WorldWideScience

Sample records for internal magnetospheric processes

  1. Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena

    Science.gov (United States)

    Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.

    2017-12-01

    On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614

  2. Auroral phenomenology and magnetospheric processes earth and other planets

    CERN Document Server

    Keiling, Andreas; Bagenal, Fran; Karlsson, Tomas

    2013-01-01

    Published by the American Geophysical Union as part of the Geophysical Monograph Series. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the diffe

  3. Acceleration processes in the magnetospheric plasma: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, A [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1975-01-01

    Our present knowledge on the acceleration process in the magnetospheric plasma is reviewed and major problems are summarized. Acceleration processes can be classified into three categories. First, acceleration can be made by the reconnection process in the magnetotail. The occurrence of reconnection during substorm expansion phases has been confirmed, but details of the energy conversion mechanism need be clarified. Second, acceleration by the electric potential drop along magnetic field lines has been strongly suggested from observations of precipitating particles. The position and structure of the potential layer, however, have not been clarified, and theoretical understanding of the process is still in the early stage of development. Third, particles can be adiabatically heated as they are driven toward the earth in the course of their convective motion. Spatial structure and dynamical development of the auroral precipitation pattern represent both challenge and clue to the understanding of the magnetospheric acceleration process.

  4. Physical processes for the onset of magnetospheric substorms

    International Nuclear Information System (INIS)

    Kan, J.R.; Akasofu, S-I.; Lee, L.C.

    1980-01-01

    There are at least three important advances in observational as well as theoretical understanding of substorm processes during the last several years; they are: (i) the 'V-shaped' potential structure for auroral acceleration, (ii) deflation as the cause of thinning of the distant plasma sheet, and (iii) interruption and subsequent diversion of the cross-tail current during the expansive phase of magnetospheric substorms. A possible chain of processes is suggested, including (i), (ii) and (iii) as vital parts, which leads to substorm onset. (Auth.)

  5. Competing processes of whistler and electrostatic instabilities in the magnetosphere

    International Nuclear Information System (INIS)

    Omura, Y.; Matsumoto, H.

    1987-01-01

    Competing processes of whistler mode and electrostatic mode instabilities induced by an electron beam are studied by a linear growth rate analysis and by an electromagnetic particle simulation. In addition to a background cold plasma we assumed an electron beam drifting along a static magnetic field. We studied excitation of whistler and electrostatic mode waves in the direction of the static magnetic field. We first calculated linear growth rates for the whistler mode and electrostatic mode instabilities, assuming various possible parameters in the equatorial magnetosphere. We found that the growth rate for the electrostatic instability is always larger than that of the whistler mode instability. A short simulation run with a monoenergetic electron beam demonstrates that a monoenergetic beam can hardly give energy to whistler mode waves as a result of competition with faster growing electrostatic waves, because the beam electrons are trapped and diffused by the electrostatic waves, and hence the growth rates for whistler mode waves become very small. A long simulation run starting with a warm electron beam demonstrates that whistler mode waves are excited in spite of the small growth rates and the coexisting quasi-linear electrostatic diffusion process

  6. The magnetosphere

    International Nuclear Information System (INIS)

    Ratcliffe, J.A.

    1977-01-01

    The structure of the magnetosphere, deduced from observations in space craft, is described, together with some of the phenomena that occur in it. A simple non-mathematical outline is given of some of the processes involved. The effects of the magnetosphere on the aurora, and on the magnetic field observed at the ground, are described, and the way they change during magnetospheric storms is discussed. (author)

  7. Challenges Handling Magnetospheric and Ionospheric Signals in Internal Geomagnetic Field Modelling

    DEFF Research Database (Denmark)

    Finlay, Chris; Lesur, V.; Thébault, E.

    2017-01-01

    systems in the ionosphere and magnetosphere. In order to fully exploit magnetic data to probe the physical properties and dynamics of the Earth’s interior, field models with suitable treatments of external sources, and their associated induced signals, are essential. Here we review the methods presently......-by-track analysis to characterize magnetospheric field fluctuations, differences in internal field models that result from alternative treatments of the quiet-time ionospheric field, and challenges associated with rapidly changing, but spatially correlated, magnetic signatures of polar cap current systems. Possible...

  8. Modeling Magnetospheric Fields in the Jupiter System

    OpenAIRE

    Saur, Joachim; Chané, Emmanuel; Hartkorn, Oliver

    2018-01-01

    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the ...

  9. Research at United States Antarctic stations during the International Magnetosphere Study

    International Nuclear Information System (INIS)

    Rosenberg, T.J.

    1982-01-01

    During the International Magnetospheric Study (IMS) the U.S. operated programs at McMurdo, Siple, South Pole, and Palmer stations and at the Soviet Vostok station. Details concerning measurement locations are considered, and program summaries are provided. The programs are related to the study of geomagnetic variations, magnetic pulsations in the polar cap, cosmic noise absorption, VLF radio waves, auroral photometry, the morphology and dynamics of visible auroral forms, cosmic ray intensity variations, and auroral infrasonic waves. One program is based on the utilization of VHF Doppler auroral radar

  10. Dynamics of magnetospheric plasmas

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1985-01-01

    The dynamical behavior of the magnetospheric plasmas which control the electrostatic charging of spacecraft is the result of the complex interaction of a variety of production, loss, transport, and energization mechanisms in the magnetosphere. This paper is intended to provide the spacecraft engineer with a foundation in the basic morphology and controlling processes pertaining to magnetospheric plasma dynamics in the inner magnetosphere, including the synchronous orbit region. 32 references

  11. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  12. Inner Magnetospheric Physics

    Science.gov (United States)

    Gallagher, Dennis

    2018-01-01

    Outline - Inner Magnetosphere Effects: Historical Background; Main regions and transport processes: Ionosphere, Plasmasphere, Plasma sheet, Ring current, Radiation belt; Geomagnetic Activity: Storms, Substorm; Models.

  13. Magnetospheric Multiscale (MMS) Observation of Plasma Velocity-Space Cascade Processes

    Science.gov (United States)

    Parashar, T. N.; Servidio, S.; Matthaeus, W. H.; Chasapis, A.; Perrone, D.; Valentini, F.; Veltri, P.; Gershman, D. J.; Schwartz, S. J.; Giles, B. L.; Fuselier, S. A.; Phan, T.; Burch, J.

    2017-12-01

    Plasma turbulence is investigated using high-resolution ion velocity distributions, measured by theMagnetospheric Multiscale Mission (MMS) in the Earth's magnetosheath. The particle distributionmanifests large fluctuations, suggesting a cascade-like process in velocity space, invoked by theoristsfor many years. This complex velocity space structure is investigated using a three-dimensional Hermitetransform that reveals a power law distribution of moments. A Kolmogorov approach leads directlyto a range of predictions for this phase-space cascade. The scaling theory is in agreement withobservations, suggesting a new path for the study of plasma turbulence in weakly collisional spaceand astrophysical plasmas.

  14. The inner magnetosphere imager mission

    International Nuclear Information System (INIS)

    Johnson, L.; Herrmann, M.

    1993-01-01

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (R E ) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  15. Magnetosheath High-Speed Jets: Coupling Bow Shock Processes to the Magnetosphere

    Science.gov (United States)

    Hietala, H.

    2016-12-01

    Magnetosheath high-speed jets (HSJs) - dynamic pressure enhancements typically of 1 Earth radius in size - are the most common dayside transient. They impact the magnetopause many times per hour, especially during intervals of low interplanetary magnetic field cone-angle. Upon impact they cause large amplitude yet localized magnetopause indentations, and can couple to global dynamics by driving magnetospheric waves that alter radiation belt electron populations, and by affecting subsolar magnetopause reconnection. Previous observational studies have provided considerable insight into properties of the HSJs. Similarly, recent hybrid simulations have demonstrated the formation of jets downstream of the quasi-parallel shock with properties resembling the observed ones. Yet these studies were based on differing definitions of transients, have used varying terminology, methodology, data sets/simulations, and yielded, not unexpectedly, differing results on origin and characteristics of jets. In this talk we will present the first results towards a more unified understanding of these jets from a dedicated International Space Science Institute (ISSI) team. In particular, we compare the three selection criteria used in the recent observational statistical studies: (i) high dynamic pressure in the Sun-Earth direction with respect to the solar wind; (ii) enhancement of the total dynamic pressure with respect to the ambient magnetosheath plasma; (iii) enhancement of density with respect to the ambient plasma. We apply these criteria to global kinetic simulations and compare what structures they pick out. Consequently, we can effectively demonstrate where the different criteria agree and where they disagree.

  16. The Earth's magnetosphere is 165 R(sub E) long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field

    Science.gov (United States)

    Fedder, J. A.; Lyon, J. G.

    1995-01-01

    The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.

  17. Magnetosphere, exosphere, and surface of Mercury

    International Nuclear Information System (INIS)

    Cheng, A.F.; Krimigis, S.M.; Johnson, R.E.; Lanzerotti, L.J.

    1987-01-01

    It is presently suggested in light of the atomic Na exosphere discovered for Mercury that this planet, like the Jupiter moon Io, is capable of maintaining a heavy ion magnetosphere. Na(+) ions from the exosphere are in this scenario accelerated to keV energies en route to making substantial contributions to the mass and energy budgets of the magnetosphere. Since Mercury's Na supply to the exosphere is primarily internal, it would appear that Mercury is losing its semivolatiles and that this process will proceed by way of photosputtering, which maintains an adequate Na-ejection rate from the planet's surface. 39 references

  18. Magnetospheric substorm

    International Nuclear Information System (INIS)

    Ondoh, Tadanori

    1974-01-01

    The results of observation of electric field, magnetic field, high energy particles, plasma and aurora on the ground and with artificial satellites during magnetospheric substorm are reviewed, and the problems are mentioned. A new image of magnetospheric substorm is described. The whole description is divided into eight parts. The first part describes the ionospheric electric current and plasma convection accompanying magnetospheric substorm. The variation of geomagnetism during the magnetospheric substorm, the ionospheric equivalent current during the growth and expansion period of substorm, and the relationship between the high energy proton flux of equatorial zone current and peripheral plasma density are illustrated. The second part describes auroral storm. The time variation of aurora observed with a whole sky camera is illustrated. The third part describes the structure of magnetosphere tail. The variation of electron spectrum parameters when the inner edge of plasma sheet passes is illustrated. The fourth part describes the auroral zone of the plasma sheet. The fifth part describes the magnetospheric substorm in magnetosphere tail. The sixth part describes the electric connection of magnetosphere with high latitudinal ionosphere. The seventh part describes interplanet magnetic field and magnetospheric substorm. The eighth part is summary. The ''SC- triggered bay'' accompanied by rapid decrease of X- or H-component occurred frequently immediately after SC in the night side of auroral zone when the rapidstart type magnetic storm at mid- and low-latitudes occurred. The correlation between the Dsub(st) at low latitude and the DS at high latitude during magnetic storm should be reexamined. (Iwakiri, K.)

  19. Venus magnetosphere

    International Nuclear Information System (INIS)

    Podgornyj, I.M.

    1983-01-01

    Some peculiarities of the structure of the Venus magnetosphere are considered. A Swedish scientist H. Alfven supposes that nebular bodies with ionospheric shelles of the type of Venus atmosphere possess induced magnetospheres with dragged magnetic tails. In the Institute of Space Research of the USSR Academy of Sciences experiments on the modelling of such magnetosphere are performed. The possibility of formation of the shock wave in the body with plasma shell in the absence of the proper magnetic shell is proved. The cosmic ''Pioneer-Venus'' equipment is used to obtain such a distribution of the magnetic field depending on the distance to Venus as it was predicted by the laboratory model

  20. Outer magnetosphere

    International Nuclear Information System (INIS)

    Schardt, A.W.; Behannon, K.W.; Lepping, R.P.; Carbary, J.F.; Eviatar, A.; Siscoe, G.L.

    1984-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc

  1. Terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Pande, D.C.; Agarwal, D.C.

    1982-01-01

    This paper presents a review about terrestrial magnetosphere. During the last few years considerable investigation have been carried out about the properties of Solar Wind and its interaction with planetary magnetic fields. It is therefore of high importance to accumulate all the investigations in a comprehensive form. The paper reviews the property of earth's magnetosphere, magnetosheath, magneto pause, polar cusps, bow shook and plasma sheath. (author)

  2. Problems related to macroscopic electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.

    1977-01-01

    The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have substantial components along the geomagnetic field, as has recently been confirmed by observations. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data

  3. Pulsar Magnetospheres and Pulsar Winds

    OpenAIRE

    Beskin, Vasily S.

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  4. Licensing Process for International Projects

    International Nuclear Information System (INIS)

    Raetzke, Christan

    2014-01-01

    Christan Raetzke, lawyer, then outlined why nuclear constructions were always international projects and in which cases it would make sense to also make the licensing process be international. His law consulting firm CONLAR focuses specifically on design review so he could adequately present why an international process would make a lot of sense without being a loss of sovereignty

  5. Pulsar magnetospheres

    International Nuclear Information System (INIS)

    Kennel, C.F.; Fujimura, F.S.; Pellat, R.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetospehere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivates, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of interia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magneto-hydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed. (orig.)

  6. Pulsars Magnetospheres

    Science.gov (United States)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  7. Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations

    Directory of Open Access Journals (Sweden)

    T. Alberti

    2016-11-01

    Full Text Available We used the empirical mode decomposition (EMD to investigate the time variation of the magnetospheric and ground-based observations of the Earth's magnetic field during both quiet and disturbed periods. We found two timescale variations in magnetospheric data which are associated with different magnetospheric current systems and the characteristic diurnal orbital variation, respectively. On the ground we identified three timescale variations related to the solar-wind–magnetosphere high-frequency interactions, the ionospheric processes, and the internal dynamics of the magnetosphere. This approach is able to identify the different physical processes involved in solar-wind–magnetosphere–ionosphere coupling. In addition, the large-timescale contribution can be used as a local index for the identification of the intensity of a geomagnetic storm on the ground.

  8. Magnetosphere imager science definition team: Executive summary

    Science.gov (United States)

    Armstrong, T. P.; Gallagher, D. L.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation.

  9. Magnetosphere imager science definition team interim report

    Science.gov (United States)

    Armstrong, T. P.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.

  10. Report of the magnetospheric physics panel

    International Nuclear Information System (INIS)

    Burch, J.L.; Potemra, T.A.; Ashourabdalla, M.; Baker, D.N.; Cattell, C.A.; Chang, A.F.; Frank, L.A.; Goertz, C.K.; Kivelson, M.G.; Lee, Lou-Chuang

    1991-01-01

    Magnetospheric research is a relatively new area in the study of the Earth's environment. The present report attempts to overview past and future research on this topic. The goals of magnetospheric research are numerous, and include: understanding large scale magnetospheres of the Earth and other planets; understanding the plasma physical processes operating within the various magnetospheres; to understand how mass, energy and momentum are transmitted from the solar wind; to understand quantitatively the coupling between magnetospheres and their ionospheres; and to understand the magnetospheric mechanisms which accelerate particles to high energies, as well as the ultimate fate of these particles. The report continues on to summarize a number of proposed space missions aimed at data acquisition. Finally, there is a brief discussion of the theory and modeling of magnetospheres

  11. Does the Magnetosphere go to Sleep?

    Science.gov (United States)

    Hesse, M.; Moretto, T.; Friis-Christensen, E. A.; Kuznetsova, M.; Østgaard, N.; Tenfjord, P.; Opgenoorth, H. J.

    2017-12-01

    An interesting question in magnetospheric research is related to the transition between magnetospheric configurations under substantial solar wind driving, and a putative relaxed state after the driving ceases. While it is conceivable that the latter state may be unique and only dependent on residual solar wind driving, a more likely scenario has magnetospheric memory playing a key role. Memory processes may be manifold: constraints from conservation of flux tube entropy to neutral wind inertia in the upper atmosphere may all contribute. In this presentation, we use high-resolution, global, MHD simulations to begin to shed light on this transition, as well as on the concept of a quiet state of the magnetosphere. We will discuss key elements of magnetospheric memory, and demonstrate their influence, as well as the actual memory time scale, through simulations and analytical estimates. Finally, we will point out processes with the potential to effect magnetospheric memory loss.

  12. Magnetospheric plasma waves

    International Nuclear Information System (INIS)

    Shawhan, S.D.

    1977-01-01

    A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)

  13. Estimation of electric fields and currents from International Magnetospheric Study magnetometer data for the CDAW 6 intervals: Implications for substorm dynamics

    International Nuclear Information System (INIS)

    Kamide, Y.; Baumjohann, W.

    1985-01-01

    Using a recently developed numerical scheme combined with International Magnetospheric Study magnetometer data and the Rice University Ionospheric conductivity model as input, the global distribution of the key ionospheric parameters is estimated for the Coordinated Data Analysis Workshop (CDAW) 6 intervals. These outputs include ionospheric electric fields and currents, field-aligned currents and Joule heat production rate at high latitudes, and are compiled in the form of a color movie film, which demonstrates dynamics of substorm changes of the three-dimensional current system as well as of the associated potential pattern. The present paper gives, on the basis of the space-time distribution of the key parameters, the substorm time frame that can be referenced to in terms of the substorm phases when discussing some other magnetospheric and ionospheric records. The distinction between ''substorm expansion'' and ''enhanced convection'' current systems is presented on the basis of the conventional equivalent current and potential patterns and ''true'' ionospheric currents. Although the auroral electrojets flow rather contiguously throughout the dark sector, there are several separate source regions of Joule heating from the electrojet currents. This indicates that the relative importance of the ionospheric conductivity and the electric field in the ionospheric currents varies considerably depending upon latitude and local time. A possible difference in the generation mechanisms of isolated and continuous substorm activity is also discussed to some extent in the light of the two CDAW 6 intervals

  14. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  15. Mercury's Dynamic Magnetosphere

    Science.gov (United States)

    Imber, S. M.

    2018-05-01

    The global dynamics of Mercury's magnetosphere will be discussed, focussing on observed asymmetries in the magnetotail and on the precipitation of particles of magnetospheric origin onto the nightside planetary surface.

  16. Research in magnetospheric wave phenomena

    International Nuclear Information System (INIS)

    Barfield, J.N.

    1975-01-01

    During the last 4 years a number of developments have occurred which have led to an increased understanding of the role of wave phenomena in the physical processes of the magnetosphere. While the studies span the frequency regime from millihertz to the electron gyrofrequency, the developments to be discussed in this paper have in common that they have added substantially to the understanding of the controlling processes, regions, and boundaries in the magnetosphere. The topics discussed are the increased awareness and documentation of the role of the plasmapause in micropulsation generation and propagation; the establishment of the role of ion cyclotron waves in the wave-particle interactions at the plasmapause; the discovery of magnetospheric electrostatic waves with ω = (3/2)Ω/sub -/; the discovery and preliminary identification of the source of plasmaspheric hiss; and the analysis of storm time Pc 5 waves as observed on the satellites ATS 1 and Explorer 45. (auth)

  17. IS OFFSHORING AN INTERNATIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Gião

    2012-01-01

    Full Text Available This article proposes to analyze the applicability of transaction cost economics - TCE (Coase, 1937; Williamson, 1975, 1979 through its characteristic make-or-buy expression, considering the offshoring pace and emerging economy firms. The make-or-buy decision must be flexible enough to explain offshoring characteristics and developed and emerging economy firms scenarios. As secondary objectives, and to show the trail to the main purpose, two research questions were identified and discussed during the paper: Is offshoring process an international movement only from developed countries to emerging economies? Is the main reason of offshoring the looking for low-cost work / activities? To achieve the proposed objectives, the structure of this paper begins with a reasonable or acceptable definition of offshoring. Some reasons (or “the reason” for the process are also another important starting point. The majority of articles referee the idea that low-cost is the main reason for offshoring, and if it is correct, transaction cost economics seems to be a good basis for our analysis purpose and integrative intention. Also some literature connections between offshoring and TCE are presented and, naturally TCE is presented in highlights for understanding these connections. Ending this section, some different arguments based on newer researches are presented by some authors presenting another perspective as the main reason. After this theoretical approach, a scenario analysis and some discussions are presented based on all possible interactions among firm from developed (DC and emerging economies (EE and examples of international corporations are presented to clarify and improve the understanding of our research questions and to build new contributions to international business theory.

  18. Theories of magnetospheres around accreting compact objects

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1979-01-01

    A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfven critical point for inflow. In the case of accretion via a well-defined disk, new problems if magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the acretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined. (orig.)

  19. Magnetospheric processes preceding the onset of an isolated substorm: A case study of the March 31, 1978, substorm

    International Nuclear Information System (INIS)

    Nishida, A.; Kamide, Y.

    1983-01-01

    We examined in detail the effect of a southward turning of the interplanetary magnetic field (IMF) on the state of the magnetosphere, taking advantage of the availability of the data from IMS magnetometer meridian chains and from several spacecraft. A clear onset substorm occurred on March 31, 1978, when the magnetometer stations were located in the midnight to morning sector and the spacecraft were near the equatorial plane of the nightside magnetosphere. The onset time of the substorm expansion phase could be determined unambiguously in terms of both ground-based magnetic and auroral signatures, and there was an interval lasting about 1 hour between the IMF southward turning and this onset. In this intervening interval the ionospheric current system of the DP 2 type developed. This enhancement of the ionospheric current was driven directly by the solar wind-magnetosphere coupling. The onset of the expansion phase was then associated with the decrease in the magnetic field energy density in the tail, providing evidence that the substorm energy was supplied by the release (unloading) of energy from the tail. It is most likely that substorm energy dissipated in the auroral ionosphere throughout this relatively isolated and simple event was supplied by two components, 'directly driven' and 'loading-unloading,' the relative importance of which varied depending on the different substorm phases

  20. Globally Imaging the Magnetosphere

    Science.gov (United States)

    Sibeck, D. G.

    2017-12-01

    Over the past two decades, a host of missions have provided the multipoint in situ measurementsneeded to understand the meso- and micro-scale physics governing the solar wind-magnetosphereinteraction. Observations by the ISTP missions, Cluster, THEMIS, Double Star, and most recentlyMMS, have enabled us to identify the occurrence of some of the many proposed models for magneticreconnection and particle acceleration in a wide range of accessible magnetospheric contexts. However, todetermine which of these processes are most important to the overall interaction, we need globalobservations, from both ground-based instrumentation and imaging spacecraft. This talk outlinessome of the the global puzzles that remain to be solved and some of the very novel means that are availableto address them, including soft X-ray, energetic neutral atom, far and extreme ultraviolet imaging andenhanced arrays of ground observatories.

  1. Stormtime and Interplanetary Magnetic Field Drivers of Wave and Particle Acceleration Processes in the Magnetosphere-Ionosphere Transition Region

    Science.gov (United States)

    Hatch, Spencer Mark

    The magnetosphere-ionosphere (M-I) transition region is the several thousand-kilometer stretch between the cold, dense and variably resistive region of ionized atmospheric gases beginning tens of kilometers above the terrestrial surface, and the hot, tenuous, and conductive plasmas that interface with the solar wind at higher altitudes. The M-I transition region is therefore the site through which magnetospheric conditions, which are strongly susceptible to solar wind dynamics, are communicated to ionospheric plasmas, and vice versa. We systematically study the influence of geomagnetic storms on energy input, electron precipitation, and ion outflow in the M-I transition region, emphasizing the role of inertial Alfven waves both as a preferred mechanism for dynamic (instead of static) energy transfer and particle acceleration, and as a low-altitude manifestation of high-altitude interaction between the solar wind and the magnetosphere, as observed by the FAST satellite. Via superposed epoch analysis and high-latitude distributions derived as a function of storm phase, we show that storm main and recovery phase correspond to strong modulations of measures of Alfvenic activity in the vicinity of the cusp as well as premidnight. We demonstrate that storm main and recovery phases occur during 30% of the four-year period studied, but together account for more than 65% of global Alfvenic energy deposition and electron precipitation, and more than 70% of the coincident ion outflow. We compare observed interplanetary magnetic field (IMF) control of inertial Alfven wave activity with Lyon-Fedder-Mobarry global MHD simulations predicting that southward IMF conditions lead to generation of Alfvenic power in the magnetotail, and that duskward IMF conditions lead to enhanced prenoon Alfvenic power in the Northern Hemisphere. Observed and predicted prenoon Alfvenic power enhancements contrast with direct-entry precipitation, which is instead enhanced postnoon. This situation

  2. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  3. Modeling magnetospheric plasma; Proceedings of the First Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, Oct. 14-16, 1987

    International Nuclear Information System (INIS)

    Moore, T.E.; Waite, J.H. Jr.

    1988-01-01

    The conference presents papers on the global modeling of magnetospheric plasma processes, the modeling of the midlatitude ionosphere and plasmasphere, the modeling of the auroral zone and boundary layer, the modeling of the polar magnetosphere and ionosphere, and the modeling of the plasma sheet and ring current. Particular attention is given to the kinetic approach in magnetospheric plasma transport modeling, self-consistent neutral point current and fields from single particle dynamics, preliminary statistical survey of plasmaspheric ion properties from observations by DE 1/RIMS, and a model of auroral potential structures based on dynamics explorer plasma data. Other topics include internal shear layers in auroral dynamics, quantitative parameterization of energetic ionospheric ion outflow, and open flux merging in an expanding polarcap model

  4. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  5. Internal quality assurance reviews: challenges and processes ...

    African Journals Online (AJOL)

    Internal quality assurance reviews: challenges and processes – Walter Sisulu University\\'s Business, Management Sciences and Law Faculty. ... This article examines some of the challenges and processes followed by six of the departments ...

  6. Coordination Processes in International Organisations

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    2008-01-01

    The EU is not a member of the International Labour Organisation (ILO), but relatively elaborate EU coordination takes place anyway. This paper addresses two research questions: 1) How is it possible to evaluate the coordination of the EU in its specific observable configuration in the ILO?, and 2......-à-vis their principals, the Member States. The Commission is the leading agent in the phase leading up to the Conference; the Presidency then takes over. On the one hand, due to the Treaty obligations and their interpretations by the Court of Justice, both the Presidency and the Commission are kept within tight limits...... by the principals. On the other hand, both before and during the Conference, the Member States accept the so-called discursive coordination of the Commission, which seems to be of great (but often neglected) importance. Owing to the organisational set-up in which coordination takes place, the EU is able...

  7. Outer Magnetospheric Boundaries Cluster Results

    CERN Document Server

    Paschmann, Goetz; Schwartz, S J

    2006-01-01

    When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning ...

  8. Magnetosphere as an Alfven maser

    International Nuclear Information System (INIS)

    Trakhtengerts, V.Yu.

    1979-01-01

    The Earth magnetosphere is considered as an Alfven maser. The operation mechanism of such a maser is duscussed. The main fact of this mechanism is ''overpopulation'' of the Earth radiation belt with particles moving with cross velocities. The cross velocity particles excess results in the excitation of cyclotron instability in the radiation belt and in the self-arbitrary increase of Alfven waves. At late the theory of cyclotron instability of radiation belts has been universally developed. On the basis of ideas on magnetosphere maser on cyclotron resonance it was possible to explain many geophysical phenomena such as periodical spillings out of particles from the radiation belts, pulsing polar lights, oscillations of magnetic force tubes etc. It is proposed to carry out active cosmic experiments to understand deeper the processes occuring in radiation belts

  9. Saturn's outer magnetosphere

    Science.gov (United States)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  10. The Magnetospheric Cusps Structure and Dynamics

    CERN Document Server

    Fritz, Theodore A

    2005-01-01

    This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere and it appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. Audience: This book will be of interest to space science research organizations in governments and industries, ...

  11. The Magnetospheric Multiscale Mission

    Science.gov (United States)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection? In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  12. X-ray pulsar magnetosphere

    International Nuclear Information System (INIS)

    Lipunov, V.

    1981-01-01

    A pulsar consists of a close binary star system whose one component is a neutron star and the other a normal star. This supplies the neutron star with fuel in form of star wind or a gas stream. A hot plasma-like matter falls onto the neutron star, penetrates in its magnetic field and interacts with it. The matter coming from the normal star has a great rotational moment and forms a hot diamagnetic disk around the neutron star. The plasma penetrates in the internal parts of the magnetosphere where hard x radiation is formed as a result of the plasma impingement on the neutron star surface. (M.D.)

  13. The International harmonisation process of Accounting Standards

    OpenAIRE

    Fritz, Susanne; Lämmle, Christina

    2003-01-01

    Background: Growth in international trade and capital flows has triggered a rising economic integration. Because of these developments there has been an international homogenising effect upon many customs, practices and institutions. In business life it led among other things to a desire to harmonise Accounting Standards among countries. Purpose: Our purpose is to answer the question: What is the international harmonisation process of Accounting Standards, what is its status quo and how impo...

  14. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

    Science.gov (United States)

    Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.

    2015-07-01

    This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

  15. The Magnetospheric Multiscale Magnetometers

    Science.gov (United States)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; hide

    2014-01-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  16. RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Tatiana Danescu

    2016-12-01

    Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.

  17. Magnetospheric plasma physics

    International Nuclear Information System (INIS)

    Bingham, R.

    1989-09-01

    The discovery of the earth's radiation belts in 1957 by Van Allen marked the beginning of what is now known as magnetospheric physics. In this study of plasma physics in the magnetosphere, we shall take the magnetosphere to be that part of the earth's ionized atmosphere which is formed by the interaction of the solar wind with the earth's dipole-like magnetic field. It extends from approximately 100km above the earth's surface where the proton-neutral atom collision frequency is equal to the proton gyrofrequency to about ten earth radii (R E ∼ 6380km) in the sunward direction and to several hundred earth radii in the anti-sunward direction. The collision dominated region is called the ionosphere and is sometimes considered separate from the collisionless plasma region. In the ionosphere ion-neutral collisions are dominant and one may think of the ionosphere as a frictional boundary layer ∼ 1000km thick. Other planets are also considered. (author)

  18. Internal process: what is abstraction and distortion process?

    Science.gov (United States)

    Fiantika, F. R.; Budayasa, I. K.; Lukito, A.

    2018-03-01

    Geometry is one of the branch of mathematics that plays a major role in the development of science and technology. Thus, knowing the geometry concept is needed for students from their early basic level of thinking. A preliminary study showed that the elementary students have difficulty in perceiving parallelogram shape in a 2-dimention of a cube drawing as a square shape. This difficulty makes the students can not solve geometrical problems correctly. This problem is related to the internal thinking process in geometry. We conducted the exploration of students’ internal thinking processes in geometry particularly in distinguishing the square and parallelogram shape. How the students process their internal thinking through distortion and abstraction is the main aim of this study. Analysis of the geometrical test and deep interview are used in this study to obtain the data. The result of this study is there are two types of distortion and abstraction respectively in which the student used in their internal thinking processes.

  19. Closed model of the earth's magnetosphere

    International Nuclear Information System (INIS)

    Piddington, J.H.

    1979-01-01

    The existence of large-scale motions within the earth's magnetosphere and that of a long magnetotail were predicted in 1960 as results of a hypothetical frictional interaction between the solar wind and the geomagnetic field. The boundary layer model of this interaction involves the flow of magnetosheath plasma in a magnetospheric boundary layer. The flow is across magnetic field lines, and so the layer must be polarized, with a space charge field nearly balancing the induction field V x B. The space charge tends to discharge through the ionosphere, thus providing some magnetic and related activity as well as the Lorentz frictional force. This closed magnetosphere model has been largely neglected in favor of the reconnection model but is now strongly supported by observational results and their interpretation as follows. (1) The evidence for the reconnection model, increasing activity with a southward interplanetary field and invasion of the polar caps by flare particles, is shown to be equally compatible with the closed field model. (2) The magnetotail grows by the motions of closed flux tubes through the dawn and dusk meridians, a process which depends on the nature of the boundary between magnetosphere and magnetosheath plasmas and perhaps also on the solar wind dynamo. Both of these features depend, in turn, on the direction of the interplanetary magnetic field. (3) Closed field lines entering the tail may be stretched to a few tens of earth radii and then contract back to the corotating magnetosphere. Others enter the long tail and are stretched to hundreds of earth radii and so are pervious to fast solar particles. (4) A new model of the magnetospheric substorm involves the entry of closed field lines into the tail and their rapid return to the corotating magnetosphere. The return is due, first, to the release of their trapped plasma as it becomes electrically polarized and, second, to mounting magnetic and plasma stresses in the inflated magnetotail

  20. Observations of Heavy Ions in the Magnetosphere

    Science.gov (United States)

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  1. Processes of international collaboration in management research

    DEFF Research Database (Denmark)

    Jonsen, Karsten; Butler, Christina; Mäkelä, Kristiina

    2013-01-01

    Scientists and academics increasingly work on collaborative projects and write papers in international research teams. This trend is driven by greater publishing demands in terms of the quality and breadth of data and analysis methods, which tend to be difficult to achieve without collaborating...... across institutional and national boundaries. Yet, our understanding of the collaborative processes in an academic setting and the potential tensions associated with them remains limited. We use a reflexive, autoethnographic approach to explicitly investigate our own experiences of international...... collaborative research. We offer systematic insights into the social and intellectual processes of academic collaborative writing, identifying six lessons and two key tensions that influence the success of international research teams. Our findings may benefit the formation of future coauthor teams...

  2. Magnetic reconnection in the terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1

  3. Streamlining the Bankability Process using International Standards

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, George [Sunset Technology, Mount Airy, MD; Ramu, Govind [SunPower, San Jose, California; Heinz, Matthias [TUV Rheinland, Cologne, Germany; Chen, Yingnan [CGC (China General Certification Center), Beijing; Wohlgemuth, John [PowerMark, Union Hall, VA; Lokanath, Sumanth [First Solar, Tempe, Arizona; Daniels, Eric [Suncycle USA, Frederick MD; Hsi, Edward [Swiss RE, Zurich, Switzerland; Yamamichi, Masaaki [RTS, Trumbull, CT

    2017-09-27

    NREL has supported the international efforts to create a streamlined process for documenting bankability and/or completion of each step of a PV project plan. IECRE was created for this purpose in 2014. This poster describes the goals, current status of this effort, and how individuals and companies can become involved.

  4. Sounding-rocket experiments for detailed studies of magnetospheric substorm phenomena

    International Nuclear Information System (INIS)

    Stuedemann, W.; Wilhelm, K.

    1975-01-01

    Many of the substorm effects occur at or near the auroral oval in the upper atmosphere and can thus be studied by sounding-rocket experiments. As emphasis should be laid on understanding the physical processes, close co-ordination with other study programmes is of great importance. This co-ordination can best be accomplished within the framework of the ''International Magnetospheric Study 1976-1978''

  5. Agency Agreements Process Champion Support Intern

    Science.gov (United States)

    Miksa, Ember

    2018-01-01

    This document will provide information on the 2018 Spring semester NIFS Intern who represented the Office of Chief Financial Officer (OCFO) as a Reimbursable Accountant at Kennedy Space Center (KSC). This intern supported the Agency Agreements Process Champions and Team Lead, Susan Kroskey, Sandy Massey and Mecca Murphy, with major initiatives to advance the KSC OCFO's vision of creating and innovating healthy financial management practices that maximize the value of resources entrusted to NASA. These initiatives include, but are not limited to: updating the Agency Guidance and NASA Procedural Guidance 9090.1 Agreements, implementing a new budget structure to be utilized across all centers, submitting a Call Request (CRQ) to enhance non-federal customer reporting, initiating a discussion to incorporate a 3-year funding program for NASA agreements, and undertaking the Office of Inspector General (OIG) Audit. In support of these initiatives, this intern identified technical methods to enhance and reduce the workload of financial processes for reimbursable and non-reimbursable agreements, prepared reports in support of accounting functions, and performed administrative work and miscellaneous technical tasks in support of the OCFO as requested. In conclusion of the internship, the intern will become knowledgeable on reimbursable accounting, reimbursable policy, types of reimbursable agreements, the agreements process, estimated pricing reports, and the roles and responsibilities of the Financial Accounting and Financial Services offices.

  6. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  7. Effect of the Global Topology of the Interplanetary Magnetic Field on the Properties of Impulsive Acceleration Processes in Distant Regions of the Earth's Magnetospheric Tail

    International Nuclear Information System (INIS)

    Grigorenko, E.E.; Zelenyi, L.M.; Fedorov, A.O.; Sauvaud, J.-A.

    2005-01-01

    The paper is devoted to a statistical study of high-speed ion beams (beamlets) observed by the Interball-1 and Interball-2 satellites in the boundary region of the plasma sheet of the geomagnetic tail and in the high-latitude auroral regions of the Earth's magnetosphere. Beamlets result from nonlinear acceleration processes occurring in the current sheet in the distant regions of the geomagnetic tail. They propagate toward the Earth along the magnetic field lines and are detected in the boundary region of the plasma sheet and near the high-latitude boundary of the plasma sheet in the auroral region in the form of short (with a duration of 1-2 min) bursts of high-energy (with energies of about several tens of keV) ions. The sizes of the latitudinal zones where the beamlets are localized in the tail and in the auroral region are determined using the epoch superposition method. The relationship between the frequency of beamlet generation in the boundary region of the plasma sheet and the prehistory of the direction of the interplanetary magnetic field (the magnitude of a clock angle) is investigated. It was established that this direction exerts a global effect on the beamlet generation frequency; moreover, it was found that the beamlet generation frequency in the midnight local time sector of the tail and at the flanks depends differently on the direction of the interplanetary magnetic field. In the midnight sector, the beamlets are observed at almost all directions of the interplanetary field, whereas the frequency of their generation at the flanks is maximal only when the interplanetary magnetic field has a large y component

  8. 2016 International Conference on Software Process Improvement

    CERN Document Server

    Muñoz, Mirna; Rocha, Álvaro; Feliu, Tomas; Peña, Adriana

    2017-01-01

    This book offers a selection of papers from the 2016 International Conference on Software Process Improvement (CIMPS’16), held between the 12th and 14th of October 2016 in Aguascalientes, Aguascalientes, México. The CIMPS’16 is a global forum for researchers and practitioners to present and discuss the most recent innovations, trends, results, experiences and concerns in the different aspects of software engineering with a focus on, but not limited to, software processes, security in information and communication technology, and big data. The main topics covered include: organizational models, standards and methodologies, knowledge management, software systems, applications and tools, information and communication technologies and processes in non-software domains (mining, automotive, aerospace, business, health care, manufacturing, etc.) with a clear focus on software process challenges.

  9. THE INTERNAL AUDIT AS COGNITIVE PROCESS

    Directory of Open Access Journals (Sweden)

    D. Petrascu

    2016-11-01

    Full Text Available The term AUDIT generally comes from the Latin word "audire" to listen and to inform others, from today's Anglo-Saxon countries, this term has the meaning of a revision of the accounting information and of those of a different nature, realized by an independent professional, in view of expressing an opinion regarding the regularity and honesty of the audited information (1 §tefan Craciun, Audit financiar §i audit intern, The Economic Publishing House, Bucharest, 2004, page 22. In a general register, an audit has the purpose to grant an entity added value by a systematic and methodic approach, evaluating the risk management processes, the control processes and the governing processes, all of which are materialized within an objective and professional report.

  10. International Political Processes of Integration of Education

    Directory of Open Access Journals (Sweden)

    Marina M. Lebedeva

    2017-09-01

    Full Text Available Introduction: the study of the international dimension of education is usually reduced to a comparative analysis of the characteristics of education in different countries. The situation began to change at the end of 20th – beginning of 21st centuries due to the rapid development of globalisation processes (the formation of a transparency of national borders and integration (deepening the cooperation between countries based on intergovernmental agreements. It had an impact on education, which was intensively internationalised (to acquire a wide international dimension. Despite the possible setbacks the process of internationalisation of education, the general vector of development is that this process will increase. The purpose of this article is to analyse what new challenges and opportunities are opened due to internationalisation of education (Russian education in particular. Materials and Methods: the study is based on the principles according to which education, on the one hand, depends on the transformation of the global political organisation of the world, on another hand – it is contributing to this transformation. Materials for the study are based on international agreements, which in particular are adopted in the framework of the Bologna process, and the results of scientific works of Russian and foreign scholars. Descriptive and comparative metho ds of analysis are widely used. Results: the analysis of the processes of internationalisation of education in the world has shown that, along with its traditional directions and aspects. It was noted that university begins to play a special role in the current world. It is shown that the specificity of education in Russia, which took shape due to a large terri¬tory and historical traditions, should be taken into account when forming a strategy for the development of the internationalisation of education in the country. Discussion and Conclusions: the specificity of Russia creates a risk

  11. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    Science.gov (United States)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  12. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  13. Nonlinear dynamical modeling and prediction of the terrestrial magnetospheric activity

    International Nuclear Information System (INIS)

    Vassiliadis, D.

    1992-01-01

    The irregular activity of the magnetosphere results from its complex internal dynamics as well as the external influence of the solar wind. The dominating self-organization of the magnetospheric plasma gives rise to repetitive, large-scale coherent behavior manifested in phenomena such as the magnetic substorm. Based on the nonlinearity of the global dynamics this dissertation examines the magnetosphere as a nonlinear dynamical system using time series analysis techniques. Initially the magnetospheric activity is modeled in terms of an autonomous system. A dimension study shows that its observed time series is self-similar, but the correlation dimension is high. The implication of a large number of degrees of freedom is confirmed by other state space techniques such as Poincare sections and search for unstable periodic orbits. At the same time a stability study of the time series in terms of Lyapunov exponents suggests that the series is not chaotic. The absence of deterministic chaos is supported by the low predictive capability of the autonomous model. Rather than chaos, it is an external input which is largely responsible for the irregularity of the magnetospheric activity. In fact, the external driving is so strong that the above state space techniques give results for magnetospheric and solar wind time series that are at least qualitatively similar. Therefore the solar wind input has to be included in a low-dimensional nonautonomous model. Indeed it is shown that such a model can reproduce the observed magnetospheric behavior up to 80-90 percent. The characteristic coefficients of the model show little variation depending on the external disturbance. The impulse response is consistent with earlier results of linear prediction filters. The model can be easily extended to contain nonlinear features of the magnetospheric activity and in particular the loading-unloading behavior of substorms

  14. The Extended Pulsar Magnetosphere

    Science.gov (United States)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  15. Upper ionosphere and magnetospheric-ionospheric coupling

    International Nuclear Information System (INIS)

    Manzano, J.R.

    1989-02-01

    After a presentation of the ionospheric physics and of the earth magnetosphere morphology, generation and dynamics, the magnetosphere-ionosphere coupling in quiet and perturbed conditions is discussed. Some summary information about other planetary magnetospheres, particularly Venus and Jupiter magnetospheres, are finally given. 41 refs, 24 figs

  16. Processes of Internal and International Migration from Chitwan, Nepal.

    Science.gov (United States)

    Bohra, Pratikshya; Massey, Douglas S

    2009-01-01

    In this study we examine which factors predict internal and international migration from Chitwan, a flat valley located in the South-Central region of Nepal, seeking to measure the effect of theoretically specified variables such as human capital, social capital, physical capital, and neighborhood socioeconomic conditions while controlling for demographic variables. We use data from the Chitwan Valley Family Study (CVFS) to estimate a series of discrete time event history models of first and repeat migration to three competing destinations: other locations within Chitwan, other districts within Nepal, and places outside of Nepal. Results support hypotheses derived from neoclassical economics, the theory of new economics of migration, social capital theory, and cumulative causation theory. Our results underscore the need for a synthetic theoretical model that incorporates factors operating at the individual, household, and community levels. The use of multiple explanatory models yields a clearer picture of the forces driving internal and international migration from rural districts in developing nations such as Nepal.

  17. Interactions of planetary magnetospheres with icy satellite surfaces

    International Nuclear Information System (INIS)

    Cheng, A.F.; Haff, P.K.; Johnson, R.E.; Lanzerotti, L.J.

    1986-01-01

    When natural satellites and ring particles are embedded within magnetospheric plasmas, the charged particles interact with the surfaces of these solid bodies. These interactions have important implications for the surface, the atmosphere of the parent body, and the magnetosphere as a whole. Significant erosion of the surface by sputtering, as well as redeposition of sputter ejecta, can occur over geologic time. The surface can also be chemically modified. Sputter ejecta can make important contributions to the atmosphere; sputtering provides a lower limit to the atmospheric column density even for arbitrarily cold satellite surfaces. Sputter ejecta escaping from the parent body can form extensive neutral clouds within the magnetosphere. Ionization and dissociation within these neutral clouds can be dominant sources of low-energy plasma. The importance of these processes is discussed for the satellites and magnetospheres of Jupiter, Saturn and Uranus

  18. Permit processes for nuclear power. International lessons

    International Nuclear Information System (INIS)

    Gaahlin, Emil; Nilsson, Isabelle; Pettersson, Maria; Soederholm, Patrik

    2010-01-01

    permitting process in the country as well as important planned (or recently introduced) changes in the relevant legislation. The analysis also presents the role of the regulating authorities as well as other key actors in the process, and outlines the different steps of the permitting processes, including the relationships between the different permits. We also address the responsibility for the radioactive waste and dismantling, and how these issues come into the licensing process. Important differences and similarities across the various countries are highlighted, with special emphasis on parallels to the Swedish legislation. The report then analyzes a number of important legal and political issues of a principal nature in the permitting of nuclear power plants. We compare how the different countries differ on these grounds, and also emphasize some overall lessons and practical experiences of nuclear power development internationally. Three broad issues are discussed. The first of these concerns the notion of nuclear power as a highly political issue, and we analyze the role of the public opinion, the extent to which the regulatory process is independent of policy decisions, as well as the allocation of political power between the national and local levels in the respective countries. Not the least the last issue has been in focus in some of the countries that have reformed their permitting process, and there exist significant inter-country differences. The second issue concerns how a number of countries - most notably the USA and Great Britain - have attempted to streamline their plant permitting processes for new nuclear power. These reforms are characterized by, for instance, a combined construction and operation license, the selection (and exclusion) of geographical locations for new installations, as well as attempts to achieve standardizations of nuclear reactor designs. We pay particular attention to the issues of reactor design standardization, including the scope

  19. Electromagnetic field for an open magnetosphere

    International Nuclear Information System (INIS)

    Heikkila, W.J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions. 23 references

  20. The electromagnetic field for an open magnetosphere

    Science.gov (United States)

    Heikkila, W. J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.

  1. Charged dust in saturn's magnetosphere

    International Nuclear Information System (INIS)

    Mendis, D.A.; Hill, J.R.; Houpis, H.L.F.

    1983-01-01

    Gravito-electrodynamic theory of charged dust grains is used to explain a variety of phenomena in those portions of the Saturnian ring system that are known to be dominated by fine (micron- and submicron-sized) dust, and in which collisional forces and Coulomb drag can be neglected. Among the phenomena discussed are the formation and evolution of the rotating near-radial spokes in the B-ring, the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Several novel processes predicted by the gravitoelectrodynamic theory, including 'magneto-gravitational capture' of exogenic dust by the magnetosphere, '1:1 magneto-gravitational orbital resonances' of charged dust with nearby satellites, and 'gyro-orbital resonances,' are used to explain individual observations. The effect of a ring current associated with this charged dust is also evaluated. Finally, the cosmogonic implications of the magneto-gravitational theory are briefly discussed. While several (although not all) of these processes have been discussed by one or more of the present authors elsewhere, the purpose of this paper is to synthesize all these processes within the framework of gravito-electrodynamics, and also to show its range of applicability within Saturn's ring system

  2. Advances in magnetospheric storm and substorm research: 1989-1991

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1992-01-01

    Geomagnetic storms represent the magnetospheric response to fast solar wind and unusually large southward interplanetary magnetic fields that are caused by solar processes and resulting dynamics in the interplanetary medium. The solar wind/magnetosphere interaction is, however, more commonly studied via smaller, more common, magnetospheric substorms. Accumulating evidence suggests that two separate magnetospheric current systems are important during magnetospheric substorms. Currents directly driven by the solar wind/magnetosphere interaction produce magnetic field variations that make important contributions to the AE index but have little relation to the many effects traditionally associated with sudden substorm onsets. Currents driven by energy unloaded from the magnetotail form the nightside current wedge and are associated with onset effects such as auroral breakup, field dipolarization, and particle acceleration. Observations are gradually leading to a coherent picture of the interrelations among these various onset phenomena, but their cause remains a controversial question. The abrupt nature of substorm onsets suggests a magnetospheric instability, but doubt remains as to its nature and place of origin. Measurements increasingly suggest the region of 7-10 R E near midnight as the likely point of origin, but it is not clear that the long-popular tearing mode can go unstable this close to the Earth, where it may be stabilized by a small northward field component. Also the tailward flows that would be expected tailward of a near-Earth neutral line are seldom seen inside of 19 R E . The changing magnetic field configuration during substorms means that existing static models cannot be used to map phenomena between the magnetosphere and the ground at these interesting times

  3. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  4. A dynamic balanced scorecard for identification internal process factor

    Directory of Open Access Journals (Sweden)

    Javad sofiyabadi

    2012-08-01

    Full Text Available We present a dynamic balanced score card (BSC to investigate the strategic internal process management factors. The proposed dynamic BSC emphasizes on internal processes aspect, and using VIKOR and Shannon Entropy, determinants the internal processes, process management and improvement and all important factors are ranked. The current study first introduces dynamic BSC and examines effective factors on the process. The proposed model focuses on internal processes perspective of BSC and determines importance degree of each factor is used using VIKOR decision-making techniques.

  5. The art of mapping the magnetosphere

    International Nuclear Information System (INIS)

    Stern, D.P.

    1994-01-01

    A comprehensive review is presented of the mathematical methods used to represent magnetic fields in the Earth's magnetosphere, of the way existing data-based models use these methods and of the associated problems and concepts. The magnetic field has five main components: the internal field, the magnetopause, the ring current, the tail and Birkeland currents. Methods of representing separately each of these are discussed, as is the deformation of magnetic fields; Appendix B traces the connection between deformations and the Cauchy integral. A summary section lists the uses of data-based models and their likely evolution, and Appendix A supplements the text with a set of problems. 55 refs., 20 figs

  6. Origins of magnetospheric physics

    International Nuclear Information System (INIS)

    Van Allen, J.A.

    1983-01-01

    The history of the scientific investigation of the earth magnetosphere during the period 1946-1960 is reviewed, with a focus on satellite missions leading to the discovery of the inner and outer radiation belts. Chapters are devoted to ground-based studies of the earth magnetic field through the 1930s, the first U.S. rocket flights carrying scientific instruments, the rockoon flights from the polar regions (1952-1957), U.S. planning for scientific use of artificial satellites (1956), the launch of Sputnik I (1957), the discovery of the inner belt by Explorers I and III (1958), the Argus high-altitude atomic-explosion tests (1958), the confirmation of the inner belt and discovery of the outer belt by Explorer IV and Pioneers I-V, related studies by Sputniks II and III and Luniks I-III, and the observational and theoretical advances of 1959-1961. Photographs, drawings, diagrams, graphs, and copies of original notes and research proposals are provided. 227 references

  7. Using Reporting in the Internal Communication Process of the Company

    OpenAIRE

    Cornel Marian Iosif

    2013-01-01

    Internal communication can be regarded either as a subsistent process of the organization, or as a process helping to decode and more easily understand them. Organizations are based on the internal communication process, because without it, information, ideas could not be sent, the organization’s goals and values could not be built, and its organizational culture would simply not exist. The internal communication process is centered on sending ideas, information in the organization. Thi...

  8. Experimental aspects of ion acceleration and transport in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Young, D.T.

    1985-01-01

    Major particle population within the Earth's magnetosphere have been studied via ion acceleration processes. Experimental advances over the past ten to fifteen years have demonstrated the complexity of the processes. A review is given here for areas where composition experiments have expanded perception on magnetospheric phenomena. 64 refs., 6 figs., 1 tab

  9. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  10. Automated Internal Revenue Processing System: A Panacea For ...

    African Journals Online (AJOL)

    Automated Internal Revenue Processing System: A Panacea For Financial ... for the collection and management of internal revenue which is the financial ... them, computational errors, high level of redundancy and inconsistencies in record, ...

  11. Particle-in-Cell Simulations of the Twisted Magnetospheres of Magnetars. I.

    Science.gov (United States)

    Chen, Alexander Y.; Beloborodov, Andrei M.

    2017-08-01

    The magnetospheres of magnetars are believed to be filled with electron-positron plasma generated by electric discharge. We present a first numerical experiment demonstrating this process in an axisymmetric magnetosphere with a simple threshold prescription for pair creation, which is applicable to the inner magnetosphere with an ultrastrong field. The {e}+/- discharge occurs in response to the twisting of the closed magnetic field lines by a shear deformation of the magnetar surface, which launches electric currents into the magnetosphere. The simulation shows the formation of an electric “gap” with an unscreened electric field ({\\boldsymbol{E}}\\cdot {\\boldsymbol{B}}\

  12. The AMPTE program's contribution to studies of the solar wind-magnetosphere-ionosphere interaction

    International Nuclear Information System (INIS)

    Sibeck, D.G.

    1990-01-01

    The Active Magnetospheric Particle Tracer Explorers (AMPTE) program provided important information on the behavior of clouds of plasma artificially injected into the solar wind and the earth's magnetosphere. Now that the releases are over, data from the satellites are being analyzed to investigate the processes by which the ambient solar wind mass, momentum, and energy are transferred to the magnetosphere. Work in progress at APL indicates that the solar wind is much more inhomogeneous than previously believed, that the solar wind constantly buffets the magnetosphere, and that ground observers may remotely sense these interactions as geomagnetic pulsations. 8 refs

  13. Proceedings of XXIV international mineral processing congress

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dianzuo; Sun Chuan Yao; Wang Fu Liang; Zhang Li Cheng; Han Long (eds.)

    2008-07-01

    Topics covered in volume 1 include applied mineralogy, comminution, classification, physical separation, flotation chemistry, sulphide flotation, non-sulphide flotation and reagent in mineral industry. Volume 2 covers processing of complex ores, processing of industrial minerals and coal, solid liquid separation, dispersion and aggregation, process simulation, expert systems and control of mineral processing, biohydrometallurgy, and mineral chemical processing. Volume 3 contains powder technology, mineral materials, treatment and recycling for solid wastes, waste water treatment, secondary resource recovery, soil remediation, concentrator engineering and process design, and application of mineral processing in related industry. It includes a CD-ROM of the proceedings.

  14. Magnetospheric radio sounding

    International Nuclear Information System (INIS)

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu

    1977-01-01

    Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)

  15. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1989-12-01

    The electric field plays an important role in the complex plasma system called the magnetosphere. In spite of this, direct measurement of this quantity are still scarce except in its lowest-altitude part, i.e. the ionosphere. The large scale ionospheric electric field has been determined from measurement on the ground and in low satellite orbit. For most of the magnetosphere, our concepts of the electric field have mostly been based on theoretical considerations and extrapolations of the ionspheric electric field. Direct, in situ, electric field measurements in the outer parts of the magnetosphere have been made only relatively recently. A few satellite missions. most recently the Viking mission, have extended the direct empirical knowledge so as to include major parts of the magnetosphere. These measurements have revealed a number of unexpected features. The actual electric field has been found to have unexpectedly strong space and time variations, which reflect the dynamic nature of the system. Examples are give of measured electric fields in the plasmasphere, the plasmasheet, the neutral sheet, the magnetotail, the flanks of the magnetosphere, the dayside magnetopause and the auroral acceleration region. (author)

  16. Observations & modeling of solar-wind/magnetospheric interactions

    Science.gov (United States)

    Hoilijoki, Sanni; Von Alfthan, Sebastian; Pfau-Kempf, Yann; Palmroth, Minna; Ganse, Urs

    2016-07-01

    The majority of the global magnetospheric dynamics is driven by magnetic reconnection, indicating the need to understand and predict reconnection processes and their global consequences. So far, global magnetospheric dynamics has been simulated using mainly magnetohydrodynamic (MHD) models, which are approximate but fast enough to be executed in real time or near-real time. Due to their fast computation times, MHD models are currently the only possible frameworks for space weather predictions. However, in MHD models reconnection is not treated kinetically. In this presentation we will compare the results from global kinetic (hybrid-Vlasov) and global MHD simulations. Both simulations are compared with in-situ measurements. We will show that the kinetic processes at the bow shock, in the magnetosheath and at the magnetopause affect global dynamics even during steady solar wind conditions. Foreshock processes cause an asymmetry in the magnetosheath plasma, indicating that the plasma entering the magnetosphere is not symmetrical on different sides of the magnetosphere. Behind the bow shock in the magnetosheath kinetic wave modes appear. Some of these waves propagate to the magnetopause and have an effect on the magnetopause reconnection. Therefore we find that kinetic phenomena have a significant role in the interaction between the solar wind and the magnetosphere. While kinetic models cannot be executed in real time currently, they could be used to extract heuristics to be added in the faster MHD models.

  17. Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Jones, G. H.; Owen, C. J.; Dunn, W. R.; Lewis, G. R. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Grodent, D.; Radioti, A.; Gérard, J.-C. [Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, B-4000 Liège (Belgium); Dougherty, M. K. [Imperial College of Science, Technology and Medicine, Space and Atmospheric Physics Group, Department of Physics, London SW7 2BW (United Kingdom); Guo, R. L. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China); Pu, Z. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); Waite, J. H., E-mail: z.yao@ucl.ac.uk [Southwest Research Institute, San Antonio, TX (United States)

    2017-09-10

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.

  18. Substorms in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Baker, D.N.

    1984-01-01

    Magnetospheres are plasma regions of large scale in space dominated by magnetic field effects. The earth, and many planets in our solar system, are known to have magnetospheric regions around them. Magnetospheric substorms represent the intense, rapid dissipation of energy that has been extracted from the solar wind and stored temporarily in the terrestrial magnetotail. In this paper a widely, but not universally, accepted model of substorms is described. The energy budgets, time scales, and conversion efficiencies for substorms are presented. The primary forms of substorm energy dissipation are given along with the average levels of the dissipation. Aspects of particle acceleration and precipitation, Joule heating mechanisms, ring current formation, and plasmoid escape are illustrated based on in situ observations taken from the large available data base. A brief description is given of possible analogues of substorm-like behavior in other astrophysical systems. 27 references, 12 figures

  19. Dynamics of electrons and heavy ions in Mercury's magnetosphere

    International Nuclear Information System (INIS)

    Ip, W.H.

    1987-01-01

    The present investigation of Mercury magnetosphere processes employs simple models for the adiabatic acceleration and convection of equatorially mirroring charged particles, as well as the current sheet acceleration effect and the acceleration of such exospheric ions as that of Na(+) by both electric and magnetic magnetospheric fields near Mercury's surface. The large gyroradii of such heavy ions as those of Na allow surface reimpact as well as magnetopause-interception losses to occur; gyromotion-derived kinetic energy could in the case of the latter process account for the loss of as many as half of the planet's exospheric ions. 27 references

  20. On the penetration of solar wind inhomogeneities into the magnetosphere

    International Nuclear Information System (INIS)

    Maksimov, V.P.; Senatorov, V.N.

    1980-01-01

    Laboratory experiments were used as a basis to study the process of interaction between solar wind inhomogeneities and the Earth's magnetosphere. The given inhomogeneity represents a lump of plasma characterized by an increased concentration of particles (nsub(e) approximately 20-30 cm -3 ), a discrete form (characteristic dimensions of the lump are inferior to the magnetosphere diameter) and the velocity v approximately 350 km/s. It is shown that there is the possibility of penetration of solar wind inhomogeneities inside the Earth's magnetosphere because of the appearance in the inhomogeneity of an electric field of transverse polarization. The said process is a possible mechanism of the formation of the magnetopshere entrance layer

  1. Internal Decoupling in Nonlinear Process Control

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1988-07-01

    Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.

  2. Research on Business Process Outsourcing | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The business process outsourcing (BPO) sector, worth over $130 billion ... Call for new OWSD Fellowships for Early Career Women Scientists now open ... Addressing Africa's unmet need for family planning by intensifying sexual and ...

  3. Process Coordination and Policy Officer | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Such liaison aims to ensure that the operational aspects and requirements are taken into account. ... Business Process Coordination and Change Management ... Liaises with the Resources Planning and Development Officer of the Office of ...

  4. Process Coordination & Policy Officer | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Such liaison aims to ensure that the operational aspects and requirements are taken into account. ... Business Process Coordination and Change Management ... plan and coordinating the update of the Division's work plan by all managers; ...

  5. 8 CFR 287.10 - Expedited internal review process.

    Science.gov (United States)

    2010-01-01

    ... jurisdiction regarding criminal violations of law. [68 FR 35281, June 13, 2003] ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Expedited internal review process. 287.10... OFFICERS; POWERS AND DUTIES § 287.10 Expedited internal review process. (a) Violations of standards for...

  6. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    Science.gov (United States)

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  7. Wave--particle interactions in the magnetosphere and ionosphere

    International Nuclear Information System (INIS)

    Thorne, R.M.

    1975-01-01

    Two distinct aspects of the interaction between waves and particles in the earth's magnetosphere and ionosphere were discussed at the Yosemite Conference on Magnetosphere-Ionosphere Coupling; these will be briefly reviewed. Intense field-aligned currents flow between the ionosphere and magnetosphere at auroral latitudes. Under certain conditions these currents can become unstable, permitting potential drops to be established along the field lines. The present status of experimental evidence favoring such parallel electric fields is somewhat controversial. Theoretical models for their origin invoke regions of anomalous resistivity or electrostatic double layers. To date it is impossible to distinguish between these alternatives on the basis of experimental data. The nonadiabatic behavior of magnetospheric ring current particles during geomagnetic storms is largely controlled by wave-particle processes. During the storm main phase, intense fluctuating convection electric fields are responsible for injecting trapped particles into the outer radiation zone. The outer radiation zone also moves in closer to the earth following the storm time compression of the plasmapause. Simultaneous pitch angle scattering by higher-frequency plasma turbulence causes precipitation loss near the strong diffusion limit throughout the outer magnetosphere. During the storm recov []ry phase the plasmapause slowly moves out toward its prestorm location; energetic particle loss at such times appears to be dominated by cyclotron resonant scattering from electromagnetic turbulence. (auth)

  8. Internal control in the management system of meat processing enterprises

    Directory of Open Access Journals (Sweden)

    Volodymyr Kushnir

    2018-03-01

    Full Text Available The article is described the theoretical basis of internal control and its practical aspects in the work of meat processing enterprises (a case in the meat processing industry in Ukraine. The purpose of the research is to establish the theoretical foundations of the internal control and its improvement in the activity of meat processing plants of various forms of management. It is proposed to use precisely internal control among other names of domestic control. Definition of internal control, its subject and purpose are improved. The subjects and objects of internal control are determined; the principles of its implementation are supplemented. Specific control tasks in meat processing plants according to the needs of this industry are outlined. Specific examples of control subjects are presented and the role of the revision commission is emphasized. The state of internal control in meat processing plants in Ukraine is investigated and it is established that it has a bad condition and unfounded approach to its implementation by managers of meat processing enterprises. To improve the situation we recommend that each meat processing enterprise have in its staff a revision commission or an apposer (auditor. It is established that internal control is more effective in joint-stock companies than in limited liability companies. The necessity of internal control as an important element in the enterprise management system is accented.

  9. Communications Magnetospheric Substorms.

    Science.gov (United States)

    1983-01-17

    DISRUPT NAUAL COMUNICATIONS ,GATIO) AND SURVEILLANCE SYSTEMS. THE OBJECTIVE OF THIS PROGRAM IS TO DEVELOP AN UNDERSTANDING OF THE TRIGGERING MECHANISM...of magnetic perturbations and ULF waves at synchronous orbit by ATS-1 and ATS-6, The Scientific Satellite Program During the International...observations of magnetic perturbations and ULF waves at synchronous orbit by ATS-1 and ATS-6, The Scientific Satellite Program During the International

  10. Summary of the International Conference on Software and System Processes

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; O'Connor, Rory V.; Perry, Dewayne E.

    2016-01-01

    The International Conference on Software and Systems Process (ICSSP), continuing the success of Software Process Workshop (SPW), the Software Process Modeling and Simulation Workshop (ProSim) and the International Conference on Software Process (ICSP) conference series, has become the established...... premier event in the field of software and systems engineering processes. It provides a leading forum for the exchange of research outcomes and industrial best-practices in process development from software and systems disciplines. ICSSP 2016 was held in Austin, Texas, from 14-15 May 2016, co......-located with the 38th International Conference on Software Engineering (ICSE). The theme of mICSSP 2016 was studying "Process(es) in Action" by recognizing that the AS-Planned and AS-Practiced processes can be quite different in many ways including their ows, their complexity and the evolving needs of stakeholders...

  11. International Student Mobility and the Bologna Process

    Science.gov (United States)

    Teichler, Ulrich

    2012-01-01

    The Bologna Process is the newest of a chain of activities stimulated by supra-national actors since the 1950s to challenge national borders in higher education in Europe. Now, the ministers in charge of higher education of the individual European countries have agreed to promote a similar cycle-structure of study programmes and programmes based…

  12. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    International Nuclear Information System (INIS)

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-01-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results

  13. GAMERA - The New Magnetospheric Code

    Science.gov (United States)

    Lyon, J.; Sorathia, K.; Zhang, B.; Merkin, V. G.; Wiltberger, M. J.; Daldorff, L. K. S.

    2017-12-01

    The Lyon-Fedder-Mobarry (LFM) code has been a main-line magnetospheric simulation code for 30 years. The code base, designed in the age of memory to memory vector ma- chines,is still in wide use for science production but needs upgrading to ensure the long term sustainability. In this presentation, we will discuss our recent efforts to update and improve that code base and also highlight some recent results. The new project GAM- ERA, Grid Agnostic MHD for Extended Research Applications, has kept the original design characteristics of the LFM and made significant improvements. The original de- sign included high order numerical differencing with very aggressive limiting, the ability to use arbitrary, but logically rectangular, grids, and maintenance of div B = 0 through the use of the Yee grid. Significant improvements include high-order upwinding and a non-clipping limiter. One other improvement with wider applicability is an im- proved averaging technique for the singularities in polar and spherical grids. The new code adopts a hybrid structure - multi-threaded OpenMP with an overarching MPI layer for large scale and coupled applications. The MPI layer uses a combination of standard MPI and the Global Array Toolkit from PNL to provide a lightweight mechanism for coupling codes together concurrently. The single processor code is highly efficient and can run magnetospheric simulations at the default CCMC resolution faster than real time on a MacBook pro. We have run the new code through the Athena suite of tests, and the results compare favorably with the codes available to the astrophysics community. LFM/GAMERA has been applied to many different situations ranging from the inner and outer heliosphere and magnetospheres of Venus, the Earth, Jupiter and Saturn. We present example results the Earth's magnetosphere including a coupled ring current (RCM), the magnetospheres of Jupiter and Saturn, and the inner heliosphere.

  14. Galaxy formation: internal mechanisms and cosmological processes

    International Nuclear Information System (INIS)

    Martig, Marie

    2010-01-01

    This thesis is devoted to galaxy formation and evolution in a cosmological context. Cosmological simulations have unveiled two main modes of galaxy growth: hierarchical growth by mergers and accretion of cold gas from cosmic filaments. However, these simulations rarely take into account small scale mechanisms, that govern internal evolution and that are a key ingredient to understand galaxy formation and evolution. Thanks to a new simulation technique that I have developed, I first studied the colors of galaxies, and in particular the reddening of elliptical galaxies. I showed that the gas disk in an elliptical galaxy could be stabilized against star formation because of the galaxy's stellar component being within a spheroid instead of a disk. This mechanism can explain the red colors of some elliptical galaxies that contain a gas disk. I also studied the formation of spiral galaxies: most cosmological simulations cannot explain the formation of Milky Way-like galaxies, i.e. with a large disk and a small bulge. I showed that this issue could be partly solved by taking into account in the simulations the mass loss from evolved stars through stellar winds, planetary nebulae and supernovae explosions. (author) [fr

  15. Magnetospheric storm dynamics in terms of energy output rate

    International Nuclear Information System (INIS)

    Prigancova, A.; Feldstein, Ya.I.

    1992-01-01

    Using hourly values of both the global magnetospheric disturbance characteristic DR, and AE index of auroral ionospheric currents during magnetic storm intervals, the energy output rate dynamics is evaluated for a magnetic storm main/recovery phase and a whole storm interval. The magnetospheric response to the solar wind energy input rate under varying interplanetary and magnetospheric conditions is considered from the temporal variability point of view. The peculiarities of the response are traced separately. As far as quantitative characteristics of energy output rate are concerned, the time dependence pattern of the ring current decay parameter is emphasized to be fairly important. It is pointed out that more insight into the plasma processes, especially at L = 3 - 5, is needed for adequate evidence of the dependence. (Author)

  16. Boundary layers of the earth's outer magnetosphere

    Science.gov (United States)

    Eastman, T. E.; Frank, L. A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.

  17. Boundary layers of the earth's outer magnetosphere

    International Nuclear Information System (INIS)

    Eastman, T.E.; Frank, L.A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of flux transfer events and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics. 30 references

  18. Actions of magnetospheres on planetary atmospheres

    International Nuclear Information System (INIS)

    Hultqvist, Bengt.

    1989-12-01

    Planet Earth is rather special in terms of transfer of magnetospheric energy to the atmosphere (apart from Jupiter, which is extreme in almost all respects). The auroral particle energy input rate to the atmosphere per unit area, and therefore the resulting auroral emission intensity, is second only to that of Jupiter. The contribution of the Joule heating to the heating of the upper atmosphere, measured in terms of the energetic particle precipitation power, is probably larger on Earth than on all the other planets, possibly with the exception of Uranus (and perhaps Neptune, which we know nothing of when this is written). For all those planets which have a corotating plasmasphere extending to the magnetopause, the Joule heating power is small compared with the precipitating particle power. The extremely successful Pioneer and Voyager missions have provided us with most impressive sets of data from the outer planets and Phobos has recently added unique new data from Mars. Still, the conclusion that the observational basis for our understanding of the physics of the magnetosphere-atmosphere interactions at all the planets other than Earth is very limited, is a self-evident one. Even at Earth many aspects of this interaction are frontline areas of research. The grand tour of the Voyagers has demonstrated very clearly how different the magnetospheres and atmospheres of the various planets are and the very high degree of complexity of the plasma systems around the planets. Most questions of physics are still unanswered; those related to source and sink processes of the plasma and energetic particles being one set of examples. The Galileo and Cassini-Huygens missions will certainly contribute in very important ways to the answering of many open questions. (147 refs.)

  19. The International Criminal Court and Peace Processes in Africa

    DEFF Research Database (Denmark)

    Gissel, Line Engbo

    justice, while also tracing how and why international decision-making processes interfered with the negotiations, narrated the conflicts and insisted on a narrow scope of justice. Building on this interpretive analysis, a comparative analysis of peace processes in Uganda, Kenya and Colombia explores a set......The book investigates how involvement by the International Criminal Court (ICC) affects efforts to negotiate peace. It offers an interpretive account of how peace negotiators and mediators in two peace processes in Uganda and Kenya sought to navigate and understand the new terrain of international...... of general features pertaining to the judicialisation of peace....

  20. The Influence of Geopolitical Processes on Functioning of International Enterprises

    OpenAIRE

    Gawlik, Remigiusz

    2012-01-01

    The paper presents the influence of geopolitical processes on management of international enterprises. Basic geopolitical and managerial notions have been defined. The paper contains also a brief historical overview of development of geopolitics as a science. Key subjects of international law have been described. The author aims at attiring attention to the meaning of geopolitical issues for enterprise’s strategic planning phase and in consecutive managerial phases in international companies.

  1. Magnetospheric Response Associated With Multiple Atmospheric Reflections of Precipitated Electrons in Aurora.

    Science.gov (United States)

    Khazanov, G. V.; Merkin, V. G.; Zesta, E.; Sibeck, D. G.; Grubbs, G. A., II; Chu, M.; Wiltberger, M. J.

    2017-12-01

    The magnetosphere and ionosphere are strongly coupled by precipitating electrons during storm times. Therefore, first principle simulations of precipitating electron fluxes are required to understand storm time variations of ionospheric conductances and related electric fields. As has been discussed by Khazanov et al. [2015 - 2017], the first step in such simulations is initiation of electron precipitation from the Earth's plasma sheet via wave particle interaction processes into both magnetically conjugate points, and the step 2 is the follow up of multiple atmospheric reflections of electron fluxes formed at the boundary between the ionosphere and magnetosphere of two magnetically conjugate points. To demonstrate this effect on the global magnetospheric response the Lyon-Fedder-Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere has been used and run for the geomagnetic storm of 17 March 2013.

  2. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  3. CM Process Improvement and the International Space Station Program (ISSP)

    Science.gov (United States)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  4. Particle acceleration in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Baker, K.B.

    1978-10-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied, using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star

  5. Discontinuities and the magnetospheric phenomena

    International Nuclear Information System (INIS)

    Rajaram, R.; Kalra, G.L.; Tandon, J.N.

    1978-01-01

    Wave coupling at contact discontinuities has an important bearing on the transmission of waves from the solar wind into the magnetosphere across the cusp region of the solar wind-magnetosphere boundary and on the propagation of geomagnetic pulsations in the polar exosphere. Keeping this in view, the problems of wave coupling across a contact discontinuity in a collisionless plasma, described by a set of double adiabatic fluid equations, is examined. The magnetic field is taken normal to the interface and it is shown that total reflection is not possible for any angle of incidence. The Alfven and the magneto-acoustic waves are not coupled. The transmission is most efficient for small density discontinuities. Inhibition of the transmission of the Alfven wave by the sharp density gradients above the F2-peak in the polar exosphere appears to account for the decrease in the pulsation amplitude, on the ground, as the poles are approached from the auroral zone. (author)

  6. Global Scale Periodic Responses in Saturn’s Magnetosphere

    Science.gov (United States)

    Jia, Xianzhe; Kivelson, Margaret G.

    2017-10-01

    Despite having an axisymmetric internal magnetic field, Saturn’s magnetosphere exhibits periodic modulations in a variety of properties at periods close to the planetary rotation period. While the source of the periodicity remains unidentified, it is evident from Cassini observations that much of Saturn’s magnetospheric structure and dynamics is dominated by global-scale responses to the driving source of the periodicity. We have developed a global MHD model in which a rotating field-aligned current system is introduced by imposing vortical flows in the high-latitude ionosphere in order to simulate the magnetospheric periodicities. The model has been utilized to quantitatively characterize various periodic responses in the magnetosphere, such as the displacement of the magnetopause and bow shock and flapping of the tail plasma sheet, all of which show quantitative agreement with Cassini observations. One of our model predictions is periodic release of plasmoids in the tail that occurs preferentially in the midnight-to-dawn local time sector during each rotation cycle. Here we present detailed analysis of the periodic responses seen in our simulations focusing on the properties of plasmoids predicted by the model, including their spatial distribution, occurrence frequency, and mass loss rate. We will compare these modeled parameters with published Cassini observations, and discuss their implications for interpreting in-situ measurements.

  7. Modelling of the ring current in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Giampieri

    2004-01-01

    Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set. First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects. Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet

  8. Fast Plasma Investigation for Magnetospheric Multiscale

    Science.gov (United States)

    Pollock, C.; Moore, T.; Coffey, V.; Dorelli J.; Giles, B.; Adrian, M.; Chandler, M.; Duncan, C.; Figueroa-Vinas, A.; Garcia, K.; hide

    2016-01-01

    The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr-field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eVq to 30000 eVq. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data processor. This paper described the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

  9. Cosmogony as an extrapolation of magnetospheric research

    International Nuclear Information System (INIS)

    Alfven, H.

    1984-03-01

    A theory of the origin and evolution of the Solar System (Alfven and Arrhenius, 1975: 1976) which considered electromagnetic forces and plasma effects is revised in the light of new information supplied by space research. In situ measurements in the magnetospheres and solar wind have changed our views of basic properties of cosmic plasmas. These results can be extrapolated both outwards in space, to interstellar clouds, backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of some cloud properties which are essential for the early phases in the formation of stars and solar nebule. The latter extrapolation makes possible to approach the cosmogonic processes by extrapolation of (rather) well-known magnetospheric phenomena. Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it seems possible to reconstruct certain events 4-5 billion years ago with an accuracy of a few percent. This will cause a change in our views of the evolution of the solar system.(author)

  10. The Comprehensive Inner Magnetosphere-Ionosphere Model

    Science.gov (United States)

    Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.

    2014-01-01

    Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

  11. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Falthammar, C.G.

    1989-01-01

    Electric field measurements on the satellites GEOS-1, GEOS-2, ISEE-1, and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause, the average (dawn-to-dusk directed) tangential electric field component is typically obscured by irregular fluctuations of larger amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration, is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region

  12. Outstanding Issues and Future Directions of Inner Magnetospheric Research (Invited)

    Science.gov (United States)

    Brandt, P. C.

    2009-12-01

    Several research areas of the inner magnetosphere and ionosphere (MI) system have reached a state, where the coupling mechanisms can no longer be treated as boundary conditions or ad-hoc assumptions in our physical models. It is nothing new that our community has become increasingly aware of the necessity to use global measurements from multiple observation platforms and missions, in order to understand both the system as a whole as well as its individual subsystems. In this presentation we briefly review the current status and outstanding issues of inner MI research. We attempt to establish a working definition of the term "Systems Approach", then present observational tools and techniques that enable such an approach. Physical modeling plays a central role not only in understanding the mechanisms at work, but also in determining the key quantities to be measured. We conclude by discussing questions relevant to future directions. Are there new techniques that need more attention? Should multi-platform observations be included as a default component already at the mission-level in the future? Is solar minimum uninteresting from an MI perspective? Should we actively compare to magnetospheres of other planets? Examples of outstanding issues in inner MI research include the circulation of ionospheric plasma from low to high latitudes and its escape to the magnetosphere, where it is energized by magnetospheric processes and becomes a part of the plasma pressure that in turn affects the ionospheric and magnetospheric electric field. The electric field, in turn, plays a controlling role in the transport of both magnetospheric and ionospheric plasma, which is intimately linked with ionospheric conductance. The conductance, in turn, is controlled by thermospheric chemistry coupled with plasma flow and heating and magnetospheric precipitation and Joule heating. Several techniques have emerged as important tools: auroral imaging, inversions of ENA images to retrieve the

  13. Modelling Mercury's magnetosphere and plasma entry through the dayside magnetopause

    Science.gov (United States)

    Massetti, S.; Orsini, S.; Milillo, A.; Mura, A.

    2007-09-01

    Owing to the next space mission Messenger (NASA) and BepiColombo (ESA/JAXA), there is a renewed interest in modelling the Mercury's environment. The geometry of the Mercury's magnetosphere, as well as its response to the solar wind conditions, is one of the major issues. The weak magnetic field of the planet and the increasing weight of the IMF BX component at Mercury's orbit, introduce critical differences with respect to the Earth's case, such as a strong north-south asymmetry and a significant solar wind precipitation into the dayside magnetosphere even for non-negative IMF BZ. With the aim of analysing the interaction between the solar wind and Mercury's magnetosphere, we have developed an empirical-analytical magnetospheric model starting from the Toffoletto-Hill TH93 code. Our model has been tuned to reproduce the key features of the Mariner 10 magnetic data, and to mimic the magnetic field topology obtained by the self-consistent hybrid simulation developed by Kallio and Janhunen [Solar wind and magnetospheric ion impact on Mercury's magnetosphere. Geophys. Res. Lett. 30, 1877, doi: 10.1029/2003GL017842]. The new model has then been used to study the effect of the magnetic reconnection on the magnetosheath plasma entry through the open areas of the dayside magnetosphere (cusps), which are expected to be one of the main sources of charged particles circulating inside the magnetosphere. We show that, depending on the Alfvén speeds on both sides of the magnetopause discontinuity, the reconnection process would be able to accelerate solar wind protons up to few tens of keV: part of these ions can hit the surface and then trigger, via ion-sputtering, the refilling of the planetary exosphere. Finally, we show that non-adiabatic effects are expected to develop in the cusp regions as the energy gained by injected particles increases. The extent of these non-adiabatic regions is shown to be also modulated by upstream IMF condition.

  14. Transforming Internal Activities of Business Process Models to Services Compositions

    NARCIS (Netherlands)

    Dirgahayu, Teduh; Quartel, Dick; van Sinderen, Marten J.; Mostefaoui, S.K.; Maamar, Z.; Ferreira Pires, L.; Hammoudi, S.; Rinderle-Ma, S.; Sadiq, S.; Schulz, K.

    As a service composition language, BPEL imposes as constraint that a business process model should consist only of activities for interacting with other business processes. BPEL provides limited support for implementing internal activities, i.e. activities that are performed by a single business

  15. Process of international kaizen transfer in the Netherlands

    NARCIS (Netherlands)

    Yokozawa, Kodo; Steenhuis, H.J.; de Bruijn, E.J.

    2011-01-01

    This study sheds light on the international kaizen transfer process. Two research questions were explored: what are the major stages in the kaizen transfer process? And what are the activities, positive and negative factors influencing each stage? Case studies with 15 Japanese manufacturers in the

  16. Information Architecture without Internal Theory: An Inductive Design Process.

    Science.gov (United States)

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  17. Using Reporting in the Internal Communication Process of the Company

    Directory of Open Access Journals (Sweden)

    Cornel Marian Iosif

    2013-07-01

    Full Text Available Internal communication can be regarded either as a subsistent process of the organization, or as a process helping to decode and more easily understand them. Organizations are based on the internal communication process, because without it, information, ideas could not be sent, the organization’s goals and values could not be built, and its organizational culture would simply not exist. The internal communication process is centered on sending ideas, information in the organization. This is directly proportional with the efficiency of the organization. Internal communication allows for the best decision to be taken, for information to be sent towards the interior of the company, towards the employees, but also has the purpose of strengthening the relations between persons. Internal communication has at its basis the verbal and non-verbal communication, but they have great disadvantages, because: verbal communication has losses of information, depends on the moment of transmission, but also on the receiver.Keywords: report, internal communication, neuro linguistic programming, company

  18. External and internal limitations in amplitude-modulation processing

    DEFF Research Database (Denmark)

    Ewert, Stephan; Dau, Torsten

    2004-01-01

    Three experiments are presented to explore the relative role of "external" signal variability and "internal" resolution limitations of the auditory system in the detection and discrimination of amplitude modulations (AM). In the first experiment, AM-depth discrimination performance was determined......-filterbank models. The predictions revealed that AM-depth discrimination and AM detection are limited by a combination of the external signal variability and an internal "Weber-fraction" noise process....

  19. Recent investigation at INPE in magnetospheric physics and geomagnetism

    International Nuclear Information System (INIS)

    Gonzales, W.D.; Trivedi, N.B.

    1984-01-01

    During recent years the following research activities related to the earth's magnetosphere have been intensified: a) studies on electric field and energy transfer from the solar wind to the magnetosphere; b) studies on high latitude magnetospheric electric fields and on their penetration into the plasmasphere; c) measurements of atmospheric-large scale-electric fields, related to the low latitude magnetospheric-ionospheric coupling and to the local atmospheric electrodynamics, using detectors on board stratospheric balloons; and d) measurements of atmospheric X-rays, related to the process of energetic particle precipitation at the South Atlantic Magnetic Anomaly, using detectors also on board stratospheric balloons. Similarly, the following research activities related to geomagnetism are being pursued: a) studies on the variability of the geomagnetic field and on the dynamics of the equatorial electrojet from local geomagnetic field measurements; b) studies on terrestrial electromagnetic induction through local measurements of the geo-electromagnetic field; and c) studies on the influence of geomagnetic activity on particle precipitation at the South Atlantic Magnetic Anomaly. (Author) [pt

  20. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  1. International Outsourcing: a process approach to the apparel industry

    Directory of Open Access Journals (Sweden)

    Maria Rosario Alves Moreira

    2015-12-01

    Full Text Available Objective – The purpose of this paper is to build a framework for an international outsourcing process in the apparel industry that can serve to support managerial decisions and actions regarding outsourcing choices and implementation. Design/methodology/approach – We developed of a straightforward and flexible framework describing the main stages of the international outsourcing process and its main activities with application in the context of the apparel industry. A case study approach was adopted with primary data collected through in-depth interviews and secondary data aggregated from company reports and documents. Theoretical foundation – Some research gaps in the outsourcing literature and most specifically on the matter of international outsourcing were identified by Hatonen and Eriksson (2009 and Kakabadse and Kakabadse (2000, among others. Specifically, these authors claim that there is not enough research on developing and offering decision models, tools or guidelines to support managerial decisions with the appropriate empirical evidence. This study aims to address this gap. Findings – We found that the international outsourcing process can be described using the proposed framework. Apparel companies can use this framework to support and supervise international outsourcing processes. Practical implications – This study provides a simple model that can help companies in the apparel industry to enhance their outsourcing activities and operations, and also contributes to a broader academic understanding of the matter.

  2. A New Standard Pulsar Magnetosphere

    Science.gov (United States)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  3. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  4. Magnetohydrodynamic calculations on pulsar magnetospheres

    International Nuclear Information System (INIS)

    Brinkmann, W.

    1976-01-01

    In this paper, the relativistic magnetohydrodynamic is presented in covariant form and applied to some problems in the field of pulsar magnetospheres. In addition, numerical methods to solve the resulting equations of motion are investigated. The theory of relativistic magnetohydrodynamic presented here is valid in the framework of the theory of general relativity, describing the interaction of electromagnetic fields with an ideal fluid. In the two-dimensional case, a Lax-Wendroff method is studied which should be optimally stable with the operator splitting of Strang. In the framework of relativistic magnetohydrodynamic also the model of a stationary aequatorial stellar pulsar wind as well as the parallel rotator is investigated. (orig.) [de

  5. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  6. Kinetic Theory of the Inner Magnetospheric Plasma

    CERN Document Server

    Khazanov, George V

    2011-01-01

    This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...

  7. The Effect of Storm Driver and Intensity on Magnetospheric Ion Temperatures

    Science.gov (United States)

    Keesee, Amy M.; Katus, Roxanne M.; Scime, Earl E.

    2017-09-01

    Energy deposited in the magnetosphere during geomagnetic storms drives ion heating and convection. Ions are also heated and transported via internal processes throughout the magnetosphere. Injection of the plasma sheet ions to the inner magnetosphere drives the ring current and, thus, the storm intensity. Understanding the ion dynamics is important to improving our ability to predict storm evolution. In this study, we perform superposed epoch analyses of ion temperatures during storms, comparing ion temperature evolution by storm driver and storm intensity. The ion temperatures are calculated using energetic neutral atom measurements from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission. The global view of these measurements provide both spatial and temporal information. We find that storms driven by coronal mass ejections (CMEs) tend to have higher ion temperatures throughout the main phase than storms driven by corotating interaction regions (CIRs) but that the temperatures increase during the recovery phase of CIR-driven storms. Ion temperatures during intense CME-driven storms have brief intervals of higher ion temperatures than those during moderate CME-driven storms but have otherwise comparable ion temperatures. The highest temperatures during CIR-driven storms are centered at 18 magnetic local time and occur on the dayside for moderate CME-driven storms. During the second half of the main phase, ion temperatures tend to decrease in the postmidnight to dawn sector for CIR storms, but an increase is observed for CME storms. This increase begins with a sharp peak in ion temperatures for intense CME storms, likely a signature of substorm activity that drives the increased ring current.

  8. Impulsive ion acceleration in earth's outer magnetosphere

    International Nuclear Information System (INIS)

    Baker, D.N.; Belian, R.D.

    1985-01-01

    Considerable observational evidence is found that ions are accelerated to high energies in the outer magnetosphere during geomagnetic disturbances. The acceleration often appears to be quite impulsive causing temporally brief (10's of seconds), very intense bursts of ions in the distant plasma sheet as well as in the near-tail region. These ion bursts extend in energy from 10's of keV to over 1 MeV and are closely associated with substorm expansive phase onsets. Although the very energetic ions are not of dominant importance for magnetotail plasma dynamics, they serve as an important tracer population. Their absolute intensity and brief temporal appearance bespeaks a strong and rapid acceleration process in the near-tail, very probably involving large induced electric fields substantially greater than those associated with cross-tail potential drops. Subsequent to their impulsive acceleration, these ions are injected into the outer trapping regions forming ion ''drift echo'' events, as well as streaming tailward away from their acceleration site in the near-earth plasma sheet. Most auroral ion acceleration processes occur (or are greatly enhanced) during the time that these global magnetospheric events are occurring in the magnetotail. A qualitative model relating energetic ion populations to near-tail magnetic reconnection at substorm onset followed by global redistribution is quite successful in explaining the primary observational features. Recent measurements of the elemental composition and charge-states have proven valuable for showing the source (solar wind or ionosphere) of the original plasma population from which the ions were accelerated

  9. 78 FR 18321 - International Code Council: The Update Process for the International Codes and Standards

    Science.gov (United States)

    2013-03-26

    ... Energy Conservation Code. International Existing Building Code. International Fire Code. International... Code. International Property Maintenance Code. International Residential Code. International Swimming Pool and Spa Code International Wildland-Urban Interface Code. International Zoning Code. ICC Standards...

  10. Uranium 2000 : International symposium on the process metallurgy of uranium

    International Nuclear Information System (INIS)

    Ozberk, E.; Oliver, A.J.

    2000-01-01

    The International Symposium on the Process Metallurgy of Uranium has been organized as the thirtieth annual meeting of the Hydrometallurgy Section of the Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (CIM). This meeting is jointly organized with the Canadian Mineral Processors Division of CIM. The proceedings are a collection of papers from fifteen countries covering the latest research, development, industrial practices and regulatory issues in uranium processing, providing a concise description of the state of this industry. Topics include: uranium industry overview; current milling operations; in-situ uranium mines and processing plants; uranium recovery and further processing; uranium leaching; uranium operations effluent water treatment; tailings disposal, water treatment and decommissioning; mine decommissioning; and international regulations and decommissioning. (author)

  11. Terrestrial magnetosphere and comparison with Jupiter's

    International Nuclear Information System (INIS)

    Michel, F.C.

    1974-01-01

    A review of the characteristics of Jupiter's magnetosphere, with comparisons to the earth's is given. Radio observations of Jupiter indicate that energetic electrons are trapped in its magnetic field. The interaction of the trapped radiation with the satellite Io and the centrifugal instability of Jupiter's magnetosphere are discussed. Jupiter's outer magnetosphere is constantly accreting plasma at an uncertain rate. Various mechanisms for supplying ions to the outer magnetosphere are discussed, including: gravitational and centrifugal forces acting on corotating particles; field-line diffusion; photoelectron injection; excitation by Io or other satellites; and viscous interaction with the solar wind. The over-all morphology of the Jovian magnetosphere seems to be highly distorted by centrifugal forces and is easily compressed or deflected by the solar wind

  12. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  13. New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby

    Science.gov (United States)

    Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje; hide

    2008-01-01

    Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.

  14. Artificial Neural Network L* from different magnetospheric field models

    Science.gov (United States)

    Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.

    2011-12-01

    The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.

  15. 4th International Conference on Communications, Signal Processing, and Systems

    CERN Document Server

    Mu, Jiasong; Wang, Wei; Zhang, Baoju

    2016-01-01

    This book brings together papers presented at the 4th International Conference on Communications, Signal Processing, and Systems, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from Communications, Signal Processing and Systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD, DOE, etc).

  16. Relativistic Processes and the Internal Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-01-01

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  17. Recent progress in understanding of the ion composition in the magnetosphere and some major question mark

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1981-06-01

    The observations of the energetic ion composition in the magnetosphere are reviewed with the emphasis on the recent measurements by means of GEOS-1 and -2, ISEE-1 and 2, PROGNOZ-7 and SCATHA. The observations are compared with the predictions of the open magnetosphere model. One of the major conclusions is that there are processes in the magnetosphere which play a much larger part than the model, as hitherto presented, predicts. Direct ejection of ionospheric ions, in combination with acceleration, along closed as well as open field lines may even be the dominating source process for the ring current/inner plasma sheet in magnetic storms. In very disturbed conditions this ejection mechanism must work over most of the hemispheres poleward of say 50degrees. Circulation of the ionospheric ions through the tail of the magnetosphere is not likely to be of primary importance for the energization of these ions in very disturbed conditions. (author)

  18. International Patients' Travel Decision Making Process- A Conceptual Framework.

    Science.gov (United States)

    Khan, Mohammad Jamal; Chelliah, Shankar; Haron, Mahmod Sabri

    2016-02-01

    Role of information source, perceived benefits and risks, and destination image has significantly been examined in travel and tourism literature; however, in medical tourism it is yet to be examined thoroughly. The concept discussed in this article is drawn form well established models in tourism literature. The purpose of this research was to identify the source of information, travel benefits and perceived risks related to movement of international patients and develop a conceptual model based on well-established theory. Thorough database search (Science Direct, utmj.org, nih.gov, nchu.edu.tw, palgrave-journals, medretreat, Biomedcentral) was performed to fulfill the objectives of the study. International patients always concern about benefits and risks related to travel. These benefits and risks form images of destination in the minds of international patients. Different sources of information make international patients acquaint about the associated benefits and risks, which later leads to development of intention to visit. This conceptual paper helps in establishing model for decision-making process of international patients in developing visit intention. Ample amount of literature is available detailing different factors involved in travel decision making of international patients; however literature explaining relationship between these factors is scarce.

  19. International Patients’ Travel Decision Making Process- A Conceptual Framework

    Science.gov (United States)

    KHAN, Mohammad Jamal; CHELLIAH, Shankar; HARON, Mahmod Sabri

    2016-01-01

    Background: Role of information source, perceived benefits and risks, and destination image has significantly been examined in travel and tourism literature; however, in medical tourism it is yet to be examined thoroughly. The concept discussed in this article is drawn form well established models in tourism literature. Methods: The purpose of this research was to identify the source of information, travel benefits and perceived risks related to movement of international patients and develop a conceptual model based on well-established theory. Thorough database search (Science Direct, utmj.org, nih.gov, nchu.edu.tw, palgrave-journals, medretreat, Biomedcentral) was performed to fulfill the objectives of the study. Results: International patients always concern about benefits and risks related to travel. These benefits and risks form images of destination in the minds of international patients. Different sources of information make international patients acquaint about the associated benefits and risks, which later leads to development of intention to visit. This conceptual paper helps in establishing model for decision-making process of international patients in developing visit intention. Conclusion: Ample amount of literature is available detailing different factors involved in travel decision making of international patients; however literature explaining relationship between these factors is scarce. PMID:27114978

  20. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  1. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  2. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  3. Electric current model of magnetosphere

    International Nuclear Information System (INIS)

    Alfen, H.

    1979-05-01

    A dualism between the field and the particle approach exists also in plasma physics. A number of phenomena, such as the formation of double layers and the energy transport form one region to another, can be understood only by the particle (electric current) description. Hence a translation of the traditional field description into a particle (electric current) description is essential. Such a translation has earlier been made for the heliosphere. The purpose of this paper is to outline a similar application to the magnetosphere, focussing on the energy transfer from the solar wind. As a first approximation a magnetic field consisting of a dipole field and homogeneous magnetic field is used whereas in a second approximation the configuration is more realistic. (author)

  4. 1st International Conference on Cognitive Systems and Information Processing

    CERN Document Server

    Hu, Dewen; Liu, Huaping

    2014-01-01

    "Foundations and Practical Applications of Cognitive Systems and Information Processing" presents selected papers from the First International Conference on Cognitive Systems and Information Processing, held in Beijing, China on December 15-17, 2012 (CSIP2012). The aim of this conference is to bring together experts from different fields of expertise to discuss the state-of-the-art in artificial cognitive systems and advanced information processing, and to present new findings and perspectives on future development. This book introduces multidisciplinary perspectives on the subject areas of Cognitive Systems and Information Processing, including cognitive sciences and technology, autonomous vehicles, cognitive psychology, cognitive metrics, information fusion, image/video understanding, brain-computer interfaces, visual cognitive processing, neural computation, bioinformatics, etc. The book will be beneficial for both researchers and practitioners in the fields of Cognitive Science, Computer Science and Cogni...

  5. First International Conference Multimedia Processing, Communication and Computing Applications

    CERN Document Server

    Guru, Devanur

    2013-01-01

    ICMCCA 2012 is the first International Conference on Multimedia Processing, Communication and Computing Applications and the theme of the Conference is chosen as ‘Multimedia Processing and its Applications’. Multimedia processing has been an active research area contributing in many frontiers of today’s science and technology. This book presents peer-reviewed quality papers on multimedia processing, which covers a very broad area of science and technology. The prime objective of the book is to familiarize readers with the latest scientific developments that are taking place in various fields of multimedia processing and is widely used in many disciplines such as Medical Diagnosis, Digital Forensic, Object Recognition, Image and Video Analysis, Robotics, Military, Automotive Industries, Surveillance and Security, Quality Inspection, etc. The book will assist the research community to get the insight of the overlapping works which are being carried out across the globe at many medical hospitals and instit...

  6. 9th International Symposium on Ultrafast Processes in Spectroscopy

    CERN Document Server

    Silvestri, S; Denardo, G

    1996-01-01

    This volume is a collection of papers presented at the Ninth International Symposium on "Ultrafast Processes in Spectroscopy" (UPS '95) held at the International Centre for Theo­ retical Physics (ICTP), Trieste (Italy), October 30 -November 3, 1995. These meetings have become recognized as the major forum in Europe for discussion of new work in this rapidly moving field. The UPS'95 Conference in Trieste brought together a multidisciplinary group of researchers sharing common interests in the generation of ultrashort optical pulses and their application to studies of ultrafast phenomena in physics, chemistry, material science, electronics, and biology. It was attended by approximately 250 participants from 20 countries and the five-day program comprises more than 200 papers. The progress of both technology and applications in the field of ultrafast processes during these last years is truly remarkable. The advent of all solid state femtosecond lasers and the extension of laser wavelengths by frequency convers...

  7. UK review of radio science, 1984-1986. Ionosphere and magnetosphere

    International Nuclear Information System (INIS)

    Rishbeth, H.; Jones, D.

    1986-12-01

    The paper contains the United Kingdom (U.K.) review of Radio Science, 1984-1986, covering ionospheric and magnetospheric science. This is the current UK contribution towards an international review published by the International Union of Radio Science (URSI). The UK review is divided into topics prescribed by URSI and covers work that is actually published within the period October 1983 - Sept. 1986, also as prescribed by URSI. The topics discussed in the review include: incoherent and coherent scatter, probing the magnetosphere, plasma instabilities, ionospheric modification, composition, ionization and chemistry and ionospheric dynamics. (U.K.)

  8. 75 FR 19944 - International Code Council: The Update Process for the International Codes and Standards

    Science.gov (United States)

    2010-04-16

    ... documents from ICC's Chicago District Office: International Code Council, 4051 W Flossmoor Road, Country... Energy Conservation Code. International Existing Building Code. International Fire Code. International...

  9. 4th International Conference on Software Process Improvement

    CERN Document Server

    Muñoz, Mirna; Rocha, Álvaro; Calvo-Manzano, Jose

    2016-01-01

    This book contains a selection of papers from The 2015 International Conference on Software Process Improvement (CIMPS’15), held between the 28th and 30th of October in Mazatlán, Sinaloa, México. The CIMPS’15 is a global forum for researchers and practitioners that present and discuss the most recent innovations, trends, results, experiences and concerns in the several perspectives of Software Engineering with clear relationship but not limited to software processes, Security in Information and Communication Technology and Big Data Field. The main topics covered are: Organizational Models, Standards and Methodologies, Knowledge Management, Software Systems, Applications and Tools, Information and Communication Technologies and Processes in non-software domains (Mining, automotive, aerospace, business, health care, manufacturing, etc.) with a demonstrated relationship to software process challenges.

  10. Radiation Belts of Antiparticles in Planetary Magnetospheres

    Science.gov (United States)

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process

  11. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.

    Science.gov (United States)

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H

    2009-05-01

    Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

  12. Enhanced ionosphere-magnetosphere data from the DMSP satellites

    International Nuclear Information System (INIS)

    Rich, F.J.; Hardy, D.A.; Gussenhoven, M.S.

    1985-01-01

    The satellites of the Defense Meteorological Satellite Program (DMSP) represent a series of low-altitude (835 km) polar-orbiting satellites. Their primary objective is related to the observation of the tropospheric weather with a high-resolution white light and infrared imaging system. It is also possible to make images of auroras. On a daily basis, information about auroras is used to assist various communication systems which are affected by the ionospheric disturbances associated with auroras. In the past few years, there have been several improvements in the ionospheric monitoring instrumentation. Since the high-latitude ionosphere is connected to the magnetosphere, the DMSP data are used to monitor magnetospheric processes. The instrumentation of the DMSP satellites is discussed, taking into account the data provided by them. 7 references

  13. Interaction of Titan's atmosphere with Saturn's magnetosphere

    International Nuclear Information System (INIS)

    Hartle, R.E.

    1985-01-01

    The Voyager 1 measurements made during the Titan flyby reveal that Saturn's rotating magnetospheric plasma interacts directly with Titan's neutral atmosphere and ionosphere. This results from the lack of an intrinsic magnetic field at Titan. The interaction induces a magnetosphere which deflects the flowing plasma around Titan and forms a plasma wake downstream. Within the tail of the induced magnetosphere, ions of ionospheric origin flow away from Titan. Just outside Titan's magnetosphere, a substantial ion-exosphere forms from an extensive hydrogen-nitrogen exosphere. The exospheric ions are picked up and carried downstream into the wake by the plasma flowing around Titan. Mass loading produced by the addition of exospheric ions slows the wake plasma down considerably in the vicinity of the magnetopause. 36 references

  14. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    Science.gov (United States)

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  15. 2015 International Conference on Machine Learning and Signal Processing

    CERN Document Server

    Woo, Wai; Sulaiman, Hamzah; Othman, Mohd; Saat, Mohd

    2016-01-01

    This book presents important research findings and recent innovations in the field of machine learning and signal processing. A wide range of topics relating to machine learning and signal processing techniques and their applications are addressed in order to provide both researchers and practitioners with a valuable resource documenting the latest advances and trends. The book comprises a careful selection of the papers submitted to the 2015 International Conference on Machine Learning and Signal Processing (MALSIP 2015), which was held on 15–17 December 2015 in Ho Chi Minh City, Vietnam with the aim of offering researchers, academicians, and practitioners an ideal opportunity to disseminate their findings and achievements. All of the included contributions were chosen by expert peer reviewers from across the world on the basis of their interest to the community. In addition to presenting the latest in design, development, and research, the book provides access to numerous new algorithms for machine learni...

  16. STRATEGIC PRIORITIES FOR THE INTERNAL MIGRATION PROCESSES REGULATION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Olga Balueva

    2018-01-01

    implementation ought to be approved by the strategic migration model for Ukraine’s internal migration aimed at promoting the implementation of the basic IDPs and internally displaced businesses rights; ensuring the social and economic integration of the IDPs into the host society; promotion of country territories’ social and economic development; reducing the level of social and psychological tension in host communities; creating new jobs; improvement of the investment climate; increasing the efficiency of using the country intellectual potential and its human resources. Value / originality. Solving the urgent issues associated with forced displacement processes, including integration and adaptation to host communities.

  17. Advancements in internationally accepted standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV; Derr, D.D.; Vehar, D.W.

    1993-01-01

    Subcommittees of the American Society for Testing and Materials (ASTM) are developing standards on various aspects of radiation processing. Nine standards on how to select and calibrate dosimeters, where to put them, how many to use, and how to use individual types of dosimeter systems have been published. The group is also developing standards on how to use gamma, electron beam, and X-ray facilities for radiation processing, and a standard on how to treat dose uncertainties. Efforts are underway to promote inclusion of these standards into procedures now being developed by government agencies and by international groups such as the United Nations' International Consultative Group on Food Irradiation (ICGFI) in order to harmonize regulations and help avoid trade barriers. Standards on good irradiation practices for meat and poultry and for fresh fruits, and for the irradiation of seafood and spices have been developed. These food-related standards are based on practices previously published by ICGFI. Standards for determining doses for radiation hardness testing of electronics have been developed. Standards on the Fricke and TLD dosimetry systems are equally useful in other radiation processing applications. (Author)

  18. Low-energy neutral atom emission from the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Moore, K.R.; Scime, E.E.; Funsten, H.O.; McComas, D.J.; Thomsen, M.F.

    1994-01-01

    Imaging of the terrestrial magnetosphere is possible through the detection of low-energy neutral atoms (LENAs) produced by charge exchange between magnetospheric plasma ions and neutral atoms of the Earth's geocorona. The authors present calculations of both hydrogen and oxygen line-of-sight LENA fluxes expected on orbit for various plasma regimes as predicted by the Rice University Magnetospheric Specification Model. To decrease the required computation time, they are in the process of adapting their code for massively parallel computers. The speed gains achieved from parallel algorithms are substantial, and they present results from computational runs on the Connection Machine CM-2 data parallel supercomputer. They also estimate expected image count rates and image quality based on realistic instrument geometric factors, energy passbands, neutral atom scattering in the instrument, and image accumulation intervals. The results indicate that LENA imaging instruments will need a geometric factor (G) on the order of 0.1 cm 2 sr eV/eV to be capable of imaging storm time ring currents, and a G of 1.0 cm 2 sr eV/eV in order to image the quiet time ring current fluxes, ion injections from the tail, and subsequent ion drifts toward the dayside magnetopause

  19. Effects of Energetic Ion Outflow on Magnetospheric Dynamics

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C.; Lund, E. J.; Menz, A.; Nowrouzi, N.

    2016-12-01

    There are two dominant regions of energetic ion outflow: the nightside auroral region and the dayside cusp. Processes in these regions can accelerate ions up to keV energies. Outflow from the nightside has direct access to the plasma sheet, while outflow from the cusp is convected over the polar cap and into the lobes. The cusp population can enter the plasma sheet from the lobe, with higher energy ions entering further down the tail than lower energy ions. During storm times, the O+ enhanced plasma sheet population is convected into the inner magnetosphere. The plasma that does not get trapped in the inner magnetosphere convects to the magnetopause where reconnection is taking place. An enhanced O+ population can change the plasma mass density, which may have the effect of decreasing the reconnection rate. In addition O+ has a larger gyroradius than H+ at the same velocity or energy. Because of this, there are larger regions where the O+ is demagnetized, which can lead to larger acceleration because the O+ can move farther in the direction of the electric field. In this talk we will review results from Cluster, Van Allen Probes, and MMS, on how outflow from the two locations affects magnetospheric dynamics. We will discuss whether enhanced O+ from either population has an effect on the reconnection rate in the tail or at the magnetopause. We will discuss how the two populations impact the inner magnetosphere during storm times. And finally, we will discuss whether either population plays a role in triggering substorms, particularly during sawtooth events.

  20. Mercury's magnetosphere and magnetotial revisited

    International Nuclear Information System (INIS)

    Bergan, S.; Engle, I.M.

    1981-01-01

    Magnetic observations which are not complicated by currents of trapped plasma are a good test of geomagnetopause and geomagnetotail predictions. Recent attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field with a quadrupole moment in addition to the planetary dipole field or a dipole field linearly displaced from planet center and no quadrupole moment have produced reasonably good fits to the Mercury magnetic field measurements. In this work we find a better fit for a dipole displacement from the planet center by making use of an improved representation of the magnetic field in the magnetotail, where many of the Mercury measurements were made. The rms deviation of the data was reduced from 10. or 11. γ to 9.3 γ by employing this new tail field representation. Also, by making use of this new tail field representation, we find a best fit for a dipole displacement of -0.0285 R/sub M/ (earlier, 0.026 R/sub M/) toward the dawn in the magnetic equatorial plane and 0.17 R/sub M/ (earlier, 0.189 R/sub M/ (earlier 0.189 R/sub M/) northward along the magnetic dipole axis, where R/sub M/ is the planet radius. Thus with only minor adjustments in the displacement vector of the dipole from the planet center we achieve a measurable improvement in the fit of the data by using the improved magnetotail field representation

  1. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  2. 1st International Conference on Computer Vision and Image Processing

    CERN Document Server

    Kumar, Sanjeev; Roy, Partha; Sen, Debashis

    2017-01-01

    This edited volume contains technical contributions in the field of computer vision and image processing presented at the First International Conference on Computer Vision and Image Processing (CVIP 2016). The contributions are thematically divided based on their relation to operations at the lower, middle and higher levels of vision systems, and their applications. The technical contributions in the areas of sensors, acquisition, visualization and enhancement are classified as related to low-level operations. They discuss various modern topics – reconfigurable image system architecture, Scheimpflug camera calibration, real-time autofocusing, climate visualization, tone mapping, super-resolution and image resizing. The technical contributions in the areas of segmentation and retrieval are classified as related to mid-level operations. They discuss some state-of-the-art techniques – non-rigid image registration, iterative image partitioning, egocentric object detection and video shot boundary detection. Th...

  3. The role of internal and external constructive processes in evolution.

    Science.gov (United States)

    Laland, Kevin; Odling-Smee, John; Turner, Scott

    2014-06-01

    The architects of the Modern Synthesis viewed development as an unfolding of a form already latent in the genes. However, developing organisms play a far more active, constructive role in both their own development and their evolution than the Modern Synthesis proclaims. Here we outline what is meant by constructive processes in development and evolution, emphasizing how constructive development is a shared feature of many of the research developments central to the developing Extended Evolutionary Synthesis. Our article draws out the parallels between constructive physiological processes expressed internally and in the external environment (niche construction), showing how in each case they play important and not fully recognized evolutionary roles by modifying and biasing natural selection. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  4. The role of internal and external constructive processes in evolution

    Science.gov (United States)

    Laland, Kevin; Odling-Smee, John; Turner, Scott

    2014-01-01

    The architects of the Modern Synthesis viewed development as an unfolding of a form already latent in the genes. However, developing organisms play a far more active, constructive role in both their own development and their evolution than the Modern Synthesis proclaims. Here we outline what is meant by constructive processes in development and evolution, emphasizing how constructive development is a shared feature of many of the research developments central to the developing Extended Evolutionary Synthesis. Our article draws out the parallels between constructive physiological processes expressed internally and in the external environment (niche construction), showing how in each case they play important and not fully recognized evolutionary roles by modifying and biasing natural selection. PMID:24591574

  5. An International Perspective on Pharmacy Student Selection Policies and Processes.

    Science.gov (United States)

    Shaw, John; Kennedy, Julia; Jensen, Maree; Sheridan, Janie

    2015-10-25

    Objective. To reflect on selection policies and procedures for programs at pharmacy schools that are members of an international alliance of universities (Universitas 21). Methods. A questionnaire on selection policies and procedures was distributed to admissions directors at participating schools. Results. Completed questionnaires were received from 7 schools in 6 countries. Although marked differences were noted in the programs in different countries, there were commonalities in the selection processes. There was an emphasis on previous academic performance, especially in science subjects. With one exception, all schools had some form of interview, with several having moved to multiple mini-interviews in recent years. Conclusion. The majority of pharmacy schools in this survey relied on traditional selection processes. While there was increasing use of multiple mini-interviews, the authors suggest that additional new approaches may be required in light of the changing nature of the profession.

  6. 3-D Force-balanced Magnetospheric Configurations

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.; Maezawa, K.

    2003-01-01

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions

  7. Magnetosphere Modeling: From Cartoons to Simulations

    Science.gov (United States)

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems

  8. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    International Nuclear Information System (INIS)

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures

  9. A simulation study of impulsive penetration of solar wind irregularities into the magnetosphere at the dayside magnetopause

    International Nuclear Information System (INIS)

    Ma, Z.W.; Hawkins, J.G.; Lee, L.C.

    1991-01-01

    A two-dimensional magnetohydrodynamic code is used to study impulsive penetration processes that occur when a plasma irregularity in the magnetosheath, modeled as a field-aligned filament, impinges on the dayside magnetopause. If the magnetic fields in the magnetosheath and magnetosphere are parallel or antiparallel, then a filament in the magnetosheath can always penetrate into the magnetosphere. However, if the fields in the magnetosheath and magnetosphere are not aligned, then a filament can only penetrate into the magnetosphere when its initial kinetic energy density exceeds the magnetic energy density attributed to the transverse component of the magnetic field by a factor of 50. In this case, the magnetospheric field lines reconnect behind the filament, thereby trapping it within the magnetosphere. Otherwise, the increasing magnetic stress in front of the filament will eventually stop the filament from further penetration. For typical parameters found at the dayside magnetopause, the threshold condition obtained from this two-dimensional model predicts that penetration is possible only when the angle between the fields is within approximately 5 of parallel or antiparallel. During the penetration process, velocity vortices are observed both inside the filament and in the external plasma. Either increased β within the magnetosphere, or the larger plasma density at the magnetopause associated with antiparallel magnetic fields, will act to reduce the penetration velocity

  10. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  11. Auroral kilometric radiation and magnetospheric substorm

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi

    1980-01-01

    The auroral kilometric radiation (AKR) and its relation to the development of the magnetospheric substorm have been studied based on the data obtained by JIKIKEN (EXOS-B) satellite. The occurrence of AKR is closely correlated to the intense UHR emission outside the plasmapause at the satellite position; the evidence clearly suggests that the development of the field aligned current system is associated with AKR generated at the upward current region and with the UHR emission at the downward current region. The drifting plasma due to the electric field that is generated in the magnetosphere at the moment of the magnetospheric substorm is derived from the frequency change of the plasma waves. The enhancement of the westward electric field in the duskside magnetosphere is detected simultaneously with the appearence of AKR. The altitude of the center of the AKR source region varies with intimate relation to the substorm activity suggesting that the generation of AKR is taking place in the region where the polar ionosphere and the magnetosphere are predominantly coupling through the precipitating or up going particles. From the fine structure of the dynamic spectra of AKR, it is suggested that the source of AKR might be closely related to the double layer type electric field along the magnetic field. (author)

  12. Internal model of gravity influences configural body processing.

    Science.gov (United States)

    Barra, Julien; Senot, Patrice; Auclair, Laurent

    2017-01-01

    Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Resonance internal conversion as a way of accelerating nuclear processes

    International Nuclear Information System (INIS)

    Karpeshin, F.F.

    2006-01-01

    Theory of resonance conversion is presented. Being a natural extension of the traditional internal conversion into the subthreshold area, resonance conversion in a number of cases strongly affects the nuclear processes. Moreover, concentrating the transition strength on the narrow bands corresponding to the spectral atomic lines, it offers a unique tool capable of accelerating nuclear decay rates. Furthermore, along with the conventional nonradiative process of nuclear excitation through NEET and its reverse, TEEN, resonance conversion offers an appropriate mathematics for consideration of a number of cross-invariant processes involving both nuclei and electrons: excitation and deexcitation of the nuclei by hyperfine magnetic field, nuclear spin mixing, hyperfine interaction and magnetic anomalies in the atomic spectra, collisional nuclear excitation via ionization of the shells in the muon decay in the orbit, etc. The mechanisms of the optical pumping of the isomers are also considered, as well as triggering their energy in the resonance field of a laser. The effect is especially high in the hydrogen-like heavy ions due to practical absence of any damping of the resonance. The theory is also generalized to the case of the discrete Auger transitions [ru

  14. PREFACE: International Workshop on Multi-Rate Processes and Hysteresis

    Science.gov (United States)

    Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2008-07-01

    We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been

  15. Identifying Cassini's Magnetospheric Location Using Magnetospheric Imaging Instrument (MIMI) Data and Machine Learning

    Science.gov (United States)

    Vandegriff, J. D.; Smith, G. L.; Edenbaum, H.; Peachey, J. M.; Mitchell, D. G.

    2017-12-01

    We analyzed data from Cassini's Magnetospheric Imaging Instrument (MIMI) and Magnetometer (MAG) and attempted to identify the region of Saturn's magnetosphere that Cassini was in at a given time using machine learning. MIMI data are from the Charge-Energy-Mass Spectrometer (CHEMS) instrument and the Low-Energy Magnetospheric Measurement System (LEMMS). We trained on data where the region is known based on a previous analysis of Cassini Plasma Spectrometer (CAPS) plasma data. Three magnetospheric regions are considered: Magnetosphere, Magnetosheath, and Solar Wind. MIMI particle intensities, magnetic field values, and spacecraft position are used as input attributes, and the output is the CAPS-based region, which is available from 2004 to 2012. We then use the trained classifier to identify Cassini's magnetospheric regions for times after 2012, when CAPS data is no longer available. Training accuracy is evaluated by testing the classifier performance on a time range of known regions that the classifier has never seen. Preliminary results indicate a 68% accuracy on such test data. Other techniques are being tested that may increase this performance. We present the data and algorithms used, and will describe the latest results, including the magnetospheric regions post-2012 identified by the algorithm.

  16. Global fully kinetic models of planetary magnetospheres with iPic3D

    Science.gov (United States)

    Gonzalez, D.; Sanna, L.; Amaya, J.; Zitz, A.; Lembege, B.; Markidis, S.; Schriver, D.; Walker, R. J.; Berchem, J.; Peng, I. B.; Travnicek, P. M.; Lapenta, G.

    2016-12-01

    We report on the latest developments of our approach to model planetary magnetospheres, mini magnetospheres and the Earth's magnetosphere with the fully kinetic, electromagnetic particle in cell code iPic3D. The code treats electrons and multiple species of ions as full kinetic particles. We review: 1) Why a fully kinetic model and in particular why kinetic electrons are needed for capturing some of the most important aspects of the physics processes of planetary magnetospheres. 2) Why the energy conserving implicit method (ECIM) in its newest implementation [1] is the right approach to reach this goal. We consider the different electron scales and study how the new IECIM can be tuned to resolve only the electron scales of interest while averaging over the unresolved scales preserving their contribution to the evolution. 3) How with modern computing planetary magnetospheres, mini magnetosphere and eventually Earth's magnetosphere can be modeled with fully kinetic electrons. The path from petascale to exascale for iPiC3D is outlined based on the DEEP-ER project [2], using dynamic allocation of different processor architectures (Xeon and Xeon Phi) and innovative I/O technologies.Specifically results from models of Mercury are presented and compared with MESSENGER observations and with previous hybrid (fluid electrons and kinetic ions) simulations. The plasma convection around the planets includes the development of hydrodynamic instabilities at the flanks, the presence of the collisionless shocks, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. Given the full kinetic nature of our approach we focus on detailed particle dynamics and distribution at locations that can be used for comparison with satellite data. [1] Lapenta, G. (2016). Exactly Energy Conserving Implicit Moment Particle in Cell Formulation. arXiv preprint ar

  17. ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms

    Science.gov (United States)

    Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.

    2018-04-01

    Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bzstill account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.

  18. THE PARTICIPATION OF INTERNATIONAL ENTITIES ON THE PUBLIC CONSULTATION PROCESS OF PUBLIC INTERNATIONAL ACCOUNTING STANDARD ABOUT INTANGIBLE ASSETS

    OpenAIRE

    Salaroli, Abner Ribeiro; de Almeida, José Elias Feres; Gama, Janyluce Rezende

    2015-01-01

    The public accounting follows the same direction of financial accounting on the search for convergence to international standards, where IFAC is the body responsible for issuing international standards of public accounting. In this context, this study aims to analyze the process of development of the international public accounting standard about public intangible assets. The analysis was performed based on the suggestions available in comment letters sent to the consultation process. As a th...

  19. Magnetospheric structure of rotation powered pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  20. Theory of imperfect magnetosphere-ionosphere coupling

    International Nuclear Information System (INIS)

    Kan, J.R.; Lee, L.C.

    1980-01-01

    Atheory of magnetosphere-ionosphere coupling in the presence of field-aligned potential drops is formulated within the framework of magnetohydrodynamic equations. Our formulation allows the magnetosphere as well as the ionosphere to respond self-consistently to the parallel potential drop along auroral field lines. Equipotential contours are distorted into a V-shaped structure near the convection reversal boundary and S-shaped on the equatorward side, each gives rise to an inverted V precipitation band. The loading effect of the imperfect coupling results in a valley in the electric field profile which occurs equatorward of the convection reversal boundary

  1. International Symposium on Dynamics of Ordering Processes in Condensed Matter

    CERN Document Server

    Furukawa, H

    1988-01-01

    The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci­ ety of Japan. The symposium was financially supported by the four orga­ nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un­ stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by sim...

  2. Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal

    Science.gov (United States)

    Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.

    2017-12-01

    The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.

  3. Ionosphere-Magnetosphere Energy Interplay in the Regions of Diffuse Aurora

    Science.gov (United States)

    Khazanov, G. V.; Glocer, A.; Sibeck, D. G.; Tripathi, A. K.; Detweiler, L.G.; Avanov, L. A.; Singhal, R. P.

    2016-01-01

    Both electron cyclotron harmonic (ECH) waves and whistler mode chorus waves resonate with electrons of the Earths plasma sheet in the energy range from tens of eV to several keV and produce the electron diffuse aurora at ionospheric altitudes. Interaction of these superthermal electrons with the neutral atmosphere leads to the production of secondary electrons (E500600 eV) and, as a result, leads to the activation of lower energy superthermal electron spectra that can escape back to the magnetosphere and contribute to the thermal electron energy deposition processes in the magnetospheric plasma. The ECH and whistler mode chorus waves, however, can also interact with the secondary electrons that are coming from both of the magnetically conjugated ionospheres after they have been produced by initially precipitated high-energy electrons that came from the plasma sheet. After their degradation and subsequent reflection in magnetically conjugate atmospheric regions, both the secondary electrons and the precipitating electrons with high (E600 eV) initial energies will travel back through the loss cone, become trapped in the magnetosphere, and redistribute the energy content of the magnetosphere-ionosphere system. Thus, scattering of the secondary electrons by ECH and whistler mode chorus waves leads to an increase of the fraction of superthermal electron energy deposited into the core magnetospheric plasma.

  4. First results from the Magnetospheric Multiscale mission

    Science.gov (United States)

    Lavraud, B.

    2017-12-01

    Since its launch in March 2015, NASA's Magnetospheric Multiscale mission (MMS) provides a wealth of unprecedented high resolution measurements of space plasma properties and dynamics in the near-Earth environment. MMS was designed in the first place to study the fundamental process of collision-less magnetic reconnection. The two first results reviewed here pertain to this topic and highlight how the extremely high resolution MMS data (electrons, in particular, with full three dimensional measurements at 30 ms in burst mode) have permitted to tackle electron dynamics in unprecedented details. The first result demonstrates how electrons become demagnetized and scattered near the magnetic reconnection X line as a result of increased magnetic field curvature, together with a decrease in its magnitude. The second result demonstrates that electrons form crescent-shaped, agyrotropic distribution functions very near the X line, suggestive of the existence of a perpendicular current aligned with the local electric field and consistent with the energy conversion expected in magnetic reconnection (such that J\\cdot E > 0). Aside from magnetic reconnection, we show how MMS contributes to topics such as wave properties and their interaction with particles. Thanks again to extremely high resolution measurements, the lossless and periodical energy exchange between wave electromagnetic fields and particles, as expected in the case of kinetic Alfvén waves, was confirmed. Although not discussed, MMS has the potential to solve many other outstanding issues in collision-less plasma physics, for example regarding shock or turbulence acceleration, with obvious broader impacts in astrophysics in general.

  5. Propagation of microwaves in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G; Ferrari, A [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica Generale; Cambridge Univ. (UK). Inst. of Astronomy)

    1981-12-01

    We discuss the dispersion relation of linearly-polarized waves, propagating along a strong background magnetic field embedded in an electron-positron plasma. The results are then applied to the study of the propagation conditions of coherent curvature radio radiation inside neutron stars magnetospheres, as produced by electric discharges following current pulsar models.

  6. Polarized curvature radiation in pulsar magnetosphere

    Science.gov (United States)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  7. Whistler instability in a magnetospheric duct

    International Nuclear Information System (INIS)

    Talukdar, I.; Tripathi, V.K.; Jain, V.K.

    1989-01-01

    A whistler wave propagating through a preformed magnetospheric duct is susceptible to growth/amplification by an electron beam. The interaction is non-local and could be of Cerenkov or slow-cyclotron type. First-order perturbation theory is employed to obtain the growth rate for flat and Gaussian beam densities. (author)

  8. The Magnetospheric Boundary in Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    Hellier Coel

    2014-01-01

    During outbursts, when the accretion flow increases by orders of magnitude, the disk pushes the magnetosphere inwards, and appears to feed field lines over a much greater range of magnetic azimuth. The non-equilibrium outburst behaviour shows an even richer phenomenology than in quiescence, adding DNOs and QPOs into the mix.

  9. Links between galaxy evolution, morphology and internal physical processes

    International Nuclear Information System (INIS)

    Kraljic, Katarina

    2014-01-01

    This thesis aims at making the link between galaxy evolution, morphology and internal physical processes, namely star formation as the outcome of the turbulent multiphase interstellar medium, using the cosmological zoom-in simulations, simulations of isolated and merging galaxies, and the analytic model of star formation. In Chapter 1, I explain the motivation for this thesis and briefly review the necessary background related to galaxy formation and modeling with the use of numerical simulations. I first explore the evolution of the morphology of Milky-Way-mass galaxies in a suite of zoom-in cosmological simulations through the analysis of bars. I analyze the evolution of the fraction of bars with redshift, its dependence on the stellar mass and accretion history of individual galaxies. I show in particular, that the fraction of bars declines with increasing redshift, in agreement with the observations. This work also shows that the obtained results suggest that the bar formation epoch corresponds to the transition between an early 'violent' phase of spiral galaxies formation at z > 1, during which they are often disturbed by major mergers or multiple minor mergers as well as violent disk instabilities, and a late 'secular' phase at z [fr

  10. A regional process under the international initiative for IFM

    Directory of Open Access Journals (Sweden)

    Murase Masahiko

    2016-01-01

    Full Text Available Climate change is likely to result in increases in the frequency or intensity of extreme weather events including floods. The International Flood Initiative (IFI, initiated in January 2005 by UNESCO and WMO and voluntary partner organizations has promoted an integrated flood management (IFM to take advantage of floods and use of floodplains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks. After its initial decade, the initiative is providing a stepping-stone for the implementation of Sendai Framework by revitalizing its activities aimed at building on the sucess of the past, while addressing existing gaps in integrated flood managemnet strategies comprising of optimal structural and nonstructural measures thereby mainstreaming disaster risk reduction and targeting sustainable development. In this context, a new mechanism try to facilitate monitoring, assessment and capacity building in the Asia Pacific region. The primary outcomes of the mechanism are demand-driven networking and related documentations of best practices for 1 hazard assessment, 2 exposure assessment, 3 vulnerability assessment and coping capacity to identify the gaps, and 4 follow-ups and monitoring of the IFM process.

  11. Impulsive Alfven coupling between the magnetosphere and ionosphere

    International Nuclear Information System (INIS)

    Reddy, R.V.; Watanabe, K.; Sato, T.; Watanabe, T.H.

    1994-04-01

    Basic properties of the impulsive Alfven interaction between the magnetosphere and ionosphere have been studied by means of a three-dimensional self-consistent simulation of the coupled magnetosphere and ionosphere system. It is found that the duration time of an impulsive perturbation at the magnetospheric equator, the latitudinal distribution of the Alfven propagation time along the field lines, and the ratio between the magnetospheric impedance and the ionospheric resistance is the main key factors that determine the propagation dynamics and the ionospheric responses for an impulsive MHD perturbation in the magnetosphere. (author)

  12. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    Science.gov (United States)

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  13. A New Approach to Modeling Jupiter's Magnetosphere

    Science.gov (United States)

    Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2017-12-01

    The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.

  14. Hydromagnetic wave coupling in the magnetosphere

    International Nuclear Information System (INIS)

    Lee, D.

    1990-01-01

    The hydromagnetic wave phenomena in the magnetosphere has been an area of space physics and plasma physics where theory has been successful in explaining many features in satellite experiments and ground-based observations. Magnetohydrodynamic (MHD) waves, which are composed of transverse Alven waves and compressional waves, are usually coupled in space due to an inhomogeneous plasma density and curved magnetic field lines. In addition to these effects, hot temperature plasmas invoke various ultra low frequency (ULF) wave phenomena via macroscopic wave instabilities or wave particle resonant interactions. These properties of the coupling between the two different MHD waves were analytically and numerically studied in a simplified model such as the box model with straight field lines. However, the real magnetosphere is rather close to a dipole field, even though the night side of the magnetosphere is significantly distorted from dipole geometry. The curvature of field lines plays an important role in understanding hydromagnetic wave coupling in the magnetosphere since the MHD wave propagation depends strongly on the curved magnetic fields. The study of the hydromagnetic wave properties on an inhomogeneous and curved magnetic field system by considering realistic geometry is emphasized. Most of the current theories are reviewed and a number of observations are introduced according to the wave excitation mechanism. Studies are also performed with the development of numerical models such as the two and three dimensional MHD dipole models. An attempt is made to understand and classify the hydromagnetic wave behavior in inhomogeneous and hot plasmas with respect to the energy sources and their frequency band in the magnetosphere. Therefore, various excitation mechanisms for hydromagnetic waves are examined to compare analytical and numerical results with the observations

  15. Particle Acceleration in Dissipative Pulsar Magnetospheres

    Science.gov (United States)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  16. Field-aligned currents near the magnetosphere boundary

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1984-01-01

    This paper describes present thinking about the structure of magnetospheric boundary layers and their roles in the generation of the field-aligned currents that are observed in the polar regions. A principal effect of the momentum loss by magnetosheath plasma to the magnetosphere boundary regions just within the magnetopause, whether it be by a diffusive process or by magnetic reconnection, is the tailward pulling of the surface flux tubes relative to those deeper below the surface. The dayside region 1 currents at low altitudes flow along field lines in the resulting regions of magnetic shear. The direction of the shear and its magnitude, actually measured in the boundary region, confirm that the polarities and intensities of the dayside region 1 currents can be accounted for by this process. The low latitude boundary layer, formerly thought to be threaded entirely by closed field lines, now appears to contain at least some open field lines, newly reconnected, that are in the process of being swept into the high latitude tail to form the plasma mantle. The open flux tubes of the flux transfer events, thought to be the product of patchy reconnection have a spiral magnetic structure whose helicity is such as to suggest currents having the polarities of the region 1 currents. 13 references

  17. Field-aligned currents near the magnetosphere boundary

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1983-01-01

    This paper reviews present thinking about the structure of magnetospheric boundary layers and their roles in the generation of the field-aligned currents that are observed in the polar regions. A principal effect of the momentum loss by magnetosheath plasma to the magnetosphere boundary regions just within the magnetopause, whether it be by a diffusive process or by magnetic reconnection, is the tailward pulling of surface flux tubes relative to those deeper below the surface. The dayside region 1 currents at low altitudes flow along field lines in the resulting regions of magnetic shear. The direction of the shear and its magnitude, measured in the boundary region, confirm tht the polarities and intensities of the dayside region 1 currents can be accounted for by this process. The low latitude boundary layer, formerly thought to be threaded entirely by closed field lines, now appears to contain at least some open field lines, newly reconnected, that are in the process of being swept into the high latitude tail to form the plasma mantle. The open flux tubes of the flux transfer events, thought to be the product of patchy reconnection have a spiral magnetic structure whose helicity is such as to suggest currents having the polarities of the region 1 currents

  18. The use of electron beams as probes of the distant magnetosphere

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1982-01-01

    This chapter reports on experiments in which electron beams have been injected into the magnetosphere in order to diagnose plasma processes at a great distance by measurements made in the ionosphere. Topics considered include the beam injecting rocket system in the ionosphere; beam detection and analysis; echo detection by particle counters; echo analysis; the structure of echoes; the atmosphere as a detector; radio and radar methods; perturbation of the distant magnetosphere by beam injection; changes in the injected beam in the near-rocket region; some observations of the distant magnetosphere by beams; the comparison of distant and local electric fields; electron diffusion; the distant magnetic field; and future possibilities. Conjugate locations, field line lengths, electric and magnetic drifts, field fluctuations, and electron scattering and diffusion are analyzed. Echo detection by particle counters on some of the ECHO rocket series is discussed in detail

  19. Multi-fluid simulations of the coupled solar wind-magnetosphere-ionsphere system

    Science.gov (United States)

    Lyon, J.

    2011-12-01

    This paper will review recent work done with the multi-fluid version of the Lyon-Fedder-Mobarry (MF-LFM) global MHD simulation code. We will concentrate on O+ outflow from the ionosphere and its importance for magnetosphere-ionosphere (MI) coupling and also the importance of ionospheric conditions in determining the outflow. While the predominant method of coupling between the magnetosphere and ionosphere is electrodynamic, it has become apparent the mass flows from the ionosphere into the magnetosphere can have profound effects on both systems. The earliest models to attempt to incorporate this effect used very crude clouds of plasma near the Earth. The earliest MF-LFM results showed that depending on the details of the outflow - where, how much, how fast - very different magnetospheric responses could be found. Two approaches to causally driven models for the outflow have been developed for use in global simulations, the Polar Wind Outflow Model (PWOM), started at the Univ. of Michigan, and the model used by Bill Lotko and co-workers at Dartmouth. We will give a quick review of this model which is based on the empirical relation between outflow fluence and Poynting flux discovered by Strangeway. An additional factor used in this model is the precipitating flux of electrons, which is presumed to correlate with the scale height of the upwelling ions. parameters such as outflow speed and density are constrained by the total fluence. The effects of the outflow depend on the speed. Slower outflow tends to land in the inner magnetosphere increasing the strength of the ring current. Higher speed flow out in the tail. Using this model, simulations have shown that solar wind dynamic pressure has a profound effect on the amount of fluence. The most striking result has been the simulation of magnetospheric sawtooth events. We will discuss future directions for this research, emphasizing the need for better physical models for the outflow process and its coupling to the

  20. Electron–Positron Pair Flow and Current Composition in the Pulsar Magnetosphere

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantinos; Timokhin, Andrey N.; Harding, Alice K.; Kazanas, Demosthenes

    2018-05-01

    We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron–positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.

  1. Magnetic absorption of VHE photons in the magnetosphere of the Crab pulsar

    Science.gov (United States)

    Bogovalov, S. V.; Contopoulos, I.; Prosekin, A.; Tronin, I.; Aharonian, F. A.

    2018-05-01

    The detection of the pulsed ˜1 TeV gamma-ray emission from the Crab pulsar reported by MAGIC and VERITAS collaborations demands a substantial revision of existing models of particle acceleration in the pulsar magnetosphere. In this regard model independent restrictions on the possible production site of the very high energy (VHE) photons become an important issue. In this paper, we consider limitations imposed by the process of conversion of VHE gamma-rays into e± pairs in the magnetic field of the pulsar magnetosphere. Photons with energies exceeding 1 TeV are effectively absorbed even at large distances from the surface of the neutron star. Our calculations of magnetic absorption in the force-free magnetosphere show that the twisting of the magnetic field due to the pulsar rotation makes the magnetosphere more transparent compared to the dipole magnetosphere. The gamma-ray absorption appears stronger for photons emitted in the direction of rotation than in the opposite direction. There is a small angular cone inside which the magnetosphere is relatively transparent and photons with energy 1.5 TeV can escape from distances beyond 0.1 light cylinder radius (Rlc). The emission surface from where photons can be emitted in the observer's direction further restricts the sites of VHE gamma-ray production. For the observation angle 57° relative to the Crab pulsar axis of rotation and the orthogonal rotation, the emission surface in the open field line region is located as close as 0.4 Rlc from the stellar surface for a dipole magnetic field, and 0.1 Rlc for a force-free magnetic field.

  2. Evolution of Eigenmodes of the Mhd-Waveguide in the Outer Magnetosphere

    Science.gov (United States)

    Chuiko, Daniil

    EVOLUTION OF EIGENMODES OF THE MHD-WAVEGUIDE IN THE OUTER MAGNETOSPHERE Mazur V.A., Chuiko D.A. Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Geomagnetic field and plasma inhomogeneties in the outer equatorial part of the magnetosphere al-lows for existence of a channel with low Alfven speeds, which spans from the nose to the far flanks of the magnetosphere, in the morning as well as in the evening sectors. This channel plays a role of a waveguide for fast magnetosonic waves. When an eigenmode travels along the waveguide (i.e. in the azimuthal direction) it undergoes certain evolution. The parameters of the waveguide are changing along the way of wave’s propagation and the eigenmode “adapts” to these parameters. Conditions of the Kelvin-Helmholtz instability are changing due to the increment in the solar wind speed along the magnetopause. The conditions of the solar wind hydromagnetic waves penetration to the magnetosphere are changing due to the same increment. As such, the process of the penetration turns to overreflection regime, which abruptly increases the pump level of the magnetospheric waveguide. There is an Alfven resonance deep within the magnetosphere, which corresponds to the propagation of the fast mode along the waveguide. Oscillation energy dissipation takes place in the vicinity of the Alfven resonance. Alfven resonance is a standing Alfven wave along the magnetic field lines, so it reaches the ionosphere and the Earth surface, when the fast modes of the waveguide, localized in the low Alfven speed channel cannot be observed on Earth. The evolution of the waveguide oscillation propagating from the nose to the far tail is theoretically investigated in this work with consideration of all aforementioned effects. The spatial structure var-iation character, spectral composition and amplitude along the waveguide are found.

  3. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause.

    Science.gov (United States)

    Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L

    2015-06-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5  R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.

  4. [The balanced scorecard used as a management tool in a clinical laboratory: internal business processes indicators].

    Science.gov (United States)

    Salinas La Casta, Maria; Flores Pardo, Emilio; Uris Selles, Joaquín

    2009-01-01

    to propose a set of indicators as a management tool for a clinical laboratory, by using the balanced scorecard internal business processes perspective. indicators proposed are obtained from different sources; external proficiency testing of the Valencia Community Government, by means of internal surveys and laboratory information system registers. One year testing process proportion indicators results are showed. internal management indicators are proposed (process, appropriateness and proficiency testing). The process indicators results show gradual improvement since its establishment. after one years of using a conceptually solid Balanced Scorecard Internal business processes perspective indicators, the obtained results validate the usefulness as a laboratory management tool.

  5. Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter

    Science.gov (United States)

    Yates, J. N.; Ray, L. C.; Achilleos, N.

    2017-12-01

    Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.

  6. Two-stream instability in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Usov, V.V.

    1987-01-01

    If the electron-positron plasma flow from the pulsar environment is stationary, the two-stream instability does not have enough time to develop in the pulsar magnetosphere. In that case the outflowing electron-positron plasma gathers into separate clouds. The clouds move along magnetic field lines and disperse as they go farther from the pulsar. At a distance of about 10 to the 8th cm from the pulsar surface, the high-energy particles of a given cloud catch up with the low-energy particles that belong to the cloud going ahead of it. In this region of a pulsar magnetosphere, the energy distribution of plasma particles is two-humped, and a two-stream instability may develop. The growth rate of the instability is quite sufficient for its development. 17 references

  7. Modeling Jovian Magnetospheres Beyond the Solar System

    Science.gov (United States)

    Williams, Peter K. G.

    2018-06-01

    Low-frequency radio observations are believed to represent one of the few means of directly probing the magnetic fields of extrasolar planets. However, a half-century of low-frequency planetary observations within the Solar System demonstrate that detailed, physically-motivated magnetospheric models are needed to properly interpret the radio data. I will present recent work in this area focusing on the current state of the art: relatively high-frequency observations of relatively massive objects, which are now understood to have magnetospheres that are largely planetary in nature. I will highlight the key challenges that will arise in future space-based observations of lower-mass objects at lower frequencies.

  8. Slow-mode shocks in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1987-01-01

    The locations and structure of slow-mode shocks in the earth's magnetosphere are reviewed. To date, such shocks have only been identified along the high latitude portions of the lobe-plasma sheet boundary of the geomagnetic tail. Although their intrinsic thickness is of the order of the upstream ion inertial length, they affect the internal state of a relatively much larger volume of surrounding plasma. In particular, they support a well-developed foreshock very similar to that observed upstream of the earth's bow shock, and a turbulent, strongly convecting downstream flow. They also figure importantly in the energy budget of geomagnetic substorms and produce effects which are closely analogous to much of the phenomenology known from solar observations to be associated with two-ribbon flares. 74 refs., 14 figs

  9. Terrestrial VLF transmitter injection into the magnetosphere

    Science.gov (United States)

    Cohen, M. B.; Inan, U. S.

    2012-08-01

    Very Low Frequency (VLF, 3-30 kHz) radio waves emitted from ground sources (transmitters and lightning) strongly impact the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributing to the formation of the slot region. However, calculations of the global impacts of VLF waves are based on models of trans-ionospheric propagation to calculate the VLF energy reaching the magnetosphere. Limited comparisons of these models to individual satellite passes have found that the models may significantly (by >20 dB) overestimate amplitudes of ground based VLF transmitters in the magnetosphere. To form a much more complete empirical picture of VLF transmitter energy reaching the magnetosphere, we present observations of the radiation pattern from a number of ground-based VLF transmitters by averaging six years of data from the DEMETER satellite. We divide the slice at ˜700 km altitude above a transmitter into pixels and calculate the average field for all satellite passes through each pixel. There are enough data to see 25 km features in the radiation pattern, including the modal interference of the subionospheric signal mapped upwards. Using these data, we deduce the first empirical measure of the radiated power into the magnetosphere from these transmitters, for both daytime and nighttime, and at both the overhead and geomagnetically conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions at low and mid latitudes (L ionospheric heating by one VLF transmitter which modifies the trans-ionospheric absorption of signals from other transmitters passing through the heated region.

  10. The magnetosphere under weak solar wind forcing

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2007-02-01

    Full Text Available The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively. The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45 nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i generally weak and patchy (in time low-latitude dayside reconnection or reconnection poleward of the cusps; (ii absence of substorms; (iii a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT, giving an unforced decreased of ~1.1 nT/h; (iv the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH instability; (v a cross-polar cap potential of just 20–30 kV; (vi a persistent, polar cap region containing (vii very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992 but has never yet been observed.

  11. Ion Composition and Energization in the Earth's Inner Magnetosphere and the Effects on Ring Current Buildup

    Science.gov (United States)

    Keika, K.; Kistler, L. M.; Brandt, P. C.

    2014-12-01

    In-situ observations and modeling work have confirmed that singly-charged oxygen ions, O+, which are of Earth's ionospheric origin, are heated/accelerated up to >100 keV in the magnetosphere. The energetic O+ population makes a significant contribution to the plasma pressure in the Earth's inner magnetosphere during magnetic storms, although under quiet conditions H+ dominates the plasma pressure. The pressure enhancements, which we term energization, are caused by adiabatic heating through earthward transport of source population in the plasma sheet, local acceleration in the inner magnetosphere and near-Earth plasma sheet, and enhanced ion supply from the topside ionosphere. The key issues regarding stronger O+ energization than H+ are non-adiabatic local acceleration, responsible for increase in O+ temperature, and more significant O+ supply than H+, responsible for increase in O+ density. Although several acceleration mechanisms and O+ supply processes have been proposed, it remains an open question what mechanism(s)/process(es) play the dominant role in stronger O+ energization. In this paper we summarize important spacecraft observations including those from Van Allen Probes, introduces the proposed mechanisms/processes that generate O+-rich energetic plasma population, and outlines possible scenarios of O+ pressure abundance in the Earth's inner magnetosphere.

  12. The Force-Free Magnetosphere of a Rotating Black Hole

    Science.gov (United States)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  13. Isothermal martensitic transformation as an internal-stress-increasing process

    International Nuclear Information System (INIS)

    Liu, Y.; Xie, Z.L.; Haenninen, H.; Humbeeck, J. van; Pietikaeinen, J.

    1995-01-01

    Based on the results that the magnitude of the stabilization of retained austenite increases with increasing the amount of martensite transformed, it has been assumed that the martensitic transformation is accompanied with an increase in internal resisting stress which subsequently results in the stabilization of retained austenite. By simplifying this internal resisting stress to be a type of hydrostatic compressive stress acting on retained austenite due to surrounding martensite plates, a thermodynamical analysis for an isothermal martensitic transformation under applied hydrostatic pressure has been performed. The calculated results, to some extent, show a good agreement with the experimental data. (orig.)

  14. Space weather: Why are magnetospheric physicists interested in solar explosive phenomena

    Science.gov (United States)

    Koskinen, H. E. J.; Pulkkinen, T. I.

    That solar activity drives magnetospheric dynamics has for a long time been the basis of solar-terrestrial physics. Numerous statistical studies correlating sunspots, 10.7 cm radiation, solar flares, etc., with various magnetospheric and geomagnetic parameters have been performed. However, in studies of magnetospheric dynamics the role of the Sun has often remained in the background and only the actual solar wind impinging the magnetosphere has gained most of the attention. During the last few years a new applied field of solar-terrestrial physics, space weather, has emerged. The term refers to variable particle and field conditions in our space environment, which may be hazardous to space-borne or ground-based technological systems and can endanger human life and health. When the modern society is becoming increasingly dependent on space technology, the need for better modelling and also forecasting of space weather becomes urgent. While for post analysis of magnetospheric phenomena it is quite sufficient to include observations from the magnetospheric boundaries out to L1 where SOHO is located, these observations do not provide enough lead-time to run space weather forecasting models and to distribute the forecasts to potential customers. For such purposes we need improved physical understanding and models to predict which active processes on the Sun will impact the magnetosphere and what their expected consequences are. An important change of view on the role of the Sun as the origin of magnetospheric disturbances has taken place during last 10--20 years. For a long time, the solar flares were thought to be the most geoeffective solar phenomena. Now the attention has shifted much more towards coronal mass ejections and the SOHO coronal observations seem to have turned the epoch irreversibly. However, we are not yet ready to make reliable perdictions of the terrestrial environment based on CME observations. From the space weather viewpoint, the key questions are

  15. Exploring the magnetospheric boundary layer

    International Nuclear Information System (INIS)

    Hapgood, M.A.; Bryant, D.A.

    1992-01-01

    We show how, for most crossings of the boundary layer, one can construct a 'transition parameter', based on electron density and temperature, which orders independent plasma measurements into well-defined patterns which are consistent from case to case. We conclude that there is a gradual change in the balance of processes which determine the structure of the layer and suggest that there is no advantage in dividing the layer into different regions. We further conclude that the mixing processes in layer act in an organised way to give the consistent patterns revealed by the transition parameter. More active processes must sometimes take to give the extreme values (e.g. in velocity) which are seen in some crossings

  16. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Directory of Open Access Journals (Sweden)

    Biseniece Edite

    2018-03-01

    Full Text Available Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel in a cold climate (average 4000 heating degree days. We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  17. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Science.gov (United States)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  18. The role of scientific ballooning for exploration of the magnetosphere

    International Nuclear Information System (INIS)

    Block, L.P.; Lazutin, L.L.; Riedler, W.

    1984-11-01

    The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics. (Author)

  19. The 4th international colloquium on process simulation. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Materials Science and Metallurgy

    1998-12-31

    The papers collected in this volume were presented at the 4th Colloquium on Process Simulation held at Helsinki University of Technology, Espoo, Finland, June 11-13, 1997. In the more developed industrial nations, the processes for producing chemicals, energy, and materials encounter environmental concern and laws which challenge engineers to develop the processes towards more efficient, economical and safe operation. This necessitates more thorough understanding of the processes and phenomena involved. Formerly, the development of the processes was largely based on trial and error, whereas today, the development of computer performance together with the diversification of modelling software enables simulation of the processes. The increased capacity and possibilities for modelling the processes brought by the improved hardware and software, have generated a strong demand for more accurate mathematical descriptions of the processes. Especially, the coupling of computational fluid dynamics and chemical kinetics, combustion, and thermodynamics is of current interest in process oriented technology. This colloquium attempts to give examples of modelling efforts in operation in different universities, research institutes and companies. Furthermore, the aim of this colloquium is to offer an annual opportunity to the researchers to come together and discuss their common problems and the state of their investigations

  20. The 4th international colloquium on process simulation. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Materials Science and Metallurgy

    1997-12-31

    The papers collected in this volume were presented at the 4th Colloquium on Process Simulation held at Helsinki University of Technology, Espoo, Finland, June 11-13, 1997. In the more developed industrial nations, the processes for producing chemicals, energy, and materials encounter environmental concern and laws which challenge engineers to develop the processes towards more efficient, economical and safe operation. This necessitates more thorough understanding of the processes and phenomena involved. Formerly, the development of the processes was largely based on trial and error, whereas today, the development of computer performance together with the diversification of modelling software enables simulation of the processes. The increased capacity and possibilities for modelling the processes brought by the improved hardware and software, have generated a strong demand for more accurate mathematical descriptions of the processes. Especially, the coupling of computational fluid dynamics and chemical kinetics, combustion, and thermodynamics is of current interest in process oriented technology. This colloquium attempts to give examples of modelling efforts in operation in different universities, research institutes and companies. Furthermore, the aim of this colloquium is to offer an annual opportunity to the researchers to come together and discuss their common problems and the state of their investigations

  1. The Internationalization Process of International New Ventures: The Case of Skype

    OpenAIRE

    Chan, Cheuk-Hay

    2007-01-01

    Past literature has emphasized on large, long-established multinational enterprises (MNEs) in international business. However, the emerging phenomenon of international new ventures has attracted much attention due to their distinctive internationalization processes. Skype Technologies S.A. is one of these international new ventures with comparable characteristics, albeit it has shown differences compared with the typical international new ventures. This research aims to compare and contrast t...

  2. Benchmarking processes for managing large international space programs

    Science.gov (United States)

    Mandell, Humboldt C., Jr.; Duke, Michael B.

    1993-01-01

    The relationship between management style and program costs is analyzed to determine the feasibility of financing large international space missions. The incorporation of management systems is considered to be essential to realizing low cost spacecraft and planetary surface systems. Several companies ranging from large Lockheed 'Skunk Works' to small companies including Space Industries, Inc., Rocket Research Corp., and Orbital Sciences Corp. were studied. It is concluded that to lower the prices, the ways in which spacecraft and hardware are developed must be changed. Benchmarking of successful low cost space programs has revealed a number of prescriptive rules for low cost managements, including major changes in the relationships between the public and private sectors.

  3. The Role of International Juridical Process in International Security and Civil-Military Relations

    Science.gov (United States)

    2002-12-01

    judged, although under domestic criminal law provisions, certainly in the light of the Nuremberg principles, e.g. the Eichmann case by the District...Court of Jerusalem in 1961, and the case of Klaus Barbie in France. Until today the application of international rules of war remains generally

  4. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, Harry IV

    1990-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms and applications of radiation processing. To date, the group has completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment. This set will be available for adoption by national regulatory agencies or other standards-setting organizations for their procedures and protocols. (author)

  5. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV.

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab

  6. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    Science.gov (United States)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  7. Yosemite conference on ionospheric plasma in the magnetosphere: sources, mechanisms and consequences, meeting report

    International Nuclear Information System (INIS)

    Gallagher, D.L.; Burch, J.L.; Klumpar, D.M.; Moore, T.E.; Waite, J.H. Jr.

    1987-02-01

    The sixth biennial Yosemite topical conference and the first as a Chapman Conference was held on February 3 to 6, 1986. Although the solar wind was once thought to dominate the supply of plasma in the Earth's magnetosphere, it is now thought that the Earth's ionosphere is a significant contributor. Polar wind and other large volume outflows of plasma have been seen at relatively high altitudes over the polar cap and are now being correlated with outflows found in the magnetotail. The auroral ion fountain and cleft ion fountain are examples of ionospheric sources of plasma in the magnetosphere, observed by the Dynamics Explorer 1 (DE 1) spacecraft. The conference was organized into six sessions: four consisting of prepared oral presentations, one poster session, and one session for open forum discussion. The first three oral sessions dealt separately with the three major topics of the conference, i.e., the sources, mechanisms, and consequences of ionospheric plasma in the magnetosphere. A special session of invited oral presentations was held to discuss extraterrestrial ionospheric/magnetospheric plasma processes. The poster session was extended over two evenings during which presenters discussed their papers on a one-on-one basis. The last session of the conferences was reserved for open discussions of those topics or ideas considered most interesting or controversial

  8. The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015

    Science.gov (United States)

    Jahn, J. M.; Goldstein, J.; Reeves, G. D.; Fernandes, P. A.; Skoug, R. M.; Larsen, B.; Spence, H. E.

    2017-12-01

    Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (> 30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.

  9. Introduction to the thematic series "Coupling of the magnetosphere-ionosphere system"

    Science.gov (United States)

    Yao, Z. H.; Murphy, K. R.; Rae, I. J.; Balan, N.

    2017-12-01

    This thematic series contains 4 papers mostly presented at the 2016 AOGS meeting in Beijing. The four papers investigate four key regions in the magnetosphere-ionosphere coupling process: mid-tail magnetosphere, near-Earth magnetosphere, inner magnetosphere, and the polar ground region. Guo et al. (Geosci Lett 4:18, 2017) study the current system in reconnection region using 2.5D particle-in-cell simulations. Yao et al. (Geosci Lett 4:8, 2017) use conjugate measurements from ground auroral imagers and in situ THEMIS spacecraft to reveal the mechanism for the wave-like auroral structures prior to substorm onset. Zhang et al. (Geosci Lett 4:20, 2017) investigate the profiles of resonance zone and resonant frequency in the Landau resonance between radiation belt electrons and magnetosonic waves and between protons and cyclotron waves. Rae et al. (Geosci Lett 4:23, 2017) determine the relative timing between sudden increases in amplitude, or onsets, of different ultra-low-frequency wave bands during substorms.

  10. Laboratory simulation of the magnetosphere, magnetotail reconnection and the study of field-aligned currents

    International Nuclear Information System (INIS)

    Yur, G.

    1990-01-01

    Laboratory simulation of the Earth's magnetosphere is performed. A wide plasma beam with plasma density ∼ 10 13 cm -3 , velocity ∼ 10 7 cm/s, temperature ∼ 10 eV and pulse duration ∼ 100μs simulates the solar wind plasma. An externally applied magnetic field throughout the interaction chamber is varied between -300 to +300 G to simulate the interplanetary magnet field (IMF). Detailed characterization of the flow of this plasma across the IMF shows various degrees of diamagnetism and rvec E x rvec B propagation. This magnetized plasma beam interacts with a spherical dipole magnetic field that simulates the planetary field to form a planetary type plasma sphere. Cusp structures and particle precipitations are studied with optical time exposure photographs of the simulated magnetosphere. The structure is strongly controlled by the polarity of the IMF. The global structure of the magnetosphere is measured in detail for different values of the IMF at various locations in the magnetosphere. Particularly, the magnetic field measurements in the tail reveal interesting reconnection processes and above the polar region, the structure of field aligned currents that are similar to the ones obtained from the satellites above the polar region of the Earth. The main experimental parameters are selected in such a way that, at least, MHD scaling is satisfied

  11. Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere

    Science.gov (United States)

    Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.

    2017-12-01

    Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.

  12. Magnetic field in the magnetosphere. Numerical simulation of the magnetospheric magnetic field

    International Nuclear Information System (INIS)

    Mal'kov, M.V.

    1993-01-01

    The last version of the empirical model of the magnetospheric magnetic field (Tsyganenko, 1989) is considered. Total number of data used for construction of the model contains 36682 average vector values of the field. This number of data is obtained by satellite measurements at distances of r=4-66 R e (R e is the Earth radius). 5 figs., 2 tabs

  13. Origins Of Magnetospheric Physics An Expanded Edition

    CERN Document Server

    Van Allen, James A

    2004-01-01

    Early in 1958, instruments on the space satellites Explorer I and Explorer III revealed the presence of radiation belts, enormous populations of energetic particles trapped in the magnetic field of the earth. Originally published in 1983 but long out of print until now, Origins of Magnetospheric Physics tells the story of this dramatic and hugely transformative period in scientific and Cold War history. Writing in an accessible style and drawing on personal journals, correspondence, published papers, and the recollections of colleagues, James Van Allen documents a trail-blazing era in space hi

  14. Preparation of UN microspheres by internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Shirasu, Yoshiro; Yamagishi, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    UN microspheres were prepared from (UO{sub 3}+C) microspheres internally gelled in a hot silicone oil column. The gel microspheres were calcined at 480degC in nitrogen, after washing and drying. The calcined ones were carbothermically nitrided at 1400-1800degC in a nitrogen-based atmosphere in two ways: one in N{sub 2} followed by N{sub 2}-8%H{sub 2}, and the other in N{sub 2}-8%H{sub 2} only. In both cases, highly pure UN microspheres around 500 ppm of both oxygen and carbon impurities were obtained, although their densities were still low. (author)

  15. On the relaxation of magnetospheric convection when Bz turns northward

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2012-06-01

    Full Text Available The solar wind inputs considerable energy into the upper atmosphere, particularly when the interplanetary magnetic field (IMF is southward. According to Poynting's theorem (Kelley, 2009, this energy becomes stored as magnetic fields and then is dissipated by Joule heat and by energizing the plasmasheet plasma. If the IMF turns suddenly northward, very little energy is transferred into the system while Joule dissipation continues. In this process, the polar cap potential (PCP decreases. Experimentally, it was shown many years ago that the energy stored in the magnetosphere begins to decay with a time constant of two hours. Here we use Poynting's theorem to calculate this time constant and find a result that is consistent with the data.

  16. Global Vlasov simulation on magnetospheres of astronomical objects

    International Nuclear Information System (INIS)

    Umeda, Takayuki; Ito, Yosuke; Fukazawa, Keiichiro

    2013-01-01

    Space plasma is a collisionless, multi-scale, and highly nonlinear medium. There are various types of self-consistent computer simulations that treat space plasma according to various approximations. We develop numerical schemes for solving the Vlasov (collisionless Boltzmann) equation, which is the first-principle kinetic equation for collisionless plasma. The weak-scaling benchmark test shows that our parallel Vlasov code achieves a high performance and a high scalability. Currently, we use more than 1000 cores for parallel computations and apply the present parallel Vlasov code to various cross-scale processes in space plasma, such as a global simulation on the interaction between solar/stellar wind and magnetospheres of astronomical objects

  17. Working memory as internal attention: toward an integrative account of internal and external selection processes.

    Science.gov (United States)

    Kiyonaga, Anastasia; Egner, Tobias

    2013-04-01

    Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus, the precise relationship between WM and attention remains unclear, but it appears that they may bidirectionally impact one another, whether or not internal representations are consistent with the external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward either actively maintained internal representations (traditionally considered WM) or external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and influencing one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention.

  18. Working Memory as Internal Attention: Toward an Integrative Account of Internal and External Selection Processes

    Science.gov (United States)

    Kiyonaga, Anastasia; Egner, Tobias

    2012-01-01

    Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus the precise relationship between WM and attention remains unclear, but it appears that they may bi-directionally impact one another, whether or not internal representations are consistent with external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward actively maintained internal representations (traditionally considered WM) versus external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and impacting one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention. PMID:23233157

  19. External Influences on an Internal Process: Supporting Preservice Teacher Research

    Science.gov (United States)

    Schulte, Ann; Klipfel, Lyndsay Halpin

    2016-01-01

    In an effort to better understand how participating in teacher research as a student teacher compares to conducting it as a practicing teacher, a teacher educator and her former teacher education student engaged in a collaborative dialogue. They focus their reflections in this article on the impact of external forces on the process of teacher…

  20. PC index as a proxy of the solar wind energy that entered into the magnetosphere and energy accumulated in the magnetosphere

    Science.gov (United States)

    Troshichev, Oleg; Sormakov, Dmitry

    The PC index has been approved by the International Association of Geomagnetism and Aeronomy (Merida, Mexico, 2013) as a new international index of magnetic activity. Application of the PC index as a proxy of a solar wind energy that entered into the magnetosphere determines a principal distinction of the PC index from AL and Dst indices, which are regarded as characteristics of the energy that realized in magnetosphere in form of substorms and magnetic storms. This conclusion is based on results of analysis of relationships between the polar cap magnetic activity (PC-index) and parameters of the solar wind, on the one hand, relationships between changes of PC and development of magnetospheric substorms (AL-index) and magnetic storms (Dst-index), on the other hand. In this study the relationships between the PC and Dst indices in course of more than 200 magnetic storms observed in epoch of solar maximum (1998-2004) have been examined for different classes of storms separated by their kind and intensity. Results of statistical analysis demonstrate that depression of geomagnetic field starts to develop as soon as PC index steadily excess the threshold level ~1.5 mV/m; the storm intensity (DstMIN) follows, with delay ~ 1 hour, the maximum of PC in course of the storm. Main features of magnetic storms are determined, irrespective of their class and intensity, by the accumulated-mean PC value (PCAM): storm is developed as long as PCAM increases, comes to maximal intensity when PCAM attains the maximum, and starts to decay as soon as PCAM value displays decline. The run of “anomalous” magnetic storm on January 21-22, 2005, lasting many hours (with intensity of ≈ -100 nT) under conditions of northward or close to zero BZ component, is perfectly governed by behavior of the accumulated-mean PCAM index and, therefore, this storm should be regarded as an ordinary phenomenon. The conclusion is made that the PC index provides the unique on-line information on solar wind

  1. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  2. Anatomical characteristics of the styloid process in internal carotid artery dissection: Case-control study.

    Science.gov (United States)

    Amorim, José M; Pereira, Daniela; Rodrigues, Marta G; Beato-Coelho, José; Lopes, Margarida; Cunha, André; Figueiredo, Sofia; Mendes-Pinto, Mafalda; Ferreira, Carla; Sargento-Freitas, João; Castro, Sérgio; Pinho, João

    2018-06-01

    Introduction Pathophysiology of cervical artery dissection is complex and poorly understood. In addition to well-known causative and predisposing factors, including major trauma and monogenic connective tissue disorders, morphological characteristics of the styloid process have been recently recognized as a possible risk factor for cervical internal carotid artery dissection. Aims To study the association of the anatomical characteristics of styloid process with internal carotid artery dissection. Methods Retrospective, multicenter, case-control study of patients with internal carotid artery dissection and age- and sex-matched controls. Consecutive patients with internal carotid artery dissection and controls with ischemic stroke or transient ischemic attack of any etiology excluding internal carotid artery dissection, who had performed computed tomography angiography, diagnosed between January 2010 and September 2016. Two independent observers measured styloid process length and styloid process distance to internal carotid artery. Results Sixty-two patients with internal carotid artery dissection and 70 controls were included. Interobserver agreement was good for styloid process length and styloid process-internal carotid artery distance (interclass correlation coefficient = 0.89 and 0.76, respectively). Styloid process ipsilateral to dissection was longer than left and right styloid process in controls (35.8 ± 14.4 mm versus 30.4 ± 8.9 mm and 30.3 ± 8.2 mm, p = 0.011 and p = 0.008, respectively). Styloid process-internal carotid artery distance ipsilateral to dissection was shorter than left and right distance in controls (6.3 ± 1.9 mm versus 7.2 ± 2.1 mm and 7.0 ± 2.3 mm, p = 0.003 and p = 0.026, respectively). Internal carotid artery dissection was associated with styloid process length (odds ratio = 1.04 mm -1 , 95% confidence interval = 1.01-1.08, p = 0.015) and styloid process-internal

  3. Understanding national and international safeguards: an evolutionary process

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1983-01-01

    Domestic and international safeguards have been evolving and will continue to evolve. in the case of the United States, the concern was to protect the classified materials, at first. Then attention focussed on material accounting, then on measures to promptly detect theft by individuals with access, and later on physical protection to ward-off armed terrorists. The objective of the IAEA has always been to provide assurance that nuclear materials are not being diverted from the peaceful facilities that are under safeguards. The evolution has taken place in deciding how to provide this assurance, and in the definition of specific safeguards goals. In both cases the technology needed to meet the goals has improved due to R and D and to experience. A plea is made for more cooperation betwen those who develop and manage the policies, those who develop safeguards techniques, and those who are subject to national and IAEA safeguards. Some illustrations of the evolution of policies, inadequate coordination and general progress are given

  4. On the solar wind - magnetosphere - ionosphere coupling: AMPTE/CCE particle data and the AE indices

    International Nuclear Information System (INIS)

    Daglis, I.A.; Wilken, B.; Sarris, E.T.; Kremser, G.

    1992-01-01

    We present a statistical study of the substorm particle energization in terms of the energy density of the major magnetospheric ions (H + , O + , He ++ , He + ). The correlation between energy density during substorm expansion phase and the auroral indices (AE, AU, Al) is examined and interpreted. Most distinct result is that the ionospheric origin O + energy density correlate remarkable well with the AE index, while the solar wind origin He ++ energy density does not correlate at all with AE. Mixed origin H + and He + ions exhibit an intermediate behavior. Furthermore, the O + energy density correlates very well with the pre-onset AU index level, while there is no correlation with the pre-onset AL index. The results are interpreted as a result of solar wind. The results are interpreted as a result of solar wind - magnetosphere - ionosphere coupling through the internal magnetospheric dynamo: the ionosphere responds to the increased activity of the internal dynamo (which is due to the high solar wind input) and influences substorm dynamics by feeding the near-Earth magnetotail with energetic ionospheric ions during late growth phase and expansion phase

  5. Solar energetic particles in the Earth magnetosphere: kinematic modeling of the 'non-shock' penetration

    International Nuclear Information System (INIS)

    Pavlov, N N

    2013-01-01

    Penetration of solar energetic particles into the Earth's magnetosphere is quantitatively studied with a simple kinematic model. The goal is to assess, for the first time, how does effectiveness of the penetration depend on such geometry factors as: distance of the magneto-pause (MP) from the Earth; shape of MP; angle at which solar energetic particle crosses MP; location of the crossing point; type of the particle motion in the magnetosphere. To get off excessive details, the model deliberately operates with just equatorial section of the static dipolar magnetic field confined with asymmetric boundary – MP. Several rather obvious facts are illustrated: finite orbits of longitudinal drift reside only inside the circle of the Störmer-unit-length radius; deepest penetration of a particle occurs if the particle crosses MP at the point closest to the Earth and with velocity-vector oriented along the particle's longitudinal drift inside MP (westward for protons); etc. The model's software allows the inquirer to vary geometry of MP, the type, energy and direction of flight of the energetic particle(s), the location(s), aperture and orientation(s) of a virtual sensor, then to run the model and obtain the reference particle distributions either global (for entire magnetosphere) or for specified locations, all along the time, energy and flux-orientation axes. Static and animated plots can be easily produced. The model provides a toolkit allowing one to evaluate and illustrate the process of particle penetration into the magnetosphere under various conditions in space. It may be used for the configuring of the satellite particle sensors; its results may be compared with the observations for to assess how strongly the real magnetosphere differs from its simplified form; it may be used in education.

  6. Solar wind conditions for a quiet magnetosphere

    International Nuclear Information System (INIS)

    Kerns, K.J.; Gussenhoven, M.S.

    1990-01-01

    The conditions of the solar wind that lead to a quiet magnetosphere are determined under the assumption that the quiet or baseline magnetosphere can be identified by prolonged periods of low values of the am index. The authors analyzed solar wind data from 1978 to 1984 (7 years) during periods in which am ≤ 3 nT to identify those solar wind parameters that deviate significantly from average values. Parallel studies were also performed for prolonged periods of Kp = 0, 0+ and AE z ) show distinctive variations from average values. They independently varied these solar wind parameters and the length of time the conditions must persist to minimize am. This was done with the additional requirement that the conditions yield a reasonable number of occurrences (5% of the data set). The resulting baseline conditions are V ≤ 390 km/s; 180 degree - arctan |B y /B z | ≤ 101 degree, when b z ≤ 0 (no restriction on B z positive); B ≤ 6.5 nT; and persistence of these conditions for at least 5 hours. Minimizing the am index does not require a clear upper limit on the value of B z as might be anticipated from the work of Gussenhoven (1988) and Berthelier (1980). Apparently, this is a result of the requirement that the conditions must occur 5% of the time. When the requirement is lowered to 1% occurrence, an upper limit to B z emerges

  7. Quantitative magnetotail characteristics of different magnetospheric states

    Directory of Open Access Journals (Sweden)

    M. A. Shukhtina

    2004-03-01

    Full Text Available Quantitative relationships allowing one to compute the lobe magnetic field, flaring angle and tail radius, and to evaluate magnetic flux based on solar wind/IMF parameters and spacecraft position are obtained for the middle magnetotail, X=(–15,–35RE, using 3.5 years of simultaneous Geotail and Wind spacecraft observations. For the first time it was done separately for different states of magnetotail including the substorm onset (SO epoch, the steady magnetospheric convection (SMC and quiet periods (Q. In the explored distance range the magnetotail parameters appeared to be similar (within the error bar for Q and SMC states, whereas at SO their values are considerably larger. In particular, the tail radius is larger by 1–3 RE at substorm onset than during Q and SMC states, for which the radius value is close to previous magnetopause model values. The calculated lobe magnetic flux value at substorm onset is ~1GWb, exceeding that at Q (SMC states by ~50%. The model magnetic flux values at substorm onset and SMC show little dependence on the solar wind dynamic pressure and distance in the tail, so the magnetic flux value can serve as an important discriminator of the state of the middle magnetotail. Key words. Magnetospheric physics (solar windmagnetosphere- interactions, magnetotail, storms and substorms

  8. Quantitative magnetotail characteristics of different magnetospheric states

    Directory of Open Access Journals (Sweden)

    M. A. Shukhtina

    2004-03-01

    Full Text Available Quantitative relationships allowing one to compute the lobe magnetic field, flaring angle and tail radius, and to evaluate magnetic flux based on solar wind/IMF parameters and spacecraft position are obtained for the middle magnetotail, X=(–15,–35RE, using 3.5 years of simultaneous Geotail and Wind spacecraft observations. For the first time it was done separately for different states of magnetotail including the substorm onset (SO epoch, the steady magnetospheric convection (SMC and quiet periods (Q. In the explored distance range the magnetotail parameters appeared to be similar (within the error bar for Q and SMC states, whereas at SO their values are considerably larger. In particular, the tail radius is larger by 1–3 RE at substorm onset than during Q and SMC states, for which the radius value is close to previous magnetopause model values. The calculated lobe magnetic flux value at substorm onset is ~1GWb, exceeding that at Q (SMC states by ~50%. The model magnetic flux values at substorm onset and SMC show little dependence on the solar wind dynamic pressure and distance in the tail, so the magnetic flux value can serve as an important discriminator of the state of the middle magnetotail.

    Key words. Magnetospheric physics (solar windmagnetosphere- interactions, magnetotail, storms and substorms

  9. A kinetic approach to magnetospheric modeling

    International Nuclear Information System (INIS)

    Whipple, E.C. Jr.

    1979-01-01

    The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole

  10. A kinetic approach to magnetospheric modeling

    Science.gov (United States)

    Whipple, E. C., Jr.

    1979-01-01

    The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.

  11. Magnetospheric MultiScale (MMS) System Manager

    Science.gov (United States)

    Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David

    2014-01-01

    The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.

  12. International seminar on safeguards information reporting and processing. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included

  13. AN INVESTIGATION INTO FACTORS INFLUENCING INTERNATIONAL STRATEGIC ALLIANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Sari Wahyuni

    2003-02-01

    Full Text Available Empirical research indicates that strategic alliances, like other organizational forms, emerge as an adaptive mechanism to market uncertainty, and their developments over time reflect the co-evolution of distinctive firm capabilities and of industry and market activities. Interestingly, most strategic alliances go through similar revolutionary cycles in terms of their motives and capabilities toward the cooperative relationship. Studies in this areas how that alliance failure is an outcome of the co-evolutionary adjustment to changes in the market, the competitive dynamics between partners, and assessment of efficiency of the alliance as an alternative governance structure. It is thus critical to adopt a dynamics perspective and historical observations of cooperative process. This paper attempts to distil, derive and integrate theories across different perspectives into a unified framework that offers a better understanding of alliance process development. Our analysis shows that we can divide strategic alliance development into three phases of development: formation, operation and evaluation. We further endeavor to seek the important factors that should be taken into account in each stage of their life.

  14. Biomass Gasification for Power Generation Internal Combustion Engines. Process Efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia-Faure, Luis; Oliva-Ruiz, Luis; Pajarín-Rodríguez, Juan; Revilla-Suarez, Dennis

    2016-01-01

    Biomass is a renewable energy sources worldwide greater prospects for its potential and its lower environmental impact compared to fossil fuels. By different processes and energy conversion technologies is possible to obtain solid, liquid and gaseous fuels from any biomass.In this paper the evaluation of thermal and overall efficiency of the gasification of Integral Forestry Company Santiago de Cuba is presented, designed to electricity generation from waste forest industry. The gasifier is a downdraft reactor, COMBO-80 model of Indian manufacturing and motor (diesel) model Leyland modified to work with producer gas. The evaluation was conducted at different loads (electric power generated) of the motor from experimental measurements of flow and composition of gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25 %. (author)

  15. International seminar on safeguards information reporting and processing. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included Refs, figs, 1 tab

  16. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-09-15

    Processes in Food Irradiation was held by the IAEA and FAO at the Bandaranaike Memorial International Conference Hall in Colombo on 24-28 November 1980, and the present volume contains the proceedings. One of the most effective means demonstrated of increasing the efficacy of irradiation in the control of food spoilage is the combination of a low irradiation dose with a mild heat treatment. Promising results were reported for the shelf-life extension of mangoes and papayas, and the disinfestation of dried dates. Commercial application of the heat-irradiation treatment for some fruits is expected to follow soon. The Symposium covered other topics, such as the mechanisms of sensitization of microorganisms by physical and chemical agents, improvement of the microbiological quality of foods by combination processes, and the aspects of the wholesomeness and legislation of the food irradiation process. A key issue in the general discussion was the recommendation on the acceptability of food irradiated up to an overall average dose of 10 kGy. This important recommendation had been achieved at a recently convened Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Foods (27 October - 3 November 1980, Geneva). The breakthrough on the toxicological acceptability constitutes a firm basis for going ahead speedily with the development of practical applications of food irradiation, which should take its rightful place among other food preservation methods in helping to provide more and better food to a world in need. The sponsoring organizations hope that the publication of these proceedings will encourage further research and development of food irradiation to the benefit of mankind.

  17. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    International Nuclear Information System (INIS)

    1981-01-01

    Processes in Food Irradiation was held by the IAEA and FAO at the Bandaranaike Memorial International Conference Hall in Colombo on 24-28 November 1980, and the present volume contains the proceedings. One of the most effective means demonstrated of increasing the efficacy of irradiation in the control of food spoilage is the combination of a low irradiation dose with a mild heat treatment. Promising results were reported for the shelf-life extension of mangoes and papayas, and the disinfestation of dried dates. Commercial application of the heat-irradiation treatment for some fruits is expected to follow soon. The Symposium covered other topics, such as the mechanisms of sensitization of microorganisms by physical and chemical agents, improvement of the microbiological quality of foods by combination processes, and the aspects of the wholesomeness and legislation of the food irradiation process. A key issue in the general discussion was the recommendation on the acceptability of food irradiated up to an overall average dose of 10 kGy. This important recommendation had been achieved at a recently convened Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Foods (27 October — 3 November 1980, Geneva). The breakthrough on the toxicological acceptability constitutes a firm basis for going ahead speedily with the development of practical applications of food irradiation, which should take its rightful place among other food preservation methods in helping to provide more and better food to a world in need. The sponsoring organizations hope that the publication of these proceedings will encourage further research and development of food irradiation to the benefit of mankind

  18. Adiabatic motion of charged dust grains in rotating magnetospheres

    International Nuclear Information System (INIS)

    Northrop, T.G.; Hill, J.R.

    1983-01-01

    Dust grains in the ring systems and rapidly rotating magnetospheres of the outer planets such as Jupiter and Saturn may be sufficiently charged that the magnetic and electric forces on them are comparable with the gravitational force. The adiabatic theory of charged particle motion has previously been applied to electrons and atomic size particles. But it is also applicable to these charged dust grains in the micrometer and smaller size range. We derive here the guiding center equation of motion, drift velocity, and parallel equation of motion for these grains in a rotating magnetosphere. The effects of periodic grain charge-discharge have not been treated previously and have been included in this analysis. Grain charge is affected by the surrounding plasma properties and by the grain plasma velocity (among other factors), both of which may vary over the gyrocircle. The resulting charge-discharge process at the gyrofrequency destroys the invariance of the magnetic moment and causes a grain to move radially. The magnetic moment may increase or decrease, depending on the gyrophase of the charge variation. If it decreases, the motion is always toward synchronous radius for an equatorial grain. But the orbit becomes circular before the grain reaches synchronous radius, a conclusion that follows from an exact constant of the motion. This circularization can be viewed as a consequence of the gradual reduction in the magnetic moment. This circularization also suggests that dust grains leaving Io could not reach the region of the Jovian ring, but several effects could change that conclusion. Excellent qualitative and quantitative agreement is obtained between adiabatic theory and detailed numerical orbit integrations

  19. A method of evaluating quantitative magnetospheric field models by an angular parameter alpha

    Science.gov (United States)

    Sugiura, M.; Poros, D. J.

    1979-01-01

    The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.

  20. THE MEASUREMENT AND EVALUATION OF THE INTERNAL COMMUNICATION PROCESS IN PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Pop Alexandra Mihaela

    2013-07-01

    The model is a useful tool for improving the internal communication process of a project and help the project raise its efficiency. It has been created based on the characteristics of the information flow within a project. Also the Internal Communication Analysis Model – ICAM – helps improve the projects‘ deliverables by making sure that everyone in the project understood their roles correctly.

  1. Proceedings of the International Symposium on quantitative description of metal extraction processes

    International Nuclear Information System (INIS)

    Themelis, N.J.

    1991-01-01

    This book contains the proceedings of the H.H. Kellogg International Symposium. Topics include: Extractive metallurgy; Thermochemical phenomena in metallurgy; Thermodynamic modeling of metallurgical processes; and Transport and rate phenomena in metallurgical extraction

  2. Succeeding in process standardization: Explaining the fit with international management strategy

    DEFF Research Database (Denmark)

    Rahimi, Fatemeh; Møller, Charles; Hvam, Lars

    2016-01-01

    Purpose: The purpose of this paper is to explore the fit between process standardization and international management strategy of multinational corporations (MNCs) by assessing the compatibility between process standardization and corporate structural characteristics in terms of asset configuration...... and headquarters-subsidiary relationships. Design/methodology/approach: First, after a literature review on MNCs’ strategy and process standardization, the study suggests two propositions on the fit between corporate international management strategy and process standardization. Second, to empirically examine....../value: The study provides in-depth understanding of how the international management strategy and consequent structural characteristics of MNCs affects process standardization in the course of a global enterprise resource planning implementation. The study proposes conditions of fit for aligning process...

  3. On the mapping of ionospheric convection into the magnetosphere

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Hoffman, R.A.

    1997-01-01

    Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD

  4. The earth's palaeomagnetosphere as the third type of planetary magnetosphere

    International Nuclear Information System (INIS)

    Saito, T; Sakurai, T.; Yumoto, K.

    1978-01-01

    From the viewpoint of dynamical topology, planetary magnetospheres are classified into three: Types 1,2 and 3. When the rotation vector and dipole moment of a planet and the velocity vector of the solar wind are denoted as Ω,M, and V, respectively, the planetary magnetosphere with Ωparallel to M perpendicular to V is called Type 1. The magnetospheres of the present Earth, Jupiter, and Uranus at its equinoctial points belong to this type. The magnetosphere with Ωparallel to M parallel to V is called Type 2, which includes the Uranium magnetosphere at its solstitial points. The magnetosphere with Ωperpendicular M and perpendicular V is called Type 3. The Earth's palaeomagnetosphere is considered to have experienced Type 3 during excursions and transition stages of palaeomagnetic polarity reversals. In the Type 3 magnetosphere, drastic variations are expected in configurations of the dayside cusps, tail axis, neutral sheet, polar caps, and so on. A possible relation between the Type 3 palaeomagnetosphere and palaeoclimate of the Earth during polarity reversals and geomagnetic excursions is suggested. It is also suggested that the heliomagnetosphere during polarity reversals of the general field of the Sun exhibits a drastic configuration change similar to the Type 3 palaeomagnetosphere of the Earth. A relation between the perpendicular condition Ω perpendicular to M and magnetic variable stars and pulsars is briefly discussed. (author)

  5. The solar wind-magentosphere energy coupling and magnetospheric disturbances

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1980-01-01

    The recent finding of the solar wind-magnetosphere energy coupling function epsilon has advanced significantly our understanding of magnetosphere disturbances. It is shown that the magnetosphere-ionosphere coupling system responds somewhat differently to three different input energy flux levels of epsilon. As epsilon increases from 17 erg s -1 to >10 19 erg s -1 , typical responses of the magnetosphere-ionosphere coupling system are: (1) epsilon 17 erg s -1 : an enhancement of the Ssub(q)sup(p), etc. (2) epsilon approximately 10 18 erg s -1 : substorm onset. (3) 10 18 erg s -1 19 erg s -1 : a typical substorm. (4) epsilon >10 19 erg s -1 : an abnormal growth of the ring current belt, resulting in a magnetospheric storm. It is stressed that the magnetospheric substorm results as a direct response of the magnetosphere to a rise and fall of epsilon above approximately 10 18 erg s -1 , so that it is not caused by a sudden conversion of magnetic energy accumulated prior to substorm onset. The variety of the development of the main phase of geomagnetic storms is also primarily controlled by epsilon. (author)

  6. Proceedings of the 5th International Workshop on Constraints and Language Processing (CSLP 2008)

    DEFF Research Database (Denmark)

    This research report constitutes the proceedings of the 5th International Workshop on Constraints and Language Processing (CSLP 2008) which is part of the European Summer School in Logic, Language, and Information (ESSLLI 2008), Hamburg, Germany, August 2008.......This research report constitutes the proceedings of the 5th International Workshop on Constraints and Language Processing (CSLP 2008) which is part of the European Summer School in Logic, Language, and Information (ESSLLI 2008), Hamburg, Germany, August 2008....

  7. PerPos: a Translucent Positioning Middleware Supporting Adaptation of Internal Positioning Processes

    DEFF Research Database (Denmark)

    Jensen, Jakob Langdal; Schougaard, Kari Rye; Kjærgaard, Mikkel Baun

    2010-01-01

    of application specific features that can be applied to the internal position processing of the middleware. To evaluate these capabilities we extend the internal position processing of the middleware with functionality supporting probabilistic position tracking and strategies for minimization of the energy......A positioning middleware benefits the development of location aware applications. Traditionally, positioning middleware provides position transparency in the sense that it hides low-level details. However, many applications require access to specific details of the usually hidden positioning...

  8. Evaluation of Magnetospheric Internal Magnetic Field models and Existing Software

    Science.gov (United States)

    1990-01-31

    than an order of magnitude. The polar maxima are still visible, but they are not as distinct. The SAA is still apparent, but apin it is not as...completely overlap each other either. These plots show polar maxima (the right two panels) and the SAA minimum (the lower right panel). Note, that the...coGRF85 83M Contours Year - 1990.0 Atitude 1.5000 to 40 1221020.0 -225 4. DISCUSSION OF SOFWARE 4.1 INTRODUCION iliree basic software packages were used

  9. Global magnetospheric perturbations stimulated by the plasma wave discharge in the lower ionosphere

    International Nuclear Information System (INIS)

    Markov, G.A.; Chugunov, Yu.V.

    1994-01-01

    In this paper we discuss a new method of controlled stimulation of global perturbations and the diagnostics of plasma physical processes in the ionosphere and the magnetosphere of the Earth. The method was realized with a series of rocket experiments by means of excitation of the radio frequency plasma wave discharge in the near field of the dipole antenna. We focus considerable attention on the results obtained in these experiments testifying to the wide choice and diversity of potentialities of this new method

  10. Recent advances in magnetospheric substorm research

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1990-01-01

    More than two decades of magnetospheric exploration have led to a reasonably clear morphological picture of geomagnetic substorms, which is often summarized in terms of the near-Earth neutral line (NENL) model of substorms. Although this qualitative theory is quite comprehensive and explains a great many observations, it is hard pressed to explain both recent observations of consistently earthward flow within 19 R E and also the prompt onset of magnetic turbulence at 8 R E at the time of substorm onset. Other theories have recently been proposed which tend to be more quantitative, but which explain a more limited number of substorm observations. The challenge seems to be to understand the essential physics of these various quantitative theories and integrate them into a large structure such as is provided by the near-Earth neutral line model. (author)

  11. Ground observations of magnetospheric boundary layer phenomena

    International Nuclear Information System (INIS)

    McHenry, M.A.; Clauer, C.R.; Friis-Christensen, E.; Newell, P.T.; Kelly, J.D.

    1990-01-01

    Several classes of traveling vortices in the dayside ionospheric convection have been detected and tracked using the Greenland magnetometer chain (Friis-Christensen et al., 1988, McHenry et al., 1989). One class observed during quiet times consists of a continuous series of vortices moving generally anti-sunward for several hours at a time. The vortices strength is seen to be approximately steady and neighboring vortices rotate in opposite directions. Sondrestrom radar observations show that the vortices are located at the ionospheric convection reversal boundary. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, the authors argue that this class of vortices is caused by the Kelvin-Helmholtz instability of the inner edge of the magnetospheric boundary layer

  12. Investigation of Magnetospheric Line Radiation above China

    Science.gov (United States)

    Sheng, X.; Wu, J.; Pu, X.

    2017-12-01

    Magnetospheric Line Radiation (MLR) is a kind of VLF emission that is considered by some researchers to be related with the power system on ground, and in frequency-time spectrograms of electromagnetic field, it has a line structure with large frequency bandwidth. These emission waves propagate through the magnetosphere and strongly interact with energetic electrons trapped in the earth's magnetic field. Such a wave-particle interaction amplifies the radiation and scatters energetic electrons, which may trigger new radiations. We detected 328 MLR events by analyzing the electric field data observed by DEMETER satellite in the space above China from the year of 2008 to 2010. Their characteristics and possible cause have been investigated systematically. There were more MLR events in daytime than in nighttime and more in winter than in summer. Such diurnal and seasonal differences were closely associated with whistlers and ionosphere conditions. Comparing Kp indices at the occurring time of MLR events and nationwide Kp indices through the analyzed years, we found these MLR events were not significantly dependent on geomagnetic activity. Most of events were distributed in the low latitude, while their peak intensities in frequency-time spectrograms seemed to be independent of latitude. The frequency intervals of MLR events were between 50 to 95Hz, and the frequency drifts were mostly in 0 0.4Hz/s. The above characteristics of MLR events were similar to those of Power Line Harmonic Radiation (PLHR) events observed in the space above China, therefore we inferred that these two emissions have close relation.

  13. Motion of charged particles in the magnetosphere

    International Nuclear Information System (INIS)

    Mukherjee, G.K.; Rajaram, R.

    1981-01-01

    The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant shows maximum variation for particles close to 90 0 pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity. (orig.)

  14. On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study

    Directory of Open Access Journals (Sweden)

    G. R. Lewis

    2007-11-01

    Full Text Available We present data from the sixth Cassini flyby of Titan (T5, showing that the magnetosphere of Saturn strongly interacts with the moon's ionosphere and exo-ionosphere. A simple electron ionisation model provides a reasonable agreement with the altitude structure of the ionosphere. Furthermore, we suggest that the dense and cold exo-ionosphere (from the exobase at 1430 km and outward to several Titan radii from the surface can be explained by magnetospheric forcing and other transport processes whereas exospheric ionisation by impacting low energy electrons seems to play a minor role.

  15. Current sheets in the Earth’s magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect

    International Nuclear Information System (INIS)

    Frank, A. G.; Artemyev, A. V.; Zelenyi, L. M.

    2016-01-01

    The main characteristics of current sheets (CSs) formed in laboratory experiments are compared with the results of satellite observations of CSs in the Earth’s magnetotail. We show that many significant features of the magnetic field structure and the distributions of plasma parameters in laboratory and magnetospheric CSs exhibit a qualitative similarity, despite the enormous differences of scales, absolute values of plasma parameters, magnetic fields, and currents. In addition to a qualitative comparison, we give a number of dimensionless parameters that demonstrate the possibility of laboratory modeling of the processes occurring in the magnetosphere.

  16. Substorms - Future of magnetospheric substorm-storm research

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1989-01-01

    Seven approaches and/or areas of magnetospheric substorm and storm science which should be emphasized in future research are briefly discussed. They are: the combining of groups of researchers who study magnetic storms and substorms in terms of magnetic reconnection with those that do not, the possible use of a magnetosphere-ionosphere coupling model to merge the groups, the development of improved input-output relationships, the complementing of satellite and ground-based observations, the need for global imaging of the magnetosphere, the complementing of observations with computer simulations, and the need to study the causes of changes in the north-south component of the IMF. 36 refs

  17. Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet

    Science.gov (United States)

    Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.

    2017-12-01

    A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.

  18. Modeling and simulation of cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    Chen, Hanmin

    2014-01-01

    This article describes a mathematical model of the thermodynamic process for Cement Clinkering Process with Compact Internal Burning of Carbon. Using simplifying assumptions, results of calculations are presented based on relevant computerized numerical simulation for a set of typical process parameters obtained from the existing cement shaft kiln operation and the electrical furnace test on the mechanical and chemical performance of the compact coal containing cement raw meal pellets. It is revealed that, the carbon internal burning mode, combining fuel combustion and gas solid heat transfer together as well as preheating, calcining, clinkering and cooling of the raw pellets together, is the origin of the process superiority in respect of equipment simplicity, process enhancement, high energy efficiency and low pollution. Important process details are determined, e.g. the features and lengths of the process zones, the material residence time and the burning mode of carbon in each zone, the clinkering reaction course and the maximum burning temperature. It is concluded that numerical simulations could be useful tool for understanding the new process ideas, as well as conducting the technical development and optimizing the process design. - Highlights: • Twin subsystem model is used to simulate a new type of cement shaft kiln process. • Grain-particle structural model is used to describe the pellet solid gas reactions. • The process superiority resulted from the carbon internal burning mode is revealed. • A series of important process details are determined. • An unprecedented comprehensive picture for cement clinkering process is depicted

  19. Internalization and cellular processing of cholecystokinin in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Izzo, R.S.; Pellecchia, C.; Praissman, M.

    1988-01-01

    To evaluate the internalization of cholecystokinin, monoiodinated imidoester of cholecystokinin octapeptide [ 125 I-(IE)-CCK-8] was bound to dispersed pancreatic acinar cells, and surface-bound and internalized radioligand were differentiated by treating with an acidified glycine buffer. The amount of internalized radioligand was four- and sevenfold greater at 24 and 37 degree C than at 4 degree C between 5 and 60 min of association. Specific binding of radioligand to cell surface receptors was not significantly different at these temperatures. Chloroquine, a lysosomotropic agent that blocks intracellular proteolysis, significantly increased the amount of CCK-8 internalized by 18 and 16% at 30 and 60 min of binding, respectively, compared with control. Dithiothreitol (DTT), a sulfhydryl reducing agent, also augmented the amount of CCK-8 radioligand internalized by 25 and 29% at 30 and 60 min, respectively. The effect of chloroquine and DTT on the processing of internalized radioligand was also considered after an initial 60 min of binding of radioligand to acinar cells. After 180 min of processing, the amount of radioligand internalized was significantly greater in the presence of chloroquine compared with controls, whereas the amount of radioligand declined in acinar cells treated with DTT. Internalized and released radioactivity from acinar cells was rebound to pancreatic membrane homogenates to determine the amount of intact radioligand during intracellular processing. Chloroquine significantly increased the amount of intact 125 I-(IE)-CCK-8 radioligand in released and internalized radioactivity while DTT increased the amount of intact radioligand only in internalized samples. This study shows that pancreatic acinar cells rapidly internalize large amounts of CCK-8 and that chloroquine and DTT inhibit intracellular degradation

  20. Modelling of the ring current in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Giampieri

    2004-01-01

    Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set.

    First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects.

    Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet

  1. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  2. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    2002-07-01

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  3. 3rd International Conference on Modelling and Management of Engineering Processes

    CERN Document Server

    Gericke, Kilian; Szélig, Nikoletta; Vajna, Sándor

    2015-01-01

    Innovative processes for the development of products and services are more and more considered as an organisational capability, which is recognised to be increasingly important for business success in today’s competitive environment. However, management and academia need a more profound understanding of these processes in order to develop improved management approaches to exploit business potentials. This book contains the proceedings of the 3rd International Conference on Modelling and Management of Engineering Processes (MMEP2013) held in Magdeburg, Germany, in November 2013. It includes contributions from international leading researchers in the fields of process modelling and process management. The conference topics were recent trends in modelling and management of engineering processes, potential synergies between different modelling approaches, future challenges for the management of engineering processes as well as future research in these areas.

  4. Production of an electron-positron plasma in a pulsar magnetosphere

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Istomin, Y.N.

    1985-01-01

    A study is made of the production of electron-positron plasma in the vacuum state (''breakdown'' of the vacuum) in the presence of an inhomogeneous electric field and a strong curvilinear magnetic field. Such conditions are encountered in the magnetosphere of a rotating neutron star. A general system of kinetic equations is derived for the electrons, positrons, and γ photons in the curvilinear magnetic field with allowance for the production of electron-positron pairs and the emission of curvature and synchrotron photons. The conditions of occurrence of ''breakdown'' are determined, and the threshold value of the jump in the value of the electric field at the surface of the star is found. The process of multiplication of particles in the magnetosphere is investigated, and the distribution functions of the electrons, positrons, and photons are found. The extinction limit of pulsars is determined. It is shown that the theory is in agreement with observational data

  5. Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry

    Science.gov (United States)

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.

    2001-01-01

    In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.

  6. Dynamics of the earth's radiation belts and inner magnetosphere (geophysical monograph series)

    CERN Document Server

    2013-01-01

    Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphe...

  7. Application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling

    International Nuclear Information System (INIS)

    Bargatze, L.F.; McPherron, R.L.; Baker, D.N.; Hones, E.W. Jr.

    1984-01-01

    The constraints imposed by dimensional analyses are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses reported here assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and U/sub T/ from three 10-day intervals during the IMS: Simple linear regression and histogram techniques are used to find the value of the MHD coupling exponent, α, which is consistent with observations of magnetospheric response. Once α is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon α. 7 references, 6 figures, 1 table

  8. Flux and transformation of the solar wind energy in the magnetosheath of the magnetosphere

    International Nuclear Information System (INIS)

    Pudovkin, M.I.; Semenov, V.S.

    1986-01-01

    Energy flux, incoming from the solar wind to the Earth magnetosphere is calculated. It is shown that Poynting vector flux, incoming to the reconnection area is generated mainly in the transitional area between the departed shock wave front and magnetopause in the result of the retardation of the solar wind and partial transformation of its kinetic energy into magnetic one. In this case the energy transformation coefficient depends on the interplanetary magnetic field intensity. Solar wind energy gets into the area of magnetic field reconnection at the magnetopause mainly in two forms: electromagnetic and thermal energy. In the course of reconnection process magnetic energy converts into kinetic energy of the accelerated plasma mass movement and subsequently turns (in a high-latitude boundary layer) into electromagnetic energy, incoming directly to magnetosphere tail

  9. Double-reconnected magnetic structures driven by Kelvin-Helmholtz vortices at the Earth's magnetosphere

    Science.gov (United States)

    Faganello, Matteo; Borgogno, Dario; Califano, Francesco; Pegoraro, Francesco

    2015-11-01

    In an almost collisionless MagnetoHydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae is a paradigmatic case. We investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere. This mid-latitude double reconnection process, first investigated in, has been confirmed here by following a large set of individual field lines using a method similar to a Poincarè map.

  10. Vacuum Outer-Gap Structure in Pulsar Outer Magnetospheres

    International Nuclear Information System (INIS)

    Gui-Fang, Lin; Li, Zhang

    2009-01-01

    We study the vacuum outer-gap structure in the outer magnetosphere of rotation-powered pulsars by considering the limit of trans-field height through a pair production process. In this case, the trans-field height is limited by the photon-photon pair production process and the outer boundary of the outer gap can be extended outside the light cylinder. By solving self-consistently the Poisson equation for electrical potential and the Boltzmann equations of electrons/positrons and γ-rays in a vacuum outer gap for the parameters of Vela pulsar, we obtain an approximate geometry of the outer gap, i.e. the trans-field height is limited by the pair-production process and increases with the radial distance to the star and the width of the outer gap starts at the inner boundary (near the null charge surface) and ends at the outer boundary which locates inside or outside the light cylinder depending on the inclination angle. (geophysics, astronomy, and astrophysics)

  11. Ethnic Differences in Relations between Family Process and Child Internalizing Problems

    Science.gov (United States)

    Vendlinski, Matthew; Silk, Jennifer S.; Shaw, Daniel S.; Lane, Tonya J.

    2006-01-01

    Background: Family process variables have been linked to child problem behavior, but recent research suggests that child ethnicity may moderate relations between family process and child outcomes. The current study examined how ethnicity moderates relations between parent conflict, parent-child relationship quality, and internalizing problems.…

  12. Helping International Students Succeed Academically through Research Process and Plagiarism Workshops

    Science.gov (United States)

    Chen, Yu-Hui; Van Ullen, Mary K.

    2011-01-01

    Workshops on the research process and plagiarism were designed to meet the needs of international students at the University at Albany. The research process workshop covered formulating research questions, as well as locating and evaluating sources. The plagiarism workshop focused on acknowledging sources, quoting, paraphrasing, and summarizing…

  13. An Investigation of the Internal Structure of the Biggs Study Process Questionnaire.

    Science.gov (United States)

    Watkins, David; Hattie, John

    1980-01-01

    Results of an Australian study of the Biggs Study Process Questionnaire (SPQ) are presented. The purposes of the research were to: (1) re-examine the SPQ's internal consistency; (2) explore dimensionality of the SPQ scales; and (3) investigate validity of Bigg's model of the study process complex through factor analysis. (Author/GK)

  14. Nonlinear dynamics of the magnetosphere and space weather

    Science.gov (United States)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  15. From the Solar Wind to the Magnetospheric Substorm

    Institute of Scientific and Technical Information of China (English)

    E.A. Ponomarev; P.A. Sedykh; O.V. Mager

    2005-01-01

    This paper gives a brief outline of the progression from the first substorm model developed in Ref.[4] and [8] based on Kennel's ideas[3], to the present views about the mechanism by which solar wind kinetic energy is converted to electromagnetic energy at the Bow Shock and by which this energy is transferred to the magnetosphere in the form of current; about the transformation of the energy of this current to gas kinetic energy of convecting plasma tubes, and, finally, the back transformation of gas kinetic energy to electromagnetic energy in secondary magnetospheric MHD generators. The questions of the formation of the magnetospheric convection system, the nature of substorm break-up, and of the matching of currents in the magnetosphere-ionosphere system are discussed.

  16. Echo 7: Magnetospheric properties determined by artificial electron beams

    International Nuclear Information System (INIS)

    Nemzek, R.J.

    1990-01-01

    The sounding rocket Echo 7 was launched from the Poker Flat Research Range. An on-board accelerator injected high-power electron beams into the magnetospheric tail near L = 6.5. After mirroring at the southern conjugate point, about 20 percent of the initial beam electrons returned to the North as Conjugate Echoes, where detectors (scintillators and spectrometers) on four subpayloads measured their energy and bounce time. The other 80 percent of the beam was pitch angle diffused by wave near the equatorial plane either into the conjugate atmosphere or up to mirror points above the payload. Comparison of measured values to calculations showed that the actual magnetosphere during the flight was well-described by the Tsyganenko-Usmanov model magnetosphere with a Kp value of 2- or 2+. Analysis of echo energies yielded values for the highly variable magnetospheric convection electric field

  17. The outer magnetosphere. [composition and comparison with earth

    Science.gov (United States)

    Schardt, A. W.; Behannon, K. W.; Lepping, R. P.; Carbary, J. F.; Eviatar, A.; Siscoe, G. L.

    1984-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  18. Overview of Mercury Magnetospheric Orbiter (MMO) for BepiColombo

    Science.gov (United States)

    Murakami, G.; Hayakawa, H.; Fujimoto, M.; BepiColombo Project Team

    2018-05-01

    The next Mercury exploration mission BepiColombo will be launched in October 2018 and will arrive at Mercury in December 2025. We present the current status, science goals, and observation plans of JAXA's Mercury Magnetospheric Orbiter (MMO).

  19. Inhibition of the electron cyclotron maser instability in the dense magnetosphere of a hot Jupiter

    Science.gov (United States)

    Daley-Yates, S.; Stevens, I. R.

    2018-06-01

    Hot Jupiter (HJ) type exoplanets are expected to produce strong radio emission in the MHz range via the Electron Cyclotron Maser Instability (ECMI). To date, no repeatable detections have been made. To explain the absence of observational results, we conduct 3D adaptive mess refinement (AMR) magnetohydrodynamic (MHD) simulations of the magnetic interactions between a solar type star and HJ using the publicly available code PLUTO. The results are used to calculate the efficiency of the ECMI at producing detectable radio emission from the planets magnetosphere. We also calculate the frequency of the ECMI emission, providing an upper and lower bounds, placing it at the limits of detectability due to Earth's ionospheric cutoff of ˜10 MHz. The incident kinetic and magnetic power available to the ECMI is also determined and a flux of 0.075 mJy for an observer at 10 pc is calculated. The magnetosphere is also characterized and an analysis of the bow shock which forms upstream of the planet is conducted. This shock corresponds to the thin shell model for a colliding wind system. A result consistent with a colliding wind system. The simulation results show that the ECMI process is completely inhibited by the planets expanding atmosphere, due to absorption of UV radiation form the host star. The density, velocity, temperature and magnetic field of the planetary wind are found to result in a magnetosphere where the plasma frequency is raised above that due to the ECMI process making the planet undetectable at radio MHz frequencies.

  20. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  1. 2012 Proceedings of the International Conference on Communications, Signal Processing, and Systems

    CERN Document Server

    Wang, Wei; Mu, Jiasong; Liang, Jing; Zhang, Baoju; Pi, Yiming; Zhao, Chenglin

    2012-01-01

    Communications, Signal Processing, and Systems is a collection of contributions coming out of the International Conference on Communications, Signal Processing, and Systems (CSPS) held October 2012. This book provides the state-of-art developments of Communications, Signal Processing, and Systems, and their interactions in multidisciplinary fields, such as Smart Grid. The book also examines Radar Systems, Sensor Networks, Radar Signal Processing, Design and Implementation of Signal Processing Systems and Applications. Written by experts and students in the fields of Communications, Signal Processing, and Systems.

  2. Coupled rotational dynamics of Jupiter's thermosphere and magnetosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2009-01-01

    Full Text Available We describe an axisymmetric model of the coupled rotational dynamics of the thermosphere and magnetosphere of Jupiter that incorporates self-consistent physical descriptions of angular momentum transfer in both systems. The thermospheric component of the model is a numerical general circulation model. The middle magnetosphere is described by a simple physical model of angular momentum transfer that incorporates self-consistently the effects of variations in the ionospheric conductivity. The outer magnetosphere is described by a model that assumes the existence of a Dungey cycle type interaction with the solar wind, producing at the planet a largely stagnant plasma flow poleward of the main auroral oval. We neglect any decoupling between the plasma flows in the magnetosphere and ionosphere due to the formation of parallel electric fields in the magnetosphere. The model shows that the principle mechanism by which angular momentum is supplied to the polar thermosphere is meridional advection and that mean-field Joule heating and ion drag at high latitudes are not responsible for the high thermospheric temperatures at low latitudes on Jupiter. The rotational dynamics of the magnetosphere at radial distances beyond ~30 RJ in the equatorial plane are qualitatively unaffected by including the detailed dynamics of the thermosphere, but within this radial distance the rotation of the magnetosphere is very sensitive to the rotation velocity of the thermosphere and the value of the Pedersen conductivity. In particular, the thermosphere connected to the inner magnetosphere is found to super-corotate, such that true Pedersen conductivities smaller than previously predicted are required to enforce the observed rotation of the magnetosphere within ~30 RJ. We find that increasing the Joule heating at high latitudes by adding a component due to rapidly fluctuating electric fields is unable to explain the high equatorial temperatures. Adding a component of Joule

  3. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    Science.gov (United States)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  4. The use of iron charge state changes as a tracer for solar wind entry and energization within the magnetosphere

    Directory of Open Access Journals (Sweden)

    T. A. Fritz

    Full Text Available The variation of the charge state of iron [Fe] ions is used to trace volume elements of plasma in the solar wind into the magnetosphere and to determine the time scales associated with the entry into and the action of the magnetospheric energization process working on these plasmas. On 2–3 May 1998 the Advanced Composition Explorer (ACE spacecraft located at the L1 libration point observed a series of changes to the average charge state of the element Fe in the solar wind plasma reflecting variation in the coronal temperature of their original source. Over the period of these two days the average Fe charge state was observed to vary from + 15 to + 6 both at the Polar satellite in the high latitude dayside magnetosphere and at ACE. During a period of southward IMF the observations at Polar inside the magnetosphere of the same Fe charge state were simultaneous with those at ACE delayed by the measured convection speed of the solar wind to the subsolar magnetopause. Comparing the phase space density as a function of energy at both ACE and Polar has indicated that significant energization of the plasma occurred on very rapid time scales. Energization at constant phase space density by a factor of 5 to 10 was observed over a range of energy from a few keV to about 1 MeV. For a detector with a fixed energy threshold in the range from 10 keV to a few hundred keV this observed energization will appear as a factor of ~103 increase in its counting rate. Polar observations of very energetic O+ ions at the same time indicate that this energization process must be occurring in the high latitude cusp region inside the magnetosphere and that it is capable of energizing ionospheric ions at the same time.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetospheric configuration and dynamics; solar wind-magnetosphere interactions

  5. Investigating dynamical complexity in the magnetosphere using various entropy measures

    Science.gov (United States)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos

    2009-09-01

    The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather

  6. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  7. Possibility of detecting magnetospheric radio bursts from Uranus and Neptune

    International Nuclear Information System (INIS)

    Kennel, C.F.; Maggs, J.E.

    1976-01-01

    It is known that Earth, Jupiter and Saturn are sources of intense sporadic bursts of electromagnetic radiation, known as magnetospheric radio bursts. These bursts are here described. It is thought that the similarities in the power flux spectra, together with the burst occurrence patterns, suggest a common physical origin for these bursts in all three planets. The common mechanism may be noise amplification by field aligned currents, since it has been shown that the Earth's MRBs are associated with bright auroral arcs that involve intense field aligned currents. Such currents result from the interaction of the solar wind with the magnetosphere and should be a general feature of the interaction between the solar wind and planetary magnetospheres. If MRBs are produced by solar wind-magnetosphere interaction their total radiated power might scale with the solar wind input into the magnetosphere, and it has been suggested that the frequency of emission scales with the polar magnetic field strength of a planet. The intensity of MRBs is here scaled to the solar wind input and the frequency of emission to the polar field strength with a view to estimating the possibility of detecting MRBs from Uranus and Neptune. It is found that scaling of MRB power to the solar wind-magnetosphere dissipation power is probably a reasonable hypothesis. It is suggested that detection of MRB bursts from Uranus and Neptune might be a reasonable radioastronomy objective on future missions to the outer Solar System. (U.K.)

  8. The Making of discussion groups in a combined process of internal evaluation of safety culture

    International Nuclear Information System (INIS)

    German, S.; Buedo, J. L.; La Salabarnada, E.; Navajas, J.; Silla, I.

    2012-01-01

    The purpose of this paper is to show the design and evaluation of safety culture conducted in the Cofrentes nuclear plant. The process has combined the use of different methodologies and techniques and has allowed the participation of different internal and external stake holders. For internal assessment discussion groups were conducted. These groups, which were designed and analyzed by the CIEMAT, were led by employees from different levels of Cofrentes.

  9. Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program

    Science.gov (United States)

    Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)

    2002-01-01

    During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.

  10. Magnetospheric Multiscale Instrument Suite Operations and Data System

    Science.gov (United States)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  11. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  12. Characteristics of magnetospheric convective electric fields as mapped onto the polar caps

    International Nuclear Information System (INIS)

    Saunders, R.S.

    1976-01-01

    A study is made of the open connected magnetosphere using two numerical computer models: the Hones-Taylor (1965), with image and internal dipoles being the only sources, and the Mead-Williams (1965) with a current sheet added. The objectives of the study are to demonstrate that steady state field line connection across the magnetopause is a possible mechanism for producing the polar cap electric fields detected there, and to show the interesting characteristics of such fields. A review of the literature pertinent to the polar cap electric fields is included

  13. Theory of ultra-low-frequency magnetic pulsations in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Chen, Liu.

    1991-03-01

    Long-period (T = 10-600 s) geomagnetic pulsations are known to be associated with magnetohydrodynamic (MHD) perturbations in the Earth's magnetosphere. Broadly speaking, there are two categories of excitation mechanisms. The first category corresponds to impulsive/external excitations, where MHD waves exhibit the stable discrete as well as continuous spectra. The second category corresponds to spontaneous/internal excitations, where MHD instabilities are excited either reactively or via wave-particle interactions. In this tutorial lecture, we briefly review theories concerning both categories of excitation mechanisms and compare theoretical predictions with available satellite observations. 20 refs

  14. Discrimination against international medical graduates in the United States residency program selection process.

    Science.gov (United States)

    Desbiens, Norman A; Vidaillet, Humberto J

    2010-01-25

    Available evidence suggests that international medical graduates have improved the availability of U.S. health care while maintaining academic standards. We wondered whether studies had been conducted to address how international graduates were treated in the post-graduate selection process compared to U.S. graduates. We conducted a Medline search for research on the selection process. Two studies provide strong evidence that psychiatry and family practice programs respond to identical requests for applications at least 80% more often for U.S. medical graduates than for international graduates. In a third study, a survey of surgical program directors, over 70% perceived that there was discrimination against international graduates in the selection process. There is sufficient evidence to support action against discrimination in the selection process. Medical organizations should publish explicit proscriptions of discrimination against international medical graduates (as the American Psychiatric Association has done) and promote them in diversity statements. They should develop uniform and transparent policies for program directors to use to select applicants that minimize the possibility of non-academic discrimination, and the accreditation organization should monitor whether it is occurring. Whether there should be protectionism for U.S. graduates or whether post-graduate medical education should be an unfettered meritocracy needs to be openly discussed by medicine and society.

  15. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    Science.gov (United States)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  16. A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Broos, Patrick S. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Kóspál, Ágnes [Konkoly Observatory, Research Center for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Salter, Demerese M. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2016-12-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.

  17. Superthermal Electron Magnetosphere-Ionosphere Coupling in the Diffuse Aurora in the Presence of ECH Waves

    Science.gov (United States)

    Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.

    2015-01-01

    There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.

  18. Measuring the magnetic connectivity of the geosynchronous region of the magnetosphere

    International Nuclear Information System (INIS)

    Thomsen, M.; Hones, E.; McComas, D.; Reeves, G.; Weiss, L.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to determine the magnetic connectivity of the geosynchronous region of the magnetosphere to the auroral zone in the polar ionosphere in order to test and refine current magnetospheric magnetic field models. The authors used plasma data from LANL instruments on three geosynchronous satellites and from USAF instruments on three low-altitude, polar-orbiting, DMSP satellites. Magnetic connectivity is tested by comparing plasma energy spectra at DMSP and geosynchronous satellites when they are in near conjunction. The times of closest conjugacy are used to evaluate the field models. They developed the tools for each step of the process and applied them to the study of a one-week test set of conjunctions. They automated the analysis tools and applied them to four months of two-satellite observations. This produced a database of about 130 definitive magnetic conjunctions. They compared this database with the predictions of the widely-used Tsyganenko magnetic field model and showed that in most cases one of the various parameterizations of the model could reproduce the observed field line connection. Further, they explored various measurables (e.g., magnetospheric activity indices or the geosynchronous field orientation) that might point to the appropriate parameterization of the model for these conjunctions, and ultimately, for arbitrary times

  19. Plasma sources of solar system magnetospheres

    CERN Document Server

    Blanc, Michel; Chappell, Charles; Krupp, Norbert

    2016-01-01

    This volume reviews what we know of the corresponding plasma source for each intrinsically magnetized planet. Plasma sources fall essentially in three categories: the solar wind, the ionosphere (both prevalent on Earth), and the satellite-related sources. Throughout the text, the case of each planet is described, including the characteristics, chemical composition and intensity of each source. The authors also describe how the plasma generated at the source regions is transported to populate the magnetosphere, and how it is later lost. To summarize, the dominant sources are found to be the solar wind and sputtered surface ions at Mercury, the solar wind and ionosphere at Earth (the relative importance of the two being discussed in a specific introductory chapter), Io at Jupiter and – a big surprise of the Cassini findings – Enceladus at Saturn. The situation for Uranus and Neptune, which were investigated by only one fly-by each, is still open and requires further studies and exploration. In the final cha...

  20. Lunar biological effects and the magnetosphere.

    Science.gov (United States)

    Bevington, Michael

    2015-12-01

    The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Wave propagation in the magnetosphere of Jupiter

    Science.gov (United States)

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  2. General-relativistic pulsar magnetospheric emission

    Science.gov (United States)

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  3. Electron acoustic nonlinear structures in planetary magnetospheres

    Science.gov (United States)

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  4. Density Variations in the Earth's Magnetospheric Cusps

    Science.gov (United States)

    Walsh, B. M.; Niehof, J.; Collier, M. R.; Welling, D. T.; Sibeck, D. G.; Mozer, F. S.; Fritz, T. A.; Kuntz, K. D.

    2016-01-01

    Seven years of measurements from the Polar spacecraft are surveyed to monitor the variations of plasma density within the magnetospheric cusps. The spacecraft's orbital precession from 1998 through 2005 allows for coverage of both the northern and southern cusps from low altitude out to the magnetopause. In the mid- and high- altitude cusps, plasma density scales well with the solar wind density (n(sub cusp)/n(sub sw) approximately 0.8). This trend is fairly steady for radial distances greater then 4 R(sub E). At low altitudes (r less than 4R(sub E)) the density increases with decreasing altitude and even exceeds the solar wind density due to contributions from the ionosphere. The density of high charge state oxygen (O(greater +2) also displays a positive trend with solar wind density within the cusp. A multifluid simulation with the Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme MHD model was run to monitor the relative contributions of the ionosphere and solar wind plasma within the cusp. The simulation provides similar results to the statistical measurements from Polar and confirms the presence of ionospheric plasma at low altitudes.

  5. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  6. The Response of the Thermosphere and Ionosphere to Magnetospheric Forcing

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    1989-06-01

    model and the Sheffield University ionospheric model. This has produced a self-consistent coupled thermospheric--ionospheric model, which has become a valuable diagnostic tool for examining thermospheric--ionospheric interactions in the polar regions. In particular, it is possible to examine the effects of induced winds, ion transport, and the seasonal and diurnal U.T. variations of solar heating and photoionization within the polar regions. Polar and high-latitude plasma density structure at F-region altitudes can be seen to be strongly controlled by U.T., and by season, even for constant solar and geomagnetic activity. In the winter, the F-region polar plasma density is generally dominated by the effects of transport of plasma from the dayside (sunlit cusp). In the summer polar region, however, an increase in the proportion of molecular to atomic species, created by the global seasonal circulation and augmented by the geomagnetic forcing, controls the plasma composition and generally depresses plasma densities at all U.Ts. A number of these complex effects can be seen in data obtained from ground-based radars, Fabry--Perot interferometers and in the combined DE data-sets. Several of these observations will be used, in combination with simulations using the UCL--Sheffield coupled model, to illustrate the major features of large-scale thermosphere--ionosphere interactions in response to geomagnetic forcing. The past decade has seen a major improvement in the quality and quantity of experimental data available to study the thermosphere and ionosphere and their response to magnetospheric forcing. Earlier, large measured changes of individual parameters were difficult to place in a global or large-scale perspective. However, a clear picture of the distinction between the solar and geomagnetic forcing processes has emerged from the combined data-sets available from spacecraft such as the Dynamics Explorers, and from ground-based radar and optical observations of the polar

  7. Technical benefit and risk analysis on cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    Chen, Hanmin

    2015-01-01

    This article demonstrates the potential technical benefit and risk for cement clinkering process with compact internal burning of carbon, a laboratory-phase developing technique, from 9 aspects, including the heat consumption of clinkering and exhaust heat utilization, clinker quality, adaptability to alternative fuels, the disposal ability of industrial offal and civil garbage, adaptability to the raw materials and fuels with high content of chlorine, sulphur and alkali, the feasibility of process scale up, the briquetting process of the coal-containing cement raw meal pellet, NO x emission and the capital cost and benefit of conversion project. It is concluded that it will be able to replace the modern precalciner rotary kiln process and to become the main stream technique of cement clinkering process in low carbon economy times. - Highlights: • Compact internal burning of carbon enables cement shaft kiln to run stably. • Compact internal burning of carbon enables cement shaft kiln to scale up. • New process triples energy efficiency with excellent environmental performance. • It will be able to compete with and replace the existing precalciner kiln process. • It will become the mainstream clinkering process in low carbon economy

  8. Internationally Standardized Reporting (Checklist) on the Sustainable Development Performance of Uranium Mining and Processing Sites

    International Nuclear Information System (INIS)

    Harris, Frank

    2014-01-01

    The Internationally Standardized Reporting Checklist on the Sustainable Development Performance of Uranium Mining and Processing Sites: • A mutual and beneficial work between a core group of uranium miners and nuclear utilities; • An approach based on an long term experience, international policies and sustainable development principles; • A process to optimize the reporting mechanism, tools and efforts; • 11 sections focused on the main sustainable development subject matters known at an operational and headquarter level. The WNA will make available the sustainable development checklist for member utilities and uranium suppliers. Utilities and suppliers are encouraged to use the checklist for sustainable development verification.

  9. Transient internal characteristic study of a centrifugal pump during startup process

    International Nuclear Information System (INIS)

    Hu, F F; Ma, X D; Wu, D Z; Wang, L Q

    2012-01-01

    The transient process of a centrifugal pump existed in a variety of occasions. There were a lot of researches in the external characteristic in startup process and stopping process, but internal characteristics were less observed and studied. Study of the internal flow field had significant meanings. The performance of a pump could be evaluated and improved by revealing the flow field. In the other hand, the prediction of external characteristic was based on the correct analysis of the internal flow. In this paper, theoretical method and numerical simulation were used to study the internal characteristic of a centrifugal pump. The theoretical study showed that the relative flow in an impeller was composed of homogeneous flow and axial vortex flow. The vortex intensity was mainly determined by angular velocity of impeller, flow channel width and blade curvature. In order to get the internal flow field and observe the evolution of transient internal flow in the impeller, Computational Fluid Dynamics(CFD) were used to study the three-dimensional unsteady incompressible viscous flows in a centrifugal pump during starting period. The Dynamic Mesh (DM) method with non-conformal grid boundaries was applied to get the external characteristic and internal flow field. The simulate model included three pumps with different blade numbers and the same blade curvature. The relative velocity vector showed that there was a big axial vortex in impeller channel. At the beginning, the vortex was raised in the pressure side of the impeller outlet and with time went on, it shifted to the middle flow channel of the impeller and the vortex intensity increased. When the speed and flow rate reached a definite value, the influence of the axial vortex began to get smaller. The vortex developed faster when the flow channel got narrower. Due to the evolution of axial vortex, the slip factor during starting period was smaller than that in quasi-steady condition. As a result, transient head was

  10. Improving Discoverability Between the Magnetosphere and Ionosphere/Thermosphere Domains

    Science.gov (United States)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Talaat, E. R.; Sarris, T.

    2016-12-01

    With the advent of the NASA Magnetospheric Multiscale Mission and the Van Allen Probes we have space missions that probe the Earth's magnetosphere and radiation belts. These missions fly at far distances from the Earth in contrast to the larger number of near-Earth satellites. Both of the satellites make in situ measurements. Energetic particles flow along magnetic field lines from these measurement locations down to the ionosphere/thermosphere region. Discovering other data that may be used with these satellites is a difficult and complicated process. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for the Virtual Ionosphere Thermosphere Mesosphere Observatory (VITMO). The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements for a number of magnetic field models and geophysical conditions. These services run in real-time when the user queries for data and allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels. The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow "near misses" to be found. The magnetic field

  11. Modeling the Interaction of Europa with the Jovian Magnetosphere

    Science.gov (United States)

    Rubin, M.; Combi, M. R.; Daldorff, L.; Gombosi, T. I.; Hansen, K. C.; Jia, X.; Kivelson, M. G.; Tenishev, V.

    2011-12-01

    The interaction of Jupiter's corotating magnetosphere with Europa's subsurface water ocean is responsible for the observed induced dipolar magnetic field. Furthermore the pick-up process of newly ionized particles from Europa's neutral atmosphere alters the magnetic and electric field topology around the moon. We use the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) of the Space Weather Modeling Framework (SWMF) to model the interaction of Europa with the Jovian magnetosphere. The BATS-R-US code solves the governing equations of magnetohydrodynamics (MHD) in a fully 3D adaptive mesh. In our approach we solve the equations for one single ion species, starting from the work by Kabin et al. (J. Geophys. Res., 104, A9, 19983-19992, 1999) accounting for the exospheric mass loading, ion-neutral charge exchange, and ion-electron recombination. We continue by separately solving the electron pressure equation and furthermore extend the magnetic induction equation by the resistive and Hall terms. The resistive term accounts for the finite electron diffusivity and thus allows a more adequate description of the effect of magnetic diffusion due to collisions [Ledvina et al., Sp. Sci. Rev., 139:143-189, 2008]. For this purpose we use ion-electron and electron-neutral collision rates presented by Schunk and Nagy (Ionospheres, Cambridge University Press, 2000). The Hall term allows ions and electrons to move at different velocities while the magnetic field remains frozen to the electrons. The assumed charge neutrality of the ion-electron plasma is maintained everywhere at all times. The model is run at different phases of Jupiter's rotation reflecting the different locations of Europa with respect to the center of the plasma sheet and is compared to measurements obtained by the Galileo magnetometer [Kivelson et al., J. Geophys. Res., 104:4609-4626, 1999]. The resulting influence on the induced magnetic dipolar field is studied and compared to the results from the

  12. Developing and enforcing internal information systems standards: InduMaker’s Standards Management Process

    Directory of Open Access Journals (Sweden)

    Claudia Loebbecke

    2016-01-01

    Full Text Available It is widely agreed that standards provide numerous benefits when available and enforced. Company-internal Information Systems (IS management procedures and solutions, in the following coined IS ‘standards’, allow for harmonizing operations between company units, locations and even different service providers. However, many companies lack an organized process for defining and managing internal IS standards, which causes uncertainties and delays in decision making, planning, and design processes. In this case study of the globally operating InduMaker (anonymized company name, an established manufacturing supplier, we look into the company-internal management of IS standards. Theoretically grounded in the organizational and IS-focused literature on business process modelling and business process commoditization, we describe and investigate InduMaker’s newly developed Standard Management Process (SMP for defining and managing company-internal business and IS standards, with which the multinational pursues offering clear answers to business and IT departments about existing IS standards, their degree of obligation, applicability, and scope at any time.

  13. An Ionosphere/Magnetosphere Coupling Current System Located in the Gap Between Saturn and its Rings

    Science.gov (United States)

    Khurana, K. K.; Dougherty, M. K.; Cao, H.; Hunt, G. J.; Provan, G.

    2017-12-01

    The Grand Finale Orbits of the Cassini spacecraft traversed through Saturn's D ring and brought the spacecraft to within 3000 km of Saturn's cloud tops. The closest approaches (CA) were near the equatorial plane of Saturn and were distributed narrowly around the local noon. The difference field (observations - internal field - magnetospheric ring current field) obtained from the Grand Finale orbits show persistent residual fields centered around the CA which diminish at higher latitudes on field lines that connect to the ring. Modeling of this perturbation in terms of internal harmonics shows that the perturbation is not of internal origin but is produced by external currents that couple the ionosphere to the magnetosphere. The sense of the current system suggests that the southern feet of the field lines in the ionosphere lead their northern footprints. We show that the observed field perturbations are consistent with a meridional Pedersen current whose strength is 1 MA/radian, i.e. comparable in strength to the Planetary-period-oscillation related current systems observed in the auroral zone. We show that the implied Lorentz force in the ionosphere extracts momentum from the faster moving southern ionosphere and passes it on to the northern ionosphere. We discuss several ideas for generating this current system. In particular, we highlight a mechanism that involves shears in the neutral winds in the thermospheric region to generate the observed magnetic field.

  14. Generalized role for the cerebellum in encoding internal models: evidence from semantic processing.

    Science.gov (United States)

    Moberget, Torgeir; Gullesen, Eva Hilland; Andersson, Stein; Ivry, Richard B; Endestad, Tor

    2014-02-19

    The striking homogeneity of cerebellar microanatomy is strongly suggestive of a corresponding uniformity of function. Consequently, theoretical models of the cerebellum's role in motor control should offer important clues regarding cerebellar contributions to cognition. One such influential theory holds that the cerebellum encodes internal models, neural representations of the context-specific dynamic properties of an object, to facilitate predictive control when manipulating the object. The present study examined whether this theoretical construct can shed light on the contribution of the cerebellum to language processing. We reasoned that the cerebellum might perform a similar coordinative function when the context provided by the initial part of a sentence can be highly predictive of the end of the sentence. Using functional MRI in humans we tested two predictions derived from this hypothesis, building on previous neuroimaging studies of internal models in motor control. First, focal cerebellar activation-reflecting the operation of acquired internal models-should be enhanced when the linguistic context leads terminal words to be predictable. Second, more widespread activation should be observed when such predictions are violated, reflecting the processing of error signals that can be used to update internal models. Both predictions were confirmed, with predictability and prediction violations associated with increased blood oxygenation level-dependent signal in the posterior cerebellum (Crus I/II). Our results provide further evidence for cerebellar involvement in predictive language processing and suggest that the notion of cerebellar internal models may be extended to the language domain.

  15. 2nd International Symposium on Signal Processing and Intelligent Recognition Systems

    CERN Document Server

    Bandyopadhyay, Sanghamitra; Krishnan, Sri; Li, Kuan-Ching; Mosin, Sergey; Ma, Maode

    2016-01-01

    This Edited Volume contains a selection of refereed and revised papers originally presented at the second International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The program committee received 175 submissions. Each paper was peer reviewed by at least three or more independent referees of the program committee and the 59 papers were finally selected. The papers offer stimulating insights into biometrics, digital watermarking, recognition systems, image and video processing, signal and speech processing, pattern recognition, machine learning and knowledge-based systems. The book is directed to the researchers and scientists engaged in various field of signal processing and related areas. .

  16. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  17. Development of international labor migration in the dynamics of globalization processes

    Directory of Open Access Journals (Sweden)

    Rubinskaya Eteri, D.

    2015-03-01

    Full Text Available The current characteristics of international migration caused by the qualitative changes that occur in the global economy under influence of increasing globalization. The paper attempts to suggest periodization of the global economy development and to identify features of international labor migration occurred under the influence of deep changes in the world economy. During this period, the author identifies three stages in the formation of globalization, the transition criterion from one to other is the degree of world economy changes under the influence of the productive forces development and the major social and political transformations resulted in qualitative changes in the processes of international labor migration. At the same time in the context of globalization the place and role of international labor migration changes in the global economy system: migration becomes a means of promoting the globalization of countries and regions, the most important factor of demographic development and economic growth.

  18. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  19. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    International Nuclear Information System (INIS)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  20. Board members’ contribution to strategy: The mediating role of board internal processes

    Directory of Open Access Journals (Sweden)

    Carmen Barroso-Castro

    2017-05-01

    Full Text Available This study aims to explore what directors do on the board, to what extent the processes occurring in the board allow the sharing and integrating of the existing knowledge, thus facilitating the board members’ contributions to strategy. We adopt the view that the internal board processes increase the impact of the cognitive resources on board performance. Using survey data from 200 large Spanish companies we demonstrate that directors’ level of knowledge of the firm and board job-related diversity positively influence the degree of the board's strategic involvement. Additionally, the internal processes that take place within the board – particularly Cognitive Conflict, the Critical and Independent Approach and the Comprehensive Discussion Process – influence the board's strategic involvement and play a partial mediating role on the aforementioned relationships. However, our results show no evidence for a positive relationship between Board Meeting Dynamics and the board's strategic involvement.

  1. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  2. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  3. Styles of International Mediation in Peace Processes Between States and Terrorist Organizations

    Science.gov (United States)

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited STYLES OF...Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE STYLES OF INTERNATIONAL MEDIATION IN PEACE PROCESSES BETWEEN

  4. Managing organizational change in an international scientific network: A study of ICES reform processes

    NARCIS (Netherlands)

    Stange, K.; Olssen, P.; Österblom, H.

    2012-01-01

    Organizations involved in the governance of natural resources are challenged to adjust to the call for more holistic management approaches. This often necessitates organizational change. Here change processes in the International Council for the Exploration of the Sea (ICES) during the years

  5. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE REACTOR SYSTEM - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    The ELI Eco Logic International Inc. (Eco Logic) process thermally separates organics, then chemically reduces them in a hydrogen atmosphere, converting them to a reformed gas that consists of light hydrocarbons and water. A scrubber treats the reformed gas to remove hydrogen chl...

  6. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  7. Strengthening Internal Quality Assurance Processes: Facilitating Student Evaluation Committees to Contribute

    Science.gov (United States)

    Stalmeijer, Renée; Whittingham, Jill; de Grave, Willem; Dolmans, Diana

    2016-01-01

    Student evaluation committees play a crucial role in internal quality assurance processes as representatives of the student body. However, the students on these committees sometimes experience difficulty in providing constructive and structured feedback to faculty in an environment characterised by a strong power differential between student and…

  8. Reducing Post-Decision Dissonance in International Decisions: The Analytic Hierarchy Process Approach.

    Science.gov (United States)

    DuBois, Frank L.

    1999-01-01

    Describes use of the analytic hierarchy process (AHP) as a teaching tool to illustrate the complexities of decision making in an international environment. The AHP approach uses managerial input to develop pairwise comparisons of relevant decision criteria to efficiently generate an appropriate solution. (DB)

  9. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  10. Researching International Processes of Education Policy Formation: Conceptual and Methodological Considerations

    Science.gov (United States)

    Edwards, D. Brent, Jr.

    2012-01-01

    This article elaborates one approach to conceptualizing and investigating international processes of education policy formation (IPEPF), which are dynamic, multi-level and processual in nature. This contribution is important because, although research is increasingly conducted on phenomena with such characteristics, extended discussions of how…

  11. The doctrinal illusion of heterogeneity of international law-making processes

    NARCIS (Netherlands)

    d' Aspremont, J.; Ruiz Fabri, H.; Wofrum, R.; Gogolin, J.

    2010-01-01

    Contemporary practice shows that the image of international lawmaking as a diverse and heterogeneous process, understood in terms of the multiplicity of the actors involved, is mostly an illusion. Despite strong empirical evidence, many scholars have been lured by this idea or have tried to promote

  12. Supporting the Thesis Writing Process of International Research Students through an Ongoing Writing Group

    Science.gov (United States)

    Li, Linda Y.; Vandermensbrugghe, Joelle

    2011-01-01

    Evidence from research suggests writing support is particularly needed for international research students who have to tackle the challenges of thesis writing in English as their second language in Western academic settings. This article reports the development of an ongoing writing group to support the thesis writing process of international…

  13. Hot plasma parameters in Neptune's magnetosphere

    International Nuclear Information System (INIS)

    Krimigis, S.M.; Mauk, B.H.; Cheng, A.F.; Keath, E.P.; Kane, M.; Armstrong, T.P.; Gloeckler, G.; Lanzerotti, L.J.

    1990-01-01

    Energy spectra of energetic protons and electrons (E p approx-gt 28 keV, E e approx-gt 22 keV, respectively) obtained with the Low Energy Charged Particle (LECP) instrument during the Voyager 2 encounter with Neptune on August 24-25, 1989 are presented. The proton spectral form was a power law (dj/dE = KE -γ ), outside the orbit of Triton (∼14.3 R N ); inside that distance, it was found to be a hot (kT ≅ 60 keV) Maxwellian distribution. Such distributions, observed in other planets as well, have yet to be explained theoretically. Similarly, the electron spectral form changed from a simple power law outside Triton to a two-slope power law with a high energy tail inside. Intensity and spectral features in both proton and electron fluxes were identified in association with the crossings of the Triton and 1989 N1 L-shells, but these features do not occur simultaneously in both species. Such signatures were manifested by relative peaks in both kT and γ spectral indices. Peak proton pressures of ∼2x10 -9 dynes cm -2 , and β ∼ 0.2 were measured at successive magnetic equatorial crossings, both inbound and outbound. These parameters show Neptune's magnetosphere to be relatively undistorted by hot plasma loading, similar to that of Uranus and unlike those of Saturn and Jupiter. Trapped electron fluxes at Neptune, as at Uranus, exceed the whistler mode stably trapped flux limit. Whistler-induced pitch angle scattering of energetic electrons in the radiation belts can yield a precipitating energy flux sufficient to drive Neptune's aurora

  14. Charged particle periodicity in the Saturnian magnetosphere

    International Nuclear Information System (INIS)

    Carbary, J.F.; Krimigis, S.M.

    1982-01-01

    The low energy charged particles (LECP) experiments on the Voyager 1 and 2 spacecraft performed measurements of electrons (approx.22 keV to approx.20 MeV) and ions (approx.28 keV to approx.150 MeV) during the Saturn encounters in 1980 and 1981. Count rate ratios of two of the low energy electron (22 to 35 keV and 183 to 500 keV) and ion (43 to 80 keV and 137 to 215 keV) channels exhibit an approximation 10 hour periodicity in the outer Saturnian magnetosphere beyond the orbit of Titan. Electron ratios vary from approx.50 to approx.300; ion ratios vary from approx.3 to approx.20. Similar but less pronounced periodicities are observed for higher and lower energy electron and ion spectral indices. Three complete cycles were observed during the Voyager 2 outbound portion of the encounter from which were determined an electron ratio period of 10/sup h/21/sup m/ +- 48/sup m/ and an ion ratio period of 9/sup h/49/sup m/ +- 59/sup m/. Using Saturn Kilometric Radiation (SKR) and Saturn Electrostatic Discharge (SED) periods, extrapolation backward from Voyager 2 to Voyager 1 suggests that the periodicities are Saturnian rather than Jovian in nature, and that they persist in phase for time intervals at least as long as 287 days. Ratio minima, or spectral hardenings, occur in the same hemisphere as do auroral brightenings, SKR activity, and spoke enhanement. We interpret the observations as prima facie evidence of an asymmetry in the Saturian magnetic field and the root cause of the observed SKR periodicity

  15. Solar wind and its interaction with the Earth magnetosphere

    International Nuclear Information System (INIS)

    Grib, S.A.

    1978-01-01

    A critical review is given regarding the research of the stationary and non-stationary interaction of the solar wind with the Earth magnetosphere. Highlighted is the significance of the interplanetary magnetic field in the non-stationary movement of the solar wind flux. The problem of the solar wind shock waves interaction with the ''bow wave-Earth's magnetosphere'' system is being solved. Considered are the secondary phenomena, as a result of which the depression-type wave occurs, that lowers the pressure on the Earth's maanetosphere. The law, governing the movement of the magnetosphere subsolar point during the abrupt start of a geomagnetic storm has been discovered. Stationary circumvention of the magnetosphere by the solar wind flux is well described by the gas dynamic theory of the hypersonic flux. Non-stationary interaction of the solar wind shock waves with the magnetosphere is magnetohydrodynamic. It is pointed out, that the problems under consideration are important for the forecasting of strong geomagnetic perturbations on the basis of cosmic observations

  16. Evaluation of recent quantitative magnetospheric magnetic field models

    International Nuclear Information System (INIS)

    Walker, R.J.

    1976-01-01

    Recent quantitative magnetospheric field models contain many features not found in earlier models. Magnetopause models which include the effects of the dipole tilt were presented. More realistic models of the tail field include tail currents which close on the magnetopause, cross-tail currents of finite thickness, and cross-tail current models which model the position of the neutral sheet as a function of tilt. Finally, models have attempted to calculate the field of currents distributed in the inner magnetosphere. As the purpose of a magnetospheric model is to provide a mathematical description of the field that reasonably reproduces the observed magnetospheric field, several recent models were compared with the observed ΔB(B/sub observed/--B/sub main field/) contours. Models containing only contributions from magnetopause and tail current systems are able to reproduce the observed quiet time field only in an extremely qualitative way. The best quantitative agreement between models and observations occurs when currents distributed in the inner magnetosphere are added to the magnetopause and tail current systems. However, the distributed current models are valid only for zero tilt. Even the models which reproduce the average observed field reasonably well may not give physically reasonable field gradients. Three of the models evaluated contain regions in the near tail in which the field gradient reverses direction. One region in which all the models fall short is that around the polar cusp, though most can be used to calculate the position of the last closed field line reasonably well

  17. Simulation and modeling of whistler-mode wave growth through cyclotron resonance with energetic electrons in the magnetosphere

    International Nuclear Information System (INIS)

    Carlson, C.R.

    1987-01-01

    New models and simulations of wave growth experienced by electromagnetic waves propagating through the magnetosphere in the whistler mode are presented. For these waves, which have frequencies below the electron gyro and plasma frequencies, the magnetospheric plasma acts like a natural amplifier often amplifying the waves by ∼ 30 dB. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons which make up the Van Allen radiation belts. The main emphasis is to simulate single-frequency wave pulses, in the 2-6 kHz range, that have been injected into the magnetosphere, near L ∼ 4, by the Stanford transmitting facility at Siple station, Antarctica. However, the results can also be applied to naturally occurring signals, signals from other transmitters, non-CW signals, and signals in other parts of the magnetosphere not probed by the Siple Station transmitter. Results show the importance of the transient aspects in the wave-growth process. The wave growth established as the wave propagates toward the equator, is given a spatially advancing wave phase structure by the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are set up that results in the linearly increasing output frequency with time

  18. The impact of the improvement in internal medicine consultation process on ED length of stay.

    Science.gov (United States)

    Shin, Sangheon; Lee, Soo Hoon; Kim, Dong Hoon; Kim, Seong Chun; Kim, Tae Yun; Kang, Changwoo; Jeong, Jin Hee; Lim, Daesung; Park, Yong Joo; Lee, Sang Bong

    2018-04-01

    Although consultations are essential for delivering safe, high-quality care to patients in emergency departments, they contribute to emergency department patient flow problems and overcrowding which is associated with several adverse outcomes, such as increases in patient mortality and poor quality care. This study aimed to investigate how time flow metrics including emergency department length of stay is influenced by changes to the internal medicine consultation policy. This study is a pre- and post-controlled interventional study. We attempted to improve the internal medicine consultation process to be more concise. After the intervention, only attending emergency physicians consult internal medicine chief residents, clinical fellows, or junior staff of each internal medicine subspecialty who were on duty when patients required special care or an admission to internal medicine. Emergency department length of stay of patients admitted to the department of internal medicine prior to and after the intervention decreased from 996.94min to 706.62min. The times from consultation order to admission order and admission order to emergency department departure prior to and after the intervention were decreased from 359.59min to 180.38min and from 481.89min to 362.37min, respectively. The inpatient mortality rates and Inpatient bed occupancy rates prior to and after the intervention were similar. The improvements in the internal medicine consultation process affected the flow time metrics. Therefore, more comprehensive and cooperative strategies need to be developed to reduce the time cycle metrics and overcrowding of all patients in the emergency department. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Entrepreneurial Orientation and Business Internationalisation Process: The Theoretical Foundations of International Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Krzysztof Wach

    2015-06-01

    Full Text Available The main goal of the article is to discuss and elaborate on the basics of international entrepreneurial orientation (IEO, its fundamentals and principles. The paper reviews these three important terms by trying to link them and suggests a holistic framework. The article is of descriptive character, thus it is based on literature review and its constructive critics. The article is an attempted synthesis of the concept of international entrepreneurial orientation. It focuses on IEO as the implementation of one of the most important research theme in the theory of entrepreneurship, which is entrepreneurial orientation (EO into the studies of international entrepreneurship (IE. Findings: Firstly, international entrepreneurial process was discussed from the international entrepreneurship perspective. Secondly, the paper introduces the conceptualisation of entrepreneurial orientation from both three- and multidimensional perspectives. Thirdly, IEO is conceptualised and operationalised from the perspective of entrepreneurial internationalisation of firms. Implications & Recommendations: IEO is a multi-dimensional concept. IEO can be considered both an individual and firm-level construct. IEO enables business to identify and exploit internationalisation opportunities. IEO reflects the firms overall proactiveness and aggressiveness in its pursuit of international markets.

  20. Whistlers in space plasma, their role for particle populations in the inner magnetosphere

    Science.gov (United States)

    Shklyar, David

    Of many wave modes, which propagate in the plasmaspheric region of the magnetosphere, whistler waves play the most important role in the dynamics of energetic particles (chiefly elec-trons, but not excepting protons), as their resonant interactions are very efficient. There are three main sources of whistler mode waves in the magnetosphere, namely, lightning strokes, VLF transmitter signals, and far and away various kinds of kinetic instabilities leading to generation of whistler mode waves. Resonant interactions of energetic electrons with whistlers may lead to electron acceleration, scattering into loss-cone, and consequent precipitation into the iono-sphere and atmosphere. While electron resonant interaction with lightning-induced whistlers and VLF transmitter signals may, to a certain approximation, be considered as particle dy-namics in given electromagnetic fields, resonant wave-particle interaction in the case of plasma instability is intrinsically a self-consistent process. An important aspect of whistler-electron interactions (particularly in the case of plasma instability) is the possibility of energy exchange between different energetic electron populations. Thus, in many cases, whistler wave growth rate is determined by "competition" between the first cyclotron and Cerenkov resonances, one (depending on energetic electron distribution) leading to wave growth and the other one to wave damping. Since particles which give rise to wave growth loose their energy, while parti-cles which lead to wave damping gain energy at the expense of the wave, and since the first cyclotron and Cerenkov resonances correspond to different particle energies, wave generation as the result of plasma instability may lead, at the same time, to energy exchange between two populations of energetic particles. While the role of whistlers in dynamics of energetic electrons in the magnetosphere is gener-ally recognized, their role for protons seems to be underestimated. At the same

  1. 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing

    CERN Document Server

    Tsai, Pei-Wei; Huang, Hsiang-Cheh

    2017-01-01

    This volume of Smart Innovation, Systems and Technologies contains accepted papers presented in IIH-MSP-2016, the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. The conference this year was technically co-sponsored by Tainan Chapter of IEEE Signal Processing Society, Fujian University of Technology, Chaoyang University of Technology, Taiwan Association for Web Intelligence Consortium, Fujian Provincial Key Laboratory of Big Data Mining and Applications (Fujian University of Technology), and Harbin Institute of Technology Shenzhen Graduate School. IIH-MSP 2016 is held in 21-23, November, 2016 in Kaohsiung, Taiwan. The conference is an international forum for the researchers and professionals in all areas of information hiding and multimedia signal processing. .

  2. Family process and youth internalizing problems: A triadic model of etiology and intervention.

    Science.gov (United States)

    Schleider, Jessica L; Weisz, John R

    2017-02-01

    Despite major advances in the development of interventions for youth anxiety and depression, approximately 30% of youths with anxiety do not respond to cognitive behavioral treatment, and youth depression treatments yield modest symptom decreases overall. Identifying networks of modifiable risk and maintenance factors that contribute to both youth anxiety and depression (i.e., internalizing problems) may enhance and broaden treatment benefits by informing the development of mechanism-targeted interventions. A particularly powerful network is the rich array of family processes linked to internalizing problems (e.g., parenting styles, parental mental health problems, and sibling relationships). Here, we propose a new theoretical model, the triadic model of family process, to organize theory and evidence around modifiable, transdiagnostic family factors that may contribute to youth internalizing problems. We describe the model's implications for intervention, and we propose strategies for testing the model in future research. The model provides a framework for studying associations among family processes, their relation to youth internalizing problems, and family-based strategies for strengthening prevention and treatment.

  3. 1st International Conference on Recent Cognizance in Wireless Communication & Image Processing

    CERN Document Server

    Srivastava, Vishnu; Singh, Ghanshyam; Bhatnagar, Deepak

    2016-01-01

    This volume comprises the proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. It brings together content from academicians, researchers, and industry experts in areas of Wireless Communication and Image Processing. The volume provides a snapshot of current progress in computational creativity and a glimpse of future possibilities. The proceedings include two kinds of paper submissions: (i) regular papers addressing foundation issues, describing original research on creative systems development and modeling; and (ii) position papers describing work-in-progress or research directions for computational creativity. This work will be useful to professionals and researchers working in the core areas of wireless communications and image processing.

  4. VII International scientific conference Radiation-thermal effects and processes in inorganic materials. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    In the collection there are the reports of the VII International scientific conference and the VII All-Russian school-conference Radiation-thermal effects and processes in inorganic materials which were conducted on October 2-10, 2010, in Tomsk. The reports deal with new developments of charged particles high-intensity beam sources, high-temperature metrology of high-current beams and work materials, radiation-thermal stimulated effects and processes in inorganic materials, physical basics of technological processes, radiation-thermal technologies and equipment for their realization, allied branches of science and technology, specifically, nanotechnologies [ru

  5. International laser safety standardization. From the European perspective with an emphasis on materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Schulmeister, K [Div. of Life Sciences, Dept. of Radiation Protection, Oesterreichisches Forschungszentrum Seibersdorf, 2444 Seibersdorf (Austria)

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations (IEC, ISO and EN). (author)

  6. International laser safety standardization. From the European perspective with an emphasis on materials processing

    International Nuclear Information System (INIS)

    Schulmeister, K.

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations IEC, ISO and EN). (author)

  7. Business Process Risk Management, Compliance and Internal Control: A Research Agenda

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.; Best, Peter; Green, Peter

    (COSO). Based on an inductive methodological approach using literature review and interviews with managers engaged in risk management and internal control projects, this paper identifies three main areas that currently have management attention. These are business process risk management, compliance......Integration of risk management and management control is emerging as an important area in the wake of the Sarbanes-Oxley Act and with ongoing development of frameworks such as the Enterprise Risk Management (ERM) framework from the Committee of Sponsoring Organizations of the Treadway Commission...... management and internal control development. This paper discusses these areas and identifies a series of research questions regarding these critical issues....

  8. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    Science.gov (United States)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  9. Improving magnetosphere in situ observations using solar sails

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter; Schiff, Conrad; Williams, Trevor

    2018-01-01

    Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA's Magnetospheric Multi-Scale mission.

  10. On the significance of magnetospheric research for progress in astrophysics

    International Nuclear Information System (INIS)

    Faelthammar, C-G.; Akasofu, S-I.; Alfen, H.

    1978-04-01

    Recent discoveries by means of in situ measurements have led to a substantial revision of our picture of the magnetosphere and parts of the heliosphere. This concerns such essential aspects as the character and distribution of electric fields and currents, the ways in which charged particles are energized, and the chemical composition of the magnetospheric plasma. This revision reflects the fact that even in fundamental respects, real cosmical plasmas behave in different ways than predicted by the idealized models that have traditionally been used in magnetospheric physics as well as in astrophysics. The new understanding of the general properties of cosmical plasma that has been, and continues to be, provided by in situ measurements gives us a much improved basis on which to interpret astrophysical observations

  11. Supply chain process collaboration and Internet utilization: an international perspective of business to business relationships

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Valadares de Oliveira

    2015-01-01

    Full Text Available This paper compiles the findings of an international study which primary objective was to investigate the relationships between Internet utilization in business-to-business relationships, collaborative efforts and their impact over supplier and customer-oriented processes performance. It highlights the Internet as an important enhancer of collaboration in supply chains and addresses the effects of such efforts on companies’ overall performance. As a conclusive-descriptive and quantitative study, data from a survey of 788 companies from the USA, China, Canada, United Kingdom, and Brazil were analyzed with the use of descriptive statistics, reliability evaluation of the research model’s internal scales, path analysis and structural equation modeling to evaluate supply chain processes collaboration, both up- and down-stream. Internet utilization in supplier and customer-oriented processes was found positively related to collaborative practices in business-to-business relationships. Collaborative practices in supplier and customer-oriented processes, in turn, showed potential effects on performance. Also, supplier-oriented processes performance was found positively associated with customer-oriented process performance. Both internet use and collaborative practices are even more important in a high-context country like Brazil. The paper helps clarify the impact of internet use on business-to-business collaborative relationships. In this sense, practitioners can take this impact to redraw the organizational landscape and business processes amongst supply chain participants.

  12. Trans individuals' facilitative coping: An analysis of internal and external processes.

    Science.gov (United States)

    Budge, Stephanie L; Chin, Mun Yuk; Minero, Laura P

    2017-01-01

    Existing research on trans individuals has primarily focused on their negative experiences and has disproportionately examined coming-out processes and identity development stages. Using a grounded theory approach, this qualitative study sought to examine facilitative coping processes among trans-identified individuals. Facilitative coping was operationalized as processes whereby individuals seek social support, learn new skills, change behaviors to positively adapt, and find alternative means to seek personal growth and acceptance. The sample included 15 participants who self-identified with a gender identity that was different from their assigned sex at birth. Results yielded a total of nine overarching themes: Accepting Support from Others, Actions to Increase Protection, Active Engagement Throughout the Transition Process, Actively Seeking Social Interactions, Engaging in Exploration, Internal Processes Leading to Self-Acceptance, Self-Efficacy, Shifts Leading to Embracing Change and Flexibility, and Utilization of Agency. Based on the analysis, a theoretical model emerged that highlighted the importance of internal and external coping processes in facilitating gender identity development and navigating stressors among trans individuals. Clinical implications focusing on how to implement facilitative coping processes are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. The importance of establishing an international network of tissue banks and regional tissue processing centers.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2014-03-01

    During the past four decades, many tissue banks have been established across the world with the aim of supplying sterilized tissues for clinical use and research purposes. Between 1972 and 2005, the International Atomic Energy Agency supported the establishment of more than sixty of these tissue banks in Latin America and the Caribbean, Asia and the Pacific, Africa and Eastern Europe; promoted the use of the ionizing radiation technique for the sterilization of the processed tissues; and encouraged cooperation between the established tissue banks during the implementation of its program on radiation and tissue banking at national, regional and international levels. Taking into account that several of the established tissue banks have gained a rich experience in the procurement, processing, sterilization, storage, and medical use of sterilized tissues, it is time now to strengthen further international and regional cooperation among interested tissue banks located in different countries. The purpose of this cooperation is to share the experience gained by these banks in the procurement, processing, sterilization, storage, and used of different types of tissues in certain medical treatments and research activities. This could be done through the establishment of a network of tissue banks and a limited number of regional tissue processing centers in different regions of the world.

  14. Some recent results from European sounding rocket and satellite observations of the hot magnetospheric plasma

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1979-03-01

    A brief summary of some recent results from European studies of the hot magnetospheric plasma is presented. The material is organized in four main sections: 1) Observations of keV auroral electrons. 2) Observation of the hot ion component of the magnetospheric plasma. 3) Sudden changes of the distribution of the hot plasma in the dayside magnetosphere. 4) Banded electron cyclotron harmonic instability in the magnetosphere - a first comparison of theory and experiment. (E.R.)

  15. A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2004-03-01

    Full Text Available We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001 survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992. The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV, we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence

  16. A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2004-03-01

    Full Text Available We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001 survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992. The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV, we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the

  17. Energy coupling function and solar wind-magnetosphere dynamo

    International Nuclear Information System (INIS)

    Kan, J.R.; Lee, L.C.

    1979-01-01

    The power delivered by the solar wind dynamo to the open magnetosphere is calculated based on the concept of field line reconnection, independent of the MHD steady reconnection theories. By recognizing a previously overlooked geometrical relationship between the reconnection electric field and the magnetic field, the calculated power is shown to be approximately proportional to the Akasofu-Perreault energy coupling function for the magnetospheric substorm. In addition to the polar cap potential, field line reconnection also gives rise to parallel electric fields on open field lines in the high-latitude cusp and the polar cap reions

  18. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  19. Movement of a charged particle beam in the Earth magnetosphere

    International Nuclear Information System (INIS)

    Veselovskij, I.S.

    1977-01-01

    The motion of a charged particle beam injected into the Earth magnetosphere in a dipole magnetic field was investigated. Examined were the simplest stationary distributions of particles. The evolution of the distribution function after pulse injection of the beam into the magnetosphere was studied. It was shown that the pulse shape depends on its starting duration. A long pulse spreads on the base and narrows on the flat top with the distance away from the point of injection. A short pulse spreads both on the base and along the height. The flat top is not present. An analytical expression for the pulse shape as a time function is given

  20. Energetic particle drift motions in the outer dayside magnetosphere

    International Nuclear Information System (INIS)

    Buck, R.M.

    1987-12-01

    Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B ''pockets'' in the geomagnetic field. Drift-shell branching caused by the minimum-B pockets is analyzed and interpreted in terms of an adiabatic shell branching and rejoining process. We examine the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field model. We find that shell branching annd rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. We determine the spatial extent of the stable trapping regions for the Choe-Beard model. We develop an adiabatic branching map methodology which completely identifies and describes the location of shell-branching points and the adiabatic trajectories of particles on branched shells, for any model field. We employ the map to develop synthetic pitch angle distributions near the dayside magnetopause by adiabatically transforming observed midnight distributions to the dayside. We find that outer dayside lines contain particles moving on branched and unbranched shells, giving rise to distinctive pitch angle distribution features. We find a good correlation between the pitch angles which mark the transition from branched to unbranched shells in the model, and the distinctive features of the OGO-5 distributions. In the morning sector, we observe large flux changes at critical pitch angles which correspond to B-pocket edges in the model. Measurements on inbound passes in the afternoon sector show first the adiabatic particle shadow, then the arrival of fluxes on rejoined shells, then fluxes on unbranced shells - in accord with model predictions. 204 refs., 138 figs., 2 tabs

  1. Levels-of-processing effect on internal source monitoring in schizophrenia.

    Science.gov (United States)

    Ragland, J Daniel; McCarthy, Erin; Bilker, Warren B; Brensinger, Colleen M; Valdez, Jeffrey; Kohler, Christian; Gur, Raquel E; Gur, Ruben C

    2006-05-01

    Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients' internal source-monitoring performance. Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a 'shallow' perceptual versus a 'deep' semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Providing a deep processing semantic encoding strategy significantly improved patients' recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reflect subtle problems in the relational binding of semantic information that are independent of strategic memory processes.

  2. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  3. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  4. Ayahuasca and the process of regulation in Brazil and internationally: implications and challenges.

    Science.gov (United States)

    Labate, Beatriz Caiuby; Feeney, Kevin

    2012-03-01

    This paper provides a summary and analysis of the regulation of ayahuasca in Brazil, from its prohibition in the mid-eighties to the recent adoption of CONAD's (Conselho Nacional de Políticas sobre Drogas) 2010 Resolution, which established a set of rules, norms and ethical principles to be applied to religious and ritual uses of ayahuasca. Brazil's regulatory process is used as a starting point to explore emerging international regulatory themes as various nations respond to the global expansion of the Santo Daime and UDV (União do Vegetal) ayahuasca religions. The text reviews the primary legislative and court documents, academic literature, as well as solicited expert opinions. Three prominent themes have emerged internationally. The first concerns the scope of international treaties regarding plant-based psychoactive substances, as well as the responsibilities of individual nations to adhere to said treaties. The second concerns the scope of religious liberty and how to determine religious legitimacy. The final theme addresses the potential dangers of ayahuasca to health and public safety. Over the past 20 years the Brazilian ayahuasca religions have established a global presence, with congregations in the USA, Canada, Japan, South Africa, Australia, and throughout Europe and Latin America. As a result, many nations are faced with the predicament of balancing the interests of these religious minorities with the international "war on drugs." The regulatory process applied in Brazil exemplifies a progressive approach, one which considered issues of anthropology and involved representatives of ayahuasca religions, and which provided a degree of deference to the principle of religious liberty. The Brazilian process has influenced judicial and administrative decisions internationally, and stands as a model worthy of further consideration. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Processes in the development of international specialist competencies and standards: the Sports Physiotherapy for All Project.

    Science.gov (United States)

    Bulley, Catherine; Donaghy, Marie

    2008-01-01

    In a world of rapidly developing knowledge it is important that professions describe their roles and capabilities. The need for a thorough description of sports physiotherapy was addressed through collaboration between the International Federation of Sports Physiotherapy (IFSP) and five European higher education institutions. This resulted in the Sports Physiotherapy for All Project, which has been successful in developing internationally accepted competencies and standards for sports physiotherapists. This article describes and reflects on the process to communicate useful lessons. A competency model was chosen to facilitate differentiation and communication of aspects of sports physiotherapy practice. Documentation relating to sports physiotherapy practice was collected from 16 countries and analysed thematically. A cut and paste method was used by a panel of experts to allocate themes to areas of practice within the competency model. Theme groups were used to select areas of practice for description in competency form. Standards were derived from competencies following in depth discussion with the expert panel, and triangulation with themes derived from international documentation. A rigorous process of international review and revision led to the final list of 11 competencies and related standards, both accepted by the IFSP. This work provides a foundation for the development of an audit toolkit to guide demonstration and evaluation of competencies and standards. This provides a foundation for targeted career development activities, appropriate provision of training opportunities, and quality enhancement. The experiences gained during this project can inform other health professions and their specialisms when embarking on a similar journey.

  6. Acceleration Processes in the Earth’s Magnetosphere.

    Science.gov (United States)

    1985-05-17

    Hada, T. and T. Terasawa, Nonlinear evolution of low frequency waves in the foreshock region of earth’s bow shock, American Geophysical Union...low-frequency waves in the earth’s foreshock , American Geophysical Union, San Francisco, December 1984. 14) Ogino, T., R.J. Walker and M. Ashour

  7. PREFACE: I International Scientific School Methods of Digital Image Processing in Optics and Photonics

    Science.gov (United States)

    Gurov, I. P.; Kozlov, S. A.

    2014-09-01

    The first international scientific school "Methods of Digital Image Processing in Optics and Photonics" was held with a view to develop cooperation between world-class experts, young scientists, students and post-graduate students, and to exchange information on the current status and directions of research in the field of digital image processing in optics and photonics. The International Scientific School was managed by: Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) - Saint Petersburg (Russia) Chernyshevsky Saratov State University - Saratov (Russia) National research nuclear University "MEPHI" (NRNU MEPhI) - Moscow (Russia) The school was held with the participation of the local chapters of Optical Society of America (OSA), the Society of Photo-Optical Instrumentation Engineers (SPIE) and IEEE Photonics Society. Further details, including topics, committees and conference photos are available in the PDF

  8. 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering

    CERN Document Server

    2017-01-01

    This volume presents selected papers from the 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering (ICMMPE 2016) which was held from 23rd to 24th November, 2016 in Kuala Lumpur, Malaysia. The proceedings discuss genuine problems of joining technologies that are heart of manufacturing sectors. It discusses the findings of experimental and numerical works from soldering, arc welding to solid state joining technology that faced by current industry. .

  9. Amnesty, Reconciliation and Reintegration: The International Community and the Rwandan Process

    Science.gov (United States)

    2008-05-22

    N., Harvey M. Weinstein , and Timothy Longman. "Trauma and PTSD Symptoms in Rwanda: Implications for Attitudes Toward Justice and Reconciliation...repairing the social fabric of the nation had to take place. The case shows how Rwanda overcame the negative impacts of the international community and...reintegration policies. Throughout the case there are four issues that prove integral to the AR2 process; the anthropology of Rwanda, its colonial

  10. Critical Internal Factors Influencing The Centralization Of Stock Procurement Processes In A South African Municipality

    OpenAIRE

    Zwelihle Wiseman Nzuza; Lawrence Mpele Lekhanya

    2014-01-01

    The purpose of this paper was threefold: 1) to examine the internal factors influencing centralization of stock procurement processes, 2) to assess the relationship between demographic factors and staff understanding of Information Communication Technology (ICT) with performance improvement, and 3) to examine the relationship between prevention of corruption with management commitment. A structured questionnaire was used to collect data from 82 members of staff from procurement division in a ...

  11. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  12. An analysis of viable financial negotiations processes and related internal controls for procurement in Pakistan

    OpenAIRE

    Rafique, Abdul B.; Malik, Muhammad W.; Salman, Muhammad

    2016-01-01

    MBA Professional Report Approved for public release; distribution is unlimited In Pakistan, the process of public procurement procedure standardization started in 2002 with the establishment of the Pakistan Public Procurement Regulatory Authority (PPRA), based on the 1994 United Nations Commission on International Trade Law (UNCITRAL) Model Law. PPRA rules allow four types of procurement procedures but limit the ability to conduct financial negotiations. PPRA rules are aimed at implemen...

  13. AMPS sciences objectives and philosophy. [Atmospheric, Magnetospheric and Plasmas-in-Space project on Spacelab

    Science.gov (United States)

    Schmerling, E. R.

    1975-01-01

    The Space Shuttle will open a new era in the exploration of earth's near-space environment, where the weight and power capabilities of Spacelab and the ability to use man in real time add important new features. The Atmospheric, Magnetospheric, and Plasmas-in-Space project (AMPS) is conceived of as a facility where flexible core instruments can be flown repeatedly to perform different observations and experiments. The twin thrusts of remote sensing of the atmosphere below 120 km and active experiments on the space plasma are the major themes. They have broader implications in increasing our understanding of plasma physics and of energy conversion processes elsewhere in the universe.

  14. Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects

    Science.gov (United States)

    Lyons, L. R.

    1987-01-01

    It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.

  15. Strategies for Enhancing Nonlinear Internal Model Control of pH Processes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiuping.; Rangaiah, G.P. [The National University of Singapore, Singapore (Singapore). Dept. of Chemical and Environmental Engineering

    1999-02-01

    Control of neutralization processes is very difficult due to nonlinear dynamics, different types of disturbances and modeling errors. The objective of the paper is to evaluate two strategies (augmented internal model control, AuIMC and adaptive internal model control, AdIMC) for enhancing pH control by nonlinear internal model control (NIMC). A NIMC controller is derived directly form input output linearization. The AuIMC is composed of NIMC and an additional loop through which the difference between the process and model outputs is fed back and added to the input of the controller. For the AdIMC, and adaptive law with two tuning parameters is proposed for estimating the unknown parameter. Both AuIMC and AdIMC are extensively tested via simulation for pH neutralization. The theoretical and simulation results show that both the proposed strategies can reduce the effect of modeling errors and disturbances, and thereby enhance the performance of NIMC for pH processes. (author)

  16. [Internal audit in medical laboratory: what means of control for an effective audit process?].

    Science.gov (United States)

    Garcia-Hejl, Carine; Chianéa, Denis; Dedome, Emmanuel; Sanmartin, Nancy; Bugier, Sarah; Linard, Cyril; Foissaud, Vincent; Vest, Philippe

    2013-01-01

    To prepare the French Accreditation Committee (COFRAC) visit for initial certification of our medical laboratory, our direction evaluated its quality management system (QMS) and all its technical activities. This evaluation was performed owing an internal audit. This audit was outsourced. Auditors had an expertise in audit, a whole knowledge of biological standards and were independent. Several nonconformities were identified at that time, including a lack of control of several steps of the internal audit process. Hence, necessary corrective actions were taken in order to meet the requirements of standards, in particular, the formalization of all stages, from the audit program, to the implementation, review and follow-up of the corrective actions taken, and also the implementation of the resources needed to carry out audits in a pre-established timing. To ensure an optimum control of each step, the main concepts of risk management were applied: process approach, root cause analysis, effects and criticality analysis (FMECA). After a critical analysis of our practices, this methodology allowed us to define our "internal audit" process, then to formalize it and to follow it up, with a whole documentary system.

  17. Marital Processes, Neuroticism, and Stress as Risk Factors for Internalizing Symptoms.

    Science.gov (United States)

    Brock, Rebecca L; Lawrence, Erika

    2014-03-01

    Marital discord has a robust association with depression, yet it is rarely considered within broader etiological frameworks of psychopathology. Further, little is known about the particular aspects of relationships that have the greatest impact on psychopathology. The purpose of the present study was to test a novel conceptual framework including neuroticism, specific relationship processes (conflict management, partner support, emotional intimacy, and distribution of power and control), and stress as predictors of internalizing symptoms (depression and anxiety). Questionnaire and interview data were collected from 103 husbands and wives 5 times over the first 7 years of marriage. Results suggest that neuroticism (an expression of the underlying vulnerability for internalizing disorders) contributes to symptoms primarily through high levels of non-marital stress, an imbalance of power/control in one's marriage, and poor partner support for husbands, and through greater emotional disengagement for wives. Marital processes, neuroticism, and stress work together to significantly predict internalizing symptoms, demonstrating the need to routinely consider dyadic processes in etiological models of individual psychopathology. Specific recommendations for adapting and implementing couple interventions to prevent and treat individual psychopathology are discussed.

  18. 9th International Conference on Robotics, Vision, Signal Processing & Power Applications

    CERN Document Server

    Iqbal, Shahid; Teoh, Soo; Mustaffa, Mohd

    2017-01-01

     The proceeding is a collection of research papers presented, at the 9th International Conference on Robotics, Vision, Signal Processing & Power Applications (ROVISP 2016), by researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe to present their research results and development activities for oral or poster presentations. The topics of interest are as follows but are not limited to:   • Robotics, Control, Mechatronics and Automation • Vision, Image, and Signal Processing • Artificial Intelligence and Computer Applications • Electronic Design and Applications • Telecommunication Systems and Applications • Power System and Industrial Applications • Engineering Education.

  19. 8th International Conference on Robotic, Vision, Signal Processing & Power Applications

    CERN Document Server

    Mustaffa, Mohd

    2014-01-01

    The proceeding is a collection of research papers presented, at the 8th International Conference on Robotics, Vision, Signal Processing and Power Applications (ROVISP 2013), by researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe. The topics of interest are as follows but are not limited to: • Robotics, Control, Mechatronics and Automation • Vision, Image, and Signal Processing • Artificial Intelligence and Computer Applications • Electronic Design and Applications • Telecommunication Systems and Applications • Power System and Industrial Applications  

  20. Information Processing and Firm-Internal Environment Contingencies: Performance Impact on Global New Product Development

    DEFF Research Database (Denmark)

    Kleinschmidt, Elko; de Brentani, Ulrike; Salomo, Søren

    2010-01-01

    , functionally, geographically and culturally. To this end, an IT-communication strength is essential, one that is nested in an internal organizational environment that ensures its effective functioning. Using organizational information processing (OIP) theory as a framework, superior global NPD program......Innovation in its essence is an information processing activity. Thus, a major factor impacting the success of new product development (NPD) programs, especially those responding to global markets, is the firm's ability to access, share and apply NPD information, which is often widely dispersed...

  1. International Conference on Materials, Processing and Product Engineering 2015 (MPPE2015)

    International Nuclear Information System (INIS)

    Eck, S; Ebner, R; Ludwig, A

    2016-01-01

    The Materials Center Leoben Forschung GmbH (MCL) and the Austrian Society for Metallurgy and Materials (ASMET) have jointly organized the 'First International Conference on Materials, Processing and Product Engineering - MPPE' held in the Congress Center of Leoben from Nov. 3 rd to 5 th , 2015. The main topic of the conference was to present the state of the art in fundamental knowledge and technological expertise enabling and stimulating the development of knowledge based innovations across the entire product value chain starting from the material synthesis, proceeding with the processing of products and concluding with their in-service behaviour until the end of the product life time. Hence, the International Conference on Materials, Processing and Product Engineering MPPE 2015 focused on the core regions of industrial production chains, covering topics such as • Development and characterization of materials; • Materials synthesis and processing; • Dimensioning of components including integrated materials and process modelling; • Behaviour of materials and components during service. The scientific and technological goal was to present the state of the art of theoretical, experimental and numerical techniques and their combinations that are capable of improving the competitiveness of modern production facilities. (paper)

  2. The continuous improvement of the Internal Audits Process assurance the effective compliance of ISO 17025:2005 requirements

    Directory of Open Access Journals (Sweden)

    Carina Di Candia

    2011-04-01

    Full Text Available Continuous Improvement Process started in LATU in 1996. The Impact was so important that covered all the organization. Nowadays LATU has almost all its processes certificated and most than 200 tests accredited. The Internal Audits process began in 1996 with an annual planning for all the laboratory's areas. For the UKAS accreditation in 1998, LATU improves the internal audits planning auditing not only the system but also the tests. In 1999 LATU was certified by SQS and accredited the calibrations by DKD. Since 2004 internal audits was managed as a process; in order to that was defined objectives, indicators, achievements and the necessary resources of the internal audit programme and process. The internal audit programme has a pre defined tri annual planning that includes all the laboratory areas. The results of the measures obtained till now demonstrate the improvement in the internal audit and all the laboratory processes. Auditors final staff increase their technical competence. As a consequence of managing the internal audits as a process, the internal communication has an important relevance to feedback the continuous improvement of the laboratory. This was evidence in a decrease of the documentaries non conformities, improvement of the calibrations and maintenance programme, optimization trainings and qualifications of the staff, common internal trainings, creation of a quality assurance team to improvement the tests control, improvement in the relationship with the support areas. Most of this requirements are included in ISO 17025:2005; that assurance the effective compliance of this standard.

  3. Terrestrial magnetospheric imaging: Numerical modeling of low energy neutral atoms

    International Nuclear Information System (INIS)

    Moore, K.R.; Funsten, H.O.; McComas, D.J.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Imaging of the terrestrial magnetosphere can be performed by detection of low energy neutral atoms (LENAs) that are produced by charge exchange between magnetospheric plasma ions and cold neutral atoms of the Earth's geocorona. As a result of recent instrumentation advances it is now feasible to make energy-resolved measurements of LENAs from less than I key to greater than 30 key. To model expected LENA fluxes at a spacecraft, we initially used a simplistic, spherically symmetric magnetospheric plasma model. 6 We now present improved calculations of both hydrogen and oxygen line-of-sight LENA fluxes expected on orbit for various plasma regimes as predicted by the Rice University Magnetospheric Specification Model. We also estimate expected image count rates based on realistic instrument geometric factors, energy passbands, and image accumulation intervals. The results indicate that presently proposed LENA instruments are capable of imaging of storm time ring current and potentially even quiet time ring current fluxes, and that phenomena such as ion injections from the tail and subsequent drifts toward the dayside magnetopause may also be deduced

  4. Hydromagnetic Waves in the Magnetosphere and the Ionosphere

    CERN Document Server

    Alperovich, Leonid S

    2007-01-01

    The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on Earth and in Space. These are so-called geomagnetic variations or pulsations. Alfvén's discovery related to the influence of the strong magnetic field on the conducting fluids (magnetohydrodynamics) led to development of the concept that the ULF-waves are magnetospheric magnetohydrodynamic (MHD)-waves. MHD-waves at their propagation gather information about the magnetosphere, ionosphere, and the ground. There are two applied aspects based on using the ULF electromagnetic oscillations. The first one is the ground-based diagnostics of the magnetosphere. This is an attempt to monitor in the real time the magnetosphere size, distance to the last closed field-lines, distribution of the cold plasma, etc. The second one is the deep electromagnetic sounding of the Earth. The basis for these studies is the capability of any electromagnetic wave to penetrate a conductor to a finite depth. The ULF-waves can reach the depth of a few hundred ...

  5. Energetic charged particles in the magnetosphere of Neptune

    International Nuclear Information System (INIS)

    Stone, E.C.; Cummings, A.C.; Looper, M.D.; Selesnick, R.S.; Lal, N.; McDonald, F.B.; Trainor, J.H.; Chenette, D.L.

    1989-01-01

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [approx-lt 1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities at maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet

  6. Magnetospheric Control of Density and Composition in the Polar Ionosphere

    Science.gov (United States)

    2015-06-24

    verified calculation of three-dimensional plasma continuity at the geomagnetic pole [Dahlgren et al., 2012a; Perry et al., 2015; Semeter et al., 2014...variations in a camera system. This data flow describes a forward model, which may be reversed to reconstruct the magnetospheric drivers, in this case

  7. Magnetospheric and atmospheric physics at the University of Natal

    International Nuclear Information System (INIS)

    Walker, A.D.M.

    1982-01-01

    A historical outline of geophysical work done at the University of Natal from 1938-1982 is given. Mention is also made of experimental work concerning whistlers and VLF, low-light level TV and geomagnetic pulsations. Current work on the magnetosphere, namely plasma convection in plasmasphere, auroral features, geomagnetic pulsations and the measuring of plasma properties is discussed

  8. A new method of diagnostics for the magnetospheric plasma

    International Nuclear Information System (INIS)

    Etcheto, Jacqueline; Petit, Michel

    1977-01-01

    A new diagnostic technique for magnetospheric plasma, based on in situ excitation of the plasma resonances, has been used for the first time on board the Geos satellite. The preliminary results are very gratifying: electron density and magnetic field intensity are derived reliably and accurately from the resonances observed; hopefully, temperature and electric field will be deduced from the data as well [fr

  9. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Petrova, S. A.

    2013-01-01

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  10. Quasiperiodic ULF-pulsations in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Kleindienst

    2009-02-01

    Full Text Available Recent magnetic field investigations made onboard the Cassini spacecraft in the magnetosphere of Saturn show the existence of a variety of ultra low frequency plasma waves. Their frequencies suggest that they are presumably not eigenoscillations of the entire magnetospheric system, but excitations confined to selected regions of the magnetosphere. While the main magnetic field of Saturn shows a distinct large scale modulation of approximately 2 nT with a periodicity close to Saturn's rotation period, these ULF pulsations are less obvious superimposed oscillations with an amplitude generally not larger than 3 nT and show a package-like structure. We have analyzed these wave packages and found that they are correlated to a certain extent with the large scale modulation of the main magnetic field. The spatial localization of the ULF wave activity is represented with respect to local time and Kronographic coordinates. For this purpose we introduce a method to correct the Kronographic longitude with respect to a rotation period different from its IAU definition. The observed wave packages occur in all magnetospheric regions independent of local time, elevation, or radial distance. Independent of the longitude correction applied the wave packages do not occur in an accentuated Kronographic longitude range, which implies that the waves are not excited or confined in the same selected longitude ranges at all times or that their lifetime leads to a variable phase with respect to the longitudes where they have been exited.

  11. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  12. Coupling between the solar wind and the magnetosphere: CDAW 6

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Slavin, J.A.; Kamide, Y.; Zwickl, R.D.; King, J.H.; Russell, C.T.

    1985-01-01

    Interplanetary conditions (VB 3 , V 2 B 3 and epsilon-c) are derived from ISEE 3 and IMP 8 field and plasma data for the two Coordinated Data Analysis Workshop (CDAW 6) intervals of study and are compared with various aspects of geomagnetic activity (AE, U/sub T/, derived Joule heating, electric potential, westward eastward and total electrojet currents). The March 22 (day 81), 1979, interval contains two distinct periods of geomagnetic activity, both highly correlated with interplanetary features. The start of the first active interval is caused by a southward turning of the interplanetary magnetic field (IMF) associated with the passage of a heliospheric current sheet. The start of the second interval is related to a second IMF southward turning. The geomagnetic activity intensifies when the second crossing of the current sheet, and a ram pressure increase of 4 to 6, impinges on the magnetosphere. Because the interplanetary parameters VB 3 , V 2 B 3 and epsilon-c decrease across the discontinuity, it is concluded that either additional energy is injected into the magnetosphere from the conversion of ram energy into magnetospheric substorm energy or some feature associated with current sheet crossing ''triggers'' the release of previously stored magnetosphere/magnetotail energy. It is not possible at this time to distinguish between these two possibilities. For day 81, VB 3 , V 2 4 3 , and epsilon-c were highly correlated with AL, AE, westward and equivalent currents with coefficients ranging from approx.0.75 to 0.90

  13. Magnetosonic resonance in a dipole-like magnetosphere

    Directory of Open Access Journals (Sweden)

    A. S. Leonovich

    2006-09-01

    Full Text Available A theory of resonant conversion of fast magnetosonic (FMS waves into slow magnetosonic (SMS oscillations in a magnetosphere with dipole-like magnetic field has been constructed. Monochromatic FMS waves are shown to drive standing (along magnetic field lines SMS oscillations, narrowly localized across magnetic shells. The longitudinal and transverse structures, as well as spectrum of resonant SMS waves are determined. Frequencies of fundamental harmonics of standing SMS waves lie in the range of 0.1–1 mHz, and are about two orders of magnitude lower than frequencies of similar Alfvén field line resonance harmonics. This difference makes an effective interaction between these MHD modes impossible. The amplitude of SMS oscillations rapidly decreases along the field lines from the magnetospheric equator towards the ionosphere. In this context, magnetospheric SMS oscillations cannot be observed on the ground, and the ionosphere does not play any role either in their generation or dissipation. The theory developed can be used to interpret the occurrence of compressional Pc5 waves in a quiet magnetosphere with a weak ring current.

  14. Laboratory simulation of energetic flows of magnetospheric planetary plasma

    International Nuclear Information System (INIS)

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Boyarintsev, E L; Zakharov, Yu P; Prokopov, P A; Ponomarenko, A G

    2017-01-01

    Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere. (paper)

  15. A note on the ring current in Saturn’s magnetosphere: Comparison of magnetic data obtained during the Pioneer-11 and Voyager-1 and -2 fly-bys

    Directory of Open Access Journals (Sweden)

    E. J. Bunce

    2003-03-01

    Full Text Available We examine the residual (measured minus internal magnetic field vectors observed in Saturn’s magnetosphere during the Pioneer-11 fly-by in 1979, and compare them with those observed during the Voyager-1 and -2 fly-bys in 1980 and 1981. We show for the first time that a ring current system was present within the magnetosphere during the Pioneer-11 encounter, which was qualitatively similar to those present during the Voyager fly-bys. The analysis also shows, however, that the ring current was located closer to the planet during the Pioneer-11 encounter than during the comparable Voyager-1 fly-by, reflecting the more com-pressed nature of the magnetosphere at the time. The residual field vectors have been fit using an adaptation of the current system proposed for Jupiter by Connerney et al. (1981a. A model that provides a reasonably good fit to the Pioneer-11 Saturn data extends radially between 6.5 and 12.5 RS (compared with a noon-sector magnetopause distance of 17 RS, has a north-south extent of 4 RS, and carries a total current of 9.6 MA. A corresponding model that provides a qualitatively similar fit to the Voyager data, determined previously by Connerney et al. (1983, extends radially between 8 and 15.5 RS (compared with a noon-sector magnetopause distance for Voyager-1 of 23–24 RS, has a north-south extent of 6 RS, and carries a total current of 11.5 MA.Key words. Magnetospheric physics (current systems, magnetospheric configuration and dynamics, planetary magnetospheres

  16. Concepts in context: Processing mental state concepts with internal or external focus involves different neural systems

    Science.gov (United States)

    Oosterwijk, Suzanne; Mackey, Scott; Wilson-Mendenhall, Christine; Winkielman, Piotr; Paulus, Martin P.

    2015-01-01

    According to embodied cognition theories concepts are contextually-situated and grounded in neural systems that produce experiential states. This view predicts that processing mental state concepts recruits neural regions associated with different aspects of experience depending on the context in which people understand a concept. This neuroimaging study tested this prediction using a set of sentences that described emotional (e.g., fear, joy) and non-emotional (e.g., thinking, hunger) mental states with internal focus (i.e. focusing on bodily sensations and introspection) or external focus (i.e. focusing on expression and action). Consistent with our predictions, data suggested that the inferior frontal gyrus, a region associated with action representation, was engaged more by external than internal sentences. By contrast, the ventromedial prefrontal cortex, a region associated with the generation of internal states, was engaged more by internal emotion sentences than external sentence categories. Similar patterns emerged when we examined the relationship between neural activity and independent ratings of sentence focus. Furthermore, ratings of emotion were associated with activation in the medial prefrontal cortex, whereas ratings of activity were associated with activation in the inferior frontal gyrus. These results suggest that mental state concepts are represented in a dynamic way, using context-relevant interoceptive and sensorimotor resources. PMID:25748274

  17. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  18. MCWASP XIV: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes

    International Nuclear Information System (INIS)

    Yasuda, H

    2015-01-01

    The current volume represents contributed papers of the proceedings of the 14th international conference on ''Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP XIV)'', Yumebutai International Conference Center, Awaji island, Hyogo, Japan on 21 – 26 June, 2016. The first conference of the series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up in 1980, and this is the 14th conference. The participants are more than 100 scientists from industry and academia, coming from 19 countries. In the conference, we have 5 invited, 70 oral and 31 poster presentations on different aspects of the modeling. The conference deals with various casting processes (Ingot / shape casting, continuous casting, direct chill casting and welding), fundamental phenomena (nucleation and growth, dendritic growth, eutectic growth, micro-, meso- and macrostructure formation and defect formation), coupling problems (electromagnetic interactions, application of ultrasonic wave), development of experimental / computational methods and so on. This volume presents the cutting-edge research in the modeling of casting, welding and solidification processes. I would like to thank MAGMA Giessereitechnologie GmbH, Germany and SCSK Corporation, Japan for supporting the publication of contributed papers. Hideyuki Yasuda Conference Chairman Department of Materials Science and Engineering, Kyoto University Japan (preface)

  19. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Science.gov (United States)

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples).

  20. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Directory of Open Access Journals (Sweden)

    Andrew T Fields

    Full Text Available There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias. Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins". Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples.

  1. Averaging, not internal noise, limits the development of coherent motion processing

    Directory of Open Access Journals (Sweden)

    Catherine Manning

    2014-10-01

    Full Text Available The development of motion processing is a critical part of visual development, allowing children to interact with moving objects and navigate within a dynamic environment. However, global motion processing, which requires pooling motion information across space, develops late, reaching adult-like levels only by mid-to-late childhood. The reasons underlying this protracted development are not yet fully understood. In this study, we sought to determine whether the development of motion coherence sensitivity is limited by internal noise (i.e., imprecision in estimating the directions of individual elements and/or global pooling across local estimates. To this end, we presented equivalent noise direction discrimination tasks and motion coherence tasks at both slow (1.5°/s and fast (6°/s speeds to children aged 5, 7, 9 and 11 years, and adults. We show that, as children get older, their levels of internal noise reduce, and they are able to average across more local motion estimates. Regression analyses indicated, however, that age-related improvements in coherent motion perception are driven solely by improvements in averaging and not by reductions in internal noise. Our results suggest that the development of coherent motion sensitivity is primarily limited by developmental changes within brain regions involved in integrating motion signals (e.g., MT/V5.

  2. The novel programmable riometer for in-depth ionospheric and magnetospheric observations (PRIAMOS) using direct sampling DSP techniques

    OpenAIRE

    Dekoulis, G.; Honary, F.

    2005-01-01

    This paper describes the feasibility study and simulation results for the unique multi-frequency, multi-bandwidth, Programmable Riometer for in-depth Ionospheric And Magnetospheric ObservationS (PRIAMOS) based on direct sampling digital signal processing (DSP) techniques. This novel architecture is based on sampling the cosmic noise wavefront at the antenna. It eliminates the usage of any intermediate frequency (IF) mixer stages (-6 dB) and the noise balancing technique (-3 dB), providing a m...

  3. Macroscopic ion acceleration associated with the formation of the ring current in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Mauk, B.H.; Meng, C.I.

    1986-01-01

    As an illustration of the operation of macroscopic ion acceleration processes within the earth's magnetosphere, the paper reviews processes thought to be associated with the formation of the earth's ring-current populations. Arguing that the process of global, quasi-curl-free convection cannot explain particle characteristics observed in the middle (geosynchronous) to outer regions, it is concluded that the transport and energization of the seed populations that give rise to the ring-current populations come about in two distinct stages involving distinct processes. Near and outside the geostationary region, the energization and transport are always associated with highly impulsive and relatively localized processes driven by inductive electric fields. The subsequent adiabatic earthward transport is driven principally by enhanced, curl-free global convection fields. 58 references

  4. The aurora and the magnetosphere - The Chapman Memorial Lecture. [dynamo theory development, 1600-present

    Science.gov (United States)

    Akasofu, S.-I.

    1974-01-01

    Review of recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. It is shown that a number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. Also, magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field have been identified. The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.

  5. Analysis and prediction of dimensions and cost of laser micro-machining internal channel fabrication process

    Directory of Open Access Journals (Sweden)

    Brabazon D.

    2010-06-01

    Full Text Available This paper presents the utilisation of Response Surface Methodology (RSM as the prediction tool for the laser micro-machining process. Laser internal microchannels machined using pulsed Nd:YVO4 laser in polycarbonate were investigated. The experiments were carried out according to 33 factorial Design of Experiment (DoE. In this work the three input process set as control parameters were laser power, P; pulse repetition frequency, PRF; and sample translation speed, U. Measured responses were the channel width and the micro-machining operating cost per metre of produced microchannels. The responses were sufficiently predicted within the set micro-machining parameters limits. Two factorial interaction (2FI and quadratic polynomial regression equations for both responses were constructed. It is proposed that the developed prediction equations can be used to find locally optimal micro-machining process parameters under experimental and operational conditions.

  6. Microsoft excel's automatic data processing and diagram drawing of RIA internal quality control parameters

    International Nuclear Information System (INIS)

    Zeng Pingfan; Liu Guoqiang

    2006-01-01

    We did automatic data processing and diagram drawing of various parameters of RIA' s internal quality control (IQC)by the use of Microsoft Excel (ME). By use of AVERAGE and STDEV of ME, we got x-bar, s and CV%. With pearson, we got the serum quality control coefficients (r). Inputing the original data to diagram's self-definition item, the diagram was drawn automatically. By the use of logic judging, we got the quality control judging results with the status, timing and data of various quality control parameters. For the past four years, the ME data processing and diagram drawing as well as quality control judging have been showed to be accurate, convenient and correct. It was quick and easy to manage and the automatic computer processing of RIA's IQC was realized. Conclusion: the method is applicable to all types of RIA' s IQC. (authors)

  7. Study of the spheronization process of glass particles by the gravitational falling process for internal selective radiotherapy

    International Nuclear Information System (INIS)

    Barros Filho, E.C.; Martinelli, J.R.; Sene, F.F.

    2011-01-01

    The internal selective radiotherapy is an alternative to treat hepatocellular carcinoma. Glass microspheres containing β - emitter radionuclide are introduced in the liver, and they are housed preferentially in the region where the cancer cells are located. The microspheres are trapped in the arterioles which feed the tumors, and the β - particles annihilate the cancer cells. The glass particles must be spherical to avoid unnecessary bleeding, and the particle size must be restricted to a range which optimizes the blocking effect and avoid the migration to other parts of the human body. The particle size distribution of microspheres is not easily predicted since the variation of the aspect ratio and the presence of agglomerates can influence the resulting particle size distribution. In the present work, the spheronization process to obtain microspheres from irregular shape glass particles with suitable diameter and shape for radiotherapy treatment is studied. (author)

  8. The Process for the Formulation of the International Telehealth Position Statement for Occupational Therapy

    Science.gov (United States)

    JACOBS, KAREN; CASON, JANA; MCCULLOUGH, ANN

    2015-01-01

    The World Federation of Occupational Therapists (WFOT) consists of 84 member organizations representing over 420,000 occupational therapists internationally (WFOT, 2014). In 2014, WFOT published the WFOT Telehealth Position Statement on the use of telehealth in occupational therapy. The process for the formulation of the official document involved reviewing WFOT member organizations’ telehealth position statements and data collected from a survey sent to member organizations’ delegates in April 2014. Qualitative data from 39 countries yielded factors to consider in five key areas: licensure/registration requirements, the cost of technology, privacy and security, reimbursement/payment models, and other issues (e.g., need for collaboration/transfer of knowledge, client selection, provider competencies, standard of care). The WFOT Telehealth Position Statement addressed each of these areas. The collaborative effort resulting in the development of the WFOT Telehealth Position Statement serves as a model for other international organizations. PMID:27563380

  9. Application of uti possidetis juris principle in the process of determination of international borders

    Directory of Open Access Journals (Sweden)

    Tubić Bojan

    2011-01-01

    Full Text Available Uti possidetis juris principle was basic rule in determining international borders in the period of decolonization. It was applied in Latin America and Africa, but also at the end of 20th century in the processes of dissolution of USSR, SFRY and Czechoslovakia. Uti possidetis juris principle is based on the presumption that former colonial administrative borders kept stability and territorial integrity. It was undoubtedly connected with the right of self-determination. It keeps the existing borders by preventing secession, but in that way it does not solve the problem of badly determined and disputed borders. The unclear foundations on which the borders were determined can be a source of chaos and indisputes, which was shown n some cases before the International Court of Justice. The dominant theory is that uti possidetis juris principle should be applied with certain limitations, in the period after decolonization as a basis for preserving the territorial integrity of postcolonial states.

  10. Processing covariance data for the resonance region - International Evaluation Co-operation, V. 20

    International Nuclear Information System (INIS)

    Dunn, M.; Leal, L.C.; Wiarda, D.; Jacqmin, R.; Kodeli, I.; ); Chiba, G.; Shibata, K.; Ishikawa, M.; Oh, S.; Nikolaev, M.; Kahler, A.C. Jr.; Kawano, T.; Arcilla, R.

    2014-01-01

    A Working Party on International Evaluation Co-operation (WPEC) was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. Requirements for experimental data resulting from this activity are compiled. The working party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The parties to the project are ENDF (United States), JEF/EFF (NEA Data Bank member countries), and JENDL (Japan). Cooperation with evaluation projects of non- OECD countries is organized through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). This report summarizes the work performed by WPEC Subgroup 28 (SG28) on issues pertinent to the methodology used to process covariance data in the resonance region. Specifically, SG28 has developed the requisite processing methods needed to process resonance parameter covariance data, generate cross-section covariance data files and demonstrate the use of covariance data in radiation transport analyses. The work performed by SG28 and documented in this report addresses the following tasks: - Produce resonance parameter covariance evaluation for 235 U; - Develop resonance parameter covariance processing methods in widely used processing systems (e.g., NJOY, AMPX, etc.); - Use the updated cross-section processing systems to generate covariance data files for use in radiation transport analyses. In addition, use sensitivity/uncertainty (S/U) analyses to demonstrate the propagation of the covariance data in specific radiation transport applications

  11. Plasma in Saturn's nightside magnetosphere and the implications for global circulation

    International Nuclear Information System (INIS)

    Mcandrews, Hazel J.; Thomsen, Michelle F.; Wilson, Robert J.; Henderson, Michael G.; Tokar, Robert L.; Arridge, Chris S.; Jackman, Caitriona M.; Khurana, Krishan K.; Sittler, Edward C.; Coates, Andrew J.; Dougherty, Michele K.

    2008-01-01

    We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50 RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low density population. An example of such a low-density interval containing hot electrons with a dipolarised, swept-forward field configuration is described and strongly suggests that reconnection must have occurred planetward of Cassini. Flux tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by IMS, the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass loss and subsequently return to the inner magnetosphere significantly depleted of plasma.

  12. Plasma in Saturn's nightside magnetosphere and the implications for global circulation

    Energy Technology Data Exchange (ETDEWEB)

    Mcandrews, Hazel J [Los Alamos National Laboratory; Wilson, R J [Los Alamos National Laboratory; Henderson, M G [Los Alamos National Laboratory; Tokar, R L [Los Alamos National Laboratory; Jackman, C M [IMPERIAL COLLEGE; Khurana, K K [UNIV OF CAL; Sittler, E C [NASA/GSFC; Coates, A J [MSSL; Dougherty, M K [IMPERIAL COLLEGE

    2009-01-01

    We present a bulk ion flow map from the nightside equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50 R{sub s}. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low density population. Flux tube content is conserved below a limIt defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass release are evaluated using measured densities, angular velocities and magnetic field strength, The results suggest that for the relatively dense ion populations detectable by IMS, the condition for flux-tube breakage has not yet been exceeded, However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass loss and subsequently return to the inner magnetosphere significantly depleted of plasma.

  13. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  14. Sustaining a Mature Risk Management Process: Ensuring the International Space Station for a Vibrant Future

    Science.gov (United States)

    Raftery, Michael; Carter-Journet, Katrina

    2013-01-01

    The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.

  15. Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their identification on closed equatorial field lines

    Directory of Open Access Journals (Sweden)

    S. V. Badman

    2007-05-01

    Full Text Available We consider the contribution of the solar wind-driven Dungey-cycle to flux transport in Jupiter's and Saturn's magnetospheres, the associated voltages being based on estimates of the magnetopause reconnection rates recently derived from observations of the interplanetary medium in the vicinity of the corresponding planetary orbits. At Jupiter, the reconnection voltages are estimated to be ~150 kV during several-day weak-field rarefaction regions, increasing to ~1 MV during few-day strong-field compression regions. The corresponding values at Saturn are ~25 kV for rarefaction regions, increasing to ~150 kV for compressions. These values are compared with the voltages associated with the flows driven by planetary rotation. Estimates of the rotational flux transport in the "middle" and "outer" magnetosphere regions are shown to yield voltages of several MV and several hundred kV at Jupiter and Saturn respectively, thus being of the same order as the estimated peak Dungey-cycle voltages. We conclude that under such circumstances the Dungey-cycle "return" flow will make a significant contribution to the flux transport in the outer magnetospheric regions. The "return" Dungey-cycle flows are then expected to form layers which are a few planetary radii wide inside the dawn and morning magnetopause. In the absence of significant cross-field plasma diffusion, these layers will be characterized by the presence of hot light ions originating from either the planetary ionosphere or the solar wind, while the inner layers associated with the Vasyliunas-cycle and middle magnetosphere transport will be dominated by hot heavy ions originating from internal moon/ring plasma sources. The temperature of these ions is estimated to be of the order of a few keV at Saturn and a few tens of keV at Jupiter, in both layers.

  16. National cultural values and the evolution of process and outcome discrepancies in international strategic alliances

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Nti, Kofi O

    2004-01-01

    The article assesses the role played by national cultural values in shaping the evolution of international strategic alliances. The authors build on a systems dynamic model of alliance evolution in which the developmental path of an alliance depends on how the partners manage process and outcome...... discrepancies that may emerge during the course of an alliance. They argue that national culture affects alliance evolution by influencing partners sensitivity to discrepancy detection , shaping the nature of attributions they make, and by affecting the partners reactions to discrepancies. They focus...

  17. Journal of Environmental Radioactivity special issue: II International Conference on Radioecological Concentration Processes. (50 years later).

    Science.gov (United States)

    Garcia-Tenorio, Rafael; Holm, Elis

    2018-06-01

    An international conference on Radioecological Concentration Processes was held in Seville, Spain, 6-9 November 2016 at the Centro Nacional de Aceleradores. It was attended by 160 participants from 35 different countries. This was the 2nd conference on this item since 1966, 50 years ago. The conference covered aspects of radiological important radionuclides on terrestrial, marine and freshwater environments and has allowed obtaining a clear picture of the status of the Radioecology as a consolidated discipline in the 21st century. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Relationship marketing and disadvantaged health care segments: using internal marketing to improve the vocational rehabilitation process.

    Science.gov (United States)

    Peltier, James W; Scovotti, Carol

    2004-01-01

    The purpose of vocational rehabilitation (VR) is to provide disabled individuals with the training and support services needed to assimilate into the workforce. This study incorporates concepts developed in the relationship marketing and internal marketing literature to determine the factors that influence overall satisfaction of vocational training services. Results underscore the importance of social and structural bonds that develop among the multiple stakeholders involved in the VR process. Satisfaction is also influenced by the design and equipment used in the facilities and the efficiency of initiating VR services. A highly reliable instrument to measure VR participant satisfaction is presented.

  19. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  20. Cluster Observations of reconnection along the dusk flank of the magnetosphere

    Science.gov (United States)

    Escoubet, C.-Philippe; Grison, Benjamin; Berchem, Jean; Trattner, Karlheinz; Lavraud, Benoit; Pitout, Frederic; Soucek, Jan; Richard, Robert; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick

    2015-04-01

    Magnetic reconnection is generally accepted to be the main process that transfers particles and energy from the solar wind to the magnetosphere. The location of the reconnection site depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4

  1. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  2. Effect of Weekend Admissions on the Treatment Process and Outcomes of Internal Medicine Patients

    Science.gov (United States)

    Huang, Chun-Che; Huang, Yu-Tung; Hsu, Nin-Chieh; Chen, Jin-Shing; Yu, Chong-Jen

    2016-01-01

    Abstract Many studies address the effect of weekend admission on patient outcomes. This population-based study aimed to evaluate the relationship between weekend admission and the treatment process and outcomes of general internal medicine patients in Taiwan. A total of 82,340 patients (16,657 weekend and 65,683 weekday admissions) aged ≥20 years and admitted to the internal medicine departments of 17 medical centers between 2007 and 2009 were identified from the Taiwan National Health Insurance Research Database. A generalized estimating equation (GEE) analysis was used to compare patients admitted on weekends and those admitted on weekdays. Patients who were admitted on weekends were more likely to undergo intubation (odds ratio [OR]: 1.27; 95% confidence interval [CI]: 1.16–1.39; P internal medicine patients who were admitted on weekends experienced more intensive care procedures and higher ICU admission, in-hospital mortality, and treatment cost. Intensive care utilization may serve as early indicator of poorer outcomes and a potential entry point to offer preventive intervention before proceeding to intensive treatment. PMID:26871788

  3. Proposal of a Modelling of the Innovation Process in an International Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Pauline Lacom

    2017-07-01

    Full Text Available Nowadays, to cope with the competition, and to ensure the durability of their activities, companies have to be able to innovate. Manufacturing companies operating in a B2B market often perceive innovation as a technological result. However, innovation is often more characterized as a process. The needs of the users, and not only the technology, can achieve innovation. In this context, our paper intends to determine how to involve better the users in the innovation process of an international manufacturing company, which is, according to us, representative of the current manufacturing companies. The aim of our research paper is to help manufacturing companies to manage innovation led by users, and to implement their innovation process so that they will be able to set up specific tools for each action of the process. The study proposes a diagram-based language Structured Analysis and Design Technique (SADT that is based on the normative guide FD X50-271 of the French national organization for standardization (AFNOR. The SADT model we propose usefully complements this guide, to make the innovation process more understandable, practical and operational, for manufacturing companies, which are often helpless when faced with the subject. A critical analysis of the model we propose completed in a manufacturing company through semi-structured interviews of the innovation team and questionnaire for all the employees shows the application of the model in the company.

  4. AUTOMATED PROCESS MONITORING: APPLYING PROVEN AUTOMATION TECHNIQUES TO INTERNATIONAL SAFEGUARDS NEEDS

    International Nuclear Information System (INIS)

    O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Devol, Timothy A.; Egorov, Oleg; Clements, John P.

    2008-01-01

    Identification and quantification of specific alpha- and beta-emitting radionuclides in complex liquid matrices is highly challenging, and is typically accomplished through laborious wet chemical sample preparation and separations followed by analysis using a variety of detection methodologies (e.g., liquid scintillation, gas proportional counting, alpha energy analysis, mass spectrometry). Analytical results may take days or weeks to report. Chains of custody and sample security measures may also complicate or slow the analytical process. When an industrial process-scale plant requires the monitoring of specific radionuclides as an indication of the composition of its feed stream or of plant performance, radiochemical measurements must be fast, accurate, and reliable. Scientists at Pacific Northwest National Laboratory have assembled a fully automated prototype Process Monitor instrument capable of a variety of tasks: automated sampling directly from a feed stream, sample digestion/analyte redox adjustment, chemical separations, radiochemical detection and data analysis/reporting. The system is compact, its components are fluidically inter-linked, and analytical results could be immediately transmitted to on- or off-site locations. The development of a rapid radiochemical Process Monitor for 99Tc in Hanford tank waste processing streams, capable of performing several measurements per hour, will be discussed in detail. More recently, the automated platform was modified to perform measurements of 90Sr in Hanford tank waste stimulant. The system exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs

  5. Cultural differences and process adaptation in international R&D project management

    DEFF Research Database (Denmark)

    Li, Xing; Li, J. Z.

    2009-01-01

    In the era of globalization, Western companies have started to explore China as a source of technology. Yet, Western R&D project management processes in China are frequently facing many problems. Some of the problems can be conceptualized by analyzing a number of known cultural contrasts between ...... project success. At the same time, lessons and recommendations on the adaptability to Chinese style business and management interactions will be drawn from the case study for international companies that locate R&D projects in China.......In the era of globalization, Western companies have started to explore China as a source of technology. Yet, Western R&D project management processes in China are frequently facing many problems. Some of the problems can be conceptualized by analyzing a number of known cultural contrasts between...

  6. International

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)

  7. Processing of angular motion and gravity information through an internal model.

    Science.gov (United States)

    Laurens, Jean; Straumann, Dominik; Hess, Bernhard J M

    2010-09-01

    The vestibular organs in the base of the skull provide important information about head orientation and motion in space. Previous studies have suggested that both angular velocity information from the semicircular canals and information about head orientation and translation from the otolith organs are centrally processed in an internal model of head motion, using the principles of optimal estimation. This concept has been successfully applied to model behavioral responses to classical vestibular motion paradigms. This study measured the dynamic of the vestibuloocular reflex during postrotatory tilt, tilt during the optokinetic afternystagmus, and off-vertical axis rotation. The influence of otolith signal on the VOR was systematically varied by using a series of tilt angles. We found that the time constants of responses varied almost identically as a function of gravity in these paradigms. We show that Bayesian modeling could predict the experimental results in an accurate and consistent manner. In contrast to other approaches, the Bayesian model also provides a plausible explanation of why these vestibulooculo motor responses occur as a consequence of an internal process of optimal motion estimation.

  8. Process for dissolving the radioactive corrosion products from internal surfaces in nuclear reactors

    International Nuclear Information System (INIS)

    Brown, W.W.

    1976-01-01

    This invention concerns a process for dissolving in the coolant flowing in a reactor the radioactive substances from the corrosion of the internal surfaces of the reactor to which they cling. When a reactor is operating, the fission occurring in the fuel generates gases and fission substances, such as iodine 131 and 133, cesium 134 and 137, molybdenum 99, xenon 133 and activates the structural materials of the reactor such as nickel by giving off cobalt 58 and similar substances. Under this invention an oxygen rich solution is injected in the reactor coolant after the temperature and pressure reduction stage, during the preparation prior to refuelling and repairs. The oxygen in the solution speeds up the release of cobalt 58 and other radioactive substances from the internal surfaces of the reactor and their dissolving in the oxygenated cold coolant at the start of the cooling procedures of the installation. This allows them to be removed by an ion exchanger before the reactor is emptied. By utilising this process, about half a day may be gained in refuelling time when this has to be done once a week [fr

  9. Effect of internal flow and evaporation on hydrogel assembly process at droplet interface

    Science.gov (United States)

    Kang, Giho; Seong, Baekhoon; Gim, Yeonghyeon; Ko, Han Seo; Byun, Doyoung

    2017-11-01

    Recently, controlling the behavior of nanoparticles inside liquid droplet has been widely studied. There have been many reports about the mechanism of the nanoparticles assembly and fabrication of a thin film on a substrate. However, the assembly mechanism at a liquid-air interface has not been clearly understood to form polymer chains into films. Herein, we investigated the role of internal flow on the thin film assembly process at the interface of the hydrogel droplet. The internal fluid flow during the formation of the hydrogel film was visualized systematically using micro-PIV (Particle image velocimetry) technique at various temperatures. We show that the buoyancy effect and convection flow induced by heat can affect the film morphology and its mechanical characteristics. Due to the accelerated fluid flow inside the droplet and evaporation flux, densely assembled hydrogel film was able to be formed. Film strength was increased 24% with temperature increase from 40 to 80 degrees Celsius. We expect our investigations could be applied to many applications such as self-assembly of planar structures at the interface in coating and printing process. The support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A2A1A05001829) is acknowledged.

  10. Electron-positron plasma generation in a pulsar magnetosphere

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Istomin, Ya.N.

    1985-01-01

    The generation of an electron-positron plasma in vacuum (vacuum ''breakdown'') in the presence of an inhomogeneous electric field and strong curvilinear magnetic field is considered. A situation of this type may occur in the magnetosphere of a rotating neutron star. A general set of kinetic equations for electrons, positrons and γ quanta in a curvilinear magnetic field is derived by taking into account electron-positron pair production and emission of curvicur and synchrotron photons. The conditions for appearance of ''breakdown'' are determined and the threshold value of the elec tric field discontinuity at the surface of the star is found. Multiplication of particles in the magnetosphere is investigated and the electron, positron and γ quantum distribution functions are found. The extinction limit of pulsars is determined. The theory is shown to be in accordance with the observation results

  11. Magnetospheres of accreting compact objects in binary systems

    International Nuclear Information System (INIS)

    Aly, J.J.

    1985-09-01

    Bright pulsating X-ray sources (X-ray pulsars, AM Her stars,...) have been identified as strongly magnetized compact objects accreting matter from a binary companion. We give here a summary of some of the work which has been recently done to try to understand the interaction between the magnetic field of the compact object and the matter around. We examine in turn the models describing the interaction of the field with: i) a spherically symmetric accretion flow; ii) a thin keplerian accretion disk; iii) the companion itself. In all these cases, we pay particular attention to the following problems: i) how the external plasma interacting with the magnetosphere can get mixed with the field; ii) by which mechanism the magnetic field controls the mass-momentum-energy exchanges between the two stars. In conclusion, we compare the magnetosphere of an accreting compact object with that one of a planet [fr

  12. Massive-Star Magnetospheres: Now in 3-D!

    Science.gov (United States)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  13. The force-free magnetosphere of a rotating black hole

    Directory of Open Access Journals (Sweden)

    Contopoulos Ioannis

    2013-12-01

    Full Text Available We explore the analogy with pulsars and investigate the structure of the force-free magnetosphere around a Kerr black hole. We propose that the source of the black hole magnetic field is the Poynting-Robertson effect on the plasma electrons at the inner edge of the surrounding accretion disk, the so called Cosmic Battery. The magnetospheric solution is characterized by the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem, the inner ‘light surface’ located inside the ergosphere, and the outer ‘light surface’ which is the generalization of the pulsar light cylinder. The black hole forms a relativistic jet only if it is surrounded by a thick disk and/or extended disk outflows.

  14. Mercury's Atmosphere and Magnetosphere: MESSENGER Third Flyby Observations

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Johnson, Catherine L.; Gloeckler, George; Killen, Rosemary M.; Krimigis, Stamatios M.; McClintock, William; McNutt, Ralph L., Jr.; hide

    2009-01-01

    MESSENGER's third flyby of Mercury en route to orbit insertion about the innermost planet took place on 29 September 2009. The earlier 14 January and 6 October 2008 encounters revealed that Mercury's magnetic field is highly dipolar and stable over the 35 years since its discovery by Mariner 10; that a structured, temporally variable exosphere extends to great altitudes on the dayside and forms a long tail in the anti-sunward direction; a cloud of planetary ions encompasses the magnetosphere from the dayside bow shock to the downstream magnetosheath and magnetotail; and that the magnetosphere undergoes extremely intense magnetic reconnect ion in response to variations in the interplanetary magnetic field. Here we report on new results derived from observations from MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS), Magnetometer (MAG), and Energetic Particle and Plasma Spectrometer (EPPS) taken during the third flyby.

  15. Cosmic Rays in Magnetospheres of the Earth and other Planets

    CERN Document Server

    Dorman, Lev

    2009-01-01

    This monograph describes the behaviour of cosmic rays in the magnetosphere of the Earth and of some other planets. Recently this has become an important topic both theoretically, because it is closely connected with the physics of the Earth’s magnetosphere, and practically, since cosmic rays determine a significant part of space weather effects on satellites and aircraft. The book contains eight chapters, dealing with – The history of the discovery of geomagnetic effects caused by cosmic rays and their importance for the determination of the nature of cosmic rays or gamma rays – The first explanations of geomagnetic effects within the framework of the dipole approximation of the Earth’s magnetic field – Trajectory computations of cutoff rigidities, transmittance functions, asymptotic directions, and acceptance cones in the real geomagnetic field taking into account higher harmonics – Cosmic ray latitude-longitude surveys on ships, trains, tracks, planes, balloons and satellites for determining the...

  16. The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.

    2017-12-01

    Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.

  17. Magnetospheric pulsations: Models and observations of compressional waves

    International Nuclear Information System (INIS)

    Zhu, Xiaoming.

    1989-01-01

    The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1

  18. Magnetospheric conditions near the equatorial footpoints of proton isotropy boundaries

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2015-12-01

    Full Text Available Data from a cluster of three THEMIS (Time History of Events and Macroscale Interactions during Substorms spacecraft during February–March 2009 frequently provide an opportunity to construct local data-adaptive magnetospheric models, which are suitable for the accurate mapping along the magnetic field lines at distances of 6–9 Re in the nightside magnetosphere. This allows us to map the isotropy boundaries (IBs of 30 and 80 keV protons observed by low-altitude NOAA POES (Polar Orbiting Environmental Satellites to the equatorial magnetosphere (to find the projected isotropy boundary, PIB and study the magnetospheric conditions, particularly to evaluate the ratio KIB (Rc/rc; the magnetic field curvature radius to the particle gyroradius in the neutral sheet at that point. Special care is taken to control the factors which influence the accuracy of the adaptive models and mapping. Data indicate that better accuracy of an adaptive model is achieved when the PIB distance from the closest spacecraft is as small as 1–2 Re. For this group of most accurate predictions, the spread of KIB values is still large (from 4 to 32, with the median value KIB ~13 being larger than the critical value Kcr ~ 8 expected at the inner boundary of nonadiabatic angular scattering in the current sheet. It appears that two different mechanisms may contribute to form the isotropy boundary. The group with K ~ [4,12] is most likely formed by current sheet scattering, whereas the group having KIB ~ [12,32] could be formed by the resonant scattering of low-energy protons by the electromagnetic ion-cyclotron (EMIC waves. The energy dependence of the upper K limit and close proximity of the latter event to the plasmapause locations support this conclusion. We also discuss other reasons why the K ~ 8 criterion for isotropization may fail to work, as well as a possible relationship between the two scattering mechanisms.

  19. Magnetospheric signature of some F layer positive storms

    International Nuclear Information System (INIS)

    Miller, N.J.; Mayr, H.G.; Grebowsky, J.M.; Harris, I.; Tulunay, Y.K.

    1981-01-01

    Calculations using a self-consistent model of the global thermosphere-ionosphere system perturbed by high-latitude thermospheric heating show that the resultant electron density disturbances within the mid-latitude F layer can propagate upward along magnetic field lines to the equator. The F layer disturbances described by the model calculations correspond to the evolution of enhancements or reductions in electron density that is called the positive or negative phase of an F layer storm. We deduce that the positive phase of dayside F layer storms is initiated when high-latitude thermospheric heating generates equatorward winds. These winds raise the mid-latitude F layer along the geomagnetic field B through momentum transfer from neutral atoms to F layer ons that pull electrons with them. For Lapprox.3 or less the upward movement of ionospheric plasma results in ionization increases at all altitudes along B from the F2 maximum to the equator. An increase in the average magnitude of the equatorial dawn-dusk magnetospheric electric field retards the dayside development of a positive storm phase by drifting plasma away from mid-latitude field lines along which the electron density is increasing. During an F layer storm in June 1972, instruments on Explorer 45 and Ariel 4 detected dayside electron density enhancements simultaneously at 550 km over mid-latitudes and near the equatorial plane in the magnetosphere. These in situ measurements support the model prediction that disturbances in the magnetospheric plasma near the equator can arise through interactions occuring at lower altitudes along a magnetic field line. Our study demonstrates that some storm time enhancements of dayside magnetospheric plasma near Lapprox.2--3 may be signatures of the positive phase of an F layer storm

  20. MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere

    Science.gov (United States)

    DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya

    2015-04-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which

  1. Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event

    Directory of Open Access Journals (Sweden)

    Y. Ebihara

    2004-04-01

    Full Text Available Multiple discrete-energy ion bands observed by the Polar satellite in the inner magnetosphere on 9 February 1998 were investigated by means of particle simulation with a realistic model of the convection electric field. The multiple bands appeared in the energy vs. L spectrum in the 1–100 keV range when Polar traveled in the heart of the ring current along the outbound and inbound paths. We performed particle tracing, and simulated the energy vs. L spectra of proton fluxes under the dipole magnetic field, the corotation electric field, and the realistic convection electric field model with its parameters depending on the solar wind data. Simulated spectra are shown to agree well with the observed ones. A better agreement is achieved when we rotate the convection electric potential eastward by 2h inMLT and we change the distribution function in time in the near-Earth magnetotail. It is concluded that the multiple bands are likely produced by two processes for this particular event, that is, changes in the convection electric field (for >3keV protons and changes in the distribution function in the near-Earth magnetotail (for <3keV protons. Key words. Magnetospheric physics (energetic particles, trapped; electric field – Space plasma physics (numerical simulation studies

  2. LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH’S MAGNETOSPHERE CROSSING

    Energy Technology Data Exchange (ETDEWEB)

    Vaverka, J.; Richterová, I.; Pavlu, J.; Šafránková, J.; Němeček, Z., E-mail: jana.safrankova@mff.cuni.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic)

    2016-07-10

    Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itself and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.

  3. Void structure of O+ ions in the inner magnetosphere observed by the Van Allen Probes

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Tanaka, T.

    2016-12-01

    The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy 10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamics simulation and calculated the flux of O+ ions in the inner magnetosphere in accordance with the Liouville theorem. The simulated spectrograms are well consistent with the ones observed by Van Allen Probes. We suggest the following processes. (1) When magnetic reconnection starts, an intensive equatorward and tailward plasma flow appears in the plasma lobe. (2) The flow transports plasma from the lobe to the plasma sheet where the radius of curvature of the magnetic field line is small. (3) The intensive dawn-dusk electric field transports the O+ ions earthward and accelerates them nonadiabatically to an energy threshold; (4) the void structure appears at energies below the threshold.

  4. Space-time evolution of whistler mode wave growth in the magnetosphere

    International Nuclear Information System (INIS)

    Carlson, C.R.; Helliwell, R.A.; Inan, U.S.

    1990-01-01

    A new model is developed to simulate the space-time evolution of a propagating coherent whistler mode wave pulse in the magnetosphere. The model is applied to the case of single frequency (2-6 kHz) wave pulses injected into the magnetosphere near L ≅ 4, using the VLF transmitting facility at Siple Station, Antarctica. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons of the radiation belts. Application of this model reproduces observed exponential wave growth up to a saturated level. Additionally, the model predicts the observed initial linear increase in the output frequency versus time. This is the first time these features have been reproduced using applied wave intensities small enough to be consistent with satellite measurements. The center velocities of the electrons entering the wave pulse are selected in a way which maximizes the growth rate. The results show the importance of the transient aspects in the wave growth process. The growth established as the wave propagates toward the geomagnetic equator results in a spatially advancing wave phase structure due mainly to the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are established which result in a linearly increasing output frequency with time

  5. Hybrid Alfvén resonant mode generation in the magnetosphere-ionosphere coupling system

    International Nuclear Information System (INIS)

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-01-01

    Feedback unstable Alfvén waves involving global field-line oscillations and the ionospheric Alfvén resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfvén resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfvén velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3–1 Hz in auroral and polar-cap regions.

  6. A Globally Stable Lyapunov Pointing and Rate Controller for the Magnetospheric MultiScale Mission (MMS)

    Science.gov (United States)

    Shah, Neerav

    2011-01-01

    The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller.

  7. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    International Nuclear Information System (INIS)

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  8. Electron and ion Bernstein waves in Saturnian Magnetosphere

    Science.gov (United States)

    Bashir, M. F.; Waheed, A.; Ilie, R.; Naeem, I.; Maqsood, U.; Yoon, P. H.

    2017-12-01

    The study of Bernstein mode is presented in order to interpret the observed micro-structures (MIS) and banded emission (BEM) in the Saturnian magnetosphere. The general dispersion relation of Bernstein wave is derived using the Lerche-NewBerger sum rule for the kappa distribution function and further analyzed the both electron Bernstein (EB) and ion Bernstein (IB) waves. The observational data of particle measurements is obtained from the electron spectrometer (ELS) and the ion mass spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite on board the Cassini spacecraft. For additional electron data, the measurements of Low Energy Magnetospheric Measurements System of the Magnetospheric Imaging Instrument (LEMMS /MIMI) are also utilized. The effect of kappa spectral index, density ratio (nohe/noce for EB and nohe/noi for IB) and the temperature ratio (The/Tce for EB and The/T(h,c)i for IB) on the dispersion properties are discussed employing the exact numerical analysis to explain the appearing of additional maxima/minima (points where the perpendicular group velocity vanishes, i.e., ∂w/∂k = 0) above/below the lower (for IB) and upper hybrid (EB) bands in the observation and their relation to the MIS and BED. The results of these waves may also be compared with the simulation results of Space Weather Modeling Framework (SWMF) .

  9. Different magnetospheric modes: solar wind driving and coupling efficiency

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2009-11-01

    Full Text Available This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential, particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY. Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations during geomagnetically active conditions.

  10. Physics of the diffusion region in the Magnetospheric Multiscale era

    Science.gov (United States)

    Chen, L. J.; Hesse, M.; Wang, S.; Ergun, R.; Bessho, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Gershman, D. J.; Wilson, L. B., III; Dorelli, J.; Pollock, C. J.; Moore, T. E.; Lavraud, B.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Le Contel, O.; Avanov, L. A.

    2016-12-01

    Encounters of reconnection diffusion regions by the Magnetospheric Multiscale (MMS) mission during its first magnetopause scan are studied in combination with theories and simulations. The goal is to understand by first-principles how stored magnetic energy is converted into plasma thermal and bulk flow energies via particle energization, mixing and interaction with waves. The magnetosheath population having much higher density than the magnetospheric plasma is an outstanding narrator for and participant in the magnetospheric part of the diffusion region. For reconnection with negligible guide fields, the accelerated magnetosheath population (for both electrons and ions) is cyclotron turned by the reconnected magnetic field to form outflow jets, and then gyrotropized downstream. Wave fluctuations are reduced in the central electron diffusion region (EDR) and do not dominate the energy conversion there. For an event with a significant guide field to magnetize the electrons, wave fluctuations at the lower hybrid frequency dominate the energy conversion in the EDR, and the fastest electron outflow is established dominantly by a strong perpendicular electric field via the ExB flow in one exhaust and by time-of-flight effects along with parallel electric field acceleration in the other. Whether the above features are common threads to magnetopause reconnection diffusion regions is a question to be further examined.

  11. A novel look at the pulsar force-free magnetosphere

    Science.gov (United States)

    Petrova, S. A.; Flanchik, A. B.

    2018-03-01

    The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, B_{new}0=3.3×10^{-4}B/P, where P is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the \\cotχ-law, where χ is a random quantity uniformly distributed in the interval [0,π/2]. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle between the magnetic and rotational axes and gives insight into the neutron star unification on the geometrical basis.

  12. Trajectory traces of charged particles in the magnetosphere

    International Nuclear Information System (INIS)

    Ejiri, M.

    1978-01-01

    The characteristic enhancements of ring current particles with energies of about 1--1000keV, associated with magnetospheric substorms, were observed by Explorer 45 (S 3 -A) around the plasmapause in the afternoon to midnight region and showed the characteristic structure called a 'noise' in the proton spectrograms. This paper examines the time developing characteristics of newly injected particles in the magnetosphere under a recently proposed convection electric field and a dipole magnetic field. Approximate equations of a bounce period, a second adiabatic invariant, and a bounce-averaged azimuthal velocity are given with an error of less than about 10 -3 for all pitch angles. The complete set of flow patterns of 90 0 pitch angles is also described by means of inflection lines through whicch radial and/or azimuthal drifts change their directions and where particle velocities show their local minima, i.e., the flow becomes sluggish. These particle tracings in the magnetosphere, from which time dependent particle fronts can be constructed, give the basic concept and mechanics to explain the complex and dynamical properties of the magnetic storm time particle enhancements

  13. Crafoord Symposium on Magnetospheric Physics : Achievements and Prospects

    CERN Document Server

    Fälthammar, C-G

    1990-01-01

    This book contains the proceedings of the 1989 Crafoord Symposium organized by the Royal Swedish Academy of Sciences. The scientific field for the Crafoord Prize of 1989 was decided in 1988 by the Academy to be Magnetospheric Physics. On September 27,1989 the Academy awarded the 1989 Crafoord Prize to Professor J. A. Van Allen, Iowa City, USA "for his pioneer work in space research, in particular for the discovery of the high energy charged particles that are trapped in the Earth's magnetic field and form the radiation belts -often called the Van Allen belts - around the Earth". The subject for the Crafoord Symposium, which was held on September 28-29 at the Royal Swedish Academy of Sciences in Stockholm, was Magnetospheric Physics, Achievements and Prospects. Some seventy of the world's leading scientists in magnetospheric physics (see list of participants) were invited to the Symposium. The program contained only invited papers. After the ?resentation of the Crafoord Prize Laureate, Prof. J . A. Van Allen, ...

  14. Results of investigation of magnetohydrodynamic flow round the magnetosphere

    International Nuclear Information System (INIS)

    Erkaev, N.V.

    1988-01-01

    Review of the main results of the study on the Earth magnetosphere quasi-stationary magnetohydrodynamic flow-around by the solar wind is given. The principle attenuation is paid to the problem of magnetic and electric fields calculation in the transition layer and at the magnetosphere boundary. Analysis of kinematic approximation and linear diffusion model is conducted. Existence condition for the magnetic barrier region, where kinematic approximation is inapplicable, is determined. Main properties of the solution - gasokinetic pressure decrease and magnetic pressure increase up to maximum at the numerical integration results of magnetohydrodynamic equations within the magnetic barrier range. Calculation problem of reconnection field at the magnetic barrier background is considered as the next step. It is shown, that the introduction of Petchek reconnection model into the problem solution general diagram allows to obtain at the magnetosphere boundary the values of electric and magnetic fields, compatible with the experiment. Problems, linked with choice of reconnection line direction and Petchek condition generalization for the case of the crossed field reconnection, are considered

  15. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  16. On the electric field model for an open magnetosphere

    Science.gov (United States)

    Wang, Zhi; Ashour-Abdalla, Maha; Walker, Raymond J.

    1993-01-01

    We have developed a new canonical separator line type magnetospheric magnetic field and electric field model for use in magnetospheric calculations, we determine the magnetic and electric field by controlling the reconnection rate at the subsolar magnetopause. The model is applicable only for purely southward interplanetary magnetic field (IMF). We have obtained a more realistic magnetotail configuration by applying a stretch transformation to an axially symmetric field solution. We also discuss the Stern singularity in which there is an electric field singlarity in the canonical separate line models for B(sub y) not = to 0 by using a new technique that solves for the electric field along a field line directly instead of determining it by a potential mapping. The singularity not only causes an infinite electric field on the polar cap, but also causes the boundary conditions at plus infinity and minus infinity in the solar wind to contradict each other. This means that the canonical separator line models do not represent the open magnetosphere well, except for the case of purely southward IMF.

  17. A Cumulant-based Analysis of Nonlinear Magnetospheric Dynamics

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Wing, Simon

    2004-01-01

    Understanding magnetospheric dynamics and predicting future behavior of the magnetosphere is of great practical interest because it could potentially help to avert catastrophic loss of power and communications. In order to build good predictive models it is necessary to understand the most critical nonlinear dependencies among observed plasma and electromagnetic field variables in the coupled solar wind/magnetosphere system. In this work, we apply a cumulant-based information dynamical measure to characterize the nonlinear dynamics underlying the time evolution of the Dst and Kp geomagnetic indices, given solar wind magnetic field and plasma input. We examine the underlying dynamics of the system, the temporal statistical dependencies, the degree of nonlinearity, and the rate of information loss. We find a significant solar cycle dependence in the underlying dynamics of the system with greater nonlinearity for solar minimum. The cumulant-based approach also has the advantage that it is reliable even in the case of small data sets and therefore it is possible to avoid the assumption of stationarity, which allows for a measure of predictability even when the underlying system dynamics may change character. Evaluations of several leading Kp prediction models indicate that their performances are sub-optimal during active times. We discuss possible improvements of these models based on this nonparametric approach

  18. Solar wind dynamic pressure variations and transient magnetospheric signatures

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Baumjohann, W.

    1989-01-01

    Contrary to the prevailing popular view, we find some transient ground events with bipolar north-south signatures are related to variations in solar wind dynamic pressure and not necessarily to magnetic merging. We present simultaneous solar wind plasma observations for two previously reported transient ground events observed at dayside auroral latitudes. During the first event, originally reported by Lanzerotti et al. [1987], conjugate ground magnetometers recorded north-south magetic field deflections in the east-west and vertical directions. The second event was reported by Todd et al. [1986], we noted ground rader observations indicating strong northward then southward ionospheric flows. The events were associated with the postulated signatures of patchy, sporadic, merging of magnetosheath and magnetospheric magnetic field lines at the dayside magnetospause, known as flux transfer events. Conversely, we demonstrate that the event reported by Lanzerotti et al. was accompanied by a sharp increase in solar wind dynamic pressure, a magnetospheric compression, and a consequent ringing of the magnetospheric magnetic field. The event reported by Todd et al. was associated with a brief but sharp increase in the solar wind dynamic pressure. copyright American Geophysical Union 1989

  19. Side-band mutual interactions in the magnetosphere

    Science.gov (United States)

    Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.

    1980-01-01

    Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.

  20. ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes

    Science.gov (United States)

    2016-04-01

    Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more