WorldWideScience

Sample records for internal heat load

  1. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  2. Performance of cable-in-conduit conductors in ITER [International Thermonuclear Experimental Reactor] toroidal field coils with varying heat loads

    International Nuclear Information System (INIS)

    Kerns, J.A.; Wong, R.L.

    1989-01-01

    The toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) will operate with varying heat loads generated by ac losses and nuclear heating. The total heat load is estimated to be 2 kW per TF coil under normal operation and can be higher for different operating scenarios. Ac losses are caused by ramping the poloidal field (PF) for plasma initiation, burn, and shutdown; nuclear heating results from neutrons that penetrate into the coil past the shield. Present methods to reduce or eliminate these losses lead to larger and more expensive machines, which are unacceptable with today's budget constraints. A suitable solution is to design superconductors that operate with high heat loads. The cable-in-conduit conductor (CICC) can operate with high heat loads. One CICC design is analyzed for its thermal performance using two computer codes developed at LLNL. One code calculates the steady state flow conditions along the flow path, while the other calculates the transient conditions in the flow. We have used these codes to analyze the superconductor performance during the burn phase of the ITER plasma. The results of these analyses give insight to the choice of flow rate on superconductor performance. 4 refs., 5 figs

  3. Thermoregulatory responses to acute heat loads in rats following spontaneous running.

    Science.gov (United States)

    Sugimoto, N; Shido, O; Sakurada, S; Nagasaka, T

    1999-02-01

    Earlier studies showed that spontaneous exercise training in rodents shifted their core temperature and thermoeffector thresholds to high levels. The present study investigated heat loss and heat production responses to acute heat loads of exercise-trained rats. The exercise-trained rats were allowed to run in a running wheel freely for 6 months, while the sedentary controls were denied access to the wheel during the same period. Then, they were loosely restrained and put in a direct calorimeter. After thermal equilibrium had been attained, they were warmed for 30 min with an intraperitoneal electric heater (internal heating). At least 2 h later, the rats were externally warmed for 90 min by raising the ambient temperature from 24 to 38C (external warming). Hypothalamic temperature (Thy), evaporative and nonevaporative heat loss (R+C+K) and heat production were measured. Internal and external heating significantly increased Thy. During internal heating, the magnitude of the increase in Thy was significantly smaller and the amount of increase in (R+C+K) was significantly greater in the exercise-trained rats than in the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was significantly steeper than that in the controls. During external warming, the magnitude of increase in Thy of the exercise-trained rats was significantly greater than that of the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was not different from that in the controls. Changes in evaporative heat loss and heat production during the two types of heat load did not differ between the two groups. The results suggest that, in rats, exercise training with voluntary running improves heat tolerance through enhancing nonevaporative heat loss response. However, this may be the case only when the rats are subjected to a direct internal heat load.

  4. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  5. Scheduling of radio-controlled heating load

    International Nuclear Information System (INIS)

    Fox, B.; McCartney, A.I.; McCann, B.M.

    1998-01-01

    An economic loading program has been adapted to enable it to obtain an optimum heat-load profile to meet the forecast heat requirement. The heat load is represented by a 'generator' whose load is constrained to be negative. The incremental cost of this unit is a heat energy price. This is adjusted to obtain a heat profile containing the requisite energy. The profile is then used by a dynamic programming algorithm to derive a commitment pattern for each block. A case study is presented which shows that the procedure can minimise heat energy cost. It is also shown that use of the proposed method results in less generator load cycling. This reduced regulation duty should improve reliability. (author)

  6. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  7. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Kitamura, K.; Suzuki, S. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Urata, K. [Mitsubishi Geavy Industries Ltd., 2-5-1, Marunouchi,Chiyoda-ku, Tokyo 100 (Japan)

    1998-09-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.) 20 refs.

  8. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    International Nuclear Information System (INIS)

    Araki, M.; Kitamura, K.; Suzuki, S.

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.)

  9. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-16

    The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) worked with the EcoVillage cohousing community in Ithaca, New York, on the Third Residential EcoVillage Experience neighborhood. This communityscale project consists of 40 housing units—15 apartments and 25 single-family residences. Units range in size from 450 ft2 to 1,664 ft2 and cost from $80,000 for a studio apartment to $235,000 for a three- or four-bedroom single-family home. For the research component of this project, CARB analyzed current heating system sizing methods for superinsulated homes in cold climates to determine if changes in building load calculation methodology should be recommended. Actual heating energy use was monitored and compared to results from the Air Conditioning Contractors of America’s Manual J8 (MJ8) and the Passive House Planning Package software. Results from that research indicate that MJ8 significantly oversizes heating systems for superinsulated homes and that thermal inertia and internal gains should be considered for more accurate load calculations.

  10. Load Management in District Heating Operation

    OpenAIRE

    Li, Hongwei; Wang, Stephen Jia

    2015-01-01

    Smooth operation of district heating system will avoid installation of expensive peak heat boilers, improve plant partial load performance, increase the system redundancy for further network expansion and improve its resilience to ensuresecurity of supply during severe heating seasons. The peak heating load can be reduced through building demand side management. The building thermal mass can be used to shift the heating supply under the circumstance withoutjeopardizing the consumer thermal co...

  11. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  12. Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers

    International Nuclear Information System (INIS)

    Sun Fengrui; Qin Xiaoyong; Chen Lingen; Wu Chih

    2005-01-01

    For an endoreversible four-heat-reservoir absorption heat-transformer cycle, for which a linear (Newtonian) heat-transfer law applies, an ecological optimization criterion is proposed for the best mode of operation of the cycle. This involves maximizing a function representing the compromise between the heating load and the entropy-production rate. The optimal relation between the ecological criterion and the COP (coefficient of performance), the maximum ecological criterion and the corresponding COP, heating load and entropy production rate, as well as the ecological criterion and entropy-production rate at the maximum heating load are derived using finite-time thermodynamics. Moreover, compared with the heating-load criterion, the effects of the cycle parameters on the ecological performance are studied by numerical examples. These show that achieving the maximum ecological criterion makes the entropy-production rate decrease by 77.0% and the COP increase by 55.4% with only 27.3% heating-load losses compared with the maximum heating-load objective. The results reflect that the ecological criterion has long-term significance for optimal design of absorption heat-transformers

  13. A study on nuclear heat load tolerable for NET/TF coils cooled by internal flow of helium II

    International Nuclear Information System (INIS)

    Hofmann, A.

    1988-02-01

    NbTi cables cooled by internal flow of superfluid helium are considered an option for the design of NET/TF coils with about 11 T peak fields. Starting from an available winding cross section of 0.61x0.61 m 2 for a 8 MA turns coil made of a 16 kA conductor it is shown that sufficient hydraulic cross section can be provided within such cables to remove the expected thermal load resulting from nuclear heating with exponential decay from inboard to outboard side of the winding. The concept is a pancake type coil with 1.8 K helium fed-in the high field region of each pancake. The temperature distribution within such coils is calculated, and the local safety margin is determined from temperature and field. The calculation takes account of nuclear and a.c. heating, and of thermal conductance between the individual layers and the coil casing. It is shown that operation with 1.8 K inlet and about 3 K outlet temperature is possible. The electrical insulation with about 0.5 mm thickness proves to provide sufficient thermal insulation. No additional thermal shield is required between the coil casing and the winding package. Two different types of conductors are being considered: a) POLO type cable with quadratic cross section and a central circular coolant duct, and b) an LCT type cable with two conductors wound in hand. Both concepts with about 500 m length of the cooland channels are shown to meet the requirements resulting from a peak nuclear heat load of 0.3 mW/cm 3 in the inboard turns. The hydraulic diameters are sufficient to operate each coils with self-sustained fountain effect pumps. Even appreciably higher heat loads with up to 3 mW/cm 3 of nuclear heating can be tolerated for the POLO type cable when the hydraulic diameter is enlarged to its maximum of 17 mm. (orig.) [de

  14. Load Management in District Heating Operation

    DEFF Research Database (Denmark)

    Li, Hongwei; Wang, Stephen Jia

    2015-01-01

    Smooth operation of district heating system will avoid installation of expensive peak heat boilers, improve plant partial load performance, increase the system redundancy for further network expansion and improve its resilience to ensure security of supply during severe heating seasons. The peak...... heating load can be reduced through building demand side management. The building thermal mass can be used to shift the heating supply under the circumstance without jeopardizing the consumer thermal comfort. In this paper, the multi-agent framework is applied to a simplified building dynamic model...

  15. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  16. Laser re-melting of tungsten damaged by transient heat loads

    Czech Academy of Sciences Publication Activity Database

    Loewenhoff, Th.; Linke, J.; Matějíček, Jiří; Rasinski, M.; Vostřák, M.; Wirtz, M.

    2016-01-01

    Roč. 9, December (2016), s. 165-170 ISSN 2352-1791. [International Conference of Fusion Reactor Material (ICFRM-17) /17./. Aachen, 11.10.2015-16.10.2015] R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : Plasma facing material * Laser surface remelting * Transient heat load * Tungsten Subject RIV: JG - Metallurgy http://dx.doi.org/10.1016/j.nme.2016.04.004

  17. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2009-01-01

    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  18. Analysis of the internal heat losses in a thermoelectric generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Christensen, Dennis Valbjørn; Eriksen, Dan

    2014-01-01

    and radiative heat losses, including surface to surface radiation. For radiative heat losses it is shown that for the temperatures considered here, surface to ambient radiation is a good approximation of the heat loss. For conductive heat transfer the module efficiency is shown to be comparable to the case...... of radiative losses. Finally, heat losses due to internal natural convection in the module is shown to be negligible for the millimetre sized modules considered here. The combined case of radiative and conductive heat transfer resulted in the lowest efficiency. The optimized load resistance is found...... to decrease for increased heat loss. The leg dimensions are varied for all heat losses cases and it is shown that the ideal way to construct a TEG module with minimal heat losses and maximum efficiency is to either use a good insulating material between the legs or evacuate the module completely, and use...

  19. Analysis of sweeping heat loads on divertor plate materials

    International Nuclear Information System (INIS)

    Hassanein, A.

    1991-01-01

    The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m 2 with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs

  20. Assessment of integrity for the pressure vessel internals of PWRs under blowdown loadings

    International Nuclear Information System (INIS)

    Geiss, M.; Benner, J.; Ludwig, A.

    1984-01-01

    In safety analysis of pressurized water reactors the loss-of-coolant accident plays a central role. Thereby a sudden break of a cold primary coolant pipe close to the reactor pressure vessel is postulated. The sudden pressure release of the primary system (blowdown) causes high dynamic loading on the pressure vessel internals. The resulting deformations must not impair shut down of the reactor and decay heat removal in an inadmissible way. For this assessment a blowdown analysis for a 1300 MW pressurized water reactor is carried out. These investigations are completed with a detailed stress analysis for the highly loaded core barrel clamping. The results show that the reactor pressure vessel internals are able to withstand blowdown loading. Even in case of a sudden and complete break of the primary coolant pipe the loading has to be twice as high to endanger the structural integrity. (orig.) [de

  1. Ion orbit modelling of ELM heat loads on ITER divertor vertical targets.

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Dejarnac, Renaud; Escourbiac, F.; Hirai, T.; Komm, Michael; Kukushkin, A.; Panayotis, S.; Pitts, R.A.

    2017-01-01

    Roč. 12, August (2017), s. 75-83 ISSN 2352-1791. [International Conference on Plasma Surface Interactions 2016, PSI2016 /22./. Roma, 30.05.2016-03.06.2016] Institutional support: RVO:61389021 Keywords : ITER * Divertor * ELM heat loads Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.sciencedirect.com/science/article/pii/S2352179116302745

  2. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.

    Science.gov (United States)

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  3. Emissions from three wood-fired domestic central heating boilers - heat load dependence

    International Nuclear Information System (INIS)

    Karlsson, M.L.

    1992-01-01

    The flue gases from three wood-fired domestic central heating boilers have been characterized. Measurements were made at three part loads; 3, 7 and 15 kW. Two of the boilers were modern multi-fuel boilers, with inverse firing and natural draught. The third boiler was a single-fuel wood boiler, with inverse firing and combustion air supply through a fan. All boilers were environmentally approved; the tar emissions were below 30 mg/MJ at nominal heat load. The following parameters were measured: - CO, CO 2 , NO x , total hydrocarbons (THC), - tar and particulates, - twelve volatile organic compounds (VOC). The limit value for tar emission was heavily exceeded for all three boilers at the part loads at which they were tested. For the two multi-fuel boilers the tar emissions decreased with increasing load level, while the opposite was found for the wood boiler with a fan. The NO x emissions varied between 20 and 120 mg/MJ. The multi-fuel boilers showed increasing NO x emissions with increasing heat load. The single-fuel wood boiler showed NO x emissions at about 60 mg/MJ, independent of load level. The CO and THC levels in general were high. The CO levels varied between 1000 and 2000 mg/MJ. While the THC levels varied between 300 and 4000 mg/MJ. Broadly speaking, the CO and THC levels decreased with increasing load levels for the multi-fuel boilers. For the single-fuel wood boiler the CO and THC levels were roughly the same at all load levels. Out of the twelve VOC compounds which were measured, the following could be detected and quantified. With FTIR analysis: Methane, ethylene, propene and acetylene. With GC analysis: Methanol, phenol and acetic acid. (1 ref., 31 figs., 7 tabs.)

  4. Heat loads on Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Beaumont, B.; Chantant, M.; Goniche, M.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency (ICRF) launchers plasma-facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. It is found that the most critical items for Tore-Supra operation are localized heat loads on the Faraday screen top left corner and vertical edges. Warming up close to maximum temperature limit originally set for protection of the plasma-facing components is found of high power pulses, but no erosion was observed after detailed inspection of the launcher in Tore-Supra vessel. Yet, the associated heat loads could be limiting for Tore-Supra operation in the future, and some dedicated work is under progress to improve the understanding of these power fluxes, pointing out the importance of getting a better knowledge of particle flows in the scrape of layer

  5. Heat transfer from internally-heated molten UO2 pools

    International Nuclear Information System (INIS)

    Stein, R.P.; Baker, L. Jr.; Gunther, W.H.; Cook, C.

    1978-01-01

    Experimental measurements of heat transfer from internally heated pools of molten UO 2 have been obtained for two cell sizes: 10 cm x 10 cm and 20 cm x 20 cm. The experiments with the large cell have supported a previous conclusion from early small data that the measured downward heat fluxes are higher than would be expected on the basis of considerations of thermal convection. A convective model underpredicts the downward heat fluxes by a factor of 2.5 to 4.5 for all but one early experiment. Arbitrary assumptions of increased thermal conductivity do not account for the discrepancy. A single model based on internal thermal radiation heat transfer is able to account for the high values. The model uses the optically thick Rosseland approximation. Because of this, it is tentatively concluded that thermal radiation plays a dominant role in controlling the heat transfer from internally heated molted fuel

  6. Surface heat loads during major disruptions in INTOR

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    The thermal energy contained in the INTOR plasma is assumed to be about 200 MJ. In a major plasma disruption this energy is dumped into parts of the first wall in a time short compared to the energy confinement time. To estimate the surface heat load due to this energy dump, two major parameters are not sufficiently well known at present: the disruption time and the affected first wall surface area. To get a certain idea of the heat loads to be expected, we have employed the model of conserved flux tubes which are successively scraped-off at the first wall. The results reveal that even for a homogeneous deposition in the toroidal direction the heat load is too high for some parts of the first wall. Since, however, the presumptions are very uncertain to date, experiments will have to be set up to study the energy deposition during disruptions. (author)

  7. Heat Loads On Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Chantant, M.; Beaumont, B.; Ekedahl, A.; Goniche, M.; Moreau, P.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency launchers plasma facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. Lessons are drawned both with regards to Tore Supra possible operational limits and to ITER ICRF launcher design

  8. High heat load synchrotron optics

    International Nuclear Information System (INIS)

    Mills, D.M.

    1993-01-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density. These high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development

  9. Online short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    . Every hour the hourly heat load for each house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation, and wind speed. A computationally efficient recursive least squares scheme is used......This paper presents a method for forecasting the load for heating in a single-family house. Both space and hot tap water heating are forecasted. The forecasting model is built using data from sixteen houses in Sønderborg, Denmark, combined with local climate measurements and weather forecasts...... variations in the heat load signal (predominant only for some houses), peaks presumably from showers, shifts in resident behavior, and uncertainty of the weather forecasts for longer horizons, especially for the solar radiation....

  10. Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime

    International Nuclear Information System (INIS)

    Mazzeo, D.; Oliveti, G.; Arcuri, N.

    2016-01-01

    Highlights: • Dynamic behaviour of building walls subjected to sinusoidal and actual loadings. • The joint action of more temperature and heat flux loadings has been considered. • Dynamic parameters were defined by the internal and external fluctuating heat flux. • Use of the Total Harmonic Distortion to determine the number of harmonics required. • Study of the influence of external and internal loadings on dynamic parameters. - Abstract: The dynamic behaviour of opaque components of the building envelope in steady periodic regime is investigated using parameters defined by the fluctuating heat flux that is transferred in the wall. The use of the heat flux allows for the joint action of the loadings that characterise both the outdoor environment and the indoor air-conditioned environment to be taken into account. The analysis was developed in sinusoidal conditions to determine the frequency response of the wall and in non-sinusoidal conditions to identify the actual dynamic behaviour of the wall. The use of non-dimensional periodic thermal transmittance is proposed for the sinusoidal analysis in order to evaluate the decrement factor and the time lag that the heat flux undergoes in crossing the wall as well as the efficiency of heat storage. In the presence of non-sinusoidal loadings, the identification of the dynamic behaviour of the wall is obtained using several dynamic parameters: the decrement factor in terms of energy, defined as the ratio between the energy in a semi-period entering and exiting the wall; the decrement factor and the time lag in terms of heat flux, considering the maximum peak and the minimum peak. These parameters allow for the identification of how the form of the heat flux trend crossing the wall is modified. The number of harmonics to be considered for an accurate representation of heat fluxes is determined by means of the introduction of the Total Harmonic Distortion (THD), which quantifies the distortion of a non

  11. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  12. Diffuse Ceiling Ventilation and the Influence of Room Height and Heat Load Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Vilsbøll, Rasmus W; Liu, Li

    2015-01-01

    Diffuse ceiling (inlet) ventilation is an air distribution system that supplies air from the entire ceiling surface, giving a low supply velocity. The flow pattern in the room is controlled by the heat sources. The system generates high mixing flow and the air velocities in the room are expected...... to be not much influenced by the flow rate to the room but dependent on the heat load. Previous studies have shown that diffuse ceiling ventilation has an ability to remove large heat loads without compromising the indoor climate. However, recent experiments indicate that the maximum accepted heat load decreases...... with a large room height and it decreases in connection with certain heat load distributions. Room geometries and heat load distributions that are optimal for diffuse ceiling ventilation are discussed. A simplified design procedure is introduced....

  13. Colloid volume loading does not mitigate decreases in central blood volume during simulated hemorrhage while heat stressed

    DEFF Research Database (Denmark)

    Crandall, Craig G; Wilson, Thad E; Marving, Jens

    2012-01-01

    attenuates the reduction in regional blood volumes during a simulated hemorrhagic challenge imposed via lower-body negative pressure (LBNP). Seven subjects underwent 30 mmHg LBNP while normothermic, during passive heat stress (increased internal temperature ~1°C), and while continuing to be heated after...... intravenous colloid volume loading (11 ml/kg). Relative changes in torso and regional blood volumes were determined by gamma camera imaging with technetium-99m labeled erythrocytes. Heat stress reduced blood volume in all regions (ranging from 7 to 16%), while subsequent volume loading returned those values...... to normothermic levels. While normothermic, LBNP reduced blood volume in all regions (torso: 22±8%; heart: 18±6%; spleen: 15±8%). During LBNP while heat stressed, the reductions in blood volume in each region were markedly greater when compared to LBNP while normothermic (torso: 73±2%; heart: 72±3%; spleen: 72...

  14. Thermally determining flow and/or heat load distribution in parallel paths

    Science.gov (United States)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  15. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  16. Short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a method for forecasting the load for space heating in a single-family house. The forecasting model is built using data from sixteen houses located in Sønderborg, Denmark, combined with local climate measurements and weather forecasts. Every hour the hourly heat load for each...... house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation and wind speed. A computationally efficient recursive least squares scheme is used. The models are optimized to fit the individual...... noise and that practically all correlation to the climate variables are removed. Furthermore, the results show that the forecasting errors mainly are related to: unpredictable high frequency variations in the heat load signal (predominant only for some houses), shifts in resident behavior patterns...

  17. Allowable heat load on the edge of the ITER first wall panel beryllium flat tiles

    Directory of Open Access Journals (Sweden)

    R. Mitteau

    2017-08-01

    Full Text Available Plasma facing components are usually qualified to a given heat load density applied at the top face of the armour tiles with normal incidence angle. When employed in tokamak fusion machines, heat loading on the tile sides is possible due to optimised shaping, that doesn't provide edge shadowing for all design situations. An edge heat load may occur both at the tile and component scales. The edge load needs to be controlled and quantified. The adequate control of edge heat loads is especially critical for water cooled components that uses armour tiles which are bonded to the heat sink, for ensuring the long-term integrity of the tile bonding. An edge heat load allowance criterion of 10% of the top heat load is proposed. The 10% criterion is supported by experimental heat flux tests.

  18. ELM induced divertor heat loads on TCV

    Energy Technology Data Exchange (ETDEWEB)

    Marki, J., E-mail: janos.marki@epfl.c [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Pitts, R.A. [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Horacek, J. [Institute of Plasma Physics, Association EUROATOM-IPP.CR, Za Slovankou 3, 182 00 Prague 8 (Czech Republic); Tskhakaya, D. [Association EURATOM-OAW, Institut fuer Theoretische Physik, A-6020 Innsbruck (Austria)

    2009-06-15

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor approx3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying approx1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  19. ELM induced divertor heat loads on TCV

    Science.gov (United States)

    Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team

    2009-06-01

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  20. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    Science.gov (United States)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  1. A novel monochromator for high heat-load synchrotron x-ray radiation

    International Nuclear Information System (INIS)

    Khounsary, A.M.

    1992-01-01

    The high heat load associated with the powerful and concentrated x-ray beams generated by the insertion devices at a number of present and many of the future (planned or under construction) synchrotron radiation facilities pose a formidable engineering challenge in the designer of the monochromators and other optical devices. For example, the Undulator A source on the Advanced Photon Source (APS) ring (being constructed at the Argonne National Laboratory) will generate as much as 10 kW of heat deposited on a small area (about 1 cm 2 ) of the first optics located some 24 m from the source. The peak normal incident heat flux can be as high as 500 W/mm 2 . Successful utilization of the intense x-ray beams from insertion devices critically depends on the development, design, and availability of optical elements that provide acceptable performance under high heat load. Present monochromators can handle, at best, heat load levels that are an order of magnitude lower than those generated by such sources. The monochromator described here and referred to as the open-quote inclinedclose quotes monochromator can provide a solution to high heat-load problems

  2. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Surducan, E.; Surducan, V.; Neamtu, C., E-mail: camelia.neamtu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat St., 400293, Cluj‑Napoca (Romania); Limare, A.; Di Giuseppe, E. [Institut de Physique du Globe de Paris (IPGP), Univ. Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75005, Paris (France)

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  3. Dynamic Loading of Carrara Marble in a Heated State

    Science.gov (United States)

    Wong, Louis Ngai Yuen; Li, Zhihuan; Kang, Hyeong Min; Teh, Cee Ing

    2017-06-01

    Useable land is a finite space, and with a growing global population, countries have been exploring the use of underground space as a strategic resource to sustain the growth of their society and economy. However, the effects of impact loading on rocks that have been heated, and hence the integrity of the underground structure, are still not fully understood and has not been included in current design standards. Such scenarios include traffic accidents and explosions during an underground fire. This study aims to provide a better understanding of the dynamic load capacity of Carrara marble at elevated temperatures. Dynamic uniaxial compression tests are performed on Carrara marble held at various temperatures using a split-Hopkinson Pressure Bar (SHPB) setup with varying input force. A customized oven is included in the SHPB setup to allow for testing of the marble specimens in a heated state. After the loading test, a three-wave analysis is performed to obtain the dynamic stress-strain curve of the specimen under loading. The fragments of the failed specimens were also collected and dry-sieved to obtain the particle size distribution. The results reveal that the peak stress of specimens that have been heated is negatively correlated with the heating temperature. However, the energy absorbed by the specimens at peak stress at all temperatures is similar, indicating that a significant amount of energy is dissipated via plastic deformation. Generally, fragment size is also found to show a negative correlation with heating temperature and loading pressure. However, in some cases this relationship does not hold true, probably due to the occurrence of stress shadowing. Linear Elastic Fracture Mechanics has been found to be generally applicable to specimens tested at low temperatures; but at higher temperatures, Elastic-Plastic Fracture Mechanics will give a more accurate prediction. Another contribution of this study is to show that other than the peak stress of the

  4. Data-Driven Machine-Learning Model in District Heating System for Heat Load Prediction: A Comparison Study

    Directory of Open Access Journals (Sweden)

    Fisnik Dalipi

    2016-01-01

    Full Text Available We present our data-driven supervised machine-learning (ML model to predict heat load for buildings in a district heating system (DHS. Even though ML has been used as an approach to heat load prediction in literature, it is hard to select an approach that will qualify as a solution for our case as existing solutions are quite problem specific. For that reason, we compared and evaluated three ML algorithms within a framework on operational data from a DH system in order to generate the required prediction model. The algorithms examined are Support Vector Regression (SVR, Partial Least Square (PLS, and random forest (RF. We use the data collected from buildings at several locations for a period of 29 weeks. Concerning the accuracy of predicting the heat load, we evaluate the performance of the proposed algorithms using mean absolute error (MAE, mean absolute percentage error (MAPE, and correlation coefficient. In order to determine which algorithm had the best accuracy, we conducted performance comparison among these ML algorithms. The comparison of the algorithms indicates that, for DH heat load prediction, SVR method presented in this paper is the most efficient one out of the three also compared to other methods found in the literature.

  5. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  6. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-01-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel ® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes

  7. Pulse mitigation and heat transfer enhancement techniques. Volume 3: Liquid sodium heat transfer facility and transient response of sodium heat pipe to pulse forward and reverse heat load

    Science.gov (United States)

    Chow, L. C.; Hahn, O. J.; Nguyen, H. X.

    1992-08-01

    This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.

  8. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P

    2018-01-01

    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O 2  kg -1  min -1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O 2  kg -1  min -1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O 2  kg -1  min -1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  9. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  10. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  11. Workshop on high heat load x-ray optics

    International Nuclear Information System (INIS)

    1990-01-01

    A workshop on ''High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed ''finite element'' and ''finite difference'' calculations comparing experiment with theory and extending theory to optimize performance

  12. Maximal heat loading of electrostatic deflector's septum at the cyclotron

    International Nuclear Information System (INIS)

    Arzumanov, A.; Borissenko, A.

    2002-01-01

    An electrostatic deflector is used for extraction of accelerated particles at the isochronous cyclotron U-150 (Institute of Nuclear Physics, Kazakhstan). Efficiency of beam extraction depends on a set of factors. Decisive is heat state of the septum and essentially beam extraction is limited by beam power dissipation on the deflector. Due to the works carried on for radioisotope production, determination of septum's maximal heat loading, optimization of the septum's geometry represent the interest. Maximum heat loading of deflector's septum and it's dependence on septum's geometry and thermal-physical properties of septum's material are presented in the paper as result of numerical calculation. The obtained results are discussed

  13. Nuclear heat-load limits for above-grade storage of solid transuranium wastes

    International Nuclear Information System (INIS)

    Clontz, B.G.

    1978-06-01

    Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190 0 F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450 0 F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265 0 F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative

  14. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Naito, F. [J-PARC Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Nishida, K.; Mochizuki, S.; Hatayama, A. [Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Mattei, S.; Lettry, J. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  15. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine

    International Nuclear Information System (INIS)

    He, Maogang; Zhang, Xinxin; Zeng, Ke; Gao, Ke

    2011-01-01

    In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper. -- Highlights: ► We study the energy balance of fuel in internal combustion engine. ► Heat recovery effect of exhaust gas is good when ICE is at a high-load condition. ► We propose a new combined thermodynamic cycle for waste heat of ICE. ► The combined cycle has a higher recovery efficiency than previous configurations.

  16. VII international district heating conference

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings of the 7th International District Heating Conference contain the full texts of the 89 presented papers of which 11 fall under the INIS Subject Scope. The conference met in seven sessions and dealt with the following problem areas: design and optimization of systems of district heating, integration of the power system and the district heating systems, cooperation of nuclear and fossil burning sources in district heating systems, the use of specific nuclear power plants for heating purposes, questions of the control of systems of district heating, the development of components of heating networks, the reliability and design of heat supply pipes. (Z.M.)

  17. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  18. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  19. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Alexander, E-mail: A.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Arakcheev, Aleksey; Burdakov, Aleksander [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Shoshin, Andrey [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Terra, Alexis; Unterberg, Bernhard [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany)

    2015-10-15

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ{sub target} = 2.5–4.0 × 10{sup 21} m{sup −2} s{sup −1}, ion energy on surface E{sub ion} = 60 eV, T{sub e} ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m{sup 2}, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m{sup 2}. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  20. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    International Nuclear Information System (INIS)

    Huber, Alexander; Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel; Arakcheev, Aleksey; Burdakov, Aleksander; Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd; Shoshin, Andrey; Terra, Alexis; Unterberg, Bernhard

    2015-01-01

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ_t_a_r_g_e_t = 2.5–4.0 × 10"2"1 m"−"2 s"−"1, ion energy on surface E_i_o_n = 60 eV, T_e ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m"2, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m"2. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  1. Heating load of buildings. Room heat from decentralized renewable electricity; Heizlast von Gebaeuden. Raumwaerme aus dezentral erneuerbarem Strom

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank

    2013-10-15

    If one would like to get the heating load of a building by using peripheral generated electrical energy from photovoltaics or small wind power, one must deal with both the specific building, as well as the heating load, the heating temperature limit and the differentiation of specific heating period for the building. Here, a ground source heat pump with an intelligent energy storage system seems to be the first choice. [German] Moechte man mit dezentral erzeugter elektrischer Energie aus Photovoltaik oder Kleinst-Windkraft die Heizlast eines Gebaeudes besorgen, muss man sich sowohl mit dem spezifischen Gebaeude, als auch mit der Heizlast, der Heizgrenztemperatur und der Differenzierung der spezifischen Heizperiode fuer das Gebaeude auseinandersetzen. Dabei scheint eine erdgekoppelte Waermepumpe mit einem intelligenten Speichersystem die erste Wahl.

  2. Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Rafiq, T.; Kritz, A. H. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Park, G. Y. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States)

    2015-09-15

    The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.

  3. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  4. Estimation of internal heat transfer coefficients and detection of rib positions in gas turbine blades from transient surface temperature measurements

    International Nuclear Information System (INIS)

    Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M

    2008-01-01

    This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.

  5. Cluster analysis of residential heat load profiles and the role of technical and household characteristics

    DEFF Research Database (Denmark)

    Carmo, Carolina; Christensen, Toke Haunstrup

    2016-01-01

    of the temporality of the energy demand is needed. This paper contributes to this by focusing on the daily load profiles of energy demand for heating of Danish dwellings with heat pumps. Based on hourly recordings from 139 dwellings and employing cluster and regression analysis, the paper explores patterns...... (typologies) in daily heating load profiles and how these relate to socio-economic and technical characteristics of the included households. The study shows that the load profiles vary according to the external load conditions. Two main clusters were identified for both weekdays and weekends and across load...

  6. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    Science.gov (United States)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  7. Ferrocyanide safety program: Heat load and thermal characteristics determination for selected tanks

    International Nuclear Information System (INIS)

    McLaren, J.M.; Cash, R.J.

    1993-11-01

    An analysis was conducted to determine the heat loads, conductivities, and heat distributions of waste tanks 241-BY-105, -106, -108, -110, -111, and 241-C-109 at the Hanford Site. The heat distribution of tank 241-BY-111 was determined to be homogeneously distributed throughout the sludge contained in the tank. All of the other tanks, with the exception of 241-C-109, showed evidence of a heat-producing layer at the bottom of the tanks. No evidence of a heat-producing layer in a position above the bottom was found. The thermal conductivities were determined to be within the ranges found by previous laboratory and computer analysis. The heat loads of the tanks were found to be below 2.81 kW (9,600 Btu/hr)

  8. Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool

    International Nuclear Information System (INIS)

    Kim, In Young; Lee, Un Chul

    2011-01-01

    As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

  9. Calorimetric measurement of heat load in full non-inductive LHCD plasmas on TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Shinoda, N.; Sugata, T.; Sasaki, K.; Zushi, H.; Nakamura, K.; Sato, K.N.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.

    2007-01-01

    Calorimetric measurements using the temperature increment of cooling-water were carried out to estimate the heat load distribution on the plasma facing components (PFCs) in the limiter discharges on TRIAM-1M. Line averaged electron density, n e , and LH power, P LH , dependences of the heat load on PFCs were measured. The heat load on the limiters was proportional to n e 1.5 in the range of n e =0.2-1.0x10 19 m -3 and P LH 1 in the range of P LH =0.005-0.09MW. For P LH >0.1MW, the plasma transition to an enhanced current drive (ECD) mode appeared and the n e dependences on the heat load on the limiter moderated. This indicates that the heat flux to scrape-off layer (SOL) region was reduced due to the improvement of the plasma confinement. The up-down asymmetry of the heat load on the vacuum vessel was enhanced in the ECD mode, which may be caused by the increasing of the direct loss of energetic electrons

  10. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  11. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-02-01

    Full Text Available The Organic Rankine Cycle (ORC has been proved a promising technique to exploit waste heat from Internal Combustion Engines (ICEs. Waste heat recovery systems have usually been designed based on engine rated working conditions, while engines often operate under part load conditions. Hence, it is quite important to analyze the off-design performance of ORC systems under different engine loads. This paper presents an off-design Medium Cycle/Organic Rankine Cycle (MC/ORC system model by interconnecting the component models, which allows the prediction of system off-design behavior. The sliding pressure control method is applied to balance the variation of system parameters and evaporating pressure is chosen as the operational variable. The effect of operational variable and engine load on system performance is analyzed from the aspects of energy and exergy. The results show that with the drop of engine load, the MC/ORC system can always effectively recover waste heat, whereas the maximum net power output, thermal efficiency and exergy efficiency decrease linearly. Considering the contributions of components to total exergy destruction, the proportions of the gas-oil exchanger and turbine increase, while the proportions of the evaporator and condenser decrease with the drop of engine load.

  12. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    Science.gov (United States)

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  13. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  14. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    Science.gov (United States)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-11-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.

  15. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    International Nuclear Information System (INIS)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-01-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method. (paper)

  16. Increasing economic benefits by load-shifting of electrical heat pumps

    OpenAIRE

    Laveyne, Joannes; Zwaenepoel, Brecht; Van Eetvelde, Greet; Vandevelde, Lieven

    2014-01-01

    Electrical heating is still widely used in the process industry. While the use of immersion heaters for the production of hot water or steam is declining, the adoption rate of electrical heat pumps is increasing rapidly. Heat pumps show great flexibility and potential for energy savings, e.g. through low temperature waste heat recuperation. In combination with thermal storage they also allow for load shifting. Because their main power source is electricity, which up to now cannot be stored ef...

  17. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  18. High heat load properties of nanostructured, recrystallized W–1.1TiC

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, K., E-mail: tokunaga@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kurishita, H.; Arakawa, H.; Matsuo, S. [International Research Center for Nuclear Materials Science, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hotta, T. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Araki, K.; Miyamoto, Y.; Fujiwara, T.; Nakamura, K. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Takida, T.; Kato, M.; Ikegaya, A. [A.L.M.T. Corp., Toyama 931-8543 (Japan)

    2013-11-15

    Steady state (1973 K, 180 s) and repeated (723 K–1524 K, 380 times) heat loading experiments of ITER grade W and toughened, fine-grained, recrystallized W–1.1TiC (TFGR W–1.1TiC) have been performed using an electron beam irradiation system. In ITER grade W, the irradiation around 1973 K causes recrystallization and grain growth up to the average diameters of 50–100 μm. Repeated irradiations cause significant surface roughening, cracking at grain boundaries and surface exfoliation. On the other hand, TFGR W–1.1TiC does not exhibit any surface roughening or cracking after repeated heat loading although grain boundaries on the surface of TFGR W–1.1TiC can be observed after irradiation at around 1973 K 180 s by steady state heat loading.

  19. The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Nagel, T.; Shao, H.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O.

    2014-01-01

    Highlights: • Detailed analysis of cyclic and monotonic loading of thermochemical heat stores. • Fully coupled reactive heat and mass transport. • Reaction kinetics can be simplified in systems limited by heat transport. • Operating lines valid during monotonic and cyclic loading. • Local integral degree of conversion to capture heterogeneous material usage. - Abstract: Thermochemical reactions can be employed in heat storage devices. The choice of suitable reactive material pairs involves a thorough kinetic characterisation by, e.g., extensive thermogravimetric measurements. Before testing a material on a reactor level, simulations with models based on the Theory of Porous Media can be used to establish its suitability. The extent to which the accuracy of the kinetic model influences the results of such simulations is unknown yet fundamental to the validity of simulations based on chemical models of differing complexity. In this article we therefore compared simulation results on the reactor level based on an advanced kinetic characterisation of a calcium oxide/hydroxide system to those obtained by a simplified kinetic model. Since energy storage is often used for short term load buffering, the internal reactor behaviour is analysed under cyclic partial loading and unloading in addition to full monotonic charge/discharge operation. It was found that the predictions by both models were very similar qualitatively and quantitatively in terms of thermal power characteristics, conversion profiles, temperature output, reaction duration and pumping powers. Major differences were, however, observed for the reaction rate profiles themselves. We conclude that for systems not limited by kinetics the simplified model seems sufficient to estimate the reactor behaviour. The degree of material usage within the reactor was further shown to strongly vary under cyclic loading conditions and should be considered when designing systems for certain operating regimes

  20. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  1. Erosion of newly developed CFCs and Be under disruption heat loads

    Science.gov (United States)

    Nakamura, K.; Akiba, M.; Araki, M.; Dairaku, M.; Sato, K.; Suzuki, S.; Yokoyama, K.; Linke, J.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-10-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J—EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 × 3 mm 2. As a result, the protuberances of the heated area of Be were observed under the lower heat flux.

  2. Erosion of newly developed CFCs and Be under disruption heat loads

    International Nuclear Information System (INIS)

    Nakamura, K.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-01-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4 C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J-EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 x 3 mm 2 . As a result, the protuberances of the heated area of Be were observed under the lower heat flux. (orig.)

  3. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  4. The relationships between internal and external training load models during basketball training.

    Science.gov (United States)

    Scanlan, Aaron T; Wen, Neal; Tucker, Patrick S; Dalbo, Vincent J

    2014-09-01

    The present investigation described and compared the internal and external training loads during basketball training. Eight semiprofessional male basketball players (mean ± SD, age: 26.3 ± 6.7 years; stature: 188.1 ± 6.2 cm; body mass: 92.0 ± 13.8 kg) were monitored across a 7-week period during the preparatory phase of the annual training plan. A total of 44 total sessions were monitored. Player session ratings of perceived exertion (sRPE), heart rate, and accelerometer data were collected across each training session. Internal training load was determined using the sRPE, training impulse (TRIMP), and summated-heart-rate-zones (SHRZ) training load models. External training load was calculated using an established accelerometer algorithm. Pearson product-moment correlations with 95% confidence intervals (CIs) were used to determine the relationships between internal and external training load models. Significant moderate relationships were observed between external training load and the sRPE (r42 = 0.49, 95% CI = 0.23-0.69, p external training load and the SHRZ model (r42 = 0.61, 95% CI = 0.38-0.77, p internal and external training load models, the magnitude of the correlations and low commonality suggest that internal training load models measure different constructs of the training process than the accelerometer training load model in basketball settings. Basketball coaching and conditioning professionals should not assume a linear dose-response between accelerometer and internal training load models during training and are recommended to combine internal and external approaches when monitoring training load in players.

  5. Improving Automation Routines for Automatic Heating Load Detection in Buildings

    Directory of Open Access Journals (Sweden)

    Stephen Timlin

    2012-11-01

    Full Text Available Energy managers use weather compensation data and heating system cut off routines to reduce heating energy consumption in buildings and improve user comfort. These routines are traditionally based on the calculation of an estimated building load that is inferred from the external dry bulb temperature at any point in time. While this method does reduce heating energy consumption and accidental overheating, it can be inaccurate under some weather conditions and therefore has limited effectiveness. There remains considerable scope to improve on the accuracy and relevance of the traditional method by expanding the calculations used to include a larger range of environmental metrics. It is proposed that weather compensation and automatic shut off routines that are commonly used could be improved notably with little additional cost by the inclusion of additional weather metrics. This paper examines the theoretical relationship between various external metrics and building heating loads. Results of the application of an advanced routine to a recently constructed building are examined, and estimates are made of the potential savings that can be achieved through the use of the routines proposed.

  6. Effect of Physical Load on Aerobic Exercise Performance during Heat Stress.

    Science.gov (United States)

    Kenefick, Robert W; Heavens, Kristen R; Luippold, Adam J; Charkoudian, Nisha; Schwartz, Steven A; Cheuvront, Samuel N

    2017-12-01

    This study aimed to investigate the effect of increasing external loads on 5-km treadmill time trial (TT) performance in 20°C and 40°C environmental conditions and to construct an ecologically relevant performance prediction decision aid. Twenty-six male and four female volunteers (age, 23.5 ± 6.9 yr; weight, 76.0 ± 8.9 kg; height, 1.75 ± 0.07 m; V˙O2peak, 50.7 ± 4.5 mL·kg·min) participated in a counterbalanced, mixed-model design, with each subject assigned to a load group (20%, 30%, or 50% body mass (BM); n = 10 per group). Volunteers performed three, self-paced 5-km familiarization TT (treadmill) without external load. Each volunteer then performed a 5-km TT in each environment with loads of either 20% (n = 10), 30% (n = 10), or 50% (n = 10) of BM. 1) Loads of (20%, 30%, and 50% of BM) impaired 5-km TT performance compared with that when unloaded (P exercise trials, an ecologically valid decision aid was developed from self-paced data, in which pace (km·h) can be predicted for individual levels of heat, load, or heat + load in combination.

  7. Performance of an optimally contact-cooled high-heat-load mirror at the APS

    International Nuclear Information System (INIS)

    Cai, Z.; Khounsary, A.; Lai, B.; McNulty, I.; Yun, W.

    1998-01-01

    X-ray undulator beamlines at third-generation synchrotrons facilities use either a monochromator or a mirror as the first optical element. In this paper, the thermal and optical performance of an optimally designed contact-cooled high-heat-load x-ray mirror used as the first optical element on the 2ID undulator beamline at the Advanced Photon Source (APS) is reported. It is shown that this simple and economical mirror design can comfortably handle the high heat load of undulator beamlines and provide good performance with long-term reliability and ease of operation. Availability and advantages of such mirrors can make the mirror-first approach to high-heat-load beamline design an attractive alternative to monochromator-first beamlines in many circumstances

  8. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory J.; Yeakel, Skip; Adelman, Steven; Luo, Zhiming; Zehme, John

    2016-04-05

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  9. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.; Janeschitz, G. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Karlsruhe (Germany); Loarte, A. [EFDA Close Support Unit Garching, Garching bei Munchen(Germany)

    2007-07-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10{sup 4} ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m{sup 2} and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m{sup 2} in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be

  10. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2007-01-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10 4 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m 2 in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m 2 and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m 2 in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be FW macro

  11. Erosion dynamics of tungsten fuzz during ELM-like heat loading

    Science.gov (United States)

    Sinclair, G.; Tripathi, J. K.; Hassanein, A.

    2018-04-01

    Transient heat loading and high-flux particle loading on plasma facing components in fusion reactors can lead to surface melting and possible erosion. Helium-induced fuzz formation is expected to exacerbate thermal excursions, due to a significant drop in thermal conductivity. The effect of heating in edge-localized modes (ELMs) on the degradation and erosion of a tungsten (W) fuzz surface was examined experimentally in the Ultra High Flux Irradiation-II facility at the Center for Materials Under Extreme Environment. W foils were first exposed to low-energy He+ ion irradiation at a fluence of 2.6 × 1024 ions m-2 and a steady-state temperature of 1223 K. Then, samples were exposed to 1000 pulses of ELM-like heat loading, at power densities between 0.38 and 1.51 GW m-2 and at a steady-state temperature of 1223 K. Comprehensive erosion analysis measured clear material loss of the fuzz nanostructure above 0.76 GW m-2 due to melting and splashing of the exposed surface. Imaging of the surface via scanning electron microscopy revealed that sufficient heating at 0.76 GW m-2 and above caused fibers to form tendrils to conglomerate and form droplets. Repetitive thermal loading on molten surfaces then led to eventual splashing. In situ erosion measurements taken using a witness plate and a quartz crystal microbalance showed an exponential increase in mass loss with energy density. Compositional analysis of the witness plates revealed an increase in the W 4f signal with increasing energy density above 0.76 GW m-2. The reduced thermal stability of the fuzz nanostructure puts current erosion predictions into question and strengthens the importance of mitigation techniques.

  12. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  13. Analysis of an effective solution to excessive heat supply in a city primary heating network using gas-fired boilers for peak-load compensation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai-Chao; Jiao, Wen-Ling; Zou, Ping-Hua; Liu, Jing-Cheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, mail box 2645, 202 Haihe Road, Nangang District, Harbin 150090 (China)

    2010-11-15

    Through investigation of the Dengfeng heating network in the city of Daqing, China, for the 2007-2008 heating season, we found serious problems of excessive heat supply in the primary heating network. Therefore, we propose the application of gas-fired boilers in underperforming heating substations as peak-load heat sources to effectively adapt to the regulation demands of seasonal heat-load fluctuations and reduce the excessive heat supply. First, we calculated the excessive heat supply rates (EHSRs) of five substations using detailed investigative data. We then discussed the feasibility of the proposed scheme providing energy savings from both energetic and exergetic points of view. The results showed that the average EHSR of the five substations between January and March was 20.57% of the gross heat production but consequently reduced to 6.24% with the installation of the gas-fired boilers. Therefore, the combined heating scheme with coal as the basic heat-source and gas-fired boilers as peak-load heat sources is energy-efficient to some extent, although requires the use of natural gas. Meanwhile, the exergy decreased by 10.97%, which indicates that the combined heating scheme effectively reduces the primary energy consumption and pollutant emission of the heating systems. (author)

  14. Optimum load distribution between heat sources based on the Cournot model

    Science.gov (United States)

    Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

    2015-08-01

    One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

  15. Application of quasi-steady-state plasma streams for simulation of ITER transient heat loads

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Marchenko, A.K.; Solyakov, D.G.; Tereshin, V.I.; Trubchaninov, S.A.; Tsarenko, A.V.; Landman, I.

    2004-01-01

    The paper presents experimental investigations of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and adjustment of plasma parameters from the point of view its applicability for simulation of transient plasma heat loads expected for ITER disruptions and type I ELMs. Possibility of generation of high-power magnetized plasma streams with ion impact energy up to 0.6 keV, pulse length of 0.25 ms and heat loads varied in wide range from 0.5 to 30 MJ/m 2 has been demonstrated and some features of plasma interaction with tungsten targets in dependence on plasma heat loads are discussed. (author)

  16. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  17. Fusion surface material melting, ablation, and ejection under high heat loading

    International Nuclear Information System (INIS)

    Holliday, M.R.; Doster, J.M.; Gilligan, J.G.

    1986-01-01

    Limiters, divertor plates, and sections of the first wall are exposed to intense heat loads during normal operation and plasma disruptions. This results in severe thermal stresses as well as erosion of the surface material. Large surface areas of compact high-field tokamaks are expected to be exposed to these high heat loads. The need for a fast and accurate computational model describing the heat transfer and phase change process has arisen as a part of the larger model of the plasma-edge region. The authors report on a solution scheme that has been developed that minimizes computational time for this time-dependent, one-dimensional, moving boundary problem. This research makes use of the heat balance integral technique, which is at least an order of magnitude faster than previous finite difference techniques. In addition, we report on the effect of molten material ejection (by external forces) on the total surface erosion rate

  18. Measurements of Bremsstrahlung radiation and X-ray heat load to cryostat on SECRAL

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Cao, Y.; Lu, W.; Zhang, W.H.; Zhao, H.W.; Zhang, X.Z.; Zhu, Y.H.; Li, X.X.; Xie, D.Z.

    2012-01-01

    The measurement of Bremsstrahlung radiation from ECR (Electron Cyclotron Resonance) plasma can yield certain information about the ECR heating process and the plasma confinement, and more important it can give a plausible estimate of the X-ray heat load to the cryostat of a superconducting ECR source. To better understand the additional heat load to the cryostat due to Bremsstrahlung radiation, the axial Bremsstrahlung measurements have been conducted on SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) with different source parameters. In addition, the heat load induced by intense X-ray or even γ-ray was estimated in terms of liquid helium consumption. The relationship between these two parameters is presented here. Thick-target Bremsstrahlung, induced by the collision of hot electrons with the wall or the source electrode, is much more intensive compared with the radiation produced in the plasma and, consequently, much more difficult to shield off. In this paper the presence of the thick-target Bremsstrahlung is correlated with the magnetic confinement configuration, specifically, the ratio of B(last) to B(ext). And possible solutions to reduce the X-ray heat load induced by Bremsstrahlung radiation are proposed and discussed. It appears that by choosing an appropriate ratio of B(last) to B(ext) the thick-target Bremsstrahlung radiation can be avoided effectively. The paper is followed by the associated poster

  19. Heat transfer of liquid-metal magnetohydrodynamic flow with internal heat generation

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Kurita, Kazuhisa; Kodama, Satoshi

    2000-01-01

    Numerical calculations on heat transfer of a magnetohydrodynamic (MHD) flow with internal heat generation in a rectangular channel have been performed for the cases of very-large Hartmann numbers, finite wall conductivities and small aspect ratio (i.e. small length ratios of the channel side perpendicular to the applied magnetic field and the side parallel to the field), simulating typical conditions for a fusion-reactor blanket. The Nusselt numbers of the MHD flow in rectangular channels with aspect ratios of 1/10 to 1/40 for Hartmann numbers of ∼5 x 10 5 become ∼10 times higher than those for the corresponding flow under no magnetic field. The Nusselt number becomes higher as the internal heat generation rate increases as far as the heat generation rates in a fusion reactor blanket are considered. (author)

  20. Experimental and analytical study of natural-convection heat transfer of internally heated liquids

    International Nuclear Information System (INIS)

    Green, G.A.

    1982-08-01

    Boundary heat transfer from a liquid pool with a uniform internal heat source to a vertical or inclined boundary was investigated. The experiments were performed in an open rectangular liquid pool in which the internal heat source was generated by electrical heating. The local heat flux was measured to a boron nitride test wall which was able to be continuously inclined from vertical. Gold plated microthermocouples of 0.01 inch outside diameter were developed to measure the local surface temperature, both front and back, of the boron nitride. The local heat flux and, thus, the local heat transfer coefficient was measured at nineteen locations along the vertical axis of the test plate. A theoretical analysis of the coupled nonlinear boundary layer equations was performed. The parametric effect of the Prandtl number and the dimensionless wall temperature on the boundary heat transfer were investigated When the analytical model was used to calculate the boundary heat transfer data, agreement was achieved with the experimental data within 3% for the local heat transfer and within 2% for the average heat transfer

  1. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  2. Optimization for steady-state and hybrid operations of ITER by using scaling models of divertor heat load

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Itami, Kiyoshi; Sugihara, Masayoshi; Fujieda, Hirobumi.

    1992-09-01

    Steady-state and hybrid mode operations of ITER are investigated by 0-D power balance calculations assuming no radiation and charge-exchange cooling in divertor region. Operation points are optimized with respect to divertor heat load which must be reduced to the level of ignition mode (∼5 MW/m 2 ). Dependence of the divertor heat load on the variety of the models, i.e., constant-χ model, Bohm-type-χ model and JT-60U empirical scaling model, is also discussed. The divertor heat load increases linearly with the fusion power (P FUS ) in all models. The possible highest fusion power much differs for each model with an allowable divertor heat load. The heat load evaluated by constant-χ model is, for example, about 1.8 times larger than that by Bohm-type-χ model at P FUS = 750 MW. Effect of reduction of the helium accumulation, improvements of the confinement capability and the current-drive efficiency are also investigated aiming at lowering the divertor heat load. It is found that NBI power should be larger than about 60 MW to obtain a burn time longer than 2000 s. The optimized operation point, where the minimum divertor heat load is achieved, does not depend on the model and is the point with the minimum-P FUS and the maximum-P NBI . When P FUS = 690 MW and P NBI = 110 MW, the divertor heat load can be reduced to the level of ignition mode without impurity seeding if H = 2.2 is achieved. Controllability of the current-profile is also discussed. (J.P.N.)

  3. Oligonol supplementation modulates plasma volume and osmolality and sweating after heat load in humans.

    Science.gov (United States)

    Lee, JeongBeom; Shin, YoungOh; Murota, Hiroyuki

    2015-05-01

    Oligonol is a low-molecular-weight polyphenol that possesses antioxidant and anti-inflammatory properties. This study investigated the effects of Oligonol supplementation on sweating response, plasma volume (PV), and osmolality (Osm) after heat load in human volunteers. We conducted a placebo-controlled crossover trial. Participants took a daily dose of 200 mg Oligonol or placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. As a heat load, half-body immersion into hot water (42°C±0.5°C for 30 min) was performed in an automated climate chamber. Tympanic and mean body temperature (Tty, mTb) and whole-body sweat loss volume (WBSLV) were measured. Changes in PV, Osm, and serum levels of aldosterone and sodium were analyzed. Oligonol intake attenuated increases in Tty, mTb, and WBSLV after heat load compared with the placebo (Pbody temperature and excessive sweating under heat load in healthy humans, but interpretation of the results requires caution due to the potent diuretic effect of Oligonol.

  4. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E., E-mail: garkusha@ipp.kharkov.u [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-06-15

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m{sup 2}. The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  5. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Makhlaj, V.A.; Chebotarev, V.V.; Landman, I.; Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N.

    2009-01-01

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m 2 . The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  6. The effect of load factor on fission product decay heat from discharged reactor fuel

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1978-07-01

    A sum-of-exponentials expression representing the decay heat power following a burst thermal irradiation of 235 U has been used to investigate the effect of load factor during irradiation on subsequent decay heat production. A sequence of random numbers was used to indicate reactor 'on' and 'off' periods for irradiations which continued for a total of 1500 days at power and were followed by 100 days cooling. It was found that for these conditions decay heat is almost proportional to load factor. Estimates of decay heat uncertainty arising from the random irradiation pattern are also given. (author)

  7. On estimation of reliability for pipe lines of heat power plants under cyclic loading

    International Nuclear Information System (INIS)

    Verezemskij, V.G.

    1986-01-01

    One of the possible methods to obtain a quantitative estimate of the reliability for pipe lines of the welded heat power plants under cyclic loading due to heating-cooling and due to vibration is considered. Reliability estimate is carried out for a common case of loading by simultaneous cycles with different amplitudes and loading asymmetry. It is shown that scattering of the breaking number of cycles for the metal of welds may perceptibly decrease reliability of the welded pipe line

  8. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  9. Design and heat load analysis of support structure of CR superconducting dipole magnet for FAIR

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Wu Songtao; Wu Weiyue; Xu Houchang; Liu Changle

    2008-01-01

    In order to meet the requirement of the Collector ring (CR) dipole superconducting magnet of FAIR in the process of operation, meanwhile, and to ensure the heat loads coming from the support structures to be lower than the design demands, the 3D models of support structures have been constructed with CATIA, then the calculation of low-temperature heat-load and the structure analysis have been done with ANSYS, the support structure material, 316LN+G10, is decided according to the heat-load calculation and the structure optimization, these results are necessary for manufacturing the formal magnet. (authors)

  10. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  11. Monitoring external and internal loads of brazilian soccer referees during official matches.

    Science.gov (United States)

    Costa, Eduardo C; Vieira, Caio M A; Moreira, Alexandre; Ugrinowitsch, Carlos; Castagna, Carlo; Aoki, Marcelo S

    2013-01-01

    This study aimed to assess the external and internal loads of Brazilian soccer referees during official matches. A total of 11 field referees (aged 36.2 ± 7.5 years) were monitored during 35 matches. The external (distance covered, mean and maximal speed) and internal load parameters (session ratings of perceived exertion [RPE] training load [TL], Edwards' TL, and time spent in different heart rate [HR] zones) were assessed in 3-4 matches per referee. External load parameters were measured using a wrist Global Positioning System (GPS) receiver. No differences in distance covered (5.219 ± 205 vs. 5.230 ± 237 m) and maximal speed (19.3 ± 1.0 vs. 19.4 ± 1.4 km·h(-1)) were observed between the halves of the matches (p > 0.05). However, the mean speed was higher in the first half of the matches (6.6 ± 0.4 vs. 6.4 ± 0.3 km·h(-1)) (p external and internal load demands during official matches. The portable GPS/HR monitors and session RPE method can provide relevant information regarding the magnitude of the physiological strain during official matches. Key PointsHigh external and internal loads were imposed on Brazilian soccer referees during official matches.There was a high positive correlation between a subjective marker of internal load (session RPE) and parameters of external load (distance covered between 90-100% of HRmax and maximal speed).There was a high positive correlation between session RPE method and Edwards' method.Session RPE seems to be a reliable marker of internal load.The portable GPS/HR monitors and the session RPE method can provide relevant information regarding the magnitude of external and internal loads of soccer referees during official matches.

  12. More power and less loads in wind farms. 'Heat and flux'

    Energy Technology Data Exchange (ETDEWEB)

    Corten, G.P.; Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    We consider a farm as a single energy extracting body instead of a superposition of individual energy extractors, i.e. wind turbines. As a result we found two new hypotheses called Heat and Flux. Both hypotheses reveal that the classical operation of turbines in a wind farm at the Lanchester-Betz optimum does not lead to maximum farm output. However, when the turbines at the windward side of the farm are operated below their optimum, then the power of the turbines under the lee increases in such a way that the net farm production increases slightly. Next to this production advantage of Heat and Flux operation there is also a loading advantage. The average axial loading of the upwind turbines of a farm is reduced in a 'Heat and Flux'-farm. As a result those turbines generate less turbines so that the fatigue loads of the downwind turbines reduce too. The results were confirmed by in a boundary layer tunnel by means of differential measurements between a 'Heat and Flux'-farm and a classical farm.

  13. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  14. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory; Adelman, Steve; Yeakel, Skip; Luo, Zhiming; Zehme, John

    2016-03-24

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  15. Reduction of repository heat load using advanced fuel cycles

    International Nuclear Information System (INIS)

    Preston, Jeff; Miller, L.F.

    2008-01-01

    With the geologic repository at Yucca Mountain already nearing capacity full before opening, advanced fuel cycles that introduce reprocessing, fast reactors, and temporary storage sites have the potential to allow the repository to support the current reactor fleet and future expansion. An uncertainty analysis methodology that combines Monte Carlo distribution sampling, reactor physics data simulation, and neural network interpolation methods enable investigation into the factor reduction of heat capacity by using the hybrid fuel cycle. Using a Super PRISM fast reactor with a conversion ratio of 0.75, burn ups reach up to 200 MWd/t that decrease the plutonium inventory by about 5 metric tons every 12 years. Using the long burn up allows the footprint of 1 single core loading of FR fuel to have an integral decay heat of about 2.5x10 5 MW*yr over a 1500 year period that replaces the footprint of about 6 full core loadings of LWR fuel for the number of years required to fuel the FR, which have an integral decay heat of about.3 MW*yr for the same time integral. This results in an increase of a factor of 4 in repository support capacity from implementing a single fast reactor in an equilibrium cycle. (authors)

  16. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  17. Design and operational procedures for ORC-based systems coupled with internal combustion engines driving electrical generators at full and partial load

    International Nuclear Information System (INIS)

    Badescu, Viorel; Aboaltabooq, Mahdi Hatf Kadhum; Pop, Horatiu; Apostol, Valentin; Prisecaru, Malina; Prisecaru, Tudor

    2017-01-01

    Highlights: • Waste heat recovery from Internal Combustion Engines (ICEs). • Organic Ranking Cycle (ORC) systems driving Electric Generators (EGs). • ICE-EG partial load operation. • Optimum design geometry of ORC system. • Optimum operation of ORC system at partial EG load. - Abstract: This paper refers to recovering waste heat from the hot gases exhausted by internal combustion engines (ICEs) driving electric generators (EGs) at full and partial load. The topic is of particular interest for developing countries where electric grids are underdeveloped or missing and electricity is generated locally by using classical fuels. The heat recovery system is based on an Organic Rankine Cycle (ORC). A novel method is proposed for the optimum design of ORC-based systems operating in combination with ICE at partial EG loads. First, ORC-based systems coupled with ICEs operating at full EG load is treated. Specific results for the operation at full EG load are as follows: (i) the optimum superheating increment ranges between 30 and 40 °C, depending on the type of the working fluids; (ii) a pinch point temperature difference exits between the flue gas temperature and the working fluid at the evaporator inlet; (iii) the total area of the evaporator is very close to the total area of the condenser, a fact which facilitates manufacturing; (iv) the surface area of the preheater zone is about 75% of the total surface area, while those of the boiler zone and superheater zone is about 13.5% and 11.5%, respectively. Second, the case of the ORC-based systems coupled with ICEs operating at partial EG load is considered. Specific results for this case are as follows: (v) the net power may be maximized by optimizing the working fluid mass flow rate; (vi) when the ICE is coupled with an ORC-based system, the overall thermal efficiency of the combined system, η ICE-ORC , is higher than the thermal efficiency of the ICE operating alone. As an example, for the case treated here,

  18. Heat transfer 1990. Proceedings of the ninth international heat transfer conference

    International Nuclear Information System (INIS)

    Hetsroni, G.

    1990-01-01

    This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 3 are the following chapters: Refrigerant vapor condensation on a horizontal tube bundle. Local heat transfer in a reflux condensation inside a closed two-phase thermosyphon and surface temperature by means of a pulsed photothermal effects

  19. Heat up and potential failure of BWR upper internals during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.

  20. Changes in heat load profile of typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    end-use savings are implemented in buildings concurrent with the application of low-temperature district heating (LTDH), the heat profiles of the buildings will change. Reducing peak loads is important, since this is the dimensioning foundation for future district heating systems. To avoid oversized...

  1. Solutions to mitigate heat loads due to electrons on sensitive components of ITER HNB beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Emanuele, E-mail: emanuele.sartori@gmail.com [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Veltri, Pierluigi; Dalla Palma, Mauro; Agostinetti, Piero [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Hemsworth, Ronald; Singh, Mahendrajit [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2016-11-01

    Highlights: • Energetic electrons leaking out of the ITER HNB accelerator are simulated. • Electrons generated along the ITER HNB beamline are simulated. • Heat loads and heat load maps on cryopumps are calculated for ITER HNB and test facility. • Protection solutions that will be installed are presented and their effect discussed. - Abstract: The operation of neutral beam injectors for plasma heating and current drive in a fusion device provides challenges in the thermal management of beamline components. Sensitive components such as the cryogenic pumps at beamline periphery shall be protected from the heat flux due to stray electrons. These are emitted by the negative ion accelerator or generated along the beamline by interaction of fast electrons, ions or atoms with background gas and surfaces. In this article the case of the ITER Heating Neutral Beam (HNB) and its test facility MITICA is discussed, for which the beam parameters and the required pulse length of one hour is a major leap forward with respect to the present experience with neutral beam systems. The engineering solutions adopted for effective cryopump protection against the heat load from electrons are described. The use of three-dimensional numerical simulations of particle trajectories in the complex geometry of the beamline was needed for the quantitative estimations of the heat loads. The presented solutions were optimized to minimize the impact on gas pumping and on the functionality of other components.

  2. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  3. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  4. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    International Nuclear Information System (INIS)

    Dmitriyeva, O.; Cantwell, R.; McConnell, M.; Moddel, G.

    2012-01-01

    Highlights: ► We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. ► Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. ► Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. ► Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. ► Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  5. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females?

    Directory of Open Access Journals (Sweden)

    Jill M Stapleton

    Full Text Available Studies have reported that older females have impaired heat loss responses during work in the heat compared to young females. However, it remains unclear at what level of heat stress these differences occur. Therefore, we examined whole-body heat loss [evaporative (HE and dry heat loss, via direct calorimetry] and changes in body heat storage (∆Hb, via direct and indirect calorimetry in 10 young (23±4 years and 10 older (58±5 years females matched for body surface area and aerobic fitness (VO2peak during three 30-min exercise bouts performed at incremental rates of metabolic heat production of 250 (Ex1, 325 (Ex2 and 400 (Ex3 W in the heat (40°C, 15% relative humidity. Exercise bouts were separated by 15 min of recovery. Since dry heat gain was similar between young and older females during exercise (p=0.52 and recovery (p=0.42, differences in whole-body heat loss were solely due to HE. Our results show that older females had a significantly lower HE at the end of Ex2 (young: 383±34 W; older: 343±39 W, p=0.04 and Ex3 (young: 437±36 W; older: 389±29 W, p=0.008, however no difference was measured at the end of Ex1 (p=0.24. Also, the magnitude of difference in the maximal level of HE achieved between the young and older females became greater with increasing heat loads (Ex1=10.2%, Ex2=11.6% and Ex3=12.4%. Furthermore, a significantly greater ∆Hb was measured for all heat loads for the older females (Ex1: 178±44 kJ; Ex2: 151±38 kJ; Ex3: 216±25 kJ, p=0.002 relative to the younger females (Ex1: 127±35 kJ; Ex2: 96±45 kJ; Ex3: 146±46 kJ. In contrast, no differences in HE or ∆Hb were observed during recovery (p>0.05. We show that older habitually active females have an impaired capacity to dissipate heat compared to young females during exercise-induced heat loads of ≥325 W when performed in the heat.

  6. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    International Nuclear Information System (INIS)

    Rack, Michael Thomas

    2014-01-01

    Thermonuclear fusion is the energy conversion process which keeps the sun shining. For the last six decades, researchers have been investigating the physics involved in order to enable the usage of this energy supply on Earth. The most promising candidates for fusion power plants are based on magnetic confinement of plasma to provide the ideal conditions for efficient thermonuclear fusion in well controlled surroundings. One important aspect is the control of instabilities that occur in the edge region of the plasma and lead to an ejection of huge amounts of energy. Magnetic perturbation fields which are resonant in the plasma edge are found to modify the plasma favourably and reduce the impact of these instabilities. This dissertation focuses on the effects of resonant magnetic perturbation fields on the ejected energy as well as on the drawbacks of these perturbation fields. The transient energy ejection which is triggered by the instabilities causes extreme heat loads on the wall components in fusion devices. Therefore, it is crucial to understand how resonant magnetic perturbation fields affect the heat load deposition. Furthermore, the impact of resonant magnetic perturbation fields on the confinement of fast ions is an important aspect as fast ions are still required to be well confined in order to avoid additional wall loads and increase the fusion efficiency. Recent upgrades on the Joint European Torus allow for a detailed study of the heat load deposition profiles caused by transient events. Throughout this work, the new features are used for the study of the modifications of the transient heat load depositions that occur if resonant magnetic perturbation fields are applied. This leads to a further understanding of the processes involved during the plasma edge instabilities. Additionally, an alternative method using lower hybrid waves for applying resonant magnetic perturbations is investigated. Furthermore, a new diagnostic, capable of detecting fast ion

  7. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael Thomas

    2014-07-11

    Thermonuclear fusion is the energy conversion process which keeps the sun shining. For the last six decades, researchers have been investigating the physics involved in order to enable the usage of this energy supply on Earth. The most promising candidates for fusion power plants are based on magnetic confinement of plasma to provide the ideal conditions for efficient thermonuclear fusion in well controlled surroundings. One important aspect is the control of instabilities that occur in the edge region of the plasma and lead to an ejection of huge amounts of energy. Magnetic perturbation fields which are resonant in the plasma edge are found to modify the plasma favourably and reduce the impact of these instabilities. This dissertation focuses on the effects of resonant magnetic perturbation fields on the ejected energy as well as on the drawbacks of these perturbation fields. The transient energy ejection which is triggered by the instabilities causes extreme heat loads on the wall components in fusion devices. Therefore, it is crucial to understand how resonant magnetic perturbation fields affect the heat load deposition. Furthermore, the impact of resonant magnetic perturbation fields on the confinement of fast ions is an important aspect as fast ions are still required to be well confined in order to avoid additional wall loads and increase the fusion efficiency. Recent upgrades on the Joint European Torus allow for a detailed study of the heat load deposition profiles caused by transient events. Throughout this work, the new features are used for the study of the modifications of the transient heat load depositions that occur if resonant magnetic perturbation fields are applied. This leads to a further understanding of the processes involved during the plasma edge instabilities. Additionally, an alternative method using lower hybrid waves for applying resonant magnetic perturbations is investigated. Furthermore, a new diagnostic, capable of detecting fast ion

  8. Numerical analysis of reactor internals under hydrodynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Da Hye; Chang, Yoon Suk [Kyung Hee Univ., Yongin (Korea, Republic of); Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, six kinds of major equipment of a typical reactor internals were identified by incorporating recent research trend. Based on this, detailed numerical models were developed and used for establishment of optimum analysis methodology subjected to hydrodynamic loads. As a result, stress values of the major equipment were calculated through the acoustic-structure analysis under periodic hydrodynamic load and the turbulence-structure analysis under random hydrodynamic load. The numerical analysis scheme can be used for development of preventive action plan and management procedures of the reactor internals. Reactor internals installed in a pressure vessel have been exposed to harsh environment such as high neutron irradiation and temperature with complex fluid flow. As the increase of operational years of NPPs(Nuclear Power Plants), possibility of functional loss of the reactor internals is increased due to degradation caused by radiation embrittlement, thermal aging, fatigue, corrosion and FIV(Flow-Induced Vibration) etc. In practice, defects were detected at core support structure as well as upper and lower parts of structural assembly in European and United States NPPs. Recently, in a GALL(Generic Aging Lessons Learned) report, US NRC(Nuclear Regulatory Commission) identified reactor internals as a high priority component and addressed relevant management programs. In Korea, similar activities have been conducted for long-term operation beyond design lifetime but most of them were limited to qualitative evaluation based on examination and maintenance programs. Therefore, not only to reduce repair and replacement efforts but also to secure the stability of NPPs, necessity for development of quantitative evaluation technique as well as establishment of preventive action plan and management procedures is on the rise. The FIV represents the structural vibration phenomenon induced by liquid flow and generally occurs at contact surfaces. In the present

  9. Experimental study of heat transfer to the N2O4 dissociating coolant in the circular tube with variable heat load on the wall

    International Nuclear Information System (INIS)

    Golovnya, V.N.; Kolykhan, L.I.

    1983-01-01

    The results of the experimental study of heat transfer to N 2 O 4 dissociating coolant with a sinusoidal law of heat flux density variation by length are presented. The heat transfer process has been studied at subcritical and supercritical parameters and different substance aggregation states. Maximum error of heat transfer coefficient determination don't exceed 15%. The esimation of the effect of variable heat load on heat transfer has been condUcted by comparison of experimental data on the Nusselt number change along the tube length with that calculated using conventional relations for the conditions of uniform heat release. It is shown that heat transfer is enhanced in the region of heat load qsub(c) growth while its intensity is decreased in the region of heat flux reduction. The quantitative effect of qsub(c) variation on heat transfer can be regarded for by the method of superpositions

  10. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  11. In-Situ Neutron Diffraction Under Tensile Loading of Powder-in-Tube Cu/Nb$_{3}$Sn Composite Wires Effect of Reaction Heat Treatment on Texture, Internal Stress State and Load Transfer

    CERN Document Server

    Scheuerlein, C; Thilly, L

    2007-01-01

    The strain induced degradation of Nb$_{3}$Sn superconductors can hamper the performance of high field magnets. We report elastic strain measurements in the different phases of entire non-heat treated and fully reacted Nb$_{3}$Sn composite strands as a function of uniaxial stress during in-situ deformation under neutron beam. After the reaction heat treatment the Cu matrix loses entirely its load carrying capability and the applied stress is transferred to the remaining Nb-Ta alloy and to the brittle (Nb-Ta)3Sn phase, which exhibits a preferential grain orientation parallel to the strand axis.

  12. Finite element based stress analysis of BWR internals exposed to accident loads

    Energy Technology Data Exchange (ETDEWEB)

    Altstadt, E; Weiss, F P; Werner, M; Willschuetz, H G

    1998-10-01

    During a hypothetical accident the reactor pressure vessel internals of boiling water reactors can be exposed to considerable loads resulting from temperature gradients and pressure waves. Three dimensional FE models were developed for the core shroud, the upper and the lower core supporting structure, the steam separator pipes and the feed water distributor. The models of core shroud, upper core structure and lower core structure were coupled by means of the substructure technique. All FE models can be used for thermal and for structural mechanical analyses. As an example the FE analysis for the case of a station black-out scenario (loss of power supply for the main circulating pumps) with subsequent emergency core cooling is demonstrated. The transient temperature distributions within the core shroud and within the steam dryer pipes as well were calculated based on the fluid temperatures and the heat transfer coefficients provided by thermo-hydraulic codes. At the maximum temperature gradients in the core shroud, the mechanical stress distribution was computed in a static analysis with the actual temperature field being the load. (orig.)

  13. Simulation of Be armour cracking under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    S. Pestchanyi

    2016-12-01

    Full Text Available Simulation of beryllium cracking under action of multiple severe surface heatings has been performed using the PEGASUS-3D code and verified by experiments in the JUDITH 1 facility. Analysis of the results has revealed beryllium thermo conductivity degradation under action of repetitive pulsed heat load due to accumulation of the cracks in the surface layer. Thermo conductivity degradation is found to be at least 4 times after 100 pulses in JUDITH 1 facility. An analytical model for the Be cracking threshold under action of arbitrary heat pulses has been developed.

  14. Experimental study on local heat transfer characteristics of porous media with internal heat source

    International Nuclear Information System (INIS)

    Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping

    2008-01-01

    Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)

  15. A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Hak; Nam, Seok Ho; Lee, Je Yull; Song, Seung Hyun; Jeon, Hae Ryong; Baek, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

  16. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriyeva, O., E-mail: olga.dmitriyeva@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States); Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Cantwell, R.; McConnell, M. [Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Moddel, G. [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. Black-Right-Pointing-Pointer Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. Black-Right-Pointing-Pointer Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. Black-Right-Pointing-Pointer Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. Black-Right-Pointing-Pointer Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  17. Irreversible absorption heat-pump and its optimal performance

    International Nuclear Information System (INIS)

    Chen Lingen; Qin Xiaoyong; Sun Fengrui; Wu Chih

    2005-01-01

    On the basis of an endoreversible absorption heat-pump cycle, a generalized irreversible four-heat-reservoir absorption heat-pump cycle model is established by taking account of the heat resistances, heat leak and irreversibilities due to the internal dissipation of the working substance. The heat transfer between the heat reservoir and the working substance is assumed to obey the linear (Newtonian) heat-transfer law, and the overall heat-transfer surface area of the four heat-exchangers is assumed to be constant. The fundamental optimal relations between the coefficient of performance (COP) and the heating-load, the maximum COP and the corresponding heating-load, the maximum heating load and the corresponding COP, as well as the optimal temperatures of the working substance and the optimal heat-transfer surface areas of the four heat-exchangers are derived by using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the characteristics of the cycle are studied by numerical examples

  18. Simulating tokamak PFC performance using simultaneous dual beam particle loading with pulsed heat loading

    Science.gov (United States)

    Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed

    2017-10-01

    The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.

  19. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  20. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  1. Heat load imposed on reactor vessels during in-vessel retention of core melts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Chung, Bum-Jin, E-mail: bjchung@khu.ac.kr

    2016-11-15

    Highlights: • Angular heat load on reactor vessel by natural convection of oxide pool was measured. • High Ra was achieved by using mass transfer experiments based on analogy concept. • Measured Nusselt numbers agreed reasonably with the other existing studies. • Three different types of volumetric heat sources were compared. • They didn’t affect the heat flux of the top plate but affected those of the reactor vessel. - Abstract: We measured the heat load imposed on reactor vessels by natural convection of the oxide pool in severe accidents. Based on the analogy between heat and mass transfer, mass transfer experiments were performed using a copper sulfate electroplating system. A modified Rayleigh number of the order 10{sup 14} was achieved in a small facility with a height of 0.1 m. Three different types of volumetric heat sources were compared and the average Nusselt number of the curved surface was 39% lower, whereas in the case of the top plate was 6% higher than in previous studies with a two-dimensional geometry due to the high Sc value of this study. Reliable experimental data on the angular heat flux ratios were reported compared to those of the BALI and SIGMA CP facilities in terms of fluctuations and consistency.

  2. Effect of transient heating loads on beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, Igor B.; Porezanov, Nicolay P.; Nikolaev, Georgyi N.; Kurbatova, Liudmila A.; Podkovyrov, Vyacheslav L.; Muzichenko, Anatoliy D.; Zhitlukhin, Anatoliy M.; Khimchenko, Leonid N.; Gervash, Alexander A.

    2014-01-01

    Highlights: • We study the effect of transient plasma loads on beryllium erosion and surface microstructure. • Beryllium targets were irradiated by plasma streams with energy of 0.5–1 MJ/m 2 at ∼250 °C. • Under plasma loads 0.5–1 MJ/m 2 cracking of beryllium surface is rather slight. • Under 0.5 MJ/m 2 the mass loss of Be is no more than 0.2 g/m 2 shot and decreasing with shots number. • Under 1 MJ/m 2 maximum mass loss of beryllium was 3.7 g/m 2 shot and decreasing with shots number. - Abstract: Beryllium will be used as a plasma facing material for ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of ITER first wall. The results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility are presented. The Be/CuCrZr mock-ups were exposed to upto 100 shots by deuterium plasma streams with pulse duration of 0.5 ms at ∼250 °C and average heat loads of 0.5 and 1 MJ/m 2 . Experiments were performed at 250 °C. The evolution of surface microstructure and cracks morphology as well as beryllium mass loss are investigated under erosion process

  3. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Montan, D.N.

    1980-01-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation and ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation

  4. Heat loads on plasma facing components during disruptions on JET

    International Nuclear Information System (INIS)

    Arnoux, G.; Riccardo, V.; Fundamenski, W.; Loarte, A.; Huber, A.

    2009-01-01

    For the first time, fast measurements of heat loads on the main chamber plasma facing components (about 1 ms time resolution) during disruptions are taken on JET. The timescale of energy deposition during the thermal quench is estimated and compared with the timescale of the core plasma collapse measured with soft x-ray diagnostic. The energy deposition time is 3-8 times longer than the plasma energy collapse during density limit disruptions or radiative limit disruptions. This factor is rather in the range 1.5-4 for vertical displacement events. The heat load profiles measured during the thermal quench show substantial broadening of the power footprint on the upper dump plate. The scrape-off layer power width is increased by a factor of 3 for the density limit disruptions. The far scrape-off layer is characterized by a steeper gradient which could be explained by shadowing of the dump plate by other main chamber plasma facing components such as the outer limiter.

  5. Progress of High Heat Flux Component Manufacture and Heat Load Experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Lian, Y.; Xu, Z.; Chen, J.; Chen, L.; Wang, Q.; Duan, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengu (China); Luo, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yan, Q. [University of Science and Technology Beijing, Beijing (China)

    2012-09-15

    Full text: High heat flux components for first wall and divertor are the key subassembly of the present fusion experiment apparatus and fusion reactors in the future. It is requested the metallurgical bonding among the plasma facing materials (PFMs), heat sink and support materials. As to PFMs, ITER grade vacuum hot pressed beryllium CN-G01 was developed in China and has been accepted as the reference material of ITER first wall. Additionally pure tungsten and tungsten alloys, as well as chemical vapor deposition (CVD) W coating are being developed for the aims of ITER divertor application and the demand of domestic fusion devices, and significant progress has been achieved. For plasma facing components (PFCs), high heat flux components used for divertor chamber are being studied according to the development program of the fusion experiment reactor of China. Two reference joining techniques of W/Cu mockups for ITER divertor chamber are being developed, one is mono-block structure by pure copper casting of tungsten surface following by hot iso-static press (HIP), and another is flat structure by brazing. The critical acceptance criteria of high heat flux components are their high heat load performance. A 60 kW Electron-beam Material testing Scenario (EMS-60) has been constructed at Southwestern Institute of Physics (SWIP),which adopts an electron beam welding gun with maximum energy of 150 keV and 150 x 150 mm{sup 2} scanning area by maximum frame rate of 30 kHz. Furthermore, an Engineering Mockup testing Scenario (EMS-400) facility with 400 kW electron-beam melting gun is under construction and will be available by the end of this year. After that, China will have the comprehensive capability of high heat load evaluation from PFMs and small-scale mockups to engineering full scale PFCs. A brazed W/CuCrZr mockup with 25 x 25 x 40 mm{sup 3} in dimension was tested at EMS-60. The heating and cooling time are 10 seconds and 15 seconds, respectively. The experiment

  6. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 2: Results for future energy market scenarios

    International Nuclear Information System (INIS)

    Joensson, Johanna; Svensson, Inger-Lise; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    In this paper the trade-off between internal and external use of excess heat from a kraft pulp mill is investigated for four different future energy market scenarios. The work follows the methodology described in Svensson et al. [2008. Excess heat from kraft pulp mills: trade-offs between internal and external use in the case of Sweden-Part 1: methodology. Energy Policy, submitted for publication], where a systematic approach is proposed for investigating the potential for profitable excess heat cooperation. The trade-off is analyzed by economic optimization of an energy system model consisting of a pulp mill and an energy company (ECO). In the model, investments can be made, which increase the system's energy efficiency by utilization of the mill's excess heat, as well as investments that increase the electricity production. The results show that the trade-off depends on energy market prices, the district heating demand and the type of existing heat production. From an economic point of view, external use of the excess heat is preferred for all investigated energy market scenarios if the mill is studied together with an ECO with a small heat load. For the cases with medium or large district heating loads, the optimal use of excess heat varies with the energy market price scenarios. However, from a CO 2 emissions perspective, external use is preferred, giving the largest reduction of global emissions in most cases

  7. Online short-term forecast of greenhouse heat load using a weather forecast service

    DEFF Research Database (Denmark)

    Vogler-Finck, P. J.C.; Bacher, P.; Madsen, Henrik

    2017-01-01

    the performance of recursive least squares for predicting the heat load of individual greenhouses in an online manner. Predictor inputs (weekly curves terms and weather forecast inputs) are selected in an automated manner using a forward selection approach. Historical load measurements from 5 Danish greenhouses...... mean square error of the prediction was within 8–20% of the peak load for the set of consumers over the 8 months period considered....

  8. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz

    2015-01-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  9. Conjugated heat transfer of natural convection in pool with internal heat sources and convection in the tube

    International Nuclear Information System (INIS)

    Li Longjian; Liu Hongtao; Cui Wenzhi

    2007-01-01

    The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)

  10. Nonlinear throughflow and internal heating effects on vibrating porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available The effect of vertical throughflow and internal heating effects on fluid saturated porous medium under gravity modulation is investigated. The amplitude of modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weakly nonlinear stability analysis is proposed to study stationary convection. The Nusselt number is obtained numerically to present the results of heat transfer while using Ginzburg–Landau equation. The vertical throughflow has dual effect either to destabilize or to stabilize the system for downward or upward directions. The effect of internal heat source (Ri>0 enhances or sink (Ri<0 diminishes heat transfer in the system. The amplitude and frequency of modulation have the effects of increasing or diminishing heat transport. For linear model Venezian approach suggested that throughflow and internal heating have both destabilizing and stabilizing effects for suitable ranges of Ω. Further, the study establishes that heat transport can be controlled effectively by a mechanism that is external to the system throughflow and gravity modulation.

  11. Production of molten UO2 pools by internal heating: apparatus and preliminary experimental heat transfer results

    International Nuclear Information System (INIS)

    Chasanov, M.G.; Gunther, W.H.; Baker, L. Jr.

    1977-01-01

    The capability for removal of heat from a pool of molten fuel under postaccident conditions is an important consideration in liquid-metal fast breeder reactor safety analysis. No experimental data for pool heat transfer from molten UO 2 under conditions simulating internal heat generation by fission product decay have been reported previously in the literature. An apparatus to provide such data was developed and used to investigate heat transfer from pools containing up to 7.5 kg of UO 2 ; the internal heat generation rates and pool depths attained cover most of the ranges of interest for postaccident heat removal analysis. It was also observed in these studies that the presence of simulated fission products corresponding to approximately 150,000 kW-day/kg burnup had no significant effect on the observed heat transfer

  12. Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, G., E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Bobin-Vastra, I.; Constans, S. [AREVA NP PTCMI-F, Centre Technique, Fusion, F-71200 Le Creusot (France); Gavila, P. [Fusion for Energy, E-08019 Barcelona (Spain); Rödig, M. [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Riccardi, B. [Fusion for Energy, E-08019 Barcelona (Spain)

    2013-10-15

    Highlights: • We characterize tungsten mono-block components after exposure to ITER relevant heat loads. • We qualify the manufacturing technology, i.e., hot isostatic pressing and hot radial pressing, and repair technologies. • We determine the microstructural influences, i.e., rod vs. plate material, on the damage evolution. • Needle like microstructures increase the risk of deep crack formation due to a limited fracture strength. -- Abstract: In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, high heat flux tests were performed in the electron beam facility FE200, Le Creusot, France. Thereby, in total eight small-scale and three medium-scale monoblock mock-ups produced with different manufacturing technologies and different tungsten grades were exposed to cyclic steady state heat loads. The applied power density ranges from 10 to 20 MW/m{sup 2} with a maximum of 1000 cycles at each particular loading step. Finally, on a reduced number of tiles, critical heat flux tests in the range of 30 MW/m{sup 2} were performed. Besides macroscopic and microscopic images of the loaded surface areas, detailed metallographic analyses were performed in order to characterize the occurring damages, i.e., crack formation, recrystallization, and melting. Thereby, the different joining technologies, i.e., hot radial pressing (HRP) vs. hot isostatic pressing (HIP) of tungsten to the Cu-based cooling tube, were qualified showing a higher stability and reproducibility of the HIP technology also as repair technology. Finally, the material response at the loaded top surface was found to be depending on the material grade, microstructural orientation, and recrystallization state of the material. These damages might be triggered by the application of thermal shock loads during electron beam surface scanning and not by the steady state heat load only. However, the superposition of thermal fatigue loads and thermal shocks as also expected

  13. Power load limits of the WENDELSTEIN 7-X target elements-comparison of experimental results and design values for power loads up to the critical heat flux

    International Nuclear Information System (INIS)

    Greuner, H; Boeswirth, B; Boscary, J; Leuprecht, A; Plankensteiner, A

    2007-01-01

    The power load limits of the WENDELSTEIN7-X divertor target elements were experimentally evaluated with heat loads considerably exceeding the expected operating conditions. The water-cooled elements are designed for steady-state heat flux of 10 MW m -2 and to remove a power load up to 100 kW. The elements must allow a limited operation time at 12 MW m -2 steady-state and should not fail for short pulses of up to 15 MW m -2 for cooling conditions in the subcooled nucleate boiling regime. In the framework of the qualification phase, pre-series target elements were loaded up to 24 MW m -2 without loss of CFC tiles. A critical heat flux at the target of 31 MW m -2 was achieved. The paper discusses the results of the tests performed at the high heat flux test facility GLADIS. The experimental results compared to transient nonlinear fine element method (FEM) calculations confirm a high thermal safety margin of the target design sufficient for plasma operation in W7-X

  14. Methodology used to calculate moderator-system heat load at full power and during reactor transients in CANDU reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.

    1998-01-01

    Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)

  15. Loads Providing Ancillary Services: Review of International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, Grayson; Goldman, Charles; Kintner-Meyer, Michael

    2007-05-01

    In this study, we examine the arrangements for and experiences of end-use loads providing ancillary services (AS) in five electricity markets: Australia, the United Kingdom (UK), the Nordic market, and the ERCOT and PJM markets in the United States. Our objective in undertaking this review of international experience was to identify specific approaches or market designs that have enabled customer loads to effectively deliver various ancillary services (AS) products. We hope that this report will contribute to the ongoing discussion in the U.S. and elsewhere regarding what institutional and technical developments are needed to ensure that customer loads can meaningfully participate in all wholesale electricity markets.

  16. APS high heat load monochromator

    International Nuclear Information System (INIS)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach

  17. Effect of cyclic loading and retightening on reverse torque value in external and internal implants.

    Science.gov (United States)

    Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2015-08-01

    The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading.

  18. Heat load limits for TRU drums on pads

    International Nuclear Information System (INIS)

    Steimke, J.L.; McKinley, M.S.

    1993-08-01

    Some of the Trans-Uranic (TRU) waste generated at SRS is packaged in 55 gallon, galvanized steel drums and stored on concrete pads that are exposed to the weather. It was necessary to compute how much heat can be generated by the waste in these drums without exceeding the temperature limits of the contents of the drum. This report documents the calculation of heat load limits for the drum, which depend on the temperature limits of the contents of the drum. The applicable temperature limits for the contents of the drum are the melting temperature of the polyethylene liner, 284 ± 8 F, the combustion temperature of paper, 450 F and the decomposition temperature of anionic resin, 190 F. One part of the analysis leading to the heat load limits was the collection of weather records on solar flux, wind speed and air temperature. Another part of the task was an experimental measurement of two important properties of the drum lid, the emittance and the absorptance. As used here, emittance is the rate at which an object emits infrared thermal radiation divided by the rate at which a perfect black body at the same temperature emits thermal radiation. Absorptance is the rate at which an object absorbs solar radiation divided by the rate at which a perfect black body absorbs radiation. For nine locations on each of eight typical weathered drum lids the measured emittance ranged from 0.73 ± 0.05 to 1.00 ± 0.07 (95% confidence level) and the average emittance for the eight lids was 0.85. For the eight drum lids the measured absorptance ranged from 0.64 ± 0.07 to 0.79 ± 0.07 with an average absorptance for the eight lids of 0.739

  19. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  20. Simulation of Be armour cracking under ITER-like transient heat loads

    OpenAIRE

    Pestchanyi, S.; Spilker, B.; Bazylev, B.

    2015-01-01

    Simulation of beryllium cracking under action of multiple severe surface heatings has been performed using the PEGASUS-3D code and verified by experiments in the JUDITH 1 facility. Analysis of the results has revealed beryllium thermo conductivity degradation under action of repetitive pulsed heat load due to accumulation of the cracks in the surface layer. Thermo conductivity degradation is found to be at least 4 times after 100 pulses in JUDITH 1 facility. An analytical model for the Be cra...

  1. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    Science.gov (United States)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  2. Current status of and problems in ice heat storage systems contributing to improving load rate. Proliferation of the ice heat storage type air conditioning system and roles of the Heat Pump and Heat Storage Center; Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsushiki kucho system no fukyu to heat pump chikunetsu center no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, T.

    1998-02-01

    This paper introduces the roles played by the `Heat Pump and Heat Storage Center`. This foundation had been performing research and development and international information exchange in devices and equipment as the `Heat Pump Technology Development Center`. Development of heat storage type air conditioning systems as a measure for load leveling, and efforts of their proliferation and enlightenment were added to the business activities. As a result, the foundation`s name was changed to the present name. Its activities being planned and performed include: interest supplementing operation for installation of an air conditioning system of the heat pump system using storage of latent heat such as ice heat storage, holding seminars for promoting proliferation of the ice heat storage type air conditioning system, opening the home page, participation in exhibitions of various types, and preparation of different publicity tools. More specifically, carrying series advertisements in newspapers and magazines, holding nation-wide symposiums tying up with Japan Economic Press, publishing an organ newspaper targeted at both of experts and general people, and preparation of general pamphlets to introduce comprehensively the information about heat storage. 3 figs., 1 tab.

  3. Enhancement of urban heat load through social inequalities on an example of a fictional city King's Landing

    Science.gov (United States)

    Žuvela-Aloise, M.

    2017-03-01

    The numerical model MUKLIMO_3 is used to simulate the urban climate of an imaginary city as an illustrative example to demonstrate that the residential areas with deprived socio-economic conditions can exhibit an enhanced heat load at night, and thus more disadvantageous environmental conditions, compared with the areas of higher socio-economic status. The urban climate modelling simulations differentiate between orographic, natural landscape, building and social effects, where social differences are introduced by selection of location, building type and amount of vegetation. The model results show that the increase of heat load can be found in the areas inhabited by the poor population as a combined effect of natural and anthropogenic factors. The unfavourable location in the city and the building type, consisting of high density, low housing with high fraction of pavement and small amount of vegetation contribute to the formation of excessive heat load. This abstract example shows that the enhancement of urban heat load can be linked to the concept of a socially stratified city and is independent of the historical development of any specific city.

  4. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  5. Experimental study on single-phase convection heat transfer characteristics of pebble bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Zhou Ping; Xu Guangzhan

    2012-01-01

    The water-cooled pebble bed reactor core is the porous channels stacked with spherical fuel elements, having evident effect on enhancing heat transfer. Owing to the variability and randomness characteristics of it's interstice, pebble bed channels have a very complex heat transfer situation and have little correlative research. In order to research the heat transfer characters of pebble bed channels with internal heat source, electromagnetic induction heating method was adopted for overall heating the pebble bed which was composed of 8 mm diameter steel balls, and the internal heat transfer characteristics were researched. By comparing and analyzing the experimental data, the rule of power distribution and heat transfer coefficient with heat flux density, inlet temperature and working fluid's Re were got. According to the experimental data fitting, the dimensionless average heat transfer coefficient correlation criteria was got. The fitting results are good agreement with the experimental results within 12% difference. (authors)

  6. Damage behavior of REE-doped W-based material exposed to high-flux transient heat loads

    International Nuclear Information System (INIS)

    Shi, Jing; Luo, Lai–Ma; Lin, Jin–shan; Zan, Xiang; Zhu, Xiao–yong; Xu, Qiu; Wu, Yu–Cheng

    2016-01-01

    Pure W and W-Lu alloys were prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technology. The performance and relevant damage mechanism of W-(0%, 2%, 5%, 10%) Lu alloys under transient heat loads were investigated using a laser beam heat load test to simulate the transient events in future nuclear fusion reactors. Scanning electron microscopy was used to observe the morphologies of the damaged surfaces and energy dispersive X-ray spectroscopy was used to conduct composition analysis. Damages to the surface such as cracks, pits, melting layers, Lu-rich droplets, and thermal ablation were observed. A mass of dense fuzz-like nanoparticles formed on the outer region of the laser-exposed area. Recrystallization, grain growth, increased surface roughness, and material erosion were also observed. W-Lu samples with low Lu content demonstrated better thermal performance than pure W, and the degree of damage significantly deteriorated under repetitive transient heat loads.

  7. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    International Nuclear Information System (INIS)

    Arakcheev, A.S.; Skovorodin, D.I.; Burdakov, A.V.; Shoshin, A.A.; Polosatkin, S.V.; Vasilyev, A.A.; Postupaev, V.V.; Vyacheslavov, L.N.; Kasatov, A.A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-01-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle–ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating–cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  8. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  9. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    Science.gov (United States)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  10. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  11. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  12. Change in heat load profile for typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    ) supply. When end-use-savings are implemented in buildings concurrent with the application of low-temperature district heating (DH) (supply=55°C, return=25°C) the heat demand profiles for the individual buildings will change. The reduction in peak load is important since it is the dimensioning foundation...... for the future DH-systems and in order to avoid oversized RE-based capacity, a long-term perspective needs to be taken. The results show that it is possible to design the DH-plants based on an average value of the 5 days with highest daily average loads without compromising with indoor thermal comfort. Applying...

  13. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage.

    Science.gov (United States)

    Lu, Yuan; Xiao, Xiudi; Zhan, Yongjun; Huan, Changmeng; Qi, Shuai; Cheng, Haoliang; Xu, Gang

    2018-04-18

    Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.

  14. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won; Cho, Seungyon

    2014-01-01

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity

  15. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  16. Transition to chaos in a square enclosure containing internal heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Baytas, A.C. [Institute For Nuclear Energy, Istanbul (Turkey)

    1995-09-01

    A numerical investigation is performed to study the transition from steady to chaotic flow of a fluid confined in a two-dimensional square cavity. The cavity has rigid walls of constant temperature containing uniformly distributed internal heat source. Effects of the Rayleigh number of flow and heat transfer rates are studied. In addition to, same problem is solved for sinusoidally changing internal heat source to show its effect on the flow model and heat transfer of the enclosures. Details of oscillatory solutions and flow bifurcations are presented.

  17. On the calculation of dynamic and heat loads on a three-dimensional body in a hypersonic flow

    Science.gov (United States)

    Bocharov, A. N.; Bityurin, V. A.; Evstigneev, N. M.; Fortov, V. E.; Golovin, N. N.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.

    2018-01-01

    We consider a three-dimensional body in a hypersonic flow at zero angle of attack. Our aim is to estimate heat and aerodynamic loads on specific body elements. We are considering a previously developed code to solve coupled heat- and mass-transfer problem. The change of the surface shape is taken into account by formation of the iterative process for the wall material ablation. The solution is conducted on the multi-graphics-processing-unit (multi-GPU) cluster. Five Mach number points are considered, namely for M = 20-28. For each point we estimate body shape after surface ablation, heat loads on the surface and aerodynamic loads on the whole body and its elements. The latter is done using Gauss-type quadrature on the surface of the body. The comparison of the results for different Mach numbers is performed. We also estimate the efficiency of the Navier-Stokes code on multi-GPU and central processing unit architecture for the coupled heat and mass transfer problem.

  18. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  19. Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods

    NARCIS (Netherlands)

    Suryanarayana, Gowri; Lago Garcia, J.; Geysen, Davy; Aleksiejuk, Piotr; Johansson, Christian

    2018-01-01

    Recent research has seen several forecasting methods being applied for heat load forecasting of district heating networks. This paper presents two methods that gain significant improvements compared to the previous works. First, an automated way of handling non-linear dependencies in linear

  20. STUDY ON HEAT DYNAMIC LOADING OF RUBBER

    Directory of Open Access Journals (Sweden)

    T. I. Igumenova

    2015-01-01

    Full Text Available A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodifiers (fulleren technical carbon in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physico-chemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinz-Petrikeev, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.

  1. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  2. Studies on representative disruption scenarios, associated electromagnetic and heat loads and operation window in ITER

    International Nuclear Information System (INIS)

    Fujieda, Hirobumi; Shimada, Michiya; Kawano, Yasunori; Ohmori, Junji; Neyatani, Yuzuru; Sugihara, Masayoshi; Gribov, Yuri; Ioki, Kimihiro; Khayrutdinov, Rustan; Lukash, Victor

    2007-07-01

    The impacts of plasma disruptions on ITER have been investigated in detail to confirm the robustness of the design of the machine to the potential consequential loads. The loads include both electromagnetic (EM) and heat loads on the in-vessel components and the vacuum vessel (VV). Several representative disruption scenarios are specified based on newly derived physics guidelines for the shortest current quench time as well as the maximum product of halo current fraction and toroidal peaking factor arising from disruptions in ITER. Disruption simulations with the DINA code and EM load analyses with a 3D finite element method (FEM) code are performed for these scenarios. Some margins are confirmed in the EM load on in-vessel components due to induced eddy and halo currents for these representative scenarios. However, the margins are not very large. The heat load on various parts of the first wall due to the vertical movement and the thermal quench (TQ) is calculated with a 2D heat conduction code based on the database of heat deposition during disruptions and simulation results with the DINA code. It is found that the beryllium (Be) wall will not melt during the vertical movement. Significant melting is anticipated for the upper Be wall and tungsten divertor baffle due to the TQ after the vertical movement. However, its impact could be substantially mitigated by implementing a reliable detection system of the vertical movement and a mitigation system, e.g., massive noble gas injection (MGI). Some melting of the upper Be wall is anticipated at major disruptions (MD). At least several tens of unmitigated disruptions must be considered even if an advanced prediction/mitigation system is implemented. With these unmitigated disruptions, the loss of Be layer is expected to be within approx. = 30-100 μm/event out of 10 mm thick Be first wall. Various post processing programs of the results simulated with the DINA code, which are developed for the design work, are

  3. Behaviour of candidate materials for fusion applications under high surface heat loads

    International Nuclear Information System (INIS)

    Bolt, H.; Nickel, H.; Kuroda, T.; Miyahara, A.

    1988-07-01

    High heat fluxes to in-vessel components of nuclear fusion devices (tokamaks) during normal operation and abnormal operation conditions are one of the governing issues in the selection of a plasma facing material and the design of first wall components. Their failure under high heat loads during service can severely influence the further operability of the entire fusion device. In order to determine the response of candidate materials to high heat fluxes an experimental program was carried out using the 10 MW Neutral Beam Injection Test Stand of the Institute for Plasma Physics of Nagoya University. Metal samples, 13 different fine grain graphites, carbon - carbon composites, and pyrolytic carbon samples were subjected to heat loads between 16 and 117 MW/m 2 and pulse durations of 50 to 950 ms. Afterwards the resulting structural changes as well as threshold values for the occurance of material damage were determined. The main damage observed on carbon materials was cracking in the case of graphites and pyrolytic carbon and erosion in the case of graphites and carbon - carbon composites. Processes leading to such damage were discussed and described in form of models. Parallel to these laboratory experiments numerical analyses of the response of graphite materials to high heat fluxes were carried out. The results are in general agreement with the experimentally determined values. In order to verify the results from experiments and numerical analyses, graphite test limiters were exposed to about 900 discharges in the JIPP T-IIU tokamak. These proof tests fully confirmed the results obtained. (orig.) [de

  4. New heating load calculation in practice; Neue Heizlastberechnung in der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Kroeber, C [REHAU AG und Co., REHAU-Akademie, Erlangen (Germany)

    2004-07-01

    First the heating demand/standard heat load of the building is calculated related to DIN 4701 and than by DIN EN 12831. The topic is to considerate not new formulas and calculation steps but looking on the results of the calculation and discussing it. (GL) [German] Am Beispiel eines Mehrfamilienhauses soll dieser Frage auf den Grund gegangen werden. Dazu wird der Norm-Waermebedarf/die Norm-Heizlast des Gebaeudes zuerst nach DIN 4701 und dann nach DIN EN 12831 berechnet. Dabei liegt der Schwerpunkt der Betrachtung nicht auf den neuen Berechnungsansaetzen und Formeln, sondern vielmehr auf der Betrachtung der Berechnungsergebnisse. (orig.)

  5. Graphene oxide-loaded shortening as an environmentally friendly heat transfer fluid with high thermal conductivity

    Directory of Open Access Journals (Sweden)

    Vongsetskul Thammasit

    2017-01-01

    Full Text Available Graphene oxide-loaded shortening (GOS, an environmentally friendly heat transfer fluid with high thermal conductivity, was successfully prepared by mixing graphene oxide (GO with a shortening. Scanning electron microscopy revealed that GO particles, prepared by the modified Hummer’s method, dispersed well in the shortening. In addition, the latent heat of GOS decreased while their viscosity and thermal conductivity increased with increasing the amount of loaded GO. The thermal conductivity of the GOS with 4% GO was higher than that of pure shortening of ca. three times, from 0.1751 to 0.6022 W/mK, and increased with increasing temperature. The GOS started to be degraded at ca. 360°C. After being heated and cooled at 100°C for 100 cycles, its viscosity slightly decreased and no chemical degradation was observed. Therefore, the prepared GOS is potentially used as environmentally friendly heat transfer fluid at high temperature.

  6. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.

  7. Adaptive control in series load PWM induction heating inverters

    Science.gov (United States)

    Szelitzky, Tibor; Henrietta Dulf, Eva

    2013-12-01

    Permanent variations of the electric properties of the load in induction heating equipment make difficult to control the plant. To overcome these disadvantages, the authors propose a new approach based on adaptive control methods. For real plants it is enough to present desired performances or start-up variables for the controller, from which the algorithms tune the controllers by itself. To present the advantages of the proposed controllers, comparisons are made to a PI controller tuned through Ziegler-Nichols method.

  8. Analysis of the beam induced heat loads on the LHC arc beam screens during Run 2

    CERN Document Server

    Iadarola, Giovanni; Dijkstal, Philipp; Mether, Lotta; CERN. Geneva. ATS Department

    2017-01-01

    During Run 2 the Large Hadron Collider (LHC) has been routinely operated with 25 ns bunch spacing. In these conditions large heat loads have been measured on the beam screens of the superconducting magnets, together with other observations indicating that an electron cloud develops in the beam chambers. The analysis of these heat loads has revealed several interesting features allowing to pinpoint peculiar characteristics of the observed beam-induced heating. This document describes the main findings of this analysis including the evolution taking place during the run, the observed dependence on the beam conditions and the results from special tests and dedicated instrumentation. The differences observed in the behavior of the eight LHC arcs are also discussed.

  9. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    International Nuclear Information System (INIS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H.Y.; Fu, B.Q.; Li, M.; Liu, W.

    2013-01-01

    Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T max was found. ► Activation energy for grain growth in T evolution up to T max in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m 2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T max ) was found and accordingly the activation energy for grain growth in temperature evolution up to T max in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads

  10. Heat Load and Cooling Configurations of the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub

    2012-01-01

    A 100 MeV proton linac is under development for Proton Engineering Frontier Project (PEFP). It consists of a 50 keV injector, 3 MeV RFQ and 100 MeV DTL. The accelerated proton beam can be extracted at 20 MeV and 100 MeV by using bending magnets. Therefore, the DTL for PEFP can be divided into two sections; one for 20 MeV DTL and the other is 100 MeV DTL. The 20 MeV DTL is composed of 4 tanks and driven by a single klystron. Duty factor of the 20 MeV section is 24%. To accelerate the beam from 20 MeV to 100 MeV, we use 7 tanks, which are driven by 7 independent RF sources. Duty factor of the 100 MeV section is reduced to 8%. From the viewpoint of the heat load, there are several differences between the 20 MeV section and 100 MeV section. First, as mentioned before, the duty factors are different. Second, the accelerating gradient is changed from 1.3 MV/m for 20 MeV section to 2.58 MV/m for 100 MeV section. Third, the types of the electroquadrupole magnets inside each drift tube are different. For the 20 MeV section, we used the pool type quadrupole magnets made of enamel wires due to the limited space. The hollow conductor type quadrupole magnets are used for 100 MeV section. The heat generations of each quadrupole magnet are 1.5 kW and 0.4 kW for 20 MeV section and 100 MeV section, respectively. Detailed heat load of DTL and the configuration of cooling loop are presented in this paper

  11. Heat Load and Cooling Configurations of the PEFP DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A 100 MeV proton linac is under development for Proton Engineering Frontier Project (PEFP). It consists of a 50 keV injector, 3 MeV RFQ and 100 MeV DTL. The accelerated proton beam can be extracted at 20 MeV and 100 MeV by using bending magnets. Therefore, the DTL for PEFP can be divided into two sections; one for 20 MeV DTL and the other is 100 MeV DTL. The 20 MeV DTL is composed of 4 tanks and driven by a single klystron. Duty factor of the 20 MeV section is 24%. To accelerate the beam from 20 MeV to 100 MeV, we use 7 tanks, which are driven by 7 independent RF sources. Duty factor of the 100 MeV section is reduced to 8%. From the viewpoint of the heat load, there are several differences between the 20 MeV section and 100 MeV section. First, as mentioned before, the duty factors are different. Second, the accelerating gradient is changed from 1.3 MV/m for 20 MeV section to 2.58 MV/m for 100 MeV section. Third, the types of the electroquadrupole magnets inside each drift tube are different. For the 20 MeV section, we used the pool type quadrupole magnets made of enamel wires due to the limited space. The hollow conductor type quadrupole magnets are used for 100 MeV section. The heat generations of each quadrupole magnet are 1.5 kW and 0.4 kW for 20 MeV section and 100 MeV section, respectively. Detailed heat load of DTL and the configuration of cooling loop are presented in this paper

  12. Analysis of chiller units capacity for different heat loads considering variation of ambient air and cooling water temperature

    International Nuclear Information System (INIS)

    Coman, Aurelia Camelia; Tenescu, Mircea

    2010-01-01

    The paper purpose is to analyze the chiller units capacity to determine whether they can cope with high air and cooling water temperatures during summer time to remove heat loads imposed from Heating, Ventilation and Air Conditioning (HVAC) units in a CANDU 6 Nuclear Power Plant. The starting point is calculation of the overall heat transfer coefficient at the evaporator and condenser. They are used in heat balance equations of heat exchangers. A mathematical model was developed that simulates the refrigeration cycle to assess the response of chilled water system and its performance at different heat loads. In this analysis there were calculated values for inlet/outlet chilled water temperature and the refrigerant cycle thermodynamic parameters (condenser and evaporator pressure/temperature, refrigerant mass flowrate, refrigerant quality at the evaporator, refrigerant vapour superheated temperature at the compressor outlet, refrigerant subcooled temperature at the condenser outlet). To find the adequate functioning parameters of the installation, the MathCAD 13 software was used in all cases analyzed. The behaviour of the chiller units was investigated by examining the variation of three basic parameters, namely: - cooling water (river water) temperature; - air temperature; - heat load. The simultaneous variation of these three independent parameters allows to identify the actual chillers unit operating point (including chiller trip). (authors)

  13. TOKES studies of the thermal quench heat load reduction in mitigated ITER disruptions

    Directory of Open Access Journals (Sweden)

    S. Pestchanyi

    2017-08-01

    Full Text Available Disruption mitigation by massive gas injection (MGI of Ne gas has been simulated using the 3D TOKES code that includes the injectors of the Disruption Mitigation System (DMS as it will be implemented in ITER. The simulations have been done using a quasi-3D approach, which gives an upper limit for the radiation heat load (notwithstanding possible asymmetries in radial heat flux associated with MHD. The heating of the first wall from the radiation flash has been assessed with respect to injection quantity, the number of injectors, and their location for an H-mode ITER discharge with 280MJ of thermal energy. Simulations for the maximum quantity of Ne (8kPam3 have shown that wall melting can be avoided by using solely the three injectors in the upper ports, whereas shallow melting occurred when the midplane injector had been added. With all four injectors, melting had been avoided for a smaller neon quantity of 250Pam3 that provides still a sufficient radiation level for thermal load mitigation.

  14. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  15. Internal loading of phosphorus in western Lake Erie

    Science.gov (United States)

    Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.

    2016-01-01

    This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.

  16. Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms

    Science.gov (United States)

    Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.

    2018-05-01

    The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.

  17. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    CSIR Research Space (South Africa)

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  18. Analysis of the temperature and thermal stress in pure tungsten monoblock during heat loading and the influences of alloying and dispersion strengthening on these responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Nogami, Shuhei; Guan, Wenhai; Hasegawa, Akira [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshi-cho, Gifu, 509-5292 (Japan)

    2016-06-15

    Highlights: • The heat load response of pure W and its alloys monoblock was investigated by FEA. • The effect of alloying on heat load response of W was not clearly observed. • The possibility of cracking during cooling phase after heat load was suggested. • The effects of recrystallization and irradiation embrittlement were discussed. • W alloys will show better reliability than pure W during fusion reactor operation. - Abstract: The effects of 3% Re addition and K-bubble dispersion on temperature and stress values and the distributions thereof in a W monoblock during heat loading were investigated using finite element analysis. K-doped W-3%Re exhibited the highest recrystallization resistance but showed a higher surface temperature than pure W or K-doped W during the heat loading. The effect of K-bubble dispersion and 3% Re addition on thermal stress distribution during heat loading was not clearly observed, and residual tensile stress after heat loading, which could possibly cause cracking, was observed at the top surfaces of all materials. Because of the higher strength and temperature at which recrystallization starts for the K-doped W-3%Re and K-doped W, the probability of crack formation at the top surface might be lower compared to that in pure W. The improvement in the material properties and resistance to crack initiation and propagation in W during cyclic heat loading is crucial for the design and development of plasma-facing components. This work suggests possibility of the crack formation in a pure W monoblock in the cooling phase after a 20 MW/m{sup 2} heat loading cycle and the effectiveness of K-bubble dispersion and Re addition for improving the heat loading resistance of monoblock W.

  19. Room air conditioner load control under summer comfort constraint

    OpenAIRE

    Da Silva , David; Brancaccio , M; Duplessis , Bruno; Adnot , J

    2010-01-01

    International audience; Load control options interest is growing because it can represent a response to future network investments and to congestion problems. In this frame, the present paper gives a methodology to quantify the value of load control for heat pumps (room air conditioners), in small tertiary and residential buildings, considering the occupant's comfort and the electrical grid needs for load shift. This methodology was applied to a small office building where simulations were ma...

  20. Effect of second-phase particles on the properties of W-based materials under high-heat loading

    Directory of Open Access Journals (Sweden)

    Xiao–Yue Tan

    2016-12-01

    Full Text Available W, W-TaC, and W-TiC materials were subjected to heat–load tests in an electron beam facility (10keV, 8kW at 100 pulses. After heat loading, severe cracks and plastic deformation were detected on the surface of pure W materials. However, plastic deformation was the primary change on the surfaces of W-TaC and W-TiC alloys. This phenomenon was due to the second-phase (TaC and TiC particles dispersed in the W matrix, which strengthened the grain boundaries and prevented crack formation and propagation. In addition, the microhardness of W and W-TiC obviously decreased, whereas that of W-TaC did not change considerably before and after heat loading.

  1. Exergo-economic analysis of finned tube for waste heat recovery including phase change heat transfer

    International Nuclear Information System (INIS)

    Wu, Shuang Ying; Jiu, Jing Rui; Xiao, Lan; Li, You Rong; Liu, Chao; Xu, Jin Liang

    2013-01-01

    In this paper, an exergo-economic criterion, i.e. the net profit per unit transferred heat load, is established from the perspective of exergy recovery to evaluate the performance of finned tube used in waste heat recovery. Also, the dimensionless exergy change number is introduced to investigate the effect of the flow (mechanical) exergy loss rate on the recovered thermal exergy. Selecting R245fa as a working fluid and exhaust flue gas as a heat source, the effects of the internal Reynolds number Re_i, the external Reynolds number Re_o , the unit cost of thermal exergy ε_q , the geometric parameter of finned tube η_oβ and the phase change temperature T_v etc. on the performance of finned tube are discussed in detail. The results show that the higher T_v and η_oβ, and lower Re_i may lead to the negligible flow(mechanical) exergy loss rate. There exists an optimal value of Re_i where the net profit per unit transferred heat load peaks, while the variations of Re_o, ε_q and T_v cause monotonic change of the net profit per unit transferred heat load. The phase change temperature exerts relatively greater influence on the exergo-economic performance of finned tube in comparison with other parameters. And there exists a critical phase change temperature, where the net profit per unit transferred heat load is equal to zero.

  2. District heating grid of the Daqing Nuclear Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Changwen, Ma [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The Daqing Nuclear Heating Plant is the first commercial heating plant to be built in China. The plant is planned to be used as the main heat resource of one residential quarter of Daqing city. The main parameters of the heating plant are summarized in the paper. The load curve shows that the capacity of the NHP is about 69% of total capacity of the grid. The 12 existing boilers can be used as reserve and peak load heat resources. Two patterns of load following have have been considered and tested on the 5MW Test Heating Reactor. Experiment shows load of heat grid is changed slowly, so automatic load following is not necessary. (author). 9 figs, 1 tab.

  3. Status of the ITER full-tungsten divertor shaping and heat load distribution analysis

    International Nuclear Information System (INIS)

    Carpentier-Chouchana, S; Hirai, T; Escourbiac, F; Durocher, A; Fedosov, A; Ferrand, L; Kocan, M; Kukushkin, A S; Jokinen, T; Komarov, V; Lehnen, M; Merola, M; Mitteau, R; Pitts, R A; Sugihara, M; Firdaouss, M; Stangeby, P C

    2014-01-01

    In September 2011, the ITER Organization (IO) proposed to begin operation with a full-tungsten (W) armoured divertor, with the objective of taking a decision on the final target material (carbon fibre composite or W) by the end of 2013. This period of 2 years would enable the development of a full-W divertor design compatible with nuclear operations, the investigation of further several physics R and D aspects associated with the use of W targets and the completion of technology qualification. Beginning with a brief overview of the reference heat load specifications which have been defined for the full-W engineering activity, this paper will report on the current status of the ITER divertor shaping and will summarize the results of related three-dimensional heat load distribution analysis performed as part of the design validation. (paper)

  4. Prediction of strongly-heated internal gas flows

    International Nuclear Information System (INIS)

    McEligot, D.M.; Shehata, A.M.; Kunugi, Tomoaki

    1997-01-01

    The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions

  5. Performance characteristics and parametric optimization of an irreversible magnetic Ericsson heat-pump

    International Nuclear Information System (INIS)

    Wei Fang; Lin Guoxing; Chen Jincan; Brueck, Ekkes

    2011-01-01

    Taking into account the finite-rate heat transfer in the heat-transfer processes, heat leak between the two external heat reservoirs, regenerative loss, regeneration time, and internal irreversibility due to dissipation of the cycle working substance, an irreversible magnetic Ericsson heat-pump cycle is presented. On the basis of the thermodynamic properties of magnetic materials, the performance characteristics of the irreversible magnetic Ericsson heat-pump are investigated and the relationship between the optimal heating load and the coefficient of performance (COP) is derived. Moreover, the maximum heating load and the corresponding COP as well as the maximum COP and the corresponding heating load are obtained. Furthermore, the other optimal performance characteristics are discussed in detail. The results obtained here may provide some new information for the optimal parameter design and the development of real magnetic Ericsson heat-pumps. -- Research Highlights: →The effects of multi-irreversibilities on the performance of a magnetic heat-pump are revealed. →Mathematical expressions of the heating load and the COP are derived and the optimal performance and operating parameters are analyzed and discussed. →Several important performance bounds are determined.

  6. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  7. Advantages of the in-situ LTP distortion profile test on high-heat-load mirrors and applications

    International Nuclear Information System (INIS)

    Qian, S.; Jark, W.; Sostero, G.; Gambitta, A.; Mazzolini, F.; Savoia, A.

    1996-01-01

    The first in-situ distortion profile measurement of a high heat load mirror by use of the penta-prism LTP is presented. A maximum height distortion of 0.47 micron in tangential direction over a length of 180 mm was measured for an internally water-cooled mirror of a undulator beam line at ELETTRA while exposed to a total emitted power of 600 W (undulator gap 30 mm and current 180 mA). The experiment has an accuracy and repeatability of 0.04 micron. The test schematic and the test equipment are presented. Two measuring methods to scan a penta-prism being installed either outside or inside the vacuum chamber are introduced. Advantages and some possible applications of adopting the penta-prism LTP to make the in-situ profile test are explained

  8. Grids heat loading of an ion source in two-stage acceleration system

    International Nuclear Information System (INIS)

    Okumura, Yoshikazu; Ohara, Yoshihiro; Ohga, Tokumichi

    1978-05-01

    Heat loading of the extraction grids, which is one of the critical problems limiting the beam pulse duration at high power level, has been investigated experimentally, with an ion source in a two-stage acceleration system of four multi-aperture grids. The loading of each grid depends largely on extraction current and grid gap pressures; it decreases with improvement of the beam optics and with decrease of the pressures. In optimum operating modes, its level is typically less than -- 2% of the total beam power or -- 200 W/cm 2 at beam energies of 50 - 70 kV. (auth.)

  9. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Science.gov (United States)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  10. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2009-04-30

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  11. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-01-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  12. Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Gbeminiyi Sobamowo

    2017-10-01

    Full Text Available In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the boiling modes is taken into consideration. The developed heat transfer models and the corresponding numerical solutions are used to investigate the effects of various thermo-geometric parameters on the thermal performance of the longitudinal rectangular fin. The results shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin and the internal heat generation within the fin. The obtained results can provide a platform for improvements in the design of the fin in the heat transfer equipment.

  13. Dry out of a fluidized particle bed with internal heat generation

    International Nuclear Information System (INIS)

    Keowen, R.S.; Catton, I.

    1975-03-01

    An apparatus was designed to adequately simulate the characteristics of a particle bed formed by nuclear reactor fuel after the reactor has been operable for some length of time at high power. This was accomplished by using a 10 KW, 453 Kc induction heater, coupled through a multi-turn work coil to particle beds of cast steel shot and lead shot in water. The temperature response and dryout condition was determined for various bed levels, particle diameters, and heat fluxes. Analysis of the data retrieved from the bed was used to generate a family of curves to predict the necessary conditions for dryout to occur within a fluidized particle bed with internal heat generation. The results presented here, with internal heat generation, show that previous results with bottom heating and volume heating are conservative. (U.S.)

  14. Study on heat under dynamic loading of rubber

    Directory of Open Access Journals (Sweden)

    T. I. Igumenova

    2016-01-01

    Full Text Available A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodificator (fullerene-containing technical carbon in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physicochemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinza-Petrikeeva, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.

  15. Reproducibility of the Internal Load and Performance-Based Responses to Simulated Amateur Boxing.

    Science.gov (United States)

    Thomson, Edward D; Lamb, Kevin L

    2017-12-01

    Thomson, ED and Lamb, KL. Reproducibility of the internal load and performance-based responses to simulated amateur boxing. J Strength Cond Res 31(12): 3396-3402, 2017-The aim of this study was to examine the reproducibility of the internal load and performance-based responses to repeated bouts of a three-round amateur boxing simulation protocol (boxing conditioning and fitness test [BOXFIT]). Twenty-eight amateur boxers completed 2 familiarization trials before performing 2 complete trials of the BOXFIT, separated by 4-7 days. To characterize the internal load, mean (HRmean) and peak (HRpeak) heart rate, breath-by-breath oxygen uptake (V[Combining Dot Above]O2), aerobic energy expenditure, excess carbon dioxide production (CO2excess), and ratings of perceived exertion were recorded throughout each round, and blood lactate determined post-BOXFIT. Additionally, an indication of the performance-based demands of the BOXFIT was provided by a measure of acceleration of the punches thrown in each round. Analyses revealed there were no significant differences (p > 0.05) between repeated trials in any round for all dependent measures. The typical error (coefficient variation %) for all but 1 marker of internal load (CO2excess) was 1.2-16.5% and reflected a consistency that was sufficient for the detection of moderate changes in variables owing to an intervention. The reproducibility of the punch accelerations was high (coefficient of variance % range = 2.1-2.7%). In general, these findings suggest that the internal load and performance-based efforts recorded during the BOXFIT are reproducible and, thereby, offer practitioners a method by which meaningful changes impacting on performance could be identified.

  16. Measuring the Heat Load on the Flight ASTRO-H Soft Xray Spectrometer Dewar

    Science.gov (United States)

    DiPirro, M.; Shirron, P.; Yoshida, S.; Kanao, K.; Tsunematsu, S.; Fujimoto, R.; Sneiderman, G.; Kimball, M.; Ezoe, Y.; Ishikawa, K.; hide

    2015-01-01

    The Soft Xray Spectrometer (SXS) instrument on-board the ASTRO-H X-ray mission is based on microcalorimeters operating at 50 mK. Low temperature is achieved by use of an adiabatic demagnetization refrigerator (ADR) cyclically operating up to a heat sink at either 1.2 K or 4.5 K. The 1.2 K heat sink is provided by a 40 liter superfluid helium dewar. The parasitic heat to the helium from supports, plumbing, wires, and radiation, and the cyclic heat dumped by the ADR operation determine the liquid helium lifetime. To measure this lifetime we have used various techniques to rapidly achieve thermal equilibrium and then measure the boil-off rate of the helium. We have measured a parasitic heat of 650 microwatts and a cyclic heat of 100 microwatts for a total of 750 microwatts. This closely matches the predicted heat load. Starting with a fill level at launch of more than 33 liters results in a lifetime of greater than 4 years for the liquid helium. The techniques and accuracy for this measurement will be explained in this paper.

  17. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling

    Science.gov (United States)

    2015-08-01

    backpressure can decrease engine power by ~1% per inch Hg.27 A specific exhaust heat exchanger design would need to take this effect into account...Materials. 2009;39:2142–2148. 4. Sprouse III C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery...Adams TG. Effect of exhaust system design on engine performance. 1980. SAE Technical Paper No. 800319. 16 1 DEFENSE TECHNICAL

  18. History of heat pumps - Swiss contributions and international milestones

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, M

    2008-05-15

    Compared to conventional boilers, heating by heat pumps cuts down fuel consumption and CO{sub 2} emissions to about 50%. Compared to electric resistance heating, the energy consumption is even reduced up to 80%. Therefore, the impressive market penetration growth of heat pumps will continue. Swiss pioneers were the first to realize functioning vapour recompression plants. The first European heat pumps were realized in Switzerland. To date it remains one of the heat pump champions. Swiss pioneering work in the development of borehole heat exchangers, sewage heat recovery, oil free piston compressors and turbo compressors is well known. The biggest heat pump ever built comes from Switzerland. Although there is a fairly comprehensive natural gas distribution grid, 75% of the new single-family homes built in Switzerland are currently heated by heat pumps. This paper presents some of the highlights of this success story focusing on Swiss developments and relating them to the international milestones. In order to indicate the direction in which the future development might go to, some recent Swiss research projects are presented as well. (author)

  19. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  20. EDF studies on PWR vessel internal loading

    International Nuclear Information System (INIS)

    Bellet, S.; Vallat, S.

    1998-01-01

    EDF has undertaken some mechanics and thermal-hydraulics studies with the objective of mastering plant phenomena today and in order to numerically predict the behaviour of vessel internals on units planned for the future. From some justifications already underway after in operation incidents (wear and drop time of RCCA rods, fuel deflection, adapter cracks, baffle bolt cracks) we intend to control reactor vessel flows and mechanical behaviour of internal structures. During normal operation, thermal-hydraulic is the main load of vessel internals. The current approach consists of acquiring the capacity to link different calculations, taking care that codes are qualified for physical phenomena and complex 3D geometries. For baffle assembly, a more simple model of this structure has been used to treat the physical phenomena linked to the LOCA transient. Results are encouraging mainly due to code capacity progression (resolution and models), which allows more and more complex physical phenomena to be treated, like turbulence flow and LOCA. (author)

  1. A study on the heat transfer characteristics of a self-oscillating heat pipe

    International Nuclear Information System (INIS)

    Yoon, Seok Hun; Oh, Cheol; Choi, Jae Hyuk

    2002-01-01

    In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe

  2. International symposium on transient convective heat transfer: book of abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting

  3. Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation

    International Nuclear Information System (INIS)

    Wang Haichao; Jiao Wenling; Lahdelma, Risto; Zou Pinghua

    2011-01-01

    Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (β). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at β=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently. - Highlights: ► Combined heating systems comply with the energy structure reformation in China. ► We consider the current state of the art of cogeneration systems in China. ► Combined heating systems can be economically more feasible and sustainable. ► The net heating cost of a combined heating system is more sensitive to coal price. ► The optimal basic heat load ratio is more easily influenced by gas price.

  4. A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Xu, Zhengxin; Ren, Chengqin; Deng, Banglin

    2013-01-01

    In this paper, a novel approach for exhaust heat recovery was proposed to improve IC (internal combustion) engine fuel efficiency and also to achieve the goal for direct usage of methanol as IC engine fuel. An open organic Rankine cycle system using methanol as working medium is coupled to IC engine exhaust pipe for exhaust heat recovery. In the bottom cycle, the working medium first undergoes dissociation and expansion processes, and is then directed back to IC engine as fuel. As the external bottom cycle and the IC engine main cycle are combined together, this scheme forms a combined thermodynamic cycle. Then, this concept was applied to a turbocharged engine, and the corresponding simulation models were built for both of the external bottom cycle and the IC engine main cycle. On this basis, the energy saving potential of this combined cycle was estimated by parametric analyses. Compared to the methanol vapor engine, IC engine in-cylinder efficiency has an increase of 1.4–2.1 percentage points under full load conditions, while the external bottom cycle can increase the fuel efficiency by 3.9–5.2 percentage points at the working pressure of 30 bar. The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points. - Highlights: • A combined thermodynamic cycle using methanol as working medium for IC engine exhaust heat recovery is proposed. • The external bottom cycle of exhaust heat recovery and IC engine working cycle are combined together. • IC engine fuel efficiency could be improved from both in-cylinder working cycle and external bottom cycle. • The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points at full load

  5. The optimization of longitudinal convective fins with internal heat generation

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)

  6. Effect of heat loads on the plasma facing components of demo

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@partner.kit.edu [ITEP, Karlsruhe Institute of Technology (Germany); Fetzer, R. [IHM, Karlsruhe Institute of Technology (Germany); Bazylev, B. [INR, Karlsruhe Institute of Technology (Germany)

    2016-11-01

    Highlights: • Under the DEMO1 stationary operation the nominal power fluxes along the magnetic field at the FW blanket modules is expected about 50 MW/m{sup 2}. • In the current design and averaged incident angle about 3–4.5° (similar to ITER) the engineering power load to the FW is expected within 2.5÷3.9 MW/m{sup 2}. • In the case of the unmitigated Type I ELMs unavoidable in the higher confinement H-mode of operation energy load per ELM is about 20 MJ/m{sup 2} along the field line, arriving at a frequency of 0.8 Hz with deposition time of 0.6 ms per each ELM. - Abstract: In this paper we analyse a thermo-hydraulic performance of the first wall blanket module during the stationary DEMO operation with the edge localized mode (ELM). Heat loads are estimated based on scaling arguments and predictions from the peeling-ballooning ELM model. Effect of parallel heat fluxes intersecting with the first wall panels and avoidance of overheating by inclination of the panels are considered. The material temperatures of the W/EUROFER sandwich type module with water cooling stainless steel tube and Cu alloy compliance embedded into EUROFER is calculated by using the MEMOS code. The calculations were carried out indicating the required geometric parameters as well as the cooling conditions which allow keeping materials temperatures within allowable engineering limits. Effect of inclination of the first wall plates to avoid the misalignment problems is considered.

  7. High heat load x-ray optics research and development at the Advanced Photon Source -- An overview

    International Nuclear Information System (INIS)

    Lee, Wah-Keat; Mills, D.M.

    1993-09-01

    Insertion devices at third generation synchrotron radiation sources such as the APS are capable of producing x-ray beams with total power in excess of 7 kilowatts or power densities of 150 watts/mm 2 at a typical location of the optical components. Optical elements subjected to these types of heat fluxes will suffer considerably unless carefully designed to withstand these unprecedented power loadings. At the Advanced Photon Source (APS), we have an aggressive R ampersand D program aimed at investigating possible methods to mitigate thermal distortions. The approaches being studied include, improved heat exchangers, use of liquid gallium and liquid nitrogen as coolants, novel crystal geometries, power filtering, and replacement of silicon with diamond for crystal monochromators. This paper will provide an overview of the high heat load x-ray optics program at the APS

  8. Load bearing capacities and elastic-plastic behavior of reactor vessel internals

    International Nuclear Information System (INIS)

    Watanabe, Keita; Nagase, Ryuichi

    2017-01-01

    Radial Support Keys (RSKs) are installed at the bottom of Reactor Vessel Internal (RVI) of Pressurized Water Reactor (PWR) and fit into Core Support Lugs of Reactor Pressure Vessel (RPV). This structure provides reactor core horizontal support and transmits the loads between RVI and RPV. RSK is one of the critical parts of RVI from the view point of earthquake-proof safety. In order to assure the structural integrity of Nuclear Reactor in case of massive earthquake, load bearing capacities of RSK are confirmed by static loading tests with reduced-scale mockups. In addition, collapse loads of actual components calculated by Limit Analyses are conservative enough compared to the load bearing capacities confirmed by the test. Thus, the methodology to calculate collapse load by Limit Analysis is applicable to evaluation of structural integrity for RSK. (author)

  9. An Optimal Control Approach for an Overall Cryogenic Plant Under Pulsed Heat Loads

    CERN Document Server

    Gómez Palacin, Luis; Blanco Viñuela, Enrique; Maekawa, Ryuji; Chalifour, Michel

    2015-01-01

    This work deals with the optimal management of a cryogenic plant composed by parallel refrigeration plants, which provide supercritical helium to pulsed heat loads. First, a data reconciliation approach is proposed to estimate precisely the refrigerator variables necessary to deduce the efficiency of each refrigerator. Second, taking into account these efficiencies, an optimal operation of the system is proposed and studied. Finally, while minimizing the power consumption of the refrigerators, the control system maintains stable operation of the cryoplant under pulsed heat loads. The management of the refrigerators is carried out by an upper control layer, which balances the relative production of cooling power in each refrigerator. In addition, this upper control layer deals with the mitigation of malfunctions and faults in the system. The proposed approach has been validated using a dynamic model of the cryoplant developed with EcosimPro software, based on first principles (mass and energy balances) and the...

  10. Heat load of a P-doped GaAs photocathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-01-01

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  11. Experimental and numerical thermohydraulic study of a supercritical helium loop in forced convection under pulsed heat loads

    International Nuclear Information System (INIS)

    Lagier, Benjamin

    2014-01-01

    Future fusion reactor devices such as ITER or JT-60SA will produce thermonuclear fusion reaction in plasmas at several millions of degrees. The confinement in the center of the chamber is achieved by very intense magnetic fields generated by superconducting magnets. These coils have to be cooled down to 4.4 K through a forced flow of supercritical helium. The cyclic behavior of the machines leads to pulsed thermal heat loads which will have to be handled by the refrigerator. The HELIOS experiment built in CEA Grenoble is a scaled down model of the helium distribution system of the tokamak JT-60SA composed of a saturated helium bath and a supercritical helium loop. The thesis work explores HELIOS capabilities for experimental and numerical investigations on three heat load smoothing strategies: the use of the saturated helium bath as an open thermal buffer, the rotation speed variation of the cold circulator and the bypassing of the heated section. The developed model describes well the physical evolutions of the helium loop (pressure, temperature, mass flow) submitted to heat loads observed during experiments. Advanced controls have been tested and validated to improve the stability of the refrigerator and to optimize the refrigeration power. (author) [fr

  12. Self-heating forecasting for thick laminate specimens in fatigue

    Science.gov (United States)

    Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.

  13. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  14. Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools

    International Nuclear Information System (INIS)

    Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools

  15. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  16. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  17. Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution

    Energy Technology Data Exchange (ETDEWEB)

    Suphanit, B. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Pracha Utit Rd., Tungkru, Bangkok 10140 (Thailand)

    2010-03-15

    The internally heat-integrated distillation column (HIDiC) is a complex column configuration which is more energy efficient than the equivalent conventional column or the distillation column with direct vapor recompression scheme (VRC). Exploiting the heat integration between two diabatic sections operating at different pressures of the HIDiC can greatly enhance the energy performance of the system. On the other hand, the design and optimization of HIDiC is more difficult than those of the conventional distillation column or the column with VRC. The former involves many design parameters, and the most critical one is the pressure ratio between both diabatic sections. However, the heat distribution along the diabatic sections is also another significant factor not yet thoroughly investigated. In this work, two typical distribution schemes, i.e. uniform heat transfer area and uniform heat distribution, are studied by applying a novel approach to solve the simulation problem in Aspen Plus 2004.1. The comparison of both distributing schemes is discussed via two widely-used case studies, namely benzene-toluene separation and propylene-propane splitter. (author)

  18. Variation and design criterion of heat load ratio of generator for air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Liming; Liu, Jinping

    2016-01-01

    Highlights: • Design criterion of heat load ratio of generator is vital to system performance. • Heat load ratio of generator changes with working condition. • Change of heat load ratio of generator for four systems was obtained and compared. • Design criterion of heat load ratio of generator was presented. - Abstract: The heat load ratio of generator (HLRG) is a special system parameter because it is not fixed at the design value but changes with the working condition. For the air cooled chiller, the deviation from the design working condition occurs easily due to the variation of the surrounding temperature. The system is likely to suffer from crystallization when the working condition is different from the designed one if the HLRG is designed improperly. Consequently, the design criterion of HLRG based on a broad range of working condition is essential and urgent to the development of air cooled lithium bromide–water double effect absorption chiller. This paper mainly deals with the variation of HLRG with the working condition as well as corresponding design criterion. Four types of double effect chillers named series, pre-parallel, rear parallel and reverse parallel flow system were considered. The parametric model was developed by the introduction of a new thermodynamic relationship of generator. The change of HLRG for different types of chillers with the working condition was analyzed and compared. The corresponding design criterion of HLRG was presented. This paper is helpful for further improvement of the performance and reliability of air cooled lithium bromide–water double effect absorption chiller.

  19. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures

    International Nuclear Information System (INIS)

    Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Yang, Xiao-Guang; Tian, Hua; Wang, Chao-Yang

    2016-01-01

    Highlights: • Self-heating lithium-ion battery (SHLB) structure provided a practical solution to the poor performance at subzero temperatures. • We report an improved SHLB that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than previously reported. • The nickel foil heating element embedded inside a SHLB cell plays a dominant role in rapid self-heating. • The embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS). • 2-sheet design self-heats faster than 1-sheet design due to more uniform internal temperature distribution. - Abstract: The recently discovered self-heating lithium-ion battery structure provided a practical solution to the poor performance at subzero temperatures that has hampered battery technology for decades. Here we report an improved self-heating lithium-ion battery (SHLB) that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than that reported previously. We reveal that a nickel foil heating element embedded inside a SHLB cell plays a dominant role in self-heating and we experimentally demonstrate that a 2-sheet design can achieve dramatically accelerated self-heating due to more uniform internal temperature distribution. We also report, for the first time, that this embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS) due to the perfectly linear relationship between the foil’s electrical resistance and temperature.

  20. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  1. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Withers, Chuck [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; McIlvaine, Janet [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Chasar, Dave [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Beal, David [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center

    2018-02-07

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. The problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.

  2. Series load induction heating inverter state estimator using Kalman filter

    Directory of Open Access Journals (Sweden)

    Szelitzky T.

    2011-12-01

    Full Text Available LQR and H2 controllers require access to the states of the controlled system. The method based on description function with Fourier series results in a model with immeasurable states. For this reason, we proposed a Kalman filter based state estimator, which not only filters the input signals, but also computes the unobservable states of the system. The algorithm of the filter was implemented in LabVIEW v8.6 and tested on recorded data obtained from a 10-40 kHz series load frequency controlled induction heating inverter.

  3. Tungsten erosion under plasma heat loads typical for ITER type I Elms and disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Marchenko, A.K. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Trubchaninov, S.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tsarenko, A.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)

    2005-03-01

    The behavior of pure sintered tungsten under repetitive plasma heat loads of {approx}1 MJ/m{sup 2} (which is relevant to ITER ELMs) and 25 MJ/m{sup 2} (ITER disruptions) is studied with the quasi-steady-state plasma accelerator QSPA Kh-50. The ELM relevant heat loads have resulted in formation of two kinds of crack networks, with typical sizes of 10-20 {mu}m and {approx}1 mm, at the surface. Tungsten preheating to 600 deg. C indicates that fine intergranular cracks are probably caused by thermal stresses during fast resolidification of the melt, whereas large cracks are the result of ductile-to-brittle transition. For several hundreds of ELM-like exposures, causing surface melting, the melt motion does not dominate the profile of the melt spot. The disruption relevant experiments demonstrated that melt motion became the main factor of tungsten damage.

  4. Nonsteady heat conduction code with radiation boundary conditions

    International Nuclear Information System (INIS)

    Fillo, J.A.; Benenati, R.; Powell, J.

    1975-01-01

    A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)

  5. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  6. Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system

    Directory of Open Access Journals (Sweden)

    Demić Miroslav D.

    2016-01-01

    Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.

  7. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  8. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  9. Heat recovery networks synthesis of large-scale industrial sites: Heat load distribution problem with virtual process subsystems

    International Nuclear Information System (INIS)

    Pouransari, Nasibeh; Maréchal, Francois

    2015-01-01

    Highlights: • Synthesizing industrial size heat recovery network with match reduction approach. • Targeting TSI with minimum exchange between process subsystems. • Generating a feasible close-to-optimum network. • Reducing tremendously the HLD computational time and complexity. • Generating realistic network with respect to the plant layout. - Abstract: This paper presents a targeting strategy to design a heat recovery network for an industrial plant by dividing the system into subsystems while considering the heat transfer opportunities between them. The methodology is based on a sequential approach. The heat recovery opportunity between process units and the optimal flow rates of utilities are first identified using a Mixed Integer Linear Programming (MILP) model. The site is then divided into a number of subsystems where the overall interaction is resumed by a pair of virtual hot and cold stream per subsystem which is reconstructed by solving the heat cascade inside each subsystem. The Heat Load Distribution (HLD) problem is then solved between those packed subsystems in a sequential procedure where each time one of the subsystems is unpacked by switching from the virtual stream pair back into the original ones. The main advantages are to minimize the number of connections between process subsystems, to alleviate the computational complexity of the HLD problem and to generate a feasible network which is compatible with the minimum energy consumption objective. The application of the proposed methodology is illustrated through a number of case studies, discussed and compared with the relevant results from the literature

  10. The Droplets Condensate Centering in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Shakshin, S. L.; Alekseev, A. P.

    2017-11-01

    The results of experimental studies of the process of condensate microdroplets centering contained in the moving moist vapour in the vapour channel of short heat pipes (HPs) for large thermal loads are presented. A vapour channel formed by capillary-porous insert in the form of the inner Laval-liked nozzle along the entire length of the HP. In the upper cover forming a condensation surface in the HP, on the diametrical line are installed capacitive sensors, forming three capacitors located at different distances from the longitudinal axis of the vapour channel. With increasing heat load and the boil beginning in the evaporator a large amount of moist vapour in the vapour channel of HP occur the pressure pulsation with frequency of 400-500 Hz and amplitude up to 1·104Pa. These pulsations affect the moving of the inertial droplets subsystem of the vapour and due to the heterogeneity of the velocity profile around the particle flow in the vapour channel at the diameter of microdroplets occurs transverse force, called the Saffman force and shear microdroplets to the center of vapour channel. Using installed in the top cover capacitors we can record the radial displacement of the condensable microdroplets.

  11. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  12. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  13. A contribution to the investigation of the heat load of shock absorbers of semi-active suspensions in motor vehicles

    Directory of Open Access Journals (Sweden)

    Miroslav D. Demić

    2013-10-01

    Full Text Available Dynamic simulation, based on modeling, has a significant role during the process of vehicle development. It is especially important in the first stages of vehicle design, when relevant vehicle parameters are to be defined. Shock absorbers as executive parts of vehicle semi-active suspension systems suffer thermal loads, which may result in damage and degradation of ther characteristics. Therefore,this paper shows an attempt to analyze converting of mechanical work into heat by using the dynamic simulation method. Introduction Shock absorbers are integral elements of semi-active suspension systems for vehicles (hereinafter SASS. They directly affect the active vehicle safety. The role of shock absorbers is to absorb mechanical vibrations transferred from the road and to ensure the safety of passengers in a vehicle. The kinetic energy of vehicle vibrations transforms into mechanical work or heat in shock absorbers. In practice, in the first stage of vehicle development, the shock absorber parameters are chosen from the condition of damping vibrations of vehicles, but their thermal shock loads should be also taken into account. Motor vehicles have complex dynamic characteristics manifested by spatial movement, parameters change during operation, a number of disturbing influences, backlash, friction, hysteresis, etc. The above-mentioned dynamic phenomena, especially vibration, lead to fatigue of driver and users, reduce the life of the vehicle and its systems, etc. The main objective of the system is to reduce the reliance of the above-mentioned negative effects, improving the vehicle behavior on the road and allow the exploitation of vehicles in a wide range of service conditions. Classical systems cannot satisfiy these conditions, so there was a need to introduce new suspension systems with controlled characteristics (briefly called "semi-active", or "active" systems. Oscillatory model of vehicle The differential equations of vibratory motion of

  14. Comparison of the Performance of Chilled Beam with Swirl Jet and Diffuse Ceiling Air Supply: Impact of Heat Load Distribution

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Kosonen, Risto

    2013-01-01

    The impact of heat load strength and positioning on the indoor environment generated by diffuse ceiling air supply and chilled beam with radial swirl jet was studied and compared. An office room with two persons and a meeting room with six persons were simulated in a test room (4.5 x 3.95 x 3.5 m3......) and Category B thermal environment in the meeting room at high heat load of 94 W∙m−2. The air distribution pattern was influenced by the convective flows from the heat sources. The maximum local velocity in the occupied zone was 0.23–0.26 m∙s−1. The diffuse ceiling supply did not ensure complete mixing...... temperature was controlled at 24 °C. The quality of the generated indoor environment as defined in ISO standard 7730 (2005) was assessed based on comprehensive physical measurements. The systems created Category A thermal environment in cooling situations at heat load of 50 W∙m−2 and 78 W∙m−2 (office room...

  15. FLANGE-ORNL, Flanged Pipe Joint Stress Analysis, Internal Pressure, Moment Loads, Temperature

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1979-01-01

    1 - Description of problem or function: FLANGE-ORNL calculates appropriate loads, stresses, and displacements for the flanges, bolts, and gaskets that comprise a flanged piping joint for internal pressure or moment loading on the pipe, temperature difference between the flange hub and ring, and variations in bolt load that result from pressure, hub-ring temperature gradient and/or bolt-ring temperature differences. Flanges considered may be tapered-hub, straight or blind. 2 - Method of solution: The solution is based on discontinuity analysis and the theory of plates and shells

  16. Homotopy Perturbation Method for Thin Film Flow and Heat Transfer over an Unsteady Stretching Sheet with Internal Heating and Variable Heat Flux

    Directory of Open Access Journals (Sweden)

    I-Chung Liu

    2012-01-01

    Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.

  17. Commercial high efficiency dehumidification systems using heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  18. Mass transfer experiments for the heat load during in-vessel retention of core melt

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Chung, Bum Jin [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-08-15

    We investigated the heat load imposed on the lower head of a reactor vessel by the natural convection of the oxide pool in a severe accident. Mass transfer experiments using a CuSO{sub 4}–H{sub 2}SO{sub 4} electroplating system were performed based on the analogy between heat and mass transfer. The Ra′{sub H} of 10{sup 14} order was achieved with a facility height of only 0.1 m. Three different volumetric heat sources were compared; two had identical configurations to those previously reported, and the other was designed by the authors. The measured Nu's of the lower head were about 30% lower than those previously reported. The measured angular heat flux ratios were similar to those reported in existing studies except for the peaks appearing near the top. The volumetric heat sources did not affect the Nu of the lower head but affected the Nu of the top plate by obstructing the rising flow from the bottom.

  19. Relationships Between Internal and External Match-Load Indicators in Soccer Match Officials.

    Science.gov (United States)

    Castillo, Daniel; Weston, Matthew; McLaren, Shaun J; Cámara, Jesús; Yanci, Javier

    2017-08-01

    The aims of this study were to describe the internal and external match loads (ML) of refereeing activity during official soccer matches and to investigate the relationship among the methods of ML quantification across a competitive season. A further aim was to examine the usefulness of differential perceived exertion (dRPE) as a tool for monitoring internal ML in soccer referees. Twenty field referees (FRs) and 43 assistant referees (ARs) participated in the study. Data were collected from 30 competitive matches (FR = 20 observations, AR = 43 observations) and included measures of internal (Edwards' heart-rate-derived training impulse [TRIMP EDW ]) ML, external (total distance covered, distance covered at high speeds, and player load) ML, and ML differentiated ratings of perceived respiratory (sRPE res ) and leg-muscle (sRPE mus ) exertion. Internal and external ML were all greater for FRs than for ARs (-19.7 to -72.5), with differences ranging from very likely very large to most likely extremely large. The relationships between internal-ML and external-ML indicators were, in most cases, unclear for FR (r internal and external ML. Moreover, dRPE represents distinct dimensions of effort and may be useful in monitoring soccer referees' ML during official matches.

  20. Design concept for vessels and heat exchangers

    International Nuclear Information System (INIS)

    Elfmann, W.; Ferrari, L.D.B.

    1981-01-01

    A design concept for vessels and heat exchangers against internal and external loads resulting from normal operation and accident is shown. A definition and explanation of the operating conditions and stress levels are given. A description of the type of analysis (stress, fatigue, deformation, stability, earthquake and vibration) is presented in detail, also including technical guidelines which are used for the vessels and heat exchangers and their individual structure parts. (Author) [pt

  1. PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)

    Science.gov (United States)

    2015-09-01

    The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.

  2. Experimental simulation and analysis of off-normal heat loads accompanying plasma disruptions

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Bakker, J.; Stad, R.C.L. van der; Klippel, H.T.

    1990-12-01

    The plasma disruption heat load is simulated experimentally using a pulsed laser beam with high energy density and short pulse duration (0.2-20 mm) covering a certain range of ITER design values. The present status of the laser heat flux test facility and new experimental tools are described. Spatial and time resolved profiles of the laser beam are given. Experimental results are presented including the variation of angle of incidence of the laser beam relative to the material surface. The nature and effects of the induced vapour plume are discussed. Materials studied are relevant to the ITER design. Experimental results are compared with numerical calculations. Some implications for the design of First Wall and Divertor of ITER are addressed. (author). 13 refs.; 5 figs

  3. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer

  4. International symposium on radiative heat transfer: Book of abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting

  5. Measurement of the nonaxisymmetric heat load distribution on the first wall of TFTR due to locked modes

    International Nuclear Information System (INIS)

    Janos, A.C.; Fredrickson, E.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.

    1992-01-01

    The first wall of TFTR is covered in large part (23%) by an inner-wall bumper limiter which is the primary power handling structure in TFTR. The limiter is comprised of more than 2000 tiles, and is instrumented with a large number (>100) of thermocouples in a two-dimensional (2D) array, primarily for protection of the wall. While only about 5% of the tiles are monitored, this thermocouple system is nevertheless capable of mapping details in the nonaxisymmetric, as well as symmetric, heat load patterns encountered under different conditions. In particular, helical heating patterns are observed in discharges which have locked modes. The helical patterns clearly match the expected trajectories based on the m/n mode numbers obtained from Mirnov coils (m/n=2/1 and 4/1), so that the thermocouple system can and was used to identify the existence and mode number of a locked mode. While TFTR discharges rarely suffer from locked modes, locked modes always alter the heating pattern. The locked modes are found to very significantly redistribute the heat load for both ohmic and NBI heated discharges. Locked modes can make what were the coldest areas into the hottest areas, and vice versa. Locked modes also can alter the heat pattern resulting from the frequent disruptions which occur as a result of a locked mode

  6. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    Science.gov (United States)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  7. Damage to tungsten macro-brush targets under multiple ELM-like heat loads. Experiments vs. numerical simulations and extrapolation to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.; Landman, I. [Forschungszentrum Karlsruhe (Germany). IHM; Janeschitz, G. [Forschungszentrum Karlsruhe (DE). Fusion EURATOM] (and others)

    2007-07-01

    Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto PFCs by multiple ELMs (about 104 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. The expected energy heat loads on the ITER divertor during Type I ELM are in range 0.5-4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. Tungsten macro-brush armour (W-brushes) is foreseen as one of plasma facing components (PFC) for ITER divertor and dome. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of W erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations validated against target erosion of the experiments at the plasma gun facility QSPA-T. Within the collaboration established between EU fusion programme and the Russian Federation, W-brush targets (produced either from pure tungsten or tungsten with 1% of La{sub 2}O{sub 3}) manufactured according to the EU specifications for the ITER divertor targets, have been exposed to multiple ITER ELM-like loads in plasma gun facilities at TRINITI in the range 0.5 - 2.2 MJ/m2 with pulse duration of 0.5 ms. The measured material erosion data have been used to validate the codes MEMOS and PHEMOBRID. Numerical simulations, including 3D-simulations (codes MEMOS and PHEMOBRID), carried out for the conditions of the QSPA-T experiments with heat loads in the range 0.5-2.2 MJ/m{sup 2} and the timescale 0.5 ms demonstrated a rather good agreement with the data obtained at the plasma gun facility QSPA: melting of brush edges at low heat loads, intense melt motion and bridge formation caused by the Rayleigh-Taylor instability at heat loads Q>1.3 MJ/m{sup 2}. The melt splashing generated by the Kelvin-Helmholtz, and Rayleigh

  8. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Science.gov (United States)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  9. An Internally Heated Shape Memory Polymer Dry Adhesive

    Directory of Open Access Journals (Sweden)

    Jeffrey Eisenhaure

    2014-08-01

    Full Text Available A conductive epoxy-based shape memory polymer (SMP is demonstrated using carbon black (CB as a dopant for the purpose of creating an SMP dry adhesive system which can internally generate the heat required for activation. The electrical and mechanical properties of the CB/SMP blends for varying dopant concentrations are characterized. A composite adhesive is created to minimize surface contact resistance to conductive tape acting as electrodes, while maintaining bulk resistivity required for heat generation due to current flow. The final adhesive can function on flat or curved surfaces. As a demonstration, a 25 mm wide by 45 mm long dry adhesive strip is shown to heat evenly from an applied voltage, and can easily hold a mass in excess of 6 kg when bonded to a spherical concave glass surface using light pressure at 75 °C.

  10. limit loads for wall-thinning feeder pipes under combined bending and internal pressure

    International Nuclear Information System (INIS)

    Je, Jin Ho; Lee, Kuk Hee; Chung, Ha Joo; Kim, Ju Hee; Han, Jae Jun; Kim, Yun Jae

    2009-01-01

    Flow Accelerated Corrosion (FAC) during inservice conditions produces local wall-thinning in the feeder pipes of CANDU. The Wall-thinning in the feeder pipes is main degradation mechanisms affecting the integrity of piping systems. This paper discusses the integrity assessment of wall-thinned feeder pipes using limit load analysis. Based on finite element limit analyses, this paper compare limit loads for wall-thinning feeder pipes under combined bending and internal pressure with proposed limit loads. The limit loads are determined from limit analyses based on rectangular wall-thinning and elastic-perfectly-plastic materials using the large geometry change.

  11. The effect of the combined treatment of gamma irradiation and heating on the aerobic bacterial load of white and black peppers

    International Nuclear Information System (INIS)

    Mohd Khan Ayob; Ismail Bahari; Osman Hassan; Verumandy Kaleswaran

    1985-01-01

    The effect of combined heat-irradiation treatment on the aerobic bacterial load of black and white peppers were evaluated in comparison with that of heat or irradiation treatment only. The irradiation doses applied were 0 (control), 2, 4, 6 and 8 kGy and the heating temperatures were 28 (control), 50, 60, 70 and 80 deg C. Results indicated that gamma radiation of 7 kGy and 5 kGy were capable of reducing bacterial population from 3.6 x 10 6 /g and 2.9 x 10 5 /g to 3 /g black and white peppers, respectively. Heating at drying temperature could only reduce the bacterial contaminants to 1/2 log cycle. Combined treatment of irradiation followed by heating is more effective in reducing the bacterial load, and the combined treatment of heating followed by irradiation showed similar effects as in irradiation treatment alone. (author)

  12. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2011-10-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  13. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  14. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Directory of Open Access Journals (Sweden)

    Vilémová Monika

    2015-06-01

    Full Text Available Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS and by water stabilized plasma spraying (WSP technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns. Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.

  15. Study of heat and hydraulic diffusions in clays under thermal loading

    International Nuclear Information System (INIS)

    Djeran, I.

    1993-01-01

    This study is a cost-sharing research programme on radioactive waste disposal and radioactive waste management. The thermal conductivity of clays is the fundamental parameter which governs the thermal diffusion and the pore pressure of the rock mass under thermal loading. Experiments have been undertaken in a reduced model, respecting representative boundary conditions. They show that the thermal conductivity depends on temperature in an unfavourable sense to the decrease of heat. On the other hand, the outflow of pore water, from the source to the exterior, has a low amplitude. A single model of porous medium allows the observations and illustrates the effects of the variation of conductivity on the behaviour of rock mass. Finally, thanks to the numerical formulations specially developed, we examine the incident of the particularities of proposed models on the thermohydromechanical behaviour of geometrically simple structures subjected to a given thermal loading

  16. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  17. Loads Providing Ancillary Services: Review of InternationalExperience-- Technical Appendix: Market Descriptions

    Energy Technology Data Exchange (ETDEWEB)

    Grayson Heffner, Charles Goldman, Kintner-Meyer, M; Kirby, Brendan

    2007-05-01

    In this study, we examine the arrangements for andexperiences of end-use loads providing ancillary services (AS) in fiveelectricity markets: Australia, the United Kingdom (UK), the Nordicmarket, and the ERCOT and PJM markets in the United States. Our objectivein undertaking this review of international experience was to identifyspecific approaches or market designs that have enabled customer loads toeffectively deliver various ancillary services (AS) products. We hopethat this report will contribute to the ongoing discussion in the U.S.and elsewhere regarding what institutional and technical developments areneeded to ensure that customer loads can meaningfully participate in allwholesale electricity markets.

  18. Effects of laboratory heating, cyclic pore pressure, and cyclic loading on fracture properties of asphalt mixture.

    Science.gov (United States)

    2012-04-01

    This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...

  19. Effect of LED lighting on the cooling and heating loads in office buildings

    International Nuclear Information System (INIS)

    Ahn, Byung-Lip; Jang, Cheol-Yong; Leigh, Seung-Bok; Yoo, Seunghwan; Jeong, Hakgeun

    2014-01-01

    Highlights: • Application of heat control strategy reduces total energy consumption of LED lighting. • Convective heat from LED lighting should be emitted outdoors during cooling period. • Seasonal optimization of convective heat lowers total energy consumption. - Abstract: LED lighting has the potential to provide energy savings, and in many countries, there are policies to encourage its use owing to its higher efficiency and longer life in comparison to other lighting fixtures. However, since 75–85% of the light electric power in LED lights is still generated as heat, the sole use of LED lighting in a building could have a negative effect on the cooling load. In this paper, we study the heating properties of LED lighting and establish a management strategy to exploit these properties to reduce the energy used for heating and cooling of buildings. Using a simulation program, the energy consumption of the Green Building in Daejeon, Korea, and the virtual building provided by the U.S. Department of Energy (DOE) was computed according for different light fixtures. A control strategy is more applicable to LED lighting than to general fluorescent lighting, especially for the cooling of a building, because the use of a return-air duct and the heat sinks on the LED fixtures allow the heat to be better directed. Deployment of LED lights in combination with such a control strategy can help to increase the energy efficiency of a building

  20. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    Science.gov (United States)

    Hollmann, E. M.; Commaux, N.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Parks, P. B.; Shiraki, D.

    2015-10-01

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  1. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    International Nuclear Information System (INIS)

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Shiraki, D.; Eidietis, N. W.; Parks, P. B.; Lasnier, C. J.

    2015-01-01

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect

  2. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  3. First results of out-of-pile experiments concerning cooling phenomena of molten layers with internal heat sources

    International Nuclear Information System (INIS)

    Fieg, G.

    1977-01-01

    After severe hypothetical reactor accidents, large amounts of molten core material with internal heat generation may appear. It must be guaranteed that these materials can be kept within the containment. To clarify this situation, the knowledge of heat transport from liquid layers with internal heat generation is needed. First experimental results on heat transport from internally heated horizontal fluid layers are presented. The experiments have been performed in a smooth horizontal vessel with the base of 15 x 15 cm 2 . The Joule-heated liquid layer (depth L = 1 cm - 3.5 cm) is enclosed between two isothermal horizontal walls. They are polished fore parts of heat exchangers. The temperatures of the walls were held constant with thermostatically controlled water circulating through the heat exchangers. Horizontal heat fluxes were depressed by appropriate insulation of the side walls. The total heat transport to the upper and lower boundaries has been measured by the mass transport through the heat exchangers and the temperature rise of the cooling water

  4. Internal heat gain from different light sources in the building lighting systems

    Directory of Open Access Journals (Sweden)

    Suszanowicz Dariusz

    2017-01-01

    Full Text Available EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  5. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  6. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Czech Academy of Sciences Publication Activity Database

    Vilémová, Monika; Matějíček, Jiří; Nevrlá, Barbara; Chernyshova, M.; Gasior, P.; Kowalska-Strzeciwilk, E.; Jäger, Aleš

    2015-01-01

    Roč. 60, č. 2 (2015), s. 275-283 ISSN 0029-5922. [Kudowa Summer School 2014 "Towards Fusion Energy"/12./. Kudowa Zdrój, 09.06.2014-13.06.2014] R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Tungsten * fusion * heat loading * irradiation * bubbles * surface damage Subject RIV: JJ - Other Materials; JJ - Other Materials (FZU-D) Impact factor: 0.546, year: 2015 http://www.nukleonika.pl/www/back/full/vol60_2015/v60n2p275f.pdf

  7. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  8. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated

  9. Network model of free convection within internally heated porous media

    International Nuclear Information System (INIS)

    Conrad, P.W.

    1977-01-01

    A hypothetical core-disruptive accident (HCDA) in a liquid metal fast breeder reactor (LMFBR) may result in the formation of an internally heated debris bed. Considerable attention has been given to postulated mechanisms by which such beds may be cooled. It is the purpose of the work described to demonstrate a method for computing the heat transfer from such a bed to the overlying sodium pool due to single-phase, free convection

  10. Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants – Analytical approach

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.

    2016-01-01

    Highlights: • An analytical method regulated the air flow rate in an air-cooled heat exchanger. • Performance of an ACHE in a propane cycle in an LNG plant was evaluated. • Summer inlet air temperature had higher impact on ACHE air flow rate requirement. - Abstract: An analytical method is presented to evaluate the air flow rate required in an air-cooled heat exchanger used in a propane pre-cooling cycle operating in an LNG (liquefied natural gas) plant. With variable ambient air inlet temperature, the air flow rate is to be increased or decreased so as to assure and maintain good performance of the operating air-cooled heat exchanger at the designed parameters and specifications. This analytical approach accounts for the variations in both heat load and ambient air inlet temperature. The ambient air inlet temperature is modeled analytically by simplified periodic relations. Thus, a complete analytical method is described so as to manage the problem of determining and accordingly regulate, either manually or automatically, the flow rate of air across the finned tubes of the air-cooled heat exchanger and thus, controls the process fluid outlet temperature required for the air-cooled heat exchangers for both cases of constant and varying heat loads and ambient air inlet temperatures. Numerical results are obtained showing the performance of the air-cooled heat exchanger of a propane cycle which cools both NG (natural gas) and MR (mixed refrigerant) streams in the LNG plant located at Damietta, Egypt. The inlet air temperature variation in the summer time has a considerable effect on the required air mass flow rate, while its influence becomes relatively less pronounced in winter.

  11. Experimental investigations of heat transfer from an internally finned two phase closed thermosyphon

    International Nuclear Information System (INIS)

    Naresh, Y.; Balaji, C.

    2017-01-01

    Highlights: • Experimental investigations on an internally finned vertical thermosyphon. • Two fluids – water and acetone considered. • Optimum fill ratio determined to be 50%. • Addition of internal fins at the condenser leads to improved thermal performance. - Abstract: This paper reports the results of an experimental investigation of heat transfer from an internally finned thermosyphon charged with either water or acetone. Six constant area fins with a rectangular cross section are placed internally along the length at the condenser section. The ratio of initial liquid pool volume to the evaporator volume, known as the filling ratio in a thermosyphon system, has been varied in this study. Experiments are carried out for filling ratios of 20, 50, and 80% for two working fluids (i) water and (ii) acetone. Results show that a fill ratio of 50% gives better heat transfer performance. Providing internal fins at the condenser produces additional condensation which improves the thermal performance of the thermosyphon by 17% in terms of the temperature reduction at the source and sink and 35.48% in terms of reduction in thermal resistance at lower heat inputs. The thermosyphon is tested between power levels of 50 and 275 W.

  12. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  13. Abstracts of international symposium on heat and mass transfer under plasma conditions

    International Nuclear Information System (INIS)

    1994-01-01

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting

  14. Abstracts of international symposium on heat and mass transfer under plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.

  15. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  16. Titanium tritide radioisotope heat source development: palladium-coated titanium hydriding kinetics and tritium loading tests

    International Nuclear Information System (INIS)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  17. Determination of Factors Related to Students' Understandings of Heat, Temperature and Internal Energy Concepts

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2018-01-01

    The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…

  18. Heat-resistant materials 2. Conference proceedings of the 2. international conference on heat-resistant materials

    International Nuclear Information System (INIS)

    Natesan, K.; Ganesan, P.; Lai, G.Y.

    1995-01-01

    The Second International Conference on Heat-Resistant Materials was held in Gatlinburg, Tennessee, September 11--14, 1995 and focused on materials performance in cross-cutting technologies where heat resistant materials play a large and sometimes life-and performance-limiting roles in process schemes. The scope of materials for heat-resistant applications included structural iron- and nickel-base alloys, intermetallics, and ceramics. The conference focused on materials development, performance of materials in simulated laboratory and actual service environments on mechanical and structural integrity of components, and state-of-the-art techniques for processing and evaluating materials performance. The three keynote talks described the history of heat-resistant materials, relationship between microstructure and mechanical behavior, and applications of these materials in process schemes. The technical sessions included alloy metallurgy and properties, environmental effects and properties, deformation behavior and properties, relation between corrosion and mechanical properties, coatings, intermetallics, ceramics, and materials for waste incineration. Seventy one papers have been processed separately for inclusion on the data base

  19. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  20. Assessing heat load in drylot dairy cattle: Refining on-farm sampling methodology.

    Science.gov (United States)

    Tresoldi, Grazyne; Schütz, Karin E; Tucker, Cassandra B

    2016-11-01

    Identifying dairy cattle experiencing heat stress and adopting appropriate mitigation strategies can improve welfare and profitability. However, little is known about how cattle use heat abatement resources (shade, sprayed water) on drylot dairies. It is also unclear how often we need to observe animals to measure high heat load, or the relevance of specific aspects of this response, particularly in terms of panting. Our objectives were to describe and determine sampling intervals to measure cattle use of heat abatement resources, respiration rate (RR) and panting characteristics (drooling, open mouth, protruding tongue), and to evaluate the relationship between the latter 2. High-producing cows were chosen from 4 drylots (8 cows/dairy, n=32) and observed for at least 5.9h (1000 to 1800h, excluding milking) when air temperature, humidity, and the combined index averaged 33°C, 30%, and 79, respectively. Use of heat abatement resources was recorded continuously; RR and the presence and absence of each panting characteristic were recorded every 5min. From the observed values, estimates using the specified sub-sampling intervals were calculated for heat abatement resource use (1, 5, 10, 15, 20, 30, 60, 90, and 120min), and for RR and panting (10, 15, 20, 30, 60, 90, and 120min). Estimates and observed values were compared using linear regression. Sampling intervals were considered accurate if they met 3 criteria: R 2 ≥0.9, intercept=0, and slope=1. The relationship between RR and each panting characteristic was analyzed using mixed models. Cows used shade (at corral or over feed bunk) and feed bunk area (where water was sprayed) for about 90 and 50% of the observed time, respectively, and used areas with no cooling for 2min at a time, on average. Cows exhibited drooling (34±4% of observations) more often than open mouth and protruding tongue (11±3 and 8±3% of observations, respectively). Respiration rate varied depending on the presence of panting (with vs

  1. Experimental investigation of heat transport and divertor loads of fusion plasmas in all metal ASDEX upgrade and JET

    International Nuclear Information System (INIS)

    Sieglin, Bernhard A.

    2014-01-01

    This work presents divertor heat load studies conducted at two of the largest tokamaks currently in operation, ASDEX Upgrade and the Joint European Torus (JET). A commonly agreed empirical scaling for the power fall-off length in H-mode obtained in carbon devices is validated in JET with the ILW. Bohm and Gyro-Bohm like models are identified as possible candidates describing the divertor broadening. Quantities for the assessment of the thermal load induced by transient heat loads are defined. JET with the ILW exhibits an on average longer ELM duration as compared to the carbon wall. For identical pedestal conditions the ELM durations in both cases are found to be the same within error bars. The energy fluency is found to depend mainly on the pedestal pressure with a weak dependence on the relative loss in stored energy. This is noteworthy since the current extrapolation to ITER assumes a linear dependence on the relative ELM size.

  2. Numerical Investigation of Turbulent Natural Convection Heat Transfer in an Internally-Heated Melt Pool and Metallic Layer

    International Nuclear Information System (INIS)

    Nourgaliev, R.R.; Dinh, A.T.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    This paper presents results of numerical investigation of turbulent natural convection in an internally-heated oxidic pool, and in a metallic layer heated from below and cooled from top and sidewalls. Emphasis is placed upon applicability of the existing heat transfer correlations (obtained from simulant-material experiments) in assessments of a prototypic severe reactor accident. The objectives of this study are (i) to improve the current understanding of the physics of unstably stratified flows, and (ii) to reduce uncertainties associated with modeling and assessment of natural convection heat transfer in the above configuration. Prediction capabilities of different turbulence modeling approaches are first examined and discussed, based on extensive results of numerical investigations performed by present authors. Findings from numerical modeling of turbulent natural convection flow and heat transfer in melt pools and metallic layers are then described. (authors)

  3. Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation

    Science.gov (United States)

    Medina, H.; Mutu, R.

    2017-07-01

    An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.

  4. Transient modelling of heat loading of phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Asyraf W.M.

    2017-01-01

    Full Text Available As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3 and potassium nitrate (KNO3 was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.

  5. House-internal heating systems; Husinterna vaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof; Wollerstrand, Janusz [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2005-07-01

    In this report the placement of the circulation-pump in of waterborne radiator systems, as well as their filling and deairation are investigated. The study was done by literature studies and interviews with consultants and companies active on the HVAC-market. It was concluded that different placements of the pump in relationship to the heat exchanger exist, and the arguments for the choice of placement are varying. The main explanation of the choice of placement is that it is based on experience/or by practical reasons. The most important factor influencing the placement of the pump found, was how the pump is situated in relation to the expansion-tank. To maintain pressure in the whole system the expansion-tank should be placed on the suction side of the pump without any intermediate pressure-dropping devices in between. This placement ensures overpressure in the whole radiator-system and reduces the risk of unwanted leak in of air. To avoid cavitation sufficient static pressure on the suction side of the pump is necessary. The pressure increases with the temperature, which must be taken into consideration if the pump is placed on the warm side of the heat-exchanger. From this point of view a placement in the return-pipe from the radiator-system is to be preferred. Before advices for HVAC-branch regarding placement of the circulation-pump in the heating systems can be implemented, it is of big importance to analyse and clearly specify the advantages and disadvantages of a certain placement of the pump. There is a need of directions to get house-internal systems to operate properly together with district heating system. This is especially important when older heating systems with burners and shunt valves are being connected. Filling and deairation of the radiator system is of great importance for the function of the system. A radiator-system with significant level of air remains is difficult to adjust and will not work properly. Air in the radiators leads to

  6. Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    2016-07-01

    Full Text Available The Organic Rankine Cycle (ORC is regarded as a suitable way to recover waste heat from gaseous fuel internal combustion engines. As waste heat recovery systems (WHRS have always been designed based on rated working conditions, while engines often work under part-load conditions, it is quite significant to analyze the part-load performance and corresponding operation strategy of ORC systems. This paper presents a dynamic model of ORC with a medium cycle used for a large gaseous fuel engine and analyzes the effect of adjustable parameters on the system performance, giving effective control directions under various conditions. The results indicate that the intermediary fluid mass flow rate has nearly no effect on the output power and thermal efficiency of the ORC, while the mass flow rate of working fluid has a great effect on them. In order to get a better system performance under different working conditions, the system should be operated with the working fluid mass flow rate as large as possible, but with a slight degree of superheating. Then, with the control of constant superheat degree at the end of the heating process, the performance of the combined system that consists of ORC and the engine at steady state under seven typical working conditions is also analyzed. The results indicate that the energy-saving effect of WHRS becomes worse and worse as the working condition decreases. Especially at 40% working condition the WHRS nearly has no energy-saving effect anymore.

  7. Heat receiving plates in thermonuclear device

    International Nuclear Information System (INIS)

    Kitamura, Kazunori.

    1988-01-01

    Purpose: To obtain a heat receiving plate structure capable of withstanding sputtering wear and retaining the thermal deformation and residual stress low upon junction and available at a reduced cost. Constitution: Junction structures between heat sinks and armours are the same as usual, whereas high melting armour (for example, made of tungsten) are used at the portion on a heat receiving plate where the thermal load and particle load are higher while materials having a heat expansion coefficient similar to that of the heat sink (stainless steel) are used at the portion where the thermal load and particle load are lower on a heat receiving plate depending on the thermal load and particle load distribution. This can reduce the thermal deformation for the entire divertor heat receiving plate to obtain a heat receiving plate of a good surface dimensional accuracy. (Takahashi, M.)

  8. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    Science.gov (United States)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET

    2017-12-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  9. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    International Nuclear Information System (INIS)

    Silburn, S A; Matthews, G F; Challis, C D; Belonohy, E; Iglesias, D; Keeling, D L; King, D; Kirov, K; Lomas, P J; Frigione, D; Graves, J P; Mantsinen, M J; Hobirk, J; Lennholm, M; Moradi, S; Sips, A C C; Tsalas, M

    2017-01-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data. (paper)

  10. Value Stream Mapping for Evaluation of Load Scheduling Possibilities in a District Heating Plant

    Directory of Open Access Journals (Sweden)

    Raivo Melsas

    2016-09-01

    Full Text Available The aim of this paper is to provide a solution for load scheduling by implementing value stream mapping, which is a straightforward enough for production management. Decision makers in the industry should have a clear understanding about positive effect from load scheduling and its effect to production outcome and process availability. Value stream mapping is a well-known process optimization tool from lean production philosophy. The aim of value stream mapping is to shorten the lead time of industrial processes and to reduce the intermediate stock amounts. By complementing value stream map with process energy intensity and energy stored in intermediate stocks, we can promote load scheduling possibilities. Our methodology provides a tool that is understandable and traceable for industry-minded decision makers. Finally, we present a real life test example for the new methodology, which is based on the production process of a district heating plant.

  11. Data for occupancy internal heat gain calculation in main building categories

    Directory of Open Access Journals (Sweden)

    Kaiser Ahmed

    2017-12-01

    Full Text Available Heat losses from occupant body by means of convection, radiation, vapor, and sweat are essential data for indoor climate and energy simulations. Heat losses depend on the metabolic activity and body surface area. Higher variations of body surface area of occupants are observed in day care centers, kinder gardens and schools compared to other building categories (Tables 2 and 3 and these variations need to be accounted, otherwise in these building categories heat gains, CO2 and humidity generation are overestimated. Indoor temperature, humidity level, air velocity, and clothing insulation have significant influences on dry and total heat losses from occupant body leading to typical values for summer and winter. The data presented in this article are related to the research article entitled Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards (Ahmed et al., 2017 [1]. Keywords: Body surface area, Metabolic rate, Dry heat loss, Total heat loss, Internal heat gain

  12. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    Science.gov (United States)

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The international heat pump market as seen from the 'Business Development' point of view

    International Nuclear Information System (INIS)

    Schilli, A. S.; Afjei, T.

    2002-01-01

    This article takes a close look at the prerequisites that are decisive for successful business development in the international heat pump market and the challenges placed by them. The article examines the quality of market information and data that is available, especially regarding the market potential for heating and cooling in residential, commercial and industrial buildings. The results of various national and international surveys and studies made in this area are discussed. Several characteristics of the heat pump market - both in the buying and selling areas - are examined in order to clarify the requirements for market and business development in these sectors

  14. Load responsive multilayer insulation performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  15. Load responsive multilayer insulation performance testing

    International Nuclear Information System (INIS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  16. Effect of stationary high heat flux and transient ELMs-like heat loads on the divertor PFCs

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, B., E-mail: bruno.riccardi@f4e.europa.eu [Fusion for Energy, ITER Department, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Gavila, P. [Fusion for Energy, ITER Department, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Giniatulin, R. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Kuznetsov, V. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Rulev, R. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Klimov, N.; Kovalenko, D.; Barsuk, V. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Koidan, V.; Korshunov, S. [NRC “Kurchatov Institute”, Moscow (Russian Federation)

    2013-10-15

    The experimental evaluation of the divertor plasma facing components (PFCs) lifetime under transient events, such as edge localized modes (ELMs) and high heat flux (HHF) thermal fatigue expected during ITER normal operations and slow transient events is here presented. The experiments have been performed in the frame of an EU/RF collaboration. For carbon fiber composite material the erosion is caused by PAN fiber damage whilst the erosion of tungsten is determined by the melt layer movement and crack formation. The conclusion of this study is that, in addition to the structural change produced in the armor materials by ELMs-like loads, some mock ups showed also a degradation of the thermal fatigue performances.

  17. Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects

    Directory of Open Access Journals (Sweden)

    Bhadauria B. S.

    2014-01-01

    Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.

  18. Antenna loading and electron heating experiments of ICRF wave in TNT-A tokamak

    International Nuclear Information System (INIS)

    Shinohara, Shunjiro; Asakura, Nobuyuki; Naito, Masahiro; Miyamoto, Kenro

    1984-01-01

    Antenna loading resistance and electron heating effects of ICRF wave were investigated in TNT-A tokamak. Lodaing resistance increased with the mean plasma density and decreased with the input power. The effect of the distance between the plasma and antenna surface on loading resistance was studied and had good agreements with the calculated results. The increase in the soft Xray emissivity was larger in the presence of ion-ion hybrid and/or ion cyclotron resonance layer in the plasma than that in the absence of them. With the absorbed power up to two times of the ohmic power, the central electron temperature increased by 20%, the soft Xray emissivity increased by 80% and the mean plasma density decreased by 10%, while the total radiation loss increased slightly (by 15%). (author)

  19. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  20. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; German, A. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Dakin, B. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  1. Relationships Between Results Of An Internal And External Match Load Determining Method In Male, Singles Badminton Players.

    Science.gov (United States)

    Abdullahi, Yahaya; Coetzee, Ben; Van den Berg, Linda

    2017-07-03

    The study purpose was to determine relationships between results of internal and external match load determining methods. Twenty-one players, who participated in selected badminton championships during the 2014/2015 season served as subjects. The heart rate (HR) values and GPS data of each player were obtained via a fix Polar HR Transmitter Belt and MinimaxX GPS device. Moderate significant Spearman's rank correlations were found between HR and absolute duration (r = 0.43 at a low intensity (LI) and 0.44 at a high intensity (HI)), distance covered (r = 0.42 at a HI) and player load (PL) (r = 0.44 at a HI). Results also revealed an opposite trend for external and internal measures of load as the average relative HR value was found to be the highest for the HI zone (54.1%) compared to the relative measures of external load where average values (1.29-9.89%) were the lowest for the HI zone. In conclusion, our findings show that results of an internal and external badminton match load determining method are more related to each other in the HI zone than other zones and that the strength of relationships depend on the duration of activities that are performed in especially LI and HI zones. Overall, trivial to moderate relationships between results of an internal and external match load determining method in male, singles badminton players reaffirm the conclusions of others that these constructs measure distinctly different demands and should therefore be measured concurrently to fully understand the true requirements of badminton match play.

  2. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  3. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  4. Finite Element Analysis of High Heat Load Deformation and Mechanical Bending Correction of a Beamline Mirror for the APS Upgrade

    Science.gov (United States)

    Goldring, Nicholas

    The impending Advanced Photon Source Upgrade (APS-U) will introduce a hard x-ray source that is set to surpass the current APS in brightness and coherence by two to three orders of magnitude. To achieve this, the storage ring light source will be equipped with a multi-bend achromat (MBA) lattice. In order to fully exploit and preserve the integrity of new beams actualized by upgraded storage ring components, improved beamline optics must also be introduced. The design process of new optics for the APS-U and other fourth generation synchrotrons involves the challenge of accommodating unprecedented heat loads. This dissertation presents an ex-situ analysis of heat load deformation and the subsequent mechanical bending correction of a 400 mm long, grazing-incidence, H2O side-cooled, reflecting mirror subjected to x-ray beams produced by the APS-U undulator source. Bending correction is measured as the smallest rms slope error, sigmarms, that can be resolved over a given length of the heat deformed geometry due to mechanical bending. Values of sigmarms in the account for finish errors or other contributions to sigmarms beyond the scope of thermal deformation and elastic bending. The methodology of this research includes finite element analysis (FEA) employed conjointly with an analytical solution for mechanical bending deflection by means of an end couple. Additionally, the study will focus on two beam power density profiles predicted by the APS-U which were created using the software SRCalc. The profiles account for a 6 GeV electron beam with second moment widths of 0.058 and 0.011 mm in the x- and y- directions respectively; the electron beam is passed through a 4.8 m long, 28 mm period APS-U undulator which produces the x-ray beam incident at a 3 mrad grazing angle on the flat mirror surface for both cases. The first power density profile is the most extreme case created by the undulator at it's closest gap with a critical energy of 3 keV (k y=2.459); the second

  5. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  6. First international workshop on fundamental aspects of post-dryout heat transfer: proceedings

    International Nuclear Information System (INIS)

    Lee, R.

    1984-12-01

    The purpose of the First International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer was to review recent developments and the state of art in the field of post-dryout heat transfer. The workshop centered on interchanging ideas, reviewing current research results, and defining future research needs. The following five sessions dealing with the fundamental aspects of post-dryout heat transfer were held. A Computer Code Modeling and Flow Phenomena session was held dealing with flow rgimes, drop size, drop formation and behavior, interfacial area, interfacial drag, and computer modeling. A Quenching Phenomena session was held dealing with nature of rewetting, maximum wetting temperature, Leidenfrost phenomenon and heat transfer in the vicinity of quench front. A Low-Void Heat Transfer session was held dealing with inverted annular-flow heat transfer, inverted slug-flow heat transfer thermal non-equilibrium and computer modeling. A Dispersed-Flow Heat Transfer session was held dealing with drop interfacial heat transfer, vapor convection, thermal non-equilibrium and correlations and models

  7. The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction

    DEFF Research Database (Denmark)

    Stevens, Vanessa; Kotol, Martin; Grunau, Bruno

    2016-01-01

    been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy......Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...... modeling software. The model simulations show that increased thermal mass can decrease the risk of summer overheating in Alaskan residences. They also show that increased thermal mass does not significantly decrease the annual heat load in residences located in cold climates. These results indicate...

  8. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles

    2007-03-01

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  9. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  10. A simplified technique for shakedown load determination

    International Nuclear Information System (INIS)

    Abdalla, H.F.; Younan, M.Y.A.; Megahed, M.M.

    2005-01-01

    In this paper a simple technique is presented to determine the limit shakedown load of a structure or a component using the finite element method. Through the proposed technique, the limit shakedown load is determined without performing time consuming cyclic loading simulations or iterative elastic techniques. Instead, it is determined by performing only two analyses namely, an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the limit shakedown load of the structure is determined through the calculation of the residual stresses. The technique is applied and verified using two bench mark shakedown problems namely: the two-bar structure subjected to constant axial force and cyclic thermal loading, and the Bree cylinder subjected to constant internal pressure and cyclic high heat fluxes across its wall. The results of the proposed technique showed very good correlation with the, analytically determined, Bree diagrams of both structures. Moreover, the outcomes of the proposed technique showed very good results in comparison to full cyclic loading elasto-plastic finite element simulations of both structures. (authors)

  11. Status of load management

    Energy Technology Data Exchange (ETDEWEB)

    Juchymenko, A

    1983-08-01

    A summary is presented of the status of load management, defined as any activity by an electric utility to affect the size and characteristics of its load. Load management is currently viewed by electric utilities as an important tool for marketing electricity in a competitive fuel situation. A major aim of the National Energy Program is to reduce Canada's dependence on oil by 1990 to 10% of the energy used by all markets. As a result, electricity may play a greater role in the supply of primary energy. Research in load management has been directed mostly towards the residential market, especially direct control of domestic hot water heaters and air conditioners. Studies conducted in Canada and the U.S. to determine user's receptiveness to direct control of loads and thermal energy storage systems indicate that these load management techniques are in most cases not acceptable to customers, who prefer voluntary reduction in demand. The potential exists in the industrial market to use load management to assist in electrifying many of the fossil fuel-fired processes at competitive energy prices. Some of the more important applications include an industrial heat pump to heat liquids to 120{degree}C, induction heating for melting and heat treating of metals, and mechanical vapor recompression equipment to produce proces steam. 21 refs., 2 figs., 2 tabs.

  12. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  13. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  14. Internally cooled V-shape inclined monochromator

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2008-01-01

    Roč. 15, - (2008), 8-11 ISSN 0909-0495 R&D Projects: GA AV ČR IAA100100716 Grant - others:VEGA(SK) 1/4134/07 Institutional research plan: CEZ:AV0Z10100522 Keywords : inclined monochromator * heat load * internal cooling Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.333, year: 2008

  15. Ratchetting behavior of primary heat transport (PHT) piping material SA-333 carbon steel subjected to cyclic loads at room temperature

    International Nuclear Information System (INIS)

    Kulkarni, S.; Desai, Y.M.; Kant, T.; Reddy, G.R.; Gupta, C.; Chakravarthy, J.K.

    2004-01-01

    Ratchetting behavior of SA-333 Gr. 6 carbon steel used as primary heat transport (PHT) piping material has been investigated with three constitutive models proposed by Armstrong-Frederick, Chaboche and Ohno-Wang involving different hardening rules. Performance of the above mentioned models have been evaluated for a broad set of uniaxial and biaxial loading histories. The uniaxial ratchetting simulations have been performed for a range of stress ratios (R) by imposing different stress amplitudes and mean stress conditions. Numerical simulations indicated significant ratchetting and opening of hysteresis loop for negative stress ratio with constant mean stress. Application of cyclic stress without mean stress (R = -1.0) has been observed to produce negligible ratchet-strain accumulation in the material. Simulation under the biaxial stress condition was based on modeling of an internally pressurized thin walled pipe subjected to cyclic bending load. Numerical results have been validated with the experiments as per simulation conditions. All three models have been found to predict the observed accumulation of circumferential strain with increasing number of cycles. However, the Armstrong Frederick (A-F) model was found to be inadequate in simulating the ratchetting response for both uniaxial as well as biaxial loading cases. The A-F model actually over-predicted the ratchetting strain in comparison with the experimental strain values. On the other hand, results obtained with the Chaboche and the Ohno-Wang models for both the uniaxial as well as biaxial loading histories have been observed to closely simulate the experimental results. The Ohno-Wang model resulted in better simulation for the presents sets of experimental results in comparison with the Chaboche model. It can be concluded that the Ohno-Wang model suited well compared to the Chaboche model for above sets of uniaxial and biaxial loading histories. (authors)

  16. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  17. Use of salt hydrates as a heat storage medium for loading latent heat stores

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1985-05-15

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO4/NaOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g.Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  18. Non-equilibrium effects of core-cooling and time-dependent internal heating on mantle flush events

    Directory of Open Access Journals (Sweden)

    D. A. Yuen

    1995-01-01

    Full Text Available We have examined the non-equilibrium effects of core-cooling and time-dependent internal-heating on the thermal evolution of the Earth's mantle and on mantle flush events caused by the two major phase transitions. Both two- and three-dimensional models have been employed. The mantle viscosity responds to the secular cooling through changes in the averaged temperature field. A viscosity which decreases algebraically with the average temperature has been considered. The time-dependent internal-heating is prescribed to decrease exponentially with a single decay time. We have studied the thermal histories with initial Rayleigh numbers between 2 x 107 and 108 . Flush events, driven by the non-equilibrium forcings, are much more dramatic than those produced by the equilibrium boundary conditions and constant internal heating. Multiple flush events are found under non-equilibrium conditions in which there is very little internal heating or very fast decay rates of internal-heating. Otherwise, the flush events take place in a relatively continuous fashion. Prior to massive flush events small-scale percolative structures appear in the 3D temperature fields. Time-dependent signatures, such as the surface heat flux, also exhibits high frequency oscillatory patterns prior to massive flush events. These two observations suggest that the flush event may be a self-organized critical phenomenon. The Nusselt number as a function of the time-varying Ra does not follow the Nusselt vs. Rayleigh number power-law relationship based on equilibrium (constant temperature boundary conditions. Instead Nu(t may vary non-monotonically with time because of the mantle flush events. Convective processes in the mantle operate quite differently under non-equilibrium conditions from its behaviour under the usual equilibrium situations.

  19. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.

  20. Measurements of loop antenna loading in RF heating experiments on the KT-5C tokamak

    International Nuclear Information System (INIS)

    Zhai Kan; Deng Bihe; Wen Yizhi; Wan Shude; Liu Wandong; Yu Wen; Yu Changxun

    1997-01-01

    A new method to measure the loop antenna loadings in the RF wave heating experiments (IBWH at reasonable RF power with relatively low frequency) on the KT-5C device is presented. The method is characterized by determining the RF current ratio only, so it eases the needs of instruments and simplifies the requirements for calibration and data processing in the experiments

  1. The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis.

    Science.gov (United States)

    McLaren, Shaun J; Macpherson, Tom W; Coutts, Aaron J; Hurst, Christopher; Spears, Iain R; Weston, Matthew

    2018-03-01

    The associations between internal and external measures of training load and intensity are important in understanding the training process and the validity of specific internal measures. We aimed to provide meta-analytic estimates of the relationships, as determined by a correlation coefficient, between internal and external measures of load and intensity during team-sport training and competition. A further aim was to examine the moderating effects of training mode on these relationships. We searched six electronic databases (Scopus, Web of Science, PubMed, MEDLINE, SPORTDiscus, CINAHL) for original research articles published up to September 2017. A Boolean search phrase was created to include search terms relevant to team-sport athletes (population; 37 keywords), internal load (dependent variable; 35 keywords), and external load (independent variable; 81 keywords). Articles were considered for meta-analysis when a correlation coefficient describing the association between at least one internal and one external measure of session load or intensity, measured in the time or frequency domain, was obtained from team-sport athletes during normal training or match-play (i.e., unstructured observational study). The final data sample included 122 estimates from 13 independent studies describing 15 unique relationships between three internal and nine external measures of load and intensity. This sample included 295 athletes and 10,418 individual session observations. Internal measures were session ratings of perceived exertion (sRPE), sRPE training load (sRPE-TL), and heart-rate-derived training impulse (TRIMP). External measures were total distance (TD), the distance covered at high and very high speeds (HSRD ≥ 13.1-15.0 km h -1 and VHSRD ≥ 16.9-19.8 km h -1 , respectively), accelerometer load (AL), and the number of sustained impacts (Impacts > 2-5 G). Distinct training modes were identified as either mixed (reference condition), skills, metabolic, or

  2. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  3. Development of a Novel Method for the Exploration of the Thermal Response of Superfluid Helium Cooled Superconducting Cables to Pulse Heat Loads

    Science.gov (United States)

    Winkler, T.; Koettig, T.; van Weelderen, R.; Bremer, J.; ter Brake, H. J. M.

    Management of transient heat deposition in superconducting magnets and its extraction from the aforementioned is becoming increasingly important to bring high energy particle accelerator performance to higher beam energies and intensities. Precise knowledge of transient heat deposition phenomena in the magnet cables will permit to push the operation of these magnets as close as possible to their current sharing limit, without unduly provoking magnet quenches. With the prospect of operating the Large Hadron Collider at CERN at higher beam energies and intensities an investigation into the response to transient heat loads of LHC magnets, operating in pressurized superfluid helium, is being performed. The more frequently used approach mimics the cable geometry by resistive wires and uses Joule-heating to deposit energy. Instead, to approximate as closely as possible the real magnet conditions, a novel method for depositing heat in cable stacks made out of superconducting magnet-cables has been developed. The goal is to measure the temperature difference as a function of time between the cable stack and the superfluid helium bath depending on heat load and heat pulse length. The heat generation in the superconducting cable and precise measurement of small temperature differences are major challenges. The functional principle and experimental set-up are presented together with proof of principle measurements.

  4. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.; Wolf, J.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  5. Urban summer heat load. Meteorological data as a proxy for metropolitan biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, Heike [Naturalis Biodiversity Center, Leiden (Netherlands); Katzschner, Lutz [Kassel Univ. (Germany). Environmental Meteorological Dept.; Nowak, Carsten [Senckenberg Gesellschaft fuer Naturforschung, Gelnhausen (Germany). Conservation Genetics Section; Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main (Germany)

    2012-10-15

    Regional climate models forecast that the incidence of extreme heat waves will increase in Central Europe, and the associated intensification of urban heat islands causes concerns about human health and biodiversity. We investigated species diversity of terrestrial gastropods across an urban gradient in a metropolitan area. We considered 34 sites of different degrees of urbanization and of different thermal stress classes (TSC) that were derived from a classification of urban heat load based on the physiological equivalent temperature (PET). A total of 31 species were recorded with 0-21 species per site (mean: 4.4 {+-} 5.2 species per site). Alpha diversity was best explained by TSC, bush cover and perennial vegetation cover, and it decreased with increasing thermal stress. Overall, thermal stress predicted snail and slug species richness better than urban cover (ANOVA(analysis of variance); TSC: F = 10.0, p < 0.001; urbanization: F = 3.9, p = 0.018), and the proportional loss in species richness was higher for native species than for introduced species. The results indicate that climatic stress contributes to the impoverishment of biodiversity in urban areas. We propose that TSC and/or PET are useful indicators for environmental stress levels in biodiversity studies in natural and anthropogenically transformed landscapes. (orig.)

  6. Analysis for Involvement of TPP Operating in Accordance with Heating Schedule to Passing Through Failures of Electric Load Schedules

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2013-01-01

    Full Text Available The paper describes technical and economic evaluation of various methods pertaining to passing through failures of electric load at TPP which is operating in accordance with heating schedule.

  7. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NARCIS (Netherlands)

    Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B.

    2016-01-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material

  8. A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads.

    Science.gov (United States)

    Du, Guofeng; Li, Zhao; Song, Gangbing

    2018-05-23

    Impact loads can have major adverse effects on the safety of civil engineering structures, such as concrete-filled steel tubular (CFST) columns. The study of mechanical behavior and stress analysis of CFST columns under impact loads is very important to ensure their safety against such loads. At present, the internal stress monitoring of the concrete cores CFST columns under impact loads is still a very challenging subject. In this paper, a PVDF (Polyvinylidene Fluoride) piezoelectric smart sensor was developed and successfully applied to the monitoring of the internal stress of the concrete core of a CFST column under impact loads. The smart sensor consists of a PVDF piezoelectric film sandwiched between two thin steel plates through epoxy. The protection not only prevents the PVDF film from impact damages but also ensures insulation and waterproofing. The smart sensors were embedded into the circular concrete-filled steel tube specimen during concrete pouring. The specimen was tested against impact loads, and testing data were collected. The time history of the stress obtained from the PVDF smart sensor revealed the evolution of core concrete internal stress under impact loads when compared with the impact force⁻time curve of the hammer. Nonlinear finite element simulations of the impact process were also carried out. The results of FEM simulations had good agreement with the test results. The results showed that the proposed PVDF piezoelectric smart sensors can effectively monitor the internal stress of concrete-filled steel tubular columns under impact loads.

  9. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  10. Heat Load Measurements on a Large Superconducting Magnet An Application of a Void Fraction Meter

    CERN Document Server

    Pengo, R; Junker, S; Passardi, Giorgio; ten Kate, H H J

    2004-01-01

    ATLAS is one of the two major experiments of the LHC project at CERN using cryogenics. The superconducting magnet system of ATLAS is composed of the Barrel Toroid (BT), two End Caps Toroids and the Central Solenoid. The BT is formed of 8 race-track superconducting dipoles, each one 25 m long and 5 m wide. A reduced scale prototype (named B0) of one of the 8 dipoles, about one third of the length, has been constructed and tested in a dedicated cryogenic facility at CERN. To simulate the final thermal and hydraulic operating conditions, the B0 was cooled by a forced flow of 4.5 K saturated liquid helium provided by a centrifugal pump of 80 g/s nominal capacity. Both static and dynamic heat loads, generated by the induced currents on the B0 casing during a slow dump or a ramp up, have been measured to verify the expected thermal budget of the entire BT. The instrument used for the heat load measurements was a Void Fraction Meter (VFM) installed on the magnet return line. The instrument constructed at CERN was ca...

  11. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    Highlights: • Specially designed fixed-inverter hybrid heat pump system was developed. • Hybrid operation performed better at part loads than single inverter operation. • The applied heat pump can work stably over a wide range of heat load variations. • Heat energy potential of treated effluent was better than influent. • The heat pump’s COP from the field test was 4.06 for heating and 3.64 for cooling. - Abstract: Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when

  12. Experimental study of humidity distribution inside electronic enclosure and effect of internal heating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2016-01-01

    on the humidity and temperature profile inside typical electronic enclosures. Defined parameters include external temperature and humidity conditions, temperature and time of the internal heat cycle, thermal mass, and ports/openings size. The effect of the internal humidity on electronic reliability has been......Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in a wide range of temperature and humidity during day and night time periods. Corrosion failures are still a challenge due to the combined effects...... of temperature, humidity and corrosion accelerating species in the atmosphere. Moreover the surface region of printed circuit board assemblies is often contaminated by various aggressive chemical species.This study describes the overall effect of the exposure to severe climate conditions and internal heat cycles...

  13. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight

    NARCIS (Netherlands)

    Battley, PF; Rogers, DI; Piersma, T; Koolhaas, A; Battley, Phil F.; Rogers, Danny I.

    2003-01-01

    Migratory shorebirds that live in the tropics prior to embarking on long (> 5000 km) flights may face heat-load problems. The behaviour of a large sandpiper, the Great Knot (Calidris tenuirostris), was studied in Roebuck Bay, north-west Australia, from February to April 2000. We determined the

  14. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  15. Heat Transfer in Health and Healing.

    Science.gov (United States)

    Diller, Kenneth R

    2015-10-01

    Our bodies depend on an exquisitely sensitive and refined temperature control system to maintain a state of health and homeostasis. The exceptionally broad range of physical activities that humans engage in and the diverse array of environmental conditions we face require remarkable strategies and mechanisms for regulating internal and external heat transfer processes. On the occasions for which the body suffers trauma, therapeutic temperature modulation is often the approach of choice for reversing injury and inflammation and launching a cascade of healing. The focus of human thermoregulation is maintenance of the body core temperature within a tight range of values, even as internal rates of energy generation may vary over an order of magnitude, environmental convection, and radiation heat loads may undergo large changes in the absence of any significant personal control, surface insulation may be added or removed, all occurring while the body's internal thermostat follows a diurnal circadian cycle that may be altered by illness and anesthetic agents. An advanced level of understanding of the complex physiological function and control of the human body may be combined with skill in heat transfer analysis and design to develop life-saving and injury-healing medical devices. This paper will describe some of the challenges and conquests the author has experienced related to the practice of heat transfer for maintenance of health and enhancement of healing processes.

  16. Natural convection heat transfer in SIGMA experiment

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull

    2004-01-01

    A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on

  17. Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.

  18. Propagation of internal stresses in composite materials during heating and cooling according to thermal cycles of welding

    International Nuclear Information System (INIS)

    Gukasyan, L.E.; Belov, V.V.

    1977-01-01

    Investigations of free thermal expansion of a composite material, of fibre and matrix during welding thermal cycle make it possible to estimate mean internal strain and stress in the composite components, as well as the residual internal stress and strain present in the composite material after manufacturing. The samples investigated consisted of nickel-chromium EhI445 alloy, reinforced by tungsten-rhenium alloy fibres. As the composite material was cooled and heated in course of welding, the stress and strain changed their sign twice, the first time upon heating, the second time upon cooling. After complete cooling of the composite material residual stresses in the fibre stay at the proportionality level, while those in the matrix are lower. Experimental evidence of internal stress and strain appearing in the composite material during heating are fairly consistent with calculations in the elastic region, if account is taken of the temperature of internal residual stress relaxation upon heating

  19. Oligonol Supplementation Affects Leukocyte and Immune Cell Counts after Heat Loading in Humans

    Directory of Open Access Journals (Sweden)

    Jeong Beom Lee

    2014-06-01

    Full Text Available Oligonol is a low-molecular-weight form of polyphenol and has antioxidant and anti-inflammatory activity, making it a potential promoter of immunity. This study investigates the effects of oligonol supplementation on leukocyte and immune cell counts after heat loading in 19 healthy male volunteers. The participants took a daily dose of 200 mg oligonol or a placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. After each supplement, half-body immersion into hot water was made, and blood was collected. Then, complete and differential blood counts were performed. Flow cytometry was used to enumerate and phenotype lymphocyte subsets. Serum concentrations of interleukin (IL-1β and IL-6 in blood samples were analyzed. Lymphocyte subpopulation variables included counts of total T cells, B cells, and natural killer (NK cells. Oligonol intake attenuated elevations in IL-1β (an 11.1-fold change vs. a 13.9-fold change immediately after heating; a 12.0-fold change vs. a 12.6-fold change 1h after heating and IL-6 (an 8.6-fold change vs. a 9.9-fold change immediately after heating; a 9.1-fold change vs. a 10.5-fold change 1h after heating immediately and 1 h after heating in comparison to those in the placebo group. Oligonol supplementation led to significantly higher numbers of leukocytes (a 30.0% change vs. a 21.5% change immediately after heating; a 13.5% change vs. a 3.5% change 1h after heating and lymphocytes (a 47.3% change vs. a 39.3% change immediately after heating; a 19.08% change vs. a 2.1% change 1h after heating relative to those in the placebo group. Oligonol intake led to larger increases in T cells, B cells, and NK cells at rest (p < 0.05, p < 0.05, and p < 0.001, respectively and immediately after heating (p < 0.001 in comparison to those in the placebo group. In addition, levels of T cells (p < 0.001 and B cells (p < 0.001 were significantly higher 1 h after heating in comparison to those in

  20. A two-stage heating scheme for heat assisted magnetic recording

    Science.gov (United States)

    Xiong, Shaomin; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang; Bogy, David

    2014-05-01

    Heat Assisted Magnetic Recording (HAMR) has been proposed to extend the storage areal density beyond 1 Tb/in.2 for the next generation magnetic storage. A near field transducer (NFT) is widely used in HAMR systems to locally heat the magnetic disk during the writing process. However, much of the laser power is absorbed around the NFT, which causes overheating of the NFT and reduces its reliability. In this work, a two-stage heating scheme is proposed to reduce the thermal load by separating the NFT heating process into two individual heating stages from an optical waveguide and a NFT, respectively. As the first stage, the optical waveguide is placed in front of the NFT and delivers part of laser energy directly onto the disk surface to heat it up to a peak temperature somewhat lower than the Curie temperature of the magnetic material. Then, the NFT works as the second heating stage to heat a smaller area inside the waveguide heated area further to reach the Curie point. The energy applied to the NFT in the second heating stage is reduced compared with a typical single stage NFT heating system. With this reduced thermal load to the NFT by the two-stage heating scheme, the lifetime of the NFT can be extended orders longer under the cyclic load condition.

  1. Tungsten recrystallization and cracking under ITER-relevant heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V.P., E-mail: Budaev@mail.ru [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Martynenko, Yu.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Karpov, A.V.; Belova, N.E. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Zhitlukhin, A.M. [SRC RF TRINITI, Moscow Region (Russian Federation); Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, Moscow Region (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Podkovyrov, V.L.; Barsuk, V.A.; Putrik, A.B.; Yaroshevskaya, A.D. [SRC RF TRINITI, Moscow Region (Russian Federation); Giniyatulin, R.N. [Efremov Institute, St. Petersburg (Russian Federation); Safronov, V.M. [Institution «Project Center ITER», Moscow (Russian Federation); SRC RF TRINITI, Moscow Region (Russian Federation); Khimchenko, L.N. [Institution «Project Center ITER», Moscow (Russian Federation)

    2015-08-15

    The tungsten surface structure was analyzed after the test in the QSPA-T under heat loads relevant to those expected in the ITER during disruptions. Repeated pulses lead to the melting and the resolidification of the tungsten surface layer of ∼50 μm thickness. There is ∼50 μm thickness intermediate layer between the original structure and the resolidified layer. The intermediate layer is recrystallized and has a random grains’ orientation whereas the resolidified layer and basic structure have texture with preferable orientation 〈1 0 0〉 normal to the surface. The cracks which were normal to the surface were observed in the resolidified layer as well as the cracks which were parallel to the surface at the depth up to 300 μm. Such cracks can result in the brittle destruction which is a hazard for the full tungsten divertor of the ITER. The theoretical analysis of the crack formation reasons and a possible consequence for the ITER are given.

  2. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  3. On oscillatory magnetoconvection in a nanofluid layer in the presence of internal heat source and Soret effect

    Science.gov (United States)

    Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd

    2017-11-01

    The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.

  4. Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants.

    Science.gov (United States)

    Mohammed, Hnd Hadi; Lee, Jin-Han; Bae, Ji-Myung; Cho, Hye-Won

    2016-02-01

    The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

  5. Design and evaluation of heat utilization systems for the HTTR through international cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Lewkowicz, I. [International Atomic Energy Agency, Vienna (Austria)

    1996-07-01

    The International Atomic Energy Agency (IAEA) has the statutory function to `foster the exchange of scientific and technical information`, and `encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world`. The IAEA Co-ordinated Research Programmes (CRPs) are effective vehicles for implementing the above. The CRP on Design and Evaluation of Heat Utilization Systems for HTTR has started in September 1994 and is aimed at promoting international co-operation to identify the most promising heat utilization system(s) to be demonstrated at the HTTR, for the benefit of current operators and future designers and constructors of HTGRs. Participating Member States are collaborating by exchanging existing technical information on the technology of heat utilization systems, by developing design concepts and by performing evaluations of candidate systems for potential demonstration with the HTTR. In this report, the systems are reviewed. (J.P.N.)

  6. Design and evaluation of heat utilization systems for the HTTR through international cooperation

    International Nuclear Information System (INIS)

    Lewkowicz, I.

    1996-01-01

    The International Atomic Energy Agency (IAEA) has the statutory function to 'foster the exchange of scientific and technical information', and 'encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world'. The IAEA Co-ordinated Research Programmes (CRPs) are effective vehicles for implementing the above. The CRP on Design and Evaluation of Heat Utilization Systems for HTTR has started in September 1994 and is aimed at promoting international co-operation to identify the most promising heat utilization system(s) to be demonstrated at the HTTR, for the benefit of current operators and future designers and constructors of HTGRs. Participating Member States are collaborating by exchanging existing technical information on the technology of heat utilization systems, by developing design concepts and by performing evaluations of candidate systems for potential demonstration with the HTTR. In this report, the systems are reviewed. (J.P.N.)

  7. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  8. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  9. Finite element simulation of internal flows with heat transfer using a ...

    Indian Academy of Sciences (India)

    Unknown

    Velocity correction method; finite element simulation; turbulent .... CFD, developments in turbulence modeling have been only evolutionary and ...... variables are made dimensionless using appropriate combinations of Uav, H, ...... Srinivas M 1994 Finite element analysis of internal flows with heat transfer Ph D thesis, Indian.

  10. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  11. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  12. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube

    International Nuclear Information System (INIS)

    Wang Jianguo; Li Huixiong; Guo Bin; Yu Shuiqing; Zhang Yuqian; Chen Tingkuan

    2009-01-01

    In the present paper, the forced convection heat transfer characteristics of water in a vertically upward internally ribbed tube at supercritical pressures were investigated experimentally. The six-head internally ribbed tube is made of SA-213T12 steel with an outer diameter of 31.8 mm and a wall thickness of 6 mm and the mean inside diameter of the tube is measured to be 17.6 mm. The experimental parameters were as follows. The pressure at the inlet of the test section varied from 25.0 to 29.0 MPa, and the mass flux was from 800 to 1200 kg/(m 2 s), and the inside wall heat flux ranged from 260 to 660 kW/m 2 . According to experimental data, the effects of heat flux and pressure on heat transfer of supercritical pressure water in the vertically upward internally ribbed tube were analyzed, and the characteristics and mechanisms of heat transfer enhancement, and also that of heat transfer deterioration, were also discussed in the so-called large specific heat region. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, may result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid makes the heat transfer deteriorated eventually and explains how this lighter fluid layer forms. It was found that the heat transfer characteristics of water at supercritical pressures were greatly different from the single-phase convection heat transfer at subcritical pressures. There are three heat transfer modes of water at supercritical pressures: (1) normal heat transfer, (2) deteriorated heat transfer with low HTC but high wall temperatures in comparison to the normal heat transfer, and (3) enhanced heat transfer with high HTC and low wall temperatures in comparison to the normal heat transfer. It was also found that the heat transfer deterioration at supercritical pressures was

  13. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2006-01-01

    Considering a rational maintenance rule of Light Water Reactor piping, reliable flaw evaluation criteria are essential to determine how a detected flaw is detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes to be considered for carbon steel piping, and can be analyzed by the elastic-plastic fracture mechanics. Some analytical efforts have been provided as flaw evaluation criteria using load correction factors such like the Z-factors in the JSME codes on fitness-for-service for nuclear power plants or the ASME boiler and pressure vessel code section XI. The present correction factors were conventionally determined taken conservatism and simplicity into account, however, the effect of internal pressure which would be an important factor under an actual plant condition was not adequately considered. Recently, a J-estimation scheme, 'LBB. ENGC' for ductile fracture analysis of circumferentially through-wall-cracked pipes subjected combined loading was newly developed to have a better prediction with more realistic manner. This method is explicitly incorporated the contribution of both bending and tension due to internal pressure by means of the scheme compatible with an arbitrary combined loading history. In this paper, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. A correction factor based on the new J-estimation scheme was compared with the present correction factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of internal pressure. (author)

  14. Study of heat flux deposition in the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Carpentier, S.

    2009-02-01

    Accurate measurements of heat loads on internal tokamak components is essential for protection of the device during steady state operation. The optimisation of experimental scenarios also requires an in depth understanding of the physical mechanisms governing the heat flux deposition on the walls. The objective of this study is a detailed characterisation of the heat flux to plasma facing components (PFC) of the Tore Supra tokamak. The power deposited onto Tore Supra PFCs is calculated using an inverse method, which is applied to both the temperature maps measured by infrared thermography and to the enthalpy signals from calorimetry. The derived experimental heat flux maps calculated on the toroidal pumped limiter (TPL) are then compared with theoretical heat flux density distributions from a standard SOL-model. They are two experimental observations that are not consistent with the model: significant heat flux outside the theoretical wetted area, and heat load peaking close to the tangency point between the TPL and the last closed field surface (LCFS). An experimental analysis for several discharges with variable security factors q is made. In the area consistent with the theoretical predictions, this parametric study shows a clear dependence between the heat flux length λ q (estimated in the SOL (scrape-off layer) from the IR measurements) and the magnetic configuration. We observe that the spreading of heat fluxes on the component is compensated by a reduction of the power decay length λ q in the SOL when q decreases. On the other hand, in the area where the derived experimental heat loads are not consistent with the theoretical predictions, we observe that the spreading of heat fluxes outside the theoretical boundary increases when q decreases, and is thus not counterbalanced. (author)

  15. Korean district heating. Part 2: Investigation of the consumption pattern in a substation at Korea District Heating Corporation at the turn of the year 1994/95

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Mats; Olsson, Nils

    1996-05-01

    This thesis, which is the second part of two, analyses the consumption pattern and the conditions for district heating in the Republic of Korea at the turn of the year 1994-95. It is based on a study made in Seoul at Korea District Heating Corporation which is the largest district heating utility in Korea. District heating was introduced in the 80s because of the environmental advantages. In 1994 KDHC provided 340 000 households with district heating. KDHC receives most of its thermal energy from combined heat and power plants which use natural gas as fuel. One substation was chosen for the investigation and temperature, flow, and pressure were measured. A typical Korean substation has heat exchangers connected in parallel in only one step and the apartment complexes use floor heating for internal heating. The space heating load shows a linear relation to the outdoor temperature. The hot tap-water consumption shows a highly varying pattern with peak loads in the morning and evening. There were also an oscillating pattern for some of the temperatures and flows caused by poor regulation. DH suits very well to Korea with its climate and the overpopulated cities. KDHC:s expansion will help to make Korea one of the leading countries in modern district heating. 10 refs, 36 figs, 11 tabs

  16. Hood River Conservation Project load analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, T.K.

    1987-11-01

    As a part of the Hood River Conservation Project (HRCP), 314 homes were monitored to measure electrical energy use. The total electrical load, space heating load, water heating load (in about 200 homes), wood-stove heat output (in about 100 homes), and indoor temperature were monitored. Data were collected for one full year before and one full year after these homes were retrofit with conservation measures. Local weather information was also collected on a 15-min basis. This data base was used to evaluate the load savings attributable to HRCP. Two methods of weather normalization were used and showed close agreement. The weather-normalized diversified residential load savings on the Pacific Power and Light system and Hood River area peak days were >0.5 kW/household. The average spring, summer, and fall savings were much smaller, <0.1 kW/household. The load factor for the diversified residential load decreased following the conservation retrofit actions. 11 refs., 40 figs., 13 tabs.

  17. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  18. High Heat Load Diamond Monochromator Project at ESRF

    International Nuclear Information System (INIS)

    Van aerenbergh, P.; Detlefs, C.; Haertwig, J.; Lafford, T. A.; Masiello, F.; Roth, T.; Schmid, W.; Wattecamps, P.; Zhang, L.

    2010-01-01

    Due to its outstanding thermal properties, diamond is an attractive alternative to silicon as a monochromator material for high intensity X-ray beams. To date, however, the practical applications have been limited by the small size and relatively poor crystallographic quality of the crystals available. The ESRF Diamond Project Group has studied the perfection of diamonds in collaboration with industry and universities. The group has also designed and tested different stress-free mounting techniques to integrate small diamonds into larger X-ray optical elements. We now propose to develop a water-cooled Bragg-Bragg double crystal monochromator using diamond (111) crystals. It will be installed on the ESRF undulator beamline, ID06, for testing under high heat load. This monochromator will be best suited for the low energy range, typically from ∼3.4 keV to 15 keV, due to the small size of the diamonds available and the size of the beam footprint. This paper presents stress-free mounting techniques studied using X-ray diffraction imaging, and their thermal-mechanical analysis by finite element modelling, as well as the status of the ID06 monochromator project.

  19. A method for load management in low voltage grids. Application from e-mobility to heat storage; Verfahren zum Lastmanagement in Niederspannungsnetzen. Anwendung von E-Mobility bis Waermespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Tobias; Schegner, Peter [TU Dresden (Germany). IEEH; Hable, Matthias [ENSO NETZ GmbH, Dresden (Germany)

    2012-07-01

    With the expected charging characteristic of e-mobility a considerable load peak during the night is expected. The paper describes the application of a modified maximal rectangle algorithm to determine the optimal starting times for charging to realise a flat load curve. The load characteristic of e-mobility is similar to heat storage. This allows to use the currently widely spread heat storage devices as example for developing and testing methods for optimized load management in low voltage networks. It is shown that the developed optimization algorithm finds solutions close to the global optimum even in large networks ({approx} 25000 devices) with low requirements of calculation time (< 1 min). (orig.)

  20. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoyan, Zhang [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China)], E-mail: gqzxy@sohu.com; Xingqun, Zhang; Yunguang, Chen; Xiuling, Yuan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-06-15

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m{sup -2} s{sup -1}, heat flux from 11 to 32 kW m{sup -2}, evaporation temperature from 0 to 5.5 deg. C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes.

  1. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); Zhang, Xingqun; Chen, Yunguang; Yuan, Xiuling [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-06-15

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m{sup -2} s{sup -1}, heat flux from 11 to 32 kW m{sup -2}, evaporation temperature from 0 to 5.5{sup o}C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes. (author)

  2. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Zhang Xingqun; Chen Yunguang; Yuan Xiuling

    2008-01-01

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m -2 s -1 , heat flux from 11 to 32 kW m -2 , evaporation temperature from 0 to 5.5 deg. C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes

  3. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  4. Thermal comfort. Design criteria for heating and cooling load calculations; Thermische Behaglichkeit. Auslegungskriterien fuer Heiz- und Kuehllastberechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Nadler, Norbert [CSE Nadler, Oranienburg (Germany)

    2010-07-01

    Due to the publication of the regulation DIN EN 15 251, the design criteria for the thermal indoor climate during the cooling load calculation and heating load calculation also are specified on European level. The regulation determines that the design values for the operational ambient temperature can be determined from the percentage of the dissatisfied values (PPD value according to DIN EN ISO 773). On national level, the exact definition is to take place for typical activities and thermal insulation values of the clothing. Alternatively, the direct use of the PPD value during the layout also is possible. It is shown that this method is to be preferred and that the most cooling load programs available at the market do not correspond to the generally accepted rules of the technology any longer.

  5. CHF multiplier of subcooled flow boiling for non-uniform heating conditions in swirl tube

    International Nuclear Information System (INIS)

    Inasaka, F.; Nariai, H.

    1994-01-01

    The high heat flux components of fusion reactors, such as divertor plates and beam dumps of neutral beam injectors, are estimated to be subjected to very high heat loads more than 10 MW/m 2 . Critical heat flux (CHF), which determines the upper limit of heat removal, is one of the most important problems in designing cooling systems. For practical applications in cooling systems, subcooled flow boiling in water combined with swirl-flow in tubes with internal twisted tape is thought to be the most superior for CHF characteristics in fusion reactor components, heat by irradiation comes in from one side of the wall, and cooling channel is then under circumferentially non-uniform heating condition. Authors have conducted the experiments on the CHF with internal twisted tapes under circumferentially non-uniform heating conditions and showed that when the intensity of non-uniformity increased, q cH (peak heat flux at burnout under nonuniform heating condition) in tube with internal twisted tape increased above the q c,unif (CHF under uniform heating condition), though the average qualities were the same for both cases. They also showed that this CHF enhancement was not seen in smooth tubes without tape under the same average qualities

  6. Containment loads due to direct containment heating and associated hydrogen behavior: Analysis and calculations with the CONTAIN code

    International Nuclear Information System (INIS)

    Williams, D.C.; Bergeron, K.D.; Carroll, D.E.; Gasser, R.D.; Tills, J.L.; Washington, K.E.

    1987-05-01

    One of the most important unresolved issues governing risk in many nuclear power plants involves the phenomenon called direct containment heating (DCH), in which it is postulated that molten corium ejected under high pressure from the reactor vessel is dispersed into the containment atmosphere, thereby causing sufficient heating and pressurization to threaten containment integrity. Models for the calculation of potential DCH loads have been developed and incorporated into the CONTAIN code for severe accident analysis. Using CONTAIN, DCH scenarios in PWR plants having three different representative containment types have been analyzed: Surry (subatmospheric large dry containment), Sequoyah (ice condenser containment), and Bellefonte (atmospheric large dry containment). A large number of parameter variation and phenomenological uncertainty studies were performed. Response of DCH loads to these variations was found to be quite complex; often the results differ substantially from what has been previously assumed concerning DCH. Containment compartmentalization offers the potential of greatly mitigating DCH loads relative to what might be calculated using single-cell representations of containments, but the actual degree of mitigation to be expected is sensitive to many uncertainties. Dominant uncertainties include hydrogen combustion phenomena in the extreme environments produced by DCH scenarios, and factors which affect the rate of transport of DCH energy to the upper containment. In addition, DCH loads can be aggravated by rapid blowdown of the primary system, co-dispersal of moderate quantities of water with the debris, and quenching of de-entrained debris in water; these factors act by increasing steam flows which, in turn, accelerates energy transport. It may be noted that containment-threatening loads were calculated for a substantial portion of the scenarios treated for some of the plants considered

  7. Determination of thermal-hydraulic loads on reactor internals in a DBA-situation

    International Nuclear Information System (INIS)

    Ville Lestinen; Timo Toppila

    2005-01-01

    Full text of publication follows: According to Finnish regulatory requirements, reactor internals have to stay intact in a design basis accident (DBA) situation, so that control rods can still penetrate into the core. To fulfill this demand some criteria must be followed in periodical in-service inspections. This is the motivation for studying and developing more detailed methods for analysis of thermal-hydraulic loads on reactor internals during the DBA-situation for the Loviisa NPP in Finland. The objective of this research program is to connect thermal-hydraulic and mechanical analysis methods with the goal to produce a reliable method for determination of thermal-hydraulic and mechanical loads on reactor internals in the accident situation. The tools studied are thermal-hydraulic system codes, computational fluid dynamics (CFD) codes and finite element analysis (FEA) codes. This paper concentrates mainly on thermal-hydraulic part of the research, but also the mechanical aspects are discussed. Firstly, the paper includes a short literary review of the available methods to analyse the described problem including both thermal-hydraulic and structural analysis parts. Secondly, different possibilities to carry out thermal-hydraulic analyses have been studied. The DBA-case includes complex physical phenomena and therefore modelling is difficult. The accident situation can be for example LLOCA. When the pipe has broken, the pressure decreases and water starts to evaporate, which consumes energy and that way limits the pressure decrease. After some period of time, the system reaches a new equilibrium state. To perform exact thermal-hydraulic analysis also two phase phenomena must be included. Therefore CFD codes are not capable of modelling the DBA situation very well, but the use of CFD codes requires that the effect of two phase flow must be added somehow. One method to calculate two phase phenomena with CFD codes is to use thermal-hydraulic system codes to calculate

  8. Thermal shock fracture of graphite armor plate under the heat load of plasma disruption

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Seki, Masahiro; Ohmori, Junji

    1989-01-01

    Experiments on the thermal shock brittle fracture of graphite plates were performed. Thermal loading which simulated a plasma disruption was produced by an electron beam facility. Pre-cracks produced on the surface propagated to the inside of the specimen even if the thermal stress on the surface was compressive. Two mechanisms are possible to produce tensile stress around the crack tip under thermal shock conditions. Temperature, thermal stress, and the stress intensity factor for the specimen were analyzed based on the finite element method for various heating conditions. The trend of experimental results under the asymmetric heating agrees qualitatively with the analytical results. This phenomenon is important for the design of plasma facing components made of graphite. Establishment of a lifetime prediction procedure including fatigue, fatigue crack growth, and brittle fracture is needed for graphite armors. (orig.)

  9. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  10. Development of a national anthropogenic heating database with an extrapolation for international cities

    Science.gov (United States)

    Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.

    2015-10-01

    Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential

  11. An ultra-thin miniature loop heat pipe cooler for mobile electronics

    International Nuclear Information System (INIS)

    Zhou, Guohui; Li, Ji; Lv, Lucang

    2016-01-01

    Highlights: • A 1.2 mm thick miniature loop heat pipe was developed. • The mLHP can manage a wide range of heat loads at natural convection. • A minimum mLHP thermal resistance of 0.111 °C/W was achieved at 11 W. • The proposed mLHP is a promising solution for cooling mobile electronics. - Abstract: In this paper, we present a miniature loop heat pipe (mLHP) employing a 1.2 mm thick flat evaporator and a vapor line, liquid line and condenser with a 1.0 mm thickness. The mLHP employs an internal wick structure fabricated of sintered fine copper mesh, comprised of a primary wick structure in the evaporator to provide the driving force for circulating the working fluid, and a secondary wick inside the liquid line to promote the flow of condensed working fluid back to the evaporator. All tests were conducted under air natural convection at an ambient temperature of 24 ± 1 °C. The proposed mLHP demonstrated stable start-up behavior at a low heat load of 2 W in the horizontal orientation with an evaporator temperature of 43.9 °C and efficiently dissipates a maximum heat load of 12 W without dry-out occurring. A minimum mLHP thermal resistance of 0.111 °C/W was achieved at a heat load of 11 W in a gravity favorable operation mode, at which the evaporator temperature was about 97.2 °C. In addition, an analytical analysis was conducted, and the devised equation could be used to evaluate the performance of the mLHP.

  12. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  13. Limit loads for piping branch junctions under internal pressure and in-plane bending-Extended solutions

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Lee, Kuk-Hee; Park, Chi-Yong

    2008-01-01

    The authors have previously proposed plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on finite element (FE) limit loads resulting from three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials [Kim YJ, Lee KH, Park CY. Limit loads for thin-walled piping branch junctions under internal pressure and in-plane bending. Int J Press Vessels Piping 2006;83:645-53]. The solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and for the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0. Moreover, the solutions considered the case of in-plane bending only on the branch pipe. This paper extends the previous solutions in two aspects. Firstly, plastic limit load solutions are given also for in-plane bending on the run pipe. Secondly, the validity of the proposed solutions is extended to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparisons with FE results show good agreement

  14. Study of entropy generation in a slab with non-uniform internal heat generation

    Directory of Open Access Journals (Sweden)

    El Haj Assad Mamdouh

    2013-01-01

    Full Text Available Analysis of entropy generation in a rectangular slab with a nonuniform internal heat generation is presented. Dimensionless local and total entropy generation during steady state heat conduction through the slab are obtained. Two different boundary conditions have been considered in the analysis, the first with asymmetric convection and the second with constant slab surface temperature. Temperature distribution within the slab is obtained analytically. The study investigates the effect of some relevant dimensionless heat transfer parameters on entropy generation. The results show that there exists a minimum local entropy generation but there does not exist a minimum total entropy generation for certain combinations of the heat transfer parameters. The results of calculations are presented graphically.

  15. Internal friction and mechanical properties of Zr - 2.5% Nb alloy after programme loading

    International Nuclear Information System (INIS)

    Gindin, I.A.; Chirkina, L.A.; Okovit, V.S.; Netesov, V.M.

    1984-01-01

    Temperature dependence of internal friction in the range 20-600 deg C of the alloy Zr-2.5% Nb in the initial state after programmed loading up to 0.1% of residual elongation and static deformation to the same deformation degree has been studied. It is shown, that the programmed loading promotes the decrease in relaxation rate at 20 and 200 deg C and the increase of strength characteristics of the alloy without the decrease in plasticity margin to fracture in the range 20-400 deg C

  16. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2008-01-01

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure. (author)

  17. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat...... load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation ratios for a number of ammonia mass...... fractions and heat pump loads. An exergo economic optimization is applied to minimize the lifetime cost of the system. Technological limitations are imposed to constrain the solution to commercial components. The best possible implementation is identified in terms of heat load, ammonia mass fraction...

  18. 8th International Symposium on Heating, Ventilation and Air Conditioning

    CERN Document Server

    Zhu, Yingxin; Li, Yuguo; Vol.1 Indoor and Outdoor Environment; Vol.2 HVAC&R Component and Energy System; Vol.3 Building Simulation and Information Management

    2014-01-01

    Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning is based on the 8th International Symposium of the same name (ISHVAC2013), which took place in Xi’an on October 19-21, 2013. The conference series was initiated at Tsinghua University in 1991 and has since become the premier international HVAC conference initiated in China, playing a significant part in the development of HVAC and indoor environmental research and industry around the world. This international conference provided an exclusive opportunity for policy-makers, designers, researchers, engineers and managers to share their experience. Considering the recent attention on building energy consumption and indoor environments, ISHVAC2013 provided a global platform for discussing recent research on and developments in different aspects of HVAC systems and components, with a focus on building energy consumption, energy efficiency and indoor environments. These categories span a broad range of topics, and the proce...

  19. Current status of and problems in ice heat storage systems contributing to improving load rates. Strengthening works intended for leveling the electric power load; Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Denryoku fuka heikinka ni muketa torikumi no kyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T. [Agency of Natural Resources and Energy, Tokyo (Japan)

    1998-02-01

    This paper introduces improvement in annual load rate in power supply in Japan, and the measures to proliferate and expand the use of ice heat storage systems. The annual load rate in power supply has dropped to about 55% today from the level of about 70% in 1965. This has been caused by the following reasons: the maximum power demand having become sharper in summer due to rapid increase in demand for air conditioning for room cooling, increase in weight of business operation department associated with progress of service economy, and change in the industrial structure from the material type industry to the processing and assembling type industry in the industrial department. In order to achieve load shift in the room cooling demand, which accounts largely for consumer demand during the peak time in summer, and is the main cause for reduced load rate, it is important that a heat storage type air conditioning system and a gas room cooling system be used more widely. The heat storage air conditioning and gas room cooling systems have a bottleneck in their proliferation that their facility cost is more expensive than existing air conditioning systems of non-heat regeneration type. It is necessary to review legal institutions and electric power charge systems for the purpose of proliferation and expanded use of the heat regeneration air conditioning and gas room cooling systems. 2 figs.

  20. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  1. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    OpenAIRE

    Panayotis, S.; Hirai, T.; Wirtz, Marius; Barabash, V.; Durocher, A.; Escourbiac, F.; Linke, J.; Loewenhoff, Th.; Merola, M.; Pintsuk, G.; Uytdenhouwen, I.

    2017-01-01

    In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highligh...

  2. Thermal simulation of different construction types in six climatic regions on heating and cooling loads

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-10-01

    Full Text Available reduces its heating and cooling loads the most. 3. Applying both roof and ceiling insulation should always be avoided. 4. Building insulation is an effective intervention in all climatic regions. 5. Slightly increasing the thermal mass of a wall... were designed to evaluate the following: ? Case A ? base case ? Case B ? insulated walls ? Case C ? insulated walls and insulated ceiling ? Case D ? insulated walls, insulated ceiling and roof ? Case E ? increased thermal mass wall and insulated...

  3. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2016-10-08

    Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master-and-slave configuration and the aforementioned internal heat recovery scheme. The present model captures the reversed adsorption/desorption phenomena frequently associated with the unmatched switching periods. Mesoporous silica gel and water vapor emanated from the evaporation of the seawater are employed as the adsorbent and adsorbate pair. The experimental data and investigation for such configurations are reported for the first time at heat source temperatures from 50 °C to 70 °C. The numerical model is validated rigorously and the parametric study is conducted for the performance of the cycle at assorted operation conditions such as hot and cooling water inlet temperatures and the cycle times. The specific daily water production (SDWP) of the present cycle is found to be about 10 m/day per tonne of silica gel for the heat source temperature at 70 °C. Performance comparison is conducted for various types of adsorption desalination cycles. It is observed that the AD cycle with the current configuration provides superior performance whilst is operational at unprecedentedly low heat source temperature as low as 50 °C.

  4. Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans

    DEFF Research Database (Denmark)

    Bundgaard-Nielsen, Morten; Wilson, T E; Seifert, Thomas

    2010-01-01

    During reductions in central blood volume while heat stressed, a greater decrease in stroke volume (SV) for a similar decrease in ventricular filling pressure, compared to normothermia, suggests that the heart is operating on a steeper portion of a Frank-Starling curve. If so, volume loading...... of heat-stressed individuals would shift the operating point to a flatter portion of the heat stress Frank-Starling curve thereby attenuating the reduction in SV during subsequent decreases in central blood volume. To investigate this hypothesis, right heart catheterization was performed in eight males...... from whom pulmonary capillary wedge pressure (PCWP), central venous pressure and SV (via thermodilution) were obtained while central blood volume was reduced via lower-body negative pressure (LBNP) during normothermia, whole-body heating (increase in blood temperature 1 degrees C), and during whole...

  5. Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau

    2014-06-01

    There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.

  6. Clinical Parameters and Crestal Bone Loss in Internal Versus External Hex Implants at One Year after Loading

    Directory of Open Access Journals (Sweden)

    HamidReza Arab

    2015-09-01

    Full Text Available Introduction: The survival of an implant system is affected by the choice of antirotational design, which can include an external or internal hex. Implant success also is affected by the maintenance of the crestal bone around implants. The aim of present study was to evaluate the crestal bone loss and clinical parameters related to bone loss in patients loaded with an external or internal hex 3i implant (3i Implant Innovation, Palm Beach Gardens, FL, USA. The evaluations were performed one year after loading. Materials and Methods: A total of 39 implants (23 external hex, 16 internal hex were placed randomly in 23 patients (10 male, 13 female by a submerged approach. None of patients had compromised conditions or parafunctional habits. At placement and at one year after loading, periapical radiographs were taken via the parallel method from the implant sites. Results: Crestal bone loss was -0.712±0.831 mm in implants with an internal hex connection and -0.139±0.505 mm in implants with an external hex connection (P≤0.05. No correlation was found between crestal bone loss and parameters such as age, gender, jaw, implant location (anterior, premolar, or molar, implant diameter, or implant length. Conclusions: Crestal bone loss was greater in patients with internal hex 3i implants than in those with external implants. Similar results in other clinical factors were found between the groups.

  7. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity

    International Nuclear Information System (INIS)

    Aziz, A.; Bouaziz, M.N.

    2011-01-01

    Highlights: → Analytical solutions for a rectangular fin with temperature dependent heat generation and thermal conductivity. → Graphs give temperature distributions and fin efficiency. → Comparison of analytical and numerical solutions. → Method of least squares used for the analytical solutions. - Abstract: Approximate but highly accurate solutions for the temperature distribution, fin efficiency, and optimum fin parameter for a constant area longitudinal fin with temperature dependent internal heat generation and thermal conductivity are derived analytically. The method of least squares recently used by the authors is applied to treat the two nonlinearities, one associated with the temperature dependent internal heat generation and the other due to temperature dependent thermal conductivity. The solution is built from the classical solution for a fin with uniform internal heat generation and constant thermal conductivity. The results are presented graphically and compared with the direct numerical solutions. The analytical solutions retain their accuracy (within 1% of the numerical solution) even when there is a 60% increase in thermal conductivity and internal heat generation at the base temperature from their corresponding values at the sink temperature. The present solution is simple (involves hyperbolic functions only) compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method and offers high accuracy. The simple analytical expressions for the temperature distribution, the fin efficiency and the optimum fin parameter are convenient for use by engineers dealing with the design and analysis of heat generating fins operating with a large temperature difference between the base and the environment.

  8. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or 'wobbled' beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  9. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  10. Surface morphology changes of tungsten exposed to high heat loading with mixed hydrogen/helium beams

    International Nuclear Information System (INIS)

    Greuner, H.; Maier, H.; Balden, M.; Böswirth, B.; Elgeti, S.; Schmid, K.; Schwarz-Selinger, T.

    2014-01-01

    We discuss the surface morphology modification of W samples observed after simultaneous heat and particle loading using a mixed H/He particle beam with a He concentration of 1 at.%. The applied heat flux of 10 MW/m 2 is representative for the normal operation of the divertor of DEMO or a power plant. The long pulse high heat flux experiments on actively water-cooled W samples were performed in the GLADIS facility at surface temperatures between 600 °C and 2000 °C. This allows together with the applied total fluences between 1 × 10 24 m −2 and 1 × 10 26 m −2 the temperature- and fluence dependent study of the growing nano-structures. We analyse in detail the surface modifications up to a depth of several μm by scanning electron microscopy combined with focussed ion beam preparation. The hydrogen and helium release of the samples is analysed by long term thermal desorption spectroscopy and compared with the prediction of a diffusion trapping model

  11. Melt layer erosion of pure and lanthanum doped tungsten under VDE-like high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Luo, G.-N.; Fu, B. Q.; Xu, H. Y.; Liu, W.

    2013-07-01

    Heat loads expected for VDEs in ITER were applied in the neutral beam facility GLADIS at IPP Garching. Several ˜3 mm thick rolled pure W and W-1 wt% La2O3 plates were exposed to pulsed hydrogen beams with a central heat flux of 23 MW/m2 for 1.5-1.8 s. The melting thresholds are determined, and melt layer motion as well as material structure evolutions are shown. The melting thresholds of the two W grades are very close in this experimental setup. Lots of big bubbles with diameters from several μm to several 10 μm in the re-solidified layer of W were observed and they spread deeper with increasing heat flux. However, for W-1 wt% La2O3, no big bubbles were found in the corrugated melt layer. The underlying mechanisms referred to the melt layer motion and bubble issues are tentatively discussed based on comparison of the erosion characteristics between the two W grades.

  12. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  13. Electricity use and load management in electricity heated one-family houses from customer and utility perspective; Effekten av effekten - Elanvaendning och laststyrning i elvaermda smaahus ur kund- och foeretagsperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Sernhed, Kerstin

    2004-11-01

    Until recently, the increase in electricity demand and peak power demand has been met by expansion of the electricity production. Today, due to the deregulation of the electricity market, the production capacity is decreasing. Therefore, there is a national interest in finding solutions to peak problems also on the demand side. In the studies described here (Study 1 and 2) ten households in electrically heated houses were examined. In 1999 the utility equipped their customers with a remote metering system (CustCom) that has an in-built load control component. In Study 1, the load pattern of ten households was examined by using energy diaries combined with frequent meter readings (every five minutes) of the load demand for heating, hot water service and domestic electricity use. Household members kept energy diaries over a four-day period in January 2004, noting time, activities and the use of household appliances that run on electricity. The analysis showed that the use of heat-producing household appliances, e.g. sauna, washing machine and dryer, appliances used for cooking, dishwasher and extra electric heaters, contribute to the household's highest peaks. Turning on the sauna and at the same time using the shower equates to a peak load of 7-9 kW. This, in addition to the use of electricity for heating and lighting along alongside electricity use for refrigerators and freezers, results in some households reaching their main fuse level (roughly 13,8 kW for a main fuse of 20 A). This means that the domestic use of electricity makes up a considerable part of the highest peak loads in a household, but the highest peaks occur together with the use of electricity for heating and hot water. In the second study, Study 2, the households participated in a load control experiment, in which the utility was able to turn on and switch off the heating and hot water systems remotely, using the CustCom system. Heating and water heaters were switched off for periods of 1

  14. Split radiator design for heat rejection optimization for a waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  15. Short-term forecasts of district heating load and outdoor temperature by use of on-line connected computers; Korttidsprognoser foer fjaerrvaermelast och utetemperatur med on-linekopplade datorer

    Energy Technology Data Exchange (ETDEWEB)

    Malmstroem, B; Ernfors, P; Nilsson, Daniel; Vallgren, H [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Energiteknik

    1996-10-01

    In this report the available methods for forecasting weather and district heating load have been studied. A forecast method based on neural networks has been tested against the more common statistical methods. The accuracy of the weather forecasts from the SMHI (Swedish Meteorological and Hydrological Institute) has been estimated. In connection with these tests, the possibilities of improving the forecasts by using on-line connected computers has been analysed. The most important results from the study are: Energy company staff generally look upon the forecasting of district heating load as a problem of such a magnitude that computer support is needed. At the companies where computer calculated forecasts are in use, their accuracy is regarded as quite satisfactory; The interest in computer produced load forecasts among energy company staff is increasing; At present, a sufficient number of commercial suppliers of weather forecasts as well as load forecasts is available to fulfill the needs of energy companies; Forecasts based on neural networks did not attain any precision improvement in comparison to more traditional statistical methods. There may though be other types of neural networks, not tested in this study, that are possibly capable of improving the forecast precision; Forecasts of outdoor temperature and district heating load can be significantly improved through the use of on-line-connected computers supplied with instantaneous measurements of temperature and load. This study shows that a general reduction of the load prediction errors by approximately 15% is attainable. For short time horizons (less than 5 hours), more extensive load prediction error reductions can be reached. For the 1-hour time horizon, the possible reduction amounts to up to 50%. 21 refs, 4 figs, 7 appendices

  16. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  17. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  18. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    Science.gov (United States)

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  19. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  20. Relationships Between the External and Internal Training Load in Professional Soccer: What Can We Learn From Machine Learning?

    Science.gov (United States)

    Jaspers, Arne; Beéck, Tim Op De; Brink, Michel S; Frencken, Wouter G P; Staes, Filip; Davis, Jesse J; Helsen, Werner F

    2017-12-28

    Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Training data were collected from 38 professional soccer players over two seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using two machine learning techniques, artificial neural networks (ANNs) and least absolute shrinkage and selection operator (LASSO), and one naive baseline method. The predictions were based on a large set of external load indicators. Using each technique, one group model involving all players and one individual model for each player was constructed. These models' performance on predicting the reported RPE values for future training sessions was compared to the naive baseline's performance. Both the ANN and LASSO models outperformed the baseline. Additionally, the LASSO model made more accurate predictions for the RPE than the ANN model. Furthermore, decelerations were identified as important external load indicators. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Machine learning techniques may have added value in predicting the RPE for future sessions to optimize training design and evaluation. Additionally, these techniques may be used in conjunction with expert knowledge to select key external load indicators for load monitoring.

  1. An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system

    International Nuclear Information System (INIS)

    Jana, Amiya K.; Maiti, Debadrita

    2013-01-01

    Batch distillation is an irreversible process and consumes many times the theoretical minimum energy requirement. The present work focuses on the development of an internally heat integrated batch distillation with a jacketed still (IHIBDJS) aiming to reduce the degree of irreversibility towards zero. The IHIBDJS scheme consists of a rectifying tower equipped with an overhead condenser and a still pot or reboiler that surrounds the tower concentrically. For improving the energy efficiency by the reduction of external energy input, the rectifier is operated at an elevated pressure so that a thermal driving force should exist between the rectifying tower and the concentric still. For this purpose, an isentropic compression system is mounted in the reboiled vapor line. Aiming to reduce further the degree of process irreversibility, we propose an additional thermal arrangement into the IHIBDJS configuration that couples the overhead vapor with the reboiler liquid, thereby reducing further the external heat consumption. It is investigated for a reactive batch distillation column that the effective use of internal heat sources would make the heat integrated column an independent scheme of external heat source. - Highlights: • An internal heat integration approach is developed for batch distillation. • Further intensification is made by thermally coupling top vapor with still liquid. • A reactive system is used to illustrate the proposed scheme

  2. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    International Nuclear Information System (INIS)

    You, Jeong-Ha

    2014-01-01

    Highlights: • The surface heat flux load of 3.5 MW/m 2 produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m 2 ) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different damage

  3. Ramifications of structural deformations on collapse loads of critically cracked pipe bends under in-plane bending and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Sumesh; Arunachalam, Veerappan; Subramaniam, Shanmugam [Dept. of Mechanical Engineering, National Institute of Technology, Tiruchirappalli (India)

    2017-02-15

    Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked 90 .deg. pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

  4. The effect of internal ribbing on forced convective heat transfer in circular-sectioned tubes

    International Nuclear Information System (INIS)

    Farhadi Rahmat-Abadi, K.; Morris, W. D.

    2003-01-01

    This paper presents the results of an experimental examination of the effect of internal circumferential ribs on forced convection in circular-sectioned tubes. The work is relevant to the internal cooling of gas turbine rotor blades. The influence of rib geometry is investigated for three different rib configurations and simple design-type, empirical equations are developed for estimating heat transfer at rib and mid-rib locations. It is demonstrated that heat transfer may be improved by up to three fold in relation to fully developed forced convection in smooth-walled tubes. The geometric parameters which have been used for the experiments are typical of those currently applied to gas turbine blade cooling designs

  5. Dynamic simulation of periodic adsorption heat pumps. Dynamische Simulation periodischer Adsorptionswaermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Foellinger, T.

    1989-01-01

    Periodic asorption heat pumps with water as working fluid and two types of zeolites as adsorption agents were studied theoretically by a dynamic simulation analysis in order to find out whether they are suited as high-temperature heat pumps for heat recovery. Variants with one and two pairs of containers were investigated. Internal heat transfer is possible between the containers of each pair, and shifting temperature and load profiles (zoned sorption) are generated inside the containers in order to raise the heat ratio (efficience). The heat ratios are clearly higher than in ammonia/water heat pumps of the same size. The external heat transfer is kept constant by means of control elements and buffer systems, so that the periodic heat pump can be integrated in a continuous process. A pilot plant was developed on the basis of the results, with particular interest taken in the design of the liquid/solid heat transfer media. (orig.) With 47 figs., 3 tabs.

  6. Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps

    International Nuclear Information System (INIS)

    Tyagi, S.K.; Kaushik, S.C.; Salohtra, R.

    2002-01-01

    This communication presents the ecological optimization and parametric study of irreversible Stirling and Ericsson heat pump cycles, in which the external irreversibility is due to finite temperature difference between working fluid and external reservoirs while the internal irreversibilities are due to regenerative heat loss and other entropy generations within the cycle. The ecological function is defined as the heating load minus the irreversibility (power loss) which is ambient temperature times the entropy generation. The ecological function is optimized with respect to working fluid temperatures, and the expressions for various parameters at the optimal operating condition are obtained. The effects of different operating parameters on the performance of these cycles have been studied. It is found that the effect of internal irreversibility parameter is more pronounced than the other parameters on the performance of these cycles. (author)

  7. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Science.gov (United States)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  8. Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation

    Science.gov (United States)

    Mokhtar, N. F. M.; Khalid, I. K.; Siri, Z.; Ibrahim, Z. B.; Gani, S. S. A.

    2017-10-01

    The influences of feedback control and internal heat source on the onset of Rayleigh-Bénard convection in a horizontal nanofluid layer is studied analytically due to Soret and Dufour parameters. The confining boundaries of the nanofluid layer (bottom boundary-top boundary) are assumed to be free-free, rigid-free, and rigid-rigid, with a source of heat from below. Linear stability theory is applied, and the eigenvalue solution is obtained numerically using the Galerkin technique. Focusing on the stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-diffusive convection, while there is a positive thermal efficiency in the existence of internal heat generation. The possibilities of suppress or augment of the Rayleigh-Bénard convection in a nanofluid layer are also discussed in detail.

  9. Heat pump heating with heat pumps driven by combustion engines or turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K

    1977-01-27

    The heat pump described is driven by a gas Otto cycle engine, or a gas- or light- or heavy-oil fired Diesel engine. The claim refers to the use of waste heat of the engines by feeding into the input circuit of the heat pump. In addition, a drive by an electrical motor-generator or power production can be selected at times of peak load in the electrical supply network.

  10. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  11. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity...... of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well......In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable...

  12. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  13. Book of short papers : International symposium on convective heat and mass transfer in sustainable energy Conv - 09. Volume 1

    International Nuclear Information System (INIS)

    2009-01-01

    This book contains the short papers from the International Symposium on Convective heat and Mass Transfer in sustainable Energy ( Conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer

  14. Book of short papers : International symposium on convective heat and mass transfer in sustainable energy conv - 09. Volume 2

    International Nuclear Information System (INIS)

    2009-01-01

    This book contains the short papers from the International Symposium on convective heat and Mass Transfer in sustainable Energy ( conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer

  15. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    Science.gov (United States)

    Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.

    2017-10-01

    The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  16. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-10-01

    Full Text Available The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads, which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria. Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  17. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, R.; Ghosh, P.; Chowdhury, K. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2012-07-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  18. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    International Nuclear Information System (INIS)

    Dutta, R.; Ghosh, P.; Chowdhury, K.

    2012-01-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  19. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  20. Prototyping phase of the high heat flux scraper element of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Greuner, H. [Max Planck Institute for Plasma Physics, Garching (Germany); Ehrke, G. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Böswirth, B.; Wang, Z. [Max Planck Institute for Plasma Physics, Garching (Germany); Clark, E. [University of Tennessee, Knoxville (United States); Lumsdaine, A. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Tretter, J. [Max Planck Institute for Plasma Physics, Garching (Germany); McGinnis, D.; Lore, J. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Ekici, K. [University of Tennessee, Knoxville (United States)

    2016-11-01

    Highlights: • Aim of scraper element: reduction of heat loads on high heat flux divertor ends. • Design: actively water-cooled for 20 MW/m{sup 2} local heat loads. • Technology: CFC NB31 monoblocks bonded by HIP to CuCrZr cooling tube. • Successful high heat flux testing up to 20 MW/m{sup 2}. - Abstract: The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equipped with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m{sup 2}. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. The prototypes are presently under fabrication.

  1. CASTOR registered HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    International Nuclear Information System (INIS)

    Vossnacke, A.; Klein, K.; Kuehne, B.

    2004-01-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR registered HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR registered HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR registered HAW28M, meeting these future requirements. The CASTOR registered HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR registered HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be considered. For the CASTOR

  2. Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy......, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates....

  3. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review

    Czech Academy of Sciences Publication Activity Database

    Bormans, M.; Maršálek, Blahoslav; Jančula, Daniel

    2016-01-01

    Roč. 50, č. 3 (2016), s. 407-422 ISSN 1386-2588 Institutional support: RVO:67985939 Keywords : internal P loading * cyanobacterial control * physical in-lake restoration methods * adverse impacts on biota Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.500, year: 2016

  4. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mix

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Francesca M.; Kessel, Charles E. [Princeton Plasma Physics laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  5. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    Science.gov (United States)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  6. Future residential loads profiles : scenario-based analysis of high penetration of heavy loads and distributed generation

    NARCIS (Netherlands)

    Asare-Bediako, B.; Kling, W.L.; Ribeiro, P.F.

    2014-01-01

    Electric load profiles are useful for accurate load forecasting, network planning and optimal generation capacity. They represent electricity demand patterns and are to a large extent predictable. However, new and heavier loads (heat pumps and electric vehicles), distributed generation, and home

  7. Melt layer erosion of pure and lanthanum doped tungsten under VDE-like high heat flux loads

    International Nuclear Information System (INIS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Luo, G.-N.; Fu, B.Q.; Xu, H.Y.; Liu, W.

    2013-01-01

    Heat loads expected for VDEs in ITER were applied in the neutral beam facility GLADIS at IPP Garching. Several ∼3 mm thick rolled pure W and W–1 wt% La 2 O 3 plates were exposed to pulsed hydrogen beams with a central heat flux of 23 MW/m 2 for 1.5–1.8 s. The melting thresholds are determined, and melt layer motion as well as material structure evolutions are shown. The melting thresholds of the two W grades are very close in this experimental setup. Lots of big bubbles with diameters from several μm to several 10 μm in the re-solidified layer of W were observed and they spread deeper with increasing heat flux. However, for W–1 wt% La 2 O 3 , no big bubbles were found in the corrugated melt layer. The underlying mechanisms referred to the melt layer motion and bubble issues are tentatively discussed based on comparison of the erosion characteristics between the two W grades

  8. Performance Measurements of a 7 mm-Diameter Hydrogen Heat Pipe

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Kiliana, K.; Ritman, J.; Abdel-Bary, M.; Abdel-Samad, S.

    2008-01-01

    A gravity assisted heat pipe with 7-mm diameter has been developed and tested to cool a liquid hydrogen target for extracted beam experiments at COSY. The liquid flowing down from the condenser surface is separated from the vapor flowing up by a thin wall 3 mm diameter plastic tube located concentrically inside the heat pipe. The heat pipe was tested at different inclination angles with respect to the horizontal plane. The heat pipe showed good operating characteristics because of the low radiation heat load from the surroundings, low heat capacity due to the small mass, higher sensitivity to heat loads (to overcome the heat load before the complete vaporization of the liquid in the target cell) due to the higher vapor speed inside the heat pipe which transfers the heat load to the condenser

  9. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...... ratios for a number of ammonia mass fractions and heat pump loads. An exergoeconomic optimization is applied to minimize the lifetime cost of the system. Technological limitations are applied to constrain the solution to commercial components. The best possible implementation is identified in terms...

  10. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 1: Methodology

    International Nuclear Information System (INIS)

    Svensson, Inger-Lise; Joensson, Johanna; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    Excess heat from a kraft pulp mill can be used either internally to increase the level of efficiency in the mill, or externally for example as district heating. This paper presents an approach to investigate the competition between external and internal use through modelling the pulp mill and an energy company (ECO) within the same system boundary. Three different sizes of ECOs with different district heating demands are studied. To investigate the competitiveness of using industrial excess heat as district heating compared with other heat production techniques, the option of investing in excess heat use is introduced, along with the possibility for the ECO to invest in biomass combined heat and power (CHP), waste CHP and natural gas combined cycle (NGCC). To evaluate the robustness of the model, alternative solutions are identified and will be used as a comparison to the optimal solutions. The model has been verified by comparing the results with previous studies concerning kraft pulp mills and with related studies regarding district heating and real ECOs. Finally, the approach presented in this part of the study will be used in the second part in order to investigate the trade-off between internal and external use of excess heat under different future energy market scenarios

  11. Process for loading latent heat stores. Verfahren zur Beschickung von Latentwaermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1981-06-11

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO/sub 4//NAOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g. Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  12. Generation and development of damage in double forged tungsten in different combined regimes of irradiation with extreme heat loads

    Science.gov (United States)

    Paju, Jana; Väli, Berit; Laas, Tõnu; Shirokova, Veroonika; Laas, Katrin; Paduch, Marian; Gribkov, Vladimir A.; Demina, Elena V.; Prusakova, Marina D.; Pimenov, Valeri N.; Makhlaj, Vadym A.; Antonov, Maksim

    2017-11-01

    Armour materials in fusion devices, especially in the region of divertor, are exposed to a continuous heat and particle load. In addition, several off-normal events can reach the material during a work session. Calculations show that the effects of plasma and heat during such events can lead to cracking, erosion and detachment of the armour material. On the other hand, mutual and combined influences of different kinds of heat and particle loads can lead to the amplification of defects or vice versa, to the mitigation of damages. Therefore, the purpose of the study is to investigate the plasma induced damages on samples of double forged tungsten, which is considered a potential candidate for armour material of future tokamak's divertor. The combined effect of different kinds of plasma induced damages was investigated and analysed in this research. The study was conducted by irradiating the samples in various irradiation regimes twice, to observe the accumulation of the damages. Afterwards the analysis of micro-topography, scanning electron microscopy images and electrical conductivity measurements was used. Results indicate that double-forging improved the tungsten's durability to irradiation. Nevertheless, powerful pulses lead to significant damage of the sample, which will lead to further deterioration in the bulk. Although the average micro-roughness on the sample's surface does not change, the overall height/depth ratios can change.

  13. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Science.gov (United States)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  14. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Directory of Open Access Journals (Sweden)

    Nadolny Zbigniew

    2017-01-01

    Full Text Available The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal. In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  15. Power load leveling and energy saving measures for office buildings. Power load leveling and energy saving technology for the new building of the Kobe branch of the Kansai Electric Power Co., and its effect; Office biru no denryoku fuka heijunka sho energy hosaku. Kobe shiten shinshaoku ni okeru denryoku fuka heijunka sho energy gijutsu to sono koka

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, M. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1999-06-10

    This paper presents power load leveling and energy saving measures for heat source, air conditioning and lighting of the new Kobe branch building. The low-temperature hot-air system adopts an ice storage system, and reduces blowing power by 12 degreesC blowing in place of normal 16 degreesC blowing, and an initial cost by duct size reduction. The continuous air conditioning system levels an initial peak load of air conditioning as compared with normal air conditioning only for working hours for buildings with large heat capacity. In addition, as power load leveling measures for the whole building, the complete heat storage system using an underground internal melting type ice storage tank is adopted. Energy saving for lighting is achieved with a dimming lighting controlling its lighting output by inverter. The following effects are expected by these new technologies: Load leveling effect of 30%, energy saving effect of 20.2% and CO{sub 2} reduction effect of 24.1%. (NEDO)

  16. Assessing and Reducing Miscellaneous Electric Loads (MELs) in Lodging

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Emily M.

    2011-09-01

    Miscellaneous electric loads (MELs) are the loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. This report reviews methods to reduce MELs in lodging.

  17. Loading nature of the interfacial cracks in a joint component under fusion-relevant thermal loads

    International Nuclear Information System (INIS)

    You, J.H.

    1998-01-01

    One of the standard design concepts for divertor components in a fusion reactor is the bonded joint structure. Understanding the loading nature of interfacial cracks are significant for the assessment of structural integrity of divertor joint components. In this paper, the thermomechanical loading nature of interfacial cracks is discussed. A bi-material joint element consisting of the CFC/TZM system is considered. A typical fusion operation condition is simulated assuming a pulsed high heat flux loading. Stress singularities near the interfacial crack tips are characterized quantitatively in terms of the fracture mechanical parameters. The evolution of the stress intensity factors and the energy release rate during the given transient thermal load are determined. The difference in loading characteristics between the edge crack and the center crack is discussed. High heat flux cycling tests are performed on brazed CFC/TZM divertor elements in an electron beam test facility. The microstructures of the damaged interface agree with the predicted fracture modes. The loading nature and possible failure mechanisms are discussed for a fusion-relevant thermal loading. (orig.)

  18. Equipment for heating the exhaust gases of internal combustion engines in order to improve afterburning

    Energy Technology Data Exchange (ETDEWEB)

    Masaki,

    1976-04-15

    The device described here serves to heat exhaust gases of internal combustion engines by heat exchange with hot gases and also, in cold engines, to raise the temperature of the fuel-air mixture drawn in by the engine. The device is installed next to the outlet opening of the engine. It consists of a burner to generate the hot gas, as well as a heat exchanger permitting heat supply to the exhaust gases and a hot-gas line leading to the intake line. Heating of the air is taken in leads to a better atomization of the mixture and thus to improved combustion. Heating of the exhaust gases improves afterburning. The burner generating the hot gas is shut off when the normal operational temperature of the engine is reached. The temperature is controlled by means of a temperature sensor installed in the device.

  19. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury

    NARCIS (Netherlands)

    Soligard, Torbjørn; Schwellnus, Martin; Alonso, Juan-Manuel; Bahr, Roald; Clarsen, Ben; Dijkstra, H. Paul; Gabbett, Tim; Gleeson, Michael; Hägglund, Martin; Hutchinson, Mark R.; Janse van Rensburg, Christa; Khan, Karim M.; Meeusen, Romain; Orchard, John W.; Pluim, Babette M.; Raftery, Martin; Budgett, Richard; Engebretsen, Lars

    2016-01-01

    Athletes participating in elite sports are exposed to high training loads and increasingly saturated competition calendars. Emerging evidence indicates that poor load management is a major risk factor for injury. The International Olympic Committee convened an expert group to review the scientific

  20. Comparison of athlete-coach perceptions of internal and external load markers for elite junior tennis training.

    Science.gov (United States)

    Murphy, Alistair P; Duffield, Rob; Kellett, Aaron; Reid, Machar

    2014-09-01

    To investigate the discrepancy between coach and athlete perceptions of internal load and notational analysis of external load in elite junior tennis. Fourteen elite junior tennis players and 6 international coaches were recruited. Ratings of perceived exertion (RPEs) were recorded for individual drills and whole sessions, along with a rating of mental exertion, coach rating of intended session exertion, and athlete heart rate (HR). Furthermore, total stroke count and unforced-error count were notated using video coding after each session, alongside coach and athlete estimations of shots and errors made. Finally, regression analyses explained the variance in the criterion variables of athlete and coach RPE. Repeated-measures analyses of variance and interclass correlation coefficients revealed that coaches significantly (P coach and athlete. However, athlete drill RPE (P = .14; r = .71) and mental exertion (P = .44; r = .68) were comparable and substantially correlated. No significant differences in estimated stroke count were evident between athlete and coach (P = .21), athlete notational analysis (P = .06), or coach notational analysis (P = .49). Coaches estimated significantly greater unforced errors than either athletes or notational analysis (P coach RPE was explained by intended session exertion and coach drill RPE, while drill RPE and peak HR explained 45.3% of the variance in athlete session RPE. Coaches misinterpreted session RPE but not drill RPE, while inaccurately monitoring error counts. Improved understanding of external- and internal-load monitoring may help coach-athlete relationships in individual sports like tennis avoid maladaptive training.

  1. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    The radioactive tracer Technetium-99m is widely used in medical imaging and is derived from its parent isotope Molybedenum-99 (Mo-99) by radioactive decay. The majority of Molybdenum-99 (Mo-99) produced internationally is extracted from high enriched uranium (HEU) dispersion targets that have been irradiated. To alleviate proliferation risks associated with HEU-based targets, the use of non-HEU sources is being mandated. However, the conversion of HEU to LEU based dispersion targets affects the Mo-99 available for chemical extraction. A possible approach to increase the uranium density, to recover the loss in Mo-99 production-per-target, is to use an LEU metal foil placed within an aluminum cladding to form a composite structure. The target is expected to contain the fission products and to dissipate the generated heat to the reactor coolant. In the event of interfacial separation, an increase in the thermal resistance could lead to an unacceptable rise in the LEU temperature and stresses in the target. The target can be deemed structurally safe as long as the thermally induced stresses are within the yield strength of the cladding and welds. As with the thermal and structural safety of the annular target, the thermally induced deflection of the BORALRTM-based control blades, used by the University of Missouri Research Reactor (MURRRTM ), during reactor operation has been analyzed. The boron, which is the neutron absorber in BORAL, and aluminum mixture (BORAL meat) and the aluminum cladding are bonded together through powder metallurgy to establish an adherent bonded plate. As the BORAL absorbs both neutron particles and gamma rays, there is volumetric heat generation and a corresponding rise in temperature. Since the BORAL meat and aluminum cladding materials have different thermal expansion coefficients, the blade may have a tendency to deform as the blade temperature changes and the materials expand at different rates. In addition to the composite nature of the

  2. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  3. Model Based Controller Design for a Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. Nithya

    2007-10-01

    Full Text Available In all the process industries the process variables like flow, pressure, level and temperature are the main parameters that need to be controlled in both set point and load changes. The transfer of heat is one of the main important operation in the heat exchanger .The transfer of heat may be fluid to fluid, gas to gas i.e. in the same phase or the phase change can occur on either side of the heat exchanger. The control of heat exchanger is complex due to its nonlinear dynamics. For this nonlinear process of a heat exchanger the model is identified to be First Order plus Dead Time (FOPDT.The Internal Model Control (IMC is one of the model predictive control methods based on the predictive output of the process model. The conventional controller tuning is compared with IMC techniques and it found to be suitable for heat exchanger than the conventional PI tuning.

  4. CAL--ERDA users manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Graven, R. M.; Hirsch, P. R.

    1977-10-30

    A new set of computer programs capable of rapid and detailed analysis of energy consumption in buildings is described. The Building Design Language (BDL) has been written to allow simplified manipulation of the many variables used to describe a building and its operation. Programs presented in this manual include: (1) a Building Design Language program to analyze the input instructions, execute computer system control commands, perform data assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; (2) a LOADS analysis program which calculates peak (design) loads and hourly space loads due to ambient weather conditions and the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; (3) a HEATING, Ventilating, and Air-Conditioning (HVAC) SYSTEMS program capable of modeling the operation of HVAC components, including fans, coils, economizers, and humidifiers; (4) a PLANT equipment program which models the operation of boilers, chillers, electrical-generation equipment (e.g., diesel engines or turbines), heat-storage apparatus (e.g., chilled or heated water) and solar heating and/or cooling systems; (5) an ECONOMICS analysis program which calculates life-cycle costs; (6) a REPORT program which produces tables of user-selected variables and arranges them according to user-selected formats; and (7) an EXECUTIVE processor to create computer-system control commands. Libraries of weather data, typical schedule data, and data on the properties of walls, roofs, and floors are available.

  5. Seasonal player wellness and its longitudinal association with internal training load: study in elite volleyball.

    Science.gov (United States)

    Clemente, Filipe M; Mendes, Bruno; Palao, José M; Silvério, André; Carriço, Sandro; Calvete, Francisco; Nakamura, Fábio Y

    2018-04-04

    Monitoring training load is critical to minimize the risk of overreaching, injury or illness. The purpose of this study was to assess the relationships and variance between perceived internal load and wellness status of elite male volleyball. Thirteen elite volleyball players were studied during a full competitive season (nine months, 237 training sessions and 37 official matches). Perceived exertion, muscle soreness, stress, fatigue and sleep quality levels were daily measured using session RPE and the Hopper Questionnaire. Moderate-to-large correlations were found between weekly training load and perceived status of muscle soreness, fatigue and stress. Stronger correlations were found between weekly training loads than daily training load. Significant greater stress levels in match days than in training were found. No correlations between load and wellness were not found in the last month when players perceived higher levels of stress due to the competition. The analysis of the weekly training load had a higher relationship with players' wellness status in pre-season and middle of the season. In the last part of the season (final matches for the title), despite of a decrease in perceived load of last month of the season, there was an increase stress and fatigue levels. These results suggest the importance of including the impact on the competition when elite athletes are monitored. The results show the monitoring tools used may help in to characterize the training process of teams and the player's acute and chronic responses.

  6. Load Prediction in District Heating Systems with Regard to Scenarios and Uncertainties in Weather; Lastprognoser foer fjaerrvaerme med haensyn till scenarier och osaekerheter i vaedret

    Energy Technology Data Exchange (ETDEWEB)

    Hedberg, Martin; Koppers, Gijs [Meteopolaris AB, Nacka (Sweden)

    2011-11-15

    The report shows, by means of load calculations on ensemble weather forecasts and subsequent production planning, that by a better optimization of the operation of district heating plants the costs of production of heat and electricity can be reduced. During a fifth of the time the saving potential is 5% or more.

  7. Genetic evaluations for growth heat tolerance in Angus cattle.

    Science.gov (United States)

    Bradford, H L; Fragomeni, B O; Bertrand, J K; Lourenco, D A L; Misztal, I

    2016-10-01

    The objectives were to assess the impact of heat stress and to develop a model for genetic evaluation of growth heat tolerance in Angus cattle. The American Angus Association provided weaning weight (WW) and yearling weight (YW) data, and records from the Upper South region were used because of the hot climatic conditions. Heat stress was characterized by a weaning (yearling) heat load function defined as the mean temperature-humidity index (THI) units greater than 75 (70) for 30 (150) d prior to the weigh date. Therefore, a weaning (yearling) heat load of 5 units corresponded to 80 (75) for the corresponding period prior to the weigh date. For all analyses, 82,669 WW and 69,040 YW were used with 3 ancestral generations in the pedigree. Univariate models were a proxy for the Angus growth evaluation, and reaction norms using 2 B-splines for heat load were fit separately for weaning and yearling heat loads. For both models, random effects included direct genetic, maternal genetic, maternal permanent environment (WW only), and residual. Fixed effects included a linear age covariate, age-of-dam class (WW only), and contemporary group for both models and fixed regressions on the B-splines in the reaction norm. Direct genetic correlations for WW were strong for modest heat load differences but decreased to less than 0.50 for large differences. Reranking of proven sires occurred for only WW direct effects for the reaction norms with extreme heat load differences. Conversely, YW results indicated little effect of heat stress on genetic merit. Therefore, weaning heat tolerance was a better candidate for developing selection tools. Maternal heritabilities were consistent across heat loads, and maternal genetic correlations were greater than 0.90 for nearly all heat load combinations. No evidence existed for a genotype × environment interaction for the maternal component of growth. Overall, some evidence exists for phenotypic plasticity for the direct genetic effects of WW

  8. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme

    KAUST Repository

    Thu, Kyaw; Yanagi, Hideharu; Saha, Bidyut Baran; Ng, Kim Choon

    2016-01-01

    Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master

  9. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Eric Martin, Chuck Withers, Janet McIlvaine, Dave Chasar, and David Beal

    2018-03-29

    Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.

  10. The load structure of electro boilers

    International Nuclear Information System (INIS)

    Feilberg, N.; Livik, K.

    1995-01-01

    Load measurements have been performed on 24 electro boilers with a time resolution of one hour throughout a period of one year. The boilers are used for space heating and heating of tap water in office buildings, shopping centres and apartment buildings. All boilers have tariffs with disconnection agreements. This report presents load analyses of the measurements from each boiler, and typical load profiles are calculated and presented. It also analyses how boilers are used in relation to the outdoor temperature and the power price on the spot market. All the measurements are performed in Bergen, Norway, in the period August 1993 - August 1994. Typical load profiles are shown, both annual and daily, as well as specific load parameters in addition to key figures used in calculating the total power load on the distribution network. The climate impact on energy and power load is evaluated. The report also shows examples of how the results may be applied in various special fields. 8 figs., 9 tabs

  11. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis

    2017-08-01

    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  12. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    Science.gov (United States)

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparison of Marginal and Internal Adaptation of Heat-Pressed and CAD/CAM Porcelain Laminate Veneers and a 2-Year Follow-Up.

    Science.gov (United States)

    Yuce, Mert; Ulusoy, Mubin; Turk, Ayse Gozde

    2017-12-22

    To compare marginal and internal adaptations of porcelain laminate veneers fabricated with heat-pressed and CAD/CAM techniques, and to evaluate the clinical performances 2 years after cementation. Thirty heat-pressed and 31 CAD/CAM porcelain laminate veneers were fabricated for 12 patients. Silicone replicas of each veneer were obtained. Replicas were sectioned into 4 parts to measure adaptations of the veneers. A stereomicroscope was used to measure from 3 locations of replicas for marginal, and 9 locations for internal adaptations at 40x magnification. Clinical evaluations were done at baseline and 6, 12, 18, and 24 months after cementation according to the modified United States Public Health Service (USPHS) criteria. Independent samples t-test compared the adaptation values between heat-pressed and CAD/CAM groups. Paired t-test was used to evaluate marginal and internal adaptations of each group. Differences between the modified USPHS criteria ratings of heat-pressed and CAD/CAM groups were determined by the Mann-Whitney U test. Kaplan-Meier analysis was used to analyze the survival ratings of the veneers (p CAD/CAM veneers were 295 and 314.98 μm, respectively, and there was no statistically significant difference (p = 0.541). Internal adaptation values of groups were not statistically different either (201.82 μm for heat pressed; 195.47 μm for CAD/CAM p = 0.734). When marginal and internal adaptation values were compared within groups, there were significant differences both for heat-pressed (p CAD/CAM (p CAD/CAM or heat-pressed, had no effect on the marginal and internal adaptation of porcelain laminate veneers. The results showed that both fabrication techniques performed well after 2 years of clinical performance. © 2017 by the American College of Prosthodontists.

  14. RESEARCH OF HEAT-RESISTANT CONCRETE ON THE BASIS OF BASALT FILLER FOR CONCRETING OF METAL DESIGNS

    Directory of Open Access Journals (Sweden)

    R. M. Curbanov

    2013-01-01

    Full Text Available Expediency of use of heat-resistant concrete locates in article on the basis of a basalt filler. It is thin a ground additive promotes increase in power of internal friction between material particles. With increase in power of internal friction between particles viscosity knitting increases and as a result ryazmyagcheniye temperature under loading increases and fire resistance of a material increases

  15. On usage of heat-condensation type nuclear heat-and-power plants with the TK type turbines

    International Nuclear Information System (INIS)

    Boldyrev, V.M.; Smirnov, I.A.; Fedyaev, A.V.; Khrilev, L.S.

    1978-01-01

    The problems of the efficiency of nuclear heat-and-plants (NHPP) in the heat-andpower energetics of the USSR are discussed. Most attention is centered on an NHPP of heat-condensation type equipped with constant steam flow turbines of the TK-450/500-60 and K-500-60 types and WWER-1000 reactors. According to the specially developed procedure, the problem of selecting the profile of a TK-type turbine, NHPP composition and applications are subjected to the technico-economic analysis. The distance to the urban area from a central heat-and-power plant utilizing organic and atomic fuel is adopted to be the same and equal to 5, 10 and 15 km, and the thermal load is variable between 500 and 7000 Gcal/hour (the share of hot water supply load in the total thermal load being 0.2). The heat supply system is open-circuited, the hot/return water temperatures being 150/70 deg C. The optimum calculated heat production factor for the NHPP does not exceed 0.7, and the optimum heat production values from controlled turbine outputs are within 500-600 Gcal/hour. The mininum thermal load, for which the NHPP with TK turbines is more effective than an organic fuel heat-and-power station, is about 1000-1500 Gcal/hour if cooling towers are used in the technical water supply system, and if it is possible to construct a water reservoir-cooler for the NHPP, this range is reduced to a thermal load level, at which the combined system becomes more effective than the separate power generation systems, i.e. to 500-600 Gcal/hour

  16. CASTOR {sup registered} HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Vossnacke, A.; Klein, K.; Kuehne, B. [GNS Gesellschaft fuer Nuklear-Service mbH/GNB, Essen (Germany)

    2004-07-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR {sup registered} HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR {sup registered} HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR {sup registered} HAW28M, meeting these future requirements. The CASTOR {sup registered} HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR {sup registered} HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be

  17. Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows

    Science.gov (United States)

    Zhuromskii, V. M.

    2018-01-01

    The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.

  18. Impact of Urban Heat Island under the Hanoi Master Plan 2030 on Cooling Loads in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Tran Hoang Hai Nam

    2015-01-01

    Full Text Available This study aims to evaluate the influence of urban heat island (UHI under the Hanoi Master Plan 2030 on the energy consumption for space cooling in residential buildings. The weather conditions under the current and future status (master plan condition simulated in the previous study (Trihamdani et al., 2014 were used and cooling loads in all the residential buildings in Hanoi over the hottest month were estimated under the simulated current and future conditions by using the building simulation program, TRNSYS (v17. Three most typical housing types in the city were selected for the simulation. The cooling loads of respective housing types were obtained in each of the districts in Hanoi. The results show that the total cooling loads over June 2010 is approximately 683 Terajoule (TJ under the current status, but it is predicted to increase to 903 TJ under the master plan condition. The increment is largely due to the increase in number of households (203 TJ or 92%, but partially due to the increase in urban temperature, i.e. UHI effect (17 TJ or 8%. The increments in new built-up areas were found to be larger than those in existing built-up areas. The cooling load in apartment is approximately half of that in detached house, which is approximately half of that in row house. Moreover, it was seen that although sensible cooling loads increased with the increase in outdoor temperature, the latent cooling loads decreased due to the decrease in absolute humidity and the increase in air temperature.

  19. Variable electricity and steam from salt, helium and sodium cooled base-load reactors with gas turbines and heat storage - 15115

    International Nuclear Information System (INIS)

    Forsberg, C.; McDaniel, P.; Zohuri, B.

    2015-01-01

    Advances in utility natural-gas-fired air-Brayton combed cycle technology is creating the option of coupling salt-, helium-, and sodium-cooled nuclear reactors to Nuclear air-Brayton Combined Cycle (NACC) power systems. NACC may enable a zero-carbon electricity grid and improve nuclear power economics by enabling variable electricity output with base-load nuclear reactor operations. Variable electricity output enables selling more electricity at times of high prices that increases plant revenue. Peak power is achieved using stored heat or auxiliary fuel (natural gas, bio-fuels, hydrogen). A typical NACC cycle includes air compression, heating compressed air using nuclear heat and a heat exchanger, sending air through a turbine to produce electricity, reheating compressed air, sending air through a second turbine, and exhausting to a heat recovery steam generator (HRSG). In the HRSG, warm air produces steam that is used to produce added electricity. For peak power production, auxiliary heat (natural gas, stored heat) is added before the air enters the second turbine to raise air temperatures and power output. Like all combined cycle plants, water cooling requirements are dramatically reduced relative to other power cycles because much of the heat rejection is in the form of hot air. (authors)

  20. Thermal resistance of rotating closed-loop pulsating heat pipes: Effects of working fluids and internal diameters

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2017-01-01

    Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.

  1. Results of out-of-pile experiments to investigate the possibilities of cooling a core melt with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1976-01-01

    After serious hypothetical reactor accidents, melted core materials with internal heat production can occur in large quantities. A retention of these molten core masses within the containment must be ensured. The knowledge of the heat transport from volume-heated layers is necessary to clarify this matter. (orig./LH) [de

  2. Comparison on the heat requirements of a four-span greenhouse with a melting snow system and a single-span greenhouse

    International Nuclear Information System (INIS)

    Furuno, S.; Sase, S.; Ishii, M.

    2004-01-01

    The heat requirements were measured and compared between a four-span greenhouse with a melting snow system and a typical single-span greenhouse with no melting snow system. Generally, single-span greenhouses require no melting snow system because snow drops off naturally from the roofs by gravity. The results for the four-span greenhouse showed that the provided heat by a heater for melting snow increased with an increase in snowfall, and there was a high correlation between them. The heat requirement per unit floor area of the four-span greenhouse was slightly less than that of the single-span greenhouse. This suggests that the decrease in heat requirement for internal air because of the larger floor/surface area ratio of the four-span greenhouse was more than the increase in heat requirement for melting snow. The measured heat requirement of the four-span greenhouse with the melting snow system was equal to the estimated heat load based on a common calculation procedure. On the other hand, that of the single-span greenhouse was slightly smaller than the estimated heat load. These suggest that the estimated heat load based on the common calculation procedure was slightly overestimated and larger than the actual heat requirement excluding the heat for the melting snow in snowy area. This is likely due to the fact that the parameters in the common calculation procedure were determined under the condition of larger net radiation than that in snowy area

  3. Calculating the heat transfer coefficient of frame profiles with internal cavities

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2004-01-01

    . The heat transfer coefficient is determined by two-dimensional numerical calculations and by measurements. Calculations are performed in Therm (LBNL (2001)), which is developed at Lawrence Berkeley National Laboratory, USA. The calculations are performed in accordance with the future European standards...... correspondence between measured and calculated values. Hence, when determining the heat transfer coefficient of frame profiles with internal cavities by calculations, it is necessary to apply a more detailed radiation exchange model than described in the prEN ISO 10077-2 standard. The ISO-standard offers......Determining the energy performance of windows requires detailed knowledge of the thermal properties of their different elements. A series of standards and guidelines exist in this area. The thermal properties of the frame can be determined either by detailed two-dimensional numerical methods...

  4. Proceedings of the third international steam generator and heat exchanger conference

    International Nuclear Information System (INIS)

    1998-01-01

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas, including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues

  5. Proceedings of the third international steam generator and heat exchanger conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas,including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues.

  6. Optimization of heat supply systems employing nuclear power plants

    International Nuclear Information System (INIS)

    Urbanek, J.

    1988-01-01

    Decision making on the further development of heat supply systems requires optimization of the parameters. In particular, meeting the demands of peak load ranges is of importance. The heat supply coefficient α and the annual utilization of peak load equipment τ FS have been chosen as the characteristic quantities to describe them. The heat price at the consumer, C V , offers as the optimization criterion. The transport distance, temperature spread of the heating water, and different curves of annual variation of heat consumption on heat supply coefficient and heat price at the consumer. A comparison between heat supply by nuclear power plants and nuclear heating stations verifies the advantage of combined heat and power generation even with longer heat transport distances as compared with local heat supply by nuclear district heating stations based on the criterion of minimum employment of peak load boilers. (author)

  7. Damage prediction of carbon fibre composite armoured actively cooled plasma-facing components under cycling heat loads

    International Nuclear Information System (INIS)

    Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M; Herb, V; Martin, E; Camus, G; Braccini, M

    2009-01-01

    In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.

  8. Experimental Investigation of Heat Pipe Startup Under Reflux Mode

    Science.gov (United States)

    Ku, Jentung

    2018-01-01

    In the absence of body forces such as gravity, a heat pipe will start as soon as its evaporator temperature reaches the saturation temperature. If the heat pipe operates under a reflux mode in ground testing, the liquid puddle will fill the entire cross sectional area of the evaporator. Under this condition, the heat pipe may not start when the evaporator temperature reaches the saturation temperature. Instead, a superheat is required in order for the liquid to vaporize through nucleate boiling. The amount of superheat depends on several factors such as the roughness of the heat pipe internal surface and the gravity head. This paper describes an experimental investigation of the effect of gravity pressure head on the startup of a heat pipe under reflux mode. In this study, a heat pipe with internal axial grooves was placed in a vertical position with different tilt angles relative to the horizontal plane. Heat was applied to the evaporator at the bottom and cooling was provided to the condenser at the top. The liquid-flooded evaporator was divided into seven segments along the axial direction, and an electrical heater was attached to each evaporator segment. Heat was applied to individual heaters in various combinations and sequences. Other test variables included the condenser sink temperature and tilt angle. Test results show that as long as an individual evaporator segment was flooded with liquid initially, a superheat was required to vaporize the liquid in that segment. The amount of superheat required for liquid vaporization was a function of gravity pressure head imposed on that evaporator segment and the initial temperature of the heat pipe. The most efficient and effective way to start the heat pipe was to apply a heat load with a high heat flux to the lowest segment of the evaporator.

  9. Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection.

    Science.gov (United States)

    Vilella, Kenny; Deschamps, Frederic

    2018-04-01

    Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean

  10. Impact of heat load location and strength on air flow pattern with a passive chilled beam system

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, Risto [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland); Saarinen, Pekka; Koskela, Hannu [Finnish Institute of Occupational Health, Lemminkaisenkatu 14-18 B, 20520 Turku (Finland); Hole, Alex [Arup, Rob Leslie-Carter, Level 10, 201 Kent Street, Sydney, NSW 2000 (Australia)

    2010-01-15

    A passive chilled beam is a source of natural convection, creating a flow of cold air directly into the occupied zone. Experiments were conducted in a mock-up of an office room to study the air velocities in the occupied spaces. In addition, velocity profiles are registered when underneath heat loads exist and the cool and warm air flows interact. Experimental laboratory study revealed that in the case of the underneath heat gains, even no upward plume was generated and the dummy only acted as a flow obstacle, having a significant effect on the velocity profile. Furthermore, in an actual occupied office environment, the thermal plumes and the supply air diffuser mixed effectively the whole air volume. The maximum air velocity measured was still below 0.25 m/s with the extremely high heat gain of 164 W/m{sup 2}. The results demonstrate that analysis methods were the interaction of convection flow and jet are not taken into account could not accurately describe air movement and draught risk in the occupied room space. (author)

  11. Is the internal training load different between starters and nonstarters volleyball players submitted to the same external load training? A case study

    Directory of Open Access Journals (Sweden)

    Thiago Andrade Goulart Horta

    2017-11-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2017v19n4p395   The same training stimulus can provide different physiological adaptations for athletes of the same team. Thus, the aim of this study was to analyze and compare the load training of starters and nonstarters players, athletes of a men’s volleyball team at different times of the season. The sample consisted of fifteen men’s volleyball superleague athletes who were divided into two groups of starters and nonstarters players. The training load of the ten weeks of the team’s preparation period for the main championship season in which no games were performed was selected for the study. The method of subjective perceived of effort (session-RPE proposed by Foster et al. (2001 was used to quantify the training load. The group of starters players had higher total weekly training load (TWTL and RPE values in the average of the ten weeks of training (p<0.05. Higher TWTL values for starters players in the preparatory and pre-competitive period compared to nonstarters players was also demonstrated (p<0.05. When different weeks were analyzed separately, weeks three and seven presented higher TWTL and RPE values for starters players compared with nonstarters players (p<0.05. The results presented in this study showed that starters players showed greater internal training load compared to nonstarters players.

  12. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown...... dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season...... and end-of-season results from 30 wheat models....

  13. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-01-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications

  14. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  15. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Freyberger, Arne P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Terzic, Balsa P. [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  16. Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC

    CERN Document Server

    Skripka, Galina; CERN. Geneva. ATS Department

    2018-01-01

    The expected heat load induced on the beam screens has been evaluated for the triplet assemblies in the four experimental Insertion Regions (IRs) of the HL-LHC. The contribution from electron cloud effects has been estimated using PyECLOUD macroparticle simulations. The presence of a surface treatment for the reduction of the Secondary Electron Yield has been taken into account. The contribution from the impedance of the beam screen has been evaluated taking into account the impact of the temperature and of the magnetic field on the resistivity of the surface.

  17. The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine

    International Nuclear Information System (INIS)

    Sanli, Ali; Ozsezen, Ahmet N.; Kilicaslan, Ibrahim; Canakci, Mustafa

    2008-01-01

    In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions

  18. The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ali; Kilicaslan, Ibrahim [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Ozsezen, Ahmet N.; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2008-08-15

    In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions. (author)

  19. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  20. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.