WorldWideScience

Sample records for internal lipid structure

  1. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations......Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...

  2. Topology and internal structure of PEGylated lipid nanocarriers for neuronal transfection: synchrotron radiation SAXS and cryo-TEM studies

    Czech Academy of Sciences Publication Activity Database

    Angelov, Borislav; Angelova, A.; Filippov, Sergey K.; Karlsson, G.; Terrill, N.; Lesieur, S.; Štěpánek, Petr

    2011-01-01

    Roč. 7, č. 20 (2011), s. 9714-9720 ISSN 1744-683X R&D Projects: GA ČR GA202/09/2078; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : DNA-lipid-surfactant complexes * CryoTEM * small-angle X-ray scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.390, year: 2011

  3. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  4. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Anantachaisilp, Suranan; Smith, Siwaporn Meejoo [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Treetong, Alongkot; Ruktanonchai, Uracha Rungsardthong [National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Bangkok (Thailand); Puttipipatkhachorn, Satit, E-mail: uracha@nanotec.or.th [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand)

    2010-03-26

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of {gamma}-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the {gamma}-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance ({sup 1}H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the {sup 1}H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of {gamma}-oryzanol inside the lipid nanoparticles, the {sup 1}H-NMR revealed that the chemical shifts of the liquid lipid in {gamma}-oryzanol loaded systems were found at rather higher field than those in {gamma}-oryzanol free systems, suggesting incorporation of {gamma}-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of {gamma}-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models

  5. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    Science.gov (United States)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  6. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    International Nuclear Information System (INIS)

    Anantachaisilp, Suranan; Smith, Siwaporn Meejoo; Treetong, Alongkot; Ruktanonchai, Uracha Rungsardthong; Pratontep, Sirapat; Puttipipatkhachorn, Satit

    2010-01-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance ( 1 H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1 H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1 H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  7. Model for the structure of the lipid bilayer

    International Nuclear Information System (INIS)

    Pastor, R.W.; Venable, R.M.; Karplus, M.

    1991-01-01

    A detailed model for the structure and dynamics of the interior of the lipid bilayer in the liquid crystal phase is presented. The model includes two classes of motion: (i) the internal dynamics of the chains, determined from Brownian dynamics simulations with a continuous version of the Marcelja mean-field potential, and (ii) noncollective reorientation (axial rotation and wobble) of the entire molecule, introduced by a cone model. The basic unit of the model is a single lipid chain with field parameters adjusted to fit the 2H order parameters and the frequency-dependent 13C NMR T1 relaxation times of dipalmitoyl phosphatidylcholine bilayers. The chain configurations obtained from the trajectory are used to construct a representation of the bilayer. The resulting lipid assembly is consistent with NMR, neutron diffraction, surface area, and density data. It indicates that a high degree of chain disorder and entanglement exists in biological membranes

  8. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1993-02-01

    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  9. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel.

    Science.gov (United States)

    Cicero, Arrigo F G; Colletti, Alessandro; Bajraktari, Gani; Descamps, Olivier; Djuric, Dragan M; Ezhov, Marat; Fras, Zlatko; Katsiki, Niki; Langlois, Michel; Latkovskis, Gustavs; Panagiotakos, Demosthenes B; Paragh, Gyorgy; Mikhailidis, Dimitri P; Mitchenko, Olena; Paulweber, Bernhard; Pella, Daniel; Pitsavos, Christos; Reiner, Željko; Ray, Kausik K; Rizzo, Manfredi; Sahebkar, Amirhossein; Serban, Maria-Corina; Sperling, Laurence S; Toth, Peter P; Vinereanu, Dragos; Vrablík, Michal; Wong, Nathan D; Banach, Maciej

    2017-09-01

    In recent years, there has been growing interest in the possible use of nutraceuticals to improve and optimize dyslipidemia control and therapy. Based on the data from available studies, nutraceuticals might help patients obtain theraputic lipid goals and reduce cardiovascular residual risk. Some nutraceuticals have essential lipid-lowering properties confirmed in studies; some might also have possible positive effects on nonlipid cardiovascular risk factors and have been shown to improve early markers of vascular health such as endothelial function and pulse wave velocity. However, the clinical evidence supporting the use of a single lipid-lowering nutraceutical or a combination of them is largely variable and, for many of the nutraceuticals, the evidence is very limited and, therefore, often debatable. The purpose of this position paper is to provide consensus-based recommendations for the optimal use of lipid-lowering nutraceuticals to manage dyslipidemia in patients who are still not on statin therapy, patients who are on statin or combination therapy but have not achieved lipid goals, and patients with statin intolerance. This statement is intended for physicians and other healthcare professionals engaged in the diagnosis and management of patients with lipid disorders, especially in the primary care setting. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Structural and physicochemical properties of polar lipids from thermophilic archaea.

    Science.gov (United States)

    Ulrih, Natasa Poklar; Gmajner, Dejan; Raspor, Peter

    2009-08-01

    The essential general features required for lipid membranes of extremophilic archaea to fulfill biological functions are that they are in the liquid crystalline phase and have extremely low permeability of solutes that is much less temperature sensitive due to a lack of lipid-phase transition and highly branched isoprenoid chains. Many accumulated data indicate that the organism's response to extremely low pH is the opposite of that to high temperature. The high temperature adaptation does not require the tetraether lipids, while the adaptation of thermophiles to acidic environment requires the tetraether polar lipids. The presence of cyclopentane rings and the role of polar heads are not so straightforward regarding the correlations between fluidity and permeability of the lipid membrane. Due to the unique lipid structures and properties of archaeal lipids, they are a valuable resource in the development of novel biotechnological processes. This microreview focuses primarily on structural and physicochemical properties of polar lipids of (hyper)thermophilic archaea.

  11. Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids

    Science.gov (United States)

    Lanyi, J. K.

    1974-01-01

    Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.

  12. Lipases as biocatalysts for the synthesis of structured lipids.

    Science.gov (United States)

    Jala, Ram Chandra Reddy; Hu, Peng; Yang, Tiankui; Jiang, Yuanrong; Zheng, Yan; Xu, Xuebing

    2012-01-01

    Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.

  13. Analysis of Lipoplex Structure and Lipid Phase Changes

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana

    2012-07-18

    Efficient delivery of genetic material to cells is needed for tasks of utmost importance in the laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising nonviral gene carriers. They form complexes (lipoplexes) with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection) is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for a rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. A viewpoint now emerging is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar phase transition upon mixing with cellular lipids and were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release. Thus, understanding the lipoplex structure and the phase changes upon interacting with membrane lipids is important for the successful application of the cationic lipids as gene carriers.

  14. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    Science.gov (United States)

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Influences of the Structure of Lipids on Thermal Stability of Lipid Membranes

    International Nuclear Information System (INIS)

    Hai Nan-Nan; Zhou Xin; Li Ming

    2015-01-01

    The binding free energy (BFE) of lipid to lipid bilayer is a critical factor to determine the thermal or mechanical stability of the bilayer. Although the molecular structure of lipids has significant impacts on BFE of the lipid, there lacks a systematic study on this issue. In this paper we use coarse-grained molecular dynamics simulation to investigate this problem for several typical phospholipids. We find that both the tail length and tail unsaturation can significantly affect the BFE of lipids but in opposite way, namely, BFE decreases linearly with increasing length, but increases linearly with addition of unsaturated bonds. Inspired by the specific structure of cholesterol which is a crucial component of biomembrane, we also find that introduction of carbo-ring-like structures to the lipid tail or to the bilayer may greatly enhance the stability of the bilayer. Our simulation also shows that temperature can influence the bilayer stability and this effect can be significant when the bilayer undergoes phase transition. These results may be helpful to the design of liposome or other self-assembled lipid systems. (paper)

  16. Influence of ester-modified lipids on bilayer structure.

    Science.gov (United States)

    Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B

    2013-11-19

    Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.

  17. Unusual lipid structures selectively reduce the toxicity of amphotericin B

    International Nuclear Information System (INIS)

    Janoff, A.S.; Boni, L.T.; Popescu, M.C.

    1988-01-01

    Ribbon-like structures result when amphotericin B interacts with lipid in an aqueous environment. At high ratios of amphotericin to lipid these structures, which are lipid-stabilized amphotericin aggregates, become prevalent resulting in a dramatic attenuation of amphotericin-mediated mammalian cell, but not fungal cell, toxicity. Studies utilizing freeze-etch electron microscopy, differential scanning calorimetry, 31 P NMR, x-ray diffraction, and optical spectroscopy revealed that this toxicity attenuation is related to the macromolecular structure of the complexes in a definable fashion. It is likely that amphotericin in this specific form will have a much improved therapeutic utility

  18. Structural characterization and lipid composition of acquired cholesteatoma

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Svane-Knudsen, Viggo; Sørensen, Jens A

    2012-01-01

    HYPOTHESIS: The goal of this work is to characterize the morphology and lipid composition of acquired cholesteatoma. We hypothesize that constitutive lipid membranes are present in the cholesteatoma and resemble those found in human skin stratum corneum. METHODS: We performed a comparative...... noninvasive structural and lipid compositional study of acquired cholesteatoma and control human skin using multiphoton excitation fluorescence microscopy-related techniques and high-performance thin-layer chromatography. RESULTS: The structural arrangement of the cholesteatoma is morphologically invariant...... along a depth of more than 200 μm and resembles the stratum corneum of hyperorthokeratotic skin. Lipid compositional analyses of the cholesteatoma show the presence of all major lipid classes found in normal skin stratum corneum (ceramides, long chain fatty acids, and cholesterol). Consistent with this...

  19. Specific-structured lipids: nutritional perspectives and production potentials

    DEFF Research Database (Denmark)

    Xu, Xuebing; Høy, Carl-Erik; Balchen, Steen

    1997-01-01

    Structured lipids are referring to any triacylglycerols containing both long chain fatty acids (mostly essential fatty acids) and medium or short chain fatty acids. In case of specific-structured lipids (SSLs), each group of fatty acids locates specifically at sn-2 or -1.3 positions of the glycerol...... backbone. Recently the nutritional perspectives of this kind of lipids attract many interests. This causes an increasing interest in the production of them by lipase-catalyzed interesterification. One of the advantages of lipase method over chemical ones is that SSLs can be produced with particular fatty...

  20. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Science.gov (United States)

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  1. Effect of training on muscle triacylglycerol and structural lipids

    DEFF Research Database (Denmark)

    Helge, Jørn W; Dela, Flemming

    2003-01-01

    We studied whether endurance training impacts insulin sensitivity by affecting the structural and storage lipids in humans. Eight male subjects participated (age 25 +/- 1 years, height 178 +/- 3 cm, weight 76 +/- 4 kg [mean +/- SE]). Single-leg training was performed for 30 min/day for 4 weeks...... polyunsaturates, which may indicate that membrane lipids may have a role in the training-induced increase in insulin sensitivity....

  2. Automated, parallel mass spectrometry imaging and structural identification of lipids

    DEFF Research Database (Denmark)

    Ellis, Shane R.; Paine, Martin R.L.; Eijkel, Gert B.

    2018-01-01

    We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments....... This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue....

  3. Final Report: 17th international Symposium on Plant Lipids

    Energy Technology Data Exchange (ETDEWEB)

    Christoph Benning

    2007-03-07

    This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.

  4. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    Energy Technology Data Exchange (ETDEWEB)

    Gizatullina, Albina K. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Telezhinskaya, Irina N.; Balandin, Sergey V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Shenkarev, Zakhar O. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Arseniev, Alexander S. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Ovchinnikova, Tatiana V., E-mail: ovch@ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation)

    2013-10-04

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  5. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    International Nuclear Information System (INIS)

    Gizatullina, Albina K.; Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V.; Telezhinskaya, Irina N.; Balandin, Sergey V.; Shenkarev, Zakhar O.; Arseniev, Alexander S.; Ovchinnikova, Tatiana V.

    2013-01-01

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å 3 ). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours

  6. Structure, inhibition, and regulation of essential lipid A enzymes.

    Science.gov (United States)

    Zhou, Pei; Zhao, Jinshi

    2017-11-01

    The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  8. Skin lipid structure controls water permeability in snake molts.

    Science.gov (United States)

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Comparative structural analysis of lipid binding START domains.

    Directory of Open Access Journals (Sweden)

    Ann-Gerd Thorsell

    Full Text Available Steroidogenic acute regulatory (StAR protein related lipid transfer (START domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease.We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains.Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  10. Lipid chain geometry of C14 glycerol-based lipids: effect on lipoplex structure and transfection.

    Science.gov (United States)

    Kudsiova, Laila; Ho, Jimmy; Fridrich, Barbara; Harvey, Richard; Keppler, Melanie; Ng, Tony; Hart, Stephen L; Tabor, Alethea B; Hailes, Helen C; Lawrence, M Jayne

    2011-02-01

    The effects have been determined of a systematic alteration of the alkyl chain geometry of a C14 analogue of DOTMA on the detailed molecular architecture of the resulting cationic vesicles formed both in the absence and presence of 50 mol% DOPE, and of the lipoplexes prepared from these vesicles using either calf thymus or plasmid DNA. The C14 DOTMA analogues studied involved cis- or trans-double bonds at positions Δ9 or Δ11, and a compound (ALK) featuring an alkyne at position C9. For all of these analogues, examination by light scattering and neutron scattering, zeta potential measurement, and negative staining electron microscopy showed that there were no significant differences in the structures or charges of the vesicles or of the resulting lipoplexes, regardless of the nature of the DNA incorporated. Differences were observed, however, between the complexes formed by the various lipids when examining the extent of complexation and release by gel electrophoresis, where the E-lipids appeared to complex the DNA more efficiently than all other lipids tested. Moreover, the lipoplexes prepared from the E-lipids were the most effective in transfection of MDA-MB-231 breast cancer cells. As indicated through confocal microscopy studies, the E-lipids also showed a higher internalisation capacity and a more diffuse cellular distribution, possibly indicating a greater degree of endosomal escape and/or nuclear import. These observations suggest that the extent of complexation is the most important factor in determining the transfection efficiency of the complexes tested. At present it is unclear why the E-lipids were more effective at complexing DNA, although it is thought that the effective area per molecule occupied by the cationic lipid and DOPE head groups, and therefore the density of positive charges on the surface of the bilayer most closely matches the negative charge density of the DNA molecule. From a consideration of the geometry of the cationic lipids it is

  11. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  12. Purification and deodorization of structured lipids by short path distillation

    DEFF Research Database (Denmark)

    Xu, Xuebing; Jacobsen, Charlotte; Nielsen, Nina Skall

    2002-01-01

    Purification of structured lipids (SL), produced from lipase- catalyzed acidolysis of rapeseed oil and capric acid, and deodorization of randomized SL, produced from chemical randomization of fish oil and tricaprin, were studied in a bench-scale short path distillation (SPD). SL obtained from...

  13. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    Science.gov (United States)

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Directory of Open Access Journals (Sweden)

    Sara Y. Cheng

    2016-06-01

    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  15. Dynamical and structural properties of lipid membranes in relation to liposomal drug delivery systems

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Høyrup, Lise Pernille Kristine; Pedersen, Tina B.

    2001-01-01

    The structural and dynamical properties of DPPC liposomes containing lipopolymers (PEG-lipids) and charged DPPS lipids have been,studied in relation to the lipid membrane interaction of enzymes and peptides. The results suggest that both the lipid membrane structure and dynamics and in particular...

  16. Structure and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension

  17. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  18. Structures and physicochemical properties of molecular aggregates of lipids

    International Nuclear Information System (INIS)

    Iwahashi, Makio

    2005-01-01

    Structures and physicochemical properties of lipids such as fatty acids, alcohols, acylglycerols and steroids in their two- or three-dimensional states were studied through the measurements of surface pressure (π), surface-molecular area (A), vapor-pressure osmosis, radioactivity (R), self-diffusion coefficient (D), density, viscosity, near-infrared spectroscopy (NIR), 13 C-NMR spin-lattice relaxation time (T 1 ), ESR, SEM, DSC, X-ray diffraction and small-angle neutron scattering (SANS). Following results are obtained: (1) π-A and R-A relationships indicate that the explanation, being widely believed, of the reaction occurred in the oleic acid or the trioleylglycerol monolayer on the aqueous KMnO 4 solution is incorrect. (2) By using the LB film of 3 H-labelled fatty acid, the upper limit of the neutrino mass was determined. In addition, by using the LB film of 14 C-labelled fatty acid, a new type of crystal-transformation process was found, in which fatty-acid crystal transforms from its unstable state to its stable one by the transfer of the fatty acid molecules through the vapor phase. (3) Fatty acids always exist as their dimers in their liquid state and mostly in non-polar solvents; the dimers are the units of the molecular movements in the molten liquid and in solvents. T 1 results clearly showed the internal molecular movements of the dimers. In addition, D and SANS results indicated that two different kinds of fatty acids in their binary mixture make only each homodimers. (4) Furthermore, the study on the liquid structure of fatty acids such as cis-6-, cis-9-, cis-11-, trans-9-octadecenoic acids and stearic acid indicated that these fatty-acid dimers construct the clusters resemble to the smectic-liquid crystal in the liquid state. The clusters determine the physicochemical properties of the liquid of the fatty acid. (author)

  19. Antitumor Lipids--Structure, Functions, and Medical Applications.

    Science.gov (United States)

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  20. Addition of electrophilic lipids to actin alters filament structure

    International Nuclear Information System (INIS)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores

    2006-01-01

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Δ 12,14 -PGJ 2 (15d-PGJ 2 ) and PGA 1 in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA 1 and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ 2 or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ 2 at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles

  1. The structure of a lipid-water lamellar phase containing two types of lipid monolayers

    International Nuclear Information System (INIS)

    Ranck, J.L.; Luzzati, V.; Zaccai, G.

    1980-01-01

    One lamellar phase, observed in the mitochondrial lipids-water system at low temperature (ca 253 K) and at low water content (ca 15%), contains four lipid monolayers in its unit cell, two of type α and two of type β. Previous X-ray scattering studies of this phase led to an ambiguity: the phase could contain either two homogeneous bilayers, one α and one β, or two mixed bilayers, each formed by an α and a β monolayer. A solution to this problem was sought in a neutron scattering study as a function of the D 2 O/H 2 O ratio. Because of limited resolution, straightforward analysis of the neutron scattering data leads also to ambiguous results. Using a more sophisticated analysis based upon the zeroth- and second-order moments of the Patterson peaks relevant to the exchangeable components, it is shown that the weight of the evidence is in favour of a structure containing mixed bilayers. (Auth.)

  2. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DEFF Research Database (Denmark)

    Rønnest, A. K.; Peters, Günther H.J.; Hansen, Flemming Yssing

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid...... compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have...... the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic...

  3. Effects of antioxidants on the lipase-catalyzed acidolysis during production of structured lipids

    DEFF Research Database (Denmark)

    Xu, Xuebing; Timm Heinrich, Maike; Nielsen, Nina Skall

    2005-01-01

    In the production process of structured lipids, the influence of the addition of antioxidants before enzymatic acidolysis was investigated. Eight different antioxidants were screened: butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate, ascorbyl palmitate, citric acid, EDTA...... of the structured lipid produced....

  4. Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme bed reactor

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (interesterified lipids with a specific structure) by enzymatic interesterification was carried out in a continuous enzyme bed pilot scale reactor. Commercial immobilized lipase (Lipozyme IM) was used and investigations of acyl migration, pressure drop...

  5. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    Directory of Open Access Journals (Sweden)

    D. V. Soloviov

    2012-03-01

    Full Text Available Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia are presented. Experiment has been per-formed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing P-V-T measurements on the substance under investigation. D2O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC liquid system, presenting the model of natural live membrane, has been taken as the sample for investiga-tions. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simulta-neously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicat-ing occurrence of the phase transition.

  6. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    International Nuclear Information System (INIS)

    Solovjov, D.V.; Gordelyij, V.Yi.; Gorshkova, Yu.Je.; Yivan'kov, O.Yi.; Koval'ov, Yu.S.; Kuklyin, A.Yi.; Solovjov, D.V.; Bulavyin, L.A.; Yivan'kov, O.Yi.; Nyikolajenko, T.Yu.; Kuklyin, A.Yi.; Gordelyij, V.Yi.; Gordelyij, V.Yi.

    2012-01-01

    Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia) are presented. Experiment has been performed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing PV-T measurements on the substance under investigation. D 2 O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liquid system, presenting the model of natural live membrane, has been taken as the sample for investigations. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simultaneously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase) phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicating occurrence of the phase transition.

  7. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  8. Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics

    DEFF Research Database (Denmark)

    Zhao, W.; Gurtovenko, A. A.; Vattulainen, I.

    2012-01-01

    We performed atomistic molecular dynamics simulations of lipid bilayers consisting of a mixture of cationic dioleoyloxytrimethylammonium propane (DOTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) lipids at different DOTAP fractions. Our primary focus was the specific effects...... of unsaturated lipid chains on structural and dynamic properties of mixed cationic bilayers. The bilayer area, as well as the ordering of lipid tails, shows a pronounced nonmonotonic behavior when TAP lipid fraction increases. The minimum in area (maximum in ordering) was observed for a bilayer with TAP fraction...... lipids, which were found to form PC-PC and PC-TAP pairs, and the formation of lipid clusters....

  9. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    Science.gov (United States)

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  10. Role of charged lipids in membrane structures — Insight given by simulations

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Vattulainen, Ilpo

    2016-01-01

    Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids...... to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane...

  11. Internal structure of magnetic endosomes

    Science.gov (United States)

    Rivière, C.; Wilhelm, C.; Cousin, F.; Dupuis, V.; Gazeau, F.; Perzynski, R.

    2007-01-01

    The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.

  12. Structural characterization of lipidic systems under nonequilibrium conditions

    DEFF Research Database (Denmark)

    Yaghmur, Anan; Rappolt, Michael

    2012-01-01

    This review covers recent studies on the characterization of the dynamics of lipidic nanostructures formed via self-assembly processes. The focus is placed on two main topics: First, an overview of advanced experimental small-angle X-ray scattering (SAXS) setups combined with various sample...... negatively charged vesicles with calcium ions, and in situ hydration-induced formation of inverted-type liquid-crystalline phases loaded with the local anesthetic bupivacaine are summarized. These in situ time-resolved experiments allow real-time monitoring of the dynamics of the structural changes...

  13. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    International Nuclear Information System (INIS)

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de; Marques, Maria Rita; Leite, Carla Braga

    2009-01-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  14. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Exatas e Tecnologia. Dept. de Quimica], e-mail: dlima@nin.ufms.br; Marques, Maria Rita; Leite, Carla Braga [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Biologicas. Dept. de Morfofisiologia

    2009-07-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  15. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Directory of Open Access Journals (Sweden)

    Edson dos Anjos dos Santos

    2009-01-01

    Full Text Available Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H-one (1 and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H-one (2. The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in milimolar range.

  16. How membrane lipids control the 3D structure and function of receptors

    Directory of Open Access Journals (Sweden)

    Jacques Fantini

    2018-02-01

    Full Text Available The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids or less tightly attached to the external surface of the protein (annular lipids. The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane proteins through stereoselective mechanisms, they can also help membrane receptors acquire (or maintain a functional 3D structure. Cholesterol is the prototype of membrane lipids that finely controls the 3D structure and function of receptors. However, several other lipids such as sphingolipids may also modulate the function of membrane proteins though conformational adjustments. All these concepts are discussed in this review in the light of representative examples taken from the literature.

  17. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    International Nuclear Information System (INIS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10 8 –10 9 V m −1 , which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10 8 V m −1 ) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10 8 V m −1 ) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  18. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, IK 207 DTU, DK-2800 Lyngby (Denmark); Taub, H.; Miskowiec, A. [Department of Physics and Astronomy and the University of Missouri Research Reactor,University of Missouri, Columbia, Missouri 65211 (United States)

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1

  19. A new look at lipid-membrane structure in relation to drug research

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Jørgensen, Kent

    1998-01-01

    Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design...... of new drugs and drug-delivery systems therefore requries insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental...... and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality....

  20. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  1. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    Science.gov (United States)

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Spinor Structure and Internal Symmetries

    Science.gov (United States)

    Varlamov, V. V.

    2015-10-01

    Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.

  3. Optimization of cationic lipid mediated gene transfer: structure-function, physico-chemical, and cellular studies.

    Science.gov (United States)

    Carrière, Marie; Tranchant, Isabelle; Niore, Pierre-Antoine; Byk, Gerardo; Mignet, Nathalie; Escriou, Virginie; Scherman, Daniel; Herscovici, Jean

    2002-01-01

    The rationale design aimed at the enhancement of cationic lipid mediated gene transfer is discussed. These improvements are based on the straight evaluation of the structure-activity relationship and on the introduction of new structures. Much attention have been given to the supramolecular structures of the lipid/DNA complexes, to the effect of serum on gene transfer and to the intracellular trafficking of the lipoplexes. Finally new avenue using reducible cationic lipids has been discussed.

  4. Effects of High Pressure on Internally Self-Assembled Lipid Nanoparticles

    DEFF Research Database (Denmark)

    Kulkarni, Chandrashekhar V; Yaghmur, Anan; Steinhart, Milos

    2016-01-01

    We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3...... the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.......We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m......), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk...

  5. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  6. Structural characterization of suppressor lipids by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian

    2016-01-01

    RATIONALE: Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long...... chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. METHODS: Suppressor lipids were...... isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. RESULTS: Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization...

  7. Influence of cholesterol and ceramide VI on the structure of multilamellar lipid membranes at water exchange

    International Nuclear Information System (INIS)

    Ryabova, N. Yu.; Kiselev, M. A.; Balagurov, A. M.

    2010-01-01

    The structural changes in the multilamellar lipid membranes of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and DPPC/ceramide VI binary systems during hydration and dehydration have been studied by neutron diffraction. The effect of cholesterol and ceramide on the kinetics of water exchange in DPPC membranes is characterized. Compared to pure DPPC, membranes of binary systems swell faster during hydration (with a characteristic time of ∼30 min). Both compounds, ceramide VI and cholesterol, similarly affect the hydration of DPPC membranes, increasing the repeat distance due to the bilayer growth. However, in contrast to cholesterol, ceramide significantly reduces the thickness of the membrane water layer. The introduction of cholesterol into a DPPC membrane slows down the change in the parameters of the bilayer internal structure during dehydration. In the DPPC/ceramide VI/cholesterol ternary system (with a molar cholesterol concentration of 40%), cholesterol is partially released from the lamellar membrane structure into the crystalline phase.

  8. Market structures in international telecommunications

    DEFF Research Database (Denmark)

    Henten, Anders

    1998-01-01

    Paper dealing with the internationalisation of telecommunications and the developing market structures.......Paper dealing with the internationalisation of telecommunications and the developing market structures....

  9. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    Energy Technology Data Exchange (ETDEWEB)

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  10. Structural transition in a lipid-water liquid system

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Solovjov, D.V.; Solovjov, D.V.; Gorshkova, Yu.Je.; Zhigunov, O.M.; Ivan'kov, O.I.; Ivan'kov, O.I.; Gordelij, V.I.; Gordelij, V.I.; Gordelij, V.I.; Gordelij, V.I.; Kuklin, O.I.; Kuklin, O.I.

    2012-01-01

    Small-angle X-ray scattering technique has been used to study multilayer lipid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the 3:1-mixture DPPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in excess water. The temperature dependences of the repetition period for lipid bilayers in the temperature range 20-55 o C are obtained. A comparative analysis of the scattering curves obtained for multilayer membranes showed that, below a temperature of 40 o C , there emerges an additional ordering with a repetition period of 66 A in the lipid mixture, which we associate with the lipid phase separation. A disappearance of the so-called ripple (wave-like) phase of DPPC lipid in the mixture is also observed.

  11. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  12. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  13. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid...

  14. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  15. Investigation of lipid membrane macro- and micro-structure using calorimetry and computer simulation: structural and functional relationships

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Mouritsen, Ole G.

    1999-01-01

    lead to the formation of a heterogeneous lateral bilayer structure composed of dynamic lipid domains and differentiated bilayer regions. In addition, the non-equilibrium dynamic ordering process of coexisting phases can give rise to the formation of local lipid structures on various length- and time...

  16. Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes.

    Science.gov (United States)

    Swanson, Scott D; Malyarenko, Dariya I; Fabiilli, Mario L; Welsh, Robert C; Nielsen, Jon-Fredrik; Srinivasan, Ashok

    2017-03-01

    To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T 1D , were measured at 2.0 and 11.7 T. The amplitude of ihMT ratio (ihMTR) is positively correlated with T 1D values. Both ihMTR and T 1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T 1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Engineering lipid structure for recognition of the liquid ordered membrane phase

    International Nuclear Information System (INIS)

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-01-01

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L_o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L_o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L_d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L_o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L_o phase.

  18. Organizational Structures that Support Internal Program Evaluation

    Science.gov (United States)

    Lambur, Michael T.

    2008-01-01

    This chapter explores how the structure of large complex organizations such as Cooperative Extension affects their ability to support internal evaluation of their programs and activities. Following a literature review of organizational structure and its relation to internal evaluation capacity, the chapter presents the results of interviews with…

  19. Biosynthesis and structure-activity relationships of the lipid a family of glycolipids.

    Science.gov (United States)

    Xiao, Xirui; Sankaranarayanan, Karthik; Khosla, Chaitan

    2017-10-01

    Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of Gram-negative bacteria, is a potent elicitor of innate immune responses in mammals. A typical LPS molecule is composed of three different structural domains: a polysaccharide called the O-antigen, a core oligosaccharide, and Lipid A. Lipid A is the amphipathic glycolipid moiety of LPS. It stimulates the immune system by tightly binding to Toll-like receptor 4. More recently, Lipid A has also been shown to activate intracellular caspase-4 and caspase-5. An impressive diversity is observed in Lipid A structures from different Gram-negative bacteria, and it is well established that subtle changes in chemical structure can result in dramatically different immune activities. For example, Lipid A from Escherichia coli is highly toxic to humans, whereas a biosynthetic precursor called Lipid IV A blocks this toxic activity, and monophosphoryl Lipid A from Salmonella minnesota is a vaccine adjuvant. Thus, an understanding of structure-activity relationships in this glycolipid family could be used to design useful immunomodulatory agents. Here we review the biosynthesis, modification, and structure-activity relationships of Lipid A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  1. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    Science.gov (United States)

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  2. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...... performed structural analysis using multistage activation on the ion trap-orbitrap instrument as well as tandem mass analysis using a quadrupole time-of-flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described...

  3. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  4. Relationship between molecular structure and supramolecular morphology of DODA-EO2-biotin and related lipids

    NARCIS (Netherlands)

    Huetz, P.; van Neuren, S.; Ringler, P.; Kremer, F.; van Breemen, J.F.L.; Wagenaar, A.; Engberts, J.B.F.N.; Fraaije, J.G E M; Brisson, A.

    1997-01-01

    We have recently reported that a biotinylated lipid molecule, called DODA-EO2-biotin, forms tubular lipid structures upon hydration, which act as a matrix for the formation of ordered helical arrays of streptavidin as well as for secondary macromolecular recognition reactions involving biotinylated

  5. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  6. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  7. Interaction of cholesterol-conjugated ionizable amino lipids with biomembranes: lipid polymorphism, structure-activity relationship, and implications for siRNA delivery.

    Science.gov (United States)

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-08-02

    Delivery of siRNA is a major obstacle to the advancement of RNAi as a novel therapeutic modality. Lipid nanoparticles (LNP) consisting of ionizable amino lipids are being developed as an important delivery platform for siRNAs, and significant efforts are being made to understand the structure-activity relationship (SAR) of the lipids. This article uses a combination of small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) to evaluate the interaction between cholesterol-conjugated ionizable amino lipids and biomembranes, focusing on an important area of lipid SAR--the ability of lipids to destabilize membrane bilayer structures and facilitate endosomal escape. In this study, cholesterol-conjugated amino lipids were found to be effective in increasing the order of biomembranes and also highly effective in inducing phase changes in biological membranes in vitro (i.e., the lamellar to inverted hexagonal phase transition). The phase transition temperatures, determined using SAXS and DSC, serve as an indicator for ranking the potency of lipids to destabilize endosomal membranes. It was found that the bilayer disruption ability of amino lipids depends strongly on the amino lipid concentration in membranes. Amino lipids with systematic variations in headgroups, the extent of ionization, tail length, the degree of unsaturation, and tail asymmetry were evaluated for their bilayer disruption ability to establish SAR. Overall, it was found that the impact of these lipid structure changes on their bilayer disruption ability agrees well with the results from a conceptual molecular "shape" analysis. Implications of the findings from this study for siRNA delivery are discussed. The methods reported here can be used to support the SAR screening of cationic lipids for siRNA delivery, and the information revealed through the study of the interaction between cationic lipids and biomembranes will contribute significantly to the design of more efficient si

  8. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....... of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...

  9. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  10. Structural transition in a lipid - water liquid system

    Czech Academy of Sciences Publication Activity Database

    Bulavin, L. A.; Solov´ev, D. V.; Gorshkova, Yu. E.; Zhigunov, Alexander; Ivan´kov, O. I.; Gordelii, V. I.; Kuklin, O. I.

    2012-01-01

    Roč. 57, č. 6 (2012), s. 623-627 ISSN 2071-0194 Institutional research plan: CEZ:AV0Z40500505 Keywords : multilayer lipid membranes * X-ray scattering * DPPC/POPC Subject RIV: CF - Physical ; Theoretical Chemistry http://www.ujp.bitp.kiev.ua/index.php?item=j&id=152

  11. Synthesis, activity, and structure--activity relationship studies of novel cationic lipids for DNA transfer.

    Science.gov (United States)

    Byk, G; Dubertret, C; Escriou, V; Frederic, M; Jaslin, G; Rangara, R; Pitard, B; Crouzet, J; Wils, P; Schwartz, B; Scherman, D

    1998-01-15

    We have designed and synthesized original cationic lipids for gene delivery. A synthetic method on solid support allowed easy access to unsymmetrically monofunctionalized polyamine building blocks of variable geometries. These polyamine building blocks were introduced into cationic lipids. To optimize the transfection efficiency in the novel series, we have carried out structure-activity relationship studies by introduction of variable-length lipids, of variable-length linkers between lipid and cationic moiety, and of substituted linkers. We introduce the concept of using the linkers within cationic lipids molecules as carriers of side groups harboring various functionalities (side chain entity), as assessed by the introduction of a library composed of cationic entities, additional lipid chains, targeting groups, and finally the molecular probes rhodamine and biotin for cellular traffic studies. The transfection activity of the products was assayed in vitro on Hela carcinoma, on NIH3T3, and on CV1 fibroblasts and in vivo on the Lewis Lung carcinoma model. Products from the series displayed high transfection activities. Results indicated that the introduction of a targeting side chain moiety into the cationic lipid is permitted. A primary physicochemical characterization of the DNA/lipid complexes was demonstrated with this leading compound. Selected products from the series are currently being developed for preclinical studies, and the labeled lipopolyamines can be used to study the intracellular traffic of DNA/cationic lipid complexes.

  12. Purification of specific structured lipids by distillation: Effects on acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, A.; Adler-Nissen, Jens

    2001-01-01

    The cause and effects of acyl migration during the purification of specific structured lipids by distillation were studied in a conventional batch deodorizer with stripping steam. The mixture of specific structured lipids produced by lipase-catalyzed acidolysis between rapeseed oil and capric acid...... influenced the rate of acyl migration, and their combinations made the effect more severe. However, diacylglycerols were found to be the main reason for acyl migration. In the distillation of the specific structured lipid product mixture, distillation temperature and time were the main factors to determine...... the degree of acyl migration and the extent of separation of free fatty acids. The results indicate that more efficient separation technology should be used to improve the quality of the purified structured lipids. in order to reduce the distillation temperature, vacuum should be made as low as possible...

  13. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    International Nuclear Information System (INIS)

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang; Karam, George

    2006-01-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 Å resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity

  14. Production of structured lipids: acyl migration during enzymatic interesterification and downstream processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    1997-01-01

    Production of structured lipids by lipase-catalyzed interesterification attracts great interests recently. Structured lipids are defined, in this article, as triacylglycerols which contain both medium or short chain fatty acids and long chain fatty acids, each groups locating specifically in the sn......-2 position or sn-1,3 positions of glycerol backbone. These kinds of lipids are reported to be promising for both enteral and parenteral nutrition. However, acyl migration occurs in the reaction stage and downstream purification process. This side-reaction causes by-products which are harmful...

  15. Chemical and structural analysis of Eucalyptus globulus and E. camaldulensis leaf cuticles: a lipidized cell wall region

    Directory of Open Access Journals (Sweden)

    Paula eGuzmán

    2014-09-01

    Full Text Available The plant cuticle has traditionally been conceived as an independent hydrophobic layer that covers the external epidermal cell wall. Due to its complexity, the existing relationship between cuticle chemical composition and ultra-structure remains unclear to date. This study aimed to examine the link between chemical composition and structure of isolated, adaxial leaf cuticles of Eucalyptus camaldulensis and E. globulus by the gradual extraction and identification of lipid constituents (cutin and soluble lipids, coupled to spectroscopic and microscopic analyses. The soluble compounds and cutin monomers identified could not be assigned to a concrete internal cuticle ultra-structure. After cutin depolymerization, a cellulose network resembling the cell wall was observed, with different structural patterns in the regions ascribed to the cuticle proper and cuticular layer, respectively. Our results suggest that the current cuticle model should be revised, stressing the presence and major role of cell wall polysaccharides. It is concluded that the cuticle may be interpreted as a modified cell wall region which contains additional lipids. The major heterogeneity of the plant cuticle makes it difficult to establish a direct link between cuticle chemistry and structure with the existing methodologies.

  16. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  17. Correction of Free Radical Lipid Oxidation in Internal Female Genital Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    A. D. Belyaevsky

    2008-01-01

    Full Text Available The paper descries a specific view on the mechanism responsible for development of the resistance of an inflammatory process in the female genital tract to drugs and on the role of a free radical process activation factor in the pathogenesis of the disease. Emphasis is laid on the importance of measures to diminish cell membrane permeability, by correcting their structural and functional states with antioxidants. Key words: inflammatory processes in the female genital organs, lipid peroxidation, antioxidative defense, cell membrane structural and functional state.

  18. Elucidating the mechanisms of nanodiamond-promoted structural disruption of crystallised lipid.

    Science.gov (United States)

    Hughes, Zak E; Walsh, Tiffany R

    2016-10-12

    The removal or structural disruption of crystallised lipid is a pivotal but energy-intensive step in a wide range of industrial and biological processes. Strategies to disrupt the structure of crystallised lipid in aqueous solution at lower temperatures are much needed, where nanoparticle-based strategies show enormous promise. Using the aqueous tristearin bilayer as a model for crystallised lipid, we demonstrate that the synergistic use of surfactant and detonation nanodiamonds can depress the onset temperature at which disruption of the crystallised lipid structure occurs. Our simulations reveal the molecular-scale mechanisms by which this disruption takes place, indicating that the nanodiamonds serve a dual purpose. First, the nanodiamonds are predicted to facilitate delivery of surfactant to the lipid/water interface, and second, nanodiamond adsorption acts to roughen the lipid/water interface, enhancing ingress of surfactant into the bilayer. We find the balance of the hydrophobic surface area of the nanodiamond and the nanodiamond surface charge density to be a key determinant of the effectiveness of using nanodiamonds to facilitate lipid disruption. For the nanodiamond size considered here, we identify a moderate surface charge density, that ensures the nanodiamonds are neither too hydrophobic nor too hydrophilic, to be optimal.

  19. Effect of tea catechins on the structure of lipid membrane and beta-ray induced lipid peroxidation

    International Nuclear Information System (INIS)

    Kubota, M.; Haga, H.; Takeuchi, Y.; Okuno, K.; Yoshioka, H.; Yoshioka, H.

    2007-01-01

    Inhibiting effect of four tea catechins, (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), on the lipid peroxidation induced by β-ray in tritiated water was examined using a spin probe method. 16-Doxylstearic acid (16NS) was incorporated into the liposome prepared from egg yolk phosphatidylcholine and the rate of the decrease of ESR intensity of 16NS was used as a measure of the inhibiting effect. In the low concentration region below 10 -5 M, catechins showed their inhibitions on the lipid peroxidation according to the order of ECG>EGCG>EC>EGC. This result was explained by a model that the initiator of the peroxidation is the hydroxyl radical (·OH) and the catechins adsorbed on the lipid membrane surface acting as scavengers of ·OH. In the high concentration range, however, the effect was diverse and it decreased with the increase of it in the case of EGCG. EGCG in this range was considered to enter into the interior of the membrane and break the structure, which causes the decrease of 16NS. Observation with transmission electron microscope (TEM) revealed that the size of the liposome became larger with the increasing concentration of EGCG and finally it was broken into fragments, showing that EGCG broadened the area of the liposome as expected from the result of ESR. (author)

  20. Advances and unresolved challenges in the structural characterization of isomeric lipids.

    Science.gov (United States)

    Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W

    2017-05-01

    As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  1. The International Standards Organisation offshore structures standard

    International Nuclear Information System (INIS)

    Snell, R.O.

    1994-01-01

    The International Standards Organisation has initiated a program to develop a suite of ISO Codes and Standards for the Oil Industry. The Offshore Structures Standard is one of seven topics being addressed. The scope of the standard will encompass fixed steel and concrete structures, floating structures, Arctic structures and the site specific assessment of mobile drilling and accommodation units. The standard will use as base documents the existing recommended practices and standards most frequently used for each type of structure, and will develop them to incorporate best published and recognized practice and knowledge where it provides a significant improvement on the base document. Work on the Code has commenced under the direction of an internationally constituted sub-committee comprising representatives from most of the countries with a substantial offshore oil and gas industry. This paper outlines the background to the code and the format, content and work program

  2. Structural studies of the lipid membranes at the Siberia-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Kiselev, M. A.; Ermakova, E. V.; Ryabova, N. Yu.; Nayda, O. V.; Zabelin, A. V.; Pogorely, D. K.; Korneev, V. N.; Balagurov, A. M.

    2010-01-01

    Lipid membranes are a subject of contemporary interdisciplinary studies at the junction of biology, biophysics, pharmacology, and bionanotechnology. The results of the structural studies of several types of lipid membranes by the lamellar and lateral diffraction of X-ray synchrotron radiation are presented. The experiments were performed at the Mediana and DICSI stations of the Siberia-2 synchrotron radiation source at the Russian Research Center Kurchatov Institute. The data obtained are compared with the results of studying lipid membranes at the small-angle scattering beamlines D22 and D24 at LURE (France) and at the A2 beamline at DESY (Germany). The parameters of the DICSI station are shown to meet the basic requirements for the structural study of lipid systems, which are of fundamental and applied interest.

  3. The development of flow-through bio-catalyst microreactors from silica micro structured fibers for lipid transformations.

    Science.gov (United States)

    Anuar, Sabiqah Tuan; Villegas, Carla; Mugo, Samuel M; Curtis, Jonathan M

    2011-06-01

    This study demonstrates the utility of a flow-through enzyme immobilized silica microreactor for lipid transformations. A silica micro structured fiber (MSF) consisting of 168 channels of internal diameter 4-5 μm provided a large surface area for the covalent immobilization of Candida antartica lipase. The specific activity of the immobilized lipase was determined by hydrolysis of p-nitrophenyl butyrate and calculated to be 0.81 U/mg. The catalytic performance of the lipase microreactor was demonstrated by the efficient ethanolysis of canola oil. The parameters affecting the performance of the MSF microreactor, including temperature and reaction flow rate, were investigated. Characterization of the lipid products exiting the microreactor was performed by non-aqueous reversed-phased liquid chromatography (NARP-LC) with evaporative light scattering detector (ELSD) and by comprehensive two-dimensional gas chromatography (GC x GC). Under optimized conditions of 1 μL/min flow rate of 5 mg/mL trioleoylglycerol (TO) in ethanol and 50 °C reaction temperature, 2-monooleoylglycerol was the main product at > 90% reaction yield. The regioselectivity of the Candida antartica lipase immobilized MSF microreactor in the presence of ethanol was found to be comparable to that obtained under conventional conditions. The ability of these reusable flow-through microreactors to regioselectively form monoacylglycerides in high yield from triacylglycerides demonstrate their potential use in small-scale lipid transformations or analytical lipids profiling.

  4. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.

  5. What can we learn about the lipid vesicle structure from the small angle neutron scattering experiment?

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Aswal, V.K.; Neubert, R.H.H.

    2005-01-01

    Small angle neutron scattering (SANS) on the unilamellar vesicle populations (diameter of 500 and 1000 Armstrong) was used to characterize lipid vesicles from dimyristoylphosphatidylcholine (DMPC) in three phases (gel, ripple, and liquid). Parameters of vesicle populations and internal structure of the DMPC bilayer were characterized on the basis of the Separated Form Factor (SFF) model. Vesicle shape changes from about spherical in liquid phase to elliptical in ripple and gel phases for vesicles prepared via extrusion through pores with the diameter of 500 Armstrong. Parameters of the internal bilayer structure (membrane thickness, thickness of the hydrophobic core, hydration, and surface area of lipid molecule) were determined on the basis of the Hydrophobic-Hydrophilic (HH) approximation of neutron scattering length density across the bilayer ρ(x) and on the basis of the Step Function (SF) approximation of ρ(x). It was demonstrated in the framework of HH approximation that DMPC membrane thickness in the liquid phase (T = 30 deg C) depends on the membrane curvature. Vesicle population prepared via extrusion through pores with the diameter of 500 Armstrong is characterized by an average radius of 275.6 ± 0.5 Armstrong, polydispersity of 27%, membrane thickness of 47.8 ± 0.2 Armstrong, thickness of hydrophobic core of 20.5 ± 0.3 Armstrong, surface area per DMPC molecule of 61.0 ± 0.4 A 2 Armstrong, and the number of water molecules per DMPC molecule of 11.9 ± 0.3. Vesicles prepared via extrusion through pores with the diameter of 1000 Armstrong have a polydispersity of 48%, and a membrane thickness of 45.6 ± 0.2 Armstrong. SF approximation was used to describe the DMPC membrane structure in gel (T 10 deg C) and ripple (T = 20 deg C) phases. DMPC vesicles prepared via extrusion through 1000- Armstrong pores have a membrane thickness of 49.6 ± 0.5 Armstrong in the gel phase and 48.3 ± 0.6 Armstrong in the ripple phase. The dependence of the DMPC membrane

  6. Production of vegetable oil blends and structured lipids and their effect on wound healing

    Directory of Open Access Journals (Sweden)

    Juliana Neves Rodrigues Ract

    2015-06-01

    Full Text Available Two oil blends (sunflower/canola oils 85/15 (BL1 and canola/linseed oils 70/30 (BL2, were prepared and enzymatically interesterified to be applied to surgically-induced wounds in rats. Following surgery, the animals were submitted to the Treatment with Physiological Saline (TPS (control group, Blends (TBL, and Structured Lipids (TSL. The control group (TPS received physiological saline solution for 15 days. In TBL, BL1 was administered during the inflammation phase (days 0-3 and BL2 in the tissue formation and remodeling phase (days 4-15. In TSL, Structured Lipid 1 (SL1 and Structured Lipid 2 (SL2 were used instead of BL1 and BL2, respectively. The aim of this study was to compare wound closure evolution among rats treated with the blends or structured lipids versus control rats treated with physiological saline. The wound healing process was evaluated by measuring the wound areas along the treatments and the concentrations of cytokines. An increase in the areas of wounds treated with the blends and structured lipids in the inflammatory phase was observed, followed by a steeper closure curve compared to wounds treated with physiological saline. The changes observed during the inflammatory phase suggest a potential therapeutic application in cutaneous wound healing which should be further investigated.

  7. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  8. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  9. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    International Nuclear Information System (INIS)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and the preferred monolayer curvature J 0 m , and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k c and the area compression modulus k A are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k ¯ and J 0 m can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k ¯ and J 0 m change sign with relevant parameter changes. Although typically k ¯ 0 m ≫0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks

  10. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    Science.gov (United States)

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  11. Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A.

    Directory of Open Access Journals (Sweden)

    Jason H Barker

    Full Text Available Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS has a structurally unique lipid anchor, we have metabolically labeled Francisella with [14C]acetate to facilitate highly sensitive compositional analysis of capsule-associated lipids. Capsule was purified by two independent methods and yielded similar results. Autoradiographic and immunologic analysis confirmed that this purified material was largely devoid of low molecular weight LPS and of the copious amounts of free lipid A that the Francisellae accumulate. Chemical hydrolysis yielded [14C]-labeled free fatty acids characteristic of Francisella lipid A but with a different molar ratio of 3-OH C18:0 to 3-OH C16:0 and different composition of non-hydroxylated fatty acids (mainly C14:0 rather than C16:0 than that of free Francisella lipid A. Mild acid hydrolysis to induce selective cleavage of KDO-lipid A linkage yielded a [14C]-labeled product that partitioned during Bligh/Dyer extraction and migrated during thin-layer chromatography like lipid A. These findings suggest that the O-antigen capsule of Francisella contains a covalently linked and structurally distinct lipid A species. The presence of a discrete lipid A-like molecule associated with capsule raises the possibility that Francisella selectively exploits lipid A structural heterogeneity to regulate synthesis, transport, and stable bacterial surface association of the O-antigen capsular layer.

  12. Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids

    DEFF Research Database (Denmark)

    Murtola, T.; Vuorela, T. A.; Hyvonen, M. T.

    2011-01-01

    's structural information makes it more difficult to understand its function. In this work, we have combined experimental and theoretical data to construct LDL models comprised of the apoB-100 protein wrapped around a lipid droplet of about 20 nm in size. The models are considered by near-atomistic multi......-microsecond simulations to unravel structural as well as dynamical properties of LDL, with particular attention paid to lipids and their interactions with the protein. We find that the distribution and the ordering of the lipids in the LDL particle are rather complex. The previously proposed 2- and 3- layer models turn......Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL...

  13. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    International Nuclear Information System (INIS)

    Puntheeranurak, Theeraporn; Stroh, Cordula; Zhu Rong; Angsuthanasombat, Chanan; Hinterdorfer, Peter

    2005-01-01

    Bacillus thuringiensis Cry δ-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin

  14. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  15. PEGylation of Phytantriol-Based Lyotropic Liquid Crystalline Particles-The Effect of Lipid Composition, PEG Chain Length, and Temperature on the Internal Nanostructure

    DEFF Research Database (Denmark)

    Nilsson, Christa; Ostergaard, Jesper; Larsen, Susan Weng

    2014-01-01

    of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based...

  16. Internal spin structure of the nucleon

    International Nuclear Information System (INIS)

    Hughes, V.W.; Kuti, J.

    1983-01-01

    The study of the structure of the proton and neutron through deep inelastic scattering, initially with electrons but subsequently with muons and neutrinos as well, has played a central role in establishing the quark-parton theory of the composition of hadrons and of quantum chromodynamics (QCD). One important aspect of these theoretical and experimental developments is the two spin-dependent structure functions, which are independent of the two spin-averaged structure functions and define the internal spin structure of the nucleon. Since both quarks and gluons possess spin and the forces between them are spin dependent, we can expect important information on these forces and on nucleon structure to be obtained through the study of the spindependent aspects of the nucleon wave function, as has been the case before in atomic and nuclear physics

  17. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M., E-mail: Frans.leermakers@wur.nl [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen (Netherlands)

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  18. How relevant are assembled equilibrium samples in understanding structure formation during lipid digestion?

    Science.gov (United States)

    Phan, Stephanie; Salentinig, Stefan; Hawley, Adrian; Boyd, Ben J

    2015-10-01

    Lipid-based formulations are gaining interest for use as drug delivery systems for poorly water-soluble drug compounds. During digestion, the lipolysis products self-assemble with endogenous surfactants in the gastrointestinal tract to form colloidal structures, enabling enhanced drug solubilisation. Although earlier studies in the literature focus on assembled equilibrium systems, little is known about structure formation under dynamic lipolysis conditions. The purpose of this study was to investigate the likely colloidal structure formation in the small intestine after the ingestion of lipids, under equilibrium and dynamic conditions. The structural aspects were studied using small angle X-ray scattering and dynamic light scattering, and were found to depend on lipid composition, lipid chain length, prandial state and emulsification. Incorporation of phospholipids and lipolysis products into bile salt micelles resulted in swelling of the structure. At insufficient bile salt concentrations, a co-existing lamellar phase was observed, due to a reduction in the solubilisation capacity for lipolysis products. Emulsification accelerated the rate of lipolysis and structure formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structure-function relationships of new lipids designed for DNA transfection.

    Science.gov (United States)

    Dittrich, Matthias; Heinze, Martin; Wölk, Christian; Funari, Sergio S; Dobner, Bodo; Möhwald, Helmuth; Brezesinski, Gerald

    2011-08-22

    Cationic liposome/DNA complexes can be used as nonviral vectors for direct delivery of DNA-based biopharmaceuticals to damaged cells and tissues. To obtain more effective and safer liposome-based gene transfection systems, two cationic lipids with identical head groups but different chain structures are investigated with respect to their in vitro gene-transfer activity, their cell-damaging characteristics, and their physicochemical properties. The gene-transfer activities of the two lipids are very different. Differential scanning calorimetry and synchrotron small- and wide-angle X-ray scattering give valuable structural insight. A subgel-like structure with high packing density and high phase-transition temperature from gel to liquid-crystalline state are found for lipid 7 (N'-2-[(2,6-diamino-1-oxohexyl)amino]ethyl-2,N-bis(hexadecyl)propanediamide) containing two saturated chains. Additionally, an ordered head-group lattice based on formation of a hydrogen-bond network is present. In contrast, lipid 8 (N'-2-[(2,6-diamino-1-oxohexyl)amino]ethyl-2-hexadecyl-N-[(9Z)-octadec-9-enyl]propanediamide) with one unsaturated and one saturated chain shows a lower phase-transition temperature and a reduced packing density. These properties enhance incorporation of the helper lipid cholesterol needed for gene transfection. Both lipids, either pure or in mixtures with cholesterol, form lamellar phases, which are preserved after addition of DNA. However, the system separates into phases containing DNA and phases without DNA. On increasing the temperature, DNA is released and only a lipid phase without intercalated DNA strands is observed. The conversion temperatures are very different in the two systems studied. The important parameter seems to be the charge density of the lipid membranes, which is a result of different solubility of cholesterol in the two lipid membranes. Therefore, different binding affinities of the DNA to the lipid mixtures are achieved. Copyright © 2011

  20. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    Science.gov (United States)

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    Science.gov (United States)

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies

  2. Crystal Structure of a Lipid G Protein-Coupled Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C [Scripps; (Receptos)

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  3. Structural and functional characterization of P4-ATPase lipid flippases

    DEFF Research Database (Denmark)

    Ulstrup, Jakob

    2018-01-01

    to its much larger substrate and how the mechanism allowing the transport unfolds. This is one of the central questions in the field known as the “giant substrate problem”. To this date, no structural information of P4-ATPases is available. The focus of this thesis is divided into two projects, both...... focusing on P4-ATPases from the yeast organism Saccharomyces cerevisiae: I. The structural characterization of the flippase Drs2p in complex with its auxiliary subunit Cdc50p. II. Establishing a protocol for obtaining a homogenous sample of the flippase Neo1p suitable for biochemical characterization...... and substrate identification. Part I was performed using X-ray crystallography and single-particle electron microscopy as the main methods. A 3D envelope was obtained by cryo-EM extending to a resolution of 4.4 Å. This envelope reveals the first structural insight of the conformational organization of the Drs2p...

  4. Oxidative quality of commercial fried nuts: evaluation of a surface and an internal lipid fraction

    Directory of Open Access Journals (Sweden)

    Dobarganes, M. C.

    2006-09-01

    Full Text Available The oxidative quality of commercial fried nuts was evaluated by independent analyses of two lipid fractions, the surface oil, and the internal lipid fraction. The nuts studied were 6 samples of almonds, 10 samples of peanuts, 4 samples of sunflower seeds and 2 samples of cashew nuts. The oil content, peroxide value, polymer content, and fatty acid composition were analyzed. The results showed two lipid fractions with different oxidation status. Higher oxidation levels were normally found in the oil fraction more exposed  to air, although considerably higher oxidation status in the internal oil was also detected in various samples. Oxidative quality was also evaluated in selected samples of each nut after 1 year of storage at room temperature, in the dark . Only the almonds and cashew nuts exhibited acceptable oxidative quality after storage. In addition, a study on the changes due to frying and the contribution of the frying oil to the lipids in the final product showed that the composition of the surface oil can be changed by the incorporation of substantial contents of the frying fat. Consequently, the frying fat may exert some effect on the oxidative quality and oxidative stability of the surface oil.En este estudio se evalúa la calidad oxidativa de muestras comerciales de frutos secos fritos mediante el análisis independiente de dos fracciones lipídicas, el aceite superficial, fácilmente extraíble con disolventes orgánicos, y la fracción de lípidos internos. Las muestras estudiadas fueron 6 muestras de almendras, 10 muestras de cacahuetes, 4 muestras de pipas de girasol y 2 muestras de anacardos. Se analizaron el contenido de aceite, el índice de peróxidos, el contenido de polímeros y la composición de ácidos grasos. Los resultados mostraron dos fracciones lipídicas con diferente estado de oxidación. Mayores niveles de oxidación fueron normalmente encontrados en la fracción más expuesta al aire, aunque estados de oxidaci

  5. Phagocytosis and killing of Candida albicans by human neutrophils after exposure to structurally different lipid emulsions.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Curfs, J.H.A.J.; Meis, J.F.G.M.; Naber, A.H.J.

    2001-01-01

    BACKGROUND: To test the hypothesis that structurally different lipid emulsions have distinct immune-modulating properties, we analyzed the elimination of Candida albicans by neutrophils after exposure to various emulsions. METHODS: Neutrophils from 8 volunteers were incubated in physiologic 5 mmol/L

  6. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex

    NARCIS (Netherlands)

    Kern, Jan; Zouni, Athina; Guskov, Albert; Krauss, Norbert; Wada, Hajime; Murata, Norio

    2009-01-01

    This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome

  7. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...

  8. Application of antioxidants during short-path distillation of structured lipids

    DEFF Research Database (Denmark)

    Timm-Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2007-01-01

    A specific structured lipid was produced from sunflower oil and caprylic acid. The antioxidative effect of adding alpha-tocopherol, ascorbyl palmitate or citric acid (each in three different concentrations) was investigated before and after the purification process (short-path distillation...

  9. Suppression of acyl migration in enzymatic production of structured lipids through temperature programming

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2005-01-01

    Acyl migration in the glycerol backbone often leads to the increase of by-products in the enzymatic production of specific structured lipids. Acyl migration is a thermodynamic process and is very difficult to stop fully in actual reactions. The objective of this study was to investigate...

  10. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    Science.gov (United States)

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been

  11. Effect of Ceramide Tail Length on the Structure of Model Stratum Corneum Lipid Bilayers.

    Science.gov (United States)

    Moore, Timothy C; Hartkamp, Remco; Iacovella, Christopher R; Bunge, Annette L; McCabe, Clare

    2018-01-09

    Lipid bilayers composed of non-hydroxy sphingosine ceramide (CER NS), cholesterol (CHOL), and free fatty acids (FFAs), which are components of the human skin barrier, are studied via molecular dynamics simulations. Since mixtures of these lipids exist in dense gel phases with little molecular mobility at physiological conditions, care must be taken to ensure that the simulations become decorrelated from the initial conditions. Thus, we propose and validate an equilibration protocol based on simulated tempering, in which the simulation takes a random walk through temperature space, allowing the system to break out of metastable configurations and hence become decorrelated from its initial configuration. After validating the equilibration protocol, which we refer to as random-walk molecular dynamics, the effects of the lipid composition and ceramide tail length on bilayer properties are studied. Systems containing pure CER NS, CER NS + CHOL, and CER NS + CHOL + FFA, with the CER NS fatty acid tail length varied within each CER NS-CHOL-FFA composition, are simulated. The bilayer thickness is found to depend on the structure of the center of the bilayer, which arises as a result of the tail-length asymmetry between the lipids studied. The hydrogen bonding between the lipid headgroups and with water is found to change with the overall lipid composition, but is mostly independent of the CER fatty acid tail length. Subtle differences in the lateral packing of the lipid tails are also found as a function of CER tail length. Overall, these results provide insight into the experimentally observed trend of altered barrier properties in skin systems where there are more CERs with shorter tails present. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  13. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  14. The international uranium market - structure and outlook

    International Nuclear Information System (INIS)

    Noreng, Oe.

    1978-01-01

    It is pointed out that the international uranium market is immature and is subject to factors of a political, rather than economic nature. This is due largely to potential military exploitation, which has led USA, Canada and Australia to adopt a restrictive export policy. South Africa and France, on the other hand have a more liberal attitude. The history of the market, and the development of U308 prices are then discussed and related to the phases in the commercial exploitation of nuclear power. The present market structure is described, both international and within Canada, USA, Australia, South Africa and France. The future demand is then discussed, assuming three levels of demand and various price categories. It is shown that the demand will be only slightly influenced by moderate to large increases in price, assuming price rises for coal and oil. It is concluded that the price can rise to $400-500/pound U308. (JIW)

  15. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  16. Plasma lipid pattern and red cell membrane structure in β-thalassemia patients in Jakarta

    Directory of Open Access Journals (Sweden)

    Seruni K.U. Freisleben

    2011-08-01

    Full Text Available Background: Over the last 10 years, we have investigated thalassemia patients in Jakarta to obtain a comprehensive picture of iron overload, oxidative stress, and cell damage.Methods: In blood samples from 15 transfusion-dependent patients (group T, 5 non-transfused patients (group N and 10 controls (group C, plasma lipids and lipoproteins, lipid-soluble vitamin E, malondialdehyde (MDA and thiol status were measured. Isolated eryhtrocyte membranes were investigated with electron paramagnetic resonance (EPR spectroscopy using doxyl-stearic acid and maleimido-proxyl spin lables. Data were analyzed statistically with ANOVA.Results: Plasma triglycerides were higher and cholesterol levels were lower in thalassemic patients compared to controls. Vitamin E, group C: 21.8 vs T: 6.2 μmol/L and reactive thiols (C: 144 vs. T: 61 μmol/L were considerably lower in transfused patients, who exert clear signs of oxidative stress (MDA, C: 1.96 vs T: 9.2 μmol/L and of tissue cell damage, i.e., high transaminases plasma levels. Non-transfused thalassemia patients have slight signs of oxidative stress, but no significant indication of cell damage. Erythrocyte membrane parameters from EPR spectroscopy differ considerably between all groups. In transfusion-dependent patients the structure of the erythrocyte membrane and the gradients of polarity and fluidity are destroyed in lipid domains; binding capacity of protein thiols in the membrane is lower and immobilized.Conclusion: In tranfusion-dependent thalassemic patients, plasma lipid pattern and oxidative stress are associated with structural damage of isolated erythrocyte membranes as measured by EPR spectroscopy with lipid and proteinthiol spin labels. (Med J Indones 2011; 20:178-84Keywords: electron paramagnetic resonance spectroscopy, erythrocyte membrane, lipoproteins, oxidative stress, thalassemia, plasma lipids.

  17. Maxwell-Higgs vortices with internal structure

    Science.gov (United States)

    Bazeia, D.; Marques, M. A.; Menezes, R.

    2018-05-01

    Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.

  18. Cyclen-based double-tailed lipids for DNA delivery: Synthesis and the effect of linking group structures.

    Science.gov (United States)

    Zhang, Yi-Mei; Chang, De-Chun; Zhang, Ji; Liu, Yan-Hong; Yu, Xiao-Qi

    2015-09-01

    The gene transfection efficiency (TE) of cationic lipids is largely influenced by the lipid structure. Six novel 1, 4, 7, 10-tetraazacyclododecane (cyclen)-based cationic lipids L1-L6, which contain double oleyl as hydrophobic tails, were designed and synthesized. The difference between these lipids is their diverse backbone. Liposomes prepared by the lipids and DOPE showed good DNA affinity, and full DNA condensation could be achieved at N/P of 4 to form lipoplexes with proper size and zeta-potentials for gene transfection. Structure-activity relationship of these lipids as non-viral gene delivery vectors was investigated. It was found that minor backbone structural variations, including linking group and the structural symmetry would affect the TE. The diethylenetriamine derived lipid L4 containing amide linking bonds gave the best TE, which was several times higher than commercially available transfection reagent lipofectamine 2000. Besides, these lipids exhibited low cytotoxicity, suggesting their good biocompatibility. Results reveal that such type of cationic lipids might be promising non-viral gene vectors, and also afford us clues for the design of novel vectors with higher TE and biocompatibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    Science.gov (United States)

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  20. Structured lipid emulsion as nutritional therapy for the elderly patients with severe sepsis.

    Science.gov (United States)

    Chen, Jin; Yan, Jing; Cai, Guo-Long; Xu, Qiang-Hong; Gong, Shi-Jin; Dai, Hai-Wen; Yu, Yi-Hua; Li, Li

    2013-06-01

    The nutritional support is one of the important therapeutic strategies for the elderly patients with severe sepsis, but there is controversial in choosing a parenteral nutrition formulation. This study was designed to compare the therapeutic effects of structured lipid emulsion, physically mixed medium, and long-chain fat emulsion in the treatment of severe sepsis in elderly patients. A total number of 64 elder patients with severe sepsis were enrolled in the study. After a week of enteral nutritional support, the patients were randomly divided into research (structured lipid emulsion as parenteral alimentation) and control groups (physically mixed medium and long-chain fat emulsion as parenteral alimentation). The alterations of plasma albumin, lipid metabolism, and blood glucose level were recorded after parenteral alimentation and were compared between the two groups. The plasma levels of albumin, prealbumin, cholesterol, and triglyceride were decreased in all the patients after one week of enteral nutritional support treatment (t = 7.78, P = 0.000; t = 10.21, P = 0.000; t = 7.99, P = 0.000; and t = 10.99, P = 0.000). Further parenteral alimentation with different lipid emulsions had significant effects on the serum prealbumin and albumin (t = 3.316, P = 0.002; t = 3.200, P = 0.002), whilst had no effects on the blood glucose and triglyceride level (t = 7.78, P = 0.000; t = 4.228, P = 0.000). In addition, the two groups had a significantly different Apache II score, ventilator time, and hospital stay time (t = -2.213, P = 0.031; t = 2.317, P = 0.024; t = 2.514, P = 0.015). The structured lipid emulsion was safe as parenteral nutrition for elderly patients with severe sepsis. It was demonstrated to be superior to the physically mixed medium and long-chain fat emulsion with respect to the protein synthesis and prognosis.

  1. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids.

    Directory of Open Access Journals (Sweden)

    Jun-Hui Zhang

    Full Text Available To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML in the production of human milk fat substitute (HMFS, we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease and tripalmitin (7.55 KJ/mol decrease were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type. The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.

  2. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids.

    Science.gov (United States)

    Zhang, Jun-Hui; Jiang, Yu-Yan; Lin, Ying; Sun, Yu-Fei; Zheng, Sui-Ping; Han, Shuang-Yan

    2013-01-01

    To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML) in the production of human milk fat substitute (HMFS), we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease) and tripalmitin (7.55 KJ/mol decrease) were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type). The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.

  3. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Directory of Open Access Journals (Sweden)

    Arumugam Muthu

    2016-11-01

    Full Text Available Abiotic stress in oleaginous microalgae enhances lipid accumulation and is stored in a specialised organelle called lipid droplets (LDs. Both the LDs and body are enriched with major lipid droplet protein (MLDP. It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of S. quadricauda under the salt stress of 10mM concentration is about 0.174μ and in control, the SGR is 0.241μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17. The dry biomass content also decreased drastically at 50mM salt-treated cells (129mg/L compared to control (236mg/L on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  4. Fat emulsions based on structured lipids (1,3-specific triglycerides): an investigation of the in vivo fate.

    Science.gov (United States)

    Hedeman, H; Brøndsted, H; Müllertz, A; Frokjaer, S

    1996-05-01

    Structured lipids (1,3-specific triglycerides) are new chemical entities made by enzymatic transesterification of the fatty acids in the 1,3 positions of the triglyceride. The purpose of this study is to characterize structured lipids with either short chain fatty acids or medium chain fatty acids in the 1,3 positions with regard to their hydrophobicity, and investigate the in vivo fate in order to evaluate the potential of structured lipids as core material in fat emulsions used as parenteral drug delivery system. The lipids were characterized by employing reversed phase high performance liquid chromatography. The biodistribution of radioactively labeled emulsions was studied in rats. By employing high performance liquid chromatography a rank order of the hydrophobicities of the lipids could be given, with the triglycerides containing long chain fatty acids being the most hydrophobic and the structured lipid with short chain fatty acids in the 1,3 positions the least. When formulated as fat emulsions, the emulsion based on structured lipids with short fatty acids in the 1,3 positions was removed slower from the general blood circulation compared to emulsions based on lipids with long chain fatty acids in the 1,3 positions. The type of core material influences the in vivo circulation time of fat emulsions.

  5. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    Science.gov (United States)

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin–sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well.—Kovacs, E., Harmat, V., Tóth, J., Vértessy, B. G., Módos, K., Kardos, J., Liliom, K. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. PMID:20522785

  6. A reexamination and extension of international strategy-structure theory

    OpenAIRE

    Wolf, Joachim; Egelhoff, William G.

    2001-01-01

    Using a sample of 95 German firms, the study finds general support for the traditional fits of international strategy-structure theory. Employing an information-processing perspective, the study conceptually and empirically extends existing theory (1) to address strategy-structure fit for various types of matrix structure, and (2) by adding two new elements of international strategy to the existing international strategy-structure model: the level of international transfers and level of forei...

  7. Polymorphism in 'L' shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains.

    Science.gov (United States)

    Tarafdar, Pradip K; Swamy, Musti J

    2009-11-01

    Although solid state polymorphism in lipids has been established by spectroscopic and calorimetric studies long ago, only in a few cases crystal structures of different polymorphs of the same compound have been reported, possibly due to difficulties in obtaining high quality single crystals of individual polymorphs. Recent studies show that N-, O-diacylethanolamines (DAEs) can be derived by the O-acylation of the stress-related lipids, the N-acylethanolamines under physiological conditions. In this study, two DAEs with mixed acyl chains, namely N-palmitoyl, O-octanoylethanolamine and N-palmitoyl, O-decanoylethanolamine have been synthesized and their three-dimensional structures were determined. Both the compounds were found to adopt 'L' shaped structures and exist in two polymorphic forms, alpha and beta. In the alpha form a mixed-type chain packing has been observed whereas in the beta form the chain packing is symmetric. Similar polymorphic forms are likely to exist in other 'L' shaped lipids such as 1,3-diacylglycerols and ceramides, where polymorphism has been detected earlier, but three-dimensional structures - which can give precise information about the packing at atomic resolution - have not been reported.

  8. New Features in the Lipid A Structure of Brucella suis and Brucella abortus Lipopolysaccharide

    Science.gov (United States)

    Casabuono, Adriana C.; Czibener, Cecilia; Del Giudice, Mariela G.; Valguarnera, Ezequiel; Ugalde, Juan E.; Couto, Alicia S.

    2017-12-01

    Brucellaceae are Gram-negative bacteria that cause brucellosis, one of the most distributed worldwide zoonosis, transmitted to humans by contact with either infected animals or their products. The lipopolysaccharide exposed on the cell surface has been intensively studied and is considered a major virulence factor of Brucella. In the last years, structural studies allowed the determination of new structures in the core oligosaccharide and the O-antigen of this lipopolysaccharide. In this work, we have reinvestigated the lipid A structure isolated from B. suis and B. abortus lipopolysaccharides. A detailed study by MALDI-TOF mass spectrometry in the positive and negative ion modes of the lipid A moieties purified from both species was performed. Interestingly, a new feature was detected: the presence of a pyrophosphorylethanolamine residue substituting the backbone. LID-MS/MS analysis of some of the detected ions allowed assurance that the Lipid A structure composed by the diGlcN3N disaccharide, mainly hexa-acylated and penta-acylated, bearing one phosphate and one pyrophosphorylethanolamine residue. [Figure not available: see fulltext.

  9. Dispersed free phytosterols as structuring agents in lipid systems with reduced saturated fat

    International Nuclear Information System (INIS)

    Godoi, K.R.R.; Basso, R.C.; Buscato, M.H.M.; Cardoso, L.P.; Kieckbusch, T.G.; Ribeiro, A.P.B.

    2017-01-01

    The negative effects of trans fatty acids and saturated fatty acids in food have been widely discussed and this has led to progressive changes in the legislation of many countries. The use of structuring agents or crystallization modifiers, as specific triacylglycerol and minor lipids have been indicated as the only viable alternative for obtaining low saturated fats with properties which are compatible with food application. In this context, phytosterols, natural products with hypocholesterolemic action, and hard fat-crystallization modulators, present a new option for structuring lipid matrices. This work characterized the effects of fully hydrogenated soybean oil and free phytosterols on the physical properties and crystallization behavior of palm oil and canola oil blends for the development of zero trans-fat bases with low levels of saturated fatty acids. The systems were evaluated for chemical composition, atherogenic index, solid fat profiles, microstructure, consistency, thermal behavior and polymorphism. [es

  10. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    Science.gov (United States)

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  11. Internal energy relaxation in shock wave structure

    International Nuclear Information System (INIS)

    Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-01-01

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream

  12. Characterization of interactions of eggPC lipid structures with different biomolecules.

    Science.gov (United States)

    Corrales Chahar, F; Díaz, S B; Ben Altabef, A; Gervasi, C; Alvarez, P E

    2018-01-01

    In this paper we study the interactions of two biomolecules (ascorbic acid and Annonacin) with a bilayer lipid membrane. Egg yolk phosphatidylcholine (eggPC) liposomes (in crystalline liquid state) were prepared in solutions of ascorbic acid (AA) at different concentration levels. On the other hand, liposomes were doped with Annonacin (Ann), a mono-tetrahydrofuran acetogenin (ACG), which is an effective citotoxic substance. While AA pharmacologic effect and action mechanisms are widely known, those of Ann's are only very recently being studied. Both Fourier Transformed Infrared (FTIR) and Raman spectroscopic techniques were used to study the participation of the main functional groups of the lipid bilayer involved in the membrane-solution interaction. The obtained spectra were comparatively analyzed, studying the spectral bands corresponding to both the hydrophobic and the hydrophilic regions in the lipid bilayer. Electrochemical experiments namely; impedance spectroscopy (EIS) and cyclic voltamperometry (CV) were used as the main characterization techniques to analyse stability and structural changes of a model system of supported EggPC bilayer in connection with its interactions with AA and Ann. At high molar ratios of AA, there is dehydration in both populations of the carbonyl group of the polar head of the lipid. On the other hand, Ann promotes the formation of hydrogen bonds with the carbonyl groups. No interaction between AA and phosphate groups is observed at low and intermediate molar ratios. Ann is expected to be able to induce the dehydration of the phosphate groups without the subsequent formation of H bonds with them. According to the electrochemical analysis, the interaction of AA with the supported lipid membrane does not alter its dielectric properties. This fact can be related to the conservation of structured water of the phosphate groups in the polar heads of the lipid. On the other hand, the incorporation of Ann into the lipid membrane generates

  13. CHANGES IN STRUCTURE OF ROMANIA'S INTERNATIONAL TRADE

    Directory of Open Access Journals (Sweden)

    CECILIA IRINA RABONTU

    2014-05-01

    Full Text Available Evolution of structural changes in Romanian trade is somewhat interesting if you look at it from the perspective of mutations that occurred in the categories of goods and services subject to international trade. After the Revolution of 1989, the Romanian economy has gone through dramatic changes that had determinate a total reconfiguration of foreign trade. At the same time, the economic instability has had further repercussions on the Romanian economy manifested through higher prices, reduced wages or earnings, reduced employment and rising unemployment, increasing interest rates on loans due to the devaluation of the national currency, increase value-added tax, consumption reduction etc. We proposed in this paper an analyze for a significant period of time evolution of international trade in goods and services of Romania in order to establish the main categories of goods traded but Romania's main trading partners, too. In order to achieve the central goal of this paper we will use statistical data found in the databases provided by the WTO, Eurostat and the National Statistical Institutes and statistical methods to support our initiative.

  14. A method for analysis of lipid vesicle domain structure from confocal image data

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Fidorra, Matthias; Hartel, Steffen

    2012-01-01

    Quantitative characterization of the lateral structure of curved membranes based on fluorescence microscopy requires knowledge of the fluorophore distribution on the surface. We present an image analysis approach for extraction of the fluorophore distribution on a spherical lipid vesicle from...... confocal imaging stacks. The technique involves projection of volumetric image data onto a triangulated surface mesh representation of the membrane, correction of photoselection effects and global motion of the vesicle during image acquisition and segmentation of the surface into domains using histograms...

  15. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids

    DEFF Research Database (Denmark)

    Reinau, Marika Ejby; Otzen, Daniel

    2009-01-01

    the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's α-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude...... that Ffh is a structurally flexible and dynamic protein whose stability is significantly modulated by the environment. © 2009 Elsevier Inc. All rights reserved....

  16. Internal wave structures in abyssal cataract flows

    Science.gov (United States)

    Makarenko, Nikolay; Liapidevskii, Valery; Morozov, Eugene; Tarakanov, Roman

    2014-05-01

    We discuss some theoretical approaches, experimental results and field data concerning wave phenomena in ocean near-bottom stratified flows. Such strong flows of cold water form everywhere in the Atlantic abyssal channels, and these currents play significant role in the global water exchange. Most interesting wave structures arise in a powerful cataract flows near orographic obstacles which disturb gravity currents by forced lee waves, attached hydraulic jumps, mixing layers etc. All these effects were observed by the authors in the Romanche and Chain fracture zones of Atlantic Ocean during recent cruises of the R/V Akademik Ioffe and R/V Akademik Sergei Vavilov (Morozov et al., Dokl. Earth Sci., 2012, 446(2)). In a general way, deep-water cataract flows down the slope are similar to the stratified flows examined in laboratory experiments. Strong mixing in the sill region leads to the splitting of the gravity current into the layers having the fluids with different densities. Another peculiarity is the presence of critical layers in shear flows sustained over the sill. In the case under consideration, this critical level separates the flow of near-bottom cold water from opposite overflow. In accordance with known theoretical models and laboratory measurements, the critical layer can absorb and reflect internal waves generated by the topography, so the upward propagation of these perturbations is blocked from above. High velocity gradients were registered downstream in the vicinity of cataract and it indicates the existence of developed wave structures beyond the sill formed by intense internal waves. This work was supported by RFBR (grants No 12-01-00671-a, 12-08-10001-k and 13-08-10001-k).

  17. How membrane lipids control the 3D structure and function of receptors

    OpenAIRE

    Jacques Fantini; Francisco J. Barrantes

    2018-01-01

    The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids) or less tightly attached to the external surface of the protein (annular lipids). The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane prote...

  18. Internalization of EGF receptor following lipid rafts disruption in keratinocytes is delayed and dependent on p38 MAPK activation

    DEFF Research Database (Denmark)

    Lambert, S.; Ameels, H.; Gniadecki, R.

    2008-01-01

    The receptor for epidermal growth factor (EGF) plays an important role in epidermal keratinocytes and is known to move out of lipid raft after cholesterol depletion, leading to ligand-independent activation. Accumulation of evidence indicates the ability of EGF receptor (EGFR) to undergo internal......The receptor for epidermal growth factor (EGF) plays an important role in epidermal keratinocytes and is known to move out of lipid raft after cholesterol depletion, leading to ligand-independent activation. Accumulation of evidence indicates the ability of EGF receptor (EGFR) to undergo...... internalization without participation of the ligand under the control of p38 MAPK during stress conditions. Since cholesterol depletion using methyl-beta-cyclodextrin is known to induce ligand-independent activation of EGFR in keratinocytes, we investigated by confocal microscopy and ligand-binding tests...... the process of internalization, which can be considered as a protective response to stress. Moreover, cholesterol-depleted keratinocytes recover their ability to proliferate during the recovery period that follows lipid raft disruption Udgivelsesdato: 2008/12...

  19. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    Science.gov (United States)

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on

  20. Internal structure of reactor building for Madras Atomic Power Project

    International Nuclear Information System (INIS)

    Pandit, D.P.

    1975-01-01

    The structural configuration and analysis of structural elements of the internal structure of reactor building for the Madras Atomic Power Project has been presented. Two methods of analysis of the internal structure, viz. Equivalent Plane Frame and Finite Element Method, are explained and compared with the use of bending moments obtained. (author)

  1. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  2. Oxidative stability of mayonnaise and milk drink produced with structured lipids based on fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2004-01-01

    The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg...... not be ascribed to a single factor, but was most likely influenced by the structure of the lipids and differences in the processes used to produce and purify the lipids. In milk drinks based on SFO, EDTA slightly reduced oxidation, while lactoferrin did not exert a distinct antioxidative effect....../kg) or lactoferrin (1000 mg/kg) to the milk drink based on SFO was investigated. The lipid type significantly affected the oxidative stability of both mayonnaises and milk drinks: The oxidative stability decreased in the order RFO>FO>SFO. The reduced oxidative stability in the SFO food emulsions could...

  3. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  4. Structure-function relationship of tear film lipid layer: A contemporary perspective.

    Science.gov (United States)

    Georgiev, Georgi As; Eftimov, Petar; Yokoi, Norihiko

    2017-10-01

    Tear film lipid layer (TFLL) stabilizes the air/tear surface of the human eye. Meibomian gland dysfunction (MGD) resulting in quantitative and qualitative modifications of TFLL major (>93%) component, the oily secretion of meibomian lipids (MGS), is the world leading cause of dry eye syndrome (DES) with up to 86% of all DES patients showing signs of MGD. Caused by intrinsic factors (aging, ocular and general diseases) and by extrinsic everyday influences like contact lens wear and extended periods in front of a computer screen, DES (resulting in TF instability, visual disturbances and chronic ocular discomfort) is the major ophthalmic public health disease of the present time affecting the quality of life of 10-30% of the human population worldwide. Therefore there is a pressing need to summarize the present knowledge, contradictions and open questions to be resolved in the field of TFLL composition/structure/functions relationship. The following major aspects are covered by the review: (i) Do we have a reliable mimic for TFLL: MGS vs contact lens lipid extracts (CLLE) vs lipid extracts from whole tears. Does TFLL truly consist of lipids only or it is important to keep in mind the TF proteins as well?; (ii) Structural properties of TFLL and of its mimics in health and disease in vitro and in vivo. How the TFLL uniformity and thickness ensures the functionality of the lipid layer (barrier to evaporation, surface properties, TF stability etc.); (iii) What are the main functions of the TFLL? In this aspect an effort is done to emphasize that there is no single main function of TFLL but instead it simultaneously fulfills plethora of functions: suppresses the evaporation (alone or probably in cooperation with other TF constituents) of the aqueous tears; stabilizes (due to its surface properties) the air/tear surface at eye opening and during the interblink interval; and even acts as a first line of defense against bacterial invasion due to its detergency action on the

  5. Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship.

    Science.gov (United States)

    Scott, Alison J; Oyler, Benjamin L; Goodlett, David R; Ernst, Robert K

    2017-11-01

    Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Oceanographic conditions structure forage fishes into lipid-rich and lipid-poor communities in lower Cook Inlet, Alaska, USA

    Science.gov (United States)

    Abookire, Alisa A.; Piatt, John F.

    2005-01-01

    Forage fishes were sampled with a mid-water trawl in lower Cook Inlet, Alaska, USA, from late July to early August 1996 to 1999. We sampled 3 oceanographically distinct areas of lower Cook Inlet: waters adjacent to Chisik Island, in Kachemak Bay, and near the Barren Islands. In 163 tows using a mid-water trawl, 229 437 fishes with fork length lipid-poor gadids (walleye pollock and Pacific cod), and significantly increased in lipid-rich species such as Pacific sand lance, Pacific herring, and capelin. ?? Inter-Research 2005.

  7. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells.

    Science.gov (United States)

    Escribá, Pablo V

    2017-09-01

    Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  8. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  9. Effect of temperature and pH on the lipid photoperoxidation and the structural state of erythrocyte membranes

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Pelenitsyn, A.B.; Vladimirov, Yu.A.

    1978-01-01

    The degree of lipid photoperoxidation in erythrocytes (the amount of TBA-active products accumulated under the given dose of ultraviolet irradiation at 254 nm) increased abruptly with temperature in the interval 12 - 20 0 C, then it increased more slowly and later on passed over the maximum at about 30 - 32 0 C. Apparently, the degree of lipid photoperoxidation can serve as a sensitive index of lipid structural state. Using a method of modelling of erythrocyte membranes by liposomes of different chemical content, it was shown that under temperature changes in physiological limits the lipids of erythrocyte membranes undergo at least two structural transformations. The first might be a change in the relative position of cholesterol and phospholipids. The second is followed by the enhancement of membrane antioxidant activity. The degree of lipid photoperoxidation in erythrocytes grows with increasing pH from 6 to 8 according to S-shaped curve with middle point at pH 7.0. This effect can be attributed to structural transformation of membrane lipid zone associated with ionization of membrane protein hystidine. The swelling of erythrocytes in hypotonic medium also leads to structural transformation of lipid zone. (author)

  10. The Effect of Substrat Ratio Fish Oil and Milk Fat on Synthesis of Structured Lipid by Enzimatic Transesterification

    OpenAIRE

    Subroto, Edy; Tensiska, Tensiska; Indiarto, Rossi; Hidayat, Chusnul

    2013-01-01

    Structured lipid with saturated fatty acid (SFA) at outer position and polyunsaturated fatty acid (PUFA) at sn-2 position has good dietary and stabilized characteristics. In this research structured lipids was synthesized by enzymatic transesterification between fish oil and milk fat. The reaction was catalyzed by lipase from Candida antartica that has randomized specificity to inter esterification. The factor substrat ratio of fish oil and milk fat were studied. Reaction operated at 40 oC fo...

  11. Molecular dynamics study of homo-oligomeric ion channels: Structures of the surrounding lipids and dynamics of water movement

    Directory of Open Access Journals (Sweden)

    Thuy Hien Nguyen

    2018-03-01

    Full Text Available Molecular dynamics simulations were used to study the structural perturbations of lipids surrounding transmembrane ion channel forming helices/helical bundles and the movement of water within the pores of the ion-channels/bundles. Specifically, helical monomers to hexameric helical bundles embedded in palmitoyl-oleoyl-phosphatidyl-choline (POPC lipid bilayer were studied. Two amphipathic α-helices with the sequence Ac-(LSLLLSL3-NH2 (LS2, and Ac-(LSSLLSL3-NH2 (LS3, which are known to form ion channels, were used. To investigate the surrounding lipid environment, we examined the hydrophobic mismatch, acyl chain order parameter profiles, lipid head-to-tail vector projection on the membrane surface, and the lipid headgroup vector projection. We find that the lipid structure is perturbed within approximately two lipid solvation shells from the protein bundle for each system (~15.0 Å. Beyond two lipid “solvation” shells bulk lipid bilayer properties were observed in all systems. To understand water flow, we enumerated each time a water molecule enters or exited the channel, which allowed us to calculate the number of water crossing events and their rates, and the residence time of water in the channel. We correlate the rate of water crossing with the structural properties of these ion channels and find that the movements of water are predominantly governed by the packing and pore diameter, rather than the topology of each peptide or the pore (hydrophobic or hydrophilic. We show that the crossing events of water fit quantitatively to a stochastic process and that water molecules are traveling diffusively through the pores. These lipid and water findings can be used for understanding the environment within and around ion channels. Furthermore, these findings can benefit various research areas such as rational design of novel therapeutics, in which the drug interacts with membranes and transmembrane proteins to enhance the efficacy or reduce off

  12. Comparison of diet consumption, body composition and lipoprotein lipid values of Kuwaiti fencing players with international norms

    Directory of Open Access Journals (Sweden)

    Hajji Salman

    2011-10-01

    Full Text Available Abstract Background No published data is currently available that describes the dietary patterns or physiological profiles of athletes participating on the Kuwaiti national fencing team and its potential impact on health and physical performance. The purpose of this investigation was to: 1 collect baseline data on nutrient intake 2 collect, analyze and report baseline for body composition, plasma lipid and lipoprotein concentrations during the competitive season, 3 compare the results with the international norms, 4 and provide necessary health and nutritional information in order to enhance the athletes' performance and skills. Methods Fifteen national-class fencers 21.5 ± 2.6 years of age participated in this study. Food intake was measured using a 3-day food record. Body composition was estimated using both the BOD POD and Body Mass Index (BMI. Total blood lipid profiles and maximum oxygen consumption was measured for each of the subjects during the competitive season. Results The results of the present study showed significant differences in dietary consumption in comparison with the recommended dietary allowances (RDA. The blood lipids profile and body composition (BMI and % body fat were in normal range in comparison with international norms However, the average VO2 max value was less than the value of the other fencers. Conclusion Due to the results of the research study, a dietary regimen can be designed that would better enhance athletic performance and minimize any health risks associated with nutrition. Percent body fat and BMI will also be categorized for all players. In addition, the plasma blood tests will help to determine if any of the players have an excessive level of lipids or any blood abnormalities. The outcomes of present study will have a direct impact on the players health and therefore their skills and athletic performance.

  13. Lipid- and temperature-dependent structural changes in Acholeplasma laidlawii cell membrances

    Energy Technology Data Exchange (ETDEWEB)

    James, R.; Branton, D.

    1973-01-01

    The lipids in cell membranes of Acholeplasma laidlawii were enriched with different fatty acids selected to produce membranes showing molecular motion discontinuities at temperatures between 10 and 35/sup 0/C. Molecular motion in these membranes was probed by ESR after labelling with 12-nitroxide stearate, and structure in these membranes was examined by electron microscopy after freeze-etching. Freeze-etching and electron microscopy showed that under certain conditions the particles in the A. laidlawii membranes aggregated, resulting in particle-rich and particle-depleted regions in the cell membrane. Depending upon the lipid content of the membrane, this aggregation could begin at temperatures well above the ESR-determined discontinuity. Aggregation increased with decreasing temperature but was completed at or near the discontinuity. However, cell membranes grown and maintained well below their ESR-determined discontinuity did not show maximum particle aggregation until after they had been exposed to temperatures at or above the discontinuity. The results show that temperatures at or near a phase transition temperature can induce aggregation of the membrane particles. This suggests that temperature-induced changes in the lipid phase of a biological membrane can induce phase separations which affect the topography of associated proteins.

  14. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure

    Directory of Open Access Journals (Sweden)

    Qiong Liu

    2015-05-01

    Full Text Available Escherichia coli BL21 (DE3 and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS. LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3 ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004 carrying plasmid pQK004 (pagL and lpxE produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL as vaccine adjuvants.

  15. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  16. Domain size polydispersity effects on the structural and dynamical properties in lipid monolayers with phase coexistence

    Science.gov (United States)

    Rufeil-Fiori, Elena; Banchio, Adolfo J.

    Lipid monolayers with phase coexistence are a frequently used model for lipid membranes. In these systems, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normal distributed size domains. It was found that polydispersity strongly affects the value of the interaction strength obtained, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.

  17. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    Science.gov (United States)

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  18. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion.

    Science.gov (United States)

    Zick, Michael; Stroupe, Christopher; Orr, Amy; Douville, Deborah; Wickner, William T

    2014-01-01

    Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion. DOI: http://dx.doi.org/10.7554/eLife.01879.001.

  19. Atomic structures and compositions of internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N. (Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering); Merkle, K.L. (Argonne National Lab., IL (United States))

    1992-03-01

    This research program addresses fundamental questions concerning the relationships between atomic structures and chemical compositions of metal/ceramic heterophase interfaces. The chemical composition profile across a Cu/MgO {l brace}111{r brace}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single phase alloy, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar space of the {l brace}222{r brace} MgO planes. In particular, we demonstrate for the first time that the bonding across a Cu/MgO {l brace}111{r brace}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu{vert bar}O{vert bar}Mg{hor ellipsis} and not Cu{vert bar}Mg{vert bar}O{hor ellipsis}; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence it was established, via high resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {l brace}111{r brace} planes with a cube-on-cube relationship between a precipitate and the matrix. First results are also presented for the Ni/Cr{sub 2}O{sub 4} interface; for this system selected area atom probe microscopy was used to analyze this interface; Cr{sub 2}O{sub 4} precipitates are located in a field-ion microscope tip and a precipitate is brought into the tip region via a highly controlled electropolishing technique.

  20. Ultimate internal pressure capacity assessment of SC structure

    International Nuclear Information System (INIS)

    Park, Hyungkui; Choi, Inkil

    2013-01-01

    An SC structure applied to a containment building can be quite effective. However, an SC structure cannot be applied to a containment building, because its internal pressure resistance performance has not been verified. The containment building, which undergoes ultimate internal pressure, resists the internal pressure through a pre-stress tendon. It is hard to apply a tendon to an SC structure because of its structural characteristics. Therefore, the internal pressure resistance performance of the SC structure itself should be ensured to apply it to a structure with internal pressure resistance. In this study, the suitability of an SC structure as a substitution for the tendon of a pressure resistant structure was evaluated. A containment structure model was used in this study, because it was representative structures that resistance of ultimate internal pressure be required. In this study, a nonlinear analysis was performed to evaluate and compare the behaviors of tendon model and SC structure model. By comparing the internal pressure-displacement according to the structure type, the stability of SC structure model was assessed

  1. Structures and shear response of lipid monolayers. Progress report, August 1, 1993--January 31, 1996

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1995-08-01

    Of the many systems now classified as open-quotes soft condensed matterclose quotes, lipids are some of the best known and most studied. Lipids occur most commonly in membranes, but the artificially created lipid systems known as Langmuir films (on water) and Langmuir-Blodgett films (on solid substrates) are in some ways better-defined and more easily controlled systems with which to address many of the same questions. Studies of these systems have a long and distinguished history, but in the past decade there has been an explosion of activity in this area, driven by the availability of a or more powerful experimental probes but also in part by the hope of producing new structured molecular materials and devices. Today the focus of device-oriented research is shifting to self-assembled (chemisorbed) films, because it is recognized that these films are somewhat more stable under application conditions. This trend has resulted in a generally more appropriate view of Langmuir and Langmuir Blodgett films as model systems with which to study the properties of organized molecular assemblies. These films are part of a larger class that includes membranes, lamellar paraffins and liquid crystals as well as self-assembled films, but with certain experimental and conceptual advantages (such as the ease with which the density may be varied, and the tethering to a flat plane). This report describes the continued studies of the phase diagrams of Langmuir monolayers, and efforts to understand the variables that affect the structures formed. It also describes studies of the structure of a transferred monolayer, and how this evolves as further layers are added. Finally, the authors describe their studies of the mechanical response of Langmuir-Blodgett films using a small-strain torsion balance at the center of a circular trough

  2. Developing organizational structures for international marketing

    OpenAIRE

    Ioan Cucu

    2002-01-01

    International marketing represents marketing activities performed across national boundaries. The level of involvement in international marketing can range from casual exporting to globalization of markets. Although most firms adjust their marketing mixes for differences in target markets, some firms are able to standardize their marketing efforts worldwide

  3. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    Science.gov (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  4. INTERESTERIFIKASI ENZIMATIS MINYAK IKAN DENGAN ASAM LAURAT UNTUK SINTESIS LIPID TERSTRUKTUR [Enzymatic Interesterification of Fish Oil with Lauric Acid for the Synthesis of Structured Lipid

    OpenAIRE

    Edy Subroto1); Chusnul Hidayat2); Supriyadi2)

    2008-01-01

    Structured lipid (SL) containing of medium chain fatty acid (MCFA) at outer position and polyunsaturated fatty acid (PUFA) at sn-2 position has superior dietary and absorption characteristics. The most methods for the enzymatic synthesis of SL were through two steps process, so that it was inefficient. Caprilic acid was usually used as a source of MCFA. In this research, SL was synthesized by enzymatic interesterification between fish oil and lauric acid. The specific lipase from Mucor miehei...

  5. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    Science.gov (United States)

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-07

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.

  6. National Survey on Internal Quality Control Practice for Lipid Parameters in Laboratories of China from 2014 to 2016.

    Science.gov (United States)

    Ye, Yuanyuan; Wang, Wei; Zhao, Haijian; He, Falin; Zhong, Kun; Yuan, Shuai; Wang, Zhiguo

    2017-09-01

    To investigate the situation of Internal Quality Control (IQC) practice for total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol from 2014 to 2016 in laboratories in China and provide improvement measurements. A web-based External Quality Assessment (EQA) system was used to collect IQC data of lipid parameters in laboratories which continuously participated in the national EQA programs in China from 2014 to 2016. Pass rate of the coefficients of variation (CVs) of two level quality controls in four lipid parameters were calculated according to six quality specifications for precision to evaluate the current status of precision level of the four lipid parameters and their change over time in China. 533, 512, 504, and 466 laboratories continuously reported the data of level one for total cholesterol, triglyceride, HDL-cholesterol and LDL-cholesterol, and 212, 210, 208 and 198 laboratories reported the level two, respectively. The percentage of laboratories meeting the quality specification varied based on different criteria. Non-significant change can be found in the pass rate of CVs over time. The number of laboratories using a closed system increased over time, but still only accounted for a small proportion. There is no significant difference in the pass rate of CVs between closed and open systems. Triglycerides currently have a fairly good performance in China. While the performance of laboratories on total cholesterol, HDL-cholesterol and LDL-cholesterol has yet to be improved.

  7. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  8. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Crowe, J.H.

    2003-01-01

    Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphaticlylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers....... The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable...... ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating...

  9. No appetite efficacy of a commercial structured lipid emulsion in minimally processed drinks.

    Science.gov (United States)

    Smit, H J; Keenan, E; Kovacs, E M R; Wiseman, S A; Mela, D J; Rogers, P J

    2012-09-01

    Fabuless (Olibra) is a commercially structured lipid emulsion, claimed to be a food ingredient that is effective for food intake and appetite reduction. The present study assessed its efficacy in a yoghurt-based mini-drink undergoing low or minimal food manufacturing (thermal and shear) processes. Study 1: Twenty-four healthy volunteers (16 female, 8 male; age: 18-47 years; body mass index (BMI): 17-28 kg m(-2)) took part in a randomised, placebo-controlled, double-blind parallel crossover trial. Consumption of a minimally processed 'preload' mini-drink (containing two different doses of Fabuless or a control fat) at 2 h after breakfast was followed by appetite and mood ratings, and food intake measured in ad libitum meals at 3 and 7 h post consumption of the preload. Study 2: As Study 1 (16 female, 8 male; age: 20-54 years; BMI: 21-30 kg m(-2)). A chilled, virtually unprocessed, preload breakfast mini-drink (containing minimally processed Fabuless or a control fat) was provided 5 min after a standardised breakfast, followed by appetite and mood ratings, and food intake measured in ad libitum meals at 4 and 8 h post consumption of the preload. The structured lipid emulsion tested had no significant effect on the primary measures of food intake or appetite. Even when exposed to minimal food-manufacturing conditions, Fabuless showed no efficacy on measures of appetite and food intake.

  10. Analyzing the Structure of the International Business Curriculum in India

    Science.gov (United States)

    Srivastava, Deepak K.

    2012-01-01

    This article analyzes the structure of the international business curriculum through a questionnaire-based survey among current students and young managers who are studying or have studied international business courses in one of the top B-Schools of India. Respondents have the opinion that international business is more than internationalization…

  11. Lipid and protein oxidation in the internal part of italian type salami containing basil essential oil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Alexandre José Cichoski

    2011-06-01

    Full Text Available Different concentrations of basil essential oil (Ocimum basilicum L. (0.19; 0.38; 0.75; 1.87; 3.75 and 6.00 mg.g-1 were evaluated in relation to their antioxidant activity using the DPPH● radical methodology. From the IC50 obtained data, the concentrations of 0.19; 0.38; 0.75; 1.87; 3.75; 6.00 and 12.00 mg.mL-1 were applied directly to the product and these were sensorially evaluated by the test of control difference. The concentrations related to the highest acceptability (0.19; 0.38 and 0.75 mg.g-1 were tested for antioxidant activity in the internal part of Italian type salami - during the processing and after 30 days of storage, in terms of lipid and protein oxidation. The oxidation of lipids was determined using the method of TBARS. The method of carbonyl compounds was employed for proteins oxidation. Five different formulations of salami were elaborated: blank (without the use of antioxidant; control (using sodium eritorbate as antioxidant; and adding 0.19; 0.38 and 0.75 mg.g-1 of basil essential oil. The product was kept between 25 ºC and 18 ºC and UR between 95% and 70%, for 28 days. Analyses were carried out on the processing day and after 2, 7, 14, 21 and 28 days, and also following 30 days of storage. The basil essential oil in vitro presented an antioxidant activity of IC50 12 mg.mL-1. In the internal part of the Italian type salami the commercial antioxidant (control and the formulation containing 0.75 mg.g-1 of basil essential oil presented antioxidant activity in relation to the lipids, but not to the proteins - during processing and storage.

  12. Structural insights into lipid-dependent reversible dimerization of human GLTP

    International Nuclear Information System (INIS)

    Samygina, Valeria R.; Ochoa-Lizarralde, Borja; Popov, Alexander N.; Cabo-Bilbao, Aintzane; Goni-de-Cerio, Felipe; Molotkovsky, Julian G.; Patel, Dinshaw J.; Brown, Rhoderick E.; Malinina, Lucy

    2013-01-01

    It is shown that dimerization is promoted by glycolipid binding to human GLTP. The importance of dimer flexibility in wild-type protein is manifested by point mutation that ‘locks’ the dimer while diversifying ligand/protein adaptations. Human glycolipid transfer protein (hsGLTP) forms the prototypical GLTP fold and is characterized by a broad transfer selectivity for glycosphingolipids (GSLs). The GLTP mutation D48V near the ‘portal entrance’ of the glycolipid binding site has recently been shown to enhance selectivity for sulfatides (SFs) containing a long acyl chain. Here, nine novel crystal structures of hsGLTP and the SF-selective mutant complexed with short-acyl-chain monoSF and diSF in different crystal forms are reported in order to elucidate the potential functional roles of lipid-mediated homodimerization. In all crystal forms, the hsGLTP–SF complexes displayed homodimeric structures supported by similarly organized intermolecular interactions. The dimerization interface always involved the lipid sphingosine chain, the protein C-terminus (C-end) and α-helices 6 and 2, but the D48V mutant displayed a ‘locked’ dimer conformation compared with the hinge-like flexibility of wild-type dimers. Differences in contact angles, areas and residues at the dimer interfaces in the ‘flexible’ and ‘locked’ dimers revealed a potentially important role of the dimeric structure in the C-end conformation of hsGLTP and in the precise positioning of the key residue of the glycolipid recognition centre, His140. ΔY207 and ΔC-end deletion mutants, in which the C-end is shifted or truncated, showed an almost complete loss of transfer activity. The new structural insights suggest that ligand-dependent reversible dimerization plays a role in the function of human GLTP

  13. Cholesterol-based cationic lipids for gene delivery: contribution of molecular structure factors to physico-chemical and biological properties.

    Science.gov (United States)

    Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Jingjing; Wang, Zhao; Cao, Amin

    2014-04-01

    In this work, we prepared a series of cholesterol-based cationic (Cho-cat) lipids bearing cholesterol hydrophobe, natural amino acid headgroups (lysine/histidine) and linkage (carbonate ester/ether) bonds. In which, the natural amino acid headgroups made dominant contribution to their physico-chemical and biological properties. Among the lipids, the l-lysine headgroup bearing lipids (Cho-es/et-Lys) showed higher pDNA binding affinity and were able to form larger sized and higher surface charged lipoplexes than that of l-histidine headgroup bearing lipids (Cho-es/et-His), they also demonstrated higher transfection efficacy and higher membrane disruption capacities than that of their l-histidine headgroup bearing counterparts. However, compared to the contributions of the headgroups, the (carbonate ester/ether) linkage bonds showed much less affects. Besides, it could be noted that, Cho-es/et-Lys lipids exhibited very high luciferase gene transfection efficiency that almost reached the transfection level of "gold standard" bPEI-25k, made them potential transfection reagents for practical application. Moreover, the results facilitated the understanding for the structure-activity relationship of the cholesterol-based cationic lipids, and also paved a simple and efficient way for achieving high transfection efficiency by modification of suitable headgroups on lipid gene carriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    Science.gov (United States)

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  15. Lipid peroxidation regulates podocyte migration and cytoskeletal structure through redox sensitive RhoA signaling

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2018-06-01

    Full Text Available Early podocyte loss is characteristic of chronic kidney diseases (CKD in obesity and diabetes. Since treatments for hyperglycemia and hypertension do not prevent podocyte loss, there must be additional factors causing podocyte depletion. The role of oxidative stress has been implicated in CKD but it is not known how exactly free radicals affect podocyte physiology. To assess this relationship, we investigated the effects of lipid radicals on podocytes, as lipid peroxidation is a major form of oxidative stress in diabetes. We found that lipid radicals govern changes in podocyte homeostasis through redox sensitive RhoA signaling: lipid radicals inhibit migration and cause loss of F-actin fibers. These effects were prevented by mutating the redox sensitive cysteines of RhoA. We therefore suggest that in diseases associated with increased lipid peroxidation, lipid radicals can determine podocyte function with potentially pathogenic consequences for kidney physiology. Keywords: Lipid peroxidation, Reactive lipids, Podocyte, RhoA, Cysteine, Chronic kidney disease

  16. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    Science.gov (United States)

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  17. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES.

    Science.gov (United States)

    Kawano, Shin; Tamura, Yasushi; Kojima, Rieko; Bala, Siqin; Asai, Eri; Michel, Agnès H; Kornmann, Benoît; Riezman, Isabelle; Riezman, Howard; Sakae, Yoshitake; Okamoto, Yuko; Endo, Toshiya

    2018-03-05

    The endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12-Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1-Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes. © 2018 Kawano et al.

  18. Reconstitution of a Kv channel into lipid membranes for structural and functional studies.

    Science.gov (United States)

    Lee, Sungsoo; Zheng, Hui; Shi, Liang; Jiang, Qiu-Xing

    2013-07-13

    To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.

  19. Effect of structured lipids based on fish oil on the growth and fatty acid composition in Rainbow Trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Gøttsche, Jesper; Holm, Jørgen

    2005-01-01

    containing DAG. A feeding experiment where groups of rainbow trout were fed six diets containing different types of oils for 61 days was performed. The lipid fraction of the six diets was as follows: 1) Fish oil and rapeseed oil (FO diet), 2) Specific structured lipid and rapeseed oil (SL diet), 3......) Randomised structured lipids and rapeseed oil (RL diet), 4) Medium chain triglyceride and fish oil (MCT diet), 5) Diacylglycerol and fish oil (DAG diet), 6) Fish oil (FOmax diet). Five of the diets (1-5) contained mixed oils blended to contain the same amount of EPA and DHA. Three of these diets (2,3 and 4......The aim of the study was to investigate whether it was possible a) to increase the relative incorporation of n - 3 very long chain polyunsaturated fatty acids (VLCPUFA) in a low VLCPUFA diet by feeding trout structured triacylglycerols and b) to reduce fat accumulation by feeding trout a diet...

  20. Development and Structure of Internal Glands and External Glandular Trichomes in Pogostemon cablin

    Science.gov (United States)

    Guo, Jiansheng; Yuan, Yongming; Liu, Zhixue; Zhu, Jian

    2013-01-01

    Pogostemon cablin possesses two morphologically and ontogenetically different types of glandular trichomes, one type of bristle hair on the surfaces of leaves and stems and one type of internal gland inside the leaves and stems. The internal gland originates from elementary meristem and is associated with the biosynthesis of oils present inside the leaves and stems. However, there is little information on mechanism for the oil biosynthesis and secretion inside the leaves and stems. In this study, we identified three kinds of glandular trichome types and two kinds of internal gland in the Pogostemon cablin. The oil secretions from internal glands of stems and leaves contained lipids, flavones and terpenes. Our results indicated that endoplasmic reticulum and plastids and vacuoles are likely involved in the biosynthesis of oils in the internal glands and the synthesized oils are transported from endoplasmic reticulum to the cell wall via connecting endoplasmic reticulum membranes to the plasma membrane. And the comparative analysis of the development, distribution, histochemistry and ultrastructures of the internal and external glands in Pogostemon cablin leads us to propose that the internal gland may be a novel secretory structure which is different from external glands. PMID:24205002

  1. Production, Structural Elucidation, and In Vitro Antitumor Activity of Trehalose Lipid Biosurfactant from Nocardia farcinica Strain.

    Science.gov (United States)

    Christova, Nelly; Lang, Siegmund; Wray, Victor; Kaloyanov, Kaloyan; Konstantinov, Spiro; Stoineva, Ivanka

    2015-04-01

    The objective of this study was to isolate and identify the chemical structure of a biosurfactant produced by Nocardia farcinica strain BN26 isolated from soil, and evaluate its in vitro antitumor activity on a panel of human cancer cell lines. Strain BN26 was found to produce glycolipid biosurfactant on n-hexadecane as the sole carbon source. The biosurfactant was purified using medium-pressure liquid chromatography and characterized as trehalose lipid tetraester (THL) by nuclear magnetic resonance spectroscopy and mass spectrometry. Subsequently, the cytotoxic effects of THL on cancer cell lines BV-173, KE-37 (SKW-3), HL-60, HL-60/DOX, and JMSU-1 were evaluated by MTT assay. It was shown that THL exerted concentration-dependent antiproliferative activity against the human tumor cell lines and mediated cell death by the induction of partial oligonucleosomal DNA fragmentation. These findings suggest that THL could be of potential to apply in biomedicine as a therapeutic agent.

  2. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik

    1999-01-01

    Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93, and that for the di-incorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65...

  3. Desaturation of skeletal muscle structural and depot lipids in obese individuals during a very-low-calorie diet intervention

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Vaag, Allan; Høy, Carl-Erik

    2007-01-01

    would decrease saturated fatty acids (FAs) and increase long-chain polyunsaturated FAs (LCPUFAs) in muscular structural lipids, as such changes have been associated with improved insulin sensitivity. RESEARCH METHODS AND PROCEDURES: Skeletal muscle biopsies (vastus lateralis) were obtained from 13 obese...... during the VLCD. DISCUSSION: Desaturation of both muscle cell membrane phospholipid and IMTG was significant but modest during a VLCD in obese subjects. Further research must delineate whether such changes in skeletal muscle structural and depot lipid composition themselves are enough to promote...

  4. Desaturation of skeletal muscle structural and depot lipids in obese individuals during a very-low-calorie diet intervention

    DEFF Research Database (Denmark)

    Haugaard, S.B.; Vaag, A.; Høy, Carl-Erik

    2007-01-01

    would decrease saturated fatty acids (FAs) and increase long-chain polyunsaturated FAs (LCPUFAs) in muscular structural lipids, as such changes have been associated with improved insulin sensitivity. Research Methods and Procedures: Skeletal muscle biopsies (vastus lateralis) were obtained from 13 obese....... Discussion: Desaturation of both muscle cell membrane phospholipid and IMTG was significant but modest during a VLCD in obese subjects. Further research must delineate whether such changes in skeletal muscle structural and depot lipid composition themselves are enough to promote the observed improvements...

  5. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    International Nuclear Information System (INIS)

    Batenburg, A.M.; Demel, R.A.; Verkleij, A.J.; de Kruijff, B.

    1988-01-01

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary 31 P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure

  6. International Good Market Segmentation and Financial Market Structure

    OpenAIRE

    Basak, Suleyman; Croitoru, Benjamin

    2003-01-01

    While financial markets have recently become more complete and international capital flows well liberalized, markets for goods remain segmented. To investigate how more complete security markets may relieve the effects of this segmentation, we examine a series of two-country economies with internationally segmented good markets, distinguished by the available financial securities. We show that, under heterogeneity within countries, the financial structure matters: even with internationally co...

  7. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil.

    Science.gov (United States)

    Sun, Shangde; Zhu, Sha; Bi, Yanlan

    2014-09-01

    A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 22 CFR 96.32 - Internal structure and oversight.

    Science.gov (United States)

    2010-04-01

    ... Accreditation and Approval Licensing and Corporate Governance § 96.32 Internal structure and oversight. (a) The... number of such other provider; and (3) The name, address, and phone number of any entity it uses or...

  9. Meta-analysis of structured triglyceride versus other lipid emulsions for parenteral nutrition.

    Science.gov (United States)

    Zhu, Mengbai; Li, Xueliang

    2013-06-01

    Structured triglyceride (STG) is a new emulsion synthesized from long-chain fatty acids and medium-chain fatty acids bound to the same glycerol backbone. We performed a meta-analysis to examine the safety, efficacy, and tolerability of STG for parenteral nutrition. We searched MEDLINE, EMBASE, and the Chinese Biomedicine Database, with the last search done in May 2012. Only randomized controlled trials in humans published in Chinese or English were included. Search terms included structured triglyceride and structural lipid. Methodologic quality was evaluated using the Jadad Scale. Meta-analysis was conducted using Review Manager 5.0.24 to calculate the weighted mean difference (WMD) and standardized mean difference (SMD) with 95% confidence intervals. Twenty-one studies (833 participants) published in English or Chinese were included in the analysis. STG significantly affected plasma triglycerides (WMD = -0.15; 95% confidence interval [CI], -0.29 to -0.01; P = 0.04), plasma glycerol (WMD = 0.21; 95% CI, 0.01-0.41; P = 0.04), free fatty acids (WMD = 0.21; 95% CI, 0.03-0.39; P = 0.02), nitrogen balance (SMD = 1.13; 95% CI, 0.26-1.99; P = 0.01), AST (WMD = -5.97; 95% CI, -7.17 to -4.76; P triglycerides. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The in vivo structure of biological membranes and evidence for lipid domains

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chatterjee, Sneha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stanley, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qian, Shuo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Myles, Dean A. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Standaert, Robert F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Elkins, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Katsaras, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Lopez, Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-05-23

    Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments—performed under biologically relevant conditions—answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.

  11. Reducible cationic lipids for gene transfer.

    Science.gov (United States)

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  12. Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces

    Science.gov (United States)

    Ishiyama, Tatsuya; Shirai, Shinnosuke; Okumura, Tomoaki; Morita, Akihiro

    2018-06-01

    Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.

  13. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures

    Science.gov (United States)

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y.

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  14. Structure-activity correlation in transfection promoted by pyridinium cationic lipids.

    Science.gov (United States)

    Parvizi-Bahktar, P; Mendez-Campos, J; Raju, L; Khalique, N A; Jubeli, E; Larsen, H; Nicholson, D; Pungente, M D; Fyles, T M

    2016-03-21

    The efficiency of the transfection of a plasmid DNA encoding a galactosidase promoted by a series of pyridinium lipids in mixtures with other cationic lipids and neutral lipids was assessed in CHO-K1 cells. We identify key molecular parameters of the lipids in the mixture - clog P, lipid length, partial molar volume - to predict the morphology of the lipid-DNA lipoplex and then correlate these same parameters with transfection efficiency in an in vitro assay. We define a Transfection Index that provides a linear correlation with normalized transfection efficiency over a series of 90 different lipoplex compositions. We also explore the influence of the same set of molecular parameters on the cytotoxicity of the formulations.

  15. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress

    International Nuclear Information System (INIS)

    Rand, R.P.; Fuller, N.L.; Gruner, S.M.; Parsegian, V.A.

    1990-01-01

    Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a function of the concentration of two solvents, water and tetradecane (td). In the absence of td, most PE/PC mixtures show only lamellar phases in excess water; all of these become single reverse hexagonal (H II ) phases with addition of excess td. The spontaneous radius of curvature R 0 of lipid monolayers, as expressed in these H II phases, is allowed by the relief of hydrocarbon chain stress by td; R 0 increases with the ratio DOPC/DOPE. Single H II phases stressed by limited water or td show several responses. (a) the molecular area is compressed at the polar end of the molecule and expanded at the hydrocarbon ends. (b) For circularly symmetrical water cylinders, the degrees of hydrocarbon chain splaying and polar group compression are different for molecules aligned in different directions around the water cylinder. (c) A pivotal position exists along the length of the phospholipid molecule where little area change occurs as the monolayer is bent to increasing curvatures. (d) By defining R 0 at the pivotal position, the authors find that measured energies are well fit by a quadratic bending energy. (e) For lipid mixtures, enforced deviation of the H II monolayer from R 0 is sufficiently powerful to cause demixing of the phospholipids in a way suggesting that the DOPE/DOPC ratio self-adjusts so that its R 0 matches the amount of td or water available, i.e., that curvature energy is minimized

  16. Structure-activity relationship of carbamate-linked cationic lipids bearing hydroxyethyl headgroup for gene delivery.

    Science.gov (United States)

    Zhi, Defu; Zhang, Shubiao; Qureshi, Farooq; Zhao, Yinan; Cui, Shaohui; Wang, Bing; Chen, Huiying; Yang, Baoling; Zhao, Defeng

    2013-12-01

    A novel series of carbamate-linked cationic lipids containing hydroxyl headgroup were synthesized and included in formulations for transfection assays. The DNA-lipid complexes were characterized for their ability to bind DNA, their size, ζ-potential and cytotoxicity. Compared with our previously reported cationic transfection lipid DDCDMA lacking the hydroxyl group and the commercially available, these cationic liposomes exhibited relatively higher transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    Directory of Open Access Journals (Sweden)

    Inés Plasencia

    Full Text Available BACKGROUND: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. METHODOLOGY/PRINCIPAL FINDING: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC, or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE, 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE, 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS, and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. CONCLUSION/SIGNIFICANCE: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  18. The Structural Basis for Calcium Inhibition of Lipid Kinase PI4K II alpha and Comparison With the Apo State

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Gregor, Jiří; Bouřa, Evžen

    2016-01-01

    Roč. 65, č. 6 (2016), s. 987-993 ISSN 0862-8408 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : lipid kinase * calcium * phosphatidylinositol * crystal structure Subject RIV: CE - Biochemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65/65_987.pdf

  19. Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-06-01

    Full Text Available Field pea (Pisum sativum L. is an important protein-rich pulse crop produced globally. Increasing the lipid content of Pisum seeds through conventional and contemporary molecular breeding tools may bring added value to the crop. However, knowledge about genetic diversity and lipid content in field pea is limited. An understanding of genetic diversity and population structure in diverse germplasm is important and a prerequisite for genetic dissection of complex characteristics and marker-trait associations. Fifty polymorphic microsatellite markers detecting a total of 207 alleles were used to obtain information on genetic diversity, population structure and marker-trait associations. Cluster analysis was performed using UPGMA to construct a dendrogram from a pairwise similarity matrix. Pea genotypes were divided into five major clusters. A model-based population structure analysis divided the pea accessions into four groups. Percentage lipid content in 35 diverse pea accessions was used to find potential associations with the SSR markers. Markers AD73, D21, and AA5 were significantly associated with lipid content using a mixed linear model (MLM taking population structure (Q and relative kinship (K into account. The results of this preliminary study suggested that the population could be used for marker-trait association mapping studies.

  20. Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of by-products. In this paper, the elucidation of acyl...

  1. Influence of cholesterol and ceramide-VI on structure of the multilamellar lipid membrane at water exchange

    International Nuclear Information System (INIS)

    Ryabova, N.Yu.; Kiselev, M.A.; Balagurov, A.M.

    2009-01-01

    The results of neutron diffraction investigation of structure changes in multilamellar lipid membranes DPPC/cholesterol and DPPC/ceramide-VI (DPPC - dipalmitoylphosphatidylcholine) during the processes of hydration and dehydration are presented. The influence of cholesterol and ceramide-VI on kinetics of water exchange in DPPC membrane is characterized

  2. Enzymatic synthesis of capric acid-rich structured lipids (MUM type) using Candida antarctica lipase.

    Science.gov (United States)

    SilRoy, Sumita; Ghosh, Mahua

    2011-01-01

    The objective of the work was to produce capric acid rich structured lipids starting from various Indian indigenous vegetable oils, such as rice bran, ground nut and mustard oils. Acidolysis reaction between individual vegetable oils and capric acid in one is to three molar ratios at 45 degree centigrade temperature was carried out using position specific Candida antarctica lipase so as to protect the Sn-2 position of the oils which are rich in unsaturated fatty acids. The incorporation of capric acid depended on the reaction time showing 6 % within 6 h and 30.8 % in 72 h with rice bran oil. Similarly, in ground nut oil incorporation of capric acid was 34.2 % in 72 h compared to 5.3 % in 6 h. Thus mustard oil showed much lower incorporation than the other two oils, with 3.3 % and 19.5 % in 6 and 72 h respectively. The incorporation of capric acid was influenced by the nature of the fatty acids present in the original oil. The fatty acid composition of Sn-2 position of the structured triacylglycerols of the three oils revealed that capric acid was mainly replacing the fatty acids occupying the Sn-1 and 3 positions of the triglyceride molecule.

  3. Distribution of medium-chain FA in different lipid classes after administration of specific structured TAG in rats

    DEFF Research Database (Denmark)

    Mu, Huiling; Høy, Carl-Erik

    2002-01-01

    Structured TAG (STAG) containing medium-chain FA (MCFA) in the sn-1,3 positions and essential FA in the sn-2 position were synthesized by lipase-catalyzed acidolysis. In our previous studies we found that part of the MCFA from STAG could be absorbed in the small intestine; however, it was unclear...... how they were absorbed. In order to get a better understanding of the metabolism of STAG to improve future design and application of STAG, in the present study lymph lipids collected after feeding STAG were fractionated into different classes and the FA composition of each lipid class was studied...

  4. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Effects of water content, reaction time and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied...... of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...

  5. Structure, biosynthesis and function of unusual lipids A from nodule-inducing and N2-fixing bacteria.

    Science.gov (United States)

    Choma, Adam; Komaniecka, Iwona; Zebracki, Kamil

    2017-02-01

    This review focuses on the chemistry and structures of (Brady)rhizobium lipids A, indispensable parts of lipopolysaccharides. These lipids contain unusual (ω-1) hydroxylated very long chain fatty acids, which are synthesized by a very limited group of bacteria, besides rhizobia. The significance and requirement of the very long chain fatty acids for outer membrane stability as well as the genetics of the synthesis pathway are discussed. The biological role of these fatty acids for bacterial life in extremely different environments (soil and intracellular space within nodules) is also considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. International seminar on structural investigations on pulsed neutron sources. Proceedings

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.; Taran, Yu.V.

    1993-01-01

    The proceedings of the International seminar on structural investigations using pulsed neutron sources are presented. The seminar is dedicated to the memory of Dr. Yu.M. Ostanevich, a world acknowledged physicist. The problems of structural analysis using pulsed neutron source at the IBR-2 reactor are discussed

  7. Aspects of nonviral gene therapy: correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids.

    Science.gov (United States)

    Parvizi, Paria; Jubeli, Emile; Raju, Liji; Khalique, Nada Abdul; Almeer, Ahmed; Allam, Hebatalla; Manaa, Maryem Al; Larsen, Helge; Nicholson, David; Pungente, Michael D; Fyles, Thomas M

    2014-01-30

    This study seeks correlations between the molecular structures of cationic and neutral lipids, the lipid phase behavior of the mixed-lipid lipoplexes they form with plasmid DNA, and the transfection efficacy of the lipoplexes. Synthetic cationic pyridinium lipids were co-formulated (1:1) with the cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and these lipids were co-formulated (3:2) with the neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol. All lipoplex formulations exhibited plasmid DNA binding and a level of protection from DNase I degradation. Composition-dependent transfection (beta-galactosidase and GFP) and cytotoxicity was observed in Chinese hamster ovarian-K1 cells. The most active formulations containing the pyridinium lipids were less cytotoxic but of comparable activity to a Lipofectamine 2000™ control. Molecular structure parameters and partition coefficients were calculated for all lipids using fragment additive methods. The derived shape parameter values correctly correlated with observed hexagonal lipid phase behavior of lipoplexes as derived from small-angle X-ray scattering experiments. A transfection index applicable to hexagonal phase lipoplexes derived from calculated parameters of the lipid mixture (partition coefficient, shape parameter, lipoplex packing) produced a direct correlation with transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. International conference on design, fabrication and economy of metal structures

    CERN Document Server

    Farkas, József

    2013-01-01

    These are the proceedings of the International Conference on Design, Fabrication and Economy of Metal Structures held on 24-26 April 2013 in Miskolc, Hungary which contain 99 papers covering: Structural optimization Thin-walled structures Stability Fatigue Frames Fire Fabrication Welding technology Applications Steel-concrete composite Special problems The authors are from 23 different countries, ensuring that the themes covered are of worldwide interest and importance. The International Institute of Welding (IIW), the International Society of Structural and Multidisciplinary Optimization (ISSMO), the TÁMOP 4.2.1.B-10/2/KONV-2010-0001 project entitled “Increasing the quality of higher education through the development of research - development and innovation program at the University of Miskolc supported by the European Union, co-financed by the European Social Fund” and many other sponsors helped organizers to collect these valuable studies, the results of which will provoke discussion, and provide an i...

  9. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions

    NARCIS (Netherlands)

    Zhao, W.; Róg, T.; Gurtovenko, A.A.; Vattulainen, I.; Karttunen, M.E.J.

    2007-01-01

    Anionic palmitoyloleoylphosphatidylglycerol (POPG) is one of the most abundant lipids in nature, yet its atomic-scale properties have not received significant attention. Here we report extensive 150-ns molecular dynamics simulations of a pure POPG lipid membrane with sodium counterions. It turns out

  10. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Bhatia, Tripta; Cornelius, Flemming; Ipsen, John H.

    2017-01-01

    . The method has been applied to classical lipid raft mixtures in which suboptical domain fluctuations have been imaged in both the liquid-ordered and liquid-disordered membrane phases. High-resolution scanning by atomic force microscopy (AFM) of membranes composed of binary and ternary lipid mixtures...

  11. NIR studies of cholesterol-dependent structural modification of the model lipid bilayer doped with inhalation anesthetics

    Science.gov (United States)

    Kuć, Marta; Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2018-06-01

    The influence of cholesterol on the structure of the model lipid bilayers treated with inhalation anesthetics (enflurane, isoflurane, sevoflurane and halothane) was investigated employing near-infrared (NIR) spectroscopy combined with the Principal Component Analysis (PCA). The conformational changes occurring in the hydrophobic area of the lipid bilayers were analyzed using the first overtones of symmetric (2νs) and antisymmetric (2νas) stretching vibrations of the CH2 groups of lipid aliphatic chains. The temperature values of chain-melting phase transition (Tm) of anesthetic-mixed dipalmitoylphosphatidylcholine (DPPC)/cholesterol and dipalmitoylphosphatidylglycerol (DPPG)/cholesterol membranes, which were obtained from the PCA analysis, were compared with cholesterol-free DPPC and DPPG bilayers mixed with inhalation anesthetics.

  12. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases.

    Science.gov (United States)

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30-50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4-10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.

  13. Enzymatic preparation of "functional oil" rich in feruloylated structured lipids with solvent-free ultrasound pretreatment.

    Science.gov (United States)

    Zhang, Haiping; Zheng, Mingming; Shi, Jie; Tang, Hu; Deng, Qianchun; Huang, Fenghong; Luo, Dan

    2018-05-15

    In this study, a series of functional oils rich in feruloylated structured lipids (FSLs) was prepared by enzymatic transesterification of ethyl ferulate (EF) with triglycerides under ultrasound pretreatment. A conversion of more than 92.7% and controllable FSLs (3.1%-26.3%) can be obtained under the following conditions: 16% enzyme, substrate ratio 1:5 (oil/EF, mol/mol), 85 °C, ultrasound 1 h, pulse mode 3 s/3s (working/waiting), and 17.0 W/mL. Compared to conventional mechanical stirring, the activation energy decreased from 50.0 kJ/mol to 40.7 kJ/mol. The apparent kinetic constant increased by more than 13 times, and the time required for the maximum conversion reduced sharply from 20-60 h to 4-6h, which was the fastest rate for enzymatic synthesis of FSLs. The antioxidant activities of the functional oil significantly increased 1.0- to 8.1-fold more than that of the raw oil. The functional oil could be widely applied in various fields of functional foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    Science.gov (United States)

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Structural reasons for vertical integration in the international oil industry

    International Nuclear Information System (INIS)

    Luciani, G.

    1991-01-01

    Once upon a time, the international oil industry was vertically integrated. A small group of companies controlled a very substantial share of international oil flows, extending their operations from the oil well to the gas pump, and relying on intracorporate transfers for most in-between transactions. The historical reasons for vertical disintegration, the market role, and structural reasons for vertical reintegration are examined. (author)

  16. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    DEFF Research Database (Denmark)

    Plasencia, Ines; Survery, Sabeen; Ibragimova, Sania

    2011-01-01

    Background: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize...... reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles...... and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-beta-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPh...

  17. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    Science.gov (United States)

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  18. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    Science.gov (United States)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  19. Structural and Infrastructural Underpinnings of International R&D Networks

    DEFF Research Database (Denmark)

    Niang, Mohamed; Sørensen, Brian Vejrum

    2009-01-01

    This paper explores the process of globally distributing R&D activities with an emphasis on the effects of network maturity. It discusses emerging configurations by asking how the structure and infrastructure of international R&D networks evolve along with the move from a strong R&D center...... to dispersed development. Drawing from case studies of two international R&D networks, it presents a capability maturity model and argues that understanding the interaction between new structures and infrastructures of the dispersed networks has become a key requirement for developing organizational...

  20. Global assemblages and structural models of International Relations

    DEFF Research Database (Denmark)

    Corry, Olaf

    2014-01-01

    -category of assemblages – those constructed as malleable and governable which I call ‘governance-objects’ – is central to structure in international relations. The chapter begins with standard definitions of what structures are – patterns of interaction between elements – and briefly covers the range of models currently...... used to simplify different structures. Next the chapter points to the blindness of most structural theories of IR to the role of assemblages in general and governance-objects in particular. Thirdly, the idea that a polity is constituted precisely by the assemblage of a governance...

  1. Secondary structure of spiralin in solution, at the air/water interface, and in interaction with lipid monolayers.

    Science.gov (United States)

    Castano, Sabine; Blaudez, Daniel; Desbat, Bernard; Dufourcq, Jean; Wróblewski, Henri

    2002-05-03

    The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at

  2. Structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes: freeze-fracture electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L; Mehard, C W; Meissner, G; Zahler, W L; Fleischer, S

    1974-01-01

    The role of phospholipid in the structure of the membranes of beef heart mitochondria and of the sarcoplasmic reticulum membranes from rabbit skeletal muscle has been investigated by freeze-fracture electron microscopy. Progressive removal of membrane phospholipids, by phospholipase A treatment or detergent treatment, or by organic solvent extraction, results in loss of the smooth background seen in membrane fracture faces and decreased ability of membrane to undergo freeze fracture to yield fracture faces. Instead cross-sections of vesicles or particle clusters are observed. Sarcoplasmic reticulum vesicles have a 9 to 1 asymmetry in the distribution of particles between the convex and concave fracture faces. There is also a wide range of particle size distribution in both of these fracture faces with 85-A particles in greatest number. The removal of membrane associated proteins by detergent extraction does not appreciably change the distribution in particle size. Sarcoplasmic reticulum vesicles were dissolved with detergent and reassembled to form membrane vesicles containing mainly one protein (approx. 90%), i.e., the Ca/sup 2 +/ pump protein, and with a ratio of lipid to protein similar to the original membrane. The reconstituted vesicles readily underwent freeze fracture but the asymmetric particle distribution between the fracture faces was no longer observed. The size distribution of particles in the reconstituted membrane, consisting mainly of Ca/sup 2 +/ pump protein, and phospholipid, was similar in heterogeneity to the original sarcoplasmic reticulum membrane. Thus the heterogeneity in particle size could reflect variation in the orientation of the Ca/sup 2 +/ pump protein within the membrane.

  3. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study

    International Nuclear Information System (INIS)

    White, S.H.; Mirejovsky, D.; King, G.I.

    1988-01-01

    The lipid of the outermost layer of the skin is confined largely to the extracellular spaces surrounding the corneocytes of the stratum corneum where it forms a multilamellar adhesive matrix to act as the major permeability barrier of the skin. Knowledge of the molecular architecture of these intercellular domains is important for understanding various skin pathologies and their treatment, percutaneous drug delivery, and the cosmetic maintenance of the skin. The authors have surveyed by X-ray diffraction the structure of the intercellular domains and the extracted lipids of murine stratum corneum (SC) at 25, 45, and 70 0 C which are temperatures in the vicinity of known thermal phase transitions. The intercellular domains produce lamellar diffraction patterns with a Bragg spacing of 131 +/- 2 A. Lipid extracted from the SC and dispersed in excess water does not produce a simple lamellar diffraction pattern at any temperature studied, however. This and other facts suggest that another component, probably a protein, must be present to control the architecture of the intercellular lipid domains. They have also obtained diffraction patterns attributable to the protein envelopes of the corneocytes. The patterns suggest a β-pleated sheet organizational scheme. No diffraction patterns were observed that could be attributed to keratin

  4. The influence of L-DOPA on the accumulation of lipid peroxidation products in some brain structures affected by radiation

    International Nuclear Information System (INIS)

    Babaev, R.A.; Kocharli, R.Kh.; Akhmedova, G.Sh.; Gasanova, A.A.; Babaev, Kh.F.

    1990-01-01

    A study was made of the effect of L-DOPA on the dynamics of changes in lipid peroxidation products (LPP) and the content of various types of SH-groups in certain brain structures (oblongata, cerebellum, visual and sensorimotor cortex) and their synaptosomal fractions upon irradiation. The preadministration of L-DOPA to irradiated rats inhibited LPP accumulation, prevented the decrease in the content of various types of thiols and thus exerted an antioxidant effect

  5. Co-administration of trientine and flaxseed oil on oxidative stress, serum lipids and heart structure in diabetic rats.

    Science.gov (United States)

    Rezaei, Ali; Heidarian, Esfandiar

    2013-08-01

    The administration of flaxseed oil or flaxseed oil plus trientine in diabetic rats reduced triglyceride, very low density lipoprotein, and total cholesterol. Furthermore, the combined treatment significantly increased superoxide dismutase activity and attenuated serum Cu2+. The results suggest that the administration of flaxseed oil plus trientine is useful in controlling serum lipid abnormalities, oxidative stress, restoring heart structure, and reducing serum Cu2+ in diabetic rats.

  6. Rapid fabrication of three-dimensional structures for dielectrophoretic sorting of lipid-containing organisms

    International Nuclear Information System (INIS)

    Schor, Alisha R; Buie, Cullen R

    2016-01-01

    In this work, we demonstrate a microfluidic particle sorter consisting of three-dimensional, conducting microposts. Our sorter uses dielectrophoresis (DEP) to sort high- and low-lipid phenotypes of the yeast Yarrowia lipolytica . Y. lipolytica is one of the many microorganisms being explored as a hydrocarbon source for biodiesel, Omega-3 additives, and other products derived from fatty acids. A rapid, non-destructive, lipid-based sorting tool would accelerate the commercialization of these products. Our device consists of an array of 105, 25 μ m wide gold microposts that span the height of a 15 μ m channel. This array generates an electric field in a microfluidic device that is uniform through the channel height, but has a custom-shaped non-uniformity in the horizontal directions. This is crucial in order to achieve continuous sorting using DEP, as it ensures all cells are exposed to the same conditions throughout the channel height. By using very low currents (100 μ A), we are able to electroplate these post arrays in fewer than 15 min. This is an order of magnitude improvement over previous reports of electroplated microstructures. With an applied signal of 250 MHz, 2.6 V pp in our device, we separate a heterogeneous population with a purity of 97.8% in the low-lipid stream and 71.4% in the high-lipid stream. The high-lipid stream purity can be improved by adjusting the spacing of the array. This unique protocol for the rapid fabrication of 3D microstructures has enabled the creation of a non-invasive sorting tool for genetically engineered, lipid-producing organisms. The ability to screen organisms based on lipid content will alleviate one of the major bottlenecks in commercialization of microbial biofuels. (paper)

  7. Structural studies on an internal loop from a hairpin ribozyme

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Z.; SantaLucia, J. Jr.; Tinoco, I. Jr. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Ribozymes, RNA enzymes, catalyze site-specific RNA cleavage and ligation reactions. We are studying the three-dimensional structure of a hairpin ribozyme derived from the minus strand of tobacco ring spot virus satellite RNA ((-)sTRSV), which has been engineering to specifically cleave the HIV-1 RNA. The minimum structure for the catalytic reaction involves a 50-nucleotide ribozyme and a 14-nucleotide substrate. The proposed secondary structure of the ribozyme-substrate complex consists of four short helices separated by two internal loops. The relatively large size (64-nucleotide) of the ribozyme-substrate complex presents formidable problems in solving the structure using NMR. Therefore we are studying smaller structural subunits of the complex. We are determining the high resolution structure of the symmetric internal loop involving the cleavage site and the flanking helices. One strand of the internal loop was selectively {sup 13}C-labeled at C8 of each purine and C6 of each pyrimidine. By using {sup 13}C-edited two-dimensional NMR, the proton NOESY spectrum was greatly simplified. This allowed unambiguous sequential proton resonance assignments along each strand. Three-dimensional {sup 1}-{sup 13}C HMQC-NOESY was used to further facilitate resonance assignments. We are also enzymatically synthesizing the entire 50-nucleotide ribozyme and will combine it with the {sup 13}C-labeled substrate. Through comparison of the NOE connectivities of the labeled nucleotides from the internal loop alone with those from the entire complex, the differences between the two structures can be elucidated.

  8. Structural analysis of Herbaspirillum seropedicae lipid-A and of two mutants defective to colonize maize roots.

    Science.gov (United States)

    Serrato, Rodrigo V; Balsanelli, Eduardo; Sassaki, Guilherme L; Carlson, Russell W; Muszynski, Artur; Monteiro, Rose A; Pedrosa, Fábio O; Souza, Emanuel M; Iacomini, Marcello

    2012-11-01

    Lipid-A was isolated by mild acid hydrolysis from lipopolysaccharides extracted from cells of Herbaspirillum seropedicae, strain SMR1, and from two mutants deficient in the biosynthesis of rhamnose (rmlB⁻ and rmlC⁻). Structural analyzes were carried out using MALDI-TOF and derivatization by per-O-trimethylsilylation followed by GC-MS in order to determine monosaccharide and fatty acid composition. De-O-acylation was also performed to determine the presence of N-linked fatty acids. Lipid-A from H. seropedicae SMR1 showed a major structure comprising 2-amino-2-deoxy-glucopyranose-(1→6)-2-amino-2-deoxy-glucopyranose phosphorylated at C4' and C1 positions, each carrying a unit of 4-amino-4-deoxy-arabinose. C2 and C2' positions were substituted by amide-linked 3-hydroxy-dodecanoic acids. Both rhamnose-defective mutants showed similar structure for their lipid-A moieties, except for the lack of 4-amino-4-deoxy-arabinose units attached to phosphoryl groups. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation

    International Nuclear Information System (INIS)

    Pan Jianjun; Tristram-Nagle, Stephanie; Nagle, John F.

    2009-01-01

    The effects of cholesterol on membrane bending modulus K C , membrane thickness D HH , the partial and apparent areas of cholesterol and lipid, and the order parameter S xray are shown to depend upon the number of saturated hydrocarbon chains in the lipid molecules. Particularly striking is the result that up to 40% cholesterol does not increase the bending modulus K C of membranes composed of phosphatidylcholine lipids with two cis monounsaturated chains, although it does have the expected stiffening effect on membranes composed of lipids with two saturated chains. The B fluctuational modulus in the smectic liquid crystal theory is obtained and used to discuss the interactions between bilayers. Our K C results motivate a theory of elastic moduli in the high cholesterol limit and they challenge the relevance of universality concepts. Although most of our results were obtained at 30 deg. C, additional data at other temperatures to allow consideration of a reduced temperature variable do not support universality for the effect of cholesterol on all lipid bilayers. If the concept of universality is to be valid, different numbers of saturated chains must be considered to create different universality classes. The above experimental results were obtained from analysis of x-ray scattering in the low angle and wide angle regions.

  10. Investigation of Lipid Metabolism by a New Structured Lipid with Medium- and Long-Chain Triacylglycerols from Cinnamomum camphora Seed Oil in Healthy C57BL/6J Mice.

    Science.gov (United States)

    Hu, Jiang-Ning; Shen, Jin-Rong; Xiong, Chao-Yue; Zhu, Xue-Mei; Deng, Ze-Yuan

    2018-02-28

    In the present study, a new structured lipid with medium- and long-chain triacylglycerols (MLCTs) was synthesized from camellia oil (CO) and Cinnamomum camphora seed oil (CCSO) by enzymatic interesterification. Meanwhile, the antiobesity effects of structured lipid were investigated through observing the changes of enzymes related to lipid mobilization in healthy C57BL/6J mice. Results showed that after synthesis, the major triacylgeride (TAG) species of intesterificated product changed to LaCC/CLaC (12.6 ± 0.46%), LaCO/LCL (21.7 ± 0.76%), CCO/LaCL (14.2 ± 0.55%), COO/OCO (10.8 ± 0.43%), and OOO (18.6 ± 0.64%). Through second-stage molecular distillation, the purity of interesterified product (MLCT) achieved 95.6%. Later, male C57BL/6J mice were applied to study whether the new structured lipid with MLCT has the efficacy of preventing the formation of obesity or not. After feeding with different diets for 6 weeks, MLCTs could reduce body weight and fat deposition in adipose tissue, lower plasma triacylglycerols (TG) (0.89 ± 0.16 mmol/L), plasma total cholesterol (TC) (4.03 ± 0.08 mmol/L), and hepatic lipids (382 ± 34.2 mg/mice) by 28.8%, 16.0%, and 30.5%, respectively, when compared to the control 2 group. This was also accompanied by increasing fecal lipids (113%) and the level of enzymes including cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), hormone-sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) related to lipid mobilization in MLCT group. From the results, it can be concluded that MLCT reduced body fat deposition probably by modulating enzymes related to lipid mobilization in C57BL/6J mice.

  11. Structure of the first representative of Pfam family PF09410 (DUF2006) reveals a structural signature of the calycin superfamily that suggests a role in lipid metabolism

    International Nuclear Information System (INIS)

    Chiu, Hsiu-Ju; Bakolitsa, Constantina; Skerra, Arne; Lomize, Andrei; Carlton, Dennis; Miller, Mitchell D.; Krishna, S. Sri; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    NE1406, the first structural representative of PF09410, reveals a lipocalin-like fold with features that suggest involvement in lipid metabolism. In addition, NE1406 provides potential structural templates for two other protein families (PF07143 and PF08622). The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively

  12. Potential Use of Avocado Oil on Structured Lipids MLM-Type Production Catalysed by Commercial Immobilised Lipases

    Science.gov (United States)

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil. PMID:25248107

  13. Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy.

    Science.gov (United States)

    Viger-Gravel, Jasmine; Schantz, Anna; Pinon, Arthur C; Rossini, Aaron J; Schantz, Staffan; Emsley, Lyndon

    2018-02-22

    Here, we show how dynamic nuclear polarization (DNP) NMR spectroscopy experiments permit the atomic level structural characterization of loaded and empty lipid nanoparticles (LNPs). The LNPs used here were synthesized by the microfluidic mixing technique and are composed of ionizable cationic lipid (DLin-MC3-DMA), a phospholipid (distearoylphosphatidylcholine, DSPC), cholesterol, and poly(ethylene glycol) (PEG) (dimyristoyl phosphatidyl ethanolamine (DMPE)-PEG 2000), as well as encapsulated cargoes that are either phosphorothioated siRNA (50 or 100%) or mRNA. We show that LNPs form physically stable complexes with bioactive drug siRNA for a period of 94 days. Relayed DNP experiments are performed to study 1 H- 1 H spin diffusion and to determine the spatial location of the various components of the LNP by studying the average enhancement factors as a function of polarization time. We observe a striking feature of LNPs in the presence and in the absence of encapsulating siRNA or mRNA by comparing our experimental results to numerical spin-diffusion modeling. We observe that LNPs form a layered structure, and we detect that DSPC and DMPE-PEG 2000 lipids form a surface rich layer in the presence (or absence) of the cargoes and that the cholesterol and ionizable cationic lipid are embedded in the core. Furthermore, relayed DNP 31 P solid-state NMR experiments allow the location of the cargo encapsulated in the LNPs to be determined. On the basis of the results, we propose a new structural model for the LNPs that features a homogeneous core with a tendency for layering of DSPC and DMPE-PEG at the surface.

  14. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases.

    Directory of Open Access Journals (Sweden)

    Eduardo Caballero

    Full Text Available Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG containing medium-chain fatty acids (M at positions sn-1,3 and long-chain fatty acids (L at position sn-2. These MLM-type structured lipids (SL were produced by interesterification of caprylic acid (CA (C8:0 and avocado oil (content of C18:1. The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30-50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA and 4-10% w/w enzyme content. The lowest incorporation of CA (1.1% mol resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.

  15. MOTIVATION INTERNALIZATION AND SIMPLEX STRUCTURE IN SELF-DETERMINATION THEORY.

    Science.gov (United States)

    Ünlü, Ali; Dettweiler, Ulrich

    2015-12-01

    Self-determination theory, as proposed by Deci and Ryan, postulated different types of motivation regulation. As to the introjected and identified regulation of extrinsic motivation, their internalizations were described as "somewhat external" and "somewhat internal" and remained undetermined in the theory. This paper introduces a constrained regression analysis that allows these vaguely expressed motivations to be estimated in an "optimal" manner, in any given empirical context. The approach was even generalized and applied for simplex structure analysis in self-determination theory. The technique was exemplified with an empirical study comparing science teaching in a classical school class versus an expeditionary outdoor program. Based on a sample of 84 German pupils (43 girls, 41 boys, 10 to 12 years old), data were collected using the German version of the Academic Self-Regulation Questionnaire. The science-teaching format was seen to not influence the pupils' internalization of identified regulation. The internalization of introjected regulation differed and shifted more toward the external pole in the outdoor teaching format. The quantification approach supported the simplex structure of self-determination theory, whereas correlations may disconfirm the simplex structure.

  16. Discrete Optimization of Internal Part Structure via SLM Unit Structure-Performance Database

    Directory of Open Access Journals (Sweden)

    Li Tang

    2018-01-01

    Full Text Available The structural optimization of the internal structure of parts based on three-dimensional (3D printing has been recognized as being important in the field of mechanical design. The purpose of this paper is to present a creation of a unit structure-performance database based on the selective laser melting (SLM, which contains various structural units with different functions and records their structure and performance characteristics so that we can optimize the internal structure of parts directly, according to the database. The method of creating the unit structure-performance database was introduced in this paper and several structural units of the unit structure-performance database were introduced. The bow structure unit was used to show how to create the structure-performance database of the unit as an example. Some samples of the bow structure unit were designed and manufactured by SLM. These samples were tested in the WDW-100 compression testing machine to obtain their performance characteristics. After this, the paper collected all data regarding unit structure parameters, weight, performance characteristics, and other data; and, established a complete set of data from the bow structure unit for the unit structure-performance database. Furthermore, an aircraft part was reconstructed conveniently to be more lightweight according to the unit structure-performance database. Its weight was reduced by 36.8% when compared with the original structure, while the strength far exceeded the requirements.

  17. Determination of the separate lipid and protein profile structures derived from the total membrane profile structure or isolated sarcoplasmic reticulum via x-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Herbette, L.; Blasie, J.K.

    1984-01-01

    Sarcoplasmic reticulum (SR) membranes were prepared to contain biosynthetically deuterated SR phospholipids utilizing specific and general phospholipid exchange proteins (PLEP). Functional measurements and freeze fracture on SR dispersions and x-ray diffraction of hydrated oriented membrane multilayers revealed that the exchanged SR membranes were very similar to unexchanged SR membranes. Low resolution (28-A) neutron diffraction studies utilizing SR membranes exchanged with either protonated or perdeuterated SR phospholipids allowed direct determination of the lipid profile within the isolated SR membrane at two different unit cell repeat distances. These lipid profile structures were found to be highly asymmetric regarding the conformation of the fatty acid chain extents and compositional distribution of phospholipid molecules in the inner vs. outer monolayer of the SR membrane bilayer. The relatively high resolution (11-A) electron-density profile from x-ray diffraction was decomposed by utilizing the asymmetry in the number of phospholipid molecules residing in the inner vs. outer monolayer of the SR lipid bilayer as obtained from the neutron diffraction study. To our knowledge, this represents the first direct determination of a lipid bilayer profile structure within an isolated membrane system

  18. Internal structure changes of eyelash induced by eye makeup.

    Science.gov (United States)

    Fukami, Ken-Ichi; Inoue, Takafumi; Kawai, Tomomitsu; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2014-01-01

    To investigate how eye makeup affects eyelash structure, internal structure of eyelashes were observed with a scanning X-ray microscopic tomography system using synchrotron radiation light source. Eyelash samples were obtained from 36 Japanese women aged 20-70 years and whose use of eye makeup differed. Reconstructed cross-sectional images showed that the structure of the eyelash closely resembled that of scalp hair. The eyelash structure is changed by use of eye makeup. There was a positive correlation between the frequency of mascara use and the degree of cracking in cuticle. The positive correlation was also found between the frequency of mascara use and the porosity of the cortex. By contrast, the use of eyelash curler did not affect the eyelash structure with statistical significance.

  19. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.

    Science.gov (United States)

    Kovacevic, A; Savic, S; Vuleta, G; Müller, R H; Keck, C M

    2011-03-15

    The two polyhydroxy surfactants polyglycerol 6-distearate (Plurol(®)Stearique WL1009 - (PS)) and caprylyl/capryl glucoside (Plantacare(®) 810 - (PL)) are a class of PEG-free stabilizers, made from renewable resources. They were investigated for stabilization of aqueous solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Production was performed by high pressure homogenization, analysis by photon correlation spectroscopy (PCS), laser diffraction (LD), zeta potential measurements and differential scanning calorimetry (DSC). Particles were made from Cutina CP as solid lipid only (SLN) and its blends with Miglyol 812 (NLC, the blends containing increasing amounts of oil from 20% to 60%). The obtained particle sizes were identical for both surfactants, about 200 nm with polydispersity indices below 0.20 (PCS), and unimodal size distribution (LD). All dispersions with both surfactants were physically stable for 3 months at room temperature, but Plantacare (PL) showing a superior stability. The melting behaviour and crystallinity of bulk lipids/lipid blends were compared to the nanoparticles. Both were lower for the nanoparticles. The crystallinity of dispersions stabilized with PS was higher, the zeta potential decreased with storage time associated with this higher crystallinity, and leading to a few, but negligible larger particles. The lower crystallinity particles stabilized with PL remained unchanged in zeta potential (about -50 mV) and in size. These data show that surfactants have a distinct influence on the particle matrix structure (and related stability and drug loading), to which too little attention was given by now. Despite being from the same surfactant class, the differences on the structure are pronounced. They are attributed to the hydrophobic-lipophilic tail structure with one-point anchoring in the interface (PL), and the loop conformation of PS with two hydrophobic anchor points, i.e. their molecular structure and its

  20. Evidence for a structural role for acid-fast lipids in oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria.

    Science.gov (United States)

    Bushkin, G Guy; Motari, Edwin; Carpentieri, Andrea; Dubey, Jitender P; Costello, Catherine E; Robbins, Phillips W; Samuelson, John

    2013-09-03

    Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp. cause diarrhea in humans and animals, while Toxoplasma causes disseminated infections in fetuses and untreated AIDS patients. Eimeria is a major pathogen of commercial chickens. Oocysts, which are the infectious form of Cryptosporidium and Eimeria and one of two infectious forms of Toxoplasma (the other is tissue cysts in undercooked meat), have a multilayered wall. Recently we showed that the inner layer of the oocyst walls of Toxoplasma and Eimeria is a porous scaffold of fibers of β-1,3-glucan, which are also present in fungal walls but are absent from Cryptosporidium oocyst walls. Here we present evidence for a structural role for lipids in the oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. Briefly, oocyst walls of each organism label with acid-fast stains that bind to lipids in the walls of mycobacteria. Polyketide synthases similar to those that make mycobacterial wall lipids are abundant in oocysts of Toxoplasma and Eimeria and are predicted in Cryptosporidium. The outer layer of oocyst wall of Eimeria and the entire oocyst wall of Cryptosporidium are dissolved by organic solvents. Oocyst wall lipids are complex mixtures of triglycerides, some of which contain polyhydroxy fatty acyl chains like those present in plant cutin or elongated fatty acyl chains like mycolic acids. We propose a two-layered model of the oocyst wall (glucan and acid-fast lipids) that resembles the two-layered walls of mycobacteria (peptidoglycan and acid-fast lipids) and plants (cellulose and cutin). Oocysts, which are essential for the fecal-oral spread of coccidia, have a wall that is thought responsible for their survival in the environment and for their transit through the stomach and small intestine. While oocyst walls of Toxoplasma and Eimeria are strengthened by a porous scaffold of fibrils of β-1,3-glucan and by proteins cross

  1. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  2. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    International Nuclear Information System (INIS)

    Demirsoy, Fatma Funda Kaya; Eruygur, Nuraniye; Süleymanoğlu, Erhan

    2015-01-01

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg 2+ -ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized

  3. Effect of emulsifiers and physical structure on lipid oxidation in omega-3 emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    The body of evidence supporting health beneficial effects of long-chain omega-3 polyunsaturated fatty acids has increased over the last decades. Consequently, the interest in fish oil-enriched foods has also increased. However, addition of these highly unsaturated fatty acids to foods also adds...... the challenge of lipid oxidation. In order to limit lipid oxidation and the consecutive development of unpleasant off-flavours, the manner in which the fish oil is introduced to the food product should be carefully considered, e.g. an emulsion could be used as delivery system for the omega-3s. The aim...

  4. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    Science.gov (United States)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  5. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn 2-position - as bulk lipids and in milk drinks

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Nielsen, Nina Skall; Xu, Xuebing

    2004-01-01

    In this study, we compared the oxidative stability of a specific structured lipid (SL) containing conjugated linoleic acid (CLA) in the sn2-position with SL containing other C18 fatty acids of different degree of unsaturation (stearic, oleic, linoleic or linolenic acid). SL was produced...... by enzymatic interesterification with caprylic acid. Oxidative stability was compared in the five lipids themselves and in milk drinks containing 5% of the different SL. During storage, samples were taken for chemical and physical analyses. Moreover, sensory assessments were performed on milk drinks....... The oxidative stability of our SL was very different when comparing (a) bulk lipids and milk drink and (b) the five different batches of each product. SL based on oleic acid was the most unstable as bulk lipid, while SL based on linoleic acid was the most unstable in milk drink. SL based on CLA was the second...

  6. Structural and functional characterization of human apolipoprotein E 72-166 peptides in both aqueous and lipid environments

    Directory of Open Access Journals (Sweden)

    Chou Chi-Yuan

    2011-01-01

    Full Text Available Abstract Backgrounds There are three apolipoprotein E (apoE isoforms involved in human lipid homeostasis. In the present study, truncated apoE2-, apoE3- and apoE4-(72-166 peptides that are tailored to lack domain interactions are expressed and elucidated the structural and functional consequences. Methods & Results Circular dichroism analyses indicated that their secondary structure is still well organized. Analytical ultracentrifugation analyses demonstrated that apoE-(72-166 produces more complicated species in PBS. All three isoforms were significantly dissociated in the presence of dihexanoylphosphatidylcholine. Dimyristoylphosphatidylcholine turbidity clearance assay showed that apoE4-(72-166 maintains the highest lipid-binding capacity. Finally, only apoE4-(72-166 still maintained significant LDL receptor binding ability. Conclusions Overall, apoE4-(72-166 peptides displayed a higher lipid-binding and comparable receptor-binding ability as to full-length apoE. These findings provide the explanation of diverged functionality of truncated apoE isoforms.

  7. Structural Studies of Lipid A from a Lipopolysaccharide of the Coxiella burnetii isolate RSA 514 (Crazy)

    Czech Academy of Sciences Publication Activity Database

    Vadovič, P.; Fuleová, A.; Ihnatko, R.; Škultéty, L.; Halada, Petr; Toman, R.

    2009-01-01

    Roč. 15, č. 2 (2009), s. 198-199 ISSN 1198-743X Institutional research plan: CEZ:AV0Z50200510 Keywords : lipid * lipopolysaccharide * crazy Subject RIV: EE - Microbiology, Virology Impact factor: 4.014, year: 2009

  8. Significance of sterol structural specificity : desmosterol cannot replace cholesterol in lipid rafts

    NARCIS (Netherlands)

    Vainio, S.; Jansen, Maurice; Koivusalo, M.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.; Ikonen, E.

    2006-01-01

    Desmosterol is an immediate precursor of cholesterol in the Bloch pathway of sterol synthesis and an abundant membrane lipid in specific cell types. The significance of the difference between the two sterols, an additional double bond at position C24 in the tail of desmosterol, is not known. Here,

  9. Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology

    NARCIS (Netherlands)

    Pitcher, A.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by Crenarchaeota to interpret the presence, distribution, and

  10. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.

    Science.gov (United States)

    Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun

    2018-01-30

    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.

  11. 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas

    International Nuclear Information System (INIS)

    Allard, E.; Hindre, F.; Passirani, C.; Lemaire, L.; Benoit, J.P.; Lepareur, N.; Noiret, N.; Menei, P.

    2008-01-01

    Lipid nanocapsules (LNC) entrapping lipophilic complexes of 188 Re( 188 Re(S 3 CPh) 2 (S 2 CPh) [ 188 Re-SSS]) were investigated as a novel radiopharmaceutical carrier for internal radiation therapy of malignant gliomas. The present study was designed to evaluate the efficacy of intra-cerebral administration of 188 Re-SSS LNC by means of convection-enhanced delivery (CED) on a 9L rat brain tumour model. Female Fischer rats with 9L glioma were treated with a single injection of 188 Re-SSS LNC by CED 6days after cell implantation. Rats were put into random groups according to the dose infused: 12, 10, 8 and 3Gy in comparison with blank LNC, perrhenate solution (4Gy) and non-treated animals. The radionuclide brain retention level was evaluated by measuring 188 Re elimination in faeces and urine over 72h after the CED injection. The therapeutic effect of 188 Re-SSS LNC was assessed based on animal survival. CED of 188 Re perrhenate solution resulted in rapid drug clearance with a brain T 1/2 of 7h. In contrast, when administered in LNC, 188 Re tissue retention was greatly prolonged, with only 10% of the injected dose being eliminated at 72h. Rat median survival was significantly improved for the group treated with 8Gy 188 Re-SSS LNC compared to the control group and blank LNC-treated animals. The increase in the median survival time was about 80% compared to the control group; 33% of the animals were long-term survivors. The dose of 8Gy proved to be a very effective dose, between toxic (10-12Gy) and ineffective (3-4Gy) doses. These findings show that CED of 188 Re-loaded LNC is a safe and potent anti-tumour system for treating malignant gliomas. Our data are the first to show the in vivo efficacy of 188 Re internal radiotherapy for the treatment of brain malignancy. (orig.)

  12. Studies in stellar evolution. 3. The internal structure constants

    International Nuclear Information System (INIS)

    Hejlesen, P.M.

    1987-01-01

    This is the third paper in a series describing the results of extensive stellar evolution calculations. The internal structure constants k j (j = 2, 3, 4) have been computed for a fine grid of stellar models covering the HR-diagram from the zero-age main sequence to the subgiant region. These constants represent the influence of the internal structure on the disturbing potentials of stars, and they are needed for prediction of theoretical apsidal motion rates in close eccentric binaries as well as for other tidal effects. Results for four different initial chemical compositions are presented. The opacity tables by Cox and Stewart (1969) have been adopted, and a mixing length parameter of l/H p = 2.0 has been used throughout. The results are compared with previous calculations. A comparison with observational data for eclipsing binaries will be published elsewhere

  13. Effect of Ring Size in ω-Alicyclic Fatty Acids on the Structural and Dynamical Properties Associated with Fluidity in Lipid Bilayers.

    Science.gov (United States)

    Poger, David; Mark, Alan E

    2015-10-27

    Fatty acids containing a terminal cyclic group such as cyclohexyl and cycloheptyl are commonly found in prokaryotic membranes, especially in those of thermo-acidophilic bacteria. These so-called ω-alicyclic fatty acids have been proposed to stabilize the membranes of bacteria by reducing the fluidity in membranes and increasing lipid packing and lipid chain order. In this article, molecular dynamics simulations are used to examine the effect of 3- to 7-membered cycloalkyl saturated and unsaturated (cyclopent-2-enyl and phenyl) rings in ω-alicyclic fatty acyl chains on the structure (lipid packing, lipid chain order, and fraction of gauche defects in the chains) and dynamics (lateral lipid diffusion) of a model lipid bilayer. It was found that ω-alicyclic chains in which the ring was saturated reduced lipid condensation and lowered chain order which would be associated with enhanced fluidity. However, this effect was limited. The lateral diffusion of the lipids diminished as the ring size increased. In particular, ω-cyclohexyl and ω-cycloheptyl acyl tails led to a decrease in lipid diffusion. In contrast, ω-alicyclic acyl chains that contain an unsaturated ring promoted membrane fluidity both in terms of changes in membrane structure and lipid diffusion. This may indicate that saturated and unsaturated terminal rings in ω-alicyclic fatty acids fulfill alternative functions within membranes. Overall, the simulations suggest that ω-alicyclic fatty acids in which the terminal ring is saturated might protect the membrane of thermo-acidophilic bacteria from high-temperature and low-pH conditions through a "dynamical barrier" that would limit lipid diffusion and transmembrane diffusion of undesired ions and molecules.

  14. The internal structure of magnetic nanoparticles determines the magnetic response

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Kubíčková, Simona; Salas, G.; Mantlíková, Alice; Marciello, M.; Morales, M.P.; Nižňanský, D.; Vejpravová, Jana

    2017-01-01

    Roč. 9, č. 16 (2017), s. 5129-5140 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : nanoparticles * single-domain * internal structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.367, year: 2016

  15. The effect of internal magnetic structure on the fishbone instability

    International Nuclear Information System (INIS)

    Roberts, D.W.; Powell, E.; Kaita, R.; Bell, R.; Chance, M.; Hatcher, R.; Holland, A.; Kaye, S.; Kessel, C.; Kugel, H.; LeBlanc, B.; Manickam, J.; Okabayashi, M.; Paul, S.; Pomphrey, N.; Sauthoff, N.; Sesnic, S.; Takahashi, H.; White, R.; Asakura, N.; Duperrex, P.; Gammel, G.

    1992-01-01

    Plasmas exhibiting the ''fishbone'' instability studied on the PBX-M tokamak show a distinct relationship between the plasma shape, the internal magnetic structure, and the presence or absence of fast ion losses associated with the fishbone mode. We have, for the first time, carried out measurements of the magnetic safety factor profile in fishbone-unstable plasmas, and used the knowledge of the associated experimental equilibria to compare the stability and fast ion loss properties of these plasmas with experimental observations

  16. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  17. Direct experimental determination of the atomic structure at internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Browning, N.D. [Oak Ridge National Lab., TN (United States)]|[Illinois Univ., Chicago, IL (United States); Pennycook, S.J. [Oak Ridge National Lab., TN (United States)

    1995-07-01

    A crucial first step in understanding the effect that internal interfaces have on the properties of materials is the ability to determine the atomic structure at the interface. As interfaces can contain atomic disorder, dislocations, segregated impurities and interphases, sensitivity to all of these features is essential for complete experimental characterization. By combining Z-contrast imaging and electron energy loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope (STEM), the ability to probe the structure, bonding and composition at interfaces with the necessary atomic resolution has been obtained. Experimental conditions can be controlled to provide, simultaneously, both incoherent imaging and spectroscopy. This enables interface structures observed in the image to be interpreted intuitively and the bonding in a specified atomic column to be probed directly by EELS. The bonding and structure information can then be correlated using bond-valence sum analysis to produce structural models. This technique is demonstrated for 25{degrees}, 36{degrees} and 67{degrees} symmetric and 45{degrees} and 25{degrees} asymmetric [001] tilt grain boundaries in SrTiO{sub 3} The structures of both types of boundary were found to contain partially occupied columns in the boundary plane. From these experimental results, a series of structural units were identified which could be combined, using continuity of gain boundary structure principles, to construct all [001] tilt boundaries in SrTiO{sub 3}. Using these models, the ability of this technique to address the issues of vacancies and dopant segregation at grain boundaries in electroceramics is discussed.

  18. Proceedings of the Third International Workshop on Jointed Structures.

    Energy Technology Data Exchange (ETDEWEB)

    Starr, Michael James; Brake, Matthew Robert; Segalman, Daniel Joseph; Bergman, Lawrence A.; Ewins, David J.

    2013-08-01

    The Third International Workshop on Jointed Structures was held from August 16th to 17th, 2012, in Chicago Illinois, following the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Thirty two researchers from both the United States and international locations convened to discuss the recent progress of mechanical joints related research and associated efforts in addition to developing a roadmap for the challenges to be addressed over the next five to ten years. These proceedings from the workshop include the minutes of the discussions and follow up from the 2009 workshop [1], presentations, and outcomes of the workshop. Specifically, twelve challenges were formulated from the discussions at the workshop, which focus on developing a better understanding of uncertainty and variability in jointed structures, incorporating high fidelity models of joints in simulations that are tractable/efficient, motivating a new generation of researchers and funding agents as to the importance of joint mechanics research, and developing new insights into the physical phenomena that give rise to energy dissipation in jointed structures. The ultimate goal of these research efforts is to develop a predictive model of joint mechanics.

  19. Self-force as probe of internal structure

    International Nuclear Information System (INIS)

    Isoyama, Soichiro; Poisson, Eric

    2012-01-01

    The self-force acting on a (scalar or electric) charge held in place outside a massive body contains information about the body's composition, and can therefore be used as a probe of internal structure. We explore this theme by computing the (scalar or electromagnetic) self-force when the body is a spherical ball of perfect fluid in hydrostatic equilibrium, under the assumption that its rest-mass density and pressure are related by a polytropic equation of state. The body is strongly self-gravitating, and all computations are performed in exact general relativity. The dependence on internal structure is best revealed by expanding the self-force in powers of r -1 0 , with r 0 denoting the radial position of the charge outside the body. To the leading order, the self-force scales as r -3 0 and depends only on the square of the charge and the body's mass; the leading self-force is universal. The dependence on internal structure is seen at the next order, r -5 0 , through a structure factor that depends on the equation of state. We compute this structure factor for relativistic polytropes, and show that for a fixed mass, it increases linearly with the body's radius in the case of the scalar self-force, and quadratically with the body's radius in the case of the electromagnetic self-force. In both cases we find that for a fixed mass and radius, the self-force is smaller if the body is more centrally dense, and larger if the mass density is more uniformly distributed. (paper)

  20. Melting properties of some structured lipids native to high stearic acid soybean oil

    Directory of Open Access Journals (Sweden)

    Dunn, R. O.

    2004-06-01

    Full Text Available A number of structured lipids native to high stearic acid soybean oil were synthesized and their physical properties were determined by pulsed nuclear magnetic resonance (NMR, Mettler dropping point and differential scanning calorimetry (DSC. 1,3 Distearo-2-olein (SOS, 1,3 distearo-2-linolein (SLS and1,3 distearo-2-linolenin (SlnS were synthesized from pure 1,3 diacylglycerols and the appropriate fatty acid. Pulsed NMR determinations over the temperature range 10-50 ºC showed that the symmetrical triacylglycerols (SUS: where S = stearic, U = oleic, linoleic or linolenic are high and sharply melting materials, all showing substantial amounts of solids at temperatures up to 33.3 ºC, yet are completely melted at only a few degrees higher. Mettler dropping points for SOS, SLS and SlnS were 44.1, 37.9 and 36.5 ºC respectively. The heats of fusion for the structured triacylglycerols were determined by DSC and shown to be of the order 29-32 cal/gm compared to 45 cal/gm for SSS. The heats of fusion were also calculated from Mettler dropping point determinations as admixtures with soybean oil and showed consistent agreement with the DSC data.Se sintetizaron algunos lípidos estructurados procedentes del aceite de soja con alto contenido en ácido esteárico y sus propiedades físicas se determinaron por resonancia magnética nuclear pulsada (NMR, punto de goteo Mettler y calorimetría diferencial de barrido (DSC. Se sintetizaron 1,3 diestearo-2-oleina (SOS, 1,3 diestearo-2-linoleina (SLS y 1,3 diestearo-2-linolenina (SlnS a partir de 1,3 diacilgliceroles y de los ácidos grasos adecuados puros. Las determinaciones de NMR pulsada en el rango de temperaturas 10- 50 ºC mostraron que los triacilgliceroles simétricos (SUS: donde S = esteárico, U = oleico, linoleico o linolénico funden a mayor temperatura y más bruscamente, todos presentan altos contenidos en sólidos a todas las temperaturas hasta los 33.3 ºC, estando completamente fundidos

  1. The Structure of the Lipid A from the Halophilic Bacterium Spiribacter salinus M19-40T

    Directory of Open Access Journals (Sweden)

    Clara Barrau

    2018-04-01

    Full Text Available The study of the adaptation mechanisms that allow microorganisms to live and proliferate in an extreme habitat is a growing research field. Directly exposed to the external environment, lipopolysaccharides (LPS from Gram-negative bacteria are of great appeal as they can present particular structural features that may aid the understanding of the adaptation processes. Moreover, through being involved in modulating the mammalian immune system response in a structure-dependent fashion, the elucidation of the LPS structure can also be seen as a fundamental step from a biomedical point of view. In this paper, the lipid A structure of the LPS from Spiribacter salinus M19-40T, a halophilic gamma-proteobacteria, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI mass spectrometry. This revealed a mixture of mono- and bisphosphorylated penta- to tri-acylated species with the uncommon 2 + 3 symmetry and bearing an unusual 3-oxotetradecaonic acid.

  2. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.

    Directory of Open Access Journals (Sweden)

    Theresa Tiefenbrunn

    Full Text Available The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+ and e(- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3 and Cu(B atoms that is best modeled as peroxide. The structure of ba(3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the

  3. [Volunteer satisfaction: Internal structure and relationship with permanence in organizations].

    Science.gov (United States)

    Vecina Jiménez, M L; Chacón Fuertes, Fernando; Sueiro Abad, Manuel J

    2009-02-01

    Volunteer satisfaction: Internal structure and relationship with permanence in organizations. The concept of satisfaction is considered theoretically relevant in practically all the studies that have investigated the factors that influence the permanence of volunteer participation in organizations. However, the practical results are not conclusive, perhaps due to the wide range of ways in which the concept is understood and measured. The object of this study is: to analyse the internal structure of satisfaction and to verify its relationship with volunteer duration in organizations. The results of the factor analysis yield a three-factor structure: Satisfaction with the management of the organization, Satisfaction with the tasks, Satisfaction of motivations. The three factors allow us to differentiate between individuals who remain in the organization for a period of 12 consecutive months, and those who leave earlier. The results of structural equation model analysis show that the relationship between satisfaction and the length of time that volunteers stay with the organization is affected by the intention to remain.

  4. Studies on muon tomography for archaeological internal structures scanning

    Science.gov (United States)

    Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2016-05-01

    Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.

  5. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm.

    Science.gov (United States)

    Kozlovsky, Yonathan; Chernomordik, Leonid V; Kozlov, Michael M

    2002-11-01

    Lipid bilayer fusion is thought to involve formation of a local hemifusion connection, referred to as a fusion stalk. The subsequent fusion stages leading to the opening of a fusion pore remain unknown. The earliest fusion pore could represent a bilayer connection between the membranes and could be formed directly from the stalk. Alternatively, fusion pore can form in a single bilayer, referred to as hemifusion diaphragm (HD), generated by stalk expansion. To analyze the plausibility of stalk expansion, we studied the pathway of hemifusion theoretically, using a recently developed elastic model. We show that the stalk has a tendency to expand into an HD for lipids with sufficiently negative spontaneous splay, (~)J(s)action of an external force pulling the diaphragm rim apart. We calculate the dependence of the HD radius on this force. To address the mechanism of fusion pore formation, we analyze the distribution of the lateral tension emerging in the HD due to the establishment of lateral equilibrium between the deformed and relaxed portions of lipid monolayers. We show that this tension concentrates along the HD rim and reaches high values sufficient to rupture the bilayer and form the fusion pore. Our analysis supports the hypothesis that transition from a hemifusion to a fusion pore involves radial expansion of the stalk.

  6. The effect of interesterification on the bioavailability of fatty acids in structured lipids.

    Science.gov (United States)

    Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P

    2013-08-15

    Fatty acid (FA) profile is a critical factor in the nutritional properties of fats, but, stereochemistry may also play a fundamental role in the rate and extent to which FAs are absorbed and become available. To better understand this phenomenon, we evaluated the bioavailability of FAs in linseed-oil and palm-stearin blends compared to their interesterified mix, using a sn-1,3 stereospecific lipase, to determine if there was any difference in terms of FA availability when using this technology. Test meals were fed through an intragastric feeding tube on Sprague-Dawley male rats after 18 h fasting. Postprandial blood samples were collected after meal or physiological serum (control) administration and the FA profile of plasma lipids was determined. Results showed that modification of the melting profile through interesterification, without altering the bioavailability determined by sn-2 stereochemistry, could delay lipid absorption at the beginning, but had no effect on total lipid absorption. Copyright © 2013. Published by Elsevier Ltd.

  7. Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation.

    Science.gov (United States)

    He, Shufang; Fan, Weiwei; Wu, Na; Zhu, Jingjing; Miao, Yunqiu; Miao, Xiaran; Li, Feifei; Zhang, Xinxin; Gan, Yong

    2018-04-11

    RNA interference (RNAi) technology has shown great promise for the treatment of cancer and other genetic disorders. Despite the efforts to increase the target tissue distribution, the safe and effective delivery of siRNA to the diseased cells with sufficient cytosolic transport is another critical factor for successful RNAi clinical application. Here, the constructed lipid-based liquid crystalline nanoparticles, called nano-Transformers, can transform thestructure in the intracellular acidic environment and perform high-efficient siRNA delivery for cancer treatment. The developed nano-Transformers have satisfactory siRNA loading efficiency and low cytotoxicity. Different from the traditional cationic nanocarriers, the endosomal membrane fusion induced by the conformational transition of lipids contributes to the easy dissociation of siRNA from nanocarriers and direct release of free siRNA into cytoplasm. We show that transfection with cyclin-dependent kinase 1 (CDK1)-siRNA-loaded nano-Transformers causes up to 95% reduction of relevant mRNA in vitro and greatly inhibits the tumor growth without causing any immunogenic response in vivo. This work highlights that the lipid-based nano-Transformers may become the next generation of siRNA delivery system with higher efficacy and improved safety profiles.

  8. Structural policy in the context of international competition aggravation

    Directory of Open Access Journals (Sweden)

    Volodymyr Bodrov

    2014-09-01

    Full Text Available This article researches the essence and peculiarities of the structural policy, performs classification of its models and determines possibilities of their use in the context of increasing international competition. It discovers the main components of the economic structure and trends of the state policy regarding their modernization. Measures on improvement of state regulation instruments are offered, factors of influence upon improvement of the Ukrainian economy structure are analyzed and priority goals are systematized which require urgent implementation in the terms of competitive struggle aggravation at the global markets. The article also researches the matter of importance of performing a complex of state functional and selective measures in the form of matrix policy for the purpose of protecting national interests of the country in the context of global challenges

  9. 4th International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    2018-01-01

    This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers a...

  10. Laminated structure in internally oxidized Ru-Ta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw

    2012-12-01

    During the development of refractory alloy coatings for protective purposes at high temperature under oxygen-containing atmospheres, previous studies noted and examined the internal oxidation phenomenon for Mo-Ru and Ru-Ta coatings. The internally oxidized zone shows a laminated structure, consisting of alternating oxygen-rich and deficient layers stacked with a general orientation. Previous studies proposed a forming mechanism. To investigate in detail, Ru-Ta coatings were prepared with various rotating speeds of a substrate-holder. The coatings were annealed at 600 Degree-Sign C in an atmosphere continuously purged with 1% O{sub 2}-99% Ar mixed gas for 30 min. Transmission electron microscopy was used to examine the laminated-layer periods. Auger electron spectroscopy depth profiles certified the periodical variation of the related constituents. X-ray photoelectron spectroscopy proved the valence variation of Ta in the near surface, accompanied by the introduction of oxygen ions. The inward diffusion of oxygen was dominated by lattice diffusion. - Highlights: Black-Right-Pointing-Pointer Laminated Ru-Ta coatings consisted of a cyclical gradient concentration. Black-Right-Pointing-Pointer The as-deposited coatings showed a laminated structure with a period of 4-34 nm. Black-Right-Pointing-Pointer Internal oxidation of Ru-Ta coatings executed after annealing in 1% O{sub 2}-Ar atmosphere. Black-Right-Pointing-Pointer Oxygen inward diffusion was dominated by lattice diffusion.

  11. Nitric oxide induces segregation of decay accelerating factor (DAF or CD55) from the membrane lipid-rafts and its internalization in human endometrial cells.

    Science.gov (United States)

    Banadakoppa, Manu; Goluszko, Pawel; Liebenthal, Daniel; Yallampalli, Chandra

    2012-10-01

    Recent studies suggest that DAF (decay accelerating factor), a complement regulatory protein, present in lipid rafts, is utilized by Dr fimbriated Escherichia coli for their binding and internalization. Previous studies in our laboratory have shown that NO (nitric oxide) can reduce the invasion of Dr(+) E. coli and the severity of uterine infection in pregnant rats. Also, the expression level of DAF both at the mRNA and protein levels has been shown to be reduced by NO. Therefore NO mediated down-regulation of DAF appears to be an important factor in reducing the susceptibility to E. coli infection. However, it is unclear if NO can actually modulate the membrane association of DAF and therefore initial bacterial binding to cells. We found that NO induces the delocalization of DAF from the G(M1)-rich lipid rafts. Using biochemical and cell biological approaches in a uterine epithelial cell model (Ishikawa cells), DAF accumulates in caveolae upon exposure to NO. Interaction of DAF with the caveolar protein, caveolin1, leads to their internalization by endosomes. NO-induced delocalization of DAF from the lipid raft and its accumulation in caveolae are mediated through a cGMP (cyclic guanosine monophosphate) pathway. The acute localized synthesis of NO and its influence on DAF localization may represent an important unrecognized phenomenon of host defence against Dr(+) E. coli bacteria, as well as many disease conditions that involve complement system.

  12. Institutional Structure and International Competitiveness Relationship in Developed Countries

    Directory of Open Access Journals (Sweden)

    Aynur Yıldırım

    2016-06-01

    Full Text Available This study analyzes the effects of institutional structure on the international competitiveness of developed countries econometrically by employing a “Panel Data Analysis” with a sample of 21 developed countries and 23 institutional variables for the period 2000-2011. The results of the analysis indicate that while judicial independence, protection of intellectual property rights, integrity of the juridical system, marginal tax, political freedoms, black market exchange rate, restrictions on foreign investment, private sector’s share in the banking system, hiring-minimum wage, and hiring-dismissal have a positive effect; the nature of legal arrangements, government spending, transfers and subsidies, civil liberties, tariffs, regulations regarding trade barriers, collective bargaining, and military tutelage have a negative effect on the international competitiveness of developed countries.

  13. STRUCTURAL ECONOMIC CHANGE AND INTERNATIONAL MIGRATION FROM MEXICO AND POLAND

    Science.gov (United States)

    Massey, Douglas S.; Kalter, Frank; Pren, Karen A.

    2010-01-01

    In this article we use uniquely comparable data sets from two very different settings to examine how exogenous economic transformations affect the likelihood and selectivity of international out-migration. Specifically, we use data from the Mexican Migration Project to construct event history files predicting first U.S. trips from seven communities in the state of Veracruz, which until recently sent very few migrants abroad. Similarly, using data from the Polish Migration Project, we derive comparable event history files predicting first trips to Germany from four Polish communities, which also sent few migrants abroad before the 1980s. Our analyses suggest that the onset of structural adjustment in both places had a significant effect in raising the probability of international migration, even when controlling for a set of standard variables specified by other theories to influence migration propensity, such as the size of the binational income gap and various indicators of human and social capital. PMID:21765550

  14. Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions.

    Science.gov (United States)

    Celus, Miete; Salvia-Trujillo, Laura; Kyomugasho, Clare; Maes, Ine; Van Loey, Ann M; Grauwet, Tara; Hendrickx, Marc E

    2018-02-15

    The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe 2+ ), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.

    Science.gov (United States)

    Li, Qufei; Wanderling, Sherry; Sompornpisut, Pornthep; Perozo, Eduardo

    2014-02-01

    Voltage-gated ion channels respond to transmembrane electric fields through reorientations of the positively charged S4 helix within the voltage-sensing domain (VSD). Despite a wealth of structural and functional data, the details of this conformational change remain controversial. Recent electrophysiological evidence showed that equilibrium between the resting ('down') and activated ('up') conformations of the KvAP VSD from Aeropyrum pernix can be biased through reconstitution in lipids with or without phosphate groups. We investigated the structural transition between these functional states, using site-directed spin-labeling and EPR spectroscopic methods. Solvent accessibility and interhelical distance determinations suggest that KvAP gates through S4 movements involving an ∼3-Å upward tilt and simultaneous ∼2-Å axial shift. This motion leads to large accessibly changes in the intracellular water-filled crevice and supports a new model of gating that combines structural rearrangements and electric-field remodeling.

  16. INTERESTERIFIKASI ENZIMATIS MINYAK IKAN DENGAN ASAM LAURAT UNTUK SINTESIS LIPID TERSTRUKTUR [Enzymatic Interesterification of Fish Oil with Lauric Acid for the Synthesis of Structured Lipid

    Directory of Open Access Journals (Sweden)

    Edy Subroto1

    2008-12-01

    Full Text Available Structured lipid (SL containing of medium chain fatty acid (MCFA at outer position and polyunsaturated fatty acid (PUFA at sn-2 position has superior dietary and absorption characteristics. The most methods for the enzymatic synthesis of SL were through two steps process, so that it was inefficient. Caprilic acid was usually used as a source of MCFA. In this research, SL was synthesized by enzymatic interesterification between fish oil and lauric acid. The specific lipase from Mucor miehei was used as catalyzed. Factors, such as the incubation time, substrate mole ratio, and reaction temperature were evaluated. The incorporation and the position of lauric acid on glycerol backbone and glyceride profile were determined. The results showed that SL containing of lauric acid at the outer position and PUFA at sn-2 was successfully synthesized, and it was done through one step process. From regiospecific determination, it showed that the position of lauric acid incorporation was only at the sn-1 and sn-3. Only 0.87% of lauric acid was incorporated at the sn-2. The optimum time and temperature of the reaction, and the substrate mole ratio were 12 h, 50C and 1:10, respectively, in which the incorporation of lauric acid was 62.8% (mol. Glyceride profile was affected by incubation time, substrate mole ratio and reaction temperature. Triglyceride concentration decreased with an increase in the incubation time (> 12 h. In contrast, the diglyceride concentration increased at longer incubation time (> 12 h. Beside, triglyceride concentration increased with an increase in substrate mole ratio to 1:10, but it decreased when mole ratio of substrate was 1:15. At higher temperature (50C, triglyceride decreased with an increase in the reaction temperature. In summary, the SL was successfully synthesized by the interesterification of fish oil and lauric acid using specific lipase of Mucor miehei.

  17. Fast flexible modeling of RNA structure using internal coordinates.

    Science.gov (United States)

    Flores, Samuel Coulbourn; Sherman, Michael A; Bruns, Christopher M; Eastman, Peter; Altman, Russ Biagio

    2011-01-01

    Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.

  18. 8th international conference on electronic spectroscopy and structure

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  19. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.

    Directory of Open Access Journals (Sweden)

    Luis F Aguilar

    Full Text Available Changes in the cholesterol (Chol content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs for cuvette and giant unilamellar vesicles (GUVs for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC and dioctadecyl phosphatidylcholine (DOPC in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo.

  20. Administration of structured lipid composed of MCT and fish oil reduces net protein catabolism in enterally fed burned rats.

    Science.gov (United States)

    Teo, T C; DeMichele, S J; Selleck, K M; Babayan, V K; Blackburn, G L; Bistrian, B R

    1989-01-01

    The effects of enteral feeding with safflower oil or a structured lipid (SL) derived from 60% medium-chain triglyceride (MCT) and 40% fish oil (MCT/fish oil) on protein and energy metabolism were compared in gastrostomy-fed burned rats (30% body surface area) by measuring oxygen consumption, carbon dioxide production, nitrogen balance, total liver protein, whole-body leucine kinetics, and rectus muscle and liver protein fractional synthetic rates (FSR, %/day). Male Sprague-Dawley rats (195 +/- 5g) received 50 ml/day of an enteral regimen containing 50 kcal, 2 g amino acids, and 40% nonprotein calories as lipid for three days. Protein kinetics were estimated by using a continuous L-[1-14C] leucine infusion technique on day 2. Thermally injured rats enterally fed MCT/fish oil yielded significantly higher daily and cumulative nitrogen balances (p less than or equal to 0.025) and rectus muscle (39%) FSR (p less than or equal to 0.05) when compared with safflower oil. MCT/fish oil showed a 22% decrease (p less than or equal to 0.005) in per cent flux oxidized and a 7% (p less than or equal to 0.05) decrease in total energy expenditure (TEE) versus safflower oil. A 15% increase in liver FSR was accompanied by a significant elevation (p less than or equal to 0.025) in total liver protein with MCT/fish oil. This novel SL shares the properties of other structured lipids in that it reduces the net protein catabolic effects of burn injury, in part, by influencing tissue protein synthetic rates. The reduction in TEE is unique to MCT/fish oil and may relate to the ability of fish oil to diminish the injury response. PMID:2500898

  1. RILEM International Symposium on Materials and Joints in Timber Structures

    CERN Document Server

    Reinhardt, H-W; Garrecht, Harald

    2014-01-01

    This book contains the contributions from the RILEM International Symposium on Materials and Joints in Timber Structures that was held in Stuttgart, Germany from October 8 to 10, 2013. It covers recent developments in the materials and the joints used in modern timber structures. Regarding basic wooden materials, the contributions highlight the widened spectrum of products comprising cross-laminated timber, glulam and LVL from hardwoods and block glued elements. Timber concrete compounds, cement bonded wood composites and innovative light-weight constructions represent increasingly employed alternatives for floors, bridges and facades. With regard to jointing technologies, considerable advances in both mechanical connections and glued joints are presented. Self-tapping screws have created unprecedented options for reliable, strong as well as ductile joints and reinforcement technologies. Regarding adhesives, which constitute the basis of the jointing/laminating technology of modern timber products, extended o...

  2. Perspectives on marine zooplankton lipids

    DEFF Research Database (Denmark)

    Kattner, G.; Hagen, W.; Lee, R.F.

    2007-01-01

    We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact...... of climate change. The first addresses the role of lipids in membranes, storage lipids, and buoyancy with the following key question: How are the properties of membranes and deposits affected by the various types of lipids? The second deals with the importance of various types of lipids during reproduction......, development, and resting phases and addresses the role of the different storage lipids during growth and dormancy. The third relates to trophic marker lipids, which are an important tool to follow lipid and energy transfer through the food web. The central question is how can fatty acids be used to identify...

  3. Enzymatic incorporation of caffeoyl into castor oil to prepare the novel castor oil-based caffeoyl structured lipids.

    Science.gov (United States)

    Sun, Shangde; Wang, Ping; Zhu, Sha

    2017-05-10

    In this work, a novel castor oil-based caffeoyl structured lipids was successfully prepared by the enzymatic transesterification using castor oil (CO) as caffeoyl acceptor. During the structured lipids preparation, two competitive reactions, the hydrolysis of CO to form hydrophilic caffeoyl glycerols (CG)+dicaffeoyl glycerols (DCG) and the transesterification of CO with ethyl caffeate (EC) to form lipophilic caffeoyl mono- and di-acylglycerols (CMAG and CDAG), were found. Reaction progress was monitored using HPLC-ESI-MS and HPLC-UV. The effects of by-product ethanol removal and reaction variables on the transesterification and reaction selectivity were evaluated. Results showed that, the activation energies for the transesterification and for the selective formations of CMAG+CDAG and CG+DCG were 57.60kJ/mol, 58.86kJ/mol, and 60.53kJ/mol, respectively. Under the optimal reaction conditions (enzyme load 23%, 90°C, 1:3 molar ratio of EC to CO, and 46.5h), EC conversion and the yield of CMAG+CDAG were 93.68±2.52% and 78.11±1.35%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Darlington GS vacuum building - internal structures and foundation

    International Nuclear Information System (INIS)

    Huterer, J.; Brown, D.G.; Yanchula, S.

    1985-01-01

    This paper describes the evolution of the internal structure from initial concept to final design. Fundamental changes to the original configuration were precipitated by the action of large seismic forces acting on a top-heavy configuration. Prestressing was eliminated in deference to high humidity. Aspects of the elevated water tank's peripheral support beam are discussed vis-a-vis an adjacent slipforming operation, and practical construction limitations on steel placement. Also reviewed are the shortening of peripheral columns due to shrinkage and creep, and considerations of crack control for purposes of water-tightness. The authors justify the choice of stainless steel for fabrication of the siphon system's riser pipes. The foundation slab must resist the combined effects of vacuum pressure, hydrostatic uplift, and the seismic reactions of the internal structure and perimeter wall. The dependency of a key foundation component, the gallery roof slab, on the dome tendon layout is high-lighted; and aspects of its constructability are reviewed in light of congestion of vertical tendon anchorages, and of reinforcement. The design of the air-tight slab liner is reviewed, attention focusing on weld design under vacuum and accident temperature loads; on corrosion protection; and on the related construction access bulkhead - its ASME requirements and fabrication tolerances. (orig.)

  5. PIV measurement of internal structure of diesel fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z M [Ecotechnology System Lab., Yokohama National Univ. (Japan); Nishino, K [Div. of Artificial Environment and Systems, Yokohama National Univ. (Japan); Mizuno, S [Yokohama National Univ. (Japan); Torii, K [Dept. of Mechanical Engineering and Materials Science, Yokohama National Univ. (Japan)

    2000-12-01

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70 MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0 MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called 'branch-like structures' by Azetsu et al. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented. (orig.)

  6. Ultimate internal pressure capacity of concrete containment structures

    International Nuclear Information System (INIS)

    Krishnaswamy, C.N.; Namperumal, R.; Al-Dabbagh, A.

    1983-01-01

    Lesson learned from the accident at Three-Mile Island nuclear plant has necessitated the computation of the ultimate internal pressure capacity of containment structures as a licensing requirement in the U.S. In general, a containment structure is designed to be essentially elastic under design accident pressure. However, as the containment pressure builds up beyond the design value due to a more severe postulated accident, the containment response turns nonlinear as it sequentially passes through cracking of concrete, yielding of linear plate, yielding of rebar, and yielding of post-tensioning tendon (if the containment concrete is prestressed). This paper reports on the determination of the ultimate internal pressure capacity and nonlinear behavior of typical reinforced and prestressed concrete BWR containments. The probable modes of failure, the criteria for ultimate pressure capacity, and the most critical sections are described. Simple equations to hand-calculate the ultimate pressure capacity and the nonlinear behavior at membrane sections of the containment shell are presented. A nonlinear finite element analysis performed to determine the nonlinear behavior of the entire shell including nonmembrane sections is briefly discribed. The analysis model consisted of laminated axisymmetric shell finite elements with nonlinear stress-strain properties for each material. Results presented for typical BWR concrete containments include nonlinear response plots of internal pressure versus containment deflection and strains in the liner, rebar, and post-tensioning tendons at the most stressed section in the shell. Leak-tightness of the containment liner and the effect of thermal loads on the ultimate capacity are discussed. (orig.)

  7. Internal Structure of Charged Particles in a GRT Gravitational Model

    Science.gov (United States)

    Khlestkov, Yu. A.; Sukhanova, L. A.

    2018-05-01

    With the help of an exact solution of the Einstein and Maxwell equations, the internal structure of a multiply connected space of wormhole type with two unclosed static throats leading out of it into two parallel vacuum spaces or into one space is investigated in GRT for a free electric field and dust-like matter. The given geometry is considered as a particle-antiparticle pair with fundamental constants arising in the form of first integrals in the solution of the Cauchy problem - electric charges ±e of opposite sign in the throats and rest mass m0 - the total gravitational mass of the inner world of the particle in the throat. With the help of the energy conservation law, the unremovable rotation of the internal structure is included and the projection of the angular momentum of which onto the rotation axis is identified with the z-projection of the spin of the charged particle. The radius of 2-Gaussian curvature of the throat R* is identified with the charge radius of the particle, and the z-projection of the magnetic moment and the g-factor are found. The feasibility of the given gravitational model is confirmed by the found condition of independence of the spin quantum number of the electron and the proton s = 1/2 of the charge radius R* and the relativistic rest mass m* of the rotating throat, which is reliably confirmed experimentally, and also by the coincidence with high accuracy of the proton radius calculated in the model R*p = 0.8412·10-13 cm with the value of the proton charge radius obtained experimentally by measuring the Lamb shift on muonic hydrogen. The electron in the given model also turns out to be a structured particle with radius R*e = 3.8617·10-11 cm.

  8. Silicon supported lipid-DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity.

    Science.gov (United States)

    Domenici, F; Castellano, C; Dell'Unto, F; Albinati, A; Congiu, A

    2011-11-01

    Non-viral gene transfection by means of lipid-based nanosystems, such as solid supported lipid assemblies, is often limited due to their lack of stability and the consequent loss of efficiency. Therefore not only a detailed thermo-lyotropic study of these DNA-lipid complexes is necessary to understand their interaction mechanisms, but it can also be considered as a first step in conceiving and developing new transfection biosystems. The aim of our study is a structural characterization of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-dimethyl-dioctadecyl-ammonium bromide (DDAB)-DNA complex at varying temperature using the energy dispersive X-ray diffraction (EDXD) and neutron reflectivity (NR) techniques. We have shown the formation of a novel thermo-lyotropic structure of DOPC/DDAB thin film self-organized in multi-lamellar planes on (100)-oriented silicon support by spin coating, thus enlightening its ability to include DNA strands. Our NR measurements indicate that the DOPC/DDAB/DNA complex forms temperature-dependent structures. At 65°C and relative humidity of 100% DNA fragments are buried between single lamellar leaflets constituting the hydrocarbon core of the lipid bilayers. This finding supports the consistency of the hydrophobic interaction model, which implies that the coupling between lipid tails and hypo-hydrated DNA single strands could be the driving force of DNA-lipid complexation. Upon cooling to 25°C, EDXD analysis points out that full-hydrated DOPC-DDAB-DNA can switch in a different metastable complex supposed to be driven by lipid heads-DNA electrostatic interaction. Thermotropic response analysis also clarifies that DOPC has a pivotal role in promoting the formation of our observed thermophylic silicon supported lipids-DNA assembly. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy.

    Science.gov (United States)

    Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I

    2006-10-15

    A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.

  10. Molecular Structure-Based Methods of Property Prediction in Application to Lipids: A Review and Refinement

    DEFF Research Database (Denmark)

    Cunico, Larissa; Hukkerikar, Amol; Ceriani, Roberta

    2013-01-01

    The paper is a review of the combined group contribution (GC)–atom connectivity index (CI) approachfor prediction of physical and thermodynamic properties of organic chemicals and their mixtures withspecial emphasis on lipids. The combined approach employs carefully selected datasets of different...... dependent, have been developed. For mixtures, properties related to phase equilibria aremodeled with GE-based models (UNIQUAC, UNIFAC, NRTL, and combined UNIFAC-CI method). The col-lected phase equilibrium data for VLE and SLE have been tested for thermodynamic consistency togetherwith a performance...... evaluation of the GE-models. The paper also reviews the role of the databases andthe mathematical and thermodynamic consistency of the measured/estimated data and the predictivenature of the developed models....

  11. Structural analysis of the Upper Internals Structure for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Houtman, J.L.

    1979-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides control of core outlet flow to prevent severe thermal transients from occuring at the reactor vessel and primary heat transport outlet piping, provides instrumentation to monitor core performance, provides support for the control rod drivelines, and provides secondary holddown of the core. All of the structural analysis aspects of assuring the UIS is structurally adequate are presented including simplified and rigorous inelastic analysis methods, elevated temperature criteria, environmental effects on material properties, design techniques, and manufacturing constraints

  12. Structure of the first representative of Pfam family PF09410 (DUF2006) reveals a structural signature of the calycin superfamily that suggests a role in lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Hsiu-Ju; Bakolitsa, Constantina; Skerra, Arne; Lomize, Andrei; Carlton, Dennis; Miller, Mitchell D.; Krishna, S. Sri; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A. (SLAC); (Michigan); (TU Munchen)

    2015-10-15

    The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively.

  13. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry.

    Science.gov (United States)

    Stinson, Craig A; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.

  14. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.

  15. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    Science.gov (United States)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  16. Nonlocal transformation of the internal quantum particle structure

    Directory of Open Access Journals (Sweden)

    Alexey Yu. Samarin

    2016-09-01

    Full Text Available The analysis of the integral wave equation, having path integral kernel, has resulted, that collapse phenomenon is based on the nonlocal transformation of the internal structure of a quantum particle, considering in the form of the matter fields collection. This nonlocality allows to escape the contradiction between the reduction quantum mechanics postulate and special relativity. It is shown, that the wave function transformation, corresponding to von Neumann's reduction, has the deterministic nature and the quantum mechanics stochasticity is a consequence of a macroscopic measurer presence in the measuring process. Besides it is demonstrated, that the decogerence phenomenon has the same mechanism of the wave function transformation. EPR-type experiment is described in detail and the possibility of the faster-then light communication is proved, as well the possible rules of thumb of this communication are proposed.

  17. A proposed structure for an international convention on climate change

    International Nuclear Information System (INIS)

    Nitze, W.A.

    1991-01-01

    In this chapter, the author recommends a framework convention that will stimulate policy changes without expensive emission reductions in the short term. A central task for a climate convention will be to provide the international community with a permanent mechanism for coordinating its efforts to deal with climate change. The convention should go beyond organizational structure to establish a process for updating the parties' understanding of the science and potential impacts of climate change and for building consensus on policy responses. Each party must then be required to prepare and distribute its own national plan for reducing greenhouse gas emissions and for adapting to future change while achieving its development objectives. A set of targets and timetables for the reduction of greenhouse gas reductions is presented

  18. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  19. Imaging Internal Structure of Long Bones Using Wave Scattering Theory.

    Science.gov (United States)

    Zheng, Rui; Le, Lawrence H; Sacchi, Mauricio D; Lou, Edmond

    2015-11-01

    An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Directory of Open Access Journals (Sweden)

    Kim Hye-Jin

    2011-01-01

    Full Text Available Abstract Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC, compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS or a low trans fat (LC diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR. Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC.

  1. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Science.gov (United States)

    2011-01-01

    Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC. PMID:21247503

  2. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata.

    Science.gov (United States)

    Schaller-Laudel, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Daum, Sebastian; Bacia, Kirsten; Wilhelm, Christian; Goss, Reimund

    2017-07-01

    The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation. © 2017 Scandinavian Plant Physiology Society.

  3. Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Janich, M.; Hildebrand, A.; Strunz, P.; Neubert, R.H.H.; Lombardo, D.

    2013-01-01

    Highlights: • Self-assembly in model DPPC lipids and NaDC bile salt by SANS and DLS experiments. • Bile salt creates structural interference against cohesive tendency of DPPC bilayers. • NaDC steric interactions cause transition toward different supramolecular structures. - Abstract: Small angle neutron scattering (SANS) and dynamic light scattering (DLS) were used to study different aggregation states in sodium deoxycholate (NaDC)-phosphatidylcholine systems at T = 60 °C. Size and shape of the aggregates investigated as a function of the NaDC bile salt concentration (at the constant DPPC concentration of 6 mM) indicate a strong dependence of the size and morphology of the generated aggregates on the relative amount of NaDC bile salt. More specifically large occupied area of the bile salt induces a steric interaction which promotes the transition toward a variety of supramolecular structures ranging from ellipsoidal vesicles, ribbon-like structures, up to final spherical mixed micelles at the large amount of bile salt of 10 mM NaDC. The findings of the obtained results give important insight for understanding the formation of different topologies in aqueous lipid–bile salt mixtures as well as stimulate new routes for liposome reconstitution–solubilisation processes suitable for technological applications

  4. Internal structure and swelling behaviour of in silico microgel particles

    Science.gov (United States)

    Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela

    2018-01-01

    Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.

  5. Electron density analysis of the effects of sugars on the structure of lipid bilayers at low hydration - a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Lenné, T.; Kent, B.; Koster, K.L.; Garvey, C.J.; Bryant, G. (ANSTO); (USD); (ANU); (RMIT)

    2012-02-06

    -saccharides affect the average distance between lipid chains in the bilayer, supporting the predictions of the HFE. In this paper we further investigate the effects of sugars on membrane structure by conducting electron density analysis of recent data. This preliminary analysis sheds additional light onto the effects of sugars on membrane structure.

  6. Early enteral feeding in postsurgical cancer patients. Fish oil structured lipid-based polymeric formula versus a standard polymeric formula.

    Science.gov (United States)

    Kenler, A S; Swails, W S; Driscoll, D F; DeMichele, S J; Daley, B; Babineau, T J; Peterson, M B; Bistrian, B R

    1996-01-01

    OBJECTIVES: The authors compared the safety, gastrointestinal tolerance, and clinical efficacy of feeding an enteral diet containing a fish oil/medium-chain triglyceride structured lipid (FOSL-HN) versus an isonitrogenous, isocaloric formula (O-HN) in patients undergoing major abdominal surgery for upper gastrointestinal malignancies. SUMMARY BACKGROUND DATA: Previous studies suggest that feeding with n-3 fatty acids from fish oil can alter eicosanoid and cytokine production, yielding an improved immunocompetence and a reduced inflammatory response to injury. The use of n-3 fatty acids as a structured lipid can improve long-chain fatty acid absorption. METHODS: This prospective, blinded, randomized trial was conducted in 50 adult patients who were jejunally fed either FOSL-HN or O-HN for 7 days. Serum chemistries, hematology, urinalysis, gastrointestinal complications, liver and renal function, plasma and erythrocyte fatty acid analysis, urinary prostaglandins, and outcome parameters were measured at baseline and on day 7. Comparisons were made in 18 and 17 evaluable patients based a priori on the ability to reach a tube feeding rate of 40 mL/hour. RESULTS: Patients receiving FOSL-HN experienced no untoward side effects, significant incorporation of eicosapentaenoic acid into plasma and erythrocyte phospholipids, and a 50% decline in the total number of gastrointestinal complications and infections compared with patients given O-HN. The data strongly suggest improved liver and renal function during the postoperative period in the FOSL-HN group. CONCLUSION: Early enteral feeding with FOSL-HN was safe and well tolerated. Results suggest that the use of such a formula during the postoperative period may reduce the number of infections and gastrointestinal complications per patient, as well as improve renal and liver function through modulation of urinary prostaglandin levels. Additional clinical trials to fully quantify clinical benefits and optimize nutritional

  7. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  8. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    Science.gov (United States)

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Saturn's Internal Structure: A View through its Natural Seismograph

    Science.gov (United States)

    Mankovich, Christopher; Marley, Mark S.; Fortney, Jonathan J.; Movshovitz, Naor

    2017-10-01

    Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to resolve long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit reasonably well with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. In particular, four observed bending waves (Nicholson et al., DPS 2016) align with outer vertical resonances for non-sectoral (m≠l) Saturn f-modes of relatively high angular degree, and we present preliminary identifications of these. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints and discuss what role a realistic helium distribution in the planet might play.

  10. Structure and dynamics of lipid monolayers: Implications for enzyme catalysed lipolysis

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.

    1995-01-01

    We have investigated the role of the substrate on the interfacial activation of Upases by an interdisciplinary study of the structure and dynamics of 1,2-sn dipalmitoylglycerol monolayers at distinct surface pressures. The diglyceride Langmuir film undergoes two phase transitions occurring at 38......, the alkyl chains pack in an hexagonal structure relaxing to a distorted-hexagonal lattice in the lowest pressure phase with the alkyl chains tilted by approx 14° in a direction close to a nearest neighbour direction....

  11. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  12. Circadian time structure of circulating plasma lipid peroxides, antioxidant enzymes and other small molecules in peptic ulcers.

    Science.gov (United States)

    Singh, Ranjana; Singh, Rajesh Kumar; Masood, Tariq; Tripathi, Anil Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar; Schwartzkopff, Othild; Cornelissen, Germaine

    2015-12-07

    The circadian rhythm, as part of a broad time structure (chronome) of lipid peroxides and antioxidant defense mechanisms may relate to prevention, efficacy and management of preventive and curative chronotherapy. Fifty newly diagnosed patients with peptic ulcers, 30-45 years of age, and 60 age-matched clinically healthy volunteers were synchronized for one week with diurnal activity from about 06:00 to about 22:00 and nocturnal rest. Breakfast was served around 08:30, lunch around 13:30 and dinner around 20:30. Drugs known to affect the free-radical systems were not taken. Blood samples were collected at 6-hour intervals for 24h under standardized, presumably 24-hour synchronized conditions. Plasma lipid peroxides, in the form of malondialdehyde (MDA), blood superoxide dismutase (SOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT) activities, and serum total protein, albumin, ascorbic acid, total serum cholesterol, and HDL-cholesterol concentrations were determined. By population-mean cosinor analysis, a marked circadian variation was demonstrated for all variables in healthy subjects and in ulcer patients (pascorbic acid, and HDL-C. They also had smaller circadian amplitude of SOD, CAT, GPx, GR, ascorbic acid, T-C, and HDL-C, but larger circadian amplitude of MDA and albumin. As compared to healthy subjects, the circadian acrophase of ulcer patients occurred later for MDA and GR and earlier for GPx. Mapping circadian rhythms, important chronome components that include trends with age and extra-circadian components characterizing antioxidants and pro-oxidants, is needed for exploring their putative role as markers in the treatment and management of peptic ulcers. Copyright © 2015. Published by Elsevier B.V.

  13. Monoacyl phosphatidylcholine inhibits the formation of lipid multilamellar structures during in vitro lipolysis of self-emulsifying drug delivery systems.

    Science.gov (United States)

    Tran, Thuy; Siqueira, Scheyla D V S; Amenitsch, Heinz; Rades, Thomas; Müllertz, Anette

    2017-10-15

    The colloidal structures formed during lipolysis of self-emulsifying drug delivery systems (SEDDS) might affect the solubilisation and possibly the absorption of drugs. The aim of the current study is to elucidate the structures formed during the in vitro lipolysis of four SEDDS containing medium-chain glycerides and caprylocaproyl polyoxyl-8 glycerides (Labrasol), with or without monoacyl phosphatidylcholine (MAPC). In situ synchrotron small-angle X-ray scattering (SAXS) was combined with ex situ cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) to elucidate the generated structures. The SAXS scattering curves obtained during the lipolysis of MAPC-free SEDDS containing 43-60% w/w Labrasol displayed a lamellar phase peak at q=2.13nm -1 that increased with Labrasol concentration, suggesting the presence of multilamellar structures (MLS) with a d-spacing of 2.95nm. However, SEDDS containing 20-30% w/w MAPC did not form MLS during the lipolysis. The cryo-TEM and DLS studies showed that MAPC-free SEDDS formed coarse emulsions while MAPC-containing SEDDS formed nanoemulsions during the dispersion in digestion medium. From the first minute and during the entire lipolysis process, SEDDS both with and without MAPC generated uni-, bi-, and oligo-lamellar vesicles. The lipolysis kinetics in the first minutes of the four SEDDS correlated with an increased intensity of the SAXS curves and the rapid transformation from lipid droplets to vesicles observed by cryo-TEM. In conclusion, the study elucidates the structures formed during in vitro lipolysis of SEDDS and the inhibitory effect of MAPC on the formation of MLS. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  15. Penetration effect in internal conversion and nuclear structure

    International Nuclear Information System (INIS)

    Listengarten, M.A.

    1978-01-01

    The conditions for the appearance of the anomalous internal conversion coefficients (ICC) are considered, when the contribution of the penetration matrix element (PME) is of the order of or larger than the main part of the conversion matrix element. The experimental magnitudes of the nuclear PME agree well with those calculated in the framework of simple nuclear models, provided the magnitude of PME is not decreased due to the model -dependent selection rules. The magnitude of the anomaly ( lanbda parameter ) is compared with the exclusion factor of γ-transition relative to the Weisskopf estimation. The better is the model of the nucleus the weaker is the dependence of the lambda magnitude on the exclusion factor. ICC coefficients might be anomalous for those γ-transitions for which the exclusion factor calculated in the framework of more rigorous model are of the order of unity. In the ''ideal'' model of nucleus completely adequate to the true nuclear structure the dependence of the lambda penetration parameter on the exclusion factor vanishes

  16. Low density lipoprotein : structure, dynamics, and interactions of apoB-100 with lipids

    NARCIS (Netherlands)

    Murtola, T.; Vuorela, T.A.; Hyvönen, M.T.; Marrink, S.J.; Karttunen, M.E.J.; Vattulainen, I.

    2011-01-01

    Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL's

  17. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...

  18. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination.

    Science.gov (United States)

    Rodríguez-Sánchez, Dariana Graciela; Pacheco, Adriana; García-Cruz, María Isabel; Gutiérrez-Uribe, Janet Alejandra; Benavides-Lozano, Jorge Alejandro; Hernández-Brenes, Carmen

    2013-07-31

    Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria.

  19. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-04-21

    Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most  prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.

  20. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure

    Directory of Open Access Journals (Sweden)

    Harini Mohanram

    2014-04-01

    Full Text Available Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS-mediated inflammations are among some of the most  prominent health issues globally. Antimicrobial peptides (AMPs are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.

  1. The Evolution and Internal Structure of Jupiter and Saturn with Compositional Gradients

    NARCIS (Netherlands)

    Vazan, A.; Helled, R.; Podolak, M.; Kovetz, A.

    2016-01-01

    The internal structure of gas giant planets may be more complex than the commonly assumed core-envelope structure with an adiabatic temperature profile. Different primordial internal structures as well as various physical processes can lead to non-homogenous compositional distributions. A

  2. Structure Annotation and Quantification of Wheat Seed Oxidized Lipids by High-Resolution LC-MS/MS.

    Science.gov (United States)

    Riewe, David; Wiebach, Janine; Altmann, Thomas

    2017-10-01

    Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat ( Triticum aestivum ) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions. © 2017 The author(s). All Rights Reserved.

  3. [Correcting influence of vitamin E short chain derivatives on lipid peroxidation, liver cell membrane, and chromatin structure when rats are exposed to embichin].

    Science.gov (United States)

    Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V

    2000-01-01

    Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.

  4. Statin intolerance – an attempt at a unified definition. Position paper from an International Lipid Expert Panel

    Science.gov (United States)

    Rizzo, Manfredi; Toth, Peter P.; Farnier, Michel; Davidson, Michael H.; Al-Rasadi, Khalid; Aronow, Wilbert S.; Athyros, Vasilis; Djuric, Dragan M.; Ezhov, Marat V.; Greenfield, Robert S.; Hovingh, G. Kees; Kostner, Karam; Serban, Corina; Lighezan, Daniel; Fras, Zlatko; Moriarty, Patrick M.; Muntner, Paul; Goudev, Assen; Ceska, Richard; Nicholls, Stephen J.; Broncel, Marlena; Nikolic, Dragana; Pella, Daniel; Puri, Raman; Rysz, Jacek; Wong, Nathan D.; Bajnok, Laszlo; Jones, Steven R.; Ray, Kausik K.; Mikhailidis, Dimitri P.

    2015-01-01

    Statins are one of the most commonly prescribed drugs in clinical practice. They are usually well tolerated and effectively prevent cardiovascular events. Most adverse effects associated with statin therapy are muscle-related. The recent statement of the European Atherosclerosis Society (EAS) has focused on statin associated muscle symptoms (SAMS), and avoided the use of the term ‘statin intolerance’. Although muscle syndromes are the most common adverse effects observed after statin therapy, excluding other side effects might underestimate the number of patients with statin intolerance, which might be observed in 10–15% of patients. In clinical practice, statin intolerance limits effective treatment of patients at risk of, or with, cardiovascular disease. Knowledge of the most common adverse effects of statin therapy that might cause statin intolerance and the clear definition of this phenomenon is crucial to effectively treat patients with lipid disorders. Therefore, the aim of this position paper was to suggest a unified definition of statin intolerance, and to complement the recent EAS statement on SAMS, where the pathophysiology, diagnosis and the management were comprehensively presented. PMID:25861286

  5. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts.

    Science.gov (United States)

    da Luz, Camila Macedo; Boyles, Matthew Samuel Powys; Falagan-Lotsch, Priscila; Pereira, Mariana Rodrigues; Tutumi, Henrique Rudolf; de Oliveira Santos, Eidy; Martins, Nathalia Balthazar; Himly, Martin; Sommer, Aniela; Foissner, Ilse; Duschl, Albert; Granjeiro, José Mauro; Leite, Paulo Emílio Corrêa

    2017-01-31

    Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover

  6. Effect of biocompatible polymers on the structural integrity of lipid bilayers under external stimuli

    Science.gov (United States)

    Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee

    2010-03-01

    Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.

  7. Production of structured lipid with a low omega-6/omega-3 fatty acids ratio by enzymatic interesterification

    International Nuclear Information System (INIS)

    Ilyasoglu, H.

    2017-01-01

    A structured lipid (SL) constituting omega fatty acids was synthesized by using linseed and grape seed oils as substrates via a lipase-catalyzed reaction. Lipozyme® TL IM was used as a biocatalyst. Good quadratic models predicting the incorporation of omega fatty acids were achieved via the Response surface methodology (RSM). The optimal conditions for targeted omega-6/omega-3 fatty acid ratio (2:1) were obtained at a substrate molar ratio 1.4, time 8.4 h, and enzyme amount 6.4%. The SL contained linoleic acid (43 g 100g-1), which was mainly located in the sn-2 position (40 g 100g-1). α-Linoleic acid, and α-linolenic acid at the sn-2 position were 22 g 100g-1, and 11 g 100g-1, respectively. The oxidative stability of the SL, and SL with antioxidants was also investigated. The produced SL may be proposed as a source of a balanced intake of omega fatty acids and an ingredient in functional food formulations. [es

  8. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy.

    Science.gov (United States)

    Stamouli, Amalia; Kafi, Sidig; Klein, Dionne C G; Oosterkamp, Tjerk H; Frenken, Joost W M; Cogdell, Richard J; Aartsma, Thijs J

    2003-04-01

    The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.

  9. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    Science.gov (United States)

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures.

    Science.gov (United States)

    Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P

    2001-02-09

    Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.

  11. Effects of heterocyclic-based head group modifications on the structure-activity relationship of tocopherol-based lipids for non-viral gene delivery.

    Science.gov (United States)

    Gosangi, Mallikarjun; Mujahid, Thasneem Yoosuf; Gopal, Vijaya; Patri, Srilakshmi V

    2016-07-12

    Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors. In this study, we designed and synthesized several tocopherol-based lipids varying in the head group region. Here, we present the structure-activity relationship of stable aqueous suspensions of lipids that were synthetically prepared and formulated with 1,2-dioleoyl phosphatidyl ethanolamine (DOPE) as the co-lipid. The physicochemical properties such as the hydrodynamic size, zeta potential, stability and morphology of these formulations were investigated. Interaction with plasmid DNA was clearly demonstrated through gel binding and EtBr displacement assays. Further, the transfection potential was examined in mouse neuroblastoma Neuro-2a, hepatocarcinoma HepG2, human embryonic kidney and Chinese hamster ovarian cell lines, all of different origins. Cell-uptake assays with N-methylpiperidinium, N-methylmorpholinium, N-methylimidazolium and N,N-dimethylaminopyridinium head group containing formulations evidently depicted efficient cell uptake as observed by particulate cytoplasmic fluorescence. Trafficking of lipoplexes using an endocytic marker and rhodamine-labeled phospholipid DHPE indicated that the lipoplexes were not sequestered in the lysosomes. Importantly, lipoplexes were non-toxic and mediated good transfection efficiency as analyzed by β-Gal and GFP reporter gene expression assays which established the superior activity of lipids whose structures correlate strongly with the transfection efficiency.

  12. Social Structures in the Economics of International Education: Perspectives from Vietnamese International Tertiary Students

    Science.gov (United States)

    Pham, Lien

    2013-01-01

    Drawing on the findings from in-depth interviews with Vietnamese international students studying at Australian universities, this article presents insights into the sociological influences that stem from international students' social networks, at home and abroad, and how they impact on students' aspirations and engagement in international…

  13. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    Science.gov (United States)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  14. International symposium on exotic nuclear structures. Book of abstracst

    International Nuclear Information System (INIS)

    2000-01-01

    The following topics were discussed at the meeting: Physics of weakly bound nuclei, neutron skin and halo; Evolution of shell structures for neutron-rich nuclei; Collective excitations in nuclei with exotic nuclear shapes; Cluster structures; Super- and hyperdeformed nuclei, exotic structures in the actinides; Superheavy elements; Towards understanding the structure of nucleons; New experimental techniques, facilities for radioactive beams. All abstracts (75 items) were submitted as full text to the INIS database. (R.P.)

  15. Cultural, Social, and Economic Capital Constructs in International Assessments: An Evaluation Using Exploratory Structural Equation Modeling

    Science.gov (United States)

    Caro, Daniel H.; Sandoval-Hernández, Andrés; Lüdtke, Oliver

    2014-01-01

    The article employs exploratory structural equation modeling (ESEM) to evaluate constructs of economic, cultural, and social capital in international large-scale assessment (LSA) data from the Progress in International Reading Literacy Study (PIRLS) 2006 and the Programme for International Student Assessment (PISA) 2009. ESEM integrates the…

  16. Cholesterol target value attainment and lipid-lowering therapy in patients with stable or acute coronary heart disease: Results from the Dyslipidemia International Study II.

    Science.gov (United States)

    Gitt, Anselm K; Lautsch, Dominik; Ferrières, Jean; De Ferrari, Gaetano M; Vyas, Ami; Baxter, Carl A; Bash, Lori D; Ashton, Veronica; Horack, Martin; Almahmeed, Wael; Chiang, Fu-Tien; Poh, Kian Keong; Brudi, Philippe; Ambegaonkar, Baishali

    2017-11-01

    Low-density lipoprotein cholesterol (LDL-C) is a major contributor to cardiovascular disease. In the Dyslipidemia International Study II (DYSIS II), we determined LDL-C target value attainment, use of lipid-lowering therapy (LLT), and cardiovascular outcomes in patients with stable coronary heart disease (CHD) and those suffering from an acute coronary syndrome (ACS). DYSIS II included patients from 18 countries. Patients with either stable CHD or an ACS were enrolled if they were ≥18 years old and had a full lipid profile available. Data were collected at a physician visit (CHD cohort) or at hospital admission and 120 days later (ACS cohort). A total of 10,661 patients were enrolled, 6794 with stable CHD and 3867 with an ACS. Mean LDL-C levels were low at 88 mg/dl and 108 mg/dl for the CHD and ACS cohorts respectively, with only 29.4% and 18.9% displaying a level below 70 mg/dl. LLT was utilized by 93.8% of the CHD cohort, with a mean daily statin dosage of 25 ± 18 mg. The proportion of the ACS cohort treated with LLT rose from 65.2% at admission to 95.6% at follow-up. LLT-treated patients, who were female, obese, or current smokers, were less likely to achieve an LDL-C level of <70 mg/dl, while those with type 2 diabetes, chronic kidney disease, or those taking a higher statin dosage were more likely. Few of these very high-risk patients achieved the LDL-C target, indicating huge potential for improving cardiovascular outcome by use of more intensive LLT. Copyright © 2017. Published by Elsevier B.V.

  17. Students' Knowledge about the Internal Structure of Mice and Cockroaches in Their Environment

    Science.gov (United States)

    Kilic, Selda

    2013-01-01

    The aim of this study is to determine 9th class students knowledge about the internal structures of mice and cockroaches using drawings. Drawings of 122 students from the 9th class of a high school in the center of Konya about the internal structures of mice and cockroaches have been analyzed. Drawings were analyzed independently by two…

  18. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  19. Modelling of internal structure in seismic analysis of a PHWR building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushawaha, H.S.; Ingle, R.K.; Subramanian, K.V.

    1991-01-01

    Seismic analysis of complex and large structures, consisting of thick shear walls, such as Reactor Building is very involved and time consuming. It is a standard practice to model the structure as a stick model to predict reasonably the dynamic behaviour of the structure. It is required to determine approximate equivalent sectional properties of Internal Structure for representation in the stick model. The restraint to warping can change the stress distribution thus affecting the centre of rigidity and torsional inertia, Hence, standard formulae does not hold good for determination of sectional properties of the Internal Structure. In this case the equivalent sectional properties for the Internal Structure are calculated using a Finite Element Model (FEM) of the Internal Structure and applying unit horizontal forces in each direction. A 3-D stick model is developed using the guidelines. Using the properties calculated by FEM and also by standard formulae, the responses of the 3-D stick model are compared. (J.P.N.)

  20. INMARSAT - The International Maritime Satellite Organization: Origins and structure

    Science.gov (United States)

    Doyle, S. E.

    1977-01-01

    The third session of the International Conference on the Establishment of an International Maritime Satellite System established the International Maritime Satellite Organization (INMARSAT) in 1976. Its main functions are to improve maritime communications via satellite, thereby facilitating more efficient emergency communications, ship management, and maritime public correspondence services. INMARSAT's aims are similar to those of the Intergovernmental Maritime Consultative Organization (IMCO), the main United Nations organization dealing with maritime affairs. The specific functions of INMARSAT have been established by an Intersessional Working Group (IWG) which met three times between general conference meetings. Initial investment shares for the creation of INMARSAT were shared by the United States (17%), the United Kingdom (12%), the U.S.S.R. (11%), Norway (9.50%), Japan (8.45%), Italy (4.37%), and France (3.50%).

  1. Sorafenib suppresses TGF-β responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-β receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma.

    Science.gov (United States)

    Chung, Chih-Ling; Wang, Shih-Wei; Sun, Wei-Chih; Shu, Chih-Wen; Kao, Yu-Chen; Shiao, Meng-Shin; Chen, Chun-Lin

    2018-04-18

    Sorafenib is the only FDA approved drug for the treatment of advanced hepatocellular carcinoma (HCC) and other malignancies. Studies indicate that TGF-β signalling is associated with tumour progression in HCC. Autocrine and paracrine TGF-β promotes tumour growth and malignancy by inducing epithelial-mesenchymal transition (EMT). Sorafenib is believed to antagonize tumour progression by inhibiting TGF-β-induced EMT. It improves survival of patients but HCC later develops resistance and relapses. The underlying mechanism of resistance is unknown. Understanding of the molecular mechanism of sorafenib inhibition of TGF-β-induced signalling or responses in HCC may lead to development of adjunctive effective therapy for HCC. In this study, we demonstrate that sorafenib suppresses TGF-β responsiveness in hepatoma cells, hepatocytes, and animal liver, mainly by downregulating cell-surface type II TGF-β receptors (TβRII) localized in caveolae/lipid rafts and non-lipid raft microdomains via caveolae/lipid rafts-mediated internalization and degradation. Furthermore, sorafenib-induced downregulation and degradation of cell-surface TβRII is prevented by simultaneous treatment with a caveolae disruptor or lysosomal inhibitors. On the other hand, sorafenib only downregulates cell-surface TβRII localized in caveolae/lipid rafts but not localized in non-lipid raft microdomains in hepatic stellate cells. These results suggest that sorafenib inhibits TGF-β signalling mainly by inducing caveolae/lipid raft-mediated internalization and degradation of cell-surface TβR-II in target cells. They may also imply that treatment with agents which promote formation of caveolae/lipid rafts, TGF-β receptor kinase inhibitors (e.g., LY2157299) or TGF-β peptide antagonists (by liver-targeting delivery) may be considered as effective adjunct therapy with sorafenib for HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground......-breaking identification of a number of lipid scramblases....

  3. Relativistic Processes and the Internal Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-01-01

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  4. Getting Women Into the Physics Leadership Structure Nationally and Internationally

    Science.gov (United States)

    Williams, Elvira S.; Diaz, Lilliam Alvarez; Gebbie, Katharine B.; El-Sayed, Karimat

    2005-10-01

    The underrepresentation of women among physicists around the world, especially in leadership positions, has broad implications for industries and government agencies with a strong need for a technologically educated workforce. The dearth of women physicists in academia exacerbates the situation in that female students lack exposure to successful women in the field. Three years ago, an international group of women met for a round table discussion at the First IUPAP International Conference on Women in Physics and discussed the importance of having women in leadership positions. They shared their experiences and successes, and drew up and reported a set of recommendations addressing the preparation of women for leadership, the selection process, and the responsibilities of institutions. They acknowledged that implementation of their recommendations would differ among countries. At the Second IUPAP International Conference on Women in Physics an international group of women met again to review, revise, and move forward on revamped recommendations from the first conference. This is a report on the new set of revamped recommendations, which address why women should be in leadership positions, goal setting, best practices, commitments, and follow-up actions for the attendees of the second conference.

  5. Update of the LIPID MAPS comprehensive classification system for lipids

    NARCIS (Netherlands)

    Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.|info:eu-repo/dai/nl/068570368; Wakelam, M.J.O.; Dennis, E.A.

    2009-01-01

    In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a “Comprehensive Classification System for Lipids” based on well-defined chemical and biochemical principles and using an ontology that is

  6. The 2.5 Å Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally Suited for Diverse Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Louise; Li, Nan-Sheng; Hawk, Andrew J.; Garzón, Diana; Zhang, Tejia; Fox, Lisa M.; Kazen, Allison R.; Shah, Sneha; Haddadian, Esmael J.; Gumperz, Jenny E.; Saghatelian, Alan; Faraldo-Gómez, José D.; Meredith, Stephen C.; Piccirilli, Joseph A.; Adams, Erin J. (Harvard); (UC); (MXPL-G); (UW-MED)

    2011-08-24

    CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 {angstrom} resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-{beta}1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A pocket, aided by a unique exit portal underneath the {alpha}1 helix. Most striking was an open F pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.

  7. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  8. Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Katalin Prokai-Tatrai

    2013-01-01

    Full Text Available The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration.

  9. The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study.

    Science.gov (United States)

    Petruk, Ariel Alcides; Varriale, Sonia; Coscia, Maria Rosaria; Mazzarella, Lelio; Merlino, Antonello; Oreste, Umberto

    2013-11-01

    Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules. Different interactions of charged residues with lipids at the lipid-cytoplasm boundary occur when the two environments are compared. Furthermore, in contrast to what is observed in POPC, in the raft-like environment correlated motions between transmembrane and cytoplasmic regions are observed. Altogether the data suggest that when the TCR complex resides in the raft domains, the CD3 ζζ dimer assumes a specific conformation probably necessary to the correct signal transduction. © 2013.

  10. Coulomb two-body problem with internal structure

    International Nuclear Information System (INIS)

    Kuperin, Yu.A.; Makarov, K.A.; Mel'nikov, Yu.B.

    1988-01-01

    The methods of the theory of extensions to an enlarged Hilbert space are used to construct a model of the interaction of the external (Coulomb) and internal (quark) channels in the two-body problem. The mutual influence of the spectra of the corresponding channel Hamiltonians is studied: it leads, in particular, to a rearrangement of the spectra of hadronic atoms. An explicit representation is obtained for the S matrix, and its singularities on the energy shell are studied

  11. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  12. Draft I.E.C. standard for monitoring PWR internal structures; Projet de norme C.E.I. pour la surveillance des structures internes des REP

    Energy Technology Data Exchange (ETDEWEB)

    Trenty, A.

    1994-06-01

    EDF has proposed to the International Electrotechnical Commission a draft standard for monitoring the vessel internal structures of PWRs. The standard applies to systems used for monitoring the vibratory behavior of the internal structures of PWRs (core barrel, thermal shield, fuel assemblies) on the basis of neutron fluctuations observed outside the vessel as well as of vessel vibrations. It covers the systems characteristics and the monitoring procedures. It should facilitate standardization of monitoring and comparisons on an international level. This paper presents the main features of the draft standard: -principles of measurement: correlation between movements of internals and ex core neutron noise on the one hand, forced vibrations of the vessel on the other hand; -sampling and conditioning of the signals; -monitoring equipment and in particular spectral analysis device; -functions of the monitoring software used for spectral analysis, peak detection and calculation of structure displacement; -studies preliminary to setting up the monitoring (calculation of internal vibratory modes, defect simulation on mockup, qualification on reactor during hot test...); -monitoring procedures (periodicity of analysis and what to do in case of anomaly); -documentation necessary to the monitoring. A diagnostic procedure is given as an example. The draft standard, written in 1994, will be presented in Frankfurt (Germany) in February 1995. (author). 1 annexe.

  13. International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    CSNDD 2012; CSNDD 2014

    2015-01-01

    This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics.  Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...

  14. Poverty and Family Structure - Phase II | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Understanding the dynamics of change in family structure is critical in poverty diagnosis, ... And, how could public social security be conceived to protect the most vulnerable? ... IDRC invites applications for the IDRC Research Awards 2019.

  15. Evaluation of CANDU NPP containment structure subjected to aging and internal pressure increase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xu [Department of Civil Engineering, University of Toronto, Toronto M5S 1A4 (Canada); Kwon, Oh-Sung, E-mail: os.kwon@utoronto.ca [Department of Civil Engineering, University of Toronto, Toronto M5S 1A4 (Canada); Bentz, Evan [Department of Civil Engineering, University of Toronto, Toronto M5S 1A4 (Canada); Tcherner, Julia [Candu Energy Inc. a member of SNC-Lavalin Group, Mississauga L5K 1B1 (Canada)

    2017-04-01

    Highlights: • The aging effects on the performance of a nuclear containment structure is evaluated. • A numerical model of the structure is subjected to increasing internal pressure. • No through-thickness cracks are predicted under the design level internal pressure. • The structure is predicted to be ductile up to large internal pressure levels. - Abstract: The objective of this study is to investigate the long-term performance of a typical CANDU® containment structure. A three-dimensional nonlinear finite element model was built to realistically evaluate the performance of the structure under service load as well as a hypothetical beyond-design level internal pressure. Consideration is given to the time-dependent effects, such as shrinkage, creep, and relaxation of prestressing tendons, over a 60-year timeframe. In addition, the sensitivity of the response of the containment structure against support condition, internal temperature profile and temporary construction openings was also investigated. The accuracy of the numerical model was validated against structural measurements made during a routine leak rate test. The analysis results show that the containment structure would develop a ductile mechanism if the internal pressure significantly exceeded the design pressure. The pressure-deformation relationship of the structure is sensitive to the considered time-dependent parameters.

  16. Family Structure and Adolescent Substance Use: An International Perspective.

    Science.gov (United States)

    Hoffmann, John P

    2017-11-10

    Numerous studies indicate that family structure is a key correlate of adolescent substance use. Yet there are some important limitations to this research. Studies have been conducted mainly in the United States, with relatively few studies that have compared family structure and youth substance use across nations. There is also a lack of recognition of the complexity of family types prevalent in contemporary global society. Moreover, there remains a need to consider personal, interpersonal, and macro-level characteristics that may help account for the association between family structure and youth substance use. This study uses data from 37 countries to examine several models that purport to explain the association between family structure and substance use. The data are from the 2005-2006 WHO-sponsored Health Behaviour in School-Aged Children (HBSC) (n = 193,202). Multilevel models, including linear, probit, and structural equation models (SEMs), were used to test several hypotheses. The results suggest that time spent with friends largely accounted for the association between specific types of family structures and frequency of alcohol use and getting drunk, but that cannabis use was negatively associated with living with both biological parents irrespective of other factors.

  17. International trade shows: Structure, strategy and performance of exhibitors at individual booths vs. joint booths

    DEFF Research Database (Denmark)

    Hansen, Kåre

    2000-01-01

    This paper examines differences in exhibitors who participate at international trade shows at joint booths and those who participate at individual booths. The structure, strategy, and trade show performance of exhibitors at joint booths and those at individual booths are analysed. The analysis...... implications for exhibitors at interna-tional trade shows and export marketing programmes and other marketing programmes offering services to international trade show exhibitors....... of exhibitors at the international food shows SIAL (Paris) and ANUGA (Cologne) showed several significant differences with regard to structure and strategy. However, no significant differences in the performance assessments between the two partici-pation modes were found. The findings have important...

  18. Enhancement of white light OLED efficiency by combining both internal and external light extraction structures

    Science.gov (United States)

    Kao, I.-Ling; Ku, Chun-Neng; Chen, Yi-Ping; Lin, Ding-Zheng

    2012-09-01

    We proposed an internal nanostructure with a high reflective index planarization layer to solve the optical loss due to the reflective index mismatch between ITO and glass substrate. In our experiments, we found the electrical property of OLED device was significantly influenced by the internal nanostructures without planarization layer. Moreover, the internal extraction structure (IES) is not necessarily beneficial for light extraction. Therefore, we proposed a new substrate combine both internal and external extraction structure (EES) to extract trapping light. We successfully developed a high refractive index (N 1.7) planarization material with flat surface (RMS roughness < 2 nm), and improved about 70% device efficiency compared to traditional glass substrate.

  19. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  20. International observatory on mental health systems: structure and operation

    Directory of Open Access Journals (Sweden)

    Minas Harry

    2009-04-01

    Full Text Available Abstract Introduction Sustained cooperative action is required to improve the mental health of populations, particularly in low and middle-income countries where meagre mental health investment and insufficient human and other resources result in poorly performing mental health systems. The Observatory The International Observatory on Mental Health Systems is a mental health systems research, education and development network that will contribute to the development of high quality mental health systems in low and middle-income countries. The work of the Observatory will be done by mental health systems research, education and development groups that are located in and managed by collaborating organisations. These groups will be supported by the IOMHS Secretariat, the International IOMHS Steering Group and a Technical Reference Group. Summary The International Observatory on Mental Health Systems is: 1 the mental health systems research, education and development groups; 2 the IOMHS Steering Group; 3 the IOMHS Technical Reference Group; and 4 the IOMHS Secretariat. The work of the Observatory will depend on free and open collaboration, sharing of knowledge and skills, and governance arrangements that are inclusive and that put the needs and interests of people with mental illness and their families at the centre of decision-making. We welcome contact from individuals and institutions that wish to contribute to achieving the goals of the Observatory. Now is the time to make it happen where it matters, by turning scientific knowledge into effective action for people's health. (J.W. Lee, in his acceptance speech on his appointment as the Director-General of the World Health Organization 1.

  1. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  2. Wage Structure and Gender Earnings Differentials: An International Comparison.

    OpenAIRE

    Blau, Francine D; Kahn, Lawrence M

    1996-01-01

    Using microdata to analyze the gender pay gap in ten industrialized nations, the authors focus on the role of wage structure--the prices of labor market skills in influencing the gender gap. They find wage structure enormously important in explaining why the U.S. gender gap is higher than that in most other countries. The authors conclude that the U.S. gap would be similar to that in Sweden and Australia (the countries with the smallest gaps) if the United States had their levels of wage ineq...

  3. The Impact of Capital Structure on Stock Returns: International Evidence

    Directory of Open Access Journals (Sweden)

    Reza TAHMOORESPOUR

    2015-03-01

    Full Text Available This study examines the relationship between capital structure and stock returns of firms in the following eight countries in the Asia Pacific regionfor a period of 22 years from 1990 to 2012. The methodology is Panel Regression. The results indicate that the effect of capital structure depends on the nature of industry as well as market. In Australia, China, and Korea, return of companies in the Basic Material industry have negative relationship with debt to common equity. Long term debt to common equity positively affects the return of firms in Australia and Korea in the Basic Material industry.

  4. Corporate strategy and the organizational structure of companies in international business

    Directory of Open Access Journals (Sweden)

    Aleksić Ana

    2004-01-01

    Full Text Available The aim of this paper is to illuminate the importance of corporate strategy and organizational structure as crucial variables for successful international business. We wanted to point out that companies, in order to exploit opportunities in international environment, must develop a high level of consent between the applied strategy and the model of organizational structure. Today all organizations, no matter how big they are, are affected by the international environment and its management must consider very carefully the benefits and costs of alternative strategies and the corresponding models of organizational structure.

  5. Slurry dispersion state as a parameter to control internal structure of alumina green compact

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.; Shui, A.; Tanaka, S.; Uchida, N.; Uematsu, K. [Nagaoka Univ. of Technology, Niigata (Japan)

    2002-07-01

    The dispersion state of slurry must be controlled to produce granules with appropriated properties for pressing. In this study dispersion state of alumina slurry is changed to form granules with different morphology, deformation property and packing density, and the influence on the internal structure of green compact are presented. Novel methods applying liquid immersion technique coupled with different type of microscopy were used to characterize the internal structures of green compacts. Two types of granules were obtained: dimpled, hard and dense granule, and spherical, soft and loose granule. The respective internal structures of green compacts were totally different. (orig.)

  6. International nuclear commerce: structure, trends and proliferation potentials

    International Nuclear Information System (INIS)

    Lodgaard, S.

    1977-01-01

    In recent years a surge has taken place in international nuclear commerce and this paper analyses the new patterns that have emerged. Despite uncertainties in nuclear energy forecasting the market is huge. Projections for the industry for the period 1971-1985 estimate a worldwide investment of 250 billion dollars. Following an initial decade of cooperation, 1955-1965, the superpower monopoly has become eroded. The export market for power reactors is analysed and the growth and spread of reprocessing facilities is discussed. It is pointed out that while commercial scale reprocessing requires vast and complex chemical plant, reprocessing small amounts for bomb production may be done relatively simply. Enrichment capabilities are also becoming more generally available. The market is not only expanding, but becoming multipolar and diversified, and the entire fuel cycle is now involved. The cooperation network France - W. Germany - South Africa- Iran is discussed at some length. The role of international safeguards is also treated fairly extensively, leading to a discussion of the motives and paths in the acquisition of nuclear weapons. It is concluded that little is to be gained from the London talks on safeguard measures and commercial restraint and that the root causes of proliferation should be tackled by comprehensive disarmament schemes. (JIW)

  7. Modeling Complex Nesting Structures in International Business Research

    DEFF Research Database (Denmark)

    Nielsen, Bo Bernhard; Nielsen, Sabina

    2013-01-01

    hierarchical random coefficient models (RCM) are often used for the analysis of multilevel phenomena, IB issues often result in more complex nested structures. This paper illustrates how cross-nested multilevel modeling allowing for predictor variables and cross-level interactions at multiple (crossed) levels...

  8. Internal circle uplifts, transversality and stratified G-structures

    Energy Technology Data Exchange (ETDEWEB)

    Babalic, Elena Mirela [Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering,Str. Reactorului no.30, P.O.BOX MG-6, Postcode 077125, Bucharest-Magurele (Romania); Department of Physics, University of Craiova,13 Al. I. Cuza Str., Craiova 200585 (Romania); Lazaroiu, Calin Iuliu [Center for Geometry and Physics, Institute for Basic Science,Pohang 790-784 (Korea, Republic of)

    2015-11-24

    We study stratified G-structures in N=2 compactifications of M-theory on eight-manifolds M using the uplift to the auxiliary nine-manifold M̂=M×S{sup 1}. We show that the cosmooth generalized distribution D̂ on M̂ which arises in this formalism may have pointwise transverse or non-transverse intersection with the pull-back of the tangent bundle of M, a fact which is responsible for the subtle relation between the spinor stabilizers arising on M and M̂ and for the complicated stratified G-structure on M which we uncovered in previous work. We give a direct explanation of the latter in terms of the former and relate explicitly the defining forms of the SU(2) structure which exists on the generic locus U of M to the defining forms of the SU(3) structure which exists on an open subset Û of M̂, thus providing a dictionary between the eight- and nine-dimensional formalisms.

  9. Adaptive cellular structures and devices with internal features for enhanced structural performance

    Science.gov (United States)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  10. Blood lipid-lowering and antioxidant effects of a structured lipid containing monoacylglyceride enriched with monounsaturated fatty acids in C57BL/6 mice.

    Science.gov (United States)

    Cho, Kyung-Hyun; Lee, Jeung-Hee; Kim, Jin-Man; Park, Sang Hyun; Choi, Myung-Sook; Lee, Yun-Mi; Choi, Inho; Lee, Ki-Teak

    2009-04-01

    We recently reported that a synthetic edible oil-containing monoacylglyceride (MAG) and diacylglyceride (DAG) exerted anti-atherosclerotic effects. In order to further investigate the activities and individual effects of MAG and DAG on the atherosclerotic process, we prepared a structured oil with various MAG and DAG contents and tested them both in vitro and in vivo, using C57BL/6 mice. The structured oil to be tested was mixed (final concentration 5%, wt/wt) with a high-cholesterol high-fat diet (1.2% cholesterol/15% fat/0.5% sodium cholate) and provided to the mice for 7 weeks. After administration, the mice consuming MAG97%-oil and DAG50%/MAG10%-oil evidenced 17% and 24% decreases in plasma total cholesterol (TC) level, respectively, as compared to a group of mice fed on lard. The experimental mice also had reduced plasma triglyceride concentrations and elevated high-density lipoprotein-cholesterol to TC ratios, by up to 31% in the case of the DAG50%/MAG10%-oil fed mice. The mice fed on MAG97%-oil exhibited elevated plasma antioxidant activity and lecithin:cholesterol acyltransferase activity. Histological assessments of the livers of the mice showed that the consumption of MAG-containing oil attenuated the adhesion of inflammatory cells and also ameliorated fatty liver changes, as compared to what was observed in the case of DAG85%-oil consumption. In conclusion, the MAG-containing oil exhibited anti-inflammatory and antioxidant activities in vivo, as well as in vitro inhibitory activity against human cholesteryl ester transfer protein. These results provide us with new insights into MAG-containing oil in terms of hypocholesterolemic effects and antioxidant activities.

  11. STRUCTURE AND SHARES IN THE ROMANIAN INTERNATIONAL TRADE

    Directory of Open Access Journals (Sweden)

    Elena TOMA

    2014-04-01

    Full Text Available An analysis of a wider range of external trade sector of Romania was carried out in this paper. Main purpose of the paper was identification of the products which have submitted during the period 2002-2011 a wide dynamic with regard to trade of Romania, the total and in particular with the EU countries. The methodology used in this respect was detailed analysis of the data, of the structure of imports and exports and the dynamics of these exchanges during the ten years. Thus, we have identified productions which have had a production upward or downward trend in the structure of total trade. It is a case of grain, milk and seeds and oleaginous fruits and tobacco, which has had a positive development in imports and exports. Tobacco and meat products for the imports and live livestock and vegetables for the exports have registered a decreased share.

  12. Coordination of international multicenter studies: governance and administrative structure

    Directory of Open Access Journals (Sweden)

    Bangdiwala Shrikant I.

    2003-01-01

    Full Text Available A well-conducted multicenter study needs to assure standardization, uniformity of procedures, high data quality, and collaboration across sites. This manuscript describes the organization and dynamics of multicenter studies, focusing on governance and administrative structures among countries of diverse cultures. The organizational structure of a multicenter study is described, and a system for oversight and coordination, along with roles and responsibilities of participants in the multicenter study, are presented. The elements of a governance document are also reviewed, along with guidelines and policies for effective collaboration. The experience of an ongoing multi-country collaboration, the World Studies of Abuse in the Family Environment (WorldSAFE, illustrates the implementation of these guidelines. It is essential that multicenter studies have an objective coordinating center and that the investigators jointly develop a written governance document to enable collaboration and preserve collegiality among participating investigators.

  13. Gazprom: internal structure, management principles and financial flows

    International Nuclear Information System (INIS)

    Kryukov, Valery; Moe, Arild.

    1996-01-01

    Gazprom is responsible for over 95% of total Russian natural gas production and is one of the largest companies in the world. As well as being of major importance in the Russian domestic energy balance, it is also the largest gas trader in the world, supplying about half the gas imported into western and east-central Europe. The scale of these external activities means that the terms on which it supplies gas to its customers will have an impact on business beyond the gas industry. This study investigates the roots of the company and analyses its current organisation, management structure and financial flows. The main topics covered are: the Russian gas industry in the Soviet era; the organisational structure of Gazprom after privatisation; pricing policy; the company's financial position; Gazprom in relation to the domestic economy and the outside world. (9 figures; 7 tables). (author)

  14. Reactor building with internal structure of which the movements are independent of those of the general raft and process for building these internal structures

    International Nuclear Information System (INIS)

    Hista, J.C.

    1982-01-01

    This reactor building includes a containment enclosure for the internal structures composed of a slab wedged on its periphery against the containment enclosure gusset and resting on the general raft by means of a peripheral bearing ring, a compressible layer being provided between the general raft and the slab [fr

  15. Financial structure, financial development and banking fragility: International evidence

    OpenAIRE

    Ruiz-Porras, Antonio

    2008-01-01

    We study the effects of financial structure and financial development on banking fragility. We develop our study by using fixed-effects panel-data regressions and by controlling the effects of certain banking indicators. We use individual and principal-components indicators of the activity, size and efficiency of intermediaries and markets. The indicators include data for 211 countries between 1990 and 2003. Our main findings suggest that banking stability is enhanced in market-based financia...

  16. International activities concerning seismic effects on underground structures

    International Nuclear Information System (INIS)

    Hakala, W.W.

    1982-01-01

    At the 5th Annual Meeting of the ITA in Atlanta, Georgia, on June 15-17, 1979, the General Assembly approved the formation of the Working Group Seismic Effects on Underground Structures. The objectives of this Working Group are to: (1) collect data on earthquake damage to underground facilities throughout the world; (2) collect information on aseismic design procedures used within the various countries; and (3) synthesize the information and disseminate the results to the member nations of ITA. William W. Hakala of the US was designated the Animateur of the Working Group. The Working Group decided on the following sequential course of action to achieve the stated objectives: (1) continue to develop a bibliograhy on damages to underground structures by dynamic forces. This will be an ongoing activity of the Working Group; (2) each country is to develop a summary of case histories of earthquake damage to underground structures. These case histories will be discussed at the next meeting of the Working Group in order to identify those parameters that permit or prevent such damage; (3) the state-of-the-art paper on earthquake damage to underground opening being prepared in the US (John A. Blume and Associates, Engineers) is presently being printed and will then be distributed to the membership for comment. This report will form the basis for the activities described below; (4) the above activities should lead to a textbook - like document that provides a design philosophy for underground structures subjected to seismic forces; (5) the work tasks will suggest needed research to solve the identified problems. At each Working Group meeting the member nation delegates will provide a summary of research progress in their countries. These research needs will be documented, reviewed, revised, and disseminated on an annual basis

  17. Data envelopment analysis a handbook of modeling internal structure and network

    CERN Document Server

    Cook, Wade D

    2014-01-01

    This comprehensive handbook on state-of-the-art topics in DEA modeling of internal structures and networks presents work by leading researchers who share their results on subjects including additive efficiency decomposition and slacks-based network DEA.

  18. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  19. Social constructivist interpretation of «agency-structure» dilemma in the science of international relations

    Directory of Open Access Journals (Sweden)

    Y. Y. Senyuk

    2017-07-01

    The scientific novelty of the article has been pointed out by accents, which allow making a comprehensive analysis and describing an alternative approach to the study of structural and subjective levels of the international system.

  20. The Persistence of Structural Inequality?: A Network Analysis of International Trade, 1965-2000

    Science.gov (United States)

    Mahutga, Matthew C.

    2006-01-01

    This article reports results from a network analysis of international trade from 1965 through 2000. It addresses the impact of changes associated with globalization and the "new international division of labor" (NIDL) on structural inequality in the world economy. To assess this impact, I ask three specific questions. (1) Do patterns of…

  1. Investigating Move Structure of English Applied Linguistics Research Article Discussions Published in International and Thai Journals

    Science.gov (United States)

    Amnuai, Wirada; Wannaruk, Anchalee

    2013-01-01

    This study investigates the rhetorical move structure of English applied linguistic research article Discussions published in Thai and international journals. Two corpora comprising of 30 Thai Discussions and 30 international Discussions were analyzed using Yang & Allison's (2003) move model. Based on the analysis, both similarities and…

  2. On the internal consistency of the term structure of forecasts of housing starts

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We use the term structure of forecasts of housing starts to test for rationality of forecasts. Our test is based on the idea that short-term and long-term forecasts should be internally consistent. We test the internal consistency of forecasts using data for Australia, Canada, Japan and the United...

  3. Work Values of Lithuanian University Students: Internal Structure

    Directory of Open Access Journals (Sweden)

    Vincentas Lamanauskas

    2017-04-01

    Full Text Available Individual’s work values define his/her career purposefulness. Individual’s chosen work values allow foreseeing what activity context and career model is important for him/her, seeking to successfully realize oneself in professional activity. Planning his/her professional career an individual is searching for the activity sphere, which could conform not only to his/her personal features, but also to his/her value orientations. Work values important for the individual allow realizing if they form conditions for planning modern career (successfully solve constantly changing activity problems and to correspond to always new raised requirements for a person in the organisation or in labour market, the realisation of which in today’s constantly changing labour market and social context becomes more and more problematic. Empiric research was carried out seeking to discover the work (activity value structure. The research instrument was created by the authors of the research. Two hundred sixty five first-year students from three Lithuanian universities participated in the research. These are the main higher education institutions, preparing teachers in Lithuania. The obtained results show that work value structure of the first year students studying in social and humanitarian science programmes can be expressed by 6 main factors: responsible activity values, active work values, harmony values, reward values, activity style values, and social status values. Also, the main differences were ascertained between female and male work value structure. Responsible activity values, active work values and harmony values were much more important for female than male students.

  4. Procedures of ASME code case N-201 for KALIMER. Reactor internal structures

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Yoo, B.

    2001-02-01

    The main objective of this report is to describe the design procedure of ASME Boiler and Pressure Vessel Code, Code Case N-201-4, which is an elevated temperature structural design code of the Nuclear reactor internal structures, checking the criteria of stress limit, accumulated inelastic strain and deformation, creep-fatigue damage, and buckling limit. As one of examples, the creep-fatigue damage evaluations are carried out for the KALIMER reactor internal structures of baffle annulus. This report is expected to be very useful in evaluating the structural integrity of the liquid metal reactor operating under an elevated temperature

  5. FIV Estimation for the Reactor Internal Structure of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Jeong, K. H.; Park, J. S.; Lee, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    It is necessary to confirm the possibility of flow- induced vibration of upper ICI guide tubes and CRA extension guide tubes, since they are exposed to the cross flow of the coolant. This study will provide an estimation of the flow- induced vibration owing to the vortex shedding by carrying out a free-vibration analysis of the structures, not only in air but also in water using a commercial finite element analysis code, ANSYS, and also by comparison with the vortex shedding frequency.

  6. Influence of biological media on the structure and behavior of ferrocene-containing cationic lipid/DNA complexes used for DNA delivery.

    Science.gov (United States)

    Golan, Sharon; Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Lynn, David M; Abbott, Nicholas L; Talmon, Yeshayahu

    2011-06-07

    Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell

  7. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  8. Sun oscillations and the problem of its internal structure

    International Nuclear Information System (INIS)

    Severnyj, A.B.; Kotov, V.A.; Tsap, T.T.

    1979-01-01

    Analysis of global solar oscillation measurements for five years (1974-1978, more than 1000 hours of observations, 215 days) is given. It is shown that the period of oscillations is 160sup(m)x0.10+-0sup(m)x004 and the amplitude is 1 m/s. The phases of oscillations, obtained at the Crimea, Stanford, Kitt Peak and Pic du Midi, are in good agreement, thus making the assumption on ''telluric origin'' of the oscillations improbable. It has been found: 1) slow, synchronous (at Crimea and Stanford) drift of the phase of velocity maximum from year to year and 2) the dependence of amplitude on the phase of 27-day rotational period of the Sun which favours the assumption on the quadrupole character of oscillations. It is pointed out that these facts, as well as the absence of oscillation waves in the telluric line observed simultaneously with the solar line, exclude the possibility of explaining the results as a statistical artifact. It has also been shown that the differential extinction effect produces an oscillation effect which is by an order of magnitude lower than the observed one. The following preliminary results are noted: a) the appearance of synchronous oscillations of the mean solar magnetic field of the brightness of the Sun and of the solar radio emission; b) the disappearance of the oscillations from time to time, possibly due to the effect of the supergranulation passage across the solar disk. The oscillations observed imply new important restrictions on the problem of the internal constitution of the Sun, and point to the possibility of non-radiative heat-transfer inside the Sun which might help the solution of the low neutrino flux problem

  9. Diagnostic Technology Development for Core Internal Structure in CANDU reactor

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Y. M.; Lee, Y. S. and others

    2005-04-01

    Degradation of critical components of nuclear power plants has become important as the operating years of plants increase. The necessity of degradation study including measurement and monitoring technology has increased continuously. Because the fuel channels and the neighboring sensing tubes and control rods are particularly one of the critical components in CANDU nuclear plant, they are treated as a major research target in order to counteract the possible problems and establish the counterplan for the CANDU reactor safety improvement. To ensure the core structure integrity in CANDU nuclear plant, the following 2 research tasks were performed: Development of NDE technologies for the gap measurement between the fuel channels and LIN tubes. Development of vibration monitoring technology of the fuel channels and sensing tubes. The technologies developed in this study could contribute to the nuclear safety and estimation of the remaining life of operating CANDU nuclear power plants

  10. Polymorphism of a lipid extract from Pseudomonas fluorescens: Structure analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd--

    International Nuclear Information System (INIS)

    Mariani, P.; Rivas, E.; Delacroix, H.; Luzzati, V.

    1990-01-01

    The phase diagram of the Pseudomonas fluorescens lipid extract is unusual, in the sense that it displays a cubic phase straddled by a hexagonal phase. The hexagonal phase was studied over an extended concentration range, and the reflections were phased on the assumption that the structure contains circular cylinders of known radius. The cubic phase, whose extinction symbol is Fd--, was analyzed by reference to space group No. 227 (Fd3m). The phases of the reflections were determined by using a novel pattern recognition approach, based upon the notion that the average fourth power of the electron density contrast 4 > is dependent on chemical composition but not on physical structure, provided that the function Δr(r) satisfies the constraints = 0 and 2 > = 1. The authors analyzed two cubic samples of different composition: for each of them they generated all the phase combinations compatible with the X-ray scattering data and they searched for those whose 4 > best agrees with the hexagonal phase. They concluded that the chemical composition of the phases being compared must be identical, that the X-ray scattering data should not be truncated artificially, and that the apodization must be mild so that the curvature takes a value intermediate between those corresponding to the raw data of the two phases. The structure may be visualized as a 3D generalization of the lipid monolayer. The structure, moreover, does not belong to the class of the infinite periodic surfaces without intersections

  11. Vibration monitoring of the mechanical behavior of the internal structures of PWR reactors

    International Nuclear Information System (INIS)

    Assedo, R.; Carre, J.C.; Sol, J.C.

    1979-01-01

    The internal structures of pressurized water reactors are the seat of vibrations induced by fluctuations in primary fluid flow. A knowledge of these phenomena is indispensable in order to ensure that the structures are in proper mechanical order. It can also be used for operational monitoring. This paper describes all the methods developed and the results already achieved in this domain. The first part deals with tests on mockup associated with the calculation models which afforded a good knowledge of the vibrational characteristics of the internal structures, as well as the measurements made during hot tests of certain reactors which made it possible to qualify these models on real structures. The second part describes the means of detection (neutron noise, external accelerometers) as well as the processing methods used in the follow-up. A few typical results obtained on site are then presented. Finally, the general principles of operational monitoring of the mechanical behavior of the internal structures are described [fr

  12. Acyl-Lipid Metabolism

    Science.gov (United States)

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  13. First International Conference on Lysophospholipids and Related Bioactive Lipids in Biology and Disease Sponsored by the Federation of American Societies of Experimental Biology

    Directory of Open Access Journals (Sweden)

    Edward J. Goetzl

    2001-01-01

    Full Text Available The First International Conference on “Lysophospholipids and Related Bioactive Lipids in Biology and Diseases” was held in Tucson, AZ on June 10�14, 2001, under the sponsorship of the Federation of American Societies of Experimental Biology (FASEB. More than 100 scientists from 11 countries discussed the recent results of basic and clinical research in the broad biology of this emerging field. Immense progress was reported in defining the biochemistry of generation and biology of cellular effects of the bioactive lysophospholipids (LPLs. These aspects of LPLs described at the conference parallel in many ways those of the eicosanoid mediators, such as prostaglandins and leukotrienes. As for eicosanoids, the LPLs termed lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are produced enzymatically from phospholipid precursors in cell membranes and act on cells at nanomolar concentrations through subfamilies of receptors of the G protein–coupled superfamily. The rate-limiting steps in production of LPLs were reported to be controlled by specific phospholipases for LPA and sphingosine kinases for S1P. The receptor subfamilies formerly were designated endothelial differentiation gene-encoded receptors or Edg Rs for their original discovery in endothelial cells. A currently active nomenclature committee at this conference suggested the ligand-based names: S1P1 = Edg-1, S1P2 = Edg-5, S1P3 = Edg-3, S1P4 = Edg-6, and S1P5 = Edg-8; LPA1 = Edg-2, LPA2 = Edg-4, and LPA3 = Edg-7 receptors. Several families of lysophospholipid phosphatases (LPPs have been characterized, which biodegrade LPA, whereas S1P is inactivated with similar rapidity by both a lyase and S1P phosphatases.

  14. Fluorescent lipid probes : some properties and applications (a review)

    NARCIS (Netherlands)

    Maier, O; Oberle, [No Value; Hoekstra, D

    Odd as it may seem, experimental challenges in lipid research are often hampered by the simplicity of the lipid structure. Since, as in protein research. mutants or overexpression of lipids are not realistic, a considerable amount of lipid research relies on the use Of tagged lipid analogues.

  15. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Lee, Jae Han

    2007-02-01

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification

  16. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Lee, Jae Han

    2007-02-15

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification.

  17. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  19. Polymorphism of lipid self-assembly systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  20. Effects of high pressure on internally self-assembled lipid nanoparticles: a synchrotron small-angle X-ray scattering (SAXS) study

    Czech Academy of Sciences Publication Activity Database

    Kulkarni, C. V.; Yaghmur, A.; Steinhart, Miloš; Kriechbaum, M.; Rappolt, M.

    2016-01-01

    Roč. 32, č. 45 (2016), s. 11907-11917 ISSN 0743-7463 Institutional support: RVO:61389013 Keywords : self-assebled lipid nanoparticles * synchrotron * SAXS Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.833, year: 2016

  1. Structural Empowerment and Organizational Commitment of Lecturers in Private International Educational Institutions at Thailand

    Science.gov (United States)

    Puncreobutr, Vichian

    2016-01-01

    The purpose of this research was to measure the level of structural empowerment and organizational commitment of lecturers at private international educational institutions at Thailand. Further to measure the relationship between structural empowerment and organizational commitment of lecturers. The target respondents of the study were lecturers…

  2. Structure-preservingness, internal merge, and the strict locality of triads

    NARCIS (Netherlands)

    Koster, J.; Karimi, S.; Samiian, V.; Wilkins, W.

    2007-01-01

    This paper examines Emonds’ Structure Preserving Hypothesis, and suggests that the insight behind this hypothesis survives reformulation in terms of recent minimalist theory: each structure created by internal merge can also, independently, be created by external merge. As before, this makes

  3. Coordination of the international network of nuclear structure and decay data evaluators

    International Nuclear Information System (INIS)

    Lorenz, A.

    1984-09-01

    This meeting of the International NSDD (Nuclear Structure and Decay Data) Network dealt with problems related to both the coordination of the NSDD network of centres and groups and to physics questions related to the evaluation of NSDD. The status of the mass-chain and nuclear structure data is reviewed and the planned activities are presented

  4. Organizational Structures for International Universities: Implications for Campus Autonomy, Academic Freedom, Collegiality, and Conflict

    Science.gov (United States)

    Edwards, Ron; Crosling, Glenda; Lim, Ngat-Chin

    2014-01-01

    One significant form of transnational higher education is the International Branch Campus (IBC), in effect an "outpost" of the parent institution located in another country. Its organizational structure is alignable with offshore subsidiaries of multinational corporations (MNCs). The implications of organizational structure for academic…

  5. Detection, characterization and evolution of internal repeats in Chitinases of known 3-D structure.

    Directory of Open Access Journals (Sweden)

    Manigandan Sivaji

    Full Text Available Chitinase proteins have evolved and diversified almost in all organisms ranging from prokaryotes to eukaryotes. During evolution, internal repeats may appear in amino acid sequences of proteins which alter the structural and functional features. Here we deciphered the internal repeats from Chitinase and characterized the structural similarities between them. Out of 24 diverse Chitinase sequences selected, six sequences (2CJL, 2DSK, 2XVP, 2Z37, 3EBV and 3HBE did not contain any internal repeats of amino acid sequences. Ten sequences contained repeats of length <50, and the remaining 8 sequences contained repeat length between 50 and 100 residues. Two Chitinase sequences, 1ITX and 3SIM, were found to be structurally similar when analyzed using secondary structure of Chitinase from secondary and 3-Dimensional structure database of Protein Data Bank. Internal repeats of 3N17 and 1O6I were also involved in the ligand-binding site of those Chitinase proteins, respectively. Our analyses enhance our understanding towards the identification of structural characteristics of internal repeats in Chitinase proteins.

  6. Co-ordination of the international network of nuclear structure and decay data evaluation

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1991-11-01

    The IAEA Nuclear Data Section convened the ninth meeting of the international nuclear structure and decay data network at Kuwait, 10-14 March 1990. The meeting was attended by 19 scientists from 9 Member States and two international organizations, concerned with the compilation, evaluation, and dissemination of nuclear structure and decay data. The document contains a summary and the proceedings of the meeting, and in annexes, status reports of activities in nuclear structure and decay data from the participating centers. A separate abstract was prepared for one of the scientific lectures related to the topics of the meeting which is reproduced in full length. Refs, figs and tabs

  7. Structural Changes of International Trade Flows under the Impact of Globalization

    Directory of Open Access Journals (Sweden)

    Anca Dachin

    2006-08-01

    Full Text Available Structural changes of international trade flows indicate modifications in competitiveness of countries, in terms of production, technological upgrading and exports under the pressure of globalization. The paper aims to point out sources of competitive advantages especially in manufacturing exports of different groups of countries. The focus is on the shifts in the structure of manufacturing in the European Union and their effects on international rankings in export performances. An important issue refers to the opportunities given by the enlargement of the European Union and their impact on EU trade structures.

  8. Co-ordination of the international network of nuclear structure and decay data evaluators

    International Nuclear Information System (INIS)

    Schmidt, J.J.

    1988-10-01

    The IAEA Nuclear Data Section convened the eighth meeting of the international nuclear structure and decay data network at Ghent, Belgium, 16-20 May 1988. The meeting was attended by 21 scientists from 12 Member States and three international organizations, concerned with the compilation, evaluation, and dissemination of nuclear structure and decay data. This document contains a summary of the meeting, the proceedings of the meeting and in appendices status reports of activities in nuclear structure and decay data from the participating centers. Refs and tabs

  9. LDL-cholesterol goal attainment under persistent lipid-lowering therapy in northeast China: Subgroup analysis of the dyslipidemia international study of China (DYSIS-China).

    Science.gov (United States)

    Zheng, Wen; Zhang, Yu-Jiao; Bu, Xiang-Ting; Guo, Xin-Zhu; Hu, Da-Yi; Li, Zhan-Quan; Sun, Jian

    2017-11-01

    Lipid-lowering therapy with statins reduces the risk of cardiovascular events, but the efficacy of persistent treatment in a real-world setting may vary from regions. Routine lipid-lowering therapy in the region with a high prevalence of cardiovascular disease may lead to more failures of goal attainment. We therefore performed a study to observe different lipid-lowering strategies in northeast (NE) China with respect to low-density lipoprotein-cholesterol (LDL-C) reduction and goal attainments.A cross-sectional study (DYSIS-China) was conducted in 2012, involving 25,317 patients from 122 centers across China who were diagnosed with hyperlipidemia and treated with lipid-lowering therapy for at least 3 months. Of these patients, 4559 (18.0%) were assigned to the NE group according to their residential zones.Patients in the NE group tended to be younger, female, overweight, and had more comorbidities and higher blood lipid levels than those in the non-NE group (P 24 kg/m, drinking alcohol, smoking, and being residence in NE China as independent predictors of LDL-C attainment.Despite having received persistent lipid-lowering treatments, the current situation of dyslipidemia patients in NE China is unsatisfactory. The main treatment gap might be related to the choice of statin and effective combination therapy and the control of comorbidities and obesity, especially for high-risk patients.

  10. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  11. Proceedings of 18th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    2005-07-01

    The 18th International Conference on Structural Mechanics in Reactor Technology was held on August 7-12, 2005 in Beijing, China, and Sponsored by International Association for Structural Mechanics in Reactor Technology, Chinese Nuclear Society, Chinese Society of Theoretical and Applied Mechanics, and Tsinghua University. 486 abstracts are Collected. The contents includes: opening, plenary and keynote presentations; computational mechanics; fuel and core structures; aging, life extension, and license renewal; design methods and rules for components; fracture mechanics; concrete material, containment and other structures; analysis and design for dynamic and extreme loads; seismic analysis, design and qualification; structural reliability and probabilistic safety assessment (PSA); operation, inspection and maintenance; severe accident management and structural evaluation; advanced reactors and generation IV reactors; decommissioning of nuclear facilities and waste management.

  12. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.

    Science.gov (United States)

    Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J

    2017-05-01

    Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Lipid Nanotechnology

    Directory of Open Access Journals (Sweden)

    Gijsje Koenderink

    2013-02-01

    Full Text Available Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.

  14. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  15. Study on dynamic characteristics of reduced analytical model for PWR reactor internal structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae Han; Kim, Jong Bum; Koo, Kyeong Hoe

    1993-01-01

    The objective of this study is to establish the procedure of the reduced analytical modeling technique for the PWR reactor internal(RI) structures and to carry out the sensitivity study of the dynamic characteristics of the structures by varying the structural parameters such as the stiffness, the mass and the damping. Modeling techniques for the PWR reactor internal structures and computer programs used for the dynamic analysis of the reactor internal structures are briefly investigated. Among the many components of RI structures, the dynamic characteristics for CSB was performed. The sensitivity analysis of the dynamic characteristics for the reduced analytical model considering the variations of the stiffnesses for the lower and upper flanges of the CSB and for the RV Snubber were performed to improve the dynamic characteristics of the RI structures against the external loadings given. In order to enhance the structural design margin of the RI components, the nonlinear time history analyses were attempted for the RI reduced models to compare the structural responses between the reference model and the modified one. (Author)

  16. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  17. Effects of input structural dates for displacements and internal forces of structures in case of earthquake

    International Nuclear Information System (INIS)

    Gyoergyi, J.

    2001-01-01

    This paper analyses the effects of uncertainties in the modulus of elasticity of the constructional material, soil stiffness and the mass of structure on models corresponding to two typical structures in the Paks Nuclear Power Plant. The structure has been modelled as a beam model, and in computation of soil springs, a stiff foundation has been taken into account. Analyses show that masses must be taken into account as correctly as possible, but the effects of soil stiffness are sharply different with flexible and rigid structures. This effect in the case of flexible buildings is less important than in the case of rigid-box-like structures. (author)

  18. Solid lipid nanoparticles: A drug carrier system

    Directory of Open Access Journals (Sweden)

    Rashmi R Kokardekar

    2011-01-01

    Full Text Available Solid lipid nanoparticles (SLN are a type of nanoparticles. They are submicron colloidal carriers which are composed of physiological lipids, dispersed in water or in aqueous surfactant solutions. SLN have wide range of advantages over other types of nanoparticles. These include availability of large-scale production methods and no signs of cytotoxicity, which are main hindrances in the application of other types of nanoparticles. Hot and cold homogenization techniques are mainly employed for its production. They are mainly evaluated on the basis of their drug release profile and particle internal structure. The products based on SLN are under development. They have a very wide range of applications in cosmetics and pharmaceuticals. They can be applied for any purpose, for which nanoparticles have a distinct advantage. Thus, SLN can be used extensively as an alternative to the existing drug carrier systems, providing more flexibility with respect to the area of applications and also aspects for commercialization.

  19. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  20. Lipid management in ramadan.

    Science.gov (United States)

    Slim, Ines; Ach, Koussay; Chaieb, Larbi

    2015-05-01

    During Ramadan fast, Muslims must refrain from smoking, eating, drinking, having sexual activity, and consuming oral medications from sunrise to sunset. It has been previously shown that Ramadan fasting induces favourable changes on metabolic parameters, reduces oxidative stress and inflammation and promotes cardiovascular benefits. Although ill people are exempted from fasting, most patients with chronic diseases are keen on performing this Islamic-ritual. During recent years, Risk stratification and treatment adjustment during Ramadan are well known and structured in several guidelines for patients with diabetes mellitus. Data related to the effect of Ramadan fast on lipid profiles are less known and several controversies have been reported. Here, we focus on lipid profile and lipid management during Ramadan taking into account comorbidities and cardiovascular risk.

  1. Lipid Panel

    Science.gov (United States)

    ... A routine cardiac risk assessment typically includes a fasting lipid panel. Beyond that, research continues into the usefulness of other non-traditional markers of cardiac risk, such as Lp-PLA 2 . A health practitioner may choose to evaluate one or more ...

  2. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  3. Role of lipids in the formation and maintenance of the cutaneous permeability barrier.

    Science.gov (United States)

    Feingold, Kenneth R; Elias, Peter M

    2014-03-01

    The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. Published by Elsevier B.V.

  4. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  5. LipidPedia: a comprehensive lipid knowledgebase.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  6. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    Science.gov (United States)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p0.05) between G3 on day 0 and 56 days for total cholesterol. Meanwhile, total plasma HDLcholesterol content of rats fed with C8:0 was significantly higher (pstructured lipids effectively altered the plasma cholesterol levels of experimental rats.

  7. Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Yong Deong; Lee, Hwan Soo

    2014-01-01

    The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux

  8. Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

    Science.gov (United States)

    Peterson, Kenneth A [Albuquerque, NM

    2009-02-24

    A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.

  9. The changing structure of the international commercial nuclear power reactor industry

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Hill, L.J.; Reich, W.J.; Rowan, W.J.

    1992-12-01

    The objective of this report is to provide an understanding of the international commercial nuclear power industry today and how the industry is evolving. This industry includes reactor vendors, product lines, and utility customers. The evolving structure of the international nuclear power reactor industry implies different organizations making decisions within the nuclear power industry, different outside constraints on those decisions, and different priorities than with the previous structure. At the same time, cultural factors, technical constraints, and historical business relationships allow for an understanding of the organization of the industry, what is likely, and what is unlikely. With such a frame of reference, current trends and future directions can be more readily understood

  10. Design of complex bone internal structure using topology optimization with perimeter control.

    Science.gov (United States)

    Park, Jaejong; Sutradhar, Alok; Shah, Jami J; Paulino, Glaucio H

    2018-03-01

    Large facial bone loss usually requires patient-specific bone implants to restore the structural integrity and functionality that also affects the appearance of each patient. Titanium alloys (e.g., Ti-6Al-4V) are typically used in the interfacial porous coatings between the implant and the surrounding bone to promote stability. There exists a property mismatch between the two that in general leads to complications such as stress-shielding. This biomechanical discrepancy is a hurdle in the design of bone replacements. To alleviate the mismatch, the internal structure of the bone replacements should match that of the bone. Topology optimization has proven to be a good technique for designing bone replacements. However, the complex internal structure of the bone is difficult to mimic using conventional topology optimization methods without additional restrictions. In this work, the complex bone internal structure is recovered using a perimeter control based topology optimization approach. By restricting the solution space by means of the perimeter, the intricate design complexity of bones can be achieved. Three different bone regions with well-known physiological loadings are selected to illustrate the method. Additionally, we found that the target perimeter value and the pattern of the initial distribution play a vital role in obtaining the natural curvatures in the bone internal structures as well as avoiding excessive island patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Structural contingency theory and individual differences: examination of external and internal person-team fit.

    Science.gov (United States)

    Hollenbeck, John R; Moon, Henry; Ellis, Aleksander P J; West, Bradley J; Ilgen, Daniel R; Sheppard, Lori; Porter, Christopher O L H; Wagner, John A

    2002-06-01

    This article develops and tests a structurally based, integrated theory of person-team fit. The theory developed is an extension of structural contingency theory and considers issues of external fit simultaneously with its examination of internal fit at the team level. Results from 80 teams working on an interdependent team task indicate that divisional structures demand high levels of cognitive ability on the part of teammembers. However, the advantages of high cognitive ability in divisional structures are neutralized when there is poor external fit between the structure and the environment. Instead, emotional stability becomes a critical factor among teammembers when a divisional structure is out of alignment with its environment. Individual differences seem to play little or no role in functional structures, regardless of the degree of external fit.

  12. Piloting a Structured Practice Audit to Assess ACGME Milestones in Written Handoff Communication in Internal Medicine.

    Science.gov (United States)

    Martin, Shannon K; Farnan, Jeanne M; McConville, John F; Arora, Vineet M

    2015-06-01

    Written communication skills are integral to patient care handoffs. Residency programs require feasible assessment tools that provide timely formative and summative feedback, ideally linked to the Accreditation Council for Graduate Medical Education Milestones. We describe the use of 1 such tool-UPDATED-to assess written handoff communication skills in internal medicine interns. During 2012-2013, the authors piloted a structured practice audit at 1 academic institution to audit written sign-outs completed by 45 interns, using the UPDATED tool, which scores 7 aspects of sign-out communication linked to milestones. Intern sign-outs were audited by trained faculty members throughout the year. Results were incorporated into intern performance reviews and Clinical Competency Committees. A total of 136 sign-outs were audited (averaging 3.1 audits per intern). In the first trimester, 14 interns (31%) had satisfactory audit results. Five interns (11%) had critical deficiencies and received immediate feedback, and the remaining 26 (58%) were assigned future audits due to missing audits or unsatisfactory scores. In the second trimester, 21 interns (68%) had satisfactory results, 1 had critical deficiencies, and 9 (29%) required future audits. Nine of the 10 remaining interns in the final trimester had satisfactory audits. Faculty time was estimated at 10 to 15 minutes per sign-out audited. The UPDATED audit is a milestone-based tool that can be used to assess written sign-out communication skills in internal medicine residency programs. Future work is planned to adapt the tool for use by senior supervisory residents to appraise sign-outs in real time.

  13. Structural integrity and management of aging in internal components of BWR reactors

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    2004-01-01

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  14. Co-ordination of the international network of nuclear structure and decay data evaluators

    International Nuclear Information System (INIS)

    Lorenz, A.

    1986-10-01

    The seventh meeting of the International Network of Nuclear Structure and Decay Data (NSDD) Evaluators concentrated on the organizational aspects of the coordination of the NSDD network and on the presentation and discussion of papers related to the physics of evaluation of NSDD. The report contains short status reports from NSDD Network members, the status of the mass-chain and nuclear structure data, a discussion of evaluation rules and procedures and a short presentation of the next activities

  15. Visualization of the internal structure of Didymosphenia geminata frustules using nano X-ray tomography

    OpenAIRE

    Zglobicka, Izabela; Li, Qiong; Gluch, Jürgen; Płocińska, Magdalena; Noga, Teresa; Dobosz, Romuald; Szoszkiewicz, Robert; Witkowski, Andrzej; Zschech, Ehrenfried; Kurzydłowski, Krzysztof J.

    2017-01-01

    For the first time, the three-dimensional (3D) internal structure of naturally produced Didymosphenia geminata frustules were nondestructively visualized at sub-100 nm resolution. The well-optimized hierarchical structures of these natural organisms provide insight that is needed to design novel, environmentally friendly functional materials. Diatoms, which are widely distributed in freshwater, seawater and wet soils, are well known for their intricate, siliceous cell walls called ?frustules?...

  16. Design and analysis of CANDU NPP internal structures for Japanese conditions

    International Nuclear Information System (INIS)

    Aziz, T.S.; Murakami, H.

    1991-01-01

    The design and analysis approach for the CANDU 6 Internal Concrete Structure (ICS) for Japanese seismic conditions is described. The approach consists of a seismic analysis to determine the design level accelerations; followed by a detailed finite element analysis to determine the section forces for each shell element. The extent of the design modifications for the original structure to meet the Japanese design conditions is given. (author)

  17. Persistent lipid abnormalities in statin-treated patients with diabetes mellitus in Europe and Canada: results of the Dyslipidaemia International Study

    NARCIS (Netherlands)

    Leiter, L. A.; Lundman, P.; da Silva, P. M.; Drexel, H.; Jünger, C.; Gitt, A. K.; Absenger, Guun; Albrich, Ernst; Allinger, Berndt; Allinger, Stephan; Anacher, Gerald; Angermayr, Gertraud; Angermeier, Hermann; Anzengruber, Aneas; Archimanitis, Gabriele; Arnsteiner, Patricia; Auberger, Wolfgang; Azhary, Mawaheb; Barfuss, Michael; Bauer, Christian; Bauer, Birgit Elisabeth; Beclin, Thomas; Binder, Thomas; Binder, Gabriele; Böhler, Dietmar; Brändle, Johann; Breslmair, Jörg; Brettlecker, Marlis; Bürger, Michael; Calvi, Inge; Dorfinger, Werner; Doringer-Schnepf, Elisabeth; Eer, Anton; Eckmayr, Christine; Eder, Franz; Egermann, Margit; Erath, Michael; Etzinger, Michael; Etzinger, Claudia; Fiedler, Lothar; Filip, Wolfgang; Filip, Michaela; Föchterle, Johann; Fodor, Anita; Frieden, Thomas; Gareiss, Mertens; Gföllner, Peter; Ghamarian, Thomas; Goritschan, Michael; Haar, Klaus; Habeler, Gerhard; Hadjiivanov, Valery; Haiböck, Christian; Hammer, Regina; Hartmann, Siegfried; Haschkovitz, Herbert; Hauer, Walter; Hauer, Josef; Haunschmidt, Christian; Heimayr, Christine; Hengl, Wolfgang; Hengl, Gunter; Hermann, Rudolf; Herrmann, Rainer; Hillebrand, Roswitha; Hintersteininger, Otto; Hirsch, Michael; Hitzinger, Martin; Hochegger, Tanja; Hockl, Wolfgang; Hoi, Michael; Hörmann, Jan; Hudler, Brigitte; Imb, Gerhard; Joichl, Anea; Jungbauer, Karl; Kapl, Gerlinde; Kerschbaum, Margit; Kienesberger, Franz; Killinger, Gerhard; Kitzler, Gerhard; Klein, Franz; Kleinbichler, Dietmar; Kohr, Anton; Kopetzky, Michael; Korthals, Christian; Kortschak, Werner; Koschutnik, Martin; Kraus, Werner A.; Kurzemann, Susanne; Lavicka, Claus; Lehner, Guido; Lenz, Jürgen; Lepuschütz, Sabine; Lichtenwallner, Michael; Lober, Reinhard; Loidl, Christine; Lopatka, Eduard; Ludwig, Rudolf; Maca, Thomas; Mair, Anneliese; Mandak, Michael; Margreiter, Maria; Margreiter, Anea; Markovics, Michael; Matejicek, Frieich; Mohilla, Maximillian; Moll, Christian; Mörz, Beate; Mörz, Reinhard; Nagl, Heinz; Neumayr, Günther; Oberroitmair, Helmut; Oberzinner, Michael; Pallamar, Walter; Pangratz, Sibylle; Parandian, Laurenz; Paulus, Alexana; Pfaffenwimmer, Christoph; Plaichinger, Peter; Pokorn, Thomas; Polanec, Helmuth; Pöll-Weiss, Barbara; Pralea, Doralina; Puttinger, Johann; Quinton, Thomas; Ranegger, Matthias; Rass, Sepp; Rauch, Heribert; Riehs, Manfred; Robetin, Erich; Rohringer, Jörg; Rupprechter, Josef; Sadjed, Eduard; Schimbach, Johann Alois; Schmid, Jutta; Schneiderbauer, Rotraud; Schopper, Wolfgang; Schulze-Bauer, Alfred; Schuster, Gottfried; Schwarz, Johann; Schwarz, Maria; Schweighofer, Christoph; Schwelle, Franz; Simma, Hanspeter; Sock, Renate; Sock, Reinhard; Sprenger, Fritz; Stiglmayr, Thomas; Stocker, Ilse; Stütz, Pia; Tama, Mustafa; Teleky, Ursula; Tschauko, Werner; Veits, Martin; Vikydal, Gerhard; Vlaschitz, Karl; Wais, Elisabeth; Wais, Adam; Wegmann, Robert; Wehle, Franz; Weindl, Manfred; Weinhandl, Manuela; Wendt, Ursula; Wendt, Klaus; Werner-Tutschku, Volker; Werner-Tutschku, Christine; Wilscher, Josef; Wind, Norbert; Winter, Aneas; Wolfschütz, Gerald; Wolfsgruber, Markus; Wolfsgruber, Brigitte; Wurm, Renate; Ziebart-Schroth, Arno; Zimmermann, Maximillian; Zinnagl, Aneas; Zirm, Anea; Zirm Canada, Bernhard; Bokenfohr, Grace Mary; Liu, Edmond K. H.; Melling, Gordon W.; Papp, Edward William; Sachdeva, Ashok K.; Snyman, Ernst Retief; Varma, Sonya; Ward, Richard A.; Tiong Wong, Anew Pak; Basson, Paul J.; Brodie, Brian D.; Chahal, Sukhjiwan Jeevyn; Chan, William Y.; Chow, John C.; Cormack, Maura; Eddy, Donald H. J.; Ezekiel, Daniel; Farquhar, Anew; Gu, Shian; Hii, Ting H.; Ho-Asjoe, Marianne P. K.; Hosie, Anew; Jaffer, Shahin; Jakubowski, Anew T.; Karim, Mandy; Kiai, Cristina; Kooy, Jacobus; Lytle, Craig R.; Mcleod, Kevin Lain; Morgan, David C.; Myckatyn, Michael M.; Ng, John P. Y.; Schriemer, Ronnald; Schumacher, Gerhard; Grey Stopforth, James; Hoo Tsui, Winston Wai; Wilson, Robin T.; Wong, Danny; Wong, Wilfred T.; Yeung, Margaret M. W.; Cram, David Harvey; Kumari Dissanayake, Dilani Tamara; Gerber, Johan Daniel W.; Haligowski, David; Hrabarchuk, Blair; Kroczak, Tadeusz J.; Lipson, Alan H.; Mahay, Raj K.; Wessels Mare, Abraham Carel; Mohamdee, Feisal John; Olynyk, Frederick Theodore; Pieterse, Wickus; Ramgoolam, Rajenanath; Rothova, Anna; Saunders, Kevin Kenneth; Szajkowski, Stanley; van Gend, Richard F.; van Rensburg, Nicolaas Marthinus Jansen; Anand, Sanjiv; Baer, Carolyn E. H.; Basque, Eric J. Y.; Benaya, Sebastian; Bessoudo, Ricardo; Bhalla, Jaswinder; Chettiar, Nataraj V.; Craig, Brian N.; Desrosiers, France; Ranjani Imbulgoda, Manel; Morgan, Gareth M.; Nowak, Zbigniew J.; Scott, Daniel G.; Searles, Gregory R.; Slorach, J. Ninian; Stevenson, Robert N.; Browne, Noel John; Bruff, Karl Joseph; Collingwood, John Maurice; Collins, Wayne; Over, Aidan; Gabriel, Anthony M.; Govender, Moonsamy; Hart, David G.; Hatcher, Lydia B.; Janes, John; Kielty, John F.; Krisdaphongs, Michoke; Lush, Richard Boyd; Moulton, William Bertram; Riche, Cyril R.; Rideout, Gary M.; Roberts, Bernard C.; Walsh, Paul E.; Wight, Harold G.; Woodland, K. Heather; Woodland, Robert C.; Atkinson, Bradley Charles; Chow, Carlyle S. H. A.; Collins, James A.; Graham, Robert D.; Hosein, Jalal; Machel, Teresa M.; Mahaney, Gordon Ralston; Mclean, James Robert Bruce; Murray, Michael R.; Myatt, Gregory Alexander; Ozere, Christopher P.; Saha, Amal Krishna; Sanders, David Herbert; Seaman, Donald Maxwell; Seaman, James Gordon; Swinamer, Deanna; Voon Yee, Kenny Yew; Ali, Mohamed Mustapha; Bankay, Clarence D. C.; Beduhn, Eitel Erich Reinhold; Callaghan, Denis J.; Chan, Yun Kai; Chaudhri, Arif R.; Chen, Richard Y. Y.; Conway, James Robin; Cunningham, William L.; Cusimano, Steven Lawrence; Souza, Eleanor De; de Souza, Selwyn X.; Deyoung, John Paul; Epstein, Ralph; Faiers, Alan Arthur; Figurado, Victor John; Forbes, F. Basil Trayer; Gabor, Zsuzsanna; Gallardo, Rodolfo Canonizado; Gaur, Shiva K.; George, Elizabeth; Hartford, Brian J.; Shiu-Chung Ho, Michael; Ho, Chung; Ismail, Shiraz H.; Bhushan Kalra, Bharat; Koprowicz, Kinga; Kumar, Naresh; Lam, Clement; Lau, Ming-Jarm; Law, Hugo Kwok Cheung; Fung, Max Leung Sui; Liutkus, Joanne Frances; Lotfallah, Talaat K.; Luton, Robert G.; Meneses, Gloria S.; Miller, Mark Lee; Nagji, Noorbegum; Ng, Ken H. M.; Ng Thow Hing, Roland E.; Pandey, Amritanshu Shekhar; Petrov, Ivan; Rosenthall, Wendy; Rudner, Howard; Russell, Alan Douglas; Sanchez, Zenia A.; Shaban, Joseph A.; Shariff, Shiraz B. K.; Shih, Chung Ming; Sinclair, Duncan W.; Spink, Donald Richard; Tung, Tommy Hak Tsun; Vizel, Saul; Yanover, David Frederick; Zavodni, Louis S.; Cusack, Paul; Dewar, Charles M.; Hooley, Peter; Kassner, Rachel Anne; Mackinnon, Randy James; Molyneaux, Harold W.; Shetty, Karunakara Naduhithlu; Barrière, Ginette; Berjat, Maria B.; Bernucci, Bruno; Bérubé, Claude; Boueau, Ghyslain; Chehayeb, Raja; Ciricillo, Domenico; Constance, Christian M.; Côté, Gilles; Desroches, Jacques; Gagnon, Robert; Gaueau, Gilles; Godbout, Jean Louis; Harvey, Pierre; Hassan, Youssef; Hoang, Ngoc Vinh; Houde, Danielle; Lalonde, Alain-Paul; Lavoie, Régis; Leclair, Normand; Meagher, Luc; Ouimet, Alain; Plourde, Simon; Rioux, Denis W.; Roberge, Claude; Roy, Bruno; Sasseville, Richard; Serfaty, Samuel; Theriault, Lyne; Timothée, Jean R.; Tjia, Sabine; Tremblay, Bruno; Turcotte, Jean; Bose, Sabyasachi; Aletta Bouwer, Hester; Chernesky, Patricia A.; Johnson, Mervin Louis; Kemp, David R.; Lai, Raymond Pong-Che; Lee, Frank R.; Lipsett, William G. C.; Lombard, Schalk J.; Majid, Falah S.; Malan, Johannes J.; Maree, Narinda; Nayar, Arun; Nel, Mandi; Oduntan, Oluwole O.; Rajakumar, Alphonsus R. J.; Baraka Ramadan, Fauzi; Shamsuzzaman, Mohammed; Vermeulen, Abraham P. M.; Fred, C.; Anthonsen, Birgitte; Ardest, Steen Pennerup; Arnold-Larsen, Susanne Kajsa; Axelsen, Allan; Barfoed, Klaus; Birkler, Niels Erik; Blokkebak, Jens; Boserup, Jørgen; Kettrup Brassøe, Jens Ole; Chovanec, Martin; Lykke Christensen, Bendt; Christensen, Micael; Skjøth Christensen, Randi; Eidner, Per Olav; Eisbo, Jørn; Elsvor, Jan; Engmann, Ida Veng-Christensen; Eriksen, Rene Milling; Frederiksen, Thorkil; Frølund, Hanne Charlotte; Garne, Susanne; Giørtz, Agnete; Gregersen, Bettina; Halkier, Merete Lundbye; Hansen, Jens Georg; Harder, Jan; Jørgen, Hans; Henriksen, O.; Kirkeby Hoffmann, Michael; Holk, Erik; Hollensen, Jan; Jacobsen, Rune; Jakobsen, Lotte; Jensen, Christian; Jensen, Morten; Jensen, Vibeke; Jepsen, Peter; Johannsen, Jens Arne; Verner Johansen, Lars; Johansen, Ole Steen; Juul, Kristian; Jørgensen, Arvid Frank; Jørgensen, Peter; Jørgensen, Ulrik Miilmann; Kensmark, Lars; Kjellerup, Carsten; Kjaer, Ejner; Kjaersgaard, Morten; Klubien, Peter; Kolby, Peter; Korsgaard Thomsen, Kristian; Krebs, Peter; Kristiansen, Tom; Lyng, Flemming; Madsen, Natalia V.; Meyer-Christensen, Jesper; Mogensen, Ole; Mortensen, Finn; Nielsen, Lotta Marie; Nielsen, Per Schiwe; Nielsen, Søren Kjærem; Ommen, Henrik; Juhl Otte, Jens; Østergaard Paridon, Volle; Parm, Michael; Peampour, Kian; Petersen, Kirsten; Pilgaard, Peder Jensen; Poulsen, Svend Erik; Preisler, Thomas; Hast Prins, Søren Ulrik; Randløv, Annette; Rasmussen, Birgit Reindahl; Elmegaard Rasmussen, Peter; Rasmussen, Regnar; Roed, Søren Flemming; Sander, Kirsten Foltmar; Schmidt, Ejnar Ørum; Jørgen Schultz, Paul; Smidemann, Margit; Solgaard, Jørgen; Stripp, Tommy; Søderlund, Michael Rene M.; Søgaard, Henning; Søndergaard, Dorte E.; Sørensen, Birgitte H.; Sørensen, Gerhard Seth; Thøgersen, Niels; Toftdahl, Hans; Uggerhøj, Hanne; Uhrenholt, Bjarne; Veronika Ullisch, Eva; Valentiner-Branth, Christian; Vinberg, Jørgen; Vinter, Svend Aage; Vittrup, Preben; Winther-Pedersen, Niels; Wøldike, Anne Grete; Zederkof, Jørgen M.; Thue Østergaard, Merete; Abiven, Patrick; Abraham, Dominique; de Beaumais, Philippe Adam; Ado, Jean Pierre; Affres, Helene; Agache, Regis; Airault Leman, Anne Marie; Moussarih, Abdallah Al; Albaric, Christian; Allaouchiche, Thierry; Allignol, Christian; Ammor, Mohammed; Ammoun Bourdelas, Corinne; Amsallem, Luc; Anquez, Denis; Antonini, Jean Michel; Assuied, Virginia; Attia, Gerard; Audebert, Olivier; Audibert, Henri; Ayach, Claude; Bagdadlian, Serge; Bagni, Marina; Baillet, Jean; Ballivian Cardozo, Fernando; Baranes, Robert; Barbier, Patricia; Barousse, Francoise; Bas, Sylvie; Battaglia, Jean Marc; Baudonnat, Bruno; Bauple, Jean Louis; Domengetroy, Frederic Baylac; Beard, Thierry; Beaumier, Eric; Beaumont, Jean Francois; Baylac Domengetroy, Frederic; Beck, Christian; Behar, Michel; Behr, Bernard; Benady, Richard; Benghanem, Mohamed Mounir; Benichou, Herve; Bensoussan, Jean Marc; Bensussan, Pierre; Bercegeay, Pascal; Berneau, Jean Baptiste; Bertolotti, Alexane; Bertrand, Sylviane; Besson, Alain; Bezanson, Christophe; Bezier, Christophe; Bezzina, Remy; Bichon, Herve; Bickar, Pierre; Billot, Pierre; Billot Belmere, Marie Claude; Bisson, Francois; Blanc, Dominique; Bloch, Jean Luc; Bloch, Bernard; Blondin, Hyacinthe; Blot, Jacques; Bloud, Raymond; Blouin, Pascal; Boesch, Christophe; Boiteux, Jean Luc; Bonnafous, Pierre; Bonneau, Yanick; Bonnefoy, Laurent; Borg, Bernard; Borys, Jean Michel; Brunehaut Petaut, Myriam; Boschmans, Sabine; Said, Rami Bou; Bouallouche, Abderrahmane; Bouchet, Jacques; Bouchlaghem, Khaled; Boulen, Yvon; Bouline, Benoit; Bounekhla, Mohamed Salah; Bouquin, Vincent; Bourgeois, Marie Brigitte; Bourgois, Didier; Brandily, Christian; Brandt, Pierre; Branquart, Frederic; Breilh, Patrick; Brilleman, Fabrice; Brisson, Thierry; Brocard, Francis; Bruel, Pierre; Brun, Jean Pierre; Buisson, Jean Gabriel; Buisson Virmoux, Isabelle; Bur, Christian; Cabal Malville, Elodie; Cabantous, Serge; Cabrol, Pierre; Cagnoli Gromovoi, Sylviane; Caillaux, Bruno Xavier; Caillot, Didier; Canchon Ottaviani, Isabelle; Canu, Philippe; Caramella, Alexana; Caramella, Alexane; Cardaillac, Christian; Carrivale, Alain; Cartal, Jean Pierre; Cassany, Bernard; Cauon, Bernard; Causeret, Jean Marie; Caye, Philippe; Cayet, Jean Paul; Cazor, Gilles; Cesarini, Joel; Chakra, Georges; Chambeau, Bernadette; Chambon, Valerie; Chanas, Jack; Chapuzot, Patrick; Charon, Ane; Charpin, Eric; Charton, Frederic; Cheikel, Jean; Chemin, Philippe; Chennouf, Kamel; Chequel, Henri; Chevrier, Denis; Ciroux, Patrick; Cissou, Yves; Claeys, Jean Luc; Clariond, Yves; Classen, Olivier; Cloerec, Ane; Clouet, Sophie; Cloup Lefeuvre, Anne Marie; Cochet, Chantal; Cocuau, Didier; Cohen, Henri; Cohen Presberg, Pascale Cohen; Colin, Stephane; Colin, Remy; Colucci, Robert; Come, Philippe; Condouret, Pierre; Conturie, Agnes; Corbin, Ane; Corticelli, Paola; Coste, Daniel; Cotrel, Olivier; Coueau, Sylvie; Coulon, Paul; Courdy, Christian; Courtin, Marc; Courtot, Pierre; Coutrey, Laurent; Couval, Rene; Cravello, Patrick; Cressey, Olivier; Cuisinier, Yves; Cunin, Bernard; Cunnington, Bernard; Cusseau, Herve; Cuvelier, Christian; Arailh, Bruno D.; Dabboura, Adib; Dages, Laurence; Dahmani, Noureddine; Dandignac, Jean Christophe; Daney, Dominique; Dannel, Bernard; Darbois, Dominique; Dareths, Philippe; Daubin, Daniel; David, Jean Claude; de Foiard, Patrick; de Mallmann Guyot, Veronique De; de Wit, Marie Astrid; Debast, Francoise; Deboute, Eric; Debuc, Jean Pierre; Dechoux, Edouard; Decloux, Olivier; Decruyenaere, Yannick; Dejans, Jacques Maurice; Delarue, Michel; Delattre, Xavier; Delmaire, Patrick; Denis, Lucien; Deschamps Ben Ayed, Myriam; Devins, Pascal; Dezou, Sylvie; Dieuzaide, Pierre; Dirheimer, Bertrand; Dominguez, Paul; Donadille, Florence; Dondain, Benoit; Doridan, Pierre; Ouhet, Pascal; Dubois, Arnaud; Dubois, Ane; Ducharme, Pascal; Duchez, Paul; Dulard, Catherine; Dumoulin, Marc; Duprey, Georges; Durand, Jacques; Mohamed, Ibrahim; Chehab, El; Emery, Bernard; Emmanuel, Georges; Ashari, Ghazaleh Esna; Evrard, Eric; Fargeot Lamy, Aleth; Farges, Jean Louis; Faucher, Patrick; Faucie, Alain; Faure, Yves; Favre, Jean Jacques; Felipe, Jean Louis; Feret, Daniel; Ferragu, Alain; Ferrandin, Gerard; Ferriot, Francois; Finelle, Laurent; Flond, Jacques; Foieri, Jean; Fol, Stephane; Fontaine, Brigitte; Forichon, Dominique; Foucry, Michel; Fournier, Jean Francois; Fregeac, Bernard; Fuchs, Martin; Gabriel, Franck; Gaimard, Didier; Gallois, Stephane; Garapon, Georges; Garas, Mamdouh; Garcia, Pierre; Garcia, Jean Michel; Garcia, Marie Pierre; Garman, Waddah; Garzuel, Dominique; Gaspard, Jean Marc; Gauci, Laurent; Gautheron, Patrick; Gauthier, Jacques; Gauthier Lafaye, Pierre Yves; Gay, Michel Charles; Gay Duc, Bernadette; Gayout, Olivier; Gegu, Yann; Gentile, Francois; Germain, Emmanuel; Gharbi, Gerard; Gigandet Tamarelle, Catherine; Gilardie, Alain; Gilles Verliat, Martine; Gillet, Thierry; Gnana, Philippe; Goguey, Alain; Gombert, Alain; Gonin, Bernard; Gonzales, Philippe; Goulesque, Xavier; Graba, Jean Marc; Granier, Alain; Greiner, Olivier; Groboz, Martial; Gromoff, Serge; Grossemy, Xavier; Grossi, Christian; Guenin, Frederic; Gueranger, Pierre; Guerin, Patrick; Guerineau, Jean Pierre; Guessous Zghal, Fathia; Guicheux, Dominique; Guillere, Jacqueline; Guyonnet, Gilles; Haddad, Samir; Hadj, Nordine; Hamani, Djamel; Hamm, Jacky; Hammoudi, Djamal; Harle, Xavier; Harnie Coussau, Pierre; Hazen, Richard; Hembert, Francois; Hemon, Pierre; Hergue, Michel; Hestin, Christian; Heyraud, Luc; Hindennach, Dieter; Hirot, Etienne; Ho Wang Yin, Chan Shing; Hocquelet Denis, Catherine; Hoppe, Patrice; Horovitz, Daniel; Hours, Jean Michel; Houta, Benjamin; Hua, Gerard; Hui Bon Hoa, Nicole; Humez, Philippe; Hurier, Michel; Husson, Gerald; Hyvernat, Guy; Ichard, Jean Francois; Impens, Claude; Iovescu, Decebal; Jacob, Philippe; Jacob, Gildas; Jacquemart, Jean Pierre; Jacquier, Philippe; Jahanshahi Honorat, Shideh; Jalladeau, Jean Francois; Jan, Luc; Jannel, Yves; Jarrige, Vincent; Jeremiasz, Richard; Annick Jestin Depond, Marie; Joseph, Michel; Joseph Henri Fargue, Helene; Joubrel, Alain; Jouet, Alain; Julien, Bruno; Jullien, Francois; Jullien, Jean Louis; Kadoche, David; Kahl, Etienne; Kanawati, Aiman; Khalife, Sami; Khettou, Christophe; Kiers, Jean Paul; Kissel, Christian; Klein, Jean Claude; Klopfenstein, Samuel; Koch, Alexis; Koenig, Georges; Kohler, Philippe; Koriche, Abdelmalek; Labernardiere, Nicole; Labet, Philippe; Lablanche, Fabien; Laborde Laulhe, Vincent; Lagorce, Xavier; Laine, Eric; Lalague, Pascal; Laleu, Jean Noel; Lambert, Michel; Lambert Ledain, Mireille Lambert; Lambertyn, Xavier; Lame, Jean Francois; Langlois, Frederic; Lanoix, Eric; Laprade, Michel; Lasseri, Charaf; Laterrade, Bernard; Laurent, Jean Claude; Laurier, Bernard; Laval, Laurent; Le Borgne, Patrick; Le Franc, Pierre; Le Henaff, Patrick; Le Noir de Carlan, Herve; Le Roy, Jean Pierre; Le Roy Hennion, Florence; Lebon, Louis; Lecler, Olivier; Leclerc, Philippe; Ledieu, Christian; Lefebvre, Bernard; Lefevre, Philippe; Lehujeur, Catherine; Leiber, Christian; Leick, Gerard; Lemberthe, Thierry; Lenevez, Norbert; Lenoble, Patrick; Leriche, Philippe; Leroux, Eric; Leroy, Jean Michel; Leroy, Christian; Lescaillez, Dominique; Leurele, Christian; Lhermann, Sophie; Libermann, Pierre; Licari, Gilbert; Lo Re, Antoine; Long, Philippe; Long, Jean Louis; Lormeau, Boris; Louchart, Jean Christophe; Lucas, Jean Pierre; Luquet, Thierry; Lussato, Philippe; Maarouf, Moustapha; Mabilais, Francois; Magnier Sinclair, Christine; Mahot Moreau, Pascale; Malafosse, Denis; Mandirac, Jean Paul; Manolis, Jerome; Mante, Jean Pierre; Maquaire, Claude; Marchal, Thierry; Marchand, Guillaume; Marillesse, Olivier; Marmier, Gabriel; Herve Maron, Yves; Marrachelli, Nadine; Marsaux, Michel; Martin, Bruno; Martin, Michel; Deiss, Pascale Martin; Masson, Arnaud; Mativa, Bruno; Matton, Jean Francois; Mauffrey, Jean; Mauriere, Serge; Maurois, Georges; Maury, Joceline; Mayer, Frederic; Menu, Pierre; Mercier, Bernard; Messmer, Daniel; Mestiri, Sami; Meyer, Gilles; Michaelides, Michael; Michaud, Gilles; Michenaud, Bernard; Mielot, Stephane; Millory Marco, Jerry Anne; Mingam, Stephane; Mira, Reginald; Mius, Stephane; Monnier Meteau, Marie Paule; Mora, Francis; Morbois Trabut, Louise; Morosi, Laurent; Mougeolle, Jean Luc; Mouget, Jean Louis; Mouroux, Daniel; Mouthon, Jean Marie; Muller, Jacques; Nakache, Ane; Narbonne, Herve; Navarranne Roumec, Anne; Navarro, Pierre; Neubrand, Jean Yves; Nguyen, Quang Thieu; Nguyen Quang, Guy; Nguyen Xuan, Thong; Niot, Patrice; Oudart, Jean Maurice; Outteryck, Alain; Pages, Jean Marie; Paillet, Charles; Pain, Jean Marie; Pangaud de Gouville, Patricia; Paquin, Olivier; Parent, Vincent; Parer Richard, Claire; Parrot, Francine; Parthenay, Pascal; Pascariello, Jean Claude; Passebon, Jean Claude; Pere, Alain; Perelstein, Laurent; Perot, Michel; Petit, Richard; Petit, Philippe; Petit, Francois; Petruzzi, Philippe; Phelipeau, Denis; Philippon, Jean Claude; Philippon, Gilles; Picard, Bruno; Picard, Jean Claude; Picot, Bernard; Piera, Jean Francois; Pieri, Alain; Piffoux, Eric; Pilard, Patrick; Pillet, Alain; Pinot, Philippe; Pinzani, Alain; Pleskof, Alain; Plessier, Jean Claude; Plisson, Alain; Pochon, Claude; Poggi, Valerie; Poirat, Alain; Poiree, Maurice; Polleux, Janick; Noel Pontecaille, Jean; Posocco, Regis; Pospiech, Jean Claude; Pradies, Felix; Prevot, Remi; Pueyo, Jean Bernard; Quaelli, Jacques; Rabbia, Michel; Rabemananjara, Aimery; Rami, Saad; Rapin, Jean Jacques; Rasquin, Corinne; Ratinaud, Didier; Reboud, Bruno; Reboul, Philippe; Reichman, Jean Jacques; Reinhardt, Patrick; Renard Houta, Catherine Renard; Reverdy, Olivier; Revol, Michel; Rey, Pierre Alain; Richardeau, Yves; Rives, Bernard; Robida, Christine; Rochez Fraiberg, Muriel; Rodet, Jean Pierre; Rolland, Jean Francois; Romand, Bruno; Romano, Jean Paul; Rosati Gretere, Chantal; Rosey, Alain; Rosset, Martial; Rossi, Jean Pierre; Rouquette, Georges; Rousseau, Michel; Rousselon, Xavier; Roy, Christophe; Royer, Denis; Ruetsch, Marcel; Saade, Maurice; Saby Kuchler, Nicolas; Samar, Guy; Sanchez, Pierre Yves; Sane, Alain; Sanz, Jean Paul; Sardon, Michel; Sarrazin, Marc Eric; Sasportes, Gilbert; Saudou, Francis; Sauze, Elisabeth; Savary, Pascal; Schenowitz, Alain; Schmartz, Pierre; Schoepfer, Marc Olivier; Seewagen, Jacques; Serramoune, Denis; Serre, Christian; Sicard Guroo, Helene; Sichãc, Jean Philippe; Sifaoui, Sylvain; Simoncello, Marc; Simonin, Marie Jeanne; Simonnet, Jean Francois; Spindler, Didier; Steier, Alain; Sultan, Charles Raphael; Taghipour, Kouroch; Talayrach, Bruno; Talbot, Francois; Talhouarn, Vanessa; Tallec, Yves; Tarasco Schenrey, Elisabeth; Tarrene, Michel; Tater, Dominique; Tessier, Bernard; Teste, Marie; Thierry, Dominique; Thiollier, Patrice; Thoreau, Frederic; Thual, Jean; Traen, Vincent; Trigano, Jacques Alexane; Troussier, Jean Bernard; Truong Ky Minh, Bernard; van Melckebeke, Gerard; Vaque, Philippe; Vaucelle, Celine; Vedel, Eric; Venu, Didier; Verdavoine, Patrick; Vergeron, Jean; Viallon, Philippe; Viault, Dominique; Vieules, Jean Max; Vigier, Jean Paul; Vilain, Jean Marie; Villard, Bruno; Vitoux, Jean Francois; Viviand, Paul; Vivien, Olivier; Walter, Patrice; Waquier, Patrick; Waszkiewicz, Jean Marc; Weidich, Stephane; Westerfeld, Raymond; Weynachter, Gerald; Wilhelm, Pierre; Wolff, Claude; Wursthorn, Marc; Zammattio, Didier; Zylinski, Bernard; Lauer, Peter; Kühn, Uwe; Weltzel, Wolfgang; Mohr, Hella; Weyland, Klaus; Spittel, Bärbel; Böhm, Günter; Ferdowsy, Said; Hanusch, Peter; Spiekermann, Josef; Albert, Edwin; Stuff, Karl; Jungmair, Wolfgang; Koller, Sabine; Schubert, Wilhelm; Schlehahn, Fred; Bormann, Gundula; Graf, Kristof; Stiehler, Gisela; Bock, Manfred; Müller, Angelika; Haufe, Michael; Nielsen, Lorenz; Raum, Doris; Rogler, Karin; Bürstner, Joachim; Völk, Hans-Jörg; Sachse, Michael; Escher, Torsten; Doumit, Adel; O'dey, Hildegard; Holzmann, Ulrike; Sauer, Hermann; Schellenberg, Gottfried; Carius, Jürgen; Dänschel, Wilfried; Kopf, Aneas; Zerr, Elena; Tatalovic, Ratko; Rupp, Heiun; Anders, Elfriede; Mende, Marion; Volk, Ulrich; Hagenow, Aneas; Lang, Thomas; Schmitz, Karl-Heinz; Gössling, Jan-Henik; Mutsch, Günther; Steidel, Joachim; Osten, Klaus; Giokoglu, Kiriakos; Bellisch, Sabine; Füll, Katja; Walther, Wolfgang; Flick, Sabine; Dünnebier, Rosemarie; Dharmawan, Ichsan; Schönmehl, Wolfgang; Hoss, Valentin; Kipping, Stephan; Wolf, Hans-Joachim; Wolf, Hans-Frieich; Willmann, Volker; Bugarski, Bruno; Hoffschröer, Josef; Von Wallfeld, Siegrun; Ruhland, Guun; Bulling, Daniel; Häusler, Maren; Haustein, Gabriele; Kallenbach, Cornelia; Schwemmler, Claudia; Frank, Antje; Lodder-Bender, Ulrike; Rawe, Klaus; Reinert, Hans-Ferdinand; Schönhof, Petra; Fahrenschon, Klaus; Schorcht, Elisabeth; Etzold, Erika; Brehm, Michael; Paust, Wolf-Dieter; Schulte-Kemna, Achim; Pötter, Klaus-Werner; Ott-Voigtländer, Ulrike; Schwenke, Reto; Thinesse-Mallwitz, Manuela; Siml, Steffi; Stern, Hirene; Roelen, Harald; Scherhag, Klaus-Peter; Matulla, Petra; Herrmann, Hans Joachim; Neumann, Gerhard; Barbuia, Marius; Vormann, Reinhold; Hitzler, Karl; Linum, Aneas; Hanke, Klaus; Hohberg, Hans-Joachim; Klingel, Roger; Hohnstädter, Rainer; Klasen, Hartmut; Aschermann, Peter; Grau, Wilfried; Killinger, Paul; Gross, Kathrin; Naus, Rainer; Todoroff, Karin; Zühlke, Wolfgang; Kellner, Hanns-Ulrich; Hager, Eva; Thieme, Jochen; Kornitzky, Michael; Rösch, Volker; Heinze, Elke; Hiederer, Wolfgang; Konz, Karl-Heinz; Köhler, Michael; Diekmann, Martin; Junghans, Edith; Dietermann, Friedgard; Kerp, Ekkehard; Schäfer-Lehnhausen, Silvia; Kruck, Irmtraut; Ettelt, Rolf; Hölscher, Aneas; Kittler, Sybil; Jung, Heiun; Mailänder, Albert; Nowara, Peter; Ritschl, Harald; Mödl, Bernhard; Gallwitz, Torsten; Meyer, Stephan; Peter, Anton; Peters, Otto; Pflaum, Petra; Fröhlich, Karl-Heinz; Mertens, Hans-Jürgen; Merlin-Sprünken, Verena; Erpenbach, Klaus; Fervers, Frank; Kuhl, Ulrike; Halsig, Friedemann; Rein, Wilfried; Hauser, Ernst-Richard; Laubenthal, Florin; Richard, Frank; Langer, Claus; Lange, Rainer; Eska, Jan; Mohanty, George; Lange, Isengard; Eltges, Nicole; Kuntz, Christoph; Mechery, Thomas; Vöckl, Josef; Viergutz, Christoph; Stähle-Klose, Claudia; Sohr, Katja; Böhler, Steffen; Brecke, Georg; Burls, Malcolm; Werner, Karl-Michael; Vorpahl, Ralf; Stahl-Weigert, Beate; Bunge, Gerd; Thomsen, Jutta; Blessing, Erwin; Bengel, Bengel; Buhlmann, Ulla; Tröger, Tröger; Sippel, Sippel; Vossschulte, Vossschulte; Wilms, Wilms; Appelt, Appelt; Dauterstedt, Dauterstedt; Witte, Witte; Böttger, Uta; Wyborski, Waltraud; Strache, Sabine; Böttger, Werner; Zeiner, Luise; Wuttke, Wanda; Stoidner- Amann, Annette; Stoermer, Brigitte; Bock, Stephan; Groos-März, Cornelia; Thamm, Maria-Elisabeth; Meier, Josef; Schneider, Martin; Niessen, Ulrich; Storm, Gernot-Rainer; Streitbürger, Elmar; Münkel, Thomas; Palfi, Mihai; Naumann, Ulrich; Tannhof, Gabriele; Streibhardt, Frank; Gebhardt, Wolfgang; Nieswandt, Gerhard; Gerke, Ulrich; Nöhring, Axel; Bott, Jochen; Goertz, Jutta; Winkler, Dietmar; Lotter, Edith; Kraaz, Katja; Bärwinkel, Petra; Hildebrandt, Diana; Weyers, Georg; Kubin-Siring, Birgit; Baier, Eduard; Weber, Thomas; Holz, Dirk-Egbert; Wolfers, Johannes; Kihm, Wolfgang; Kamali-Ernst, Schirin; Amann, Wolfgang; Kaase, Hans-Jürgen; Banning, Ottmar; Voigt, Thomas; Grünert, Frank; Gürtler, Michael; Pferdmenges, Karin; van Treek, Heiko; Möller, Bernd; Weigel, Sybille; Jun Hassler, Normann; Mauer, Helmuth; Beckers, Erwin; Weber, Clemens-August; Hawash, Hana; Ladke, Dietrich; Labitzky, Gerlinde; Kunkel, Petra; Hartung, Wolfgang; Pomykaj, Thomas; Prokop, Heiun; Schleif, Thomas; Cascino, Luisa; Exner, Petra; Daelman, Eric; Dietrich, Aneas; Prasse, Thomas; Brundisch, Stefanie; Schipper, Ralf; Duderstaedt, Bernd; de Haan, Fokko; Schmidt-Reinwald, Astrid; Seidel, Peter; Schmitz, Joachim; Bülent, Ergec; Ja Pique, Pyoong; Ding, Roland; Eggeling, Thomas; Duderstaedt, Elvira; Ferchland, Hans-Peter; Kruth, Renate; Gralla, Dieter; Köhler, Angelika; Laborge, Joachim Rene; Hammer, Harald; Richter, Ilona; Sauldie, Happy; Valk-Denkema, Inge Van Der; van der Valk, Leo; Feely, John; Dunne, Liam; Cox, John; Doyle, Michael; O'Gorman, Mary; Kennedy, John; Maher, Brian; Forde, Derek; Harrington, Peter; Cronin, Brian; Coady, Anew; Craig, John; O'Dowd, Caroline; O'Doherty, Brian; O'Connor, Patrick; Ling, Roland; Perry, Majella; Crowley, James; Keaveney, Lynda; Townley, Eadaoin; O'Shea, Eamonn; Regan, Michael; Cunningham, Seamus; Bluett, Desmond; Whyte, Oliver; Casey, Michael; Ruane, Fergal; Fitzgerald, Eleanor; O'Beirn, Eugene; Faller, Eamonn; Moffatt, Sean; Coleman, Michael; Day, Brendan; Mcadam, Brendan; O'Neill, Daragh; Mac Mahon, Conor; Wheeler, Mark; Byrne, Sheila; Fulcher, Kieran; CAREY, Owen; O'Connell, Kieran; Keane, Jack; Almarsomi, Laith; Vaughan, Carl; O'Callaghan, Tom; Grufferty, Tadgh; Shanahan, Eamon; Crowley, Brendan; Moran, Joe; Cotter, Jeremy; Healy, Colin; Curtin, Tom; Dillon, Joe; Dennehy, Thomas; Murphy, Elaine; Kennedy, Michael; Coffey, Donal; Carroll, Paul O.; Oliver, Barry; Mccarthy, Shane; Joyce, Peter; O'Shea, Gerard; Apperloo, A. J.; Basart, D. C. G.; Bax, M.; Beysens, P. A. J.; Breed, J. G. S.; Derks, A.; Eijgenraam, J. W.; Hermann, J. P. R.; Janus, C. L.; Kaasjager, H. A. H.; Klomps, H. C.; Koole, M. A. C.; Koster, T.; Kroon, C.; Lieverse, A. G.; Massaar-Hagen, B. E. M.; Moghaddam, F.; Oldenburg-Ligtenberg, P. C.; Potter van Loon, B. J.; Stroes, E. S. G.; Twickler, Th B.; van Asperdt, F. G. M. H.; van Asseldonk, J. P. M.; van der Loos, T. L. J. M.; van der Velde, R. Y.; van der Vring, J. A. F.; van Dorp, W. T.; van Essen, G. G.; van Kalmthout, P. M.; van Liebergen, R. A. M.; van Wissem, S.; Waanders, H.; Withagen, A. J. A. M.; Andersen, Per Vidar Klemet; Andersen, Randi F.; Andersson, Egil; Arnstad, Asle; Belguendouz, Larbi; Birkeland, Inge Arve; Bjørkum, Kari; Bredvold, Thor; Brevig, Leif Harald; Buchman, Erik; Burkeland-Matre, Rune; Burski, Krzysztoft; Byre, Roald; Bø, Per Erik; Dahl, Erik; Duch, Anna; Duong, Khoa; Dvergsdal, Peter; Edvardsen, Magne; Ernø, Asbjørn; Fredwall, Svein Otto; Glasø, Morten; Glasø, Jan; Grini, Asbjørn; Hallaråker, Arne; Normann Hansen, Age Normann; Haugland, Helge Haugland; Henrichsen, Svein Høegh; Hestnes, Atle; Idehen, Norman I. E.; Jacobsen, Kristin Løland; Johansen, Ture; Johnsen, Roald; Jonasmo, Kåre; Kirknes, Svetalana; Kjetså, Arild; Kjaer, Peter; Knoph, Erik; Knutssøn, Carl; Koss, Arne; Kravtchenko, Oleg; Krogsæter, Dagfinn; Langaker, Kåre; Lind, Knut W.; Lund, Kjell Rømyhr; Madsbu, Sverre; Mehlum, Yvonne E. Mazurek; Moon, Philipp; Movafagh, Aram; Myhrer, Kurt; Nørager, Dan Michael; Ore, Stephan; Rafat, Hooshang B.; Rød, Reinert; Schmidt-Melbye, Torgeir; Singh, Navneet; Singsås, Tore; Skjelvan, Gunnar; Smet, Arthur; Staalesen, Staale; Storeheier, Espen; Storhaug, Sidsel; Storm-Larsen, Ane; Sundby, Jon Eivind; Syverstad, Dag Eivind; Sørensen, Anne Sissel; Torjusen, Trygve B.; Torkelsen, Arne; Tunby, Jan Reidar; Vanberg, Pål Johan; Vevatne, Audun; Vikse, Arild; Wahlstrøm, Viktor; Walaas, Kirsten; Walløe, Arne Eyolf; Wear-Hansen, Hans-Gunnar; Ole Ystgaard, Ole Aneas; Zimmermann, Birgit; Øvsthus, Knut; Aião, Julio; Albuquerque, Mario; Alves, Fernando; Esteves, Antonio; Amaral, Maria Fatima; Amaral, Fátima; Amorim, Helena; Anade, Benilde; Anade, Maria Benilde; Antonio, Godinho; Araujo, Francisco; Arriaga, Antonio; Baeta, Sonia; Afonso, Francisca Banha; Beato, Vitor; Beirão, Paula; Martins, Ausenda Belo; Bernardes, Jose; Botas, Luis; Baeta, Antonio; Ramos, Manuel Braga; Brandão, Peo; Brandão, Antonio G.; Brandão, Antonio; Raposo, Antonio Caetano; Carrilho, Francisco; Carvalho, Isabel; Carvalho, Patricia; Castel-Branco, Ana; Castellano, Maria Desamparados; Corredoura, Ana; Corredoura, Ana Sofia; Costa, Vitor; Coutinho, João; Crujo, Francisco; Cunha, Damião; Dias, Manuela; Fernandes, Maria Emilia; Ferreira, Gustavo; Ferreira, Dirce; Ferreira, Jorge; Ferreira, Antonio M.; Fonseca, Antonio; Freitas, Paula; Gago, Amandio; Galego, Rosa; Garrett, Antonio Viriato; Gavina, Cristina; Simões, José Geraldes; Gomes, Maria Fatima; Gomes, Norberto; Gomez, Brigitte; Graça, Peo; Gravato, Antonio; Guedes, Nuno Filipe; Guerra, Fernanda; Issa, Custódio; João, Isabel Fernandes; João, Isabel; Jorge, Vasco; Leite, Maria Salome; Lousada, Nuno; Macedo, Filipe M.; Madeira Lopes, João; Magalhães, Jorge; Marinho, Jose Carlos; Marques, Carlos; Marques, Jose Augusto; Marques Ferreira, Antonio; Martins, Jose Carlos; Martins, J. Belo; Matos, Alice; Melo, Miguel; Miguel, Antonia; Monteiro, Filomena; Monteiro, Francisco; Monteiro, Filomena B.; Sarmento, João Morais; Morato Sá, Maria José; Mota, Joana; Moura, Luis; Moura, Brenda; Neves, Lena; Neves, Celestino; Oliveira, Maria; Oliveira Ramos, Manuel; Osorio, Ramos; Pacheco, Joao; Palma, Isabel; Peixoto, Maria Cristina; Pereira, Helder; Pestana, João; Pignatelli, Duarte; Pinho, Hernani; Puig, Jorge; Raindo, Maria; Ramos, Helena; Rebelo, Marta; Roigues, Antonio; Roigues, Alvaro; Roigues, Elisabete; Rola, José; Rovytchcva, Milena; Sa, João; Santos, Fernando; Santos, João Cesar; Sequeira Duarte, Joao; Serra E Silva, Polybio; Silva, Bernardino; Silva, Paula; Silva, Maria; Silva, Francisco; Silva, Dora; Silva, José; Silvestre, Isabel; Simões, Heleno; Soares, Manuela; Sousa, Nelson; Sousa, Antonio; Souto, Delfina; Teixeira, Esmeralda; Torres, Isabel; Valle, Tahydi; Ventura, Carlos; Vicente, Ana; Vieira, Muriel; Alfaro, Rafael; Alonso, Roigo; Alvarez, Juan Carlos; Allut, Germán; Amado, Jose A.; Ampuero, Javier; Angel, Luis Fernando; Antolín, Eduardo; Anton, Javier; Aranda, Jose Luis; Argimon, Jordi; Arques, Francesc; Arribas, Jose Peo; Arroya, Concepción; Arroyo, Jose Antonio; Auladell, Maria Antonia; Bajo, Julian; BALVIN, Alberto; Ballester, Jose Vicente; Barreda Glez, Maria Jesus; Becerra, Antonio; Bermejo, Juan Carlos; Bernacer, Luis; Besada, Ricardo; Blasco, Jesús; Bravo, Manuel; Bueno, Francisco Manuel; Campo, Ignacio; Carrasco, Jose Luis; Catalán, José Ignacio; Cobo, Jose; Coello, Ignacio; Combarro, Jesús; Contreras, Juan A.; Correa, Julian; Cortilla, Alberto; Cuatrecasas, Guillem; Chicharro, Sana; de Dios, Juan; de Los Arcos, Enrique; de Portugal, Jose; del Cañizo, Francisco; del Molino, Fatima; Díaz, Jose Luis; Domingo, Javier; Escobar, Carlos; Escoda, Jaume; Espinosa, Eugenio; Ester, Francisco; Fernandez, Antonio; Ferreiro, Manuel; Fondas, Jose Maria; Fraile, Angel Luis; Franco, Miguel; Fuentes, Francisco; Garcia, Jose Antonio; Garcia, Domingo; Garcia, Manuel Enrique; García, Luis; Garcia, Jesus; Gilabert, Rosa; Goiria, Begoña; Gomez, Purificación; Gomez-Calcerrada, David; Gonzalez, Manuel; Gonzalez, Jose Manuel; Guijarro, Carlos; Guirao Gujarro, Victor; Herrera, Carlos; Herrera, Maria Carmen; Herrero, Miguel; Ibarguren, Amaya; Irigoyen, Luis; Jimenez, Blas; Lamelas, Jose Antonio; Laplaza, Ismael; Laporta, Felix; Lazo, Victor; Leal, Mariano; Ledesma, Vicente; Lopez, Peo; Lopez, Pablo; Lopez, Alberto; López, Maria Jose; Lopez-Cepero, Eduardo; Lorenzo, Francisco; Lucena, Javier; Luquín, Rafael; Lloveras, Ariadna; Maceda, Teresa; Macia, Ramon; Marti, Cristina; Martin, Jose Maria; Martin, Isodoro; Martín Lesende, Iñaki; Martinez, Mercedes; Martinez, Juan Alberto; Martinez, Peo; Martinez, Angel; Mato, Fernando; Medel, Federico; Mederos, Ana Maria; Mediavilla, Javier; Mediavilla, Gregorio; Mestron, Antonio; Michans, Antonio; Millán, Jesús; Molina, Carlos; Monroy, Carmelo; Monte, Inés; Montes, Jose Maria; Morales, Clotilde; Morales, Francisco J.; Morata, Carmen; Mori, Carlos; Muñoz, Jaime; Muñoz, Maria Jose; Núnez, Julio; Nuñez, Alfonso; Ocaña, Fermin; Olaz, Fernando; Ollero Artigas, Anes; Ortega, Juan; Oteo, Olga; Pascual, Jose Maria; Paya, Jose Antonio; Pechuan, Joaquín; Penedo Suarez, Ramón; Perez, Eugenia; Pesquera, Carlos; Pia, Gonzalo; Piea, Maria; Pinilla, Martin; Pita, Alejano; Pose, Antonio; Prieto Díaz, Miguel Angel; Quesada, Carmen; Ramirez, Francisco; Ramirez, Carmen; Ramirez, Luisa; Reinares, Leonardo; Rey, Salvador; Ribas, Montse; Ridaura, Amparo; Ridocci, Francisco; Rigueiro, Peo; Rivera, Salomón; Robles, Antonio; Rodero, Estrella; Roiguez, Jose Angel; Romero, Fernando; Romero Hernandez, Franklin; Romeu, Regina; Rubio Buisán, Lorenzo; Salas, Fernando; Sánchez, Carlos; Sánchez, Jesus; Saponi, Jose Maria; Serres, Miguel; Suarez, Saturnino; Suarez, Carmen; Tato, Maria; Tebar, Francisco Javier; Toda, Maria Roca; Tofe, Santiago; Urdiain, Raquel; Vaamonde, Leopoldo; Valderrama, Javier; Vazquez, Jose Antonio; Velazquez, Osvaldo; Venell, Federico; Vilariño, Ruben; Villa, Maria Jesus; Villar, Maria Dolores; Zarauza, Jesus; Zuñiga, Manuel; Abab, Jose Luis; Abad, Eduardo; Abad, Rafael; Afonso, Carmen; Aguilar, Gerardo; Alberiche, Maria Del Pino; Alcolea, Rosa; Alegria, Eduardo; Almagro, Fátima; Almenara, Africa; Almenos, Maria Cruz; Alonso, Javier; Alvarez, Manuel; Ampudia, Javier; Andia, Victor Manuel; Anglada, Jordi; Aranda, Miguel Ángel; Arbelo, Lorenzo; Armengol, Francesc; Arnau, Asunción; Arrarte, Vicente; Arribas, Bienvenido; Artiñano, Yolanda; Avilés, Benjamín; Ayensa, Javier; Ballestar, Enric; Ballester, Javier; Barcelo, Bartolome; Barcena, Felix; Barranco, Mercedes; Barrena, Isabel; Barriales, Vicente; Barrot, Joan; Bartolome, Jose A.; Belmonte, Joan; Bellés, Amadeo; Benito, Josefina; Bernad, Antonio; Biendicho, Armando; Blanco, Rubén; Boix, Evangelina; Bonora, Carlos; Boxó, Jose Ramon; Brea, Angel; Caballero, Peo; Cabrera, Peo; Cabrero, Juan Jose; Calduch, Lourdes; Calero, Francisco; Calvo Garcia, Jose Javier; Camacho, Jose; Canales, Juan Jose; Caparros, Jorge; Carbonell, Francisco; Caro, Manuel; Castilla, Miguel Angel; Castillo, Luis; Cepero, Daniel; Cerdan, Miguel; Cimbora, Antonio; Civera, Miguel; Colchero, Justo; Comas Fuentes, Angel; Corpas, Clara; Corrales, Juan Antonio; Cotobal, Eusebio; Cruz, Carmen; Cruz, Inmaculada; de La Flor, Manuel D.; de Luis, Alberto; del Alamo, Alberto; del Rosario, Victor; Diego, Carlos; D'Lacoste, Marta; Doganis Peppas, Constantino; Dominguez, Jose Ramon; Durá, Francisco Javier; Durand, Jose L.; Ena, Javier; Encinas, Ana Rosa; Erdozain, Juan Peo; Escribano, Jose; Escriva, Blanca; Esteve, Eduardo; Facila, Lorenzo; Fenoll, Federico; Fernandez, Eugenio; Fernandez, Celia; Fernandez, Maria Jesus; Fernandez, Antonia; Fernandez, Jacinto; Fernandez, Severo; Fernandez, Jose Manuel; Fernandez, Jose Manuel Fernandez; Ferrer, Juan Carlos; Ferrer, Peo; Ferrer Bascuñana, Peo; Fierro, Maria Jose; Flores, Julio; Fuentes, Fernando; Fuertes, Jorge; Galgo, Alberto; Galvez, Angel; Gallego, Anea; Garcia, Maria Angeles; Garcia, Jose; Garcia, Maria Luisa; Garcia, Peo; Garcia, Javier; García, Francisco; Garrido, Nícolas Garrido; Gil, Manuel Gil; Ginés Gascón, Ramón; Godoy, Diego; Gomez, Carlos Manuel; Gonzalez, Miguel; Gonzalez, Rosa; Gonzalez, Rocío; Gonzalez, Enrique; Gonzalez, Juan Jose; Gonzalez, Joaquin; Gonzalez Huambos, Adan; Guerrero, Jordi; Guillen, Rosario; Guirao, Lorenzo; Gutierrez, Fernando; Gutierrez, Diego; Hernandez, Alberto; Hernandez, Antonio; Hernandis, Vicenta; Herrero, Jose Vicente; Herreros, Benjamin; Hevia Roiguez, Eduardo; Horgue, Antonio; Illan, Fatima; Inigo, Pilar; Ibrahim Jaber, Ali; Jimenez, Manuel; Jornet, Agusti; Juanola, Ester; Laguna, Alfonso; Latorre, Juan; Lebron, Jose Antonio; Lecube, Albert; Ledesma, Claudio; Ligorria, Cristina; Lima, Joan; López, Jose Enrique; Lopez, Manuel; López, José Antonio; López, Jaime; López, Isio; Lozano, Jose Vicente; Mangas, Miguel Angel; Mangas, Alipio; Manzano, Antonio; Maraver, Juan; Marco, Maria Dolores; Marchán, Enrique; Marchante, Francisco; Marin, Fernando; Marreo, Josefa Esther; Martin, Manuel; Martin, Alberto; Martin, Francisco Javier; Martinez, Antonio; Martinez, Guillermo; Martínez, Luis; Martinez Barselo, Antonio Pablo; Mas, Emili; Mascareño, Isabel; Mascarós, Enrique; Massa, Rita; Mazón, Pilar; Mediavilla, Juan Diego; Mena, Candido; Mendez, Jose; Mendez, Jose Maria; Mezquita Raya, Peo; Millan, Jose Maria; Millaruelo, Jose; Minguela, Ester; Miret, Pere; Molina, Mariano; Molina, Carmen; Montagud, Blanca; Montalban, Coral; Montiel, Angel; Montoro, Javier; Monze, Bernardo; Moreno, Francisco Luis; Morillas, Antonio; Moro, Jose Antonio; Moya, Ana; Muñiz, Ovidio; Muñoz, Manuel; Navarro, Vicente Luis; Nerin, Jesus; Nicolas, Ricardo; Nogueiras, Concepción; Ojeda, Benito; Olmerilla, Javier; Oller, Guillermo; Ortega, Antonio; Ortega, Manuel; Ortega, Miguel; Ortiz, Maria Jose; Otegui Alarduya, Luis; Palet, Jordi; Palomo, Jesus; Paytubí, Carlos; Peiro, Rafael; Pelaez, Carmen; Peña, Peo; Peñafiel, Javier; Perez, Antonia; Perez, Elvira; Perez, Tomas; Peso, Miguel; Pilar, Juan Manuel; Piñeiro, Carlos; Plaza, Jose Antonio; Polo, Noelia; Portal, Maria; Prieto, Jesus; Prieto, Luis; Prieto Novo, Manuel; Puñal, Peo; Quesada, Miguel; Quindimil, Jose Antonio; Rabade, Jose Manuel; Ramila Beraza, Luis Antonio; Ramirez, José Manuel; Ramos, Jose Antonio; Ramos, Francisco; Rayo, Manuel; Reixa Vizoso, Sol; Reyes, Antonio; Rico, Miguel Angel; Ripoll, Tomas; Rivera, Antonio; Robres, Mariano; Rodilla, Enrique; Roiguez, Miguel Angel; Roiguez, Zoilo Jesus; Roiguez, Carlos; Roiguez, Pilar; Roiguez, Melchor; Roiguez, Alfonso; Rojas, Domingo; Rosell, Luis; Rossignoli, Carlos; Rueda, Antonio; Rueda, Eloy; Ruix, Anes; Ruiz, Jose Antonio; Ruiz, Luis; Saban, Jose; Saez, Francisco Jose; Salleras, Narcis; Sánchez, Gerardo; Sanchez, Gloria; Sanchez, Angel; Sanfeliu, Josep Maria; Sangros Gonzalez, Javier; Santos, Francisco; Santus, Eufrosina; Sebastian, Alfredo; Seguro, Maria Eugenia; Selles, David; Serrano, Daniel; Serrano, Soledad; Serrano, Adalberto; Sestorain, Francisco; Solbes, Ruben; Soriano, Cristina; Suárez, Héctor; Surroca, Maria Luisa; Tarabini, Ada; Tarraga, Peo; Teixido, Eulalia; Terron, Raquel; Torres, Antonio; Tortosa, Jose Maria; Tortosa, Frederic; Valdés, Carmen; Valdés, Peo; Valiente, Jose Ignacio; Varo, Antonio; Vazquez, Enrique; Vázquez, Luis; Vela Ruiz de Morales, Jose Manuel; Vericat, Antonio; Vicioso, Peo; Vilaplana, Carlos; Villazón, Francisco; Lidia Viñas, Lidia Viñas; Zuagoitia, Jose Felix; Nörgaard, Faris; Dziamski, Ryszard; Haglund, Lars; Holm, Daniela; Sars, Mikael; Jagunic, Ivica; Östgård, Per; Kumlin, Lars; Jacobsson, Michael; Hamad, Yousef; Jäger, Wanje; Särhammar, Lars; Olsson, Anders; Boldt-Christmas, Antonina; Nyborg, Karin; Kjellström, Thomas; Ghazal, Faris; Wikström, Lene; Holby, Torulf; Bhiladvala, Pallonji; Kynde, Sara Maria; Eizyk, Enrique Julio; Tengblad, Anders; Christoffersson, Ole; Sjöström, Astrid; Kynde, Christian; Katzman, Per; Tenhunen, Anita; Lennermo, Klas; Lindholm, Carl-Johan; Löndahl, Magnus; Elfstrand, Aino; Grönlund-Brown, Inger; Ziedén, Bo; Minnhagen, Karin; Lindvall, Peter; Fant, Kristina; Kaczynski, Jacek; Wallmark, Anders; Wallén, Carl-Erik; Wallberg, Håkan; Grönquist, Lennart; Hansen, John Albert; Björkander, Inge; Timberg, Ingar; Rosenqvist, Ulf; Fries, Robert; Carlsson, Jan-Erik; Rautio, Aslak Tauno; Sjöberg, Lennart; Wirdby, Alexander; Höök, Peter; Larsson, Åsa; Bergström, Catharina Lysell; Jwayed, Addnan; Smolowicz, Adam; Lindman, Anne-Christine; Nilsson, Per; Tarrach, Gerrit; Carlsson, Ingolf; Wieloch, Mattias; Rindevall, Peter; Strömblad, Gunnar; Holmberg, Göran; Shahnazarian, Henrik; Melchior, Jan; Younan, Kamal; Hansson, Anders; Bjurklint, Dag; Borgencrantz, Bertil; Sjöström, Malin; Mullaart, Mikael; Munoz, Marjatta; Jakkola, Vallentina; Romot, Jaan; Dash, Rabinarayan; Magnusson, Jan-Olof; Ahmed, Saman; Jonsson, Christina; Pipkorn, Owe; Bray, Edward; Wolff, Aneas; Black, Iain; Head, Christopher; Allan, Anthony

    2011-01-01

    To assess the prevalence of persistent lipid abnormalities in statin-treated patients with diabetes with and without the metabolic syndrome. This was a cross-sectional study of 22,063 statin-treated outpatients consecutively recruited by clinicians in Canada and 11 European countries. Patient

  18. Probing the internal structure of the asteriod Didymoon with a passive seismic investigation

    Science.gov (United States)

    Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.

    2017-09-01

    Understanding the internal structure of an asteroid has important implications for interpreting its evolutionary history, for understanding its continuing geological evolution, and also for asteroid deflection and in-situ space resource utilisation. Given the strong evidence that asteroids are seismically active, an in-situ passive seismic experiment could provide information about the asteroid surface and interior properties. Here, we discuss the natural seismic activity that may be present on Didymoon, the secondary component of asteroid (65803) Didymos. Our analysis of the tidal stresses in Didymoon shows that tidal quakes are likely to occur if the secondary has an eccentric orbit. Failure occurs most easily at the asteroid poles and close to the surface for both homogeneous and layered internal structures. Simulations of seismic wave propagation in Didymoon show that the seismic moment of even small meteoroid impacts can generate clearly observable body and surface waves if the asteroid's internal structure is homogeneous. The presence of a regolith layer over a consolidated core can result in the seismic energy becoming trapped in the regolith due to the strong impedance contrast at the regolith-core boundary. The inclusion of macro-porosity (voids) further complexifies the wavefield due to increased scattering. The most prominent seismic waves are always found to be those traveling along the surface of the asteroid and those focusing in the antipodal point of the seismic source. We find also that the waveforms and ground acceleration spectra allow discrimination between the different internal structure models. Although the science return of a passive seismic experiment would be enhanced by having multiple seismic stations, one single seismic station can already vastly improve our knowledge about the seismic environment and sub-surface structure of an asteroid. We describe several seismic measurement techniques that could be applied in order to study the

  19. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  20. Examining the Dynamic Structure of Daily Internalizing and Externalizing Behavior at Multiple Levels of Analysis

    Directory of Open Access Journals (Sweden)

    Aidan G.C. Wright

    2015-12-01

    Full Text Available Psychiatric diagnostic covariation suggests that the underlying structure of psychopathology is not one of circumscribed disorders. Quantitative modeling of individual differences in diagnostic patterns has uncovered several broad domains of mental disorder liability, of which the Internalizing and Externalizing spectra have garnered the greatest support. These dimensions have generally been estimated from lifetime or past-year comorbidity patters, which are distal from the covariation of symptoms and maladaptive behavior that ebb and flow in daily life. In this study, structural models are applied to daily diary data (Median = 94 days of maladaptive behaviors collected from a sample (N = 101 of individuals diagnosed with personality disorders. Using multilevel and unified structural equation modeling, between-person, within-person, and person-specific structures were estimated from 16 behaviors that are encompassed by the Internalizing and Externalizing spectra. At the between-person level (i.e., individual differences in average endorsement across days we found support for a two-factor Internalizing-Externalizing model, which exhibits significant associations with corresponding diagnostic spectra. At the within-person level (i.e., dynamic covariation among daily behavior pooled across individuals we found support for a more differentiated, four-factor, Negative Affect-Detachment-Hostility-Impulsivity structure. Finally, we demonstrate that the person-specific structures of associations between these four domains are highly idiosyncratic.

  1. The Structural Basis for Lipid and Endotoxin Binding in RP105-MD-1, and Consequences for Regulation of Host Lipopolysaccharide Sensitivity.

    Science.gov (United States)

    Ortiz-Suarez, Maite L; Bond, Peter J

    2016-01-05

    MD-1 is a member of the MD-2-related lipid-recognition (ML) family, and associates with RP105, a cell-surface protein that resembles Toll-like receptor 4 (TLR4). The RP105⋅MD-1 complex has been proposed to play a role in fine-tuning the innate immune response to endotoxin such as bacterial lipopolysaccharide (LPS) via TLR4⋅MD-2, but controversy surrounds its mechanism. We have used atomically detailed simulations to reveal the structural basis for ligand binding and consequent functional dynamics of MD-1 and the RP105 complex. We rationalize reports of endogenous phospholipid binding, by showing that they prevent collapse of the malleable MD-1 fold, before refining crystallographic models and uncovering likely binding modes for LPS analogs. Subsequent binding affinity calculations reveal that endotoxin specificity arises from the entropic cost of expanding the MD-1 cavity to accommodate bulky lipid tails, and support the role of MD-1 as a "sink" that sequesters endotoxin from TLR4 and stabilizes RP105/TLR4 interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  3. Detailed Study of the Internal Structure of a Red-giant Star Observed with Kepler

    DEFF Research Database (Denmark)

    Di Mauro, M. P.; Ventura, R.; Cardini, D.

    2012-01-01

    We study the internal structure and evolutionary state of KIC 4351319, a red-giant star observed with the Kepler satellite. The use of 25 individual oscillation frequencies, together with the accurate atmospheric data provided by ground-based spectroscopic observations, allowed us to estimate the...

  4. Modelling loading and break-up of RC structure due to internal explosion of fragmenting shells

    NARCIS (Netherlands)

    Weerheijm, J.; Stolz, A.; Riedel, W.; Mediavilla Varas, J.

    2012-01-01

    The Klotz Group (KG), an international group of experts on explosion safety, investigates the debris throw hazard associated with the accidental detonation of ammunition in reinforced concrete (RC-) structures. Experiments are combined with engineering models but also with results of advanced

  5. THE SLACS SURVEY. VIII. THE RELATION BETWEEN ENVIRONMENT AND INTERNAL STRUCTURE OF EARLY-TYPE GALAXIES

    NARCIS (Netherlands)

    Treu, Tommaso; Gavazzi, Raphael; Gorecki, Alexia; Marshall, Philip J.; Koopmans, Leon V. E.; Bolton, Adam S.; Moustakas, Leonidas A.; Burles, Scott

    2009-01-01

    We study the relation between the internal structure of early-type galaxies and their environment using 70 strong gravitational lenses from the SLACS Survey. The Sloan Digital Sky Survey (SDSS) database is used to determine two measures of overdensity of galaxies around each lens-the projected

  6. The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS

    Science.gov (United States)

    Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.

    2010-01-01

    This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…

  7. Generalized internal long wave equations: construction, hamiltonian structure and conservation laws

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1982-01-01

    Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu

  8. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    Science.gov (United States)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  9. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DEFF Research Database (Denmark)

    Iida, Daisuke; Fadil, Ahmed; Chen, Yuntian

    2015-01-01

    We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhance......We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density...

  10. Correlations of External Landmarks With Internal Structures of the Temporal Bone.

    Science.gov (United States)

    Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen

    2015-09-01

    The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.

  11. Preface: 2nd International Conference on Structural Nano Composites (NANOSTRUC2014)

    International Nuclear Information System (INIS)

    Njuguna, J; Verdejo, R

    2014-01-01

    The NANOSTRUC 2014 took place at CSIC, Madrid, Spain. The conference theme on 'Nanosciences and Nanotechnologies – Recent Advances towards Nanoproducts and Applications'. The conference aimed to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NANOSTRUC conferences brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas

  12. Virtual Field and Internal Structure of Half-Dressed Extended Particles

    International Nuclear Information System (INIS)

    Compagno, G.; Persico, F.

    1988-01-01

    A new method is proposed to investigate the internal geometrical structure of an extended particle surrounded by an incomplete virtual dressing field. This method involves analysing the time-dependent virtual field at large distances from the particle, without any direct interaction with the latter. As an example, the pulselike, time-dependent virtual field of an extended QED source is investigated using a model which has a well-known counterpart in meson theory. In the framework of nonrelativistic QED it is shown that, contrary to the case of a point source, the pulse has finite width and height. For the case of a spherically symmetric source, it is explicitly shown that the width and shape of the pulse at distance r from the particle depend on the parameters determining the space structure of the source. It is concluded that the study of the field of half-dressed particles may provide a new method to investigate their internal structure

  13. Internal structures of self-organized relaxed states and self-similar decay phase

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi

    1992-03-01

    A thought analysis on relaxation due to nonlinear processes is presented to lead to a set of general thoughts applicable to general nonlinear dynamical systems for finding out internal structures of the self-organized relaxed state without using 'invariant'. Three applications of the set of general thoughts to energy relaxations in resistive MHD plasmas, incompressible viscous fluids, and incompressible viscous MHD fluids are shown to lead to the internal structures of the self-organized relaxed states. It is shown that all of the relaxed states in these three dynamical systems are followed by self-similar decay phase without significant change of the spatial structure. The well known relaxed state of ∇ x B = ±λ B is shown to be derived generally in the low β plasma limit. (author)

  14. THE STRUCTURE OF THE LIPID PHASE OF THE ERYTHROCYTE MEMBRANE IN PATIENTS WITH EXPRESSED HEMOLYSIS AFTER SURGERY WITH CARDIOPULMONARY BYPASS

    Directory of Open Access Journals (Sweden)

    O. A. Khokhlov

    2013-01-01

    Full Text Available The composition of lipid phase of red-cell membrane in patients with ischemic heart disease (IHD with pronounced postperfusion hemolysis (18 patients before coronary artery bypass surgery and 1 hour after the completion of cardia bypass (CB has been studied. It is shown that patients with IHD with pronounced hemolysis are characterized by the normal ratio of phospholipids (PL fractions in red-cell membrane before surgery, which is connected with eth high content of young forms of red cells in blood at this stage. After surgery, the fraction of lysophosphatidylcholine and phosphatidic acid in red-cell membrane increases against the background of decrease of phosphatidylinositol  and phosphatidylcholine, which likely reflects the simultaneous activation of phospholipases of three classes (A, C, and D in red cells during CB. Regardless of the phase of the study, the total content of PL in red-cell membrane of IHD patients with pronounced hemolysis is decrease at the high level of cholesterol (CS and the CS/Pl ratio.

  15. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.

    Science.gov (United States)

    Cukras, Catherine A; Jeliazkova, Iana; Nichols, Colin G

    2002-06-01

    All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.

  16. Proton and carbon-13 nuclear magnetic resonance studies of the effects of retinal on the dynamic structure and stability of lipid bilayer

    International Nuclear Information System (INIS)

    Inoue, Yoshio; Hanafusa, Yoshito; Toda, Masakazu; Chujo, Riichiro

    1982-01-01

    The effects of retinal and vitamin A on the dynamic structure and stability of hen egg yolk lecithin bilayers have been studied by means of carbon-13 and proton NMR spectroscopies. 13 C spin-lattice relaxation and paramagnetic ion permeability studies on lecithin bilayers indicate a marked decrease in flexibility of the lipid acyl chain and a breakdown of membrane impermeableness to ion by the intercalated all-trans- and 11-cis-retinal, whereas the effect of incorporated vitamin A on the fluidity of bilayers is small and its impermeableness to ion remains effective even in the presence of higher concentration of vitamin A. The experimental results are discussed in connection with the mechanism of the permeability change in photoreceptive disk membrane. (author)

  17. Micropipet manipulation of lipid membranes: Direct measurement of the material properties of a cohesive structure that is only two molecules thick

    Science.gov (United States)

    Needham, David

    1993-01-01

    The objectives are to demonstrate how we can make direct measurements of the mechanical properties of a special structure in biology, namely the lipid bilayer membrane, using a micromanipulation technique, and how these properties compare and contrast with 'more traditional' technological/engineering materials. Given that the investment in equipment and expertise to carry out these experiments is probably beyond the scope of most teaching labs, the described experiment is not intended as one that can actually be demonstrated in a student laboratory class. The intention behind presenting this work is to begin to raise awareness in the Material Science community about the material properties of biological material that form a new (to us) category of soft engineering materials that have dimensions on the nanoscale.

  18. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  19. Lipids in the cell: organisation regulates function.

    Science.gov (United States)

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  20. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    Science.gov (United States)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.