011-01-01

    During plasma instabilities, ''surface currents'' can flow at the interface between the plasma and the surrounding vacuum, and in most cases, they are a harmless symptom of the instability that is causing them. Large instabilities can lead to ''disruptions,'' an abrupt termination of the plasma with the potential to damage the machine in which it is contained. For disruptions, the correct calculation of surface currents is thought to be essential for modelling disruptions properly. Recently, however, there has been debate and disagreement about the correct way to calculate surface currents. The purpose of this paper is to clarify as simply as possible the role of surface currents for plasma confinement and to show that a commonly used representation for surface currents σ-vector with σ-vector=∇I and n-vector, I a scalar function, and n-vector the unit normal to the plasma surface, is only appropriate for the calculation of surface currents that are in magnetohydrodynamic equilibrium. Fortunately, this is the situation thought to be of most relevance for disruption calculations.

  11. Current drive by asymmetrical heating in a toroidal plasma

    International Nuclear Information System (INIS)

    Gahl, J.M.

    1986-01-01

    This report describes the first experimental observation of current generation by asymmetrical heating of ions. A unidirectional fast Alfven wave launched by a slow-wave antenna inside the Texas Tech Tokamak, asymmetrically heated the ions. Measurements of the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column confirmed the current generation indirectly. Current generation, obtained in a one-species, hydrogen plasma, is a phenomenon which had not been predicted previously. Calculations of the dispersion relation for the fast Alfven wave near the fundamental cyclotron resonance in a one-species, hydrogen plasma, using warm plasma theory, support the experimental results

  12. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  13. Simulations of plasma heating caused by the coalescence of multiple current loops in a proton-boron fusion plasma

    International Nuclear Information System (INIS)

    Haruki, T.; Yousefi, H. R.; Sakai, J.-I.

    2010-01-01

    Two dimensional particle-in-cell simulations of a dense plasma focus were performed to investigate a plasma heating process caused by the coalescence of multiple current loops in a proton-boron-electron plasma. Recently, it was reported that the electric field produced during the coalescence of two current loops in a proton-boron-electron plasma heats up all plasma species; proton-boron nuclear fusion may therefore be achievable using a dense plasma focus device. Based on this work, the coalescence process for four and eight current loops was investigated. It was found that the return current plays an important role in both the current pinch and the plasma heating. The coalescence of four current loops led to the breakup of the return current from the pinched plasma, resulting in plasma heating. For the coalescence of eight current loops, the plasma was confined by the pinch but the plasma heating was smaller than the two and four loop cases. Therefore the heating associated with current loop coalescence depends on the number of initial current loops. These results are useful for understanding the coalescence of multiple current loops in a proton-boron-electron plasma.

  14. Current ramp-up experiments in full current drive plasmas on TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Nakamura, K.; Hasegawa, M.

    2003-01-01

    Four types of plasma current ramp-up experiments were executed on TRIAM-1M in full lower hybrid current drive plasmas (LHCD: 8.2GHz, up to 0.4 MW, 8 x 2 grill antenna); 1) the current start up by the combination between electron cyclotron resonance heating (ECH: 170GHz, up to 0.2 MW, O-mode launching) and LHCD at the density of ∼2x10 19 m -3 at B t =6.7T, 2) the tail heating by the additional LHCD, 3) the bulk heating by ECH, 4) the spontaneous ramp up by the transition to enhanced current drive (ECD) mode. The time evolutions of plasma current during four types of ramp-up phase were investigated and an exponential type and a tangent-hyperbolic one were observed. The time evolutions of plasma current during the tail and the bulk heating show the exponential type except the tail heating with high n parallel and it has a tangent-hyperbolic one during the ECD mode and the current start-up. A simple model with two different time constants, which are a time defined by L/R, τ L/R , and a time caused by change of the effective refractive index along the magnetic field, τ, is proposed to explain two types of the time evolution of the plasma current. The estimated τ L/R is consistent with the calculated one from the plasma parameter. It is found that τ are less than τ L/R in the cases of the tail and the bulk heating, and comparable in the cases of the ECD mode, and more than τ L/R in the cases of the plasma start-up. This indicates that the value of the effective refractive index along the magnetic field, parallel >, develops during the ECD mode and the current start-up. The value of τ depends on the RF power. The estimated is close to the expected up-shifted n parallel due to the toroidal effect and the magnetic shear. (author)

  15. Plasma and current structures in dynamical pinches

    International Nuclear Information System (INIS)

    Butov, I.Ya.; Matveev, Yu.V.

    1981-01-01

    Dynamics of plasma layers and current structure in aZ-pinch device has been experimentally investigated. It is found that shaping of a main current envelope is ended with its explosion-like expansion, the pinch decaying after compression to separated current filaments. It is also shown that filling of a region outside the pinch with plasma and currents alternating in directions occurs owing to interaction of current loops (inductions) formed in a magnetic piston during its compression with reflected shock wave. Current circulating in the loops sometimes exceeds 1.5-2 times the current of discharge circuit. The phenomena noted appear during development of superheat instability and can be realized, for example, in theta-pinches, plasma focuses, tokamaks. The experiments were carried out at the Dynamic Zeta-pinch device at an energy reserse of up to 15 kJ (V 0 =24 kV) in a capacitor bank. Half-period of the discharge current is 9 μs; Isub(max)=3.5x10sup(5) A. Back current guide surrounding a china chamber of 28 cm diameter and 50 cm length is made in the form of a hollow cylinder. Initial chamber vacuum is 10 -6 torr [ru

  16. International Conference on Plasma Physics ICPP 1994. Proceedings

    International Nuclear Information System (INIS)

    Sakanaka, P.H.; Tendler, M.

    1995-01-01

    These proceedings represent the papers presented at the 1994 International Conference on Plasma Physics held in Foz do Iguacu, Brazil. The scope of the conference was broad and covered all aspects of plasma physics. Some of the topics discussed include space and astrophysical plasmas,fusion plasmas, small and large Tokamak plasmas, non-Tokamak plasmas, inertial confinement fusion plasmas, plasma based neutron sources and plasma applications. There are 60 papers in these proceedings and out of these, 35 have been abstracted for the Energy Science and Technology database

  17. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  18. ICRF Mode Conversion Current Drive for Plasma Stability Control in Tokamaks

    International Nuclear Information System (INIS)

    Grekov, D.; Kock, R.; Lyssoivan, A.; Noterdaeme, J. M.; Ongena, J.

    2007-01-01

    There is a substantial incentive for the International Thermonuclear Experimental Reactor (ITER) to operate at the highest attainable beta (plasma pressure normalized to magnetic pressure), a point emphasized by requirements of attractive economics in a reactor. Recent experiments aiming at stationary high beta discharges in tokamak plasmas have shown that maximum achievable beta value is often limited by the onset of instabilities at rational magnetic surfaces (neoclassical tearing modes). So, methods of effective control of these instabilities have to be developed. One possible way for neoclassical tearing modes control is an external current drive in the island to locally replace the missing bootstrap current and thus to suppress the instability. Also, a significant control of the sawtooth behaviour was demonstrated when the magnetic shear was modified by driven current at the magnetic surface where safety factor equals to 1. In the ion cyclotron range of frequencies (ICRF), the mode conversion regime can be used to drive the local external current near the position of the fast-to-slow wave conversion layer, thus providing an efficient means of plasma stability control. The slow wave energy is effectively absorbed in the vicinity of mode conversion layer by electrons with such parallel to confining magnetic field velocities that the Landau resonance condition is satisfied. For parameters of present day tokamaks and for ITER parameters the slow wave phase velocity is rather low, so the large ratio of momentum to energy content would yield high current drive efficiency. In order to achieve noticeable current drive effect, it is necessary to create asymmetry in the ICRF power absorption between top and bottom parts of the plasma minor cross-section. Such asymmetric electron heating may be realized using: - shifted from the torus midplane ICRF antenna in TEXTOR tokamak; - plasma displacement in vertical direction that is feasible in ASDEX-Upgrade; - the

  19. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  20. Langmuir probe characteristic in a current - carrying magnetized plasma

    International Nuclear Information System (INIS)

    Stanojevic, M.; Cercek, M.; Gyergyek, T.

    1995-01-01

    Experimental investigation of the Langmuir probe characteristic is a magnetized plasma with an electron current along the magnetic field direction shows that the standard procedure for determination of the electron temperature and plasma density, which is applicable in a current - free magnetized plasma, gives erroneous results for these plasma parameters. However, more precise values of the plasma parameters can be calculated from the ion saturation currents and electron temperatures obtained with that procedure for two opposite orientations of the one - sided planar probe collecting surface with respect to the direction of the electron drift. With the existing theoretical models only the order of magnitude of the electron drift velocity can be accurately determined from the measured electron saturation currents for the two probe orientations. (author)

  1. Current ramp-up experiments in full current drive plasmas in TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Nakamura, K.; Hasegawa, M.; Itoh, S.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Yoshida, N.; Tokunaga, K.; Fujiwara, T.; Kulkarni, S.V.; Mitarai, O.

    2004-01-01

    Four types of plasma current ramp-up experiments in full non-inductively lower hybrid current driven (LHCD) plasmas were executed in TRIAM-1M: (1) current start-up by a combination of electron cyclotron resonance heating (ECRH) and LHCD, (2) tail heating by additional LHCD, (3) bulk heating by ECRH and (4) spontaneous ramp-up by a transition to enhanced current drive (ECD) mode. The time evolutions of plasma current during four types of ramp-up phase were adjusted by a simple model with two different time constants, which are a time defined by the total current diffusion time and a time constant for improving the current drive efficiency. In the case of (1) and (4), the latter time constant is significant during the current ramp-up phase. The improvement in the current drive efficiency in the ECD mode is likely to be caused by the increase in the effective refractive index along the magnetic field of the lower hybrid wave. (author)

  2. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  3. Direct currents produced by hf heating of plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1974-01-01

    In addition to the well-known diffusion currents, toroidal direct currents arise in h.f. heated plasmas as a result of a momentum transfer from the h.f. field to plasma particles. The estimates of steady-state conditions are given for these currents. Particularly, the possibility of stationary operation of a Tokamak device is analyzed. (author)

  4. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    Science.gov (United States)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  5. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  6. International Conference on Plasma Diagnostics. Slides, papers and posters of Plasma Diagnostics 2010

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Bonhomme, G.; Grisolia, C.; Hirsch, M.; Klos, Z.; Mazouffre, S.; Musielok, J.; Ratynskaya, S.; Sadowski, M.; Van de Sanden, R.; Sentis, M.; Stroth, U.; Tereshin, V.; Tichy, M.; Unterberg, B.; Weisen, H.; Zoletnik, S.

    2011-01-01

    Plasma diagnostics 2010 is an International Conference on Diagnostic Methods involved in Research and Applications of Plasmas, originating on combining the 5. German-Polish Conference on Plasma Diagnostics for Fusion and Applications and the 7. French-Polish Seminar on Thermal Plasma in Space and Laboratory. The Scientific Committee of 'Plasma 2007' decided to concentrate the attention of future conferences more on the diagnostic development and diagnostic interpretation in the fields of high and low temperature plasmas and plasma applications. It is aimed at involving all European activities in the fields. The Scientific Program will cover the fields from low temperature laboratory to fusion plasmas of various configurations as well as dusty and astrophysical plasmas and industrial plasma applications

  7. Plasma auxiliary heating and current drive

    International Nuclear Information System (INIS)

    1999-01-01

    Heating and current drive systems must fulfil several roles in ITER operating scenarios: heating through the H-mode transition and to ignition; plasma burn control; current drive and current profile control in steady state scenarios; and control of MHD instabilities. They must also perform ancillary functions, such as assisting plasma start-up and wall conditioning. It is recognized that no one system can satisfy all of these requirements with the degree of flexibility that ITER will require. Four heating and current drive systems are therefore under consideration for ITER: electron cyclotron waves at a principal frequency of 170 GHz; fast waves operating in the range 40-70 MHz (ion cyclotron waves); lower hybrid waves at 5 GHz; and neutral beam injection using negative ion beam technology for operation at 1 MeV energy. It is likely that several of these systems will be employed in parallel. The systems have been chosen on the basis of the maturity of physics understanding and operating experience in current experiments and on the feasibility of applying the relevant technology to ITER. Here, the fundamental physics describing the interaction of these heating systems with the plasma is reviewed, the relevant experimental results in the exploitation of the heating and current drive capabilities of each system are discussed, key aspects of their application to ITER are outlined, and the major technological developments required in each area are summarized. (author)

  8. Stability of plasma cylinder with current in a helical plasma flow

    Science.gov (United States)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  9. Magnetohydrodynamically stable plasma with supercritical current density at the axis

    Energy Technology Data Exchange (ETDEWEB)

    Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Sudnikov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2014-05-15

    In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a) ≈ 4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n = 1, m = 1 mode for both stable and disruptive regimes.

  10. Soft x-ray camera for internal shape and current density measurements on a noncircular tokamak

    International Nuclear Information System (INIS)

    Fonck, R.J.; Jaehnig, K.P.; Powell, E.T.; Reusch, M.; Roney, P.; Simon, M.P.

    1988-05-01

    Soft x-ray measurements of the internal plasma flux surface shaped in principle allow a determination of the plasma current density distribution, and provide a necessary monitor of the degree of internal elongation of tokamak plasmas with a noncircular cross section. A two-dimensional, tangentially viewing, soft x-ray pinhole camera has been fabricated to provide internal shape measurements on the PBX-M tokamak. It consists of a scintillator at the focal plane of a foil-filtered pinhole camera, which is, in turn, fiber optically coupled to an intensified framing video camera (/DELTA/t />=/ 3 msec). Automated data acquisition is performed on a stand-alone image-processing system, and data archiving and retrieval takes place on an optical disk video recorder. The entire diagnostic is controlled via a PDP-11/73 microcomputer. The derivation of the polodial emission distribution from the measured image is done by fitting to model profiles. 10 refs., 4 figs

  11. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  12. Current distribution in a plasma erosion opening switch

    International Nuclear Information System (INIS)

    Weber, B.V.; Commisso, R.J.; Meger, R.A.; Neri, J.M.; Oliphant, W.F.; Ottinger, P.F.

    1984-01-01

    The current distribution in a plasma erosion opening switch is determined from magnetic field probe data. During the closed state of the switch the current channel broadens rapidly. The width of the current channel is consistent with a bipolar current density limit imposed by the ion flux to the cathode. The effective resistivity of the current channel is anomalously large. Current is diverted to the load when a gap opens near the cathode side of the switch. The observed gap opening can be explained by erosion of the plasma. Magnetic pressure is insufficient to open the gap

  13. Current distribution in a plasma erosion opening switch

    International Nuclear Information System (INIS)

    Weber, B.V.; Commisso, R.J.; Meger, R.A.; Neri, J.M.; Oliphant, W.F.; Ottinger, P.F.

    1985-01-01

    The current distribution in a plasma erosion opening switch is determined from magnetic field probe data. During the closed state of the switch the current channel broadens rapidly. The width of the current channel is consistent with a bipolar current density limit imposed by the ion flux to the cathode. The effective resistivity of the current channel is anomalously large. Current is diverted to the load when a gap opens near the cathode side of the switch. The observed gap opening can be explained by erosion of the plasma. Magnetic pressure is insufficient to open the gap

  14. Rotating field current drive in spherical plasmas

    International Nuclear Information System (INIS)

    Brotherton-Ratcliffe, D.; Storer, R.G.

    1988-01-01

    The technique of driving a steady Hall current in plasmas using a rotating magnetic field is studied both numerically and analytically in the approximation of negligible ion flow. A spherical plasma bounded by an insulating wall and immersed in a uniform magnetic field which has both a rotating component (for current drive) and a constant ''vertical'' component (for MHD equilibrium) is considered. The problem is formulated in terms of an expansion of field quantities in vector spherical harmonics. The numerical code SPHERE solves the resulting pseudo-harmonic equations by a multiple shooting technique. The results presented, in addition to being relevant to non-inductive current drive generally, have a direct relevance to the rotamak experiments. For the case of no applied vertical field the steady state toroidal current driven by the rotating field per unit volume of plasma is several times less than in the long cylinder limit for a plasma of the same density, resistivity and radius. The application of a vertical field, which for certain parameter regimes gives rise to a compact torus configuration, improves the current drive dramatically and in many cases gives ''better'' current drive than the long cylinder limit. This result is also predicted by a second order perturbation analysis of the pseudo-harmonic equations. A steady state toroidal field is observed which appears consistent with experimental observations in rotamaks regarding magnitude and spatial dependence. This is an advance over previous analytical theory which predicted an oppositely directed toroidal field of undefined magnitude. (author)

  15. Electrodynamic forces and plasma conductivity inside the current sheet

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Frank, A.G.; Markov, V.S.

    1985-01-01

    The process of accumulation and explosive release of magnetic energy was studied in a current sheet of plasma of a high-current linear discharge. The distribution of current density and of electrodynamic forces were measured and the time evolution of these quantities was determined. The evolution of the plasma conductivity was also obtained. The measured and calculated electrodynamic forces may explain the plasma acceleration up to the velocities about 3x10 4 m/s only near the sheet edges. (D.Gy.)

  16. Reconstruction of the ion plasma parameters from the current measurements: mathematical tool

    Directory of Open Access Journals (Sweden)

    E. Séran

    Full Text Available Instrument d’Analyse du Plasma (IAP is one of the instruments of the newly prepared ionospheric mission Demeter. This analyser was developed to measure flows of thermal ions at the altitude of ~ 750 km and consists of two parts: (i retarding potential analyser (APR, which is utilised to measure the energy distribution of the ion plasma along the sensor look direction, and (ii velocity direction analyser (ADV, which is used to measure the arrival angle of the ion flow with respect to the analyser axis. The necessity to obtain quick and precise estimates of the ion plasma parameters has prompted us to revise the existing mathematical tool and to investigate different instrumental limitations, such as (i finite angular aperture, (ii grid transparency, (iii potential depression in the space between the grid wires, (iv losses of ions during their passage between the entrance diaphragm and the collector. Simple analytical expressions are found to fit the currents, which are measured by the APR and ADV collectors, and show a very good agreement with the numerical solutions. It was proven that the fitting of the current with the model functions gives a possibility to properly resolve even minor ion concentrations and to find the arrival angles of the ion flow in the multi-species plasma. The discussion is illustrated by an analysis of the instrument response in the ionospheric conditions which are predicted by the International Reference Ionosphere (IRI model.

    Key words. Ionosphere (plasma convection; instruments and techniques – Space plasma physics (experimental and mathematical techniques

  17. Reconstruction of the ion plasma parameters from the current measurements: mathematical tool

    Directory of Open Access Journals (Sweden)

    E. Séran

    2003-05-01

    Full Text Available Instrument d’Analyse du Plasma (IAP is one of the instruments of the newly prepared ionospheric mission Demeter. This analyser was developed to measure flows of thermal ions at the altitude of ~ 750 km and consists of two parts: (i retarding potential analyser (APR, which is utilised to measure the energy distribution of the ion plasma along the sensor look direction, and (ii velocity direction analyser (ADV, which is used to measure the arrival angle of the ion flow with respect to the analyser axis. The necessity to obtain quick and precise estimates of the ion plasma parameters has prompted us to revise the existing mathematical tool and to investigate different instrumental limitations, such as (i finite angular aperture, (ii grid transparency, (iii potential depression in the space between the grid wires, (iv losses of ions during their passage between the entrance diaphragm and the collector. Simple analytical expressions are found to fit the currents, which are measured by the APR and ADV collectors, and show a very good agreement with the numerical solutions. It was proven that the fitting of the current with the model functions gives a possibility to properly resolve even minor ion concentrations and to find the arrival angles of the ion flow in the multi-species plasma. The discussion is illustrated by an analysis of the instrument response in the ionospheric conditions which are predicted by the International Reference Ionosphere (IRI model.Key words. Ionosphere (plasma convection; instruments and techniques – Space plasma physics (experimental and mathematical techniques

  18. Internal transport barriers in optimized shear plasmas in JET

    International Nuclear Information System (INIS)

    Sips, A.C.C.; Baranov, Y.F.; Challis, C.D.; Cottrell, G.A.; Eriksson, L.-G.; Gormezano, C.; Gowers, C.; Haas, J.C.M. de; Hellermann, M. von; Huysmans, G.T.A.; Howman, A.; K ig, R.; Lazarus, A.; Nielsen, P.; O'Brien, D.; Sadler, G.; Soeldner, F.X.; Stamp, M.F.; Tubbing, B.J.D.; Ward, D.J.; Greenfield, C.M.; Luce, T.; Strait, E.J.; Lazarus, E.A.; Wade, M.; Rice, B.W.

    1998-01-01

    Experiments using high-power heating during the current ramp-up phase of the discharge have obtained the highest D-D neutron rates in JET; S n =5x6x10 16 neutrons s -1 , with n e0 approx.= 6x10 19 m - 3, T e0 approx.= 12 keV and T i0 approx.= 26 keV. The best discharges (I p = 3.3 MA and B t = 3.4 tesla) have peaked pressure profiles with a transport barrier located at r/a = 0.55. The pressure peaking is limited by MHD modes and requires active input power control to achieve the best performance. Deuterium neutral beam injection into a tritium-rich target plasma has established internal transport barriers at power levels close to the lowest threshold for pure deuterium plasmas. (author)

  19. Hot spots and dark current in advanced plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. G. Manahan

    2016-01-01

    Full Text Available Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  20. Time evolution of the bootstrap current profile in LHD plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji; Kawaoto, K.; Watanabe, K.Y.

    2008-10-01

    The direction of the bootstrap current is inverted in the outward shifted plasmas of the Large Helical Device (LHD). In order to verify the reliability of the theoretical models of the bootstrap current in helical plasmas, the rotational transform profiles are observed by the Motional Stark Effect measurement in the bootstrap current carrying plasmas of the LHD, and they are compared with the numerical simulations of the toroidal current profile including the bootstrap current. Since the toroidal current profile is not in the steady state in these plasmas, taking care of the inversely induced component of the toroidal current and finite duration of the resistive diffusion of the toroidal current are important in the numerical simulations. Reasonable agreement can be obtained between the rotational transform profiles measured in the experiments and those calculated in the numerical simulations. (author)

  1. The evolution of the plasma current during tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Anderson, D.; Lisak, M.; Eriksson, L.G.

    2004-01-01

    In a tokamak disruption, the ohmic plasma current is partly replaced by a current carried by runaway electrons. This process is analysed by combining the equations for runaway electron generation with Maxwell's equations for the evolution of the electric field. This allows a quantitative understanding to be gained of runaway production in present experiments, and extrapolation to be made to ITER. The runaway current typically becomes more peaked on the magnetic axis than the pre-disruption current. In fact, the central current density can rise although the total current falls, which may have implications for post-disruption plasma stability. Furthermore, it is found that the runaway current easily spreads radially in a filament way due to the high sensitivity of the runaway generation efficiency to plasma parameters. (authors)

  2. Development of net-current free heliotron plasmas in the Large Helical Device

    International Nuclear Information System (INIS)

    Komori, A.; Yamada, H.; Kaneko, O.; Kawahata, K.; Mutoh, T.; Ohyabu, N.; Imagawa, S.; Ida, K.; Nagayama, Y.; Shimozuma, T.; Watanabe, K.Y.; Mito, T.; Kobayashi, M.; Nagaoka, K.; Sakamoto, R.; Ohdachi, S.; Sakakibara, S.; Ashikawa, N.; Igami, H.; Kasahara, H.; Kubo, S.; Kumazawa, R.; Nishiura, M.; Masuzaki, S.; Tanaka, K.; Toi, K.; Yoshinuma, M.; Narushima, Y.; Tamura, N.; Saito, K.; Seki, T.; Sudo, S.; Tanaka, H.; Tokuzawa, T.; Yanagi, N.; Yokoyama, M.; Yoshimura, Y.; Akiyama, T.; Chikaraishi, H.; Emoto, M.; Funaba, H.; Goncharov, P.; Goto, M.; Ichiguchi, K.; Ido, T.; Ikeda, K.; Yoshida, N.; Inagaki, S.; Idei, H.; Feng, Y.; Weller, A.; Fukuda, T.; Mitarai, O.; Murakami, S.; Nakamura, Y.; Hino, T.; Ohno, N.; Okamura, T.; Iio, S.; Chowdhuri, M.; Ezumi, N.; Garcia, L.; Ichimura, M.; Irie, M.; Isayama, Akihiko; Iwamae, Atsushi; Takenaga, Hidenobu; Urano, Hajime

    2008-10-01

    Remarkable progress in the physical parameters of net-current free plasmas has been made in the Large Helical Device (LHD) since the last Fusion Energy Conference in Chengdu, 2006 (O. Motojima et al., Nucl. Fusion 47 (2007) S668). The beta value reached 5 % and a high beta state beyond 4.5% from the diamagnetic measurement has been maintained for longer than 100 times the energy confinement time. The density and temperature regimes also have been extended. The central density has exceeded 1.0x10 21 m -3 due to the formation of an Internal Diffusion Barrier (IDB). The ion temperature has reached 6.8 keV at the density of 2x10 19 m -3 , which is associated with the suppression of ion heat conduction loss. Although these parameters have been obtained in separated discharges, each fusion-reactor relevant parameter has elucidated the potential of net-current free heliotron plasmas. Diversified studies in recent LHD experiments are reviewed in this paper. (author)

  3. Trapping and dark current in plasma-based accelerators

    International Nuclear Information System (INIS)

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-01-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed

  4. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  5. Separation of Evans and Hiro currents in VDE of tokamak plasma

    Science.gov (United States)

    Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.

    2014-10-01

    Progress on the Disruption Simulation Code (DSC-3D) development and benchmarking will be presented. The DSC-3D is one-fluid nonlinear time-dependent MHD code, which utilizes fully 3D toroidal geometry for the first wall, pure vacuum and plasma itself, with adaptation to the moving plasma boundary and accurate resolution of the plasma surface current. Suppression of fast magnetosonic scale by the plasma inertia neglecting will be demonstrated. Due to code adaptive nature, self-consistent plasma surface current modeling during non-linear dynamics of the Vertical Displacement Event (VDE) is accurately provided. Separation of the plasma surface current on Evans and Hiro currents during simulation of fully developed VDE, then the plasma touches in-vessel tiles, will be discussed. Work is supported by the US DOE SBIR Grant # DE-SC0004487.

  6. Current density distribution during disruptions and sawteeth in a simple model of plasma current in a tokamak

    International Nuclear Information System (INIS)

    Stefanovskii, A. M.

    2011-01-01

    The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.

  7. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  8. Preliminary experiment of non-induced plasma current startup on SUNIST spherical tokamak

    International Nuclear Information System (INIS)

    He Yexi; Zhang Liang; Xie Lifeng; Tang Yi; Yang Xuanzong; Fu Hongjun

    2005-01-01

    Non-inductive plasma current startup is an important motivation on the SUNIST spherical tokamak. In this experiment, a 100 kW, 2.45 GHz magnetron microwave system has been applied to the plasma current startup. Besides the toroidal field, a vertical field was applied to generate a preliminary toroidal plasma current without action of the central solenoid. As the evidence of the plasma current startup by the vertical field drift effect, the direction of the plasma current is changed with the changing direction of the vertical field during ECR startup discharge. We have also observed the plasma current maximum by scanning the vertical field in both directions. Additionally, we have used electrode discharge to assist the ECR current startup. (author)

  9. Electron current extraction from a permanent magnet waveguide plasma cathode

    Energy Technology Data Exchange (ETDEWEB)

    Weatherford, B. R.; Foster, J. E. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kamhawi, H. [NASA Glenn Research Center, Cleveland, Ohio 44135 (United States)

    2011-09-15

    An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed.

  10. Analysis of plasma behavior and electro-magnetic interaction between plasma and device

    International Nuclear Information System (INIS)

    Kobayashi, Tomofumi

    1980-01-01

    A simulation program for the analysis of plasma behavior and the electromagnetic interaction between plasma and device has been developed. The program consists of a part for the analysis of plasma behavior (plasma system) and a part for the analysis of the electro-magnetic interaction between plasma and devices (circuit system). The parameters which connect the plasma system and the circuit system are the electric resistance of plasma, the internal inductance, and the plasma current. For the plasma system, the simultaneous equations which describe the density distribution of plasma particles, the temperature distribution of electrons and ions, and the space-time variation of current density distribution were derived. The one-dimensional plasma column in γ-direction was considered. The electric resistance and the internal inductance can be deduced. The circuit components are a current transformer, a vertical field coil, a quadrupole field coil, a vacuum chamber and others. An equation which describes plasma position and the shape of cross section is introduced. The plasma position can be known by solving the Mukhavatov's formula of equilibrium. By using this program, the build-up process of plasma current in JT-60 was analysed. It was found that the expansion of plasma sub radius and the control of current distribution by gas injection are the effective methods to obtain high temperature and high density plasma. The eddy current induced in a vacuum vessel shields 40 percent of magnetic field made in the plasma region by a vertical field coil. (Kato, T.)

  11. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.

    2005-01-01

    . Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  12. Electric currents in cosmic plasmas

    International Nuclear Information System (INIS)

    Alfven, H.

    1977-05-01

    Since the beginning of the century physics has been dualistic in the sense that some phenomena are described by a field concept, others by a particle concept. This dualism is essential also in the physics of cosmical plasmas: some phenomena should be described by a magnetic field formalism, others by an electric current formalism. During the first period of evolution of cosmic plasma physics the magnetic field aspect has dominated, and a fairly exhaustive description has been given of those phenomena--like the propagation of waves--which can be described in this way. We have now entered a second period which is dominated by a systematic exploration of the particle (or current) aspect. A survey is given of a number of phenomena which can be understood only from the particle aspect. These include the formation of electric double layers, the origin of explosive events like magnetic substorms and solar flares, and further, the transfer of energy from one region to another. A useful method of exploring many of these phenomena is to draw the electric circuit in which the current flows and study its properties. A number of simple circuits are analyzed in this way. (author)

  13. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    Science.gov (United States)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  14. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  15. On the evaluation of currents in a tokamak plasma during combined Ohmic and RF current drive

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1986-09-01

    By taking into account the rf-generated enhancement of the plasma electric conductivity (as formulated by Fisch in the limit of weak dc electric fields) a relation is derived between the ratio of rf to Ohmically driven currents and other plasma parameters to be measured before and after the rf onset under the condition of constant net plasma current. (author)

  16. The low-current low-temperature plasma generators

    International Nuclear Information System (INIS)

    Dautov, G.Yu.

    2000-01-01

    In this article, the results of low-current gas-discharge plasma generator investigations carried out by a group of scientists from the Kazan' Aviation Institute are presented. When considered necessary, the results are compared with the data obtained by other authors. The basic configurations and theoretical calculation peculiarities of plasma generators are described. The electrical, thermal and energy characteristics of discharges in gas flows, as well as summarised empirical formulae and experimental data necessary for calculations and design of plasma devices are presented. (author)

  17. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  18. Energy confinement in JT-60 lower hybrid current driven plasmas

    International Nuclear Information System (INIS)

    Ushigusa, K.; Imai, T.; Naito, O.; Ikeda, Y.; Tsuji, S.; Uehara, K.

    1990-01-01

    The energy confinement in high power lower hybrid current driven (LHCD) plasmas has been studied in the JT-60 tokamak. At a plasma current of 1 MA, the diamagnetically estimated energy confinement time in LHCD plasmas has almost the same value as the confinement time in ohmically heated plasmas at n-bar e ∼ 1.0x10 19 m -3 . The confinement time of high power LHCD plasmas (P LH E varies as to P LH α n e β I p 0 with α + β ∼ -0.3. (author). Letter-to-the-editor. 12 refs, 5 figs

  19. Numerical simulation of the plasma current quench following a disruptive energy loss

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Holmes, J.A.; Miller, J.B.; Rothe, K.E.

    1983-11-01

    The plasma electromagnetic interaction with poloidal field coils and nearby passive conductor loops during the current quench following a disruptive loss of plasma energy is simulated. By solving a differential/algebraic system consisting of a set of circuit equations (including the plasma circuit) coupled to a plasma energy balance equation and an equilibrium condition, the electromagnetic consequences of an abrupt thermal quench are observed. Limiters on the small and large major radium sides of the plasma are assumed to define the plasma cross section. The presence of good conductors near the plasma and a small initial distance (i.e., 5 to 10% of the plasma minor radius) between the plasma edge and an inboard limiter are shown to lead to long current decay times. For a plasma with an initial major radius R/sub o/ = 4.3 m, aspect ratio A = 3.6, and current I/sub P/ = 4.0 MA, introducing nearby passive conductors lengthens the current decay from milliseconds to hundreds of milliseconds

  20. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  1. Magnetosheath jets: MMS observations of internal structures and jet interactions with ambient plasma

    Science.gov (United States)

    Plaschke, F.; Karlsson, T.; Hietala, H.; Archer, M. O.; Voros, Z.; Nakamura, R.; Magnes, W.; Baumjohann, W.; Torbert, R. B.; Russell, C. T.; Giles, B. L.

    2017-12-01

    The dayside magnetosheath downstream of the quasi-parallel bow shock is commonly permeated by high-speed jets. Under low IMF cone angle conditions, large scale jets alone (with cross-sectional diameters of over 2 Earth radii) have been found to impact the subsolar magnetopause once every 6 minutes - smaller scale jets occurring much more frequently. The consequences of jet impacts on the magnetopause can be significant: they may trigger local reconnection and waves, alter radiation belt electron drift paths, disturb the geomagnetic field, and potentially generate diffuse throat aurora at the dayside ionosphere. Although some basic statistical properties of jets are well-established, their internal structure and interactions with the surrounding magnetosheath plasma are rather unknown. We present Magnetospheric Multiscale (MMS) observations which reveal a rich jet-internal structure of high-amplitude plasma moment and magnetic field variations and associated currents. These variations/structures are generally found to be in thermal and magnetic pressure balance; they mostly (but not always) convect with the plasma flow. Small velocity differences between plasma and structures are revealed via four-spacecraft timing analysis. Inside a jet core region, where the plasma velocity maximizes, structures are found to propagate forward (i.e., with the jet), whereas backward propagation is found outside that core region. Although super-magnetosonic flows are detected by MMS in the spacecraft frame of reference, no fast shock is seen as the jet plasma is sub-magnetosonic with respect to the ambient magnetosheath plasma. Instead, the fast jet plasma pushes ambient magnetosheath plasma ahead of the jet out of the way, possibly generating anomalous sunward flows in the vicinity, and modifies the magnetic field aligning it with the direction of jet propagation.

  2. Current drive for rotamak plasmas

    Indian Academy of Sciences (India)

    Abstract. Experiments which have been undertaken over a number of years have shown that a rotating magnetic field can drive a significant non-linear Hall current in a plasma. Successful experiments of this concept have been made with a device called rotamak. In its original configuration this device was a field reversed ...

  3. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2014-05-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010), together agreed to carry out this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, on occasion of the Bicentennial of Chilean Independence. The ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of the official program within the framework of the Chilean Bicentennial. The event was also a scientific and academic activity of the project ''Center for Research and Applications in Plasma Physics and Pulsed Power, P4'', supported by National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya, in 1980, and followed by the Congresses: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006), and Fukuoka (2008). The purpose of the Congress is to discuss the recent progress and future views in plasma science, including fundamental plasma physics, fusion plasmas, astrophysical plasmas, and plasma applications, and so forth. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by the Workshops: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005), and Caracas (2007). The Latin American Workshop on Plasma Physics is a communication forum of the achievements of the plasma-physics regional community, fostering collaboration between plasma scientists within the region and elsewhere. The program of the ICPP-LAWPP-2010 included the topics

  4. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  5. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  6. Modeling and application of plasma charge current in deep penetration laser welding

    International Nuclear Information System (INIS)

    Zhang, Xudong; Chen, Wuzhu; Jiang, Ping; Guo, Jing; Tian, Zhiling

    2003-01-01

    Plasma charge current distribution during deep penetration CO 2 laser welding was analyzed theoretically and experimentally. The laser-induced plasma above the workpiece surface expands up to the nozzle, driven by the particle concentration gradient, forming an electric potential between the workpiece and the nozzle due to the large difference between the diffusion velocities of the ions and the electrons. The plasma-induced current obtained by electrically connecting the nozzle and the workpiece can be increased by adding a negative external voltage. For a fixed set of welding conditions, the plasma charge current increases with the external voltage to a saturation value. The plasma charge current decreases as the nozzle-to-workpiece distance increases. Therefore, closed-loop control of the nozzle-to-workpiece distance for laser welding can be based on the linear relationship between the plasma charge current and the distance. In addition, the amount of plasma above the keyhole can be reduced by a transverse magnetic field, which reduces the attenuation of the incident laser power by the plasma so as to increase the laser welding thermal efficiency

  7. Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.

    2005-01-01

    Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current

  8. Influence of internal current and pacing current on pacemaker longevity.

    Science.gov (United States)

    Schuchert, A; Kuck, K H

    1994-01-01

    The effects of lower pulse amplitude on battery current and pacemaker longevity were studied comparing the new, small-sized VVI pacemaker, Minix 8341, with the former model, Pasys 8329. Battery current was telemetrically measured at 0.8, 1.6, 2.5, and 5.0 V pulse amplitude and 0.05, 0.25, 0.5, and 1.0 msec pulse duration. Internal current was assumed to be equal to the battery current at 0.8 V and 0.05 msec. Pacing current was calculated subtracting internal current from battery current. The Minix pacemaker had a significantly lower battery current because of a lower internal current (Minix: 4.1 +/- 0.1 microA; Pasys: 16.1 +/- 0.1 microA); pacing current of both units was similar. At 0.5 msec pulse duration, the programming from 5.0-2.5 V pulse amplitude resulted in a greater relative reduction of battery current in the newer pacemaker (51% vs 25%). Projected longevity of each pacemaker was 7.9 years at 5.0 V and 0.5 msec. The programming from 5.0-2.5 V extended the projected longevity by 2.3 years (Pasys) and by 7.1 years (Minix). The longevity was negligibly longer after programming to 1.6 V. extension of pacemaker longevity can be achieved with the programming to 2.5 V or less if the connected pacemakers need a low internal current for their circuitry.

  9. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    2001-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 =53 cm, a l =22 cm - circular limiter configuration, B t ≤0.7T, I p ≤175 kA, ≤6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r=0.5a and r=0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0 % and β N of 2 were achieved. The β N limit achieved is 'soft' (nondisruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  10. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    1999-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 = 53 cm, a l = 22 cm - circular limiter configuration, B t ≤ 0.7 T, I p ≤ 175 kA, ≤ 6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r = 0.5a and r = 0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0% and β N of 2 were achieved. The β N limit achieved is 'soft' (non-disruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  11. Estimates on the mean current in a sphere of plasma

    International Nuclear Information System (INIS)

    Nunez, Manuel

    2003-01-01

    Several turbulent dynamo models predict the concentration of the magnetic field in chaotic plasmas in sheets with the field vector pointing alternatively in opposite directions, which should produce strong current sheets. It is proved that if the plasma is contained in a rigid sphere with perfectly conducting boundary the geometry of these sheets must be balanced so that the mean current remains essentially bounded by the Coulomb gauged mean vector potential of the field. This magnitude remains regular even for the sharp field variations expected in a chaotic flow. For resistive plasmas the same arguments imply that the contribution to the total current of the regions near the boundary compensates the current of the central part of the sphere

  12. Theory of current-drive in plasmas

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1986-12-01

    The continuous operation of a tokamak fusion reactor requires, among other things, a means of providing continuous toroidal current. Such operation is preferred to the conventional pulsed operation, where the plasma current is induced by a time-varying magnetic field. A variety of methods has been proposed to provide continuous current, including methods which utilize particle beams or radio frequency waves in any of several frequency regimes. Currents as large as half a mega-amp have now been produced in the laboratory by such means, and experimentation in these techniques has now involved major tokamak facilities worldwide

  13. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  14. Plasma current sustainment after iron core saturation in the STOR-M tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O., E-mail: omitarai@ktmail.tokai-u.jp [Kumamoto Liberal Arts Education Center, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto 862-8652 (Japan); Ding, Y.; Hubeny, M.; Lu, Y.; Onchi, T.; McColl, D.; Xiao, C.; Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada)

    2014-10-15

    Highlights: • Plasma current can be started up by small iron core without central solenoid. • Iron core removes central solenoid. • Plasma current can be maintained after iron core saturation. • Hysteresis curve shows the partial core saturation. • Image field from iron core is estimated during discharge. • Spherical tokamak reactor without CS is proposed using the small iron core. - Abstract: We propose to use of a small iron core transformer to start up the plasma current in a spherical tokamak (ST) reactor without central solenoid (CS). Taking advantage of the high aspect ratio of the STOR-M iron core tokamak, we have demonstrated that the plasma current up to 10–15 kA can be started up using the outer Ohmic heating (OH) coils without CS, and that the plasma current can be maintained further by increasing the outer OH coil current during iron core saturation phase. When the magnetizing current reaches 1.2 kA and the iron core becomes saturated, the third capacitor bank connected to the outer OH coils is discharged to maintain the plasma current. The plasma current is slightly increased and maintained for additional 5 ms as expected from numerical calculations. Core saturation has been clearly observed on the hysteresis curve. This is the first experimental demonstration of the feasibility of slow transition from the iron core to air core transformer phase without CS. The results implies that a plasma current can be initiated by a small iron core and could be ramped up by additional heating and vertical field after iron core saturation in future STs without CS.

  15. Energy confinement of tokamak plasma with consideration of bootstrap current effect

    International Nuclear Information System (INIS)

    Yuan Ying; Gao Qingdi

    1992-01-01

    Based on the η i -mode induced anomalous transport model of Lee et al., the energy confinement of tokamak plasmas with auxiliary heating is investigated with consideration of bootstrap current effect. The results indicate that energy confinement time increases with plasma current and tokamak major radius, and decreases with heating power, toroidal field and minor radius. This is in reasonable agreement with the Kaye-Goldston empirical scaling law. Bootstrap current always leads to an improvement of energy confinement and the contraction of inversion radius. When γ, the ratio between bootstrap current and total plasma current, is small, the part of energy confinement time contributed from bootstrap current will be about γ/2

  16. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  17. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  18. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    Science.gov (United States)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Moritz, Jr., Joel A. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  19. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  20. Proceedings of the 13th international symposium on laser-aided plasma diagnostics

    International Nuclear Information System (INIS)

    Kawahata, Kazuo

    2007-09-01

    The 9th international symposium on LASER-AIDED PLASMA DIAGNOSTICS was held from 18th November to 21st September, 2007 at Takayama, Japan. This symposium was organized by the National Institute for Fusion Science, Toki, Japan. The topics of the symposium include laser diagnostics and diagnostics aided by lasers for fusion plasmas, industrial process plasmas, environmental plasmas as well as for other plasma applications and processes related to plasmas. Hardware development related to laser-aided plasma diagnostics is another topic. Over 80 participants attended this international symposium. 1 Akazaki lecture, 10 general talks, 10 topical talks, 12 short oral talks and 45 posters were presented. This issue is the collection of the papers presented at the title symposium. The 41 of the presented papers are indexed individually. (J.P.N.)

  1. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  2. Simulation of current generation in a 3-D plasma model

    International Nuclear Information System (INIS)

    Tsung, F.S.; Dawson, J.M.

    1996-01-01

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A parallel circ v parallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting

  3. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  4. Internal helical modes with m > 1 in a tokamak with a small shear and high plasma pressure

    International Nuclear Information System (INIS)

    Mikha lovskij, A.B.; Aburdzhaniya, G.D.; Krymskij, A.M.

    1979-01-01

    Internal helical modes with m>1 in a circular cross-section tokamak with a small shear and large value of the parameter β (β is the ratio between the mean plasma pressure and the mean pressure of the poloidal magnetic field) are investigated. The equations obtained are used to study the destabilizing effects leading to helical instabilities. The role of destabilizing effects is regarded both in local and in a nonlocal approximations on the assumption that the radial plasma pressure is distributed parabolically and that the radial current distribution is also parabolic though slightly varying. It has been established that the profiling of current may lead to the tokamak plasma stability with respect to the modes under investigation. A tokamak with a small shear has been shown to be more stable relative to these modes than that with a large shear

  5. The pressure, internal energy, and conductivity of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, E.M. [Russian Academy of Sciences, Joint Institute for High Temperatures, Department of Computational Physics, Moscow (Russian Federation)

    2017-11-15

    The pressure, internal energy, and conductivity of a tantalum plasma were calculated at the temperatures 10-100 kK and densities less than 3 g/cm{sup 3}. The plasma composition, pressure, and internal energy were obtained by means of the corresponding system of the coupled mass action law equations. We have considered atom ionization up to +3. The conductivity was calculated within the relaxation time approximation. Comparisons of our results with available measurements and calculation data show good agreement in the area of correct applicability of the present model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Modeling of lower hybrid current drive (LHCD) and parametric instability (PI) for high performance internal transport barriers (ITBs)

    International Nuclear Information System (INIS)

    Cesario, R.; Cardinali, A.; Castaldo, C.; Paoletti, F.; Challis, C.; Mailloux, J.; Mazon, D.

    2003-01-01

    ITBs (internal transport barrier) with high performance in time duration (4 seconds) were produced at Jet in plasma discharges operating at the plasma current of 2,4 MA and toroidal magnetic field of 3,45 T using lower hybrid (LH) radiofrequency power (2,3 MW) for heating and current drive. The first results of the modeling devoted to calculate the LH power deposition and current density profiles for ITB plasmas are presented. The LH power density profile was first calculated considering the nominal LH power n / spectrum launched by the antenna, a substantially centrally deposition is obtained, many passes (> 10) are necessary for producing a significant fraction of the coupled LH power to be absorbed. In a second step some broadening (20%) of the launched n / power spectrum was considered to simulate the effect of a non-linear wave scattering. Most of the LH power is deposited at the first pass, mainly in the outer half of plasma. The simulation gives a moderate amount (60%) of non-inductive current, including 30% of LHCD fraction. The q-profiles from polarization and from MSE (motional Stark effect) at the beginning and during the main heating phase were analysed. Non-linear plasma edge phenomena allow propagation of some LH power with large n / . Such effect should be retained for a realistic LHCD modeling of ITB plasmas. The consequent enhanced off-axis LHCD is consistent with the observed large ITBs and the obtained large region with low magnetic shear. The LH power might provide a powerful tool for controlling the q-profile for ITB at high plasma current, for potential application to the advanced tokamak regimes

  7. Modeling of lower hybrid current drive (LHCD) and parametric instability (PI) for high performance internal transport barriers (ITBs)

    Energy Technology Data Exchange (ETDEWEB)

    Cesario, R.; Cardinali, A.; Castaldo, C. [Associazione Euratom-ENEA sulla Fusione, Centro Ricerche Frascadi (Italy); Paoletti, F. [PPPL Pinceton (United States); Challis, C.; Mailloux, J. [Euratom-UKAEA fusion association, Culham Science Centre, Abingdon, Oxfordshire, OX (United Kingdom); Mazon, D. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France)

    2003-07-01

    ITBs (internal transport barrier) with high performance in time duration (4 seconds) were produced at Jet in plasma discharges operating at the plasma current of 2,4 MA and toroidal magnetic field of 3,45 T using lower hybrid (LH) radiofrequency power (2,3 MW) for heating and current drive. The first results of the modeling devoted to calculate the LH power deposition and current density profiles for ITB plasmas are presented. The LH power density profile was first calculated considering the nominal LH power n{sub /} spectrum launched by the antenna, a substantially centrally deposition is obtained, many passes (> 10) are necessary for producing a significant fraction of the coupled LH power to be absorbed. In a second step some broadening (20%) of the launched n{sub /} power spectrum was considered to simulate the effect of a non-linear wave scattering. Most of the LH power is deposited at the first pass, mainly in the outer half of plasma. The simulation gives a moderate amount (60%) of non-inductive current, including 30% of LHCD fraction. The q-profiles from polarization and from MSE (motional Stark effect) at the beginning and during the main heating phase were analysed. Non-linear plasma edge phenomena allow propagation of some LH power with large n{sub /}. Such effect should be retained for a realistic LHCD modeling of ITB plasmas. The consequent enhanced off-axis LHCD is consistent with the observed large ITBs and the obtained large region with low magnetic shear. The LH power might provide a powerful tool for controlling the q-profile for ITB at high plasma current, for potential application to the advanced tokamak regimes.

  8. Resistive Instabilities in Hall Current Plasma Discharge

    International Nuclear Information System (INIS)

    Litvak, Andrei A.; Fisch, Nathaniel J.

    2000-01-01

    Plasma perturbations in the acceleration channel of a Hall thruster are found to be unstable in the presence of collisions. Both electrostatic lower-hybrid waves and electromagnetic Alfven waves transverse to the applied electric and magnetic field are found to be unstable due to collisions in the E X B electron flow. These results are obtained assuming a two-fluid hydrodynamic model in slab geometry. The characteristic frequencies of these modes are consistent with experimental observations in Hall current plasma thrusters

  9. Electron current generated in a toroidal plasma on injection of high-energy neutrals

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Reznik, S.N.

    1981-01-01

    Problem of generation of electron current in toroidal plasma with a high-energy ion beam produced during neutral injection has been considered. The analysis was performed on the assumption that plasma is in the regime of rare collisions (banana regime) and ion beam velocity is considerably lower than thermal velocity of plasma ions. Formulae establishing the relation between beam current and electron current have been derived. It follows from them that toroidal affect considerably plasma current generated with the beam and under certain conditions result in changing this current direction in an area remoted from magne-- tic axis [ru

  10. The analysis of Alfven wave current drive and plasma heating in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.

    2002-01-01

    The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)

  11. The Current-Driven, Ion-Acoustic Instability in a Collisionless Plasma

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1979-01-01

    The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated, and it was ......, and it was demonstrated that the fluctuations in the plasma column behave as a classical Van der Pol oscillator. Accurate measurements of the growth rate of the instability can be performed by making explicit use of the particular properties of such a system.......The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated...

  12. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    Science.gov (United States)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  13. Sixth International Workshop and Summer School on Plasma Physics 2014

    International Nuclear Information System (INIS)

    2016-01-01

    Evgenia Benova et al 2016 J. Phys.: Conf. Ser. VV The Sixth International Workshop and Summer School on Plasma Physics (IWSSPP'14) was organized by St. Kliment Ohridsky University of Sofia, with co-organizer PLASMER Foundation. It was held in Kiten, Bulgaria, at the Black Sea Coast, from June 30 to July 6, 2014. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. The Workshop Plasma for Sustainable Environment was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As with the previous issues of this scientific meeting, its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 19 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants

  14. Fifth International Workshop and Summer School on Plasma Physics 2012

    International Nuclear Information System (INIS)

    Benova, Evgenia

    2016-01-01

    The Fifth International Workshop and Summer School on Plasma Physics (IWSSPP'12) was organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, on the Black Sea coast, from June 25-30, 2012. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology . The 4 th edition of the Workshop Plasmas for Environmental Issues was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As in the previous issues of this scientific meeting its aim was to stimulate the development of and support a new generation of young scientists to further advance plasma physics fundamentals and applications, as well as ensuring an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 12 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed

  15. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  16. Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    1999-05-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T e (0) ∼ 2 keV and n(0) ≅ 10 18 m -3 . (author)

  17. Quasi-steady state, low current behaviour of a magnetized coaxial plasma source

    International Nuclear Information System (INIS)

    Gray, Travis K; Mayo, Robert M; Bourham, Mohamed A

    2005-01-01

    The Coaxial Plasma Source-1 facility (Mayo R M et al 1995 Plasma Sources Sci. Technol. 4 47) was modified from a short pulse, high current (SPHC) pulse forming network (PFN) with very low inductance (∼200 nH) to a large inductance ladder circuit. This modification allows for a longer, flat top gun current pulse that eliminates the under-damped, sinusoidal behaviour of the gun current with consequent interruptions in plasma parameters. The new PFN was designed to produce a current waveform for a much longer period (∼1 ms). As a consequence of increasing the pulse length, the magnitude of the gun current was reduced as no additional energy storage was added to the PFN. The characterization of the electrical and plasma behaviour of the experiment operated with the long pulse, low current (LPLC) PFN is presented. The gun currents produced by the LPLC PFN are approximately one-fifth in magnitude of the gun currents produced by the SPHC PFN. Axial plasma parameters were measured near the muzzle of the plasma source, and electron densities were found to range from 1 x 10 19 m -3 to 7 x 10 19 m -3 depending upon the axial location. These values are approximately 1-2 orders of magnitude less than the electron densities produced by the SPHC PFN at the same locations. Electron temperatures range from 30 to 60 eV at these locations and are very similar to those produced by the SPHC PFN. A resistive MHD model was applied as an order estimate of the plasma resistivity and demonstrates reasonable agreement with measured values of the magnetized coaxial gun resistance

  18. Quasi-steady state, low current behaviour of a magnetized coaxial plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Travis K; Mayo, Robert M; Bourham, Mohamed A [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695-7909 (United States)

    2005-11-15

    The Coaxial Plasma Source-1 facility (Mayo R M et al 1995 Plasma Sources Sci. Technol. 4 47) was modified from a short pulse, high current (SPHC) pulse forming network (PFN) with very low inductance ({approx}200 nH) to a large inductance ladder circuit. This modification allows for a longer, flat top gun current pulse that eliminates the under-damped, sinusoidal behaviour of the gun current with consequent interruptions in plasma parameters. The new PFN was designed to produce a current waveform for a much longer period ({approx}1 ms). As a consequence of increasing the pulse length, the magnitude of the gun current was reduced as no additional energy storage was added to the PFN. The characterization of the electrical and plasma behaviour of the experiment operated with the long pulse, low current (LPLC) PFN is presented. The gun currents produced by the LPLC PFN are approximately one-fifth in magnitude of the gun currents produced by the SPHC PFN. Axial plasma parameters were measured near the muzzle of the plasma source, and electron densities were found to range from 1 x 10{sup 19} m{sup -3} to 7 x 10{sup 19} m{sup -3} depending upon the axial location. These values are approximately 1-2 orders of magnitude less than the electron densities produced by the SPHC PFN at the same locations. Electron temperatures range from 30 to 60 eV at these locations and are very similar to those produced by the SPHC PFN. A resistive MHD model was applied as an order estimate of the plasma resistivity and demonstrates reasonable agreement with measured values of the magnetized coaxial gun resistance.

  19. Nonlinear calculation of the M=1 internal kink instability in current carrying stellarators

    International Nuclear Information System (INIS)

    Wakatani, M.

    1978-02-01

    Nonlinear properties of the m = 1 internal kink mode are shown in a low β current carrying stellarator. The effects of the external helical magnetic fields are considered through a rotational transform and the magnetic surface is assumed to be circular. Magnetic surfaces inside the iota sub(h) + iota sub(σ) = 1 surface shift and deform non-circularly, while magnetic surfaces outside the iota sub(h) + iota sub(σ) = 1 are not disturbed, where iota sub(h) is a rotational transform due to helical magnetic fields and iota sub(σ) is due to a plasma current. Many higher harmonics are excited after the fundamental mode saturates. When the external helical magnetic fields are lowered, the m = 1 tearing mode similar to that in a low β tokamak grows and magnetic islands appear near the iota sub(h) + iota sub(σ) = 1 surface. For adequate helical magnetic fields, the current carrying stellarator becomes stable against both the m = 1 internal kink mode and the m = 1 tearing mode, without lowering the rotational transform. (auth.)

  20. Transition phenomena and thermal transport property in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.

    2005-01-01

    Two kinds of improved core confinement were observed during centrally focused Electron Cyclotron Heating (ECH) into plasmas sustained by Counter (CNTR) and Co Neutral Beam Injections (NBI) in the Large Helical Device (LHD). One shows transition phenomena to the high-electron-temperature state and has a clear electron Internal Transport Barrier (eITB) in CNTR NBI plasma. Another has no clear transition and no ECH power threshold, but shows a broad high temperature profiles with moderate temperature gradient, which indicates the improved core confinement with additional ECH in Co NBI plasma. The electron heat transport characteristics of these plasmas were directly investigated by using the heat pulse propagation excited by Modulated ECH (MECH). The difference of the features could be caused by the existence of the m/n=2/1 rational surface or island determined by the direction of NBI beam-driven current. (author)

  1. Application-oriented research on plasma channeling of a large pulsed current

    International Nuclear Information System (INIS)

    Liu Jingye

    2000-01-01

    Utilizing the avalanche effect of plasma produced by the collision of energetic primary electrons with hydrogen molecules in a plasma, channeling of a large pulsed current is achieved, with the plasma acting as the carrier

  2. Observation of minor collapse of current-carrying plasma in LHD

    International Nuclear Information System (INIS)

    Narushima, Yoshiro; Sakakibara, Satoru; Watanabe, Kiyomasa

    2006-01-01

    A minor collapse observed in current-carrying plasma has been investigated in Large Helical Device (LHD). The magnetic configuration with high central rotational transform has ι/2π=1 surface at the core region and is relatively unstable for the m/n=1/1 mode (here, m and n are the poloidal and toroidal mode number, respectively). When the beam-driven current exceeds a certain value, the m/n=1/1 mode grows with a growth time of ∼30 ms and causes a sudden drop of the plasma stored energy and the electron temperature, and it also limits the plasma current itself. A local flattening in an electron temperature profile appears just after the minor collapse. The mode does not rotate and stays at the same spatial location. The possibility of pressure- and current-driven magneto-hydro dynamics (MHD) instabilities is discussed. (author)

  3. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  4. Ion production and bipolar fluxes in a high-current plasma-filled diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1982-01-01

    The model and the evolution of behaviour of binary layers (BL) in expanding plasma of high current plasma-filled diode are described. The model estimates ion current and the laws of plasma expansion at the stage of BL intensive growth. The density range (10 12 -10 15 cm -3 ) is determined in which diode impedance growth takes place in connection with BL appearance. The density of ion current at the outlet of diode is 10 A/cm 2

  5. Real time determination and control of the plasma localisation and internal inductance in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Laurent, F. E-mail: stlauren@drfc.cad.cea.fr; Martin, G

    2001-10-01

    The study of long-duration high-power discharges need an efficient real time control of the plasma parameters, especially the plasma position when RF heating systems are used. On Tore Supra, recent improvements have been carried out (i) for the poloidal interpolation and the radial extrapolation of the magnetic measurements, (ii) for a better feedback matrix converting the radial errors of the plasma position to voltage values for the poloidal generators, and (iii) for a very fast solution to find the plasma parameters from the knowledge of its surface. The plasma edge localisation is now controlled with a precision better than 1 cm and controlled within a few millimetres uncertainty for several tenths of seconds. Moreover, for advanced tokamak scenarios, a precise real time determination of safety factor, poloidal beta, internal inductance, Shafranov shift as well as the online computation of the electron density and current density profiles are now available on Tore Supra. These quantities compare well with results from batch calculations using an equilibrium code. To fulfil the new requirements of plasma control for the CIEL project, a local control of the plasma edge position and curvature is planned for the near future.

  6. Plasma rotation under a driven radial current in a tokamak

    International Nuclear Information System (INIS)

    Chang, C.S.

    1999-01-01

    The neoclassical behaviour of plasma rotation under a driven radial electrical current is studied in a tokamak geometry. An ambipolar radial electric field develops instantly in such a way that the driven current is balanced by a return current j p in the plasma. The j p x B torque pushes the plasma into a new rotation state both toroidally and poloidally. An anomalous toroidal viscosity is needed to avoid an extreme toroidal rotation speed. It is shown that the poloidal rotation relaxes to a new equilibrium speed, which is in general smaller than the E x B poloidal speed, and that the timescale for the relaxation of poloidal rotation is the same as that of toroidal rotation generation, which is usually much longer than the ion-ion collision time. (author)

  7. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  8. Controlling the emission current from a plasma cathode

    International Nuclear Information System (INIS)

    Bagaev, S.P.; Gushenets, V.I.; Schanin, P.M.

    1993-01-01

    The processes determining the time and amplitude characteristics of the grid-controlled electron emission from the plasma of an arc discharge have been analyzed. It has been shown that by applying to the grid confining the plasma emission boundary of a modulated voltage it is possible to form current pulse of up to 1 kA with nanosecond risetimes and falltimes and a pulse repetitive rate of 100 kHz

  9. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    Science.gov (United States)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  10. Dynamics of a plasma shell with a carrying out current

    International Nuclear Information System (INIS)

    Komel'kov, V.S.; Kuznetsov, A.P.; Perebejnos, V.V.; Pleshanov, A.S.; Solomonov, M.T.

    1982-01-01

    Experimental data on hydrogen plasma acceleration in continuous medium after plasma escape out from the coaxial plasma accelerator with discharge current approximately 1 MA and initial gas pressure approximately 10 4 Pa are obtained. Modified method of particle calculation in cells qualitatively satisfactorily describes the experiment and indicate a number of quantitative regularities of the process. The investigation made it possible to obtain qualitative characteristics on hydrogen plasma flow and displayed a number of quantitative regularities. Calculation results show the real possibility to obtain high-temperature dense plasma in continuous medium beyond the accelerator boundary

  11. Electron internal transport barrier formation and dynamics in the plasma core of the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Dreval, N [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Khrebtov, S M [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Hidalgo, C [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Milligen, B van [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Castejon, F [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); AscasIbar, E [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Eliseev, L [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Chmyga, A A [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Komarov, A D [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Kozachok, A S [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Tereshin, V [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine)

    2004-01-01

    The influence of magnetic topology on the formation of electron internal transport barriers (e-ITBs) has been studied experimentally in electron cyclotron heated plasmas in the stellarator TJ-II. e-ITB formation is characterized by an increase in core electron temperature and plasma potential. The positive radial electric field increases by a factor of 3 in the central plasma region when an e-ITB forms. The experiments reported demonstrate that the formation of an e-ITB depends on the magnetic configuration. Calculations of the modification of the rotational transform due to plasma current lead to the interpretation that the formation of an e-ITB can be triggered by positioning a low order rational surface close to the plasma core region. In configurations without any central low order rational, no barrier is formed for any accessible value of heating power. Different mechanisms associated with neoclassical/turbulent bifurcations and kinetic effects are put forward to explain the impact of magnetic topology on radial electric fields and confinement.

  12. A Burning Plasma Experiment: the role of international collaboration

    Science.gov (United States)

    Prager, Stewart

    2003-04-01

    The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.

  13. Observation of Self-Generated Flows in Tokamak Plasmas with Lower-Hybrid-Driven Current

    International Nuclear Information System (INIS)

    Ince-Cushman, A.; Rice, J. E.; Reinke, M.; Greenwald, M.; Wallace, G.; Parker, R.; Fiore, C.; Hughes, J. W.; Bonoli, P.; Shiraiwa, S.; Hubbard, A.; Wolfe, S.; Hutchinson, I. H.; Marmar, E.; Bitter, M.; Wilson, J.; Hill, K.

    2009-01-01

    In Alcator C-Mod discharges lower hybrid waves have been shown to induce a countercurrent change in toroidal rotation of up to 60 km/s in the central region of the plasma (r/a∼<0.4). This modification of the toroidal rotation profile develops on a time scale comparable to the current redistribution time (∼100 ms) but longer than the energy and momentum confinement times (∼20 ms). A comparison of the co- and countercurrent injected waves indicates that current drive (as opposed to heating) is responsible for the rotation profile modifications. Furthermore, the changes in central rotation velocity induced by lower hybrid current drive (LHCD) are well correlated with changes in normalized internal inductance. The application of LHCD has been shown to generate sheared rotation profiles and a negative increment in the radial electric field profile consistent with a fast electron pinch

  14. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  15. Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990

  16. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2011-07-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010) both agreed to hold this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, considering the celebration of the Bicentennial of Chilean Independence. ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of its official program, within the framework of the Chilean Bicentennial activities. This event was also a scientific and academic activity of the project `Center for Research and Applications in Plasma Physics and Pulsed Power, P4', supported by the National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya in 1980, and was followed by: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006) and Fukuoka (2008). The purpose of the Congress is to discuss recent progress and outlooks in plasma science, covering fundamental plasma physics, fusion plasmas, astrophysical plasmas, plasma applications, etc. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005) and Caracas (2007). The purpose of the Latin American Workshop on Plasma Physics is to provide a forum in which the achievements of the Latin American plasma physics communities can be displayed, as well as to foster collaboration between plasma scientists within the region and elsewhere. The Program of ICPP-LAWPP-2010 included

  17. Simulative research on the expansion of cathode plasma in high-current electron beam diode

    International Nuclear Information System (INIS)

    Xu Qifu; Liu Lie

    2012-01-01

    The expansion of cathode plasma has long been recognized as a limiting factor in the impedance lifetime of high-current electron beam diode. Realistic modeling of such plasma is of great necessity in order to discuss the dynamics of cathode plasma. Using the method of particle-in-cell, the expansion of cathode plasma is simulated in this paper by a scaled-down diode model. It is found that the formation of cathode plasma increases the current density in the diode. This consequently leads to the decrease of the potential at plasma front. Once the current density has been increased to a certain value, the potential at plasma front would then be equal to or lower than the plasma potential. Then the ions would move towards the anode, and the expansion of cathode plasma is thereby formed. Different factors affecting the plasma expansion velocity are discussed in this paper. It is shown that the decrease of proton genatation rate has the benefit of reducing the plasma expansion velocity.

  18. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata

    1978-01-01

    The relation between the current generated by RF travelling field and the absorbed power is studied in a collisional toroidal plasma, parameters being phase velocity and filling gap pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (author)

  19. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata.

    1977-06-01

    The relation between the current generation by RF travelling field and the accompanied power absorption is studied in a collisional toroidal plasma, parameters being phase velocity and filling gas pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (auth.)

  20. Transition of RF internal antenna plasma by gas control

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori [Advanced Institute of Industrial Technology, 1-10-40 HigashiOhi, Shinagawa-ku, Tokyo, 140-0011 (Japan); Japan Atomic Energy Agency, 2-4 Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan)

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  1. Surface currents on the plasma-vacuum interface in MHD equilibria

    Science.gov (United States)

    Hanson, James

    2017-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.

  2. RF generated currents in a magnetized plasma using a slow wave structure

    International Nuclear Information System (INIS)

    Poole, B.R.; Cheo, B.R.; Kuo, S.P.; Tang, M.G.

    1983-01-01

    The generation of a dc current in a plasma by using RF waves is of importance for the operation of steadystate toroidal devices. An experimental investigation in the use of unidirectional, low frequency RF waves to drive currents has been made. Instead of using a natural plasma wave a slow wave guiding structure is used along the entire length of the plasma. When the RF wave is injected an increase in ionization and T/sub e/, and hence the background current is observed. However, the change depends on wave direction: The +k/sub z/ excitation yields a much larger electron current compared with the -k/sub z/ excitation indicating a net wave driven current. The measured modification in electron density and T/sub e/ is independent of wave direction. The current with a standing wave excitation generally falls at the average of the travelling wave (+ or - k/sub z/) driven currents. The net wave driven current is proportional to the feed power at approx. = 10 mA/kW. No saturation of the current is observed with feed powers up to 1 kW. Since the exciting structure is only 1 wavelength long, its k/sub z/ spectrum is relatively broad and hence no sharp resonances are observed as various plasma parameters and B/sub O/ are changed. There is no measurable difference between the power absorbed by the load resistors and the input power to the slow wave structure. Thus the current is driven by the wave field exclamation E exclamation 2 rather than the power absorbed in the plasma. The theoretical background and the physical mechanism is presented

  3. Superstrong fields in Plasmas: First International Conference. Proceedings

    International Nuclear Information System (INIS)

    Lontano, M.; Mourou, G.; Pegoraro, F.; Sindoni, E.

    1998-01-01

    These proceedings are based on papers presented at the first International Conference on Superstrong Fields in Plasmas held in Varenna, Italy in August endash September, 1997. The conference attracted more than 100 participants from fourteen countries. A wide range of topics were discussed, including fundamental atomic and plasma processes, relativistic nonlinear optics, solid density plasmas, laser systems for ultrahigh-intensity physics, applications of ultrastrong fields and applications of ultraintense pulses to astrophysics. The progress in laser technology was brought into focus at this conference, especially the creation of pulses with peak power exceeding multiple TW range and the interaction of these pulses with superrelativistic electrons. There were 74 papers presented; out of these, 6 have been abstracted for the Energy Science and Technology database

  4. Development of plasma arc cutting technique for dismantlement of reactor internals in JPDR decommissioning program

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi; Tanaka, Mitsugu; Ujihara, Norio.

    1988-01-01

    The decommissioning program for JPDR has been conducted by JAERI since 1981 under contact with the Science and Technology Agency of Japan. The development of cutting tools for dismantling the JPDR is one of the important items in the program. An underwater plasma arc cutting technique was selected for dismantling the JPDR core internals. The study was concentrated on improving the cutting ability in water. Various cutting tests were conducted changing the parameters such as arc current, supply gas and cutting speed to evaluate the most effective cutting condition. Through the study, it has been achieved to be able to cut a 130 mm thick stainless steel plate in water. In addition, the amount and the characteristics of by-products were measured during the cutting tests for the safety evaluation of the dismantling activities. Final cutting tests and checkout of whole plasma arc cutting system were conducted using a mockup water pool and test pieces simulating the JPDR core internals. It was proved from the tests that the cutting system developed in the program will be applicable for the JPDR core internals dismantlement. (author)

  5. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  6. Beat-wave excitation and current driven in tokamak plasma. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, B F [Plasma physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Wave heating current drive in tokamaks is a growing subject in the plasma physics literature. For current drive in tokamaks by electromagnetic waves, different methods have been proposed recently. One of the promising schemes for current drive remains the beat wave scheme. This technique employs two CO- or counterpropagating monochromatic laser beams (or microwaves) whose frequency difference matches the plasma frequency, while the wave number difference (or sum, in the case of counterpropagating) determine the wave number of the resulting plasma beat wave. In this work, the basic analysis of a beat wave current drive scheme in which collinear waves are used is discussed. by assuming a Gaussian profile for the amplitude of these pump waves, the amplitudes of the longitudinal and radial fields of the beat wave due to the nonlinear wave interactions have been calculated. Besides, the transfer of momentum flux that accompanies the transfer of wave action in beat-wave scattering will be used to drive the toroidal radial currents in tokamaks. self-generated magnetic fields due to those currents were also calculated. 1 fig.

  7. Mapping return currents in laser-generated Z-pinch plasmas using proton deflectometry

    International Nuclear Information System (INIS)

    Manuel, M. J.-E.; Sinenian, N.; Seguin, F. H.; Li, C. K.; Frenje, J. A.; Rinderknecht, H. G.; Casey, D. T.; Zylstra, A. B.; Petrasso, R. D.; Beg, F. N.

    2012-01-01

    Dynamic return currents and electromagnetic field structure in laser-generated Z-pinch plasmas have been measured using proton deflectometry. Experiments were modeled to accurately interpret deflections observed in proton radiographs. Current flow is shown to begin on axis and migrate outwards with the expanding coronal plasma. Magnetic field strengths of ∼1 T are generated by currents that increase from ∼2 kA to ∼7 kA over the course of the laser pulse. Proton deflectometry has been demonstrated to be a practical alternative to other magnetic field diagnostics for these types of plasmas.

  8. Heating of plasmas in tokamaks by current-driven turbulence

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1985-10-01

    Investigations of current-driven turbulence have shown the potential to heat plasmas to elevated temperatures in relatively small cross-section devices. The fundamental processes are rather well understood theoretically. Even as it is shown to be possible to relax the technical requirements on the necessary electric field and the pulse length to acceptable values, the effect of energy generation near the plasma edge, the energy transport, the impurity influx and the variation of the current profile are still unknown for present-day large-radius tokamaks. Heating of plasmas by quasi-stationary weakly turbulent states caused by moderate increases of the resistivity due to higher loop voltages could be envisaged. Power supplies able to furnish power levels 5-10 times higher than the usual values could be used for a demonstration of those regimes. At several institutes and university laboratories the study of turbulent heating in larger tokamaks and stellarators is pursued

  9. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  10. Summary of the international 'Dawson' Symposium on the physics of plasmas

    International Nuclear Information System (INIS)

    Tajima, T.

    1990-12-01

    The ''Dawson'' Symposium was held on September 24 and 25, 1990 in honor of John Dawson's 60th birthday to reflect on various physics of plasma that he had pioneered. The international speakers touched on a wide range of subjects: magnetic fusion, laser fusion, isotope separation, computer simulation, basic plasma physics, accelerators and light sources, space physics, and international scientific collaboration. Highlighted in this article are magnetic fusion and laser fusion investigation that Dawson has been engaged in and the reviews of the present status of their development. The impact of the two-component fusion plasma idea, reactor concepts for advanced fuels, hot electron production by lasers and other nonlinear effects in laser fusion are discussed. Dawson's contributions in the allied areas are also reviewed

  11. Influence of the optical fiber type on the performances of fiber-optics current sensor dedicated to plasma current measurement in ITER.

    Science.gov (United States)

    Aerssens, Matthieu; Descamps, Frédéric; Gusarov, Andrei; Mégret, Patrice; Moreau, Philippe; Wuilpart, Marc

    2015-07-01

    In this paper, we compare, by means of simulations using the Jones formalism, the performances of several optical fiber types (low birefringence and spun fibers) for the measurement of plasma current in international thermonuclear experimental reactor (ITER). The main results presented in this paper concern the minimum value of the ratio between the beat length and the spun period, which allows meeting the ITER current measurement specifications. Assuming a high-birefringence spun fiber with a beat length of 3 mm, we demonstrate that the minimum ratio between the beat length and the spun period is 4.4 when considering a 28 m long sensing fiber surrounding the vacuum vessel. This minimum ratio rises to 10.14 when a 100 m long lead fiber connecting the interrogating system to the sensing fiber is taken into account.

  12. Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current

    Science.gov (United States)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.

  13. Lower hybrid wave current ramp-up and plasma equilibrium

    International Nuclear Information System (INIS)

    Gong Xueyu

    1996-01-01

    Questions on lower hybrid driven current and plasma equilibrium are studied. With the induced electric field taken into account, a system of self-consistent equations is obtained. This theory has been applied to some moments of the current ramp-up phase for the Tokamak Engineering Test Breeder (TETB) to study the lower hybrid current drive and MHD equilibrium. So, better electron current and safety factor profiles are obtained

  14. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas

  15. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2006-07-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas.

  16. Generation of longitudinal current by a transverse electromagnetic field in classical and quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Latyshev, A. V., E-mail: avlatyshev@mail.ru; Yushkanov, A. A. [Moscow State Regional University (Russian Federation)

    2015-09-15

    A distribution function for collisionless plasma is derived from the Vlasov kinetic equation in the quadratic approximation with respect to the electromagnetic field. Formulas for calculation of the electric current at an arbitrary temperature (arbitrary degree of degeneration of the electron gas) are deduced. The case of small wavenumbers is considered. It is shown that nonlinearity leads to the generation of an electric current directed along the wave vector. This longitudinal current is orthogonal to the classical transverse current, well known in the linear theory. A distribution function for collisionless quantum plasma is derived from the kinetic equation with the Wigner integral in the quadratic approximation with respect to the vector potential. Formulas for calculation of the electric current at an arbitrary temperature are deduced. The case of small wavenumbers is considered. It is shown that, at small values of the wavenumber, the value of the longitudinal current for quantum plasma coincides with that for classical plasma. The dimensionless currents in quantum and classical plasmas are compared graphically.

  17. Neoclassical Physics for Current Drive in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Duthoit, F.X.

    2012-03-01

    The Lie transform formalism is applied to charged particle dynamics in tokamak magnetic topologies, in order to build a Fokker-Planck type operator for Coulomb collisions usable for current drive. This approach makes it possible to reduce the problem to three dimensions (two in velocity space, one in real space) while keeping the wealth of phase-space cross-term coupling effects resulting from conservation of the toroidal canonical momentum (axisymmetry). This kinetic approach makes it possible to describe physical phenomena related to the presence of strong pressure gradients in plasmas of an unspecified form, like the bootstrap current which role will be paramount for the future ITER machine. The choice of coordinates and the method used are particularly adapted to the numerical resolution of the drift kinetic equation making it possible to calculate the particle distributions, which may present a strong variation with respect to the Maxwellian under the effect of an electric field (static or produced by a radio-frequency wave). This work, mainly dedicated to plasma physics of tokamaks, was extended to those of space plasmas with a magnetic dipole configuration. (author)

  18. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  19. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, N A D [Department of Physics, Gomal Unversity, D I Khan (Pakistan); Ahmad, Zahoor; Murtaza, G [National Tokamak Fusion Program, PAEC, Islamabad (Pakistan); Zakaullah, M [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: ktk_nad@yahoo.com

    2008-04-15

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B{sub z} (in magnitudes), if the switching time for the additional current is properly synchronized.

  20. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Khattak, N A D; Ahmad, Zahoor; Murtaza, G; Zakaullah, M

    2008-01-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B z (in magnitudes), if the switching time for the additional current is properly synchronized

  1. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  2. Turbulent current heating of dense plasma

    International Nuclear Information System (INIS)

    Suprunenko, V.A.; Sukhomlin, E.A.; Volkov, E.D.; Perepelkij, N.F.

    1976-01-01

    Based upon experimental results an attempt is made for systematizing and analysing conditions of experiments in anomalous resistance and turbulent heating of a plasma. The extensive program of such investigations aims at a direct practical study on quasistationary heating and plasma containment in magnetic traps. It has been shown that in real conditions turbulent heating turns out to be a far more complicated phenomenon than that described within the framework of theories developed so far. It has been established that the phenomenon alters in the transition through the critical values of electric and magnetic fields. This makes it possible to separate four characteristic experimental regimes. For all the regimes the stabilization of the electron current drift rate is typical. On the basis of the experimental results obtained an explanation is given of the sporadic character of the ultrathermal radiation in a quasistationary discharge

  3. Introduction to wave heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2001-01-01

    The development of high-power wave heating and current drive in magnetized plasmas in the last 40 years is a major ongoing success story in plasma science. A hallmark of this area of research has been the detailed quantitative comparison of theory and experiment; the good agreement consistently found is indicative of the robustness and the predictive power of the underlying theory. This tutorial paper is a brief overview of the fundamental concepts and applications of this branch of plasma science. Most of the high-power applications have been in three frequency regimes: the ion cyclotron range of frequencies (ICRF), the lower hybrid range of frequencies (LHRF), and the electron cyclotron range of frequencies (ECRF). The basic physics of wave propagation and damping in these regimes is briefly discussed. Some of the coupling structures (antennas) used to excite the waves at the plasma boundary are described, and the high-power systems used to generate the wave energy are touched on. Representative examples of the remarkably wide range of applications of high-power wave heating and current drive in high-temperature fusion plasmas will be discussed

  4. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    International Nuclear Information System (INIS)

    Catapano, F.; Zimbardo, G.; Artemyev, A. V.; Vasko, I. Y.

    2015-01-01

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed

  5. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail: menacata3@gmail.com; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail: ante0226@gmail.com; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  6. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  7. Observation of instability-induced current redistribution in a spherical-torus plasma.

    Science.gov (United States)

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  8. Current distribution tomography for determination of internal current density distributions

    International Nuclear Information System (INIS)

    Gailey, P.C.

    1993-01-01

    A method is presented for determination of current densities inside a cylindrical object using measurements of the magnetic fields outside the object. The cross section of the object is discretized with the current assumed constant over each defined region. Magnetic fields outside the object are related to the internal current densities through a geometry matrix which can be inverted to yield a solution for the current densities in terms of the measured fields. The primary limitation of this technique results from singularities in the geometry matrix that arise due to cylindrical symmetry of the problem. Methods for circumventing the singularities to obtain information about the distribution of current densities are discussed. This process of current distribution tomography is designed to determine internal body current densities using measurements of the external magnetic field distribution. It is non-invasive, and relatively simple to implement. Although related to a more general study of magnetic imaging which has been used to investigate endogenous currents in the brain and other parts of the body, it is restricted to currents either applied directly or induced by exposure to an external field. The research is related to public concern about the possibility of health effects resulting from exposure to power frequency electric and magnetic fields

  9. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  10. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  11. Current scaling of plasma focus devices

    International Nuclear Information System (INIS)

    Schiuma, C.; Herold, H.; Kaeppeler, H.J.; Shakhatre, M.; Auluck, S.K.H.

    1990-03-01

    In continuation of the work by G. Decker et al. on current and neutron yield scaling of plasma focus devices an analytical solution for the circuit equation (with resistance R = 0) in the compression phase was derived. Together with the solution for the rundown phase from G. Decker et al, which was extended for finite resistance (R ≠ 0), there follows an analytical scaling theory for maximum and pinch currents. At the same time there exists the possibility to discuss the influence of finite resistance on current variation and scaling parameters. The model solutions were checked out by numerical integrations of the current equation. While at the beginning of the rundown phase the ohmic resistance cannot be neglected (the magnitude R/L plays an important role), its influence at the end of the rundown phase and in the compression phase is negligible. The theoretically determined values are compared with the results of numerous probe measurements. (orig.)

  12. Linear waves in a resistive plasma with Hall current

    International Nuclear Information System (INIS)

    Almaguer, J.A.

    1992-01-01

    Dispersion relations for the case of a magnetized plasma are determined taking into account the Hall current and a constant resistivity, η, in Ohm's law. It is found that the Hall effect is relevant only for parallel (to the equilibrium magnetic field) wave numbers in the case of uniform plasmas, giving place to a dispersive behavior. In particular, the cases of η→0 and small (nonzero) resistivity are discussed

  13. Measurement of plasma current in Tokamaks using an optical fibre reflectometry technique

    Directory of Open Access Journals (Sweden)

    Wuilpart Marc

    2018-01-01

    Full Text Available An optical time-domain reflectometer sensitive to the polarization of light is proposed for the measurement of plasma current in the Tore Supra fusion reactor. The measurement principle relies on the Faraday effect i.e. on the generation of a circular birefringence along an optical fiber subject to an axial magnetic field. The circular birefringence induces a polarization rotation that can be mapped along the fiber thanks to an opticaltime domain reflectometer followed by an linear polarizer. A proper fitting of the measurement trace then allows determining the applied plasma current. The sensor has been experimentally validated on the Tore Supra tokamak fusion reactor for a plasma current range going from 0.6 to 1.5 MA. A maximum error of 13.50% has been observed for the lowest current.

  14. Role of plasma equilibrium current in Alfven wave antenna optimization

    International Nuclear Information System (INIS)

    Puri, S.

    1986-12-01

    The modifications in the antenna loading produced by the plasma equilibrium current, the Faraday shield, and the finite electron temperature for coupling to the Alfven waves are studied using a self-consistent, three-dimensional, fully analytic periodic-loop-antenna model. The only significant changes are found to occur due to the plasma current and consist of an improved coupling (by a factor of ∝ 2.5) at low toroidal numbers (n ∝ 1-3). Despite this gain, however, the coupling to low n continues to be poor with R=0.03 Ω and Q=180 for n=2. Optimum coupling with R=0.71 Ω and Q=16.8 occurs for n=8 as was also the case in the absence of the plasma current. For the large n values, mode splitting due to the removal of the poloidal degeneracy combined with the finite electron temperatures effects lead to significant broadening of the energy absorption profile. Direct antenna coupling to the surface shear wave is small and no special provision, such as Faraday shielding, may be needed for preventing surface losses. The introduction of the Faraday screen, in fact, increases the coupling to the surface shear wave, possibly by acting as an impedance matching transformer between the antenna and the plasma. The finite electron temperature causes the predictable increase in the absorption width without influencing the antenna coupling. Thus the recommendations for antenna design for optimum coupling to the Alfven wave remain unaffected by the inclusion of the plasma current. Efficient coupling with capabilities for dynamic impedance tracking through purely electronic means may be obtained using a dense-cluster-array antenna with a toroidal configuration of n ∝ 8. (orig.)

  15. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  16. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Li Limin; Liu Lie; Zhang Jun; Wen Jianchun; Liu Yonggui; Wan Hong

    2009-01-01

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm -1 , the electron current density was in the range 210-280 A cm -2 , and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm -2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  17. On resonance phenomena in a stellarator with longitudinal current in a plasma

    International Nuclear Information System (INIS)

    Aleksin, V.F.; Pyatov, V.N.; Sebko, V.P.; Tyupa, V.I.

    1976-01-01

    A magnetic configuration structure of a stellarator with a current plasma has been considered in the presence of small disturbances. Structures of magnetic fields of a real stellarator configuration with a longitudinal current in a plasma have been obtained by means of averaged coordinates with the subsequent transition to real coordinates. The development of a socket structure and destruction of an integral configuration with an increase of the disturbance amplitude are demonstrated, its range of variation is within the limits of 0.1+-0.01%. Deformations of sockets in different cross sections of the magnetic system along the toroidal axis have been investigated. The results of calculations agree with experimental data obtained at stellarators with a current plasma

  18. 1990 IEEE international conference on plasma science-Conference Record-Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    These proceedings present the state-of-the-art in plasma science. Special sections include space plasmas, Tokamaks, fusion experiments (IGNITEX), and magnetrons. The special theme of the meeting was high-current accelerators and their applications

  19. Influence of an External DC Electric Current on Plasma Cleaning Rate: an Application on the Enlarged Plasma-Surface Theory

    International Nuclear Information System (INIS)

    Xaplanteris, Constantine L.; Filippaki, Eleni D.

    2013-01-01

    During the last decades many researchers have been occupied with other plasma applications apart from the big challenge which the thermonuclear fusion poses. Many experiments have been carried out on the plasma behavior in contact with a solid surface; when the surface material consists of chemical compounds (e.g. oxides of metals), then the plasma chemistry takes place. The present paper contains the final experimental and theoretical work of Plasma Laboratory at “Demokritos , which consists of an elaboration of plasma sheath parameters adapted to experimental conditions, a suitable choice of plasma gases (either H 2 or N 2 ), and an electric potential current enforcement on objects. Additionally, a brief theory is given to explain the results, with a short reference to both boundary phenomena in thermonuclear reactors and low pressure plasma of glow discharges, so as to reveal the similarities and differences of these two cases. An extensive examination of the treated objects by X-ray diffraction method (XRD) gives results in agreement with the theoretical predictions. Using this improvement on plasma restoration system, (a combination of electric current on metallic object into suitable plasma), it is shown that better results can be achieved on the cleaning and conservation of archaeological objects. (plasma technology)

  20. Exploration of one-dimensional plasma current density profile for K-DEMO steady-state operation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Byun, C.-S.; Na, D.H.; Na, Y.-S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-11-01

    Highlights: • One-dimensional current density and its optimization for the K-DEMO are explored. • Plasma current density profile is calculated with an integrated simulation code. • The impact of self and external heating profiles is considered self-consistently. • Current density is identified as a reference profile by minimizing heating power. - Abstract: Concept study for Korean demonstration fusion reactor (K-DEMO) is in progress, and basic design parameters are proposed by targeting high magnetic field operation with ITER-sized machine. High magnetic field operation is a favorable approach to enlarge relative plasma performance without increasing normalized beta or plasma current. Exploration of one-dimensional current density profile and its optimization process for the K-DEMO steady-state operation are reported in this paper. Numerical analysis is conducted with an integrated plasma simulation code package incorporating a transport code with equilibrium and current drive modules. Operation regimes are addressed with zero-dimensional system analysis. One-dimensional plasma current density profile is calculated based on equilibrium, bootstrap current analysis, and thermal transport analysis. The impact of self and external heating profiles on those parameters is considered self-consistently, where thermal power balance and 100% non-inductive current drive are the main constraints during the whole exploration procedure. Current and pressure profiles are identified as a reference steady-state profile by minimizing the external heating power with desired fusion power.

  1. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    International Nuclear Information System (INIS)

    Politzer, P.A.

    2005-01-01

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f bs ). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached ∼80% bootstrap current in stationary discharges without inductive current drive. The remaining current is ∼20% NBCD. This is achieved at β N [approximately equal to] β p > 3, but at relatively high q 95 (∼10). In lower q 95 Advanced Tokamak plasmas, f bs ∼ 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high β p and β N plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing β, limiting the achievable average β and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory

  2. The effect of plasma minor-radius expansion in the current build-up phase of a large tokamak

    International Nuclear Information System (INIS)

    Kobayashi, Tomofumi; Tazima, Teruhiko; Tani, Keiji; Tamura, Sanae

    1977-03-01

    A plasma simulation code has been developed to study the plasma current build-up process in JT-60. Plasma simulation is made with a model which represents well overall plasma behavior of the present-day tokamaks. The external electric circuit is taken into consideration in simulation calculation. An emphasis is placed on the simulation of minor-radius expansion of the plasma and behavior of neutral particles in the plasma during current build-up. A calculation with typical parameters of JT-60 shows a week skin distribution in the current density and the electron temperature, if the minor radius of the plasma expands with build-up of the plasma current. (auth.)

  3. Lower hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi

    1999-03-01

    Past ten years progress on Lower Hybrid Current Drive (LHCD) experiments have demonstrated the largest non-inductive current (3.6 MA, JT-60U), the longest current sustainment (2 hours, TRIAM-1M), non-inductive current drive at the highest density (n-bar e - 10 20 m -3 , ALCATOR-C) and the highest current drive efficiency (η CD = 3.5x10 19 m -2 A/W, JT-60). These results indicate that LHCD is one of the most promising methods to drive non-inductive current in the present tokamak plasmas. This paper presents recent experimental results on LHCD experiments. Basic theories of LH waves, the wave propagation and the current drive are briefly summarized. The main part of this paper describes several important results and their physical pictures on recent LHCD experiments; 1) the experimental set-up, 2) the current drive efficiency, 3) the control of current profile and MHD activities, 4) the global energy confinement, 5) the global power flow, 6) fast electron behavior, 7) interaction between LH waves and thermal/fast ions, 8) combination with other CD method. (author)

  4. Dynamic voltage-current characteristics for a water jet plasma arc

    International Nuclear Information System (INIS)

    Yang Jiaxiang; Lan Sheng; Xu Zuoming

    2008-01-01

    A virtual instrument technology is used to measure arc current, arc voltage, dynamic V-I characteristics, and nonlinear conductance for a cone-shaped water jet plasma arc under ac voltage. Experimental results show that ac arc discharge mainly happens in water vapor evaporated from water when heated. However, due to water's cooling effect and its conductance, arc conductance, reignition voltage, extinguish voltage, and current zero time are very different from those for ac arc discharge in gas work fluid. These can be valuable to further studies on mechanism and characteristics of plasma ac discharge in water, and even in gas work fluid

  5. Adaptation of the MAST passive current simulation model for real-time plasma control

    International Nuclear Information System (INIS)

    McArdle, G.J.; Taylor, D.

    2008-01-01

    Successful equilibrium reconstruction on MAST depends on a reliable estimate of the passive current induced in the thick vacuum vessel (which also acts as the load assembly) and other toroidally continuous internal support structures. For the EFIT reconstruction code, a pre-processing program takes the measured plasma and PF coil current evolution and uses a sectional model of the passive structure to solve the ODEs for electromagnetic induction. The results are written to a file, which is treated by EFIT as a set of virtual measurements of the passive current in each section. However, when a real-time version of EFIT was recently installed in the MAST plasma control system, a similar function was required for real-time estimation of the instantaneous passive current. This required several adaptation steps for the induction model to reduce the computational overhead to the absolute minimum, whilst preserving accuracy of the result. These include: ·conversion of the ODE to use an auxiliary variable, avoiding the need to calculate the time derivative of current; ·minimise the order of the system via model reduction techniques with a state-space representation of the problem; ·transformation to eigenmode form, to diagonalise the main matrix for faster computation; ·discretisation of the ODE; ·hand-optimisation to use vector instruction extensions in the real-time processor; ·splitting the task into two parts: the time-critical feedback part, and the next cycle pre-calculation part. After these optimisations, the algorithm was successfully implemented at a cost of just 65 μs per 500 μs control cycle, with only 27 μs added to the control latency. The results show good agreement with the original off-line version. Some of these optimisations have also been used subsequently to improve the performance of the off-line version

  6. High density internal transport barriers for burning plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Ridolfini, V Pericoli [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Barbato, E [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Buratti, P [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy)] (and others)

    2005-12-15

    A tokamak plasma with internal transport barriers (ITBs) is the best candidate for a steady ITER operation, since the high energy confinement allows working at plasma currents (I{sub p}) lower than the reference scenario. To build and sustain an ITB at the ITER high density ({>=}10{sup 20} m{sup -3}) and largely dominant electron (e{sup -}) heating is not trivial in most existing tokamaks. FTU can instead meet both requests, thanks to its radiofrequency heating systems, lower hybrid (LH, up to 1.9 MW) and electron cyclotron (EC up to 1.2 MW). By the combined use of them, ITBs are obtained up to peak densities n{sub e0} > 1.3 x 10{sup 20} m{sup -3}, with central e{sup -} temperatures T{sub e0} {approx} 5.5 keV, and are sustained for as long as the heating pulse is applied (>35 confinement times, {tau}{sub E}). At n{sub e0} {approx} 0.8 x 10{sup 20} m{sup -3} T{sub e0} can be larger than 11 keV. Almost full current drive (CD) and an overall good steadiness is attained within about one {tau}{sub E}, 20 times faster than the ohmic current relaxation time. The ITB extends over a central region with an almost flat or slightly reversed q profile and q{sub min} {approx} 1.3 that is fully sustained by off-axis lower hybrid current drive. Consequent to this is the beneficial good alignment of the bootstrap current, generated by the ITB large pressure gradients, with the LH driven current. Reflectometry shows a clear change in the turbulence close to the ITB radius, consistent with the reduced e{sup -} transport. Ions (i{sup +}) are significantly heated via collisions, but thermal equilibrium with electrons cannot be attained since the e{sup -}-i{sup +} equipartition time is always 4-5 times longer than {tau}{sub E}. No degradation of the overall ion transport, rather a reduction of the i{sup +} heat diffusivity, is observed inside the ITB. The global confinement has been improved up to 1.6 times over the scaling predictions. The ITB radius can be controlled by adjusting the

  7. On transport and the bootstrap current in toroidal plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The recently reported observation of the bootstrap current in a tokamak plasma highlights the problem of reconciling this neoclassical effect with the anomalous (i.e., non-neoclassical) electron thermal transport. This Comment reviews the bootstrap current and considers the implications of a self-consistent modification of neoclassical theory based on an enhanced electron-electron interaction. (author)

  8. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  9. Theory of free-electron-laser heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.

    1991-01-01

    The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed source has a number of technical advantages for these applications, and its use is predicted to lead to improved current-drive efficiencies and opacities in reactor-grade fusion plasmas in specific cases. The Microwave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. Although the motivation for much of this research has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativistic effects, is of general interest. Other relevant applications include ionospheric modification by radio-frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnetic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the analysis and computer simulation of the absorption and current drive produced by intense pulses, and of the possible complications that may arise, e.g., parametric instabilities, nonlinear self-focusing, trapped-particle sideband instability, and instabilities of the heated plasma

  10. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  11. Low edge safety factor operation and passive disruption avoidance in current carrying plasmas by the addition of stellarator rotational transform

    Science.gov (United States)

    Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) disruption phenomenology observed.

  12. Stability of a plasma filament with a skinned current

    International Nuclear Information System (INIS)

    Blekher, P.M.

    1984-01-01

    An effective sufficient condition of existence of ideal helical plasma filament instability in a strong longitUdinal magnetic field for skinned current profiles is deduced in the paper. The results of numerical calculations of current skinned profiles of instability diagrams are presented and these results are compared with the obtained sufficient condition. An analytical solution for one model current profile skinning and this solution also is compared with the sufficient condition of instability

  13. Anomalous cross-field current and fluctuating equilibrium of magnetized plasmas

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, O.E.; Paulsen, J.V.

    1997-01-01

    It is shown by simple physical arguments and fluid simulations that electrostatic flute-mode fluctuations can sustain a substantial cross-field current in addition to mass and energy transport. The simulations show that this current determines essential features of the fluctuating plasma...

  14. Current and Perspective Applications of Dense Plasma Focus Devices

    Science.gov (United States)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  15. Current and Perspective Applications of Dense Plasma Focus Devices

    International Nuclear Information System (INIS)

    Gribkov, V. A.

    2008-01-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement--MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy

  16. RF generator interlock by plasma grid bias current - An alternate to Hα interlock

    Science.gov (United States)

    Bandyopadhyay, M.; Gahlaut, A.; Yadav, R. K.; Pandya, K.; Tyagi, H.; Vupugalla, M.; Bhuyan, M.; Bhagora, J.; Chakraborty, A.

    2017-08-01

    ROBIN is inductively coupled plasma (ICP) based negative hydrogen ion source, operated with a 100kW, 1MHz Tetrode based RF generator (RFG). Inductive plasma ignition by the RFG in ROBIN is associated with electron seeding by a hot filament and a gas puff. RFG is triggered by the control system to deliver power just at the peak pressure of the gas puff. Once plasma is ignited due to proper impedance matching, a bright light, dominated by Hα (˜656nm wavelength) radiation is available inside RF driver which is used as a feedback signal to the RFG to continue its operation. If impedance matching is not correct, plasma is not produced due to lack of power coupling and bright light is not available. During such condition, reflected RF power may damage the RFG. Therefore, to protect the RFG, it needs to be switched off automatically within 200ms by the control system in such cases. This plasma light based RFG interlock is adopted from BATMAN ion source. However, in case of vacuum immersed RF ion source in reactor grade NBI system, such plasma light based interlock may not be feasible due to lack of adequate optical fiber interfaces. In reactor grade NBI system, neutron and gamma radiations have impact on materials which may lead to frequent maintenance and machine down time. The present demonstration of RFG interlock by Bias Current (BC) in ROBIN testbed gives an alternate option in this regard. In ROBIN, a bias plate (BP) is placed in the plasma chamber near the plasma grid (PG). BP is electrically connected to the plasma chamber wall of the ion source and PG is isolated from the wall. A high current ˜85 A direct current (DC) power supply of voltage in the range of 0 - 33V is connected between the PG and the BP in such a way that PG can be biased positively with respect to the BP or plasma chamber. This arrangement is actually made to absorb electrons and correspondingly reduce co-extracted electron current during beam extraction. However, in case of normal plasma

  17. Calculation of DC Arc Plasma Torch Voltage- Current Characteristics Based on Steebeck Model

    International Nuclear Information System (INIS)

    Gnedenko, V.G.; Ivanov, A.A.; Pereslavtsev, A.V.; Tresviatsky, S.S.

    2006-01-01

    The work is devoted to the problem of the determination of plasma torches parameters and power sources parameters (working voltage and current of plasma torch) at the predesigning stage. The sequence of calculation of voltage-current characteristics of DC arc plasma torch is proposed. It is shown that the simple Steenbeck model of arc discharge in cylindrical channel makes it possible to carry out this calculation. The results of the calculation are confirmed by the experiments

  18. Chaotic behavior of current-carrying plasmas in external periodic oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Noriyasu; Tanaka, Masayoshi; Komori, Akio; Kawai, Yoshinobu

    1989-01-01

    A set of cascading bifurcations and a chaotic state in the presence of an external periodic oscillation are experimentally investigated in a current-carrying plasma. The measured bifurcation sequence leading to chaos, which is controlled by changing plasma densities and the frequencies of external oscillations, is in qualitative agreement with a theory which describes anharmonic systems in periodic fields. (author).

  19. Plasma currents and anisotropy in the tail-dipole transition region

    Science.gov (United States)

    Artemyev, A.; Zhang, X. J.; Angelopoulos, V.; Runov, A.

    2017-12-01

    Using conjugated THEMIS and Van Allen Probes observations in the nightside magnetosphere, we examine statistically plasma and magnetic field characteristics at multiple locations simultaneously across the 3-10 RE region (i.e., across the tail-dipole transition region, whose location depends on tail flux loading and the strength of global convection). We find that the spatial distributions of ion and electron anisotropies vary significantly but systematically with radial distance and geomagnetic activity. For low Kp (4), the anisotropy profiles for ions and electrons reverse: ions are isotropic closer to the Earth and field-aligned in the tail, whereas electrons are transversely anisotropic closer to Earth but isotropic in the tail. Using the measured plasma anisotropy radial profiles we estimate the currents from curvature drifts and compare them with diamagnetic currents. We also discuss the implications of the observed plasma anisotropies for the presence and spatial distribution of field-aligned electric fields.

  20. Start-up of plasma current by electron Bernstein wave

    International Nuclear Information System (INIS)

    Maekawa, Takashi; Tanaka, Hitoshi; Uehide, Masaki

    2009-01-01

    Electron cyclotron current drive by electron Bernstein (EB) waves for the start-up and ramp-up of toroidal plasma current with no central solenoid in tokamaks is discussed. It is shown that high N// EB waves have ability to ramp-up the current against the counter voltage from self-induction, where N// is the parallel refractive index to the magnetic field, and they are especially suitable for initial current start-up phase where the bulk electron temperature is low enough to ensure high N// EB waves. (author)

  1. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  2. Electron cyclotron heating for current profile control of non-circular plasmas

    International Nuclear Information System (INIS)

    Chan, V.S.; Davidson, R.; Guest, G.; Hacker, M.; Miller, L.

    1981-01-01

    Electron Cyclotron Heating (ECH) offers a promising approach to modifying the radial profiles of electron temperature and plasma current in tokamaks to increase the ideal MHD beta limits and permit experimental access to particular noncircular cross-section tokamaks that cannot be achieved with the peaked current profiles characteristic of ohmically heated tokamaks. We use a one-and-one-half-dimensional, time-dependent transport model that incorporates a self-consistent model of electron cyclotron power absorption to study the temporal evolution of electron temperature and plasma current profiles and the resulting noncircular equilibria. Startup scenarios for high-beta dees and doublets are investigated with this transport modeling

  3. Abstracts of international symposium on heat and mass transfer under plasma conditions

    International Nuclear Information System (INIS)

    1994-01-01

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting

  4. Abstracts of international symposium on heat and mass transfer under plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.

  5. 10th International Conference and School on Plasma Physics and Controlled Fusion. Book of Abstracts

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    About 240 abstracts by Ukrainian and foreign authors submitted to 10-th International Conference and School on Plasma Physics and Controlled fusion have been considered by Conference Program Committee members. All the abstracts have been divided into 8 groups: magnetic confinement systems: stellarators, tokamaks, alternative conceptions; ITER and Fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics

  6. Lower hybrid current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-03-01

    Past ten years progress on Lower Hybrid Current Drive (LHCD) experiments have demonstrated the largest non-inductive current (3.6 MA, JT-60U), the longest current sustainment (2 hours, TRIAM-1M), non-inductive current drive at the highest density (n-bar{sub e} - 10{sup 20}m{sup -3}, ALCATOR-C) and the highest current drive efficiency ({eta}{sub CD} = 3.5x10{sup 19} m{sup -2}A/W, JT-60). These results indicate that LHCD is one of the most promising methods to drive non-inductive current in the present tokamak plasmas. This paper presents recent experimental results on LHCD experiments. Basic theories of LH waves, the wave propagation and the current drive are briefly summarized. The main part of this paper describes several important results and their physical pictures on recent LHCD experiments; 1) the experimental set-up, 2) the current drive efficiency, 3) the control of current profile and MHD activities, 4) the global energy confinement, 5) the global power flow, 6) fast electron behavior, 7) interaction between LH waves and thermal/fast ions, 8) combination with other CD method. (author)

  7. Expansion of a multicomponent current-carrying plasma jet into vacuum

    International Nuclear Information System (INIS)

    Krasov, V. I.; Paperny, V. L.

    2017-01-01

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z 1 = +1 and Z 2 = +2 and (ii) plasma with ions in equal charge states but with the mass ratio m 1 /m 2 = 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.

  8. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, S.; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibata, Y.; Isayama, A.; Kawano, Y. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Watanabe, K. Y. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Takizuka, T. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Okamoto, M. [Ishikawa National College of Technology, Ishikawa 929-0392 (Japan)

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  9. Current Density and Plasma Displacement Near Perturbed Rational Surface

    International Nuclear Information System (INIS)

    Boozer, A.H.; Pomphrey, N.

    2010-01-01

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.

  10. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  11. The effect of plasma parameter on the bootstrap current of fast ions in neutral beam injection

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Cao Jinjia; Yang Lei

    2014-01-01

    The effect of plasma parameters on the distribution of net current density of fast ions produced by neutral beam injection is investigated in a large-aspect-ratio Tokamak with circular cross-section under specific parameters. Numerical results show that the value of net current density increases with the temperature of plasma increasing and decreases with the density of plasma increasing. The value of net current density is weakly affected by the effective charge number, but the peak of net current density moves towards edge plasma with effective charge number increasing. (authors)

  12. Preliminary investigation on the use of low current pulsed power Z-pinch plasma devices for the study of early stage plasma instabilities

    Science.gov (United States)

    Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.

    2018-01-01

    This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.

  13. H-mode access during plasma current ramp-up in TCV

    International Nuclear Information System (INIS)

    Martin, Y.; Behn, R.; Furno, I.; Labit, B.; Reimerdes, H.

    2014-01-01

    A recent TCV experiment has investigated the dependence of the L–H transition threshold power on the plasma current ramp-rate and the X-point height above the divertor target, which both have previously been seen to affect the transition behaviour. Systematic scans in ohmically heated plasmas do not show any dependence on the plasma current ramp-up rate. In contrast, the threshold power is found to increase by a factor of two while the X-point is moved from about 10 cm up to 35 cm above the vessel floor. However, further increase, up to 60 cm, does not lead to any further increase of the required power. The Fundamenski et al model is tested against the measurements. Estimates of the Wagner number (Wa) at L–H transitions are generally close to unity, in accordance with the model. In contrast, estimates of Wa before the L–H transition, i.e. in L-mode, do not show the expected evolution towards unity. (paper)

  14. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the international seminar on plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Beiersdorfer, Peter [eds.

    1998-06-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held in Kyoto during January 26-28, 1998. This Proceedings book includes the papers of the talks given at the meeting. These include: overviews of PPS from the aspects of atomic physics, and of plasma physics; several PPS and MSE (motional Stark effect) experiments on magnetically confined plasmas and a laser-produced plasma; polarized laser-induced fluorescence spectroscopy, several experiments on EBITs (electron beam ion trap) and their theoretical interpretations; polarized profiles of spectral lines, basic formulation of PPS; inelastic and elastic electron collisions leading to polarized atomic states; polarization in recombining plasma; relationship between the collisional polarization relaxation and the line broadening; and characteristics of the plasma produced by very short pulse and high power laser irradiation. The 19 of the presented papers are indexed individually. (J.P.N.)

  15. Double internal transport barrier triggering mechanism in tokamak plasmas

    International Nuclear Information System (INIS)

    Dong, Jiaqi; Mou, Zongze; Long, Yongxing; Mahajan, Swadesh M.

    2004-01-01

    Sheared flow layers created by energy released in magnetic reconnection processes are studied with the magneto hydrodynamics (MHD), aimed at internal transport barrier (ITB) dynamics. The double tearing mode induced by electron viscosity is investigated and proposed as a triggering mechanism for double internal transport barrier (DITB) observed in tokamak plasmas with non-monotonic safety factor profiles. The quasi-linear development of the mode is simulated and the emphasis is placed on the structure of sheared poloidal flow layers formed in the vicinity of the magnetic islands. For viscosity double tearing modes, it is shown that the sheared flows induced by the mode may reach the level required by the condition for ITB formation. Especially, the flow layers are found to form just outside the magnetic islands. The scaling of the generated velocity with plasma parameters is given. Possible explanation for the experimental observations that the preferential formation of transport barriers in the proximity of low order rational surface is discussed. (author)

  16. Transverse current at the periphery of the start plasma of the AMBAL-M open device

    International Nuclear Information System (INIS)

    Taskaev, S.Yu.

    1999-01-01

    Essential longitudinal electron current was experimentally detected earlier in a start plasma of AMBAL-M open trap and system. This paper studies the current at a plasma periphery and the process resulting in occurrence of transverse current, and determines the value of a transverse current in a transporting range. This study enables to determine that filling of a trap with a thin circular flow and formation of nonequilibrium distribution of a radial electrical field in a plasma by potentials of an electrode front gun are the indium peculiarities of the experiment ensuring essential transverse current [ru

  17. Experimental observation of current generation by asymmetrical heating of ions in a tokamak plasma

    International Nuclear Information System (INIS)

    Gahl, J.; Ishihara, O.; Wong, K.L.; Kristiansen, M.; Hagler, M.

    1986-01-01

    The first experimental observation of current generation by asymmetrical heating of ions is reported. Ions were asymmetrically heated by a unidirectional fast Alfven wave launched by a slow wave antenna inside a tokamak. Current generation was detected by measuring the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column

  18. Cross effects on electron-cyclotron and lower-hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Krivenski, V.; Mazzucato, E.; Ziebell, L.F.

    1986-11-01

    Electron cyclotron resonance current drive in a tokamak plasma in the presence of a lower hybrid tail is investigated using a 2D Fokker-Planck code. For an extraordinary mode at oblique propagation and down-shifted frequency it is shown that the efficiency of electron cyclotron current drive becomes, i) substantially greater than the corresponding efficiency of a Maxwellian plasma at the same bulk temperature, ii) equal or greater than that of the lower hybrid waves, iii) comparable with the efficiency of a Maxwellian plasma at much higher temperature. This enhancement results from a beneficial cross-effect of the two waves on the formation of the current carrying electron tail. (5 fig; 17 refs)

  19. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  20. A current profile model for magnetic analysis of the start-up phase of toroidal plasmas driven by electron cyclotron heating and current drive

    International Nuclear Information System (INIS)

    Yoshinaga, T.; Uchida, M.; Tanaka, H.; Maekawa, T.

    2007-01-01

    An estimation model of plasma current density distribution for the start-up phase of toroidal plasmas generated by electron cyclotron heating (ECH) in the low aspect ratio torus experiment device is presented. The model assumes a power law parabolic current profile having seven fitting parameters. Its position, extent and broadness (or steepness) are fitted by adjusting these parameters to the observed magnetic flux signals. The adequacy of the model has been examined and confirmed by comparisons of the reconstructed current profiles and the resultant poloidal flux surfaces with the plasma images at visible light range at various stages of start-up discharges, including both the initial open field phase, the subsequent closed field phase, the current decay phase after ECH is turned off and also by a current-profile limiting experiment. This method may be useful for the study of non-inductive start-up experiments by ECH, where there is no appropriate MHD constraint on the current distribution as that in the full tokamak discharge plasmas

  1. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    Science.gov (United States)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The

  2. To the mechanism of modulated REB current increase during its propagation through plasma

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Maslov, V.I.; Uskov, V.V.

    2002-01-01

    The mechanism of full current increase is investigated in this paper. This current arises at transporting of the short relativistic electron bunches in the plasma,formed by them at gas of large pressure. This phenomenon is determined by the electric field, arising at motion of the relativistic electron bunches, having an angular divergence, in the plasma

  3. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  4. Influence of the choice of internal temperatures on the composition of CxHyOzNt plasmas out of thermodynamic equilibrium: Application to CH2 plasma

    International Nuclear Information System (INIS)

    Koalaga, Zacharie

    2002-01-01

    The purpose of this paper is to study the influence of the choice of internal temperatures on the composition of C x H y O z N t plasmas out of thermodynamic equilibrium. The numerical calculation is specially performed for CH 2 plasma in the pressure range 0.1-1 MPa and for the electron temperature range 5000-30 000 K. Precisely, the investigation of this plasma allows one to show that the choice of internal temperatures can have more influence on plasma composition than the choice of the form of the two-temperature Saha and Guldberg-Waage laws. Indeed, for one of the supposed hypotheses, it is observed that the two forms of the two-temperature system used here can give the same equilibrium composition by uncoupling the excitation temperature of the diatomic and the monatomic species. Great attention must then be given to the adopted hypothesis for internal temperature and not only to the form of the two temperature system used. An accurate comparison between the two models requires the measurement of plasma parameters such as the various internal temperatures and the species concentration. Therefore, we have also carried out an analysis of the potential experimental diagnostics of these plasma parameters. Such diagnostics can help to test and validate theoretical models

  5. Expansion of a multicomponent current-carrying plasma jet into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Krasov, V. I.; Paperny, V. L., E-mail: paperny@math.isu.runnet.ru [Irkutsk State University (Russian Federation)

    2017-03-15

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z{sub 1}= +1 and Z{sub 2}= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m{sub 1}/m{sub 2} = 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.

  6. On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Hellsten, T.; Johnson, T.

    2008-01-01

    A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.

  7. Current disruption in toroidal devices

    International Nuclear Information System (INIS)

    1979-07-01

    Attempts at raising the density or the plasma current in a tokamak above certain critical values generally result in termination of the discharge by a disruption. This sudden end of the plasma current and plasma confinement is accompanied by large induced voltages and currents in the outer structures which, in large tokamaks, can only be handled with considerable effort, and which will probably only be tolerable in reactors as rare accidents. Because of its crucial importance for the construction and operation of tokamaks, this phenomenon and its theoretical interpretation were the subject of a three-day symposium organized by the International Atomic Energy Agency and Max-Planck-Institut fuer Plasmaphysik at Garching from February 14 to 16. (orig./HT)

  8. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  9. Avoidance of VDEs during plasma current quench in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1996-01-01

    Vertical displacement events (VDEs) during plasma current quench (I p quench) are one of the serious problems encountered in designing tokamak fusion reactors, owing to the generation of enormously high electromagnetic forces on the vacuum vessel and in-vessel components, but they have been passively and actively avoided in JT-60U. In JT-60U 'slow I p quench' is ended with very fast plasma current termination (final I p termination), and the halo current is frequently measured at this final I p termination. VDEs make the final I p termination severe by increasing the halo current and the electromagnetic force. A strong dependence of VDE growth rate on the initial vertical position of the plasma current centre (Z J ) has been clarified experimentally, and a neutral point of Z J for VDE has been found at ∼ 15 cm above the midplane of the vacuum vessel. According to these measurements, VDE has been avoided by the selection of Z J at the start of I p quench (passive control) and by the control of Z J during I p quench (active control) eventually obtained owing to the small deviation of Z J in real time calculations from its actual value. Furthermore, passive avoidance of VDEs by the injection of a neon ice pellet has been demonstrated. (author). 29 refs, 14 figs

  10. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  11. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  12. Princeton University Plasma Physics Laboratory, Princeton, New Jersey

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program

  13. Resistive internal kink modes in a tokamak with high-pressure plasma

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.; Tatarinov, E.G.

    1988-01-01

    Theory of resistive internal kink modes in a tokamak with high-pressure plasma is developed. Equation for Fourie-image of disturbed displacment in a resistive layer ie derived with regard to effects of the fourth order by plasma pressure within the framework of single-liquid approach. In its structure this equation coincides with a similar equation for resistive balloon modes and has an exact solution expressed by degenerated hypergeometric function. A general dispersion equation for resistive kink modes is derived with regard to the effects indicated. It is shown that plasma pressure finiteness leads to the reduction of reconnection and tyring-mode increments

  14. Core density fluctuations in reverse magnetic shear plasmas with internal transport barrier on JT-60U

    International Nuclear Information System (INIS)

    Nazikian, R.; Shinohara, K.; Yoshino, R.; Fujita, T.; Shirai, H.; Kramer, G.T.

    1999-01-01

    First measurements of the radial correlation length of density fluctuations in JT-60U plasmas with internal transport barrier (ITB) is reported. The measurements are obtained using a newly installed correlation reflectometer operating in the upper X-mode. Before transport barrier formation in the low beam power current ramp-up phase of the discharge, reflectometer measurements indicate density fluctuation levels n-tilde/n∼0.1-0.2% and radial correlation lengths 2-3 cm (k r p i ≤0.5) in the central plasma region (r/a r p i ∼3. However, fluctuation levels are considerably higher than measured near the magnetic axis. Reflectometer measurements obtained at the foot of the ITB also indicate high fluctuation levels compared to measurements in the central region of the discharge. (author)

  15. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  16. Plasma bullet current measurements in a free-stream helium capillary jet

    Science.gov (United States)

    Oh, Jun-Seok; Walsh, James L.; Bradley, James W.

    2012-06-01

    A commercial current monitor has been used to measure the current associated with plasma bullets created in both the positive and negative half cycles of the sinusoidal driving voltage sustaining a plasma jet. The maximum values of the positive bullet current are typically ˜750 µA and persist for 10 µs, while the peaks in the negative current of several hundred μA are broad, persisting for about 40 µs. From the time delay of the current peaks with increasing distance from the jet nozzle, an average bullet propagation speed has been measured; the positive and negative bullets travel at 17.5 km s-1 and 3.9 km s-1 respectively. The net space charge associated with the bullet(s) has also been calculated; the positive and negative bullets contain a similar net charge of the order of 10-9 C measured at all monitor positions, with estimated charged particle densities nb of ˜1010-1011 cm-3 in the bullet.

  17. Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

    International Nuclear Information System (INIS)

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; Burke, Marcus G.; Fonck, Raymond J.

    2017-01-01

    Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β t ), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β t up to ~100% with a minimum |B| well spanning up to ~50% of the plasma volume.

  18. Non-inductive plasma initiation and plasma current ramp-up on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Takase, Y.; Ejiri, A.; Oosako, T.; Shinya, T.; Ambo, T.; Furui, H.; Kato, K.; Nakanishi, A.; Sakamoto, T.; Kakuda, H.; Wakatsuki, T.; Hashimoto, T.; Hiratsuka, J.; Kasahara, H.; Kumazawa, R.; Mutoh, T.; Saito, K.; Seki, T.; Moeller, C.P.; Nagashima, Y.

    2013-01-01

    Plasma current (I p ) start-up in a spherical tokamak (ST) by waves in the lower-hybrid (LH) frequency range was investigated on TST-2. A low current (∼1 kA) ST configuration can be formed by waves over a broad frequency range (21 MHz–8.2 GHz in TST-2), but further I p ramp-up (to ∼10 kA) is most efficient with waves in the LH frequency range. I p ramp-up to 15 kA was achieved with 60 kW of net RF power P RF in the fast wave (FW) polarization at 200 MHz excited by the inductively coupled combline antenna. X-ray measurements showed that the photon flux and temperature are higher in the direction opposite to I p , consistent with acceleration of electrons by a uni-directional RF wave. There is evidence that the LH wave is excited nonlinearly by the FW, based on the frequency spectra measured by magnetic probes. Similar efficiencies of I p ramp-up were obtained with the inductive combline antenna and the dielectric-loaded waveguide array (‘grill’) antenna, and tendencies for the current drive efficiency to increase with plasma current and toroidal field were observed. During operation of the grill antenna, wavevector components were measured by an array of magnetic probes. Results were qualitatively consistent with expectations based on dispersion relations for the FW and the LH wave. A capacitively coupled combline antenna has been developed to improve coupling to the plasma and the wavenumber spectrum of the excited LH wave, and will be tested in 2013. (paper)

  19. Duality of the magnetic flux tube and electric current descriptions magnetospheric plasma and energy flow

    International Nuclear Information System (INIS)

    Atkinson, G.

    1981-01-01

    The duality between electric current and magnetic flux tubes is outlined for the magnetosphere. Magnetic flux tubes are regarded as fluid elements subjected to various stresses. Current closure then becomes the dual of stress balance, and Poynting vector energy flow a dual of J x E dissipation. The stresses acting on a flux tube are magnetic stresses, which correspond to currents at a distance, and plasma stresses, which correspond to local currents. The duality between current and stress is traced for ionospheric ion drag forces, solar wind stresses at the magnetopause, inertial effects, and the effects of energetic plasma on flux tubes. The stress balance and dual current systems are outlined for idealized magnetospheres of increasing complexity. For a simple magnetosphere with no convective flow, the balance stresses are solar wind pressure and neutral sheet plasma pressure. The corresponding current systems are the Chapman-Ferraro magnetopause currents and the magetotail current system. The introduction of convective flow introduces further stresses: ionospheric ion drag. Alfven layer shielding, and an imbalance in day-night magnetic stresses due to transport of flux tubes to the nightside by the solar wind. These stresses balance, and hence the corresponding additional currents (the ionospheric Pedersen current and the electrojets, the partial ring current, and two other current systems from the magnetopause and tail) must form a closed current system and do so by the region I and II field-aligned currents of Iijima and Potemra. The energy flow in the above models is described in terms of both Poynting vectors and the above current systems. Temporal variations examined are (1) an increase in dayside merging and/or nightside reconnection, (2) an increase in the energy density of plasma in the plasma sheet, (3) an increase in ionospheric conductivity, and (4) an increase in solar wind pressure

  20. Internal Kink Mode Dynamics in High-β NSTX Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Stutman, D.; Tritz, K.; Zhu, W.

    2004-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data

  1. Internal kink mode dynamics in high-β NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Zhu, W.; Stutman, D.; Tritz, K.

    2005-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode non-linear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experiment. (author)

  2. Improved plasma confinement by modulated toroidal current on HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Zhao Junyu; Shen Biao; Luo Jiarong

    2004-01-01

    The improved confinement phase was observed during modulating toroidal current on the Hefei superconducting Tokamak-7 (HT-7). This improved plasma confinement phase is characterized by suppressing magnetohydrodynamic (MHD) instabilities effectively, thus increased the central line averaged electron density and the central electron temperature about 33%, out-put steeper density profiles, and reduced hydrogen radiation from the edge as well. The global energy confinement time was increased by 27%-45%; The impurity radiation was reduced by modulation of plasma toroidal current; particle confinement time was increased about two times; a stronger radial negative electric field formed inside the limiter. The radial electric field during modulating current was calculated and disscused. (authors)

  3. Stationary, high bootstrap fraction plasmas in DIII-D without inductive current control

    International Nuclear Information System (INIS)

    Politzer, P.A.; Hyatt, A.W.; Luce, T.C.; Prater, R.; Turnbull, A.D.; Ferron, J.R.; Greenfield, C.M.; La Haye, R.J.; Petty, C.C.; Perkins, F.W.; Brennan, D.P.; Lazarus, E.A.; Jayakumar, J.; Wade, M.R.

    2005-01-01

    We have initiated an experimental program to address some of the questions associated with operation of a tokamak with high bootstrap current fraction under high performance conditions, without assistance from a transformer. In these discharges stationary (or slowly improving) conditions are maintained for > 3.7 s at β N ∼ β p ≤ 3.3. The achievable current and pressure are limited by a relaxation oscillation, involving growth and collapse of an ITB at ρ ≥ 0.6. The pressure gradually increases and the current profile broadens throughout the discharge. Eventually the plasma reaches a more stable, high confinement (H89P ∼ 3) state. Characteristically these plasmas have 65%-85% bootstrap current, 15%-30% NBCD, and 0%-10% ECCD. (author)

  4. The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas

    International Nuclear Information System (INIS)

    Lu, H. L.; Qiu, X. M.

    2011-01-01

    In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.

  5. The International Curriculum: Current Trends and Emerging Needs

    Science.gov (United States)

    Richter, Jesse Jones

    2015-01-01

    This paper examines the current state of tertiary level international curricula and provides groundwork for future research aimed at ongoing needs. Recognized is the premise that existing international curricular programs require maintenance. Burn (1995) called for curriculum reform in international departments two decades ago with the rationale…

  6. Radiofrequency Waves, Heating and Current Drive in Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M; Bonoli, P T; Temkin, R J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States); Pinsker, R I; Prater, R [General Atomics, San Diego, California (United States); Wilson, J R [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2012-09-15

    The need for supplementary heating of magnetically confined plasmas to fusion relevant temperatures ({approx}20 keV) has been recognized from the beginning of modern fusion plasma research. Although in tokamaks the plasmas are formed initially by ohmic heating (P{Omega}{approx}{eta}{sub R}j, where j is the current density and {eta}{sub R} is the resistivity) its effectiveness deteriorates with increasing temperature since the resistivity decreases as T{sub e}{sup -3/2}, and losses due to bremsstrahlung radiation increase as Z{sub eff}{sup 3} T{sub e}{sup 1/2} (where Z{sub eff} is the effective ion charge), and the plasma current cannot be raised to arbitrarily large values because of MHD stability limits. In addition, energy losses due to thermal conduction P{sub loss} are typically anomalously large compared to neoclassical predictions and the dependence on temperature is not well understood. Thus, the simplest form of steady state power balance indicates that losses due to radiation and heat conduction must be balanced by auxiliary heating of some form, P{sub aux}, which may simply be stated as P{sub {Omega}} + P{sub {alpha}} - P{sub loss} P{sub aux} where P{sub {alpha}} is the power input provided by alpha particles, which does not become significant until the temperature exceeds some tens of keV, depending on confinement and density. (author)

  7. Necking down of sausages in current-carrying plasma pinches

    International Nuclear Information System (INIS)

    Trubnikov, B.A.; Zhdanov, S.K.

    1986-01-01

    The evolution of long-wave perturbations is shown to be equivalent, for various unstable media, to the dynamics of a gas with a negative adiabatic index γ. This evolution is described (for various values at N) by the quasi-Chaplygin system of equations Several examples of such media are considered, including a ''Chaplygin gas'' (N = 3), drops on a ceiling or ''solitons which have broken'' (N = 0), necks in a current-carrying plasma pinch with a skin effect, for both incompressible and compressible models (N = 2), and the breakup of liquid jets into drops (N = 3/2). A principle for selecting evolutionary solutions corresponding to the absence of perturbations in the limit t → -∞ is formulated. In the cases N = 0 and N = 2, a hodograph transformation reduces system (1) to a magnetostatic equation (ΔA)/sub phi/ = -(4π/c)j/sub phi/ and all the instability modes are equivalent to multipoles of circular currents which are localized on a circle. Exact solutions are given for periodic and isolated (localized) perturbations. The breakup of a medium into distinct blobs, in particular, the rupture of necks in a current-carrying plasma pinch, is demonstrated

  8. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the fourth international symposium on plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Beiersdorfer, Peter [eds.

    2004-07-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held at Kyoto University during February 4-6, 2004. This Proceedings book includes the summaries of the talks given in that meeting. Starting with the Overview talk by Csanak, the subjects cover: x-ray polarization experiments on z-pinches (plasma foci), and an x-pinch, a laser-produced plasma in a gas atmosphere, an interpretation of the polarized 1<- 0 x-ray laser line, polarization observation from various laser-produced plasmas including a recombining phase plasma, a report on the on-going project of a laser facility, several polarization observations on magnetically confined plasmas including the Large Helical Device and an ECR plasma, a new laser-induced fluorescence diagnostic method. On atomic physics side given are: various polarization measurements on EBIT, precision spectroscopy on the TEXTOR, user-friendly atomic codes. Instrumentation is also a subject of this book. The 18 of the presented papers are indexed individually. (J.P.N.)

  9. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically in influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the part of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material inter actions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (author)

  10. Plasma-material interactions in current tokamaks and their implications for next-step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several cm from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the engineering design activities of the international thermonuclear experimental reactor project (ITER) and significant progress has been made in better understanding these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/re-deposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (orig.)

  11. Laser Interaction and Related Plasma Phenomena: 13th International Conference. Proceedings

    International Nuclear Information System (INIS)

    Miley, G.H.; Campbell, E.M.; Hogan, W.J.; Maille-Petersen, C.; Coppedge, H.; Montoya, E.

    1997-01-01

    These proceedings contain papers presented at the Thirteenth International Conference on Laser Interaction and Related Plasma Phenomena held in Monterey, California in April, 1997. Topics covered in the conference included laser design, alternate concepts in volume ignition and advance fuels, beam/plasma interactions, nuclear-pumped lasers, alternate fast ignitors, heavy ion fusions, laser-ion beam interactions, extreme short-pulse interactions, high-energy-density plasma physics, and hydrodynamic instabilities. The conference was sponsored in part by the Lawrence Livermore National Laboratory of the United States Department of Energy. There were 80 papers presented and 23 have been abstracted for the Energy Science and Technology database

  12. Studies of non-inductive current drive in the CDX-U tokamak

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1993-01-01

    Two types of novel, non-inductive current drive concepts for starting-up and maintaining tokamak discharges, dc-helicity injection and internally-generated pressure-driven currents, have been developed on the CDX-U tokamak. To study the equilibrium and transport of these plasmas, a full set of magnetic diagnostics was installed. By applying a finite element method and a least squares error fitting technique, internal plasma current distributions are reconstructed from the measurements. Electron density distributions were obtained from 2 mm interferometer measurements by a similar least squares error technique utilizing magnetic flux configurations obtained by the magnetic analysis. Neoclassical pressure-driven currents in ECH plasmas are modeled with the reconstructed magnetic structure, using the electron density distribution and the electron temperature profile measured by a Langmuir probe. In the dc-helicity injection scheme, the need to increase injection current and maintain plasma equilibrium restricts possible arrangements. Several injection configurations were investigated, with the best found to be outside injection with a single divertor configuration, where the cathode is placed at the low field side of the x-point. Both pressure-driven and dc-helicity injected tokamaks show the importance of plasma equilibrium in obtaining high plasma current. Programmed vertical field operation has proven to be very important in achieving high plasma current. These non-inductive current drive techniques show great potential as efficient current drive methods for future steady-state and/or long-pulse fusion reactors

  13. Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

    International Nuclear Information System (INIS)

    Motojima, O.; Yamada, H.; Komori, A.; Ohyabu, N.; Mutoh, T.; Kaneko, O.; Kawahata, K.; Mito, T.; Ida, K.; Imagawa, S.; Nagayama, Y.; Shimozuma, T.; Watanabe, K.Y.; Masuzaki, S.; Miyazawa, J.; Morisaki, T.; Morita, S.; Ohdachi, S.; Ohno, N.; Saito, K.; Sakakibara, S.; Takeiri, Y.; Tamura, N.; Toi, K.; Tokitani, M.; Yokoyama, M.; Yoshinuma, M.; Ikeda, K.; Isayama, A.; Ishii, K.; Kubo, S.; Murakami, S.; Nagasaki, K.; Seki, T.; Takahata, K.; Takenaga, H.

    2007-01-01

    The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5 x 10 20 m -3 , which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high β and long pulse

  14. External and internal standards in the single-isotope derivative (radioenzymatic) measurement of plasma norepinephrine and epinephrine

    International Nuclear Information System (INIS)

    Shah, S.D.; Clutter, W.E.; Cryer, P.E.

    1985-01-01

    In plasma from normal humans (n = 9, 35 samples) and from patients with diabetes mellitus (n = 12, 24 samples) single-isotope derivative (radioenzymatic) plasma norepinephrine and epinephrine concentrations calculated from external standard curves constructed in a normal plasma pool were identical to those calculated from internal standards added to an aliquot of each plasma sample. In plasma from patients with end-stage renal failure receiving long-term dialysis (n = 34, 109 samples), competitive catechol-O-methyltransferase (COMT) inhibitory activity resulted in a systematic error when external standards in a normal plasma pool were used, as reported previously; values so calculated averaged 21% (+/- 12%, SD) lower than those calculated from internal standards. However, when external standard curves were constructed in plasma from a given patient with renal failure and used to calculate that patient's values, or in a renal failure plasma pool and used to calculate all renal failure values, norepinephrine and epinephrine concentrations were not significantly different from those calculated from internal standards. We conclude: (1) External standard curves constructed in plasma from a given patient with renal failure can be used to measure norepinephrine and epinephrine in plasma from that patient; further, external standards in a renal failure plasma pool can be used for assays in patients with end-stage renal failure receiving long-term dialysis. (2) Major COMT inhibitory activity is not present commonly if samples from patients with renal failure are excluded. Thus, it would appear that external standard curves constructed in normal plasma can be used to measure norepinephrine and epinephrine precisely in samples from persons who do not have renal failure

  15. Burn stability of tokamak fusion plasmas with synergetic current drive

    International Nuclear Information System (INIS)

    Anderson, D.; Lisak, M.; Kolesnichenko, Ya.

    1991-01-01

    The stability of thermonuclear burn in Tokamak-reactors with non-inductive current generated with the simultaneous application of various methods is investigated. Particular emphasis is given to the ITER synergetic current drive scenario involving LH waves, neoclassical effects and NB injection. For ITER-like confinement laws, it is shown that this scenario may be unstable on the plasma skin time scale. Figs

  16. Dismantling of JPDR reactor internals by underwater plasma arc cutting technique using robotic manipulator

    International Nuclear Information System (INIS)

    Yokota, M.

    1988-01-01

    The actual dismantling of JPDR started on December 4, 1986. As of now, equipment that surrounds the reactor has mostly been removed to provide working space in reactor containment prior to the dismantling of reactor internals. Some reactor internals have been successfully dismantled using the underwater arc cutting system with a robotic manipulator during the period of January to March 1988. The cutting system is composed of an underwater plasma arc cutting device and a robotic manipulator. The cut off reactor internals were core spray block, feedwater sparger and stabilizers for fuel upper grid tube. The plasma arc cutting device was developed to dismantle the reactor internals underwater. It mainly consists of a plasma torch, power and gas supply systems for the torch, and by-product treatment systems. It has the cutting ability of 130 mm thickness stainless steel underwater. The robotic manipulator has seven degrees of freedom of movement, enabling it to move in almost the same way as the arm of a human being. The arm of the robot is mounted on a supporting device which is suspended by three chains from the support structure set on a service floor. A plasma torch is griped by the robotic hand; its position to the structure to be cut is controlled from a remote control room, about 100 meters outside the reactor containment

  17. Experimental study of current loss and plasma formation in the Z machine post-hole convolute

    Directory of Open Access Journals (Sweden)

    M. R. Gomez

    2017-01-01

    Full Text Available The Z pulsed-power generator at Sandia National Laboratories drives high energy density physics experiments with load currents of up to 26 MA. Z utilizes a double post-hole convolute to combine the current from four parallel magnetically insulated transmission lines into a single transmission line just upstream of the load. Current loss is observed in most experiments and is traditionally attributed to inefficient convolute performance. The apparent loss current varies substantially for z-pinch loads with different inductance histories; however, a similar convolute impedance history is observed for all load types. This paper details direct spectroscopic measurements of plasma density, temperature, and apparent and actual plasma closure velocities within the convolute. Spectral measurements indicate a correlation between impedance collapse and plasma formation in the convolute. Absorption features in the spectra show the convolute plasma consists primarily of hydrogen, which likely forms from desorbed electrode contaminant species such as H_{2}O, H_{2}, and hydrocarbons. Plasma densities increase from 1×10^{16}  cm^{−3} (level of detectability just before peak current to over 1×10^{17}  cm^{−3} at stagnation (tens of ns later. The density seems to be highest near the cathode surface, with an apparent cathode to anode plasma velocity in the range of 35–50  cm/μs. Similar plasma conditions and convolute impedance histories are observed in experiments with high and low losses, suggesting that losses are driven largely by load dynamics, which determine the voltage on the convolute.

  18. The dynamic current-voltage characteristic as a powerful tool to analyze fast phenomena in plasma

    International Nuclear Information System (INIS)

    Ivan, L. M.; Mihai-Plugaru, M.; Amarandei, G.; Aflori, M.; Dimitriu, D. G.

    2006-01-01

    The static current-voltage characteristic of an electrode immersed in plasma is obtained by slowly increasing and subsequently decreasing the potential on the electrode with respect to the plasma potential or the ground. This characteristic can give us important information about the phenomena that take place in front of the electrode. Current jumps can be evidenced which were often associated with an hysteresis effect, regions with S-type or N-type negative differential resistance, etc. The method is always used when we investigate the appearance of complex space charge configurations (CSCC) in front of an electrode immersed in plasma. However, to investigate the dynamics of such structures or other fast phenomena (like instabilities) which take place in plasma devices with frequencies of tenth, hundred kHz or more, complex investigation techniques must be used. One of the most efficient methods to investigate fast phenomena in plasma devices is the dynamic current-voltage characteristic. This is obtained by recording the time series of the current collected by the electrode when the voltage applied on it is very fast modified (most likely increased) by using a signal generator. In this way, very fast oscillations of the current can be recorded and new phenomena can be evidenced. We used this technique to study the phenomena which take place at the onset of electrostatic instabilities in Q-machine plasma, namely the potential relaxation instability (PRI) and the electrostatic ion-cyclotron instability (EICI). The obtained experimental results prove that the negative differential resistance region in the static current-voltage characteristic is the result of a nonlinear dynamics of a CSCC in form of a double layer (DL) which takes place just before the onset of the instabilities. In the case of the PRI we emphasized current jumps related with the DL appearance, which are not present in the static current-voltage characteristic at high plasma density. (authors)

  19. Application of Electron Bernstein Wave heating and current drive to high beta plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.

    2002-01-01

    Electron Bernstein Waves (EBW) can potentially heat and drive current in high-beta plasmas. Electromagnetic waves can convert to EBW via two paths. O-mode heating, demonstrated on W-7AS, requires waves be launched within a narrow k-parallel range. Alternately, in high-beta plasmas, the X-mode cutoff and EBW conversion layers are millimeters apart, so the fast X-mode can tunnel to the EBW branch. We are studying the conversion of EBW to the X-mode by measuring the radiation temperature of the cyclotron emission and comparing it to the electron temperature. In addition, mode conversion has been studied with an approximate kinetic full-wave code. We have enhanced EBW mode conversion to ∼ 100% by encircling the antenna with a limiter that shortens the density scale length at the conversion layer in the scrape off of the CDX-U spherical torus (ST) plasma. Consequently, a limiter in front of a launch antenna achieves efficient X-mode coupling to EBW. Ray tracing and Fokker-Planck codes have been used to develop current drive scenarios in NSTX high-beta (∼ 40%) ST plasmas and a relativistic code will examine the potential synergy of EBW current drive with the bootstrap current. (author)

  20. Passive cyclotron current drive for fusion plasmas

    International Nuclear Information System (INIS)

    Kernbichler, W.

    1995-01-01

    The creation of toroidal current using cyclotron radiation in a passive way is, together with the well known bootstrap current, an interesting method for stationary current drive in high-temperature fusion reactors. Here, instead of externally applied RF-waves, fish-scale like structures at the first wall help to create enough asymmetry in the self generated cyclotron radiation intensity to drive a current within the plasma. The problem of computing passive cyclotron current drive consists of actually two linked problems, which are the computation of the electron equilibrium under the presence of self-generated radiation, and the computation of the photon equilibrium in a bounded system with a distorted electron distribution. This system of integro-differential equations cannot be solved directly in an efficient way. Therefore a linearization procedure was developed to decouple both sets of equations, finally linked through a generalized local current drive efficiency. The problem of the exact accounting for the wall profile effects was reduced to the solution of a Fredholm-type integral equation of the 2 nd -kind. Based on all this an extensive computer code was developed to compute the passively driven current as well as radiation losses, radiation transport and overall efficiencies. The results therefrom give an interesting and very detailed insight into the problems related to passive cyclotron current drive

  1. Plasma bullet current measurements in a free-stream helium capillary jet

    International Nuclear Information System (INIS)

    Oh, Jun-Seok; Walsh, James L; Bradley, James W

    2012-01-01

    A commercial current monitor has been used to measure the current associated with plasma bullets created in both the positive and negative half cycles of the sinusoidal driving voltage sustaining a plasma jet. The maximum values of the positive bullet current are typically ∼750 µA and persist for 10 µs, while the peaks in the negative current of several hundred μA are broad, persisting for about 40 µs. From the time delay of the current peaks with increasing distance from the jet nozzle, an average bullet propagation speed has been measured; the positive and negative bullets travel at 17.5 km s −1 and 3.9 km s −1 respectively. The net space charge associated with the bullet(s) has also been calculated; the positive and negative bullets contain a similar net charge of the order of 10 −9 C measured at all monitor positions, with estimated charged particle densities n b of ∼10 10 –10 11 cm −3 in the bullet. (special)

  2. MINIMIZING THE MHD POTENTIAL ENERGY FOR THE CURRENT HOLE REGION IN TOKAMAKS

    International Nuclear Information System (INIS)

    CHU, M.S; PARKS, P.B

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n ≠ 0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n = 0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region''. The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  3. Minimizing the magnetohydrodynamic potential energy for the current hole region in tokamaks

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n≠0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n=0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma, or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region.'' The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  4. Physics of strong internal transport barriers in JT-60U reversed-magnetic-shear plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, N; Takizuka, T; Sakamoto, Y; Fujita, T; Kamada, Y; Ide, S; Koide, Y [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2006-05-15

    The physics of strong internal transport barriers (ITBs) in JT-60U reversed-magnetic-shear (RS) plasmas has been studied through the modelling on the 1.5 dimensional transport simulation. The key physics to produce two scalings on the basis of the JT-60U box-type ITB database are identified. As for the scaling for the narrow ITB width proportional to the ion poloidal gyroradius, the following three physics are important: (1) the sharp reduction of the anomalous transport below the neoclassical level in the RS region, (2) the autonomous formation of pressure and current profiles through the neoclassical transport and the bootstrap current and (3) the large difference between the neoclassical transport and the anomalous transport in the normal-shear region. As for the scaling for the energy confinement inside ITB ({epsilon}{sub f}{beta}{sub p,core} {approx} 0.25, where {epsilon}{sub f} is the inverse aspect ratio at the ITB foot and {beta}{sub p,core} is the core poloidal beta value), the value of 0.25 is found to be a saturation value due to the MHD equilibrium. The value of {epsilon}{sub f}{beta}{sub p,core} reaches the saturation value, when the box-type ITB is formed in the strong RS plasma with a large asymmetry of the poloidal magnetic field, regardless of the details of the transport and the non-inductively driven current.

  5. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  6. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  7. Proceedings of the international symposium on environmental technologies: Plasma systems and applications. Volume 1

    International Nuclear Information System (INIS)

    Mayne, P.W.; Mulholland, J.A.

    1995-01-01

    Plasma technology is an extremely versatile and powerful means of obtaining very high temperatures that can be used in a variety of environmental situations. Since most types of waste products and contaminants can be treated effectively and efficiently, plasma systems have been developed to address the disposal and annihilation domestic of medical, hazardous, radioactive, military, and miscellaneous wastes. Plasma technologies can also be implemented to recycle and recover usable materials from metallic wastes. The International Symposium on Environmental Technologies: Plasma Systems and Applications was held at the Omni Hotel in Atlanta, Georgia on October 8--12, 1995 to bring together a large group of technical experts working on the use of plasma for solving environmental problems. The Symposium is a sequel to the 1994 Metatechnies Conference on Stabilization and Volarization of Ultimate Waste by Plasma Processes that was held in September of 1994 at Bordeaux Lac, France. The proceedings to this second international conference contain the written contributions from eleven sessions and are published in two volumes. A total of 65 papers address the use of plasma systems for environmental applications and include topics concerning the development and use of innovative technologies for waste treatment, environmental remediation, recycling, characterization of the plasma and solid residue, off-gas analyses, as well as case studies and regulatory policies

  8. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  9. Plasma physics aspects of ETF/INTOR

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Rutherford, P.R.; Schmidt, J.A.; Cohn, D.R.; Miller, R.L.

    1980-01-01

    In order to achieve their principle technical objectives, the Engineering Test Facility (ETF) and the International Tokomak Reactor (INTOR) will require an ignited (or near ignited) plasma, sustained for pulse lengths of at least 100 secs at a high enough plasma pressure to provide a neutron wall loading of at least 1.3 MW/m 2 . The ignited plasma will have to be substantially free of impurities. Our current understanding of major plasma physics characters is summarized

  10. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  11. Plasma current start-up experiments without the central solenoid in the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Takase, Y.; Ejiri, A.; Shiraiwa, S.; Adachi, Y.; Ishii, N.; Kasahara, H.; Nuga, H.; Ono, Y.; Oosako, T.; Sasaki, M.; Shimada, Y.; Sumitomo, N.; Taguchi, I.; Tojo, H.; Tsujimura, J.; Ushigome, M.; Yamada, T.; Hanada, K.; Hasegawa, M.; Idei, H.; Nakamura, K.; Sakamoto, M.; Sasaki, K.; Sato, K.N.; Zushi, H.; Nishino, N.; Mitarai, O.

    2006-01-01

    Several techniques for initiating the plasma current without the use of the central solenoid are being developed in TST-2. While TST-2 was temporarily located at Kyushu University, two types of start-up scenarios were demonstrated. (1) A plasma current of 4 kA was generated and sustained for 0.28 s by either electron cyclotron wave or electron Bernstein wave, without induction. (2) A plasma current of 10 kA was obtained transiently by induction using only outboard poloidal field coils. In the second scenario, it is important to supply sufficient power for ionization (100 kW of EC power was sufficient in this case), since the vertical field during start-up is not adequate to maintain plasma equilibrium. In addition, electron heating experiments using the X-B mode conversion scenario were performed, and a heating efficiency of 60% was observed at a 100 kW RF power level. TST-2 is now located at the Kashiwa Campus of the University of Tokyo. Significant upgrades were made in both magnetic coil power supplies and RF systems, and plasma experiments have restarted. RF power of up to 400 kW is available in the high-harmonic fast wave frequency range around 20 MHz. Four 200 MHz transmitters are now being prepared for plasma current start-up experiments using RF power in the lower-hybrid frequency range. Preparations are in progress for a new plasma merging experiment (UTST) aimed at the formation and sustainment of ultra-high β ST plasmas

  12. A Toroidally Symmetric Plasma Simulation code for design of position and shape control on tokamak plasmas

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Senda, Ikuo

    1999-01-01

    A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)

  13. Representations of currents and magnetic fields in anisotropic magnetohydrostatic plasma. 2. General theory and examples

    International Nuclear Information System (INIS)

    Heinemann, M.; Pontius, D.H. Jr.

    1991-01-01

    The authors develop a general treatment of field-aligned currents in quasi-static adiabatic plasma. The formalism is an extension of an earlier analysis (Heinemann, 1990) to include electric and gravitational fields. The assumption that the particle motions are adiabatic along the magnetic field leads to an expression for the total current density that is a generalization of expressions given by Grad (1964) and Vasyliunas (1970). The current density is a vector function of the gradients of the field line constants characterizing the plasma and the gradients of field line integrals of the partial derivations of the parallel pressure with respect to the constants. The use of the expression as the current source in Ampere's law leads to an equation governing the equilibrium of the system of plasma and magnetic field. Examples based on bi-Maxwellian distribution functions suggest that the effects of thermal anisotropy can be about as large as the currents due to isotropic plasma and that the effects of parallel electric field are of the same order of magnitude

  14. Two-stream Stability Properties of the Return-Current Layer for Intense Ion Beam Propagation Through Background Plasma

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail

    2009-01-01

    When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance Δx perpendicular ∼ (delta) pe , where (delta) pe = c/ω pe is the collisionless skin depth, and ω pe is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability

  15. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    Science.gov (United States)

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  16. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT (deuterium-tritium) fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D (Research and Development) avenues for their resolution are presented

  17. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  18. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  19. Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.

    1998-01-01

    An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)

  20. Study of non inductive current generation in a plasma

    International Nuclear Information System (INIS)

    Rax, J.M.

    1987-01-01

    The problem of non-thermal bremsstrahlung during lower hybrid current drive is considered. The proposed method shows the role of the Compton effects at low frequencies and allows us to establish the link between the emitted power and the absorbed power at high frequency. The non-thermal emission is considered as a kinematical mode conversion between the absorbed radio-frequency mode and the emitted X ray photons. The fast electrons diagnostics and the ways to reach the wave structure are shown. Kinetic and electromagnetic problems concerning current generation are described. The plasma properties and diagnostics in the case of a non inductive current generation are discussed [fr

  1. Formation conditions for electron internal transport barriers in JT-60U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Fukuda, T [Osaka University, Suita, Osaka 565-0871 (Japan); Sakamoto, Y [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ide, S [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Suzuki, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Takenaga, H [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ida, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Idei, H [Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Shimozuma, T [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Fujisawa, A [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohdachi, S [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Toi, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2004-05-01

    The formation of electron internal transport barriers (ITBs) was studied using electron cyclotron (EC) heating in JT-60U positive shear (PS) and reversed shear (RS) plasmas with scan of neutral beam (NB) power. With no or low values of NB power and with a small radial electric field (E{sub r}) gradient, a strong, box-type electron ITB was formed in RS plasmas while a peaked profile with no strong electron ITBs was observed in PS plasmas within the available EC power. When the NB power and the E{sub r} gradient were increased, the electron transport in strong electron ITBs with EC heating in RS plasmas was not affected, while electron thermal diffusivity was reduced in conjunction with the reduction of ion thermal diffusivity, and strong electron and ion ITBs were formed in PS plasmas.

  2. Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Patel, Sonal G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Falcon, Ross Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cartwright, Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Kiefer, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Maron, Yitzhak [Weizmann Inst. of Science, Rehovot (Israel)

    2017-11-01

    This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.

  3. Electron internal transport barrier in the core of TJ-II ECH plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Hidalgo, C. [Laboratorio Nacional de Fusion por Confinamiento Magnetico. Asociacion EURATOM CIEMAT, Madrid (Spain); Dreval, N. [and others

    2003-07-01

    The influence of the magnetic topology on the formation of electron internal transport barriers (e-ITB) has been experimentally studied in the stellarator TJ-II. The formation of e-ITBs in electron cyclotron heated plasmas can be triggered by positioning a low order rational surface close to the plasma core region, while in configurations without any low order rational there are no indications of barrier formation within the available heating power. The e-ITB formation is characterized by an increase in the core electron temperature and plasma potential. Positive radial electric field increases in a factor of three in the plasma central region when the e-ITB forms. The results demonstrate that low order rational surfaces modify radial electric fields and electron heat transport. (orig.)

  4. Current fusion plasma theory grant: Task I, Magnetic confinement fusion plasma theory: Final report, December 1, 1987--November 14, 1988

    International Nuclear Information System (INIS)

    Callen, J.D.

    1988-07-01

    The research performed under this grant over the current 11-1/2 month period has concentrated on key tokamak plasma confinement and heating theory issues: extensions of neoclassical MHD; viscosity coefficients and transport; nonlinear resistive MHD simulations of Tokapole II plasmas; ICRF and edge plasma interactions; energy confinement degradation due to macroscopic phenomena; and coordination of a new transport initiative. Progress and publications in these areas are briefly summarized in this report. 21 refs

  5. Current in the plasma moving in an arbitrary direction across a magnetic field

    International Nuclear Information System (INIS)

    Samokhin, M.V.

    1991-01-01

    Condition under which freezing-in equation is satisfied in case of arbitrarily changeable direction of rate of plasma flow across the magnetic field is considered. It is shown that in the ideally frozen-in plasma there should exist current independent on the flow rate

  6. On current fluctuations in near-earth space plasma with lower-hybrid-drift turbulence

    International Nuclear Information System (INIS)

    Meister, C.V.

    1993-01-01

    Electron and ion current fluctuations caused by lower-hybrid-drift turbulence are estimated within nonlinear theory for the plasma of the ionospheric F-layer, as well as for the plasma mantle and the plasma sheet boundary layer of the tail of the earth's magnetosphere. They are found to be of the order of 10 -14 - 10 -11 A/m 2 and 10 -13 - 10 -9 A/m 2 , respectively. (orig.)

  7. Determination of plasma density from data on the ion current to cylindrical and planar probes

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.; Mankelevich, Yu. A.; Rakhimova, T. V. [Moscow State University, Skobeltsyn Nuclear Physics Institute (Russian Federation)

    2016-12-15

    To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.

  8. The current of a particle along a microtubule in microscopic plasma

    International Nuclear Information System (INIS)

    Li Wei; Chen Junfang; Wang Teng; Lai Xiuqiong

    2008-01-01

    Transport of a particle along the axis of a microtubule in a plasma-enhanced chemical vapor deposition (PECVD) system is investigated. The current, respectively, as a function of the temperature, the magnetic field and the external force is obtained. The value and direction of the current may be controlled by changing the above parameters

  9. Neoclassical current and plasma rotation in helical systems

    International Nuclear Information System (INIS)

    Nakajima, N.; Okamoto, M.

    1991-01-01

    In order to clarify geometrical effects of the magnetic field on the neoclassical theory in general toroidal systems, the neoclassical parallel particle flow, heat flux, current and plasma rotation of a multispecies plasma are examined using the moment approach on the basis of the original papers under the assumptions of no fluctuations, no external sources and losses except for a fast ion beam and an external inductive electric field, steady state, and |u a | Ta where u a and v Ta are the macro and thermal velocity of species a, respectively. Hence, we might have a point of view of unifying understanding the neoclassical theory in general toroidal systems. Three collisionality regimes, i.e., the 1/ν (in non-axisymmetric toroidal systems) or banana (in axisymmetric toroidal systems), plateau, and Pfirsch-Schlueter collisionality regimes are examined separately. (author) 8 refs

  10. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  11. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma

  12. On the relationship between auroral absorption, electrojet currents and plasma convection

    Directory of Open Access Journals (Sweden)

    A. C. Kellerman

    2009-02-01

    Full Text Available In this study, the relationship between auroral absorption, electrojet currents, and ionospheric plasma convection velocity is investigated using a series of new methods where temporal correlations are calculated and analysed for different events and MLT sectors. We employ cosmic noise absorption (CNA observations obtained by the Imaging Riometer for Ionospheric Studies (IRIS system in Kilpisjärvi, Finland, plasma convection measurements by the European Incoherent Scatter (EISCAT radar, and estimates of the electrojet currents derived from the Tromsø magnetometer data. The IRIS absorption and EISCAT plasma convection measurements are used as a proxy for the particle precipitation component of the Hall conductance and ionospheric electric field, respectively. It is shown that the electrojet currents are affected by both enhanced conductance and electric field but with the relative importance of these two factors varying with magnetic local time (MLT. The correlation between the current and electric field (absorption is the highest at 12:00–15:00 MLT (00:00–03:00 MLT. It is demonstrated that the electric-field-dominant region is asymmetric with respect to magnetic-noon-midnight meridian extending from 09:00 to 21:00 MLT. This may be related to the recently reported absence of mirror-symmetry between the effects of positive and negative IMF By on the high-latitude plasma convection pattern. The conductivity-dominant region is somewhat wider than previously thought extending from 21:00 to 09:00 MLT with correlation slowly declining from midnight towards the morning, which is interpreted as being in part due to high-energy electron clouds gradually depleting and drifting from midnight towards the morning sector. The conductivity-dominant region is further investigated using the extensive IRIS riometer and Tromsø magnetometer datasets with results showing a distinct seasonal dependence. The region of high current

  13. Comparison of experimental target currents with analytical model results for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    En, W.G.; Lieberman, M.A.; Cheung, N.W.

    1995-01-01

    Ion implantation is a standard fabrication technique used in semiconductor manufacturing. Implantation has also been used to modify the surface properties of materials to improve their resistance to wear, corrosion and fatigue. However, conventional ion implanters require complex optics to scan a narrow ion beam across the target to achieve implantation uniformity. An alternative implantation technique, called Plasma Immersion Ion Implantation (PIII), immerses the target into a plasma. The ions are extracted from the plasma directly and accelerated by applying negative high-voltage pulses to the target. An analytical model of the voltage and current characteristics of a remote plasma is presented. The model simulates the ion, electron and secondary electron currents induced before, during and after a high voltage negative pulse is applied to a target immersed in a plasma. The model also includes analytical relations that describe the sheath expansion and collapse due to negative high voltage pulses. The sheath collapse is found to be important for high repetition rate pulses. Good correlation is shown between the model and experiment for a wide variety of voltage pulses and plasma conditions

  14. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  15. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  16. Non-inductive Solenoid-less Plasma Current Start-up in NSTX Using Transient CHI

    International Nuclear Information System (INIS)

    Raman, R.; Mueller, D.; Jarboe, T.R.; Nelson, B.A.; Bell, M.G.; Ono, M.; Bigelow, T.; Kaita, R.; LeBlanc, B.; Lee, K.C.; Maqueda, R.; Menard, J.; Paul, S.; Roquemore, L.

    2007-01-01

    Coaxial Helicity Injection (CHI) has been successfully used in the National Spherical Torus Experiment (NSTX) for a demonstration of closed flux current generation without the use of the central solenoid. The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. CHI is a promising candidate for solenoid-free plasma startup in a ST. The method has now produced closed flux current up to 160 kA verifying the high current capability of this method in a large ST built with conventional tokamak components.

  17. Effects of pressure profile and plasma shaping on the n=1 internal kink mode in JT-60/JT-60U pellet fuelled plasmas

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Azumi, Masafumi

    1990-10-01

    The stability of the n=1 internal kink mode in a tokamak is numerically analyzed for plasmas with a centrally peaked pressure profile. These studies are carried out with the strongly peaked pressure inside the q=1 surface, which is based on the experimentally observed plasmas by means of injections of hydrogen-ice pellets in JT-60 tokamak. The effects of peaked pressure and shaping, i.e., elongation and triangularity, are also studied for JT-60U tokamak. The plasma with the strongly peaked pressure profile has higher critical value of poloidal beta defined within the q=1 surface than that with a parabolic pressure profile. Though the beta limit reduces with the increase of the elongation, the plasma with the peaked pressure profile has larger improvement due to the triangularity than that with the parabolic pressure profile. To access the second stability of the n=1 internal kink mode, the plasma with a flat pressure profile and the large minor radius of the q=1 surface is effective. (author)

  18. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Menard, J.E.

    2008-01-01

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment (M.Ono, et al Nuclear Fusion 40, 557 (2000)) is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change

  19. Advanced 3-dimensional electron kinetic calculations for the current drive problem in magnetically confined thermonuclear plasmas

    International Nuclear Information System (INIS)

    Peysson, Y.; Decker, J.; Bers, A.; Ram, A.; Harvey, R.

    2004-01-01

    Accurate and fast electron kinetic calculations is a challenging issue for realistic simulations of thermonuclear tokamak plasmas. Relativistic corrections and electron trajectory effects must be fully taken into account for high temperature burning plasmas, while codes should also consistently describe wave-particle resonant interactions in presence of locally large gradients close to internal transport barrier. In that case, neoclassical effects may come into play and self-consistent evaluation of both the radio-frequency and bootstrap currents must be performed. In addition, a complex interplay between momentum and radial electron dynamics may take place, in presence of a possible energy dependent radial transport. Besides the physics needs, there are considerable numerical issues to solve, in order to reduce computer time consumption and memory requirements at an acceptable level, so that kinetic calculations may be valuably incorporated in a chain of codes which determines plasma equilibrium and wave propagation. So far, fully implicit 3-dimensional calculations based on a finite difference scheme and an incomplete L and U matrices factorization have been found to be so most effective method to reach this goal. A review of the present status in this active field of physics is presented, with an emphasis on possible future improvements. (authors)

  20. Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device

    International Nuclear Information System (INIS)

    Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S

    2005-01-01

    The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported

  1. Development of plasma current waveform adjusting system ZLJ for tokamak device HL-1

    International Nuclear Information System (INIS)

    Wang Shangbing; Hu Haotian; Tang Fangqun; Zhou Yongzheng; Chu Xiuzhong; Cheng Jiashun; Gao Yunxia

    1989-12-01

    The control of some typical Tokamak discharge waveforms has been achieved by using plasma current waveform adjusting system ZLJ in the ohmic heating of HL-1. The discharge waveforms include a series of regular plasma current waveforms with various slow rising rate, such as 80 kA, 450 ms long flat-topping; 100 kA, 200 ms rising; 200 ms falt-topping and 180 kA, 400 ms slow rising etc. The design principle of the system and the initial experimental results are described

  2. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    Science.gov (United States)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  3. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma

  4. Alushta-2012. International Conference-School on Plasma Physics and Controlled Fusion and the Adjoint Workshop 'Nano-and micro-sized structures in plasmas'. Book of Abstracts

    International Nuclear Information System (INIS)

    Makhlaj, V.A.

    2012-01-01

    The Conference was devoted to a new valuable information about the present status of plasma physics and controlled fusion research. The main topics was : magnetic confinement systems; plasma heating and current drive; ITER and fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics; formation of nano-and micro-sized structures in plasmas; properties of plasmas with nano- and micro- objects

  5. Plasma-materials interaction issues for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Cohen, S.A.; Werley, K.A.

    1992-02-01

    Analysis of proposed operating scenarios for the International Thermonuclear Experimental Reactor has yielded predictions for the power and particle fluxes onto the material surfaces facing the plasma. The particles, mostly deuterium, tritium, and helium ions, would have energies in the range of 50--2000 eV and fluxes up to 5 x 10 23 /m 2 s. Lower fluxes of multi-MeV electrons and alpha particles may also strike the plasma-facing surfaces, primarily during transient events. The peak power fluxes onto the plasma-facing surfaces during normal operation are expected to be 5--100 MW/m 2 , but much higher during transient events. At the extreme conditions expected for steady-state operation, commonly used heat-removal structures are unable to withstand either the high sputter erosion rates or power loads. To reduce the time-averaged power flux, active control of the plasma position is specified to sweep the plasma heat load across larger areas of plasma-facing components. However, the cyclic heat load creates fatigue lifetime problems. Solutions to these lifetime and reliability problems by (1) changes in machine design and operation, (2) redeposition mechanisms, and (3) changes in materials, will be discussed. A proposed accelerated-life test facility for prototype divertor plate development is described

  6. Plasma current startup by lower hybrid waves in the JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Toi, K.; Ohkubo, K.; Kawahata, K.

    1987-04-01

    This paper describes the characteristic behaviours of lower hybrid current startup in JIPP T-IIU. The current startup is carried out by injection of 800 MHz lower hybrid waves into cold and low density plasmas (Te = 10 - 20 eV, n-bar e = 1 - 2 x 10 12 cm -3 ) produced by electron cyclotron resonance or lower hybrid waves only. The plasma current rises up with a characteristic rise time τ r (> approx 30 - 50 ms) and approaches a quasi-steady state value I pm (= 5 - 20 kA), when LHW power of 10 - 50 kW is injected into a torus, controlling the vertical field. The rise time is inversely proportional to the bulk electron density n-bar e , and is comparable to the collision time of current-carrying high energy electrons with bulk plasmas. On the other hand, the current drive efficiency in the quasi-steady state is almost independent of n-bar e , i.e., I pm /P LH = 0.4 - 0.7 A/W for n-bar e = 0.8 - 4 x 10 12 cm -3 . The conversion efficiency of rf energy injected into the torus is typically 5 % during current rise phase, and 10 % at the most efficient case. The effects of the initial injection of ECH power and the observed parametric instabilities on the current startup are investigated from a viewpoint of seed current generation. During rapid current rise when appreciably negative loop voltage is observed the bulk electrons are heated up to 150 eV. Various heating mechanisms responsible for the bulk electron heating are discussed. (author)

  7. Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs

    International Nuclear Information System (INIS)

    Chen Wanjun; Zhang Jing; Zhang Bo; Chen, Kevin Jing

    2013-01-01

    The gate forward leakage current in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. It is shown that the current which originated from the forward biased Schottky-gate contributed to the gate forward leakage current. Therefore, a fluorine-plasma surface treatment is presented to induce the negative ions into the AlGaN layer which results in a higher metal—semiconductor barrier. Consequently, the gate forward leakage current shrinks. Experimental results confirm that the gate forward leakage current is decreased by one order magnitude lower than that of HEMT device without plasma treatment. In addition, the DC characteristics of the HEMT device with plasma treatment have been studied. (semiconductor devices)

  8. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  9. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    International Nuclear Information System (INIS)

    Peters, M.

    1996-01-01

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity χ to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.)

  10. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  11. ITER operational space for full plasma current H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, M. [Assoc. Euratom-ENEA-CREATE, Seconda University di Napoli, Aversa (Italy)], E-mail: massimiliano.mattei@unirc.it; Cavinato, M.; Saibene, G.; Portone, A. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Napoli (Italy); Horton, L.D. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton University (United States); Koechl, F. [Assoc. EURATOM-OAW/ATI, Vienna (Austria); Lomas, P.J. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Nunes, I. [Assoc. EURATOM/IST, Centro de Fusao Nuclear, Lisbon (Portugal); Parail, V. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Sartori, R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Sips, A.C.C. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Thomas, P.R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain)

    2009-06-15

    Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with I{sub p}{sup 4}. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current I{sub p} of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7-0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.

  12. Study of plasma equilibrium during the AC current reversal phase in STOR-M

    International Nuclear Information System (INIS)

    Xiao, C.

    2002-01-01

    Alternating current (AC) tokamak operation and equilibrium studies have been performed on the STOR-M tokamak. The recent experiments have achieved consistent smooth current reversal through the implementation of a hybrid digital-analog position controller and by careful density control. In order to study the plasma equilibrium during the current reversal phase with negligible rotational transform, a segmented limiter with four isolated conducting plates has been installed. The plates can be connected outside the vacuum vessel, which allows measurements of currents flowing between limiter plates. When the current reversal is smooth with zero dwell time, the hydrogen line emission level and electron density remain finite, indicating a finite particle confinement. The current from the top to the bottom limiter plate is also finite and its direction is consistent with that of the grad-B drift. The observation suggests that the limiter and other conducting structures surrounding the plasmas plays the role, during the current reversal phase of AC tokamak operation, to short out the charge separation arising from the grad-B drift and to maintain a finite particle confinement. (author)

  13. NON-LINEAR VISCO-RESISTIVE COLLISIONAL TRANSPORT IN TOROIDAL ELLIPTICAL PLASMAS WITH TRIANGULARITY AND HOLE CURRENTS: A REVIEW

    International Nuclear Information System (INIS)

    Martin, Pablo; Castro, Enrique; Puerta, Julio

    2009-01-01

    Non-linear plasma diffusion effects due to hole currents in tokamaks is analyzed in this work. Since the recent discovery of hole currents in tokamaks, this matter has become very important in confinement and instabilities in tokamaks plasmas. The analysis here presented includes non-linear flows as well as hole currents. In the case of low vorticity plasmas our treatment is performed using MHD equations, an it is more suitable for plasmas with very low levels of turbulence, as in the H-mode. The present treatment follows the lines of previous works, and some of the equations and results look like those obtained on these papers. However, the form of the family of the magnetic surfaces is very different to previous treatment, since the hole current modifies those families in a very important way. Elliptic plasmas with triangularity are considered. Pfirsch-Schlueter type currents are obtained for these generalized cases. Diffusion with and without holes are calculated and compared for several values of ellipticity and triangularity. Negative and positive triangularities are considered. In most of the calculations triangularity improves confinement, but the results are different for the positive than for the negative case.

  14. Continuous tokamak operation with an internal transformer

    International Nuclear Information System (INIS)

    Singer, C.E.; Mikkelsen, D.R.

    1982-10-01

    A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia timescales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors

  15. Stationary spectra in a quasi neutral current-carrying plasma

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    The low-frequency short-wave equilibrium spectra of electromagnetic fluctuations are obtained, accounting for cross-field correlations. The statistical analysis shows that a longitudinal current in a dense quasi neutral (α e ≡4πnomec 2 /Bo 2 >>1) plasma destroys the stationary of fluctuation spectra corresponding to zero fluxes of motion invariants, and may alter also the anomalous electron heat conductivity. 2 refs. (author)

  16. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  17. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  18. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current

    Energy Technology Data Exchange (ETDEWEB)

    Mollén, A., E-mail: albertm@chalmers.se [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-11-15

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  19. Plasma position and current control system enhancements for the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); Neto, A.C. [Ass. EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, IST, 1049-001 Lisboa (Portugal); Lomas, P.J.; McCullen, P.; Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2014-03-15

    Highlights: • JET plasma position and current control system enhanced for the JET ITER like wall. • Vertical stabilization system enhanced to speed up its response and to withstand larger perturbations. • Improved termination management system. • Implementation of the current limit avoidance system. • Implementation of PFX-on-early-task. - Abstract: The upgrade of Joint European Torus (JET) to a new all-metal wall, the so-called ITER-like wall (ILW), has posed a set of new challenges regarding both machine operation and protection. The plasma position and current control (PPCC) system plays a crucial role in minimizing the possibility that the plasma could permanently damage the ILW. The installation of the ILW has driven a number of upgrades of the two PPCC components, namely the Vertical Stabilization (VS) system and the Shape Controller (SC). The VS system has been enhanced in order to speed up its response and to withstand larger perturbations. The SC upgrade includes three new features: an improved termination management system, the current limit avoidance system, and the PFX-on-early-task. This paper describes the PPCC upgrades listed above, focusing on the implementation issues and on the experimental results achieved during the 2011–12 JET experimental campaigns.

  20. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mix

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Francesca M.; Kessel, Charles E. [Princeton Plasma Physics laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  1. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    Science.gov (United States)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  2. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  3. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    Energy Technology Data Exchange (ETDEWEB)

    Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J. R.; Goetz, J. A.; McGarry, M.; Morton, L. A.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Cianciosa, M. R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)

    2016-03-15

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreement between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.

  4. Current status and prospect of plasma control system for steady-state operation on QUEST

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki

    2016-01-01

    Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.

  5. Current status and prospect of plasma control system for steady-state operation on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Makoto, E-mail: hasegawa@triam.kyushu-u.ac.jp; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki

    2016-11-15

    Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.

  6. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.; Lomas, P.; Gowers, C.

    2000-01-01

    Models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in using a large database containing both Deuterium-only (DD) and Deuterium-Tritium (DT) plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing to study the dependence of the pedestal height on the edge shear. In addition the range of plasma currents was extended up to 6 MA. It is shown that the edge data is best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to eliminate conclusively the thermal ion model. (author)

  7. Plasma Heating and Current Drive by Neutral Beam and Alpha Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Okumura, Y [Fusion Research and Development Directorate, Japan Atomic Energy Agency (Japan)

    2012-09-15

    The purpose of plasma heating is to raise the plasma temperature enough to produce a deuterium and tritium reaction (D + T {yields} {sup 4}He + n). The required plasma temperature T is in the range of 10-30 keV. Since the high temperature plasma is confined by a strong magnetic field, injection of energetic ions from outside to heat the plasma is difficult due to the Lorenz force. The most efficient way to heat the plasma by energetic particles is to inject high energy 'neutrals' which get ionized in the plasma. Neutral beam injection (NBI) with a beam energy much above the average kinetic energy of the plasma electrons or ions is used (beam energy typically {approx}40 keV - 1 MeV). This heating scheme is similar to warming up cold water by pouring in hot water. There are two types of neutral beam, called P-NBI and N-NBI (P- and N- means 'positive' and 'negative', respectively). P-NBI uses the acceleration of positively charged ions and their neutralization, while N-NBI uses the acceleration of negative ions (electrons attached to neutral atoms) and their neutralization. Details are given in NBI technology Section. The first demonstration of plasma heating by P-NBI was made in ORMAK and ATC in 1974, while that by N-NBI was made in JT-60U for the first time in 1996. ITER has also adopted the N-NBI system as the heating and current drive system with a beam energy of 1 MeV. Figure A typical bird's eye view of a tokamak with N-NBI and N-NBI (JT-60U) is shown. (author)

  8. Shear optimization experiments with current profile control on JET

    International Nuclear Information System (INIS)

    1997-01-01

    A record performance on JET has been obtained with shear optimization scenarios. A neutron yield of 5.6x10 16 s -1 in deuterium discharges, and a global energy confinement improvement above the ITER-89 L-mode scaling with H ≤ 2.5 in L-mode and H ≤ 3 in H-mode have been achieved. The tailoring of plasma current, density and heating power waveforms and current profile control with lower hybrid current drive and ICRF phasing have been essential. Internal energy, particle and momentum transport barriers develop spontaneously upon heating above a threshold power of about 15 MW with neutral beams and ICRH into a low-density target plasma, with a wide central region of slightly negative or flat magnetic shear with q > 1 everywhere. An additional H-mode transition can also raise the pressure in the region between internal and edge transport barriers. The ion heat conductivity falls to the neoclassical level in the improved core confinement region. Pressure profile control through power deposition feedback control makes it possible to work close to the marginal stability boundary for pressure-driven MHD modes. First experiments in deuterium/tritium plasmas, with up to 75% tritium target concentration, have established internal transport barriers already with heating powers at the lowest threshold of pure deuterium plasmas, resulting in a fusion power output of P fusion = 2 MW. (author)

  9. Calculation of voltages and currents induced in the vacuum vessel of ASDEX by plasma disruptions

    International Nuclear Information System (INIS)

    Preis, H.

    1978-01-01

    An approximation method is used to analyze the electromagnetic diffusion process induced in the walls of the ASDEX vacuum vessel by plasma disruptions. For this purpose the rotational-symmetric vessel is regarded as N = 82 circular conductors connected in parallel and inductively coupled with one another and with the plasma. The transient currents and voltages occurring in this circuit are calculated with computer programs. From the calculated currents it is possible to determine the time behavior of the distributions of the current density and magnetic force density in the vessel walls. (orig.) [de

  10. Effects of plasma current on nonlinear interactions of ITG turbulence, zonal flows and geodesic acoustic modes

    International Nuclear Information System (INIS)

    Angelino, P; Bottino, A; Hatzky, R; Jolliet, S; Sauter, O; Tran, T M; Villard, L

    2006-01-01

    The mutual interactions of ion temperature gradient (ITG) driven modes, zonal flows and geodesic acoustic modes (GAM) in tokamak plasmas are investigated using a global nonlinear gyrokinetic formulation with totally unconstrained evolution of temperature gradient and profile. A series of numerical simulations with the same initial temperature and density profile specifications is performed using a sequence of ideal MHD equilibria differing only in the value of the total plasma current, in particular with identical magnetic shear profiles and shapes of magnetic surfaces. On top of a bursty or quasi-steady state behaviour the zonal flows oscillate at the GAM frequency. The amplitude of these oscillations increases with the value of the safety factor q, resulting in a less effective suppression of ITG turbulence by zonal flows at a lower plasma current. The turbulence-driven volume-averaged radial heat transport is found to scale inversely with the total plasma current

  11. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  12. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  13. Glow-to-arc transition events in H2-Ar direct current pulsed plasma: Automated measurement of current and voltage

    International Nuclear Information System (INIS)

    Mendes, Luciano A.; Rodrigues, Jhonatam C.; Mafra, Marcio

    2012-01-01

    The glow-to-arc transition phenomena (arcing) observed in plasma reactors used in materials processing was studied through the arcs characteristic current and voltage waveforms. In order to capture these arcs signals, a LABVIEW based automated instrumentation system (ARCVIEW) was developed, including the integration of an oscilloscope equipped with proper current and voltage probes. The system also allows capturing the process parameters at the arc occurrence moments, which were used to map the arcs events conditions. Experiments in H 2 -Ar DC pulsed plasma returned signals data from 215 arcs events, which were analyzed through software routines. According to the results, an anti-arcing system should react in the time order of few microseconds to prevent most of the damage caused by the undesired arcing phenomena.

  14. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko

    2008-01-01

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.

  15. Spectrochemical analysis of plutonium using direct current plasma emission spectrometry

    International Nuclear Information System (INIS)

    Morris, W.F.; Fadeff, S.K.; Torres, S.

    1983-01-01

    One year ago, LLNL was just completing the installation of a Direct Current Plasma (DCP) spectrometer for the analysis of Pu and Pu alloys. The installation was completed in December 1982 and has been utilized regularly for Pu analysis since then. This paper discusses the experience with the instrument and some data demonstrating its performance

  16. Electromagnetic analysis of ITER generic equatorial port plug designs during three plasma current disruption cases

    International Nuclear Information System (INIS)

    Guirao, J.; Rodríguez, E.; Ordieres, J.; Cabanas, M.F.; García, C.H. Rojas

    2012-01-01

    Highlights: ► Electromagnetic transient performance evaluation of the GEPP structure. ► Three different plasma current disruption cases: MD UP LIN36, VDE UP LIN36 and VDE DW LIN36 were analyzed. ► Three DSM-First Wall (FW) designs (horizontal and vertical drawers and monoblock) were compared. - Abstract: Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures. This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure. The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.

  17. Observation of bulk-ion heating in a tokamak plasma by application of positive and negative current pulses in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-09-01

    A positive of negative current pulse induced by a pulsed toroidal electric field much higher than the Dreicer field increases the bulk-ion temperature of the plasma centre two to three times, without macroscopic plasma destruction. The decay time of the raised ion temperature agrees well with the prediction from neoclassical transport theory. The magnitude of the positive current pulse is limited by violent current disruption, and that of the negative current by a lack of MHD equilibrium which is due to a marked reduction of the total plasma current. The relevant current-driven instabilities in the turbulent heating of a tokamak plasma, skin heating and inward transfer of the energy deposition in the skin layer are briefly discussed.

  18. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  19. Internal standardization in atomic-emission spectrometry using inductively coupled plasma

    International Nuclear Information System (INIS)

    Moore, G.L.

    1985-01-01

    The principle of internal standardization has been used in quantitative analytical emission spectroscopy since 1925 to minimize the errors arising from fluctuations in sample preparation, excitation-source conditions, and detection parameters. Although modern spectroscopic excitation sources are far more stable and electronic detection methods are more precise than before, the system for the introduction of the sample in spectrometric analysis using inductively coupled plasma (ICP) introduces significant errors, and internal standardization can still play a useful role in improving the overall precision of the analytical results. The criteria for the selection of the elements to be used as internal standards in arc and spark spectrographic analysis apply to a much lesser extent in ICP-spectrometric analysis. Internal standardization is recommended for use in routine ICP-simultaneous spectrometric analysis to improve its accuracy and precision and to provide a monitor for the reassurance of the analyst. However, the selection of an unsuitable reference element can result in misuse of the principle of internal standardization and, although internal standardization can be applied when a sequential monochromator is used, the main sources of error will not be minimized

  20. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  1. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  2. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  3. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  4. A Control Method of Current Type Matrix Converter for Plasma Control Coil Power Supply

    International Nuclear Information System (INIS)

    Shimada, K.; Matsukawa, M.; Kurihara, K.; Jun-ichi Itoh

    2006-01-01

    In exploration to a tokamak fusion reactor, the control of plasma instabilities of high β plasma such as neoclassical tearing mode (NTM), resistive wall mode (RWM) etc., is the key issue for steady-state sustainment. One of the proposed methods to avoid suppressing RWM is that AC current having a phase to work for reduction the RWM growth is generated in a coil (sector coil) equipped spirally on the plasma vacuum vessel. To stabilize RWM, precise and fast real-time feedback control of magnetic field with proper amplitude and frequency is necessary. This implies that an appropriate power supply dedicated for such an application is expected to be developed. A matrix converter as one of power supply candidates for this purpose could provide a solution The matrix converter, categorized in an AC/AC direct converter composed of nine bi-directional current switches, has a great feature that a large energy storage element is unnecessary in comparison with a standard existing AC/AC indirect converter, which is composed of an AC/DC converter and a DC/AC inverter. It is also advantageous in cost and size of its applications. Fortunately, a voltage type matrix converter has come to be available at the market recently, while a current type matrix converter, which is advantageous for fast control of the large-inductance coil current, has been unavailable. On the background above mentioned, we proposed a new current type matrix converter and its control method applicable to a power supply with fast response for suppressing plasma instabilities. Since this converter is required with high accuracy control, the gate control method is adopted to three-phase switching method using middle phase to reduce voltage and current waveforms distortion. The control system is composed of VME-bus board with DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) for high speed calculation and control. This paper describes the control method of a current type matrix converter

  5. Computing in plasma physics

    International Nuclear Information System (INIS)

    Nuehrenberg, J.

    1986-01-01

    These proceedings contain the articles presented at the named conference. These concern numerical methods for astrophysical plasmas, the numerical simulation of reversed-field pinch dynamics, methods for numerical simulation of ideal MHD stability of axisymmetric plasmas, calculations of the resistive internal m=1 mode in tokamaks, parallel computing and multitasking, particle simulation methods in plasma physics, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, computing of rf heating and current drive in tokamaks, three-dimensional free boundary calculations using a spectral Green's function method, as well as the calculation of three-dimensional MHD equilibria with islands and stochastic regions. See hints under the relevant topics. (HSI)

  6. Filamentation and networking of electric currents in dense Z-pinch plasmas

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Rantsev-Kartinov, V.A.

    2001-01-01

    The results of high-resolution processing using the multilevel dynamical contrasting method of earlier experiments on linear Z-pinches are presented which illustrate formation of a dynamical percolating network woven by long-living filaments of electric current. A qualitative approach is outlined which treats long-living filaments as a classical plasma formation governed by the long-range quantum bonds provided, at the microscopical level, by nanotubes of elements of optimal valence. The self-similarity of structuring in laboratory and cosmic plasmas is shown, and examples are found of nanotube-like and/or fullerene-like structures of cosmic length scales. (author)

  7. Filamentation and networking of electric currents in dense Z-pinch plasmas

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Rantsev-Kartinov, V.A.

    1999-01-01

    The results of high-resolution processing using the multilevel dynamical contrasting method of earlier experiments on linear Z-pinches are presented which illustrate formation of a dynamical percolating network woven by long-living filaments of electric current. A qualitative approach is outlined which treats long-living filaments as a classical plasma formation governed by the long-range quantum bonds provided, at the micro-scopical level, by nanotubes of elements of optimal valence. The self-similarity of structuring in laboratory and cosmic plasmas is shown, and examples are found of nanotube-like and/or fullerene-like structures of cosmic length scales. (author)

  8. Impact of the storm-time plasma sheet ion composition on the ring current energy density

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.

    2017-12-01

    The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].

  9. Current status of DIII-D real-time digital plasma control

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Piglowski, D.A.; Ferron, J.R.; Walker, M.L.

    1999-06-01

    This paper describes the current status of real-time digital plasma control for the DIII-D tokamak. The digital plasma control system (PCS) has been in place at DIII-D since the early 1990s and continues to expand and improve in its capabilities to monitor and control plasma parameters for DIII-D fusion science experiments. The PCs monitors over 200 tokamak parameters from the DIII-D experiment using a real-time data acquisition system that acquires a new set of samples once every 60 micros. This information is then used in a number of feedback control algorithms to compute and control a variety of parameters including those affecting plasma shape and position. A number of system related improvements has improved the usability and flexibility of the DIII-D PCS. These include more graphical user interfaces to assist in entering and viewing the large and ever growing number of parameters controlled by the PCS, increased interaction and accessibility from other DIII-D applications, and upgrades to the computer hardware and vended software. Future plans for the system include possible upgrades of the real-time computers, further links to other DIII-D diagnostic measurements such as real-time Thomson scattering analysis, and joint collaborations with other tokamak experiments including the NSTX at Princeton

  10. Development of long lifetime-high current plasma cathode ion source

    International Nuclear Information System (INIS)

    Yabe, Eiji; Takayama, Kazuo; Fukui, Ryota.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma cathode is convergent, i.e. filament-like; in zero magnetic field, it turns divergent and spray-like. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 hours with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is eminently suitable for use in oxygen ion production. (author)

  11. Effect of cathode and anode plasma motion on current characteristics of pinch diode

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; Li Jingya; He Xiaoping; Tang Junping; Li Hongyu; Wang Haiyang; Huang Jianjun; Ren Shuqing; Yang Li; Zou Lili

    2005-01-01

    The preliminary research results for the effect of cathode and anode plasma motion on current characteristics of the pinch ion diode on FLASH II accelerator are reported. The structure and principle of pinch reflex ion beam diode are introduced. The time dependent evolution of electron and ion flow in large aspect-ratio relativistic diodes is studied by analytic models. The equation of Child-langmuir, weak focused-flow, strong focused-flow and parapotential flow are corrected to reduce the diode A-C gap caused by the motion of cathode and anode plasma. The diode current and ion current are calculated with these corrected equations, and the results are consistent with the experimental data. The methods of increasing ion current and efficiency are also presented. The high power ion beam peak current about 160 kA with a peak energy about 500 keV was produced using water-dielectric transmission-line generators with super-pinch reflex ion diodes on FLASH II accelerator at Northwest Institute of Nuclear Technology (NINT). (authors)

  12. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  13. FOREWORD: International Workshop on Theoretical Plasma Physics: Modern Plasma Science. Sponsored by the Abdus Salam ICTP, Trieste, Italy

    Science.gov (United States)

    Shukla, P. K.; Stenflo, L.

    2005-01-01

    The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there

  14. Magnetic Fluctuations during plasma current rise of divertor discharge in JT-60

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Kikuchi, Mitsuru; Hosogane, Nobuyuki; Tsuji, Syunji; Hayashi, Kazuo.

    1986-03-01

    During a current rise phase in the JT-60 divertor discharge, a series of magnetic fluctuations which do not rotate poloidally (phase-locking) is observed. They cause a cooling of plasma periphery and an enhancement of H α emission in the divertor chamber. A significant increase in β P + 1 i /2 with minor disruptions during the phase-locked magnetic fluctuation suggests a relaxation of the current profile in the current rise phase of the divertor discharge. (author)

  15. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    Plasma, the fourth state of matter, is actually the first state of Nature. The great fireball, the Sun, entirely decides the existence of our tiny planet immersed in the ocean of cosmic plasma. Mankind has also learnt how to produce and use plasma under terrestrial conditions, though it is not at all easy to domesticate this unstable ionized medium. Plasma finds countless applications that improve the quality of our daily life. Some of them, such as fluorescent light tubes, are so obvious to us that we do not give any thought to the processes underlying colourful neon signs. Another vast field is the production of materials with tailored-to-demand properties: mechanical, chemical, optical, electrical, magnetic, etc. Thin layers formed on solid surfaces by various plasma--material interactions play important roles in present-day computer technology, communication, space research, machinery and even many decorative items. However, the most demanding challenge in using plasma is to harness on Earth the processes that power stars. The endeavour is to confine and stabilize hot plasmas and to achieve the ultimate goal: to benefit from the might of thermonuclear reactions for environmentally benign energy production. The goal is clear, as the demand for energy is unquestionable. But the challenges are also enormous. Two basic plasma confinement schemes have been explored: inertial (using ultra-strong laser pulses or ion beams), and magnetic confinement (using strong magnetic fields). Hot plasma must be maintained in a vacuum vessel. The temperature gradients between the plasma and the surrounding wall are probably the greatest in the Universe. The history of fusion research began in the 1940s. Since then we have observed significant progress in fusion science and technology. We have come to the point when it has been decided to construct a reactor-class device. ITER International Thermonuclear Experimental Reactor will be built by seven co-operating parties: the EU, Japan

  16. A study on current density distribution reproduction by bounded-eigenfunction expansion for a tokamak plasma

    International Nuclear Information System (INIS)

    Kurihara, Kenichi

    1997-11-01

    Plasma current density distribution is one of the most important controlled variables to determine plasma performance of energy confinement and stability in a tokamak. However, its reproduction by using magnetic measurements solely is recognized to yield an ill-posed problem. A method to presume the formulas giving profiles of plasma pressure and current has been adopted to regularize the ill-posedness, and hence it has been reported the current density distribution can be reproduced as a solution of Grad-Shafranov equation within a certain accuracy. In order to investigate its strict reproducibility from magnetic measurements in this inverse problem, a new method of 'bounded-eigenfunction expansion' is introduced, and it was found that the reproducibility directly corresponds to the independence of a series of the special function. The results from various investigations in an aspect of applied mathematics concerning this inverse problem are presented in detail. (author)

  17. Modeling magnetospheric plasma; Proceedings of the First Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, Oct. 14-16, 1987

    International Nuclear Information System (INIS)

    Moore, T.E.; Waite, J.H. Jr.

    1988-01-01

    The conference presents papers on the global modeling of magnetospheric plasma processes, the modeling of the midlatitude ionosphere and plasmasphere, the modeling of the auroral zone and boundary layer, the modeling of the polar magnetosphere and ionosphere, and the modeling of the plasma sheet and ring current. Particular attention is given to the kinetic approach in magnetospheric plasma transport modeling, self-consistent neutral point current and fields from single particle dynamics, preliminary statistical survey of plasmaspheric ion properties from observations by DE 1/RIMS, and a model of auroral potential structures based on dynamics explorer plasma data. Other topics include internal shear layers in auroral dynamics, quantitative parameterization of energetic ionospheric ion outflow, and open flux merging in an expanding polarcap model

  18. Efficient trap of a coaxial gun plasma in an axisymmetric mirror with an internal hoop

    International Nuclear Information System (INIS)

    Asano, Shiro; Ihara, Makoto; Fukao, Masayuki

    1989-01-01

    A method to trap a high temperature and high density plasma from a coaxial gun in a mirror machine is described. The method is to inject plasma parallel to the axis from a coaxial gun located off the axis. The validity of the method is experimentally demonstrated with an MHD-stabilized axisymmetric mirror with an internal hoop. Density, electron and ion temperatures and their time behaviors were measured and it was made clear that a high density high temperature plasma was well trapped in the mirror by the parallel off-axis injection while the plasma was little trapped by on-axis injection. The plasma parameters obtained were also compared with those of a conventional titanium washer gun plasma. The causes to restrict the maximum ion temperature and of its quick decay are discussed. (author)

  19. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.

    Science.gov (United States)

    Boedo, J A; Rudakov, D L

    2017-03-01

    We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.

  20. Feedback control modeling of plasma position and current during intense heating in ISX-B

    International Nuclear Information System (INIS)

    Charlton, L.A.; Swain, D.W.; Neilson, G.H.

    1979-08-01

    The ISX-B Tokamak at ORNL is designed to have 1.8 MW (and eventually 3 MW) of neutral beam power injected to heat the plasma. This power may raise the anti β of the plasma to over 5% in less than 50 msec if the plasma is MHD stable. The results of a numerical simulation of the feedback control system and poloidal coil power supplies necessary to control the resulting noncircular (D-shaped or elliptical) plasma are presented. The resulting feedback control system is shown to be straightforward, although nonlinear voltage-current dependence is assumed in the power supplies. The required power supplied to the poloidal coils in order to contain the plasma under the high heating rates is estimated

  1. Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2001-01-01

    Restrictions on magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, these follow from the fundamental laws of electromagnetism. A series of examples demonstrating the strength of these restrictions is analysed. The general rule is emphasized that information obtained from external magnetic measurements is insufficient for reliable evaluation of plasma current and pressure profiles in tokamaks and in stellarators. The underlying reason is that outside the plasma the self-field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface alone. (author)

  2. A dynamic state observer for real-time reconstruction of the tokamak plasma profile state and disturbances

    NARCIS (Netherlands)

    Felici, F.; De Baar, M.; Steinbuch, M.

    2014-01-01

    A dynamic observer is presented which can reconstruct the internal state of a tokamak fusion plasma, consisting of the spatial distribution of current and temperature, from measurements. Today, the internal plasma state is usually reconstructed by solving an ill-conditioned inversion problem using a

  3. Deuterium-tritium TFTR plasmas in the high poloidal beta regime

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.

    1995-03-01

    Deuterium-tritium plasmas with enhanced energy confinement and stability have been produced in the high poloidal beta, advanced tokamak regime in TFTR. Confinement enhancement H triple-bond τ E /τ E ITER-89P > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I p = 0.85 - 1.46 MA. By peaking the plasma current profile, β N dia triple-bond 10 8 tperpendicular > aB 0 /I p = 3 has been obtained in these plasma,s exceeding the β N limit for TFTR plasmas with lower internal inductance, l i . Fusion power exceeding 6.7 MW with a fusion power gain Q DT = 0.22 has been produced with reduced alpha particle first orbit loss provided by the increased l i

  4. High performance deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Bell, M.G.

    1995-03-01

    Plasmas composed of nominally equal concentrations of deuterium and tritium (DT) have been created in TFTR with the goals of producing significant levels of fusion power and of examining the effects of DT fusion alpha particles. Conditioning of the limiter by the injection of lithium pellets has led to an approximate doubling of the energy confinement time, τ E , in supershot plasmas at high plasma current (I p ≤ 2.5 MA) and high heating power (P b ≤ 33 MW). Operation with DT typically results in an additional 20% increase in τ E . In the high poloidal beta, advanced tokamak regime in TFTR, confinement enhancement H triple-bond τ E /τ E ITER-89P > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I p = 0.85 - 1.5 MA. By peaking the plasma current profile, β N dia triple-bond 10 8 tperpendicular > aB 0 /I p = 3 has been obtained in these plasmas, exceeding the β N limit for TFTR plasmas with lower internal inductance, l i . Confinement of alpha particles appears to be classical and losses due to collective effects have not been observed. While small fluctuations in fusion product loss were observed during ELMs, no large loss was detected in DT plasmas

  5. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89)

  6. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  7. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  8. Experimental investigation of the ion current distribution in microsecond plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V; Grigor` ev, S; Kharlov, A; Sinebryukhov, A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics

    1997-12-31

    This paper is devoted to the investigations of properties of the microsecond plasma opening switch (MPOS) as an ion beam source for surface modification. Two plasma sources were investigated: flash-board and cable guns. The detailed measurements of axial and azimuthal distributions of ion current density in the switch were performed. It was found that the azimuthal inhomogeneity of the ion beam increases from the beginning to the end of MPOS. The advantages and problems of this approach are discussed. (author). 5 figs., 2 refs.

  9. Tearing mode of a neutral current sheath in a plasma flux

    International Nuclear Information System (INIS)

    Gubchenko, V.M.

    1982-01-01

    The linear stage of the tearing mode of diffusion neutral current sheath immersed in the plasma flux directed along the magnetic field is considered. It follows form the obtained dispersion characteristics that the flux exerts a stabilizing effect on the mode and leads to appearance of phase drift velocity

  10. PFMC-16. 16th international conference on plasma-facing materials and components for fusion applications. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    The performances of fusion devices and of future fusion power plants strongly depend on the plasma-facing materials and components. Resistance to heat and particle loads, compatibility in plasma operations, thermo-mechanical properties, as well as the response to neutron irradiation are critical parameters which need to be understood and tailored from atomistic to component levels. The 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications addresses these issues.

  11. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  12. Run-away electrons and plasma pinching in a high-current diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1984-01-01

    The electrons run-away process in space-confined plasma with current is considered. It has been found that the effect of the proper magnetic field of a current leads to appearance, in add tion to the Dreicer mechanism, of other run-away mechanism in the process of radial oscillations of electrons accelerating near the axis. The appearance of run-away electrons from a thermal velocities region occurs in the course of collisions as well as radial drift. The thresholds of Dreicer run-away and drift are determined. The conditions of formation of Z-pinch current envelope and its collisionless compression by the ''snow plough'' type for the 10-100 ns of high-current accelerator pulse duration are elucidated

  13. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  14. Plasma erosion opening switch in the double-pulse operation mode of a high-current electron accelerator

    International Nuclear Information System (INIS)

    Isakov, I.F.; Lopatin, V.S.; Remnev, G.E.

    1987-01-01

    This paper reports the results of investigations of the operation of a fast current opening switch, with a 10/sup 13/-10/sup 16/ plasma density produced either by dielectric surface flashover or by explosive emission of graphite. A series of two pulses was applied to two diodes in parallel. The first pulse produced plasma in the first diode which closed that diode gap by the arrival time of the second pulse. The first, shorted, diode then acted as an erosion switch for the second pulse. A factor of 2.5-3 power multiplication was obtained under optimum conditions. The opening-switch resistance during the magnetic insulation phase, neglecting the electron losses between the switch and the generating diode, exceeded 100 Ω. The duration of the rapid opening phase was less than 5 ns under optimum conditions. This method of plasma production does not require external plasma sources, and permits a wide variation of plasma density, which in turn allows high inductor currents and stored energies

  15. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    International Nuclear Information System (INIS)

    Kaneko, T.; Baba, K.; Hatakeyama, R.

    2009-01-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  16. Generation of stable mixed-compact-toroid rings by inducing plasma currents in strong E rings

    International Nuclear Information System (INIS)

    Jayakumar, R.; Taggart, D.P.; Parker, M.R.; Fleischmann, H.H.

    1989-01-01

    In the RECE-Christa device, hybrid-type compact toroid rings are generated by inducing large toroidal plasma currents I rho in strong electron rings using a thin induction coil positioned along the ring axis. Starting from field-reversal values δ ο = 50 - 120 percent of the original pure fast-electron ring, the induced plasma current I rho raises δ to a maximum value of up to 240 percent with I rho contributing more than 50 percent of the total ring current. Quite interestingly, the generated hybrid compact toroid configurations appear gross-stable during the full I rho pulse length (half-amplitude width about 100 μs)

  17. PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology

    Science.gov (United States)

    Niño, Ely Dannier V.

    2013-11-01

    These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for

  18. Design of the power supply system for the plasma current modulation on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Shao, J.; Ma, S.X., E-mail: mashaoxiang@hust.edu.cn; Liang, X.; Yu, K.X.; Pan, Y.

    2016-10-15

    Highlights: • A modification scheme of heating field power supply system for plasma current modulation. • High-power fast control power supply with multilevel cascade circuit. • Restraining circulating current with coupled inductors in cyclic symmetric structure. - Abstract: In order to further study the influence of current modulation parameters on suppressing tearing instability, the plasma current should be modulated in a wider range. So a modification scheme is designed to improve the performance of ohmic heating power supply system on J-TEXT tokamak. A multilevel cascade circuit with carrier phase-shifted PWM technique has been proposed. Coupled inductors are connected in the form of cyclic symmetry to restrain the circulating current caused by multiple paralleled branches. The simulation proves this proposed current modulation power supply system matches output requirement and achieves good current sharing effect. Finally, a prototype is designed, and the experiment results can verify the correctness of the simulation model well.

  19. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    2000-04-01

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  20. Stationary high confinement plasmas with large bootstrap current fraction in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Fujita, T.; Ide, S.; Isayama, A.; Takechi, M.; Suzuki, T.; Takenaga, H.; Oyama, N.; Kamada, Y.

    2005-01-01

    This paper reports the results of the progress in stationary discharges with a large bootstrap current fraction in JT-60U towards steady-state tokamak operation. In the weak shear plasma regime, high-β p ELMy H-mode discharges have been optimized under nearly full non-inductive current drive conditions by the large bootstrap current fraction (f BS ∼ 45%) and the beam driven current fraction (f BD ∼ 50%), which was sustained for 5.8 s in the stationary condition. This duration corresponds to ∼26τ E and ∼2.8τ R , which was limited by the pulse length of negative-ion-based neutral beams. The high confinement enhancement factor H 89 ∼ 2.2 (HH 98y2 ∼ 1.0) was obtained and the profiles of current and pressure reached the stationary condition. In the reversed shear plasma regime, a large bootstrap current fraction (f BS ∼ 75%) has been sustained for 7.4 s under nearly full non-inductive current drive conditions. This duration corresponds to ∼16τ E and ∼2.7τ R . The high confinement enhancement factor H 89 ∼ 3.0 (HH 98y2 ∼ 1.7) was also sustained, and the profiles of current and pressure reached the stationary condition. The large bootstrap current and the off-axis beam driven current sustained this reversed q profile. This duration was limited only by the duration of the neutral beam injection

  1. Research of transportation efficiency of low-energy high- current electron beam in plasma channel in external magnetic field

    International Nuclear Information System (INIS)

    Vagin, E S; Grigoriev, V P

    2015-01-01

    Effective high current (5-20 kA) and low energy (tens of keV) electrons beam transportation is possible only with almost complete charging neutralization. It is also necessary to use quite high current neutralization for elimination beam self-pinching effect. The research is based on the self-consistent mathematical model that takes into account beam and plasma particles dynamic, current and charge neutralization of electron beam and examines the transportation of electron beam into a chamber with low-pressure plasma in magnetic field. A numerical study was conducted using particle in cell (PIC) method. The study was performed with various system parameters: rise time and magnitude of the beam current, gas pressure and plasma density and geometry of the system. Regularities of local virtual cathode field generated by the beam in the plasma channel, as well as ranges of parameters that let transportation beam with minimal losses, depending on the external magnetic field were determined through a series of numerical studies. In addition, the assessment of the impact of the plasma ion mobility during the transition period and during steady beam was performed. (paper)

  2. An advanced plasma control system for Tore Supra

    International Nuclear Information System (INIS)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author)

  3. An advanced plasma control system for Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author). 12 refs.

  4. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, CCHEN, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Castillo, Fermin [Universidad Nacional Autónoma de México, Cuernavaca, México (Mexico); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago (Chile); Auluck, S. K. H. [Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  5. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing

    International Nuclear Information System (INIS)

    Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.

    2005-01-01

    An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10 11 cm -3 were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect

  6. Electron cyclotron heating and current drive approach for low-temperature startup plasmas using O-X-EBW mode conversion

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Bigelow, T.S.

    1997-01-01

    A mechanism for heating and driving currents in very overdense plasmas is considered based on a double-mode conversion: Ordinary mode to Extraordinary mode to electron Bernstein wave. The possibility of using this mechanism for plasma buildup and current ramp in the National Spherical Torus Experiment is investigated

  7. Plasma Ion Source with an Internal Evaporator

    International Nuclear Information System (INIS)

    Turek, M.; Drozdziel, A.; Pyszniak, K.; Prucnal, S.; Maczka, D.

    2011-01-01

    A new construction of a hollow cathode ion source equipped with an internal evaporator heated by a spiral cathode filament and arc discharge is presented. The source is especially suitable for production of ions from solids. The proximity of arc discharge region and extraction opening enables production of intense ion beams even for very low discharge current (I a = 1.2 A). The currents of 50 μA (Al + ) and 70 μA (Bi + ) were obtained using the extraction voltage of 25 kV. The source is able to work for several tens of hours without maintenance breaks, giving possibility of high dose implantations. The paper presents the detailed description of the ion source as well as its experimental characteristics like dependences of extracted currents and anode voltage on anode and cathode currents. (author)

  8. Current situation of International Organization for Standardization/Technical Committee 249 international standards of traditional Chinese medicine.

    Science.gov (United States)

    Liu, Yu-Qi; Wang, Yue-Xi; Shi, Nan-Nan; Han, Xue-Jie; Lu, Ai-Ping

    2017-05-01

    To review the current situation and progress of traditional Chinese medicine (TCM) international standards, standard projects and proposals in International Organization for Standardization (ISO)/ technical committee (TC) 249. ISO/TC 249 standards and standard projects on the ISO website were searched and new standard proposals information were collected from ISO/TC 249 National Mirror Committee in China. Then all the available data were summarized in 5 closely related items, including proposed time, proposed country, assigned working group (WG), current stage and classifification. In ISO/TC 249, there were 2 international standards, 18 standard projects and 24 new standard proposals proposed in 2014. These 44 standard subjects increased year by year since 2011. Twenty-nine of them were proposed by China, 15 were assigned to WG 4, 36 were in preliminary and preparatory stage and 8 were categorized into 4 fifields, 7 groups and sub-groups based on International Classifification Standards. A rapid and steady development of international standardization in TCM can be observed in ISO/TC 249.

  9. Local regulation of interchange turbulence in a dipole-confined plasma torus using current-collection feedback

    International Nuclear Information System (INIS)

    Roberts, T. M.; Mauel, M. E.; Worstell, M. W.

    2015-01-01

    Turbulence in plasma confined by a magnetic dipole is dominated by interchange fluctuations with complex dynamics and short spatial coherence. We report the first use of local current-collection feedback to modify, amplify, and suppress these fluctuations. The spatial extent of turbulence regulation is limited to a correlation length near the collector. Changing the gain and phase of collection results in power either extracted from or injected into the turbulence. The measured plasma response shows some agreement with calculations of the linear response of global interchange-like MHD and entropy modes to current-collection feedback

  10. Study of the fast electron distribution function in lower hybrid and electron cyclotron current driven plasmas in the WT-3 tokamak

    International Nuclear Information System (INIS)

    Ogura, K.; Tanaka, H.; Ide, S.

    1991-01-01

    The distribution function f(p-vector) of fast electrons produced by lower hybrid current drive (LHCD) is investigated in the WT-3 tokamak, using a combination of measurements of the hard X-ray (HXR) angular distribution with respect to the toroidal magnetic field and observations of the HXR radial profile. The data obtained indicate the formation of a plateau-like region in f(p-vector) which corresponds to a region of resonant interaction between the lower hybrid (LH) wave and the electrons. The energy of the fast electrons in the peripheral plasma region is observed to be higher than that in the central plasma region under operational conditions with a high plasma current (I p ≥ 80 kA). At low current (I p < or approx. 50 kA), however, the energy of fast electrons is constant along the plasma radius. In the current ramp-up phase, fast electrons are generated in the directions normal to and opposite to the LH wave propagation. The latter case is ascribed to a negatively biased toroidal electric field induced by the current ramp-up. To study the characteristic change of f(p-vector) for various current drive mechanisms, HXR measurements are performed in electron cyclotron current driven (ECCD) plasma and in Ohmic heating (OH) plasma. In ECCD plasma, the perpendicular energy of fast electrons increases, which indicates that fast electrons are accelerated perpendicularly by electron cyclotron heating. In both LHCD and ECCD plasmas, fast electrons flow in the direction opposite to the wave propagation, while no such fast electrons are formed in OH plasma. (author). 33 refs, 16 figs, 1 tab

  11. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    International Nuclear Information System (INIS)

    Toi, Kazuo; Hiraki, Naoji; Nakamura, Kazuo; Mitarai, Osamu; Kawai, Yoshinobu

    1980-01-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence. (author)

  12. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence.

  13. Complex (dusty) plasmas: Current status, open issues, perspectives

    International Nuclear Information System (INIS)

    Fortov, V.E.; Ivlev, A.V.; Khrapak, S.A.; Khrapak, A.G.; Morfill, G.E.

    2005-01-01

    The field of complex (dusty) plasmas-low-temperature plasmas containing charged microparticles-is reviewed: The major types of experimental complex plasmas are briefly discussed. Various elementary processes, including grain charging in different regimes, interaction between charged particles, and momentum exchange between different species are investigated. The major forces on microparticles and features of the particle dynamics in complex plasmas are highlighted. An overview of the wave properties in different phase states, as well as recent results on the phase transitions between different crystalline and liquid states are presented. Fluid behaviour of complex plasmas and the onset of cooperative phenomena are discussed. Properties of the magnetized complex plasmas and plasmas with nonspherical particles are briefly mentioned. In conclusion, possible applications of complex plasmas, interdisciplinary aspects, and perspectives are discussed

  14. Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces

    National Research Council Canada - National Science Library

    Legg, Keith O; Sartwell, Bruce D; Legoux, Jean-Gabriel; Nestler, Montia; Dambra, Christopher; Wang, Daming; Quets, John; Natishan, Paul; Bretz, Philip; Devereaux, Jon

    2006-01-01

    .... This document constitutes the final report on an investigation of deposition of coatings using miniature plasma spray guns that could replace hard chromium on internal surfaces where conventional...

  15. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  16. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program

  17. 3D eddy-current distribution in a tokamak first wall during a plasma disruption using 'TRIFOU'

    International Nuclear Information System (INIS)

    Chaussecourte, P.; Bossavit, A.; Verite, J.C.; Crutzen, Y.R.

    1989-01-01

    In fusion reactor studies there is a lack of knowledge concerning the electromagnetic-type of phenomena generated by a plasma disruption event (rapid quenching of the plasma current). The induced eddy current distribution in space and time in the passive conducting structural components surrounding the plasma ring needs to be accurately investigated. TRIFOU is a full 3D eddy-current computer program based on a mixed FEM and BIEM technique, using the magnetic field, h, as a state variable, It has already been used in various areas of interest including static or rotating machines, non-destructive testing, induction heating, and research devices such as tokamaks. It can take into account various geometries and a wide range of physical situations (time dependency, physical properties, etc.). The present application is related to the eddy-current situation arising from a strong electromagnetic transient generated in the NET (Next European Torus) first wall segment. With respect to previous numerical simulations, the general 3D approach for the current density shows different eddy current circulations in the front/side shells and in the stiff back plate. The results obtained by TRIFOU are illustrated by means of advanced computer graphic displays and an animation movie. (orig.)

  18. Outlook for the use of microsecond plasma opening switches to generate high-power nanosecond current pulses

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Ushakov, A.G.

    2006-01-01

    Paper deals with a phenomenon of current breaking in a conducting plasma volume of plasma opening switchers with a nanosecond time of energy initiation and their application in high-power generators. One determined the conditions to ensure megavolt voltages under the erosion mode making use of external applied magnetic field to ensure magnetic insulation of gap of plasma opening switchers. One studied the peculiar features of application of plasma opening switchers under 5-6 MV voltages to ensure X-ray and gamma-radiation pulses [ru

  19. Internal transport barrier in tokamak and helical plasmas

    Science.gov (United States)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the

  20. Plasma Medicine: Current Achievements and Future Prospects

    Science.gov (United States)

    Laroussi, Mounir

    2012-10-01

    Research on the biomedical applications of low temperature plasmas started with small scale experiments that were simply aimed at discovering what happens to biological cells when exposed to the chemically rich environment of plasma. These early experiments took place in the mid to late 1990s. As interest in this multidisciplinary field dramatically rose, various engineering and physics groups collaborated with biologists and medical experts to investigate the use of plasma technology as a basis for innovative medical approaches to cure various diseases. However, many questions concerning the fundamental mechanisms involved in cell-plasma interaction remained unanswered. As a result various workshops were organized to gather the diverse research community in the field of plasma medicine in order to have a fruitful exchange of ideas regarding the scientific challenges that needed to be surmounted to advance and expand the field's knowledge base. The present GEC workshop continues this important tradition of scientific cooperation since there is still a significant lack of understanding of many of the biochemical and molecular pathways that come into play when biological cells are exposed to plasmas. In this talk, first background information on the various plasma devices developed in our institute will be presented. This will be followed by a summary of our work on the effects of plasmas on prokaryotic and eukaryotic cells. The talk will be concluded by presenting our vision of the future of the field and an outline of the main challenges that need to be overcome if practical medical applications are to be achieved.

  1. Book Review: Current Issues in International Human Resource Management and Strategy Research

    DEFF Research Database (Denmark)

    Gretzinger, Susanne

    2009-01-01

    The article reviews the book "Current Issues in International Human Resource Management and Strategy Research," edited by Marion Festing and Susanne Royer.......The article reviews the book "Current Issues in International Human Resource Management and Strategy Research," edited by Marion Festing and Susanne Royer....

  2. 8th international workshop on plasma edge theory in fusion devices. Abstracts of invited and contributed papers

    International Nuclear Information System (INIS)

    Sipilae, S.K.; Heikkinen, J.A.

    2001-01-01

    The 8th International Workshop on Plasma Edge Theory in Fusion Devices, held at Dipoli Congress Centre, Espoo, Finland, is organised on behalf of the International Scientific Committee by Helsinki University of Technology and VTT (Technical Research Centre of Finland). Similar to the seven preceding Workshops, it addresses the theory for the boundary layer of magnetically confined fusion plasmas. It reflects the present status of the theory for the edge region of fusion plasmas. Emphasis is placed on the development of theory and of appropriate numerical methods as well as on self-consistent modelling of experimental data (including also empirical elements). The following topics are covered: basic edge plasma theory, models of special phenomena and edge control, and integrated edge plasma modelling. The International Scientific Committee has selected the papers and compiled the scientific programme. All other arrangements have been made by the Local Organising Committee. The Workshop is supported by the European Commission, High-Level Scientific Conferences. This Book of Abstracts contains the scientific programme and the abstracts of the invited and contributed papers. The Workshop has seven invited lectures of 60 minutes duration (including 10 minutes for discussion). In addition, 10 contributed papers were selected for oral presentation of 30 minutes duration (including five minutes for discussion). All oral presentations are given in plenary sessions. The remaining 34 contributed papers are presented as posters in three sessions. The invited lectures and contributed oral papers are presented also as posters. All invited and contributed papers will be refereed and published also as a regular issue of the journal Contributions to Plasma Physics. (orig.)

  3. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  4. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    Science.gov (United States)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  5. Plasma rotation study in Tore Supra radio frequency heated plasmas

    International Nuclear Information System (INIS)

    Chouli, Bilal

    2014-01-01

    Toroidal flows are found to improve the performance of the magnetic confinement devices with increase of the plasma stability and confinement. In ITER or future reactors, the torque from NBI should be less important than in present-day tokamaks. Consequently, it is of interest to study other intrinsic mechanisms that can give rise to plasma rotation in order to predict the rotation profile in experiments. Intriguing observations of plasmas rotation have been made in radio frequency (RF) heated plasmas with little or no external momentum injection. Toroidal rotation in both the direction of the plasma current (co-current) and in the opposite direction (counter-current) has been observed depending on the heating schemes and plasma performance. In Tore Supra, most observations in L-mode plasmas have been in the counter-current direction. However, in this thesis, we show that in lower hybrid current drive (LHCD), the core toroidal rotation increment is in co- or counter-current direction depending on the plasma current amplitude. At low plasma current the rotation change is in the co-current direction while at high plasma current, the change is in the counter-current direction. In both low and high plasma current cases, rotation increments are found to increase linearly with the injected LH power. Several mechanisms in competition which can induce co- or counter-current rotation in Tore Supra LHCD plasmas are investigated and typical order of magnitude are discussed in this thesis. (author) [fr

  6. Internal currents in PEMFC during start-up or shut-down

    Energy Technology Data Exchange (ETDEWEB)

    Maranzana, G.; Lottin, O.; Moyne, C.; Dillet, J.; Lamibrac, A.; Mainka, J.; Didierjean, S. [Nancy Univ. - CNRS (France). LEMTA

    2010-07-01

    Experiments show that the internal currents that occur during PEMFC start-up can reach up to 1 Acm{sup -2}. This is far more important than the expected order of magnitude of the current densities associated with carbon oxidation, which is only of a few mAcm{sup -2}. The predominant phenomenon that explains the internal currents is the charge and discharge of the double layer capacitances. A simple model with constant values of the electric parameters yields numerical results close to the experimental ones. It also explains the transient voltage rise (over the steady state open circuit voltage) that is sometimes observed experimentally shortly after the fuel cell start up. (orig.)

  7. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  8. Active control of internal transport barrier and confinement database in JT-60U reversed shear plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshiteru; Takizuka, Tomonori; Shirai, Hiroshi; Fujita, Takaaki; Kamada, Yutaka; Ide, Shunsuke; Fukuda, Takeshi; Koide, Yoshihiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-07-01

    Active control of internal transport barrier (ITB) and confinement properties of plasma with ITB have been studied in reversed shear plasmas. Modifications of the radial electric field (E{sub r}) profile by changing the combination of tangential neutral beams can control the ITB strength, where the contribution to E{sub r} from the toroidal rotation plays an important role. The ITB confinement database of reversed shear plasmas has been constructed. Stored energy is strongly correlated with poloidal magnetic field at the ITB foot. (author)

  9. Relativistic theory of current drive by radio frequency waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Khan, T.P.

    1992-01-01

    A relativistic kinetic theory of rf current drive in a magnetized plasma is developed. Analytical expressions are obtained for the rf generated currents, the dissipated power, and the current drive efficiency in the presence of a magnetic field. The relativistic transport coefficients in both parallel and perpendicular directions of the magnetic field are exhibited to have important contributions to the efficiency of rf-generated current drive. The consideration of perpendicular particle and heat fluxes make it more attractive for fusion problems. The effect of collisions in the presence of a magnetic field on the transport of the rf-generated current drive is discussed

  10. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform

    International Nuclear Information System (INIS)

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P.

    2014-01-01

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium

  11. Critical condition for current-driven instability excited in turbulent heating of TRIAM-1 tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y; Watanabe, T; Nagao, A; Nakamura, K; Kikuchi, M; Aoki, T; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Mitarai, O

    1982-02-01

    Critical condition for current-driven instability excited in turbulently heated TRIAM-1 tokamak plasma is investigated experimentally. Resistive hump in loop voltage, plasma density fluctuation and rapid increase of electron temperature in a skin layer are simultaneously observed at the time when the electron drift velocity amounts to the critical drift velocity for low-frequency ion acoustic instability.

  12. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    Science.gov (United States)

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  13. GATO: an MHD stability code for axisymmetric plasmas with internal separatrices

    International Nuclear Information System (INIS)

    Bernard, L.C.; Helton, F.J.; Moore, R.W.

    1981-07-01

    The GATO code computes the growth rate of ideal magnetohydrodynamic instabilities in axisymmetric geometries with internal separatrices such as doublet and expanded spheromak. The basic method, which uses a variational principle and a Galerkin procedure to obtain a matrix eigenvalue problem, is common to the ERATO and PEST codes. A new coordinate system has been developed to handle the internal separatrix. Efficient algorithms have been developed to solve the matrix eigenvalue problem for matrices of rank as large as 40,000. Further improvement is expected using graph theoretical techniques to reorder the matrices. Using judicious mesh repartition, the marginal point can be determined with great precision. The code has been extensively used to optimize doublet and general tokamak plasmas

  14. Near-surface current meter array measurements of internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.

  15. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.

  16. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs

  17. Experimental Study of Current Discharge Behavior and Hard X-ray Anisotropy by APF Plasma Focus Device

    Science.gov (United States)

    Habibi, M.; Amrollahi, R.; Attaran, M.

    2009-03-01

    Amirkabir (APF) is a new Mather-type plasma focus device (16 kV, 36 μf, and 115 nH). In this work we present some experimental results as variation of discharge current signal respect to applied voltage at the optimum pressure, focusing time of plasma versus gas pressure, and variations of current discharge with different insulator sleeve dimensions. As we prospected optimum pressure tending to increase as we tried to higher voltage levels. The time taken by the current sheath to lift-off the insulator surface and therefore quality of pinched plasma depends on the length of the insulator sleeve. The results show that the insulator diameter can influence on pinch quality. Behavior of hard X-ray (HXR) signals with the pressure and also anisotropy of HXR investigated by the use of two scintillation detectors. The distribution of HXR intensity shows a large anisotropy with a maximum intensity between 22.5° and 45° and also between -22.5° and -67.5°.

  18. Engineering aspects of disruption current decay

    International Nuclear Information System (INIS)

    Murray, J.G.

    1983-11-01

    Engineering features associated with the configuration of a tokamak can affect the amount of energy that produces melting and damage to the limiters or internal wall surfaces as the result of a major disruption. During the current decay period of a major thermal disruption, the energy that can damage a wall or limiter comes from the external magnetic field. By providing a good conducting torus near the plasma and increasing the plasma circuit resistance, this magnetic energy (transferred by way of the plasma circuit) can be minimized. This report addresses engineering design features to reduce the energy deposited on the inner torus surface that produces melting of the structures

  19. Discharge current characteristics as an 'electrical method' for glow discharge plasma diagnosis

    International Nuclear Information System (INIS)

    Toma, M.; Paraschivescu, Alina; Morminches, Anisoara

    2001-01-01

    In its simplest form, the glow discharge can be established by passing an electric current through gas between two electrodes. The gas and the electrodes are contained in an insulating envelope. In many technological applications, and not only, the plasma devices are often treated like a black box. There is a series of external parameters or control variables which can be adjusted to obtain a desired effect, namely, the operating voltage, gas pressure, gas nature, gas flow rate, magnetic field strength and magnetic field configuration, electric field geometry, interelectrode distance, and cathode characteristics. The discharge current can be controlled by each of the above control variables. The core idea of this work is the following: a lot of information about the phenomena from the discharge volume, at electrodes or at the discharge bounding wall surface, can be obtained knowing how the change of one of the control parameters influences the discharge current. The following regimes were analyzed: dark discharges (background ionization, saturation regime, Townsend regime, corona regime), glow discharge (the normal and abnormal discharge) and arc discharge (glow to arc transition, non-thermal arcs, thermal arcs). It was concluded that the nonlinearity in the shape of the discharge current characteristics as a function of an external control parameter, can be correlated with the elementary processes and the dynamics of different space charge structures generated in plasma devices. (authors)

  20. Optimization of the plasma parameters for the high current and uniform large-scale pulse arc ion source of the VEST-NBI system

    International Nuclear Information System (INIS)

    Jung, Bongki; Park, Min; Heo, Sung Ryul; Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2016-01-01

    Highlights: • High power magnetic bucket-type arc plasma source for the VEST NBI system is developed with modifications based on the prototype plasma source for KSTAR. • Plasma parameters in pulse duration are measured to characterize the plasma source. • High plasma density and good uniformity is achieved at the low operating pressure below 1 Pa. • Required ion beam current density is confirmed by analysis of plasma parameters and results of a particle balance model. - Abstract: A large-scale hydrogen arc plasma source was developed at the Korea Atomic Energy Research Institute for a high power pulsed NBI system of VEST which is a compact spherical tokamak at Seoul national university. One of the research target of VEST is to study innovative tokamak operating scenarios. For this purpose, high current density and uniform large-scale pulse plasma source is required to satisfy the target ion beam power efficiently. Therefore, optimizing the plasma parameters of the ion source such as the electron density, temperature, and plasma uniformity is conducted by changing the operating conditions of the plasma source. Furthermore, ion species of the hydrogen plasma source are analyzed using a particle balance model to increase the monatomic fraction which is another essential parameter for increasing the ion beam current density. Conclusively, efficient operating conditions are presented from the results of the optimized plasma parameters and the extractable ion beam current is calculated.

  1. Stability, current drive and heating, energetic particles

    International Nuclear Information System (INIS)

    Razumova, K.

    2001-01-01

    The paper summarizes the results presented at the conference Fusion Energy 2000 (FEC 2000) in relation to the following subjects: 1. The possibility of realizing plasma parameters for ITER needs, advanced regimes in tokamaks and stellarators. 2. Stability of plasmas with an appreciable component of fast particles. 3. Low aspect ratio tokamaks. 4. New results with auxiliary heating and current drive methods. 5. β limit and neoclassical tearing mode (NTM) stabilization. 6. Internal transport barriers. (author)

  2. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  3. Toroidal equilibrium of a non-neutral plasma with toroidal current, inertia and pressure

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Avinash, K.

    1992-01-01

    Equilibrium of non-neutral clouds in a toroidal vessel with toroidal magnetic field is demonstrated in the presence of a toroidal current, finite mass and finite pressure. With a toroidal current, it is shown that in a large-aspect-ratio conducting torus the equilibrium is governed by competition between forces produced by image charges and image currents. When μ 0 ε 0 E r 2 >B θ 2 (whe re E r and B θ are the self electrostatic and self magnetic fields of the cloud), the confinement is electrostatic and plasma shifts inwards; when μ 0 ε 0 E r 2 θ 2 , the confinement is magnetic and plasma shifts outwards. For μ 0 ε 0 E r 2 = B θ 2 there is no equilibrium. With finite mass or finite pressure, it is shown, in a large-aspect-ratio approximation, that the fluid drift surfaces and equipotential surfaces are displaced with respect to each other. In both cases the fluid drift surfaces are shifted inwards from the equipotential surfaces. (author)

  4. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  5. Electron cyclotron current drive experiments in LHCD plasmas using a remote steering antenna on the TRIAM-1M tokamak

    International Nuclear Information System (INIS)

    Idei, H.; Hanada, K.; Zushi, H.; Ohkubo, K.; Hasegawa, M.; Kubo, S.; Nishi, S.; Fukuyama, A.; Sato, K.N.; Nakamura, K.; Sakamoto, M.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Notake, T.; Shimozuma, T.; Ito, S.; Hoshika, H.; Maezono, N.; Nakashima, K.; Ogawa, M.

    2006-01-01

    A remote steering antenna was recently developed for electron cyclotron heating and current drive (ECH/ECCD) experiments on the TRIAM-1M tokamak. This is the first application of the remote steering antenna concept for ECH/ECCD experiments, which have conditions relevant to the International Thermonuclear Experimental Reactor (ITER). Fundamental ECH and ECCD experiments were conducted in the ITER frequency from the low field using this antenna system. In addition to the angles near 0 0 , the launcher was a symmetric direction antenna with an extended steering-angle capability of ±(8 0 -19 0 ). The output beam from the antenna was a well-defined Gaussian with a proper steering angle. The Gaussian content and the steering-angle accuracy were 0.85 and -0.5 0 , respectively. The high power tests measured the antenna transmission efficiency at 0.90-0.94. The efficiencies obtained in the low and high power tests were consistent with the calculations using higher-order modes. In order to excite the pure O/X-modes in the oblique injection, two polarizers were used to control the elliptical polarization of the incident beam for the ECCD experiments. The fundamental O/X-mode ECH/ECCD was applied to lower hyrid current drive plasmas at the optimized incident polarization. In the X-mode experiment, at medium density (∼1 x 10 19 m -3 ), clear differences in the plasma current and the hard x-ray intensity were observed between the co- and counter-steering injections due to the ECCD effect on the coupling of forward fast electrons

  6. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  7. Fusion Plasma Physics and ITER - An Introduction (2/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The second lecture will explore some of the key physics phenomena which govern the behaviour of magnetic fusion plasmas and which have been the subject of intense research during the past 50 years: plasma confinement, magnetohydrodynamic stability and plasma-wall interactions encompass the major areas of plasma physics which must be understood to assemble an overall description of fusion plasma behaviour. In addition, as fusion plasmas approach the “burning plasma” regime, where internal heating due to fusion products dominates other forms of heating, the physics of the interaction between the α-particles produced by D-T fusion reactions and the thermal “background” plasma becomes significant. This lecture will also introduce the basic physics of fusion plasma production, plasma heating and current drive, and plasma measurements (“diagnostics”).

  8. INFLUENCE OF VACUUM ARC PLASMA EVAPORATOR CATHODE GEOMETRY OF ON VALUE OF ADMISSIBLE ARC DISCHARGE CURRENT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanou

    2015-01-01

    Full Text Available An analysis of main design parameters that determine a level of droplet formation intensity at the generating stage of plasma flow has been given in the paper. The paper considers the most widely used designs of water cooled consumable cathodes. Ti or Ti–Si and Fe–Cr alloys have been taken as a material for cathodes. The following calculated data: average ionic charge Zi for titanium plasma +1.6; for «titanium–silicon plasma» +1.2, an electronic discharge 1.6022 ⋅ 10–19 C, an ion velocity vi = 2 ⋅ 104 m/s, an effective volt energy equivalent of heat flow diverted in the cathode Uк = 12 V, temperature of erosion cathode surface Тп = 550 К; temperature of the cooled cathode surface То = 350 К have been accepted in order to determine dependence of a maximum admissible arc discharge current on cathode height. The calculations have been carried out for various values of the cathode heights hк (from 0.02 to 0.05 m. Diameter of a target cathode is equal to 0.08 m for a majority of technological plasma devices, therefore, the area of the erosion surface is S = 0.005 m2.A thickness selection for a consumable target cathode part in the vacuum arc plasma source has been justified in the paper. The thickness ensures formation of minimum drop phase in the plasma flow during arc cathode material evaporation. It has been shown that a maximum admissible current of an arc discharge is practically equal to the minimum current of stable arcing when thickness of the consumable cathode part is equal to 0.05 m. The admissible discharge current can be rather significant and ensure high productivity during coating process with formation of relatively low amount of droplet phase in the coating at small values of hк.

  9. Scaling of energy confinement with minor radius, current and density in Doublet III Ohmically heated plasmas

    International Nuclear Information System (INIS)

    Ejima, S.; Petrie, T.W.; Riviere, A.C.

    1982-01-01

    The dependence of plasma energy confinement on minor radius, density and plasma current is described for Ohmically heated near-circular plasmas in Doublet III. A wide range of parameters is used for the study of scaling laws; the plasma minor radius defined by the flux surface in contact with limiter is varied by a factor of 2 (a = 44, 32, and 23 cm), the line average plasma density, nsub(e)-bar, is varied by a factor of 20 from 0.5 to 10 x 10 13 cm -3 (nsub(e)-bar R 0 /Bsub(T) = 0.3 to 6 x 10 14 cm -2 .kG -1 ) and the plasma current, I, is varied by a factor of 6 from 120 to 718 kA. The range of the limiter safety factor, qsub(L), is from 2 to 12. - For plasmas with a = 23 and 32 cm, the scaling law at low nsub(e)-bar for the gross electron energy confinement time can be written as (s, cm) tausub(Ee)sup(G) approx.= 3.6 x 10 -19 nsub(e)-bar a 2 qsub(c)sup(3/4), where qsub(c) = 2πa 2 Bsub(T)/μ 0 IR 0 . For the 44-cm plasmas, tausub(Ee)sup(G) is about 1.8 times less than predicted by this scaling, possibly owing to the change in limiter configuration and small plasma-wall separation and/or the aspect ratio change. At high nsub(e)-bar, tausub(Ee)sup(G) saturates and in many cases decreases with nsub(e)-bar but increases with I in a classical-like manner. The dependence of tausub(Ee)sup(G) on a is considerably weakened. The confinement behaviour can be explained by taking an ion thermal conductivity 2 to 7 times that given by Hinton-Hazeltine's neoclassical theory with a lumped-Zsub(eff) impurity model. Within this range the enhancement factor increases with a or a/R 0 . The electron thermal conductivity evaluated at half-temperature radius where most of the thermal insulation occurs sharply increases with average current density within that radius, but does not depend on a within the uncertainties of the measurements. (author)

  10. PFMC14. 14th international conference on plasma-facing materials and components for fusion applications. Book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The performance of fusion devices and of a future fusion power plant critically depends on the plasma facing materials and components. Resistance to local heat and particle loads, thermo-mechanical properties, as well as the response to neutron damage of the selected materials are critical parameters which need to be understood and tailored from atomistic to component levels. The 14th International Conference on Plasma-Facing Materials and Components for Fusion Applications addresses these issues. Among the topics of the joint conference recent developments and research results in the following fields are addressed: - Tungsten and tungsten alloys - Low-Z materials - Mixed materials - Erosion, redeposition and fuel retention - Materials under extreme thermal loads - Technology and testing of plasma-facing components - Neutron effects in plasma-facing materials - Advanced characterization of materials and components. Selected international speakers present overview lectures and treat detailed aspects of the given topics. Contributed papers to the subjects of the meeting are solicited for oral and poster presentations.

  11. Contributions to the 7th International Conference on plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains three papers presented in the 7th International Conference on plasma surface interactions in controlled fusion devices held in Princeton (USA) 5-9 May 1986, all referred to the FT Tokamak

  12. Plasma shutdown device

    International Nuclear Information System (INIS)

    Hosogane, Nobuyuki; Nakayama, Takahide.

    1985-01-01

    Purpose: To prevent concentration of plasma currents to the plasma center upon plasma shutdown in a torus type thermonuclear device by the injection of fuels to the plasma center thereby prevent plasma disruption at the plasma center. Constitution: The plasma shutdown device comprises a plasma current measuring device that measures the current distribution of plasmas confined within a vacuum vessel and outputs a control signal for cooling the plasma center when the plasma currents concentrate to the plasma center and a fuel supply device that supplies fuels to the plasma center for cooling the center. The fuels are injected in the form of pellets into the plasmas. The direction and the velocity of the injection are set such that the pellets are ionized at the center of the plasmas. (Horiuchi, T.)

  13. Observation of the bootstrap current reduction at magnetic island in a neoclassical tearing mode plasma

    International Nuclear Information System (INIS)

    Oikawa, T.; Suzuki, T.; Isayama, A.; Hayashi, N.; Fujita, T.; Naito, O.; Tuda, T.; Kurita, G.

    2005-01-01

    Evolution of the current density profile associated with magnetic island formation in a neoclassical tearing mode plasma is measured for the first time in JT-60U by using a motional Stark effect diagnostic. As the island grows, the current density profile turns flat at the radial region of the island and a hollow structure appears at the rational surface. As the island shrinks the deformed region becomes narrower and finally diminishes after the disappearance of the island. In a quiescent plasma without magnetohydrodynamic instabilities, on the other hand, no deformation is observed. The observed deformation in the current density profile associated with the tearing mode is reproduced in a time dependent transport simulation assuming the reduction of the bootstrap current in the radial region of the island. Comparison of the measurement with a calculated steady-state solution also shows that the reduction and recovery of the bootstrap current at the island explains the temporal behaviours of the current density and safety factor profiles. From the experimental observation and simulations, we reach the conclusion that the bootstrap current decreases within the island O-point

  14. Birkeland currents in an anisotropic, magnetostatic plasma

    International Nuclear Information System (INIS)

    Birmingham, T.J.

    1992-01-01

    An expression for the parallel current density is derived for a plasma characterized by negligible bulk flow (magnetostatic) velocity and a two-component (anisotropic) pressure tensor by expanding the equilibrium Vlasov equation for each species in the adiabatic parameter until such point as a nonvanishing moment j parallel = ∫ d 3 vv parallel is identified. The result is a nonlocal one: it relates j parallel at one point s along a field line to j parallel at another (reference) point s 0 plus an integral function of the pressure and magnetic field between them. It is a generalization and elaboration of results obtained by Bostrom (1975), Heinemann (1990), and Heinemann and Pontius (1991). The expression could have been obtained by integrating the current continuity equation with -∇ x j perpendicular as a source term and j perpendicular given by perpendicular momentum balance. The authors explicitly show the equivalency. The widely used Vasyliunas (1970) equation follows when P perpendicular is set equal to P parallel and s and s 0 are taken to be at the ionosphere and the equator. An extended discussion of the relationship of results derived here to others in the literature is carried out in an effort to bring unity and perspective to this problem area

  15. Current control by ECCD for W7-X

    International Nuclear Information System (INIS)

    Turkin, Yu.; Maassberg, H.; Beidler, C.D.; Geiger, J.; Marushchenko, N.B.

    2005-01-01

    One of the optimization criteria for the stellarator W7-X is the minimization of the bootstrap current. The plasma current changes the magnetic configuration, especially near the plasma edge, where X-points and islands are located. It was shown that the plasma parameter distributions in the divertor region and the particle and energy depositions on the divertor plates depend strongly on the island geometry. An estimation of the tolerable plasma current obtained from the shift of the island structure close to the target plates shows that the plasma current should be controlled within a range of about 10 kA. The bootstrap current even for the standard configuration can easily exceed this value. The W7-X is not equipped with an Ohmic transformer, so the only means for compensating this current is electron cyclotron current drive (ECCD) and/or neutral beam current drive (NBCD). In this report we study the compensation of residual bootstrap current by using ECCD. To model the control of the toroidal current we use a predictive 1D transport code, which is under development. For evaluation of the bootstrap current and neoclassical transport coefficients we use results from an international collaboration on neoclassical transport in stellarators. Power deposition and current drive profiles due to electron cyclotron resonance heating are calculated by a new ray tracing code. The modeling showed that the loop voltage induced by ECCD leads to a redistribution of the current density with the diffusion time of about two seconds. The relaxation time of the total current is much longer than this time - for a typical ECRH-plasma the total toroidal current reaches steady state after several L/R-time that is about hundreds of seconds. In order to keep current in an acceptable range and to avoid long relaxation times we propose Feed-forward or Predictive control using ECCD as actuator, the steps are as follows: - calculate the bootstrap current distribution using measured plasma

  16. Joint Varenna-Lausanne International Workshop on the Theory of Fusion Plasmas 2016

    International Nuclear Information System (INIS)

    2016-01-01

    The joint Varenna-Lausanne international workshop on the theory of fusion plasmas took place in Varenna from August 29 to September 2 2016. Several issues of interest for fusion plasmas were addressed, namely MHD stability, RF heating, collisional and turbulent transport, plasma wall interaction, and physics of burning plasmas. The articles published in this special issue illustrate nicely the well balanced combination of physics, applied mathematics, and computer sciences that characterizes this workshop. Let us mention several attractive topics, which are addressed in this issue. The question of 3D MHD equilibrium in tokamaks has received a great deal of attention, in connection with external resonant magnetic perturbations in tokamaks, and also stochastic edge in stellarators. The reader will also find some recent developments related to the effect of current drive and heating on the stability of tearing modes. As usual, turbulent transport is addressed in much detail. Several papers address specific numerical aspects of fluid and gyrokinetic codes, including code optimisation. Physics issues are abundantly dealt with, such as the impact of fast particles on turbulence, and particle transport. New numerical techniques to model wave propagation are presented, which provide significant advances in the field. Refinements such as the effect of density fluctuation on wave propagation, or the interaction between particles and the electromagnetic field near antennas, have also been studied in depth. Finally, specific issues such as nonlocal transport, decay of zonal flows, and the effect of neutrals on rotation have been investigated. A striking feature of the 2016 edition was the large number of young faces among the participants. This is a great satisfaction for the organizers since a new generation of scientists is certainly needed whilst several devices come to operation, or will do so in a foreseeable future. The diversity and quality of the papers published in

  17. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  18. GATO: An MHD stability code for axisymmetric plasmas with internal separatrices

    International Nuclear Information System (INIS)

    Bernard, L.C.; Helton, F.J.; Moore, R.W.

    1981-01-01

    The GATO code computes the growth rate of ideal magnetohydrodynamic instabilities in axisymmetric geometries with internal separatrices such as doublet and expanded spheromak. The basic method, which uses a variational principle and a Galerkin procedure to obtain a matrix eigenvalue problem, is common to the ERATO and PEST codes. A new coordinate system has been developed to handle the internal separatrix. Efficient algorithms have been developed to solve the matrix eigenvalue problem for matrices of rank as large as 40 000. Further improvement is expected using graph theoretical techniques to reorder the matrices. Using judicious mesh repartition, the marginal point can be determined with great precision. The code has been extensively used to optimize doublet and general tokamak plasmas. (orig.)

  19. Fast wave current drive in neutral beam heated plasmas on DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value

  20. Study of fast wave current drive in a KT-2 tokamak plasma

    International Nuclear Information System (INIS)

    Hong, B.G.; Hamamatsu, Kiyotaka

    1996-02-01

    Global analysis of fast wave current drive in a KT-2 tokamak plasma is performed by using the code, TASKW1, developed by JAERI and Okayama University (Dr. Fukuyama), which solves the kinetic wave equation in a one dimensional slab geometry. A phase-shifted antenna array is used to inject toroidal momentum to electrons. To find guidelines of optimum antenna design for efficient current drive, accessibility conditions are derived. The dependence of the current drive efficiency on launching conditions such as the total number of antennas, phase and spacing is investigated for two cases of wave frequency; f=30 MHz ( cH ) and f=225 MHz (=5f cH ). (author)

  1. Power Transfer to plasma Coxial accelerator

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; Soliman, H.M.; Masoud, M.M.

    2000-01-01

    The total power transfer from the condenser bank, to plasma coaxial accelerator device is theoretically studied by using the voltage equation of the entire circuit and applying impulse - linear momentum theorem. This total power represents a combination of (a) the power flowing to the external inductance, (b) the power flowing to the inductance of that part of electrode system between the breech and the momentary position of the plasma current sheath, (c) the power flowing in the annular space between the two coaxial electrodes, to form the magnetic field induction, (d) the power flowing to accelerate the initial mass, (e) the power flowing to accelerate the mass, which has been swept up into the plasma current sheath, (f) the power, which produces directed kinetic energy for the plasma current sheath, (g) the power, which produces internal energy in the plasma sheath, (h) the joule heating. The peak value of the total power = 6x10 8 watt at t=4 MUs, for maximum calculated discharge current = 110KA with a with a period of 34 us. Experimentally its equal to 3.5x10 8 watt at 7MUs and I 0 = 85KA. The energy flow to the coaxial discharge system has been evaluated theoretically and experimentally, E-MAX (CALCULATED)=5.92X10 2 J AT T = 5.5 MUs and E m ax (measured) = 3.54x10 2 joule at 7.5 MUs

  2. Dynamics of a coaxial plasma gun

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1977-01-01

    The dynamics of an ionizing wave in a coaxial plasma gun with an azimuthal bias magnetic field is analysed in a theoretical model. Only the radial dependence is treated and instead of including a treatment of the energy balance two separate physical assumptions are made. In the first case it is assumed that the total internal electric field is given by the critical ionization velocity condition and in the second that the ionization rate is constant. For consistency wall sheaths are assumed to match the internal plasma potential to that of the walls. On the basis of momentum and particle balance the radial dependence of the electron density, current density, electric field and drift velocity are found. An electron source is required at the cathode and the relative contribution from ionization within the plasma is deduced. The assumption that there are no ion sources at the electrodes leads to a restriction on the possible values of the axial electric field. (Auth.)

  3. CHALLENGES OF INTERNAL AUDIT IN THE CURRENT CRISIS

    Directory of Open Access Journals (Sweden)

    Popa Adriana Florina

    2013-07-01

    Full Text Available Modern economic theories reject the generalization of theories concerning the economic and financial crises. Each financial crisis is unique, a historic accident, generated by specific factors in a certain socio-economic and political set-up. According to these theories, crises cannot be anticipated so as to minimize their negative effects. In spite of the fact that economic and financial crises are not identical and do not produce identical effects, history teaches us that they are strongly correlated with the cyclic nature of economic processes. The current economic recession, which shows in all fields of activity, is determining auditors to make evaluations which are a lot more precise, based on extensive procedures, as long as the presumption of activity continuity into the future is accurate. In this context, internal audit is individualized as an managerial assistance function, which allows a correct perception of the reality of the business as a whole and/or as predefined processes. The purpose of this paper is to create an overall picture of internal audit by collecting data and information from literature and showing the dimensions and the internal audit practices internationally. Therefore, we conducted a research based on the analysis of national and international publications, various articles and studies in the financial press, on the emergence and development of the internal audit function both internationally and nationally. Later we analyzed the position of internal audit in terms of global financial crisis, all these leading to the usage of a comparative study of twelve international companies in order to highlight the specific features of the internal audit function in each organization. Our intention is to emphasize aspects of internal audit departments, relations between them and the management, their role in companies based on studies provided by Protiviti, a global consulting and internal audit services company, having

  4. On the generation of steady currents in a plasma cylinder using RF waves

    International Nuclear Information System (INIS)

    Hugrass, W.N.

    1980-10-01

    The generation of a steady current in a resistive plasma cylinder by means of a travelling wave magnetic field has been studied using the resistive MHD equations. The nonlinear initial-boundary value problem has been solved using a semi-Lagrangian two dimensional algorithm. The numerical code has been used to simulate the Synchromak experiment of Nagoya University. Hollow d.c. current profiles, similar to the experimental data, have been obtained. A simple analytical argument, of a more general nature, shows that classical resistive diffusion cannot lead to a more uniform current distribution

  5. Convective instability of internal modes in accelerated compressible plasmas

    International Nuclear Information System (INIS)

    Gratton, Julio; Gratton, F.T.; Gonzalez, A.G.; Buenos Aires Univ.

    1988-01-01

    A compact second order differential equation for small amplitude magnetohydrodynamic modes of a plasma stratification in a uniform effective gravity field is derived. The steady state includes non uniform density, mass motion, magnetic shear and non isotropic pressure, given by arbitrary profiles. The perturbation treatment is of the magnetohydrodynamic class, with two closure equations for the time evolution of the pressure, in order to encompass ideal MHD, the Chew, Goldberger and Low, and other non isotropic models. As an application a detailed study of the compressible, convective-gravity modes in the ideal isotropic MHD case is presented. Local criteria for the convective instability are first obtained by means of physically intuitive arguments for unidirectional and for sheared magnetic field. In both instances a rigorous variational energy treatment is then provided. In the second case, a criterion analogous to that of Suydam for the pinch is shown to hold for plasma atmospheres. Global internal modes for an isothermal equilibrium with unidirectional magnetic field are then analysed. Stability criteria and growth rates of the unstable modes are studied. Areas of application of the reported results are indicated. (author)

  6. Thermonuclear controlled fusion: international cooperation

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2001-01-01

    This report summarizes the current worldwide status of research in the field of thermonuclear controlled fusion as well as the international research programme planed for the next decades. The two main projects will be the ITER facility (International Thermonuclear Experimental Reactor) that should produce 10 times more energy than the energy injected, and the IFMIF (International Fusion Materials Irradiation Facility) designed to study the reactions of materials under intense neutron fluxes. The future of the pioneering JET facility (Joint European Torus) is also discussed. The engagement of the various countries (USA, Japan, Germany, Russian Federation and Canada) and international organisations (EURATOM and IEA) in terms of investment and research is described. Switzerland is involved in this program through an agreement with EURATOM and is mainly dedicated to experimental studies with the TCV machine in Lausanne and numerical studies of plasma configurations. It will participate to the development of the microwave plasma heating system for the ITER machine

  7. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Kingma, H.; Van de Berg, R. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre, Minderbroedersberg 4-6, 6211 LK Maastricht (Netherlands)

    2016-04-15

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  8. High beta plasma operation in a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results

  9. Linear quadratic Gaussian controller design for plasma current, position and shape control system in ITER

    International Nuclear Information System (INIS)

    Belyakov, V.; Kavin, A.; Rumyantsev, E.; Kharitonov, V.; Misenov, B.; Ovsyannikov, A.; Ovsyannikov, D.; Veremei, E.; Zhabko, A.; Mitrishkin, Y.

    1999-01-01

    This paper is focused on the linear quadratic Gaussian (LQG) controller synthesis methodology for the ITER plasma current, position and shape control system as well as power derivative management system. It has been shown that some poloidal field (PF) coils have less influence on reference plasma-wall gaps control during plasma disturbances and hence they have been used to reduce total control power derivative by means of the additional non-linear feedback. The design has been done on the basis of linear models. Simulation was provided for non-linear model and results are presented and discussed. (orig.)

  10. PLASMA-2005: International Conference on Research and Applications of Plasmas combined with the 3. German-Polish Conference on Plasma Diagnostics for Fusion and Applications and the 5. French-Polish Seminar on Thermal Plasma in Space and Laboratory. Book of Abstracts

    International Nuclear Information System (INIS)

    Ksiazek, K.

    2005-01-01

    The International Conferences 'PLASMA' have been organized in Poland every two years since 1993. The German-Polish Conferences on Plasma Diagnostics were started in 2002, and the French-Polish Seminars on Thermal Plasmas were initiated in 1997. To reduce a number of topical conferences and to improve an exchange of information among different plasma research groups it was agreed to organize for the first time the triple conference at the Opole University, Poland, on September 6-9, 2005. The chairman of the International Scientific Committee (ISC) was Professor Marek J. Sadowski from IPJ in Swierk, and the co-chairmen were Professor Thomas Klinger of the IPP-Greifswald and Professor Michel Dudeck of the CNRS-Orleans. The chairman of LOC was Professor Jozef Musielok of the Opole University. This conference was designed for interested scientists, engineers and students from all the countries, but particularly for these from the Central and Eastern Europe (see http://draco.uni.opole.pl/plasma2005). The scientific programme of the conference embraced almost all directions of plasma research and technology, i.e.: 1. Elementary processes and general theory of plasma; 2. Plasmas in tokamaks, stellerators and related experiments; 3. plasmas in Z-pinch and PF discharges; 4. Plasmas produced by intense laser beams; 5. Plasmas of micro-wave and glow discharges; 6. Plasmas in spark- and arc-discharges; 7. Plasmas in space; 8. Diagnostics and experimental facilities; 9. Applications of quasi-stationary and pulsed plasmas. Participants of the conference were 127 plasma experts (including 23 invited speakers) from 13 different countries, as well as several honorary guests from local authorities and the most important plasma research centers in Poland. Most numerous groups came from Poland (58 persons), Germany (15 persons), France (14 persons), Czech Republic (11 persons), Russia (7 persons), and Ukraine (6 persons). The participants came also from Belarus, Hungary, Iran, Japan

  11. Studies of internal stress in diamond films prepared by DC plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    Wang Wanlu; Gao Jinying; Liao Kejun; Liu Anmin

    1992-01-01

    The internal stress in diamond thin films deposited by DC plasma CVD was studied as a function of methane concentration and deposited temperature. Experimental results have shown that total stress in diamond thin films is sensitive to the deposition conditions. The results also indicate that the compressive stress can be explained in terms of amorphous state carbon and hydrogen, and tensile stress is ascribed to the grain boundary relaxation model due to high internal surface area and microstructure with voids

  12. High density internal transport barriers for burning plasma operation

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.

    2005-01-01

    One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more stringent requests are: the ITB must be sustained with electron heating only with no or very small external momentum source, the strong collisional coupling at the envisaged density (line average >1.0 1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large induced gradients must have a radial profile consistent with that requested by the barrier creation and sustainment. To all these items the studies carried out in FTU in the same density range (ne0 ?1.5 1020 m-3) provide encouraging prospects. With pure electron heating and current drive (LH+ECH) steady electron barrier are generated and maintained with central e- temperature >5.0 keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total and well aligned with that driven by the LH waves and responsible for the barrier building. The clear change in the density fluctuations close to the ITB radius, observed by reflectometry, indicates stabilization of turbulence that is consistent with the drop of the thermal electron diffusivity inside the ITB to very low values, ?e<0.5 m2/s estimated by the transport analysis. The 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually ?Ti0/Ti0 does not exceed 40%, because the e--i + equipartition time, always 4-5 times longer than the energy confinement time, does not allow thermal equilibrium with electrons to be attained. The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be controlled by varying the LH power deposition profile that is

  13. Analysis of the direction of plasma vertical movement during major disruptions in ITER

    International Nuclear Information System (INIS)

    Lukash, Victor; Sugihara, Masayoshi; Gribov, Yuri; Fujieda, Hirobumi

    2005-01-01

    The plasma movement in the upward direction (away from the X-point) after the thermal quench (TQ) of major disruptions in ITER is favourable for the machine design, since the downward movement causes larger electromagnetic (EM) load due to the induced eddy and halo currents. Vertical directions of plasma movement after the TQ in ITER are investigated using the predictive mode of the DINA code. Three dominant parameters in determining the direction of plasma movement are identified: (i) the rate of plasma current quench (plasma temperature after the TQ) (ii) the width of plasma current mixing area just after the TQ (change of the internal plasma inductance l i ) and (iii) the initial vertical position of plasma column before the TQ. It is shown that the reference ITER plasma moves upwards after the TQ, if the electron temperature after the TQ is less than 10 eV and the drop of l i does not exceed 0.2 for the present reference initial vertical position (55.5 cm above the centre of the machine). It is also shown that the operational domain leading to the upward movement is considerably large for disruptions with fast current quench, which could generate quite severe EM load due to the induced eddy current combined with the induced halo current if the movement is downwards

  14. Current-drive and plasma formation experiments on the Versator-II tokamak using lower-hybrid and electron-cyclotron waves

    International Nuclear Information System (INIS)

    Colborn, J.A.

    1992-01-01

    During lower-hybrid current-driven (LHCD) tokamak discharges with thermal electron temperature T e ∼ 150 eV, a two-parallel-temperature tail is observed in the electron distribution function. The cold tail extends to parallel energy E parallel ∼ 4.5 keV with temperature T cold tail ∼ 1.5 keV, and the hot tail extends to E parallel > 150 keV with T hot tail > 40 keV. Fokker-Planck computer simulations suggest the cold tail is created by low power, high-N parallel sidelobes in the lower-hybrid antenna spectrum, and that these sidelobes bridge the spectral gap, enabling current drive on small tokamaks such as Versator. During plasma-formation experiments using 28 GHz electroncyclotron (EC) waves, the plasma is born near the EC layer, then moves toward the upper-hybrid (UH) layer within 100-200μs. Wave power is detected in the plasma with frequency f = 300 MHz. Measured turbulent plasma fluctuations are correlated with decay-wave amplitude. Electron-cyclotron current-drive (ECCD) is observed with loop voltage V loop ≤ 0 and fully sustained plasma current I p approx-lt 15 kA at densities up to [n e ] = 2 x 10 12 cm -3 . The efficiency falls rapidly to zero as the density is raised, suggesting the ECCD depends on low collisonality. The EC waves enhance magnetic turbulence in the frequency range 50 kHz approx-lt f approx-lt 400 kHz by up to an order of magnitude. The time-of-arrival of the turbulence to probes at the plasma boundary is longer when the EC layer is farther from the probes

  15. Steady-state dynamo and current drive in a nonuniform bounded plasma

    International Nuclear Information System (INIS)

    Mett, R.R.; Taylor, J.B.

    1991-03-01

    Current drive due to helicity injection and dynamo effect are examined in an inhomogeneous bounded plasma. Averaged over a magnetic surface, there is in general no dynamo effect independent of resistivity -- contrary to the results found previously for an unbounded plasma. The dynamo field is calculated explicitly for an incompressible visco-resistive fluid in the plane-slab model. In accord with our general conclusion, outside the Alfven resonant layer it is proportional to the resistivity. Within the resonant layer there is a contribution which is enhanced, relative to its value outside the layer, by a factor (ωa 2 /(η + ν)), where ω is the wave frequency, a the plasma radius, η the magnetic diffusivity, and ν the kinematic viscosity. However, this contribution vanishes when integrated across the layer. The average field in the layer is enhanced by factor (ωa 2 /(η + ν)) 2/3 and is proportional to the shear in the magnetic field and the cube root of the gradient of the Alfven speed. These results are interpreted in terms of helicity balance, and reconciled with the infinite medium calculations. 15 refs

  16. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  17. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  18. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  19. The current-voltage characteristic and potential oscillations of a double layer in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, R.T.; Torven, S.

    1986-07-01

    The properties of a strong double layer in a current circuit with a capacitance and an inductance are investigated in a triple plasma device. The double layer gives rise to a region of negative differential resistance in the current-voltage characteristic of the device, and this gives non-linear oscillations in the current and the potential drop over the double layer (PhiDL). For a sufficiently large circuit inductance PhiDL reaches an amplitude given by the induced voltage (-LdI/dt) which is much larger than the circuit EMF due to the rapid current decrease when PhiDL increases. A variable potential minimum exists in the plasma on the low potential side of the double layer, and the depth of the minimum increases when PhiDL increases. An increasing fraction of the electrons incident at the double layer are then reflected, and this is found to be the main process giving rise to the negative differential resistance. A qualitative model for the variation of the minimum potential with PhiDL is also proposed. It is based on the condition that the minimum potential must adjust itself self-consistentely so that quasi-neutrality is maintained in the plasma region where the minimum is assumed. (authors)

  20. Variations of current profiles in tokamaks. Formation mechanism and confinement property of current-hole configuration

    International Nuclear Information System (INIS)

    Takizuka, Tomonori

    2003-01-01

    The formation mechanism of the current hole in tokamak plasmas is reviewed. Experimental results of JT-60U are shown. Increase of the off-central noninductive current is a key factor for the current-hole formation. The internal Transport Barrier (ITB), which generates large bootstrap current, plays an important role. The central current density in the hole stays nearly 0. The idea of a new equilibrium for a tokamak plasma with a current hole is introduced. This equilibrium configuration called Axisymmetric Tri-Magnetic-Islands (ATMI) equilibrium', has three islands along the R direction (a central-negative-current island and side-positive-current islands). The equilibrium is stable with the elongation coils when the current in the ATMI region is limited to a small amount. The confinement properties of a current-hole configuration with box-type ITB is described. A scaling of the core poloidal beta inside the ITB, β p,core , is given as ε f β p,core approx. = 1, which suggests the equilibrium limit (ε f : inverse aspect ratio at the ITB foot). Though the core stored energy is little dependent on the heating power, the estimated heat diffusivity in the ITB region moderately correlates with a neoclassical diffusivity. (author)

  1. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    International Nuclear Information System (INIS)

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-01-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results

  2. Plasma medicine: an introductory review

    International Nuclear Information System (INIS)

    Kong, M G; Kroesen, G; Van Dijk, J; Morfill, G; Nosenko, T; Shimizu, T; Zimmermann, J L

    2009-01-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology-an unavoidable by-product of interdisciplinary research-is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene-helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  3. Effect of plasma spraying modes on material properties of internal combustion engine cylinder liners

    Science.gov (United States)

    Timokhova, O. M.; Burmistrova, O. N.; Sirina, E. A.; Timokhov, R. S.

    2018-03-01

    The paper analyses different methods of remanufacturing worn-out machine parts in order to get the best performance characteristics. One of the most promising of them is a plasma spraying method. The mathematical models presented in the paper are intended to anticipate the results of plasma spraying, its effect on the properties of the material of internal combustion engine cylinder liners under repair. The experimental data and research results have been computer processed with Statistica 10.0 software package. The pare correlation coefficient values (R) and F-statistic criterion are given to confirm the statistical properties and adequacy of obtained regression equations.

  4. Stable sustainment of plasmas with electron internal transport barrier by ECH in the LHD

    Science.gov (United States)

    Yoshimura, Y.; Kasahara, H.; Tokitani, M.; Sakamoto, R.; Ueda, Y.; Marushchenko, N. B.; Seki, R.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Akiyama, T.; Tanaka, K.; Tokuzawa, T.; Yamada, I.; Yamada, H.; Mutoh, T.; Takeiri, Y.; the LHD Experiment Group

    2018-02-01

    The long pulse experiments in the Large Helical Device has made progress in sustainment of improved confinement states. It was found that steady-state sustainment of the plasmas with improved confinement at the core region, that is, electron internal transport barrier (e-ITB), was achieved with no significant difficulty. Sustainment of a plasma having e-ITB with the line average electron density n e_ave of 1.1 × 1019 m-3 and the central electron temperature T e0 of ˜3.5 keV for longer than 5 min only with 340 kW ECH power was successfully demonstrated.

  5. Optimization and control of the plasma shape and current profile in noncircular cross-section tokamaks

    International Nuclear Information System (INIS)

    Moore, R.W.; Bernard, L.C.; Chan, V.S.; Davidson, R.H.; Dobrott, D.R.; Helton, F.J.; Miller, R.L.; Pfeiffer, W.; Waltz, R.E.; Wang, T.S.

    1980-06-01

    High-β equilibria which are stable to all ideal MHD modes are found by optimizing the plasma shape and current profile for doublets, up-down asymmetric dees, and symmetric dees. The ideal MHD stability of these equilibria for low toroidal mode number n is analyzed with a global MHD stability code, GATO. The stability to high-n modes is analyzed with a localized ballooning code, BLOON. The attainment of high β is facilitated by an automated optimization search on shape and current parameters. The equilibria are calculated with a free-boundary equilibrium code using coils appropriate for the Doublet III experimental device. The optimal equilibria are characterized by broad current profiles with values of β/sub poloidal/ approx. =1. Experimental realization of the shapes and current profiles giving the highest β limits is explored with a 1 1/2-D transport code, which simulates the time evolution of the 2-D MHD equilibrium while calculating consistent current profiles from a 1-D transport model. Transport simulations indicate that nearly optimal shapes may be obtained provided that the currents in the field-shaping coils are appropriately programmed and the plasma current profile is sufficiently broad. Obtaining broad current profiles is possible by current ramping, neutral beam heating, and electron cyclotron heating. With combinations of these techniques it is possible to approach the optimum β predicted by the MHD theory

  6. Magnetic fields and uniformity of radio frequency power deposition in low-frequency inductively coupled plasmas with crossed internal oscillating currents

    DEFF Research Database (Denmark)

    Tsakadze, Erekle; Ostrikov, K.N.; Tsakadze, Z.L.

    2004-01-01

    ) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ("pancake") antennas. Relatively deeper rf power deposition...... in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental...

  7. Internal plasma diagnostic with a multichannel magnetic probe system using automatic data acquisition

    International Nuclear Information System (INIS)

    Korten, M.; Carolan, P.G.; Sand, F.; Waelbroeck, F.

    1975-04-01

    A 20-channel magnetic probe system inserted into the plasma is used to measure spatial distributions of poloidal and toroidal magnetic fields in the pulsed toroidal high β-experiment TEE. Plasma parameters, e.g. the β-value, toroidal current density and radial pressure distribution were derived applying static equilibrium theory and can be calculated from the measurements. A data acquisition system used in conjuction with a process computer was operated to obtain the experimental data automatically and to perform the multiple computational tasks. The program system described was built to serve as a first stage of a more common software system applicable for computational data handling for different diagnostics of a plasma physics confinement experiment. (orig.) [de

  8. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    Science.gov (United States)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.

    2018-01-01

    Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.

  9. Assessment of quasi-linear effect of RF power spectrum for enabling lower hybrid current drive in reactor plasmas

    Science.gov (United States)

    Cesario, Roberto; Cardinali, Alessandro; Castaldo, Carmine; Amicucci, Luca; Ceccuzzi, Silvio; Galli, Alessandro; Napoli, Francesco; Panaccione, Luigi; Santini, Franco; Schettini, Giuseppe; Tuccillo, Angelo Antonio

    2017-10-01

    The main research on the energy from thermonuclear fusion uses deuterium plasmas magnetically trapped in toroidal devices. To suppress the turbulent eddies that impair thermal insulation and pressure tight of the plasma, current drive (CD) is necessary, but tools envisaged so far are unable accomplishing this task while efficiently and flexibly matching the natural current profiles self-generated at large radii of the plasma column [1-5]. The lower hybrid current drive (LHCD) [6] can satisfy this important need of a reactor [1], but the LHCD system has been unexpectedly mothballed on JET. The problematic extrapolation of the LHCD tool at reactor graded high values of, respectively, density and temperatures of plasma has been now solved. The high density problem is solved by the FTU (Frascati Tokamak Upgrade) method [7], and solution of the high temperature one is presented here. Model results based on quasi-linear (QL) theory evidence the capability, w.r.t linear theory, of suitable operating parameters of reducing the wave damping in hot reactor plasmas. Namely, using higher RF power densities [8], or a narrower antenna power spectrum in refractive index [9,10], the obstacle for LHCD represented by too high temperature of reactor plasmas should be overcome. The former method cannot be used for routinely, safe antenna operations, Thus, only the latter key is really exploitable in a reactor. The proposed solutions are ultimately necessary for viability of an economic reactor.

  10. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  11. Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2010-11-01

    The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.

  12. Transport and stability studies in negative central shear advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Jayakumar, R.J.

    2003-01-01

    Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q min values. (orig.)

  13. Transport and stability studies in negative central shear advanced tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, R.J. [Lawrence Livermore National Laboratory (United States)

    2003-07-01

    Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q{sub min} values. (orig.)

  14. Schlieren Cinematography of Current Driven Plasma Jet Dynamics

    Science.gov (United States)

    Loebner, Keith; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    Schlieren cinematography of a pulsed plasma deflagration jet is presented and analyzed. An ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse (20 μs). The Schlieren signal is radiometrically calibrated to obtain a two dimensional mapping of the refraction angle of the axisymmetric pinch plasma, and this mapping is then Abel inverted to derive the plasma density distribution as a function radius, axial coordinate, and time. Analyses of previously unknown discharge characteristics and comparisons with prior work are discussed.

  15. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  16. Recent QUEST experiments on non-inductive current drive and plasma-wall interaction towards steady state operation of spherical tokamak

    International Nuclear Information System (INIS)

    Hanada, K.; Zushi, H.; Idei, H.; Nakamura, K.; Nagashima, Y.; Hasegawa, M.; Fujisawa, A.; Higashijima, A.; Kawasaki, S.; Nakashima, H.; Ishiguro, M.; Tashima, S.; Kalinnikova, E.I.; Mitarai, O.; Maekawa, T.; Fukuyama, A.; Takase, Y.; Gao, X.; Liu, H.; Qian, J.; Ono, M.; Raman, R.; Peng, M.

    2015-01-01

    Full text of publication follows. Steady state operation (SSO) of magnetic fusion devices is one of the goals for fusion research. Development of non-inductive current drive and investigation of plasma-wall interaction (PWI) are issues to be resolved for SSO. Because of the very limited central solenoid (CS) flux in a spherical tokamak (ST), methods for non-inductive plasma current start-up and sustainment are necessary. Fully non-inductive plasma up to approximately 5 min was successfully demonstrated on the spherical tokamak QUEST. Furthermore, recharging of the center solenoid coil was also achieved in OH+RF plasmas with plasma current feedback using the CS. During the plasma start-up phase, precession motion of trapped electrons can drive some current, which plays an essential role in forming a closed flux surface. On QUEST, the main parts of the plasma facing components (PFCs) are covered by tungsten plates (W) or coated by W plasma spray and are actively cooled by water circulation. The increase in water temperature quantitatively provides the deposited power to each PFC. The power balance during long duration discharges has been studied for various types of magnetic configurations such as limiter, upper and lower single-null divertor discharges. As, the temperature of any PFCs reaches a steady-state condition during long pulse, the power balance can be obtained. It is found that the discharge duration of QUEST is significantly limited by particle imbalance shown by gradual increment of plasma and neutral density. The additional influx of neutrals was provided by recycling of hydrogen, which is still uncontrollable. A point model of particle balance was applied to a long-duration divertor discharge, and it was found that a small increment of particle-influx occurred around the end of the long duration discharge. A post-mortem analysis of surface-attaching specimen during an experimental campaign indicates that the increased amount of neutral influx could be

  17. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  18. The 26th IEEE international conference on plasma science

    International Nuclear Information System (INIS)

    1999-01-01

    Some of the sessions covered by this conference are: Basic Processes in Fully and Partially Ionized Plasmas; Slow Wave Devices; Laser-Produced Plasma; Non-Equilibrium Plasma Processing; Space Plasmas and Partially Ionized Gases; Microwave Plasmas; Inertial Confinement Fusion; Plasma Diagnostics; Computational Plasma Physics; Microwave Systems; Laser Produced Plasmas and Dense Plasma Focus; Intense Electron and Ion Beams; Fast Wave Devices; Spherical Configurations and Ball Lightning; Thermal Plasma Chemistry and Processing and Environmental Issues in Plasma Science; Plasma, Ion, and Electron Sources; Fast Wave Devices and Intense Beams; Fast Z-pinches and X-ray Lasers; Plasma Opening Switches; Plasma for Lighting; Intense Beams; Vacuum Microwaves; Magnetic Fusion Energy; and Plasma Thrusters and Arcs. Separate abstracts were prepared for some of the papers in this volume

  19. X-ray measurements during plasma current start-up experiments using the lower hybrid wave on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Wakatsuki, Takuma; Ejiri, Akira; Kakuda, Hidetoshi

    2012-01-01

    Non-inductive plasma current start-up experiments using RF power in the lower hybrid frequency range is being conducted on the TST-2 spherical tokamak. Plasma currents of up to 15 kA have been achieved. The effect of direct current drive can be seen by comparing the cases with co-drive and counter-drive. X-rays in various energy ranges were measured to investigate the interaction between the wave and the electrons. Soft X-ray (SX) measurements revealed that the perpendicular SX emission increased significantly as the plasma current increased, and that the tangential SX emission in the direction of RF drive was enhanced more strongly in the co-drive case compared to the counter-drive case. These observations imply that the fast electrons accelerated by the lower hybrid wave contribute to the plasma current. However, RF amplitude modulation experiments showed that the confinement time of these fast electrons are very short (less than 0.05 ms), much shorter than the collisional slowing down time. Hard X-ray spectral measurements showed that the radiation temperature of fast electrons in the co-direction for current drive was higher than that in the counter-direction. These observations are consistent with the existence of RF-driven fast electrons. (author)

  20. Current assessment and future potential of the international nuclear market

    International Nuclear Information System (INIS)

    Cassidy, P.R.

    1983-01-01

    This is a study of the current and future situation of the international nuclear market. This paper highlights the projections as seen not only by Bechtel Power Corporation, but also by the international nuclear community. It covers in particular the electric power growth projection; the percentage of probable nuclear power generation; operating services for existing nuclear power plants; and the nuclear fuel cycle. (NEA) [fr