WorldWideScience

Sample records for internal heat generation

  1. The optimization of longitudinal convective fins with internal heat generation

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)

  2. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    The radioactive tracer Technetium-99m is widely used in medical imaging and is derived from its parent isotope Molybedenum-99 (Mo-99) by radioactive decay. The majority of Molybdenum-99 (Mo-99) produced internationally is extracted from high enriched uranium (HEU) dispersion targets that have been irradiated. To alleviate proliferation risks associated with HEU-based targets, the use of non-HEU sources is being mandated. However, the conversion of HEU to LEU based dispersion targets affects the Mo-99 available for chemical extraction. A possible approach to increase the uranium density, to recover the loss in Mo-99 production-per-target, is to use an LEU metal foil placed within an aluminum cladding to form a composite structure. The target is expected to contain the fission products and to dissipate the generated heat to the reactor coolant. In the event of interfacial separation, an increase in the thermal resistance could lead to an unacceptable rise in the LEU temperature and stresses in the target. The target can be deemed structurally safe as long as the thermally induced stresses are within the yield strength of the cladding and welds. As with the thermal and structural safety of the annular target, the thermally induced deflection of the BORALRTM-based control blades, used by the University of Missouri Research Reactor (MURRRTM ), during reactor operation has been analyzed. The boron, which is the neutron absorber in BORAL, and aluminum mixture (BORAL meat) and the aluminum cladding are bonded together through powder metallurgy to establish an adherent bonded plate. As the BORAL absorbs both neutron particles and gamma rays, there is volumetric heat generation and a corresponding rise in temperature. Since the BORAL meat and aluminum cladding materials have different thermal expansion coefficients, the blade may have a tendency to deform as the blade temperature changes and the materials expand at different rates. In addition to the composite nature of the

  3. Analysis of the internal heat losses in a thermoelectric generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Christensen, Dennis Valbjørn; Eriksen, Dan

    2014-01-01

    and radiative heat losses, including surface to surface radiation. For radiative heat losses it is shown that for the temperatures considered here, surface to ambient radiation is a good approximation of the heat loss. For conductive heat transfer the module efficiency is shown to be comparable to the case...... to decrease for increased heat loss. The leg dimensions are varied for all heat losses cases and it is shown that the ideal way to construct a TEG module with minimal heat losses and maximum efficiency is to either use a good insulating material between the legs or evacuate the module completely, and use...

  4. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  5. Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation

    Directory of Open Access Journals (Sweden)

    M.G. Sobamowo

    2017-03-01

    Full Text Available In this study, analysis of heat transfer in a longitudinal rectangular fin with temperature-dependent thermal conductivity and internal heat generation was carried out using finite difference method. The developed systems of non-linear equations that resulted from the discretization using finite difference scheme were solved with the aid of MATLAB using fsolve. The numerical solution was validated with the exact solution for the linear problem. The developed heat transfer models were used to investigate the effects of thermo-geometric parameters, coefficient of heat transfer and thermal conductivity (non-linear parameters on the temperature distribution, heat transfer and thermal performance of the longitudinal rectangular fin. From the results, it shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin. Also, for the solution to be thermally stable, the fin thermo-geometric parameter must not exceed a specific value. However, it was established that the increase in temperature-dependent properties and internal heat generation values increases the thermal stability range of the thermo-geometric parameter. The results obtained in this analysis serve as basis for comparison of any other method of analysis of the problem.

  6. Proceedings of the third international steam generator and heat exchanger conference

    International Nuclear Information System (INIS)

    1998-01-01

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas, including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues

  7. Proceedings of the third international steam generator and heat exchanger conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas,including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues.

  8. Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation

    Science.gov (United States)

    Mokhtar, N. F. M.; Khalid, I. K.; Siri, Z.; Ibrahim, Z. B.; Gani, S. S. A.

    2017-10-01

    The influences of feedback control and internal heat source on the onset of Rayleigh-Bénard convection in a horizontal nanofluid layer is studied analytically due to Soret and Dufour parameters. The confining boundaries of the nanofluid layer (bottom boundary-top boundary) are assumed to be free-free, rigid-free, and rigid-rigid, with a source of heat from below. Linear stability theory is applied, and the eigenvalue solution is obtained numerically using the Galerkin technique. Focusing on the stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-diffusive convection, while there is a positive thermal efficiency in the existence of internal heat generation. The possibilities of suppress or augment of the Rayleigh-Bénard convection in a nanofluid layer are also discussed in detail.

  9. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Abdullah, Z. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Hayat, T. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan)

    2016-01-01

    This research work addresses the three-dimensional hydromagnetic flow of Jeffrey fluid with nanoparticles. Flow is generated by a bidirectional stretching surface. The effects of thermal radiation and internal heat generation are encountered in energy expressions. More realistic convective boundary conditions at the surface are employed instead of constant surface temperature and mass species conditions. Boundary layer assumptions lead to the governing non-linear mathematical model. Resulting equations through momentum, energy and mass species are made dimensionless using suitable variables. The solution expressions of dimensionless velocities, temperature and nanoparticle concentration have been computed for the convergent series solutions. The impacts of interesting parameters on the dimensionless quantities are displayed and interpreted. The values of physical quantities are computed and analyzed. - Highlights: • Three-dimensional hydromagnetic flow of Jeffrey nanofluid is considered. • Brownian motion and thermophoresis effects are encountered. • Heat transfer analysis is performed with thermal radiation. • Results are plotted and visualized.

  10. Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.

    Science.gov (United States)

    Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun

    2016-07-01

    The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ. The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q=6.4. An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.

  11. Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Gbeminiyi Sobamowo

    2017-10-01

    Full Text Available In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the boiling modes is taken into consideration. The developed heat transfer models and the corresponding numerical solutions are used to investigate the effects of various thermo-geometric parameters on the thermal performance of the longitudinal rectangular fin. The results shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin and the internal heat generation within the fin. The obtained results can provide a platform for improvements in the design of the fin in the heat transfer equipment.

  12. Laboratory convection experiments with internal, noncontact, microwave generated heating, applied to Earth's mantle dynamics

    Science.gov (United States)

    Limare, Angela; Surducan, Emanoil; di Giuseppe, Erika; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Fourel, Loic; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude

    2014-05-01

    The thermal evolution of terrestrial planets is controlled by secular cooling and internal heating due to the decay of radiogenic isotopes, two processes which are equivalent from the standpoint of convection dynamics. Few studies have been devoted to the intrinsic characteristics of this form of convection, which are dominated by instabilities of a single boundary layer and which involve a non-isentropic interior thermal structure. Laboratory studies of such convection have been plagued by considerable technical difficulties and have been mostly restricted to aqueous solutions with moderate values of the Prandtl number, contrary to planetary mantles. Here, we describe a new laboratory setup to generate internal heating in controlled conditions based on microwave (MW) absorption. The advantages of our technique include, but are not limited to: (1) a volumetric heat source that can be localized or distributed in space, (2) selectively heating part of the volume with time varying intensity and space distribution. Our tank prototype had horizontal dimensions of 30 cm × 30 cm and 5 cm height. A uniform and constant temperature was maintained at the upper boundary by an aluminium heat exchanger and adiabatic conditions were imposed at the tank base. Experimental fluids were hydroxyethylcellulose - water mixtures whose viscosities were varied within a wide range depending on concentration. Experimental Prandtl numbers were set at values larger than 100. Thermochromic Liquid Crystals (TLC) were used to visualize the temperature field, and the velocity field was determined using Particle Image Velocimetry (PIV). The Rayleigh-Roberts number was varied from 105 to 107. We also conducted numerical simulations in 3D cartesian geometry using Stag-3D (Tackley 1993) to reproduce the experimental conditions, including the tank aspect ratio and the temperature dependence of physical properties. We observed that convection is driven by cold descending plumes generated at the upper

  13. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A., E-mail: aziz@gonzaga.edu [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Bouaziz, M.N. [Department of Mechanical Engineering, University of Medea, BP 164, Medea 26000 (Algeria)

    2011-08-15

    Highlights: {yields} Analytical solutions for a rectangular fin with temperature dependent heat generation and thermal conductivity. {yields} Graphs give temperature distributions and fin efficiency. {yields} Comparison of analytical and numerical solutions. {yields} Method of least squares used for the analytical solutions. - Abstract: Approximate but highly accurate solutions for the temperature distribution, fin efficiency, and optimum fin parameter for a constant area longitudinal fin with temperature dependent internal heat generation and thermal conductivity are derived analytically. The method of least squares recently used by the authors is applied to treat the two nonlinearities, one associated with the temperature dependent internal heat generation and the other due to temperature dependent thermal conductivity. The solution is built from the classical solution for a fin with uniform internal heat generation and constant thermal conductivity. The results are presented graphically and compared with the direct numerical solutions. The analytical solutions retain their accuracy (within 1% of the numerical solution) even when there is a 60% increase in thermal conductivity and internal heat generation at the base temperature from their corresponding values at the sink temperature. The present solution is simple (involves hyperbolic functions only) compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method and offers high accuracy. The simple analytical expressions for the temperature distribution, the fin efficiency and the optimum fin parameter are convenient for use by engineers dealing with the design and analysis of heat generating fins operating with a large temperature difference between the base and the environment.

  14. Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation

    International Nuclear Information System (INIS)

    Sharma, Anil Kumar; Velusamy, K.; Balaji, C.

    2008-01-01

    This paper reports the results of a numerical investigation of transient turbulent natural convection heat transfer from a volumetric energy generating source placed inside a cylindrical enclosure filled with low Prandtl number fluid (liquid sodium, Pr = 0.005). Two-dimensional conservation equations of mass, momentum and energy, coupled with the Boussinesq approximation, are solved using a finite volume based discretisation method employing the SIMPLE algorithm for the pressure velocity coupling. Turbulence is modeled using the k-ε model with physical boundary conditions. The study presents the transient features of confined turbulent natural convection, due to time varying generation of heat in the volumetric source. The intensity of heat source exponentially decays with time and the source is placed over circular plates with a central opening. Results obtained from the numerical model compare favorably with those reported in the literature for steady state natural convection. Numerical simulations are carried out to display the sequential evolution of flow and thermal fields and the maximum temperature reached in the source. The advantages of distributing the heat source on multi trays have been quantified

  15. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  16. Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Fitnat Saba

    2018-03-01

    Full Text Available We have investigated a two-dimensional radiative flow of a boundary layer nature. The fluid under consideration is carbon nanotube (CNT-based nanofluid and it flows over a curved surface. The heat transfer through the flow is analyzed under the influence of internal heat generation. Water (base fluid along with single or multi-walled carbon nanotubes is taken to compose the nanofluid. After introducing the suitable similarity variables, the consequent equations are reduced to a system of nonlinear ordinary differential equations. The solution to the system is computed by using the shooting method accompanied by Runge–Kutta–Fehlberg algorithm. Various parameters, emerging in the governing equations, influences the flow and heat transfer distribution. These changes are captured and portrayed in the form of graphs. The changes in local rate of heat transfer and skin friction coefficient are also enlisted. To ensure the correctness of applied numerical scheme, the results are compared with some already existing studies.

  17. Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    George OGUNTALA

    2017-08-01

    Full Text Available In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the thermal performance of the porous fin increases. The numerical solutions by the Haar wavelet collocation method are in good agreement with the standard numerical solutions.

  18. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    Science.gov (United States)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  19. SIMILARITY SOLUTION FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH INTERNAL HEAT GENERATION AND A CONVECTIVE BOUNDARY CONDITION

    Directory of Open Access Journals (Sweden)

    Oluwole Daniel Makinde

    2011-01-01

    Full Text Available Steady laminar natural convection flow over a semi-infinite moving vertical plate in the presence of internal heat generation and a convective surface boundary condition is examined in this paper. It is assumed that the left surface of the plate is in contact with a hot fluid while the cold fluid on the right surface of the plate contains a heat source that decays exponentially with the classical similarity variable. The governing non-linear partial differential equations have been transformed by a similarity transformation into a system of ordinary differential equations, which are solved numerically by applying shooting iteration technique together with fourth order Runge-Kutta integration scheme. The effects of physical parameters on the dimensionless velocity and temperature profiles are depicted graphically and analyzed in detail. Finally, numerical values of physical quantities, such as the local skin-friction coefficient and the local Nusselt number are presented in tabular form.

  20. On Comparison of Series and Numerical Solutions for Flow of Eyring-Powell Fluid with Newtonian Heating And Internal Heat Generation/Absorption.

    Science.gov (United States)

    Hayat, Tasawar; Ali, Shafqat; Farooq, Muhammad Asif; Alsaedi, Ahmad

    2015-01-01

    In this paper, we have investigated the combined effects of Newtonian heating and internal heat generation/absorption in the two-dimensional flow of Eyring-Powell fluid over a stretching surface. The governing non-linear analysis of partial differential equations is reduced into the ordinary differential equations using similarity transformations. The resulting problems are computed for both series and numerical solutions. Series solution is constructed using homotopy analysis method (HAM) whereas numerical solution is presented by two different techniques namely shooting method and bvp4c. A comparison of homotopy solution with numerical solution is also tabulated. Both solutions are found in an excellent agreement. Dimensionless velocity and temperature profiles are plotted and discussed for various emerging physical parameters.

  1. Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation

    International Nuclear Information System (INIS)

    Uddin, Md Jashim; Yusoff, N H Md; Ismail, Ahamd Izani; Anwar Bég, O

    2013-01-01

    A mathematical model is presented and analysed for steady two-dimensional non-isothermal boundary layer flow from a heated horizontal surface which is embedded in a porous medium saturated with a non-Newtonian power-law nanofluid. It is assumed that the wall temperature and nanoparticle volume fraction vary nonlinearly with the axial distance. By applying appropriate group transformations, the governing transport equations are reduced to a system of coupled, nonlinear ordinary differential equations with associated boundary conditions. The reduced equations are then solved numerically using the Runge–Kutta–Fehlberg fourth–fifth-order numerical method with Maple 13 software. The effects of several thermophysical parameters including rheological power-law index, non-isothermal index, Lewis number, Brownian motion parameter, thermophoresis parameter, buoyancy ratio and internal heat generation/absorption parameter on the non-dimensional velocity, temperature, nanoparticle volume fraction (concentration) and also on the friction factor, heat and mass transfer rates are investigated. A comparison of the present results with the existing published results shows excellent agreement, verifying the accuracy of the present numerical code. The study finds applications in nano biopolymeric manufacturing processes and also thermal enhancement of energy systems employing rheological working fluids. (paper)

  2. Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation

    Science.gov (United States)

    Jashim Uddin, Md; Yusoff, N. H. Md; Bég, O. Anwar; Izani Ismail, Ahamd

    2013-02-01

    A mathematical model is presented and analysed for steady two-dimensional non-isothermal boundary layer flow from a heated horizontal surface which is embedded in a porous medium saturated with a non-Newtonian power-law nanofluid. It is assumed that the wall temperature and nanoparticle volume fraction vary nonlinearly with the axial distance. By applying appropriate group transformations, the governing transport equations are reduced to a system of coupled, nonlinear ordinary differential equations with associated boundary conditions. The reduced equations are then solved numerically using the Runge-Kutta-Fehlberg fourth-fifth-order numerical method with Maple 13 software. The effects of several thermophysical parameters including rheological power-law index, non-isothermal index, Lewis number, Brownian motion parameter, thermophoresis parameter, buoyancy ratio and internal heat generation/absorption parameter on the non-dimensional velocity, temperature, nanoparticle volume fraction (concentration) and also on the friction factor, heat and mass transfer rates are investigated. A comparison of the present results with the existing published results shows excellent agreement, verifying the accuracy of the present numerical code. The study finds applications in nano biopolymeric manufacturing processes and also thermal enhancement of energy systems employing rheological working fluids.

  3. Book of abstracts: International Conference on Smart Energy Systems and 4th Generation District Heating

    DEFF Research Database (Denmark)

    with a particular focus on renewable energy in the transport system in a context with limited access to bioenergy. The Smart Energy System concept is essential for 100% renewable energy systems to harvest storage synergies and exploit low-value heat sources. As opposed to, for instance, the smart grid concept......, which takes a sole focus on the electricity sector, the smart energy systems approach includes the entire energy system in its identification of suitable energy infrastructure designs and operation strategies. Focusing solely on the smart electricity grid often leads to the definition of transmission...... lines, flexible electricity demands, and electricity storage as the primary means to dealing with the integration of fluctuating renewable sources. However, these measures are neither very effective nor cost-efficient considering the nature of wind power and similar sources. The most effective and least...

  4. Book of abstracts: 3rd International Conference on Smart Energy Systems and 4th Generation District Heating

    DEFF Research Database (Denmark)

    everyone for your valuable contributions. The aim is to present and discuss scientific findings and industrial experiences related to the development of Smart Energy Systems and future 4th Generation District Heating Technologies and Systems (4GDH). This development is fundamental to the implementation....... The Smart Energy System concept is essential for 100% renewable energy systems to harvest storage synergies and exploit low-value heat sources. The most effective and least-cost solutions are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transport sector....... Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. In its research on low-temperature district heating, the Strategic Research Centre for 4th Generation District Heating Technologies and Systems enhances...

  5. Heat transfer in a couple stress fluid over a continuous moving surface with internal hat generation and convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics; Iqbal, Zahid [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Mathematics; Aldossary, Omar M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics

    2012-05-15

    This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest. (orig.)

  6. Plant with at least one internal combustion engine which propels a current generator and with at least one heat consumer. Anlage mit mindestens einer Brennkraftmaschine, die einen Stromgenerator antreibt, und mindestens einem Waermeverbraucher

    Energy Technology Data Exchange (ETDEWEB)

    Hoehn, R.; Lelanz, B.

    1990-04-05

    The invention pertains to a technique for cogeneration, with at least one current generator which is driven by an internal combustion engine; with one and/or several heat consumers whose heat requirement is covered at least partially from the waste heat of the internal combustion engine. The waste heat is recovered immediately at its source, i.e. the cooling water header, air preheating, exhaust gas mains; it is fed to the heating space of the heat consumer.

  7. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  8. VII international district heating conference

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings of the 7th International District Heating Conference contain the full texts of the 89 presented papers of which 11 fall under the INIS Subject Scope. The conference met in seven sessions and dealt with the following problem areas: design and optimization of systems of district heating, integration of the power system and the district heating systems, cooperation of nuclear and fossil burning sources in district heating systems, the use of specific nuclear power plants for heating purposes, questions of the control of systems of district heating, the development of components of heating networks, the reliability and design of heat supply pipes. (Z.M.)

  9. Internal split field generator

    Science.gov (United States)

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  10. Heat generated by knee prostheses.

    Science.gov (United States)

    Pritchett, James W

    2006-01-01

    Temperature sensors were placed in 50 knees in 25 patients who had one or both joints replaced. Temperature recordings were made before walking, after walking, and after cycling. The heat generated in healthy, arthritic, and replaced knees was measured. The knee replacements were done using eight different prostheses. A rotating hinge knee prosthesis generated a temperature increase of 7 degrees C in 20 minutes and 9 degrees C in 40 minutes. An unconstrained ceramic femoral prosthesis articulating with a polyethylene tibial prosthesis generated a temperature increase of 4 degrees C compared with a healthy resting knee. The other designs using a cobalt-chrome alloy and high-density polyethylene had temperature increases of 5 degrees-7 degrees C with exercise. Frictional heat generated in a prosthetic knee is not immediately dissipated and may result in wear, creep, and other degenerative processes in the high-density polyethylene. Extended periods of elevated temperature in joints may inhibit cell growth and perhaps contribute to adverse performance via bone resorption or component loosening. Prosthetic knees generate more heat with activity than healthy or arthritic knees. More-constrained knee prostheses generate more heat than less-constrained prostheses. A knee with a ceramic femoral component generates less heat than a knee with the same design using a cobalt-chromium alloy.

  11. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  12. Heat Exchanger With Internal Pin Elements

    Science.gov (United States)

    Gerstmann, Joseph; Hannon, Charles L.

    2004-01-13

    A heat exchanger/heater comprising a tubular member having a fluid inlet end, a fluid outlet end and plurality of pins secured to the interior wall of the tube. Various embodiments additionally comprise a blocking member disposed concentrically inside the pins, such as a core plug or a baffle array. Also disclosed is a vapor generator employing an internally pinned tube, and a fluid-heater/heat-exchanger utilizing an outer jacket tube and fluid-side baffle elements, as well as methods for heating a fluid using an internally pinned tube.

  13. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  14. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  15. Mixed convection stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with internal heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2015-05-01

    Full Text Available In this paper, we analyzed the buoyancy-driven radiative non-isothermal heat transfer in a nanofluid stagnation-point flow over a stretching/shrinking sheet embedded in a porous medium.The effects of thermal radiation and internal heat generation/absorption along with suction/injection at the boundary are also considered. Three different types of nanofluids, namely the Copper-water, the Alumina-water and the Titanium dioxide water are considered. The resulting coupled nonlinear differential equations are solved numerically by a fifth-order Runge-Kutta-Fehlberg integration scheme with a shooting technique. A good agreement is found between the present numerical results and the available results in the literature for some special cases. The effects of the physical parameters on the flow and temperature characteristics are presented through tables and graphs, and the salient features are discussed. The results obtained reveal many interesting behaviors that warrant further study on the heat transfer enhancement due to the nanofluids.

  16. Rewetting analysis of hot surfaces with internal heat source by the heat balance integral method

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, S.K.; Das, P.K.; Bhattacharyya, Souvik [IIT Kharagpur (India). Department of Mechanical Engineering

    2008-08-15

    A two region conduction-controlled rewetting model of hot vertical surfaces with internal heat generation and boundary heat flux subjected to constant but different heat transfer coefficient in both wet and dry region is solved by the Heat Balance Integral Method (HBIM). The HBIM yields the temperature field and quench front temperature as a function of various model parameters such as Peclet number, Biot number and internal heat source parameter of the hot surface. Further, the critical (dry out) internal heat source parameter is obtained by setting Peclet number equal to zero, which yields the minimum internal heat source parameter to prevent the hot surface from being rewetted. Using this method, it has been possible to derive a unified relationship for a two-dimensional slab and tube with both internal heat generation and boundary heat flux. The solutions are found to be in good agreement with other analytical results reported in literature. (orig.)

  17. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  18. Heat loss and thermoelectric generator design

    International Nuclear Information System (INIS)

    Thacher, E.F.

    1985-01-01

    With the object of evaluating its importance to thermoelectric generator design, heat loss is introduced into the standard thermoelectric generator design theory. The theory for both the constant hot and cold junction temperatures model and the constant heat input model are so modified. The modification is first order and, therefore, is limited to small leg heat-transfer coefficients. Numerical results using representative properties show that significant differences can exist between the optimum geometry and performance of a generator idealized as lossless and those of a generator designed by the modified theory. The largest differences occur with the constant heat input model. (author)

  19. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  20. District heating and combined heat and power generation from biomass

    International Nuclear Information System (INIS)

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  1. Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine

    OpenAIRE

    Shunsen Wang; Kunlun Bai; Yonghui Xie; Juan Di; Shangfang Cheng

    2014-01-01

    A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE) by integrating the transcritical carbon dioxide (CO2) refrigeration cycle with the supercritical CO2 power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output (Wnet). The results indicate that replacin...

  2. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  3. Chances for nuclear district heat generation

    International Nuclear Information System (INIS)

    Winkens, H.P.

    1986-01-01

    Nuclear power plants in the FRG or other European countries so far have not been intended for heat generation, as for reasons of safety they have to be sited too far away from urban agglomerations to make heat transport competible. In addition, heat generation costs of fossil-fueled power plants have not been so much higher than those of nuclear power stations that the extra cost for heat transport over large distances could have been justified. This situation is expected to gradually change over the next decade, as the heat from fossil-fueled power stations will become more expensive, as a result of this heat capacity being more and more used for medium-load and peak-load supply only, and with more efficient heat distribution systems becoming available in the near future. (orig.) [de

  4. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  5. 4th Generation District Heating (4GDH)

    DEFF Research Database (Denmark)

    Lund, Henrik; Werner, Sven; Wiltshire, Robin

    2014-01-01

    This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part...... of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems – including 100 percent renewable energy systems – but the present generation of district heating and cooling technologies will have...

  6. Toward 4th generation district heating

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend; Dalla Rosa, Alessandro

    2014-01-01

    In many countries, district heating (DH) has a key role in the national strategic energy planning. However, tighter legislation on new and future buildings requires much less heating demand which subsequently causes relative high network heat loss. This will make current DH system uneconomical...... comparing with other local heat generation units. The design and operation of DH systems therefore needs to be re-examined, part of the solution being low operational temperature. The 3-years IEA DHC Annex X project ‘Towards 4th Generation District Heating: Experience and Potential of Low......-Temperature District Heating (LTDH)’ aims to document experiences gained in mature DH countries with low temperature systems serving highly energyefficient new buildings and existing buildings. The potential to supply DHW at temperature close to 50oC without the risk of Legionella was investigated. Information...

  7. Heat Generation by Irradiated Complex Composite Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan; Tian, Pengfei; Pello, Josselin

    2014-01-01

    Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results...

  8. Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Shunsen Wang

    2014-01-01

    Full Text Available A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE by integrating the transcritical carbon dioxide (CO2 refrigeration cycle with the supercritical CO2 power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output (Wnet. The results indicate that replacing a single-turbine scheme with a double-turbine scheme can significantly enhance the net power output (Wnet and lower the inlet pressure of the power turbine (P4. With the same exhaust parameters of ICE, the maximum Wnet of the double-turbines scheme is 40%–50% higher than that of the single-turbine scheme. Replacing a single-stage compression scheme with a double-stage compression scheme can also lower the value of P4, while it could not always significantly enhance the value of Wnet. Except for the power consumption of air conditioning, the net power output of this thermodynamic system can reach up to 13%–35% of the engine power when it is used to recover the exhaust heat of internal combustion engines.

  9. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  10. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  11. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-12-01

    A study of container designs for heat generating radioactive waste disposal in the deep ocean sediments is presented. The purpose of the container would be to isolate the waste from the environment for a period of 500 to 1000 years. The container designs proposed are based on the use of either corrosion allowance or corrosion resistant metals. Appropriate overpack wall thicknesses are suggested for each design using the results of corrosion studies and experiments but these are necessarily preliminary and data relevant to corrosion in deep ocean sediments remain sparse. It is concluded that the most promising design concept involves a thin titanium alloy overpack in which all internal void spaces are filled with lead or cement grout. In situ temperatures for the sediment adjacent to the emplaced 50 year cooled waste containers are calculated to reach about 260 deg C. The behaviour of the sediments at such a high temperature is not well understood and the possibility of 100 years interim storage is recommended for consideration to allow further cooling. Further corrosion data and sediment thermal studies would be required to fully confirm the engineering feasibility of these designs. (author)

  12. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  13. Steady flow and heat transfer analysis of third grade fluid with porous medium and heat generation

    Directory of Open Access Journals (Sweden)

    Akinbowale T. Akinshilo

    2017-12-01

    Full Text Available In this study, flow and heat transfer of a non Newtonian third grade fluid with porous medium and internal heat source conveyed through parallel plates held horizontally against each other are investigated. The nonlinear ordinary equations arising due to visco-elastic effects from the mechanics of the fluid are analysed using the adomian decomposition method (ADM adopting Vogel’s temperature dependent model based viscosity. Thermal fluidic parameters effects such as pressure gradient, heat generation parameter and porosity term are examined on the flow and heat transfer. Increasing porosity term shows slight decreasing effect on velocity distribution, as increasing heat generation term demonstrates significant increase on temperature distribution towards the upper plate. Obtained solutions in this paper may be used to advance studies in thin film flow, energy conservation, coal-water mixture, polymer solution and oil recovery application. Also Results from analyses compared against the fourth order Runge kutta numerical solution proves to be in satisfactory agreement.

  14. Current generation by minority-species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    It is proposed that electric currents be generated from the preferential heating of ions travelling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, travelling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor. (author)

  15. Current generation by minority species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1980-07-01

    It is proposed that electric currents be generated from the preferential heating of ions traveling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, traveling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor

  16. Solar steam generation by heat localization.

    Science.gov (United States)

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-07-21

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

  17. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  18. Generation IV reactors: international projects

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Kupitz, J.; Depisch, F.; Hittner, D.

    2003-01-01

    Generation IV international forum (GIF) was initiated in 2000 by DOE (American department of energy) in order to promote nuclear energy in a long term view (2030). GIF has selected 6 concepts of reactors: 1) VHTR (very high temperature reactor system, 2) GHR (gas-cooled fast reactor system), 3) SFR (sodium-cooled fast reactor system, 4) SCWR (super-critical water-cooled reactor system), 5) LFR (lead-cooled fast reactor system), and 6) MFR (molten-salt reactor system). All these 6 reactor systems have been selected on criteria based on: - a better contribution to sustainable development (through their aptitude to produce hydrogen or other clean fuels, or to have a high energy conversion ratio...) - economic profitability, - safety and reliability, and - proliferation resistance. The 6 concepts of reactors are examined in the first article, the second article presents an overview of the results of the international project on innovative nuclear reactors and fuel cycles (INPRO) within IAEA. The project finished its first phase, called phase-IA. It has produced an outlook into the future role of nuclear energy and defined the need for innovation. The third article is dedicated to 2 international cooperations: MICANET and HTR-TN. The purpose of MICANET is to propose to the European Commission a research and development strategy in order to develop the assets of nuclear energy for the future. Future reactors are expected to be more multiple-purposes, more adaptable, safer than today, all these developments require funded and coordinated research programs. The aim of HTR-TN cooperation is to promote high temperature reactor systems, to develop them in a long term perspective and to define their limits in terms of burn-up and operating temperature. (A.C.)

  19. French nuclear power plants for heat generation

    International Nuclear Information System (INIS)

    Girard, Y.

    1984-01-01

    The considerable importance that France attributes to nuclear energy is well known even though as a result of the economic crisis and the energy savings it is possible to observe a certain downward trend in the rate at which new power plants are being started up. In July 1983, a symbolic turning-point was reached - at more than 10 thousand million kW.h nuclear power accounted, for the first time, for more than 50% of the total amount of electricity generated, or approx. 80% of the total electricity output of thermal origin. On the other hand, the direct contribution - excluding the use of electricity - of nuclear energy to the heat market in France remains virtually nil. The first part of this paper discusses the prospects and realities of the application, at low and intermediate temperatures, of nuclear heat in France, while the second part describes the French nuclear projects best suited to the heat market (excluding high temperatures). (author)

  20. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  1. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  2. Heat exchanger, particularly liquid sodium heated steam generator

    International Nuclear Information System (INIS)

    Robin, Marcel; Tillequin, Jean.

    1977-01-01

    This invention relates to a liquid sodium heated steam generator the characteristic of which is an annular distribution chamber fed by two independent and diametrically opposed manifolds on a common horizontal axis, issuing respectively into two adjacent compartments made in the chambers on both sides of a vertical transversal partition containing the axis of the casing and extending perpendicularly to the manifolds, each compartment being itself divided into a number of adjacent sectors marked by folded metal sheets fixed to the distributor and shaped so as to present in pairs and with the chamber opposite the manifold issuing into a compartment two independent ducts for distributing the sodium flow [fr

  3. An Internally Heated Shape Memory Polymer Dry Adhesive

    Directory of Open Access Journals (Sweden)

    Jeffrey Eisenhaure

    2014-08-01

    Full Text Available A conductive epoxy-based shape memory polymer (SMP is demonstrated using carbon black (CB as a dopant for the purpose of creating an SMP dry adhesive system which can internally generate the heat required for activation. The electrical and mechanical properties of the CB/SMP blends for varying dopant concentrations are characterized. A composite adhesive is created to minimize surface contact resistance to conductive tape acting as electrodes, while maintaining bulk resistivity required for heat generation due to current flow. The final adhesive can function on flat or curved surfaces. As a demonstration, a 25 mm wide by 45 mm long dry adhesive strip is shown to heat evenly from an applied voltage, and can easily hold a mass in excess of 6 kg when bonded to a spherical concave glass surface using light pressure at 75 °C.

  4. Economic evaluation of geothermal power generation, heating, and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kanoglu, Mehmet; Cengel, Yunus A. [Nevada Univ., Dept. of Mechanical Engineering, Reno, NV (United States)

    1999-06-01

    Economic analysis of a typical geothermal resource shows that potential revenues from geothermal heating or cooling can be much larger than those from power generation alone. Geothermal heating may generate up to about 3.1 times and geothermal absorption cooling 2.9 times as much revenue as power generation alone. Similarly, combined power generation and heating may generate about 2.1 times and combined power generation and cooling about 1.2 times as much revenue as power generation alone. Cost and payback period comparison appear to favor power generation, followed by district heating. (Author)

  5. Investigation of Heat Generation from Biomass Fuels

    Directory of Open Access Journals (Sweden)

    Naoharu Murasawa

    2015-06-01

    Full Text Available New biomass fuels are constantly being developed from renewable resources in an effort to counter global warming and to create a sustainable society based on recycling. Among these, biomass fuels manufactured from waste are prone to microbial fermentation, and are likely to cause fires and explosions if safety measures, including sufficient risk assessments and long-term storage, are not considered. In this study, we conducted a series of experiments on several types of newly developed biomass fuels, using combinations of various thermal- and gas-analysers, to identify the risks related to heat- and gas-generation. Since a method for the evaluation of the relative risks of biomass fuels is not yet established in Japan, we also such a method based on our experimental results. The present study found that in cases where safety measures are not thoroughly observed, biomass fuels manufactured from waste materials have a higher possibility of combusting spontaneously at the storage site due to microbial fermentation and heat generation.

  6. Unique Outcomes of Internal Heat Generation and Thermal Deposition on Viscous Dissipative Transport of Viscoplastic Fluid over a Riga-Plate

    Science.gov (United States)

    Iqbal, Z.; Azhar, Ehtsham; Mehmood, Zaffar; Maraj, E. N.

    2018-01-01

    Boundary layer stagnation point flow of Casson fluid over a Riga plate of variable thickness is investigated in present article. Riga plate is an electromagnetic actuator consists of enduring magnets and gyrated aligned array of alternating electrodes mounted on a plane surface. Physical problem is modeled and simplified under appropriate transformations. Effects of thermal radiation and viscous dissipation are incorporated. These differential equations are solved by Keller Box Scheme using MATLAB. Comparison is given with shooting techniques along with Range-Kutta Fehlberg method of order 5. Graphical and tabulated analysis is drawn. The results reveal that Eckert number, radiation and fluid parameters enhance temperature whereas they contribute in lowering rate of heat transfer. The numerical outcomes of present analysis depicts that Keller Box Method is capable and consistent to solve proposed nonlinear problem with high accuracy.

  7. CFD ANALYSIS OF EXHAUST HEAT EXCHANGER FOR THERMO-ELECTRIC POWER GENERATION

    OpenAIRE

    Ravi Bhatt*1, Surendra Bharti2 & Abhishek Shahi3

    2017-01-01

    In thermo-electric power generation an exhaust heat exchanger is used for recovering exhaust heat and a thermo-electric module is used for converting heat into electricity.This research work focus on optimization of the design of exhaust heat exchanger by removing the internal fins and changing the cross-sectional area of heat exchanger to minimize the problem of pressure drop.The designs of exhaust heat exchangers used in the previous research works recovers maximum heat from an engine exhau...

  8. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  9. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  10. Heat wave generates questions about Ontario's generation capacity

    International Nuclear Information System (INIS)

    Horne, D.

    2005-01-01

    Concerns regarding Ontario's power generation capacity were raised following a major blackout which occurred in August 2003. Power demand reached 26,170 MW during the weeks leading to the blackout, forcing the Independent Electricity System Operator (IESO) to ask residents to reduce electricity use during the day. The grid operator had also issued a forecast that Toronto could face rolling blackouts during times of heavy power demand. Ontario power consumption records were set in June and July of 2003 due to a heat wave, with hourly demand exceeding 25,000 MW on 53 occasions. Ontario was forced to import up to 3,400 MW (13 per cent of its power needs) from neighbouring provinces and the United States. During that period, the price of power had risen sharply to over 30 cents a kilowatt hour, although household consumers were still charged in the 5 to 10 cent range per kilowatt hour. However, it was noted that taxpayers will eventually bear the cost of importing power. The IESO noted that importing electricity is cheaper than the generation available in Ontario and that it is more economical to import, based on the market clearing price of all generators. In 2004, the IESO purchased 6 per cent of their electricity from the United States. That figure is expected to increase for 2005. Ontario generators produced 26.9 million MWh more in the summer of 2005 than during the same period in 2004 to meet electricity demand levels. It was noted that although importing power presently meets peak demand, the IESO agrees there is a need for new generation within Ontario. In addition to restarting Ontario's Pickering and Bruce nuclear facilities, more than 3,300 MW of new gas-fired generation is under construction or approved, and more than 9,000 MW are in various stages of approval. This paper discussed the effect of high energy costs on industry and Ontario's ability to meet future electricity demand in comparison to neighbouring jurisdictions. Issues regarding grid maintenance

  11. House-internal heating systems; Husinterna vaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof; Wollerstrand, Janusz [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2005-07-01

    In this report the placement of the circulation-pump in of waterborne radiator systems, as well as their filling and deairation are investigated. The study was done by literature studies and interviews with consultants and companies active on the HVAC-market. It was concluded that different placements of the pump in relationship to the heat exchanger exist, and the arguments for the choice of placement are varying. The main explanation of the choice of placement is that it is based on experience/or by practical reasons. The most important factor influencing the placement of the pump found, was how the pump is situated in relation to the expansion-tank. To maintain pressure in the whole system the expansion-tank should be placed on the suction side of the pump without any intermediate pressure-dropping devices in between. This placement ensures overpressure in the whole radiator-system and reduces the risk of unwanted leak in of air. To avoid cavitation sufficient static pressure on the suction side of the pump is necessary. The pressure increases with the temperature, which must be taken into consideration if the pump is placed on the warm side of the heat-exchanger. From this point of view a placement in the return-pipe from the radiator-system is to be preferred. Before advices for HVAC-branch regarding placement of the circulation-pump in the heating systems can be implemented, it is of big importance to analyse and clearly specify the advantages and disadvantages of a certain placement of the pump. There is a need of directions to get house-internal systems to operate properly together with district heating system. This is especially important when older heating systems with burners and shunt valves are being connected. Filling and deairation of the radiator system is of great importance for the function of the system. A radiator-system with significant level of air remains is difficult to adjust and will not work properly. Air in the radiators leads to

  12. Heat exchanger for power generation equipment

    Science.gov (United States)

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  13. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  14. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  15. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-07-01

    This report is based on an emplacement techniques review prepared for the Department of the Environment in February 1983, which appeared as Chapter III of the Nuclear Energy Agency, Seabed Working Group's Status Report. The original document (DOE/RW/83.032) has been amended to take account of the results of field trials carried out in March 1983 and to better reflect current UK Government policy on ocean disposal of HGW. In particular Figure 7 has been redrawn using more realistic drag factors for the calculation of the terminal velocity in water. This report reviews the work conducted by the SWG member countries into the different techniques of emplacing heat generating radioactive waste into the deep ocean sediments. It covers the waste handling from the port facilities to final emplacement in the seabed and verification of the integrity of the canister isolation system. The two techniques which are currently being considered in detail are drilled emplacement and the free fall penetrator. The feasibility study work in progress for both techniques as well as the mathematical and physical modelling work for embedment depth and hole closure behind the penetrator are reviewed. (author)

  16. Emissions of soot particles from heat generators

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.; Popova, E. I.

    2017-11-01

    «Soot carbon» or «Soot» - incomplete combustion or thermal decomposition particulate carbon product of hydrocarbons consisting of particles of various shapes and sizes. Soot particles are harmful substances Class 2 and like a dust dispersed by wind for thousands of kilometers. Soot have more powerful negative factor than carbon dioxide. Therefore, more strict requirements on ecological and economical performance for energy facilities at Arctic areas have to be developed to protect fragile Arctic ecosystems and global climate change from degradation and destruction. Quantity of soot particles in the flue gases of energy facilities is a criterion of effectiveness for organization of the burning process. Some of heat generators do not provide the required energy and environmental efficiency which results in irrational use of energy resources and acute pollution of environment. The paper summarizes the results of experimental study of solid particles emission from wide range of capacity boilers burning different organic fuels (natural gas, fuel oil, coal and biofuels). Special attention is paid to environmental and energy performance of the biofuels combustion. Emissions of soot particles PM2.5 are listed. Structure, composition and dimensions of entrained particles with the use of electronic scanning microscope Zeiss SIGMA VP were also studied. The results reveal an impact of several factors on soot particles emission.

  17. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A study has been made of the requirements and design features for containers to isolate vitrified heat generating radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible. (author)

  18. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  19. Heat generation during plunge stage in friction stir welding

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2013-01-01

    Full Text Available This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW. A three-dimensional finite element model (FEM is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb’s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained.

  20. Entropy and heat generation of lithium cells/batteries

    International Nuclear Information System (INIS)

    Wang Songrui

    2016-01-01

    The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li cells/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary. (topical review)

  1. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  2. Third international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    1995-01-01

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues

  3. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  4. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  5. CFD simulations of heat transfer in internally helically ribbed tubes

    Directory of Open Access Journals (Sweden)

    Majewski Karol

    2016-06-01

    Full Text Available Heating surfaces in power boilers are exposed to very high heat flux. For evaporator protection against overheating, internally helically ribbed tubes are used. The intensification of the heat transfer and the maintenance of the thin water layer in the intercostal space, using ribbed tubes, enables better protection of the power boiler evaporator than smooth pipes. Extended inner surface changes flow and thermal conditions by influencing the linear pressure drop and heat transfer coefficient. This paper presents equations that are used to determine the heat transfer coefficient. The results of total heat transfer, obtained from CFD simulations, for two types of internally ribbed and plain tubes are also presented.

  6. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  7. Critical Heat Flux in Nanofluids at Quasi-Stationary and Stepwise Heat Generation

    Directory of Open Access Journals (Sweden)

    Moiseev Mikhail

    2016-01-01

    Full Text Available In this paper results of an experimental study on critical heat flux in nanofluid at quasi-stationary and stepwise heat generation are presented. Freon R21 with addition of 0.0077 vol.% of SiO2 nanoparticles was used as test fluid. Boiling curves, critical heat fluxes and temperatures of boiling initiation were obtained for pure fluid and for nanofluid. It was shown that the addition of nanoparticles didn’t affect heat transfer at pool boiling, but critical heat fluxes at quasi-stationary and stepwise heat generation were increased.

  8. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.

    Science.gov (United States)

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  9. Trapped field internal dipole superconducting motor generator

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  10. Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Date, Abhijit; Orr, Bradley; Ding, Lai Chet; Singh, Baljit; Affandi, Nor Dalila Nor; Akbarzadeh, Aliakbar

    2016-01-01

    Highlights: • A new passive combined heat recovery and power generation system was tested. • Heat pipes and thermoelectrics were used for recovering industrial waste heat. • The system could recover approximately 1079 W of heat and produce approximately 7 W of electric power. - Abstract: This paper explores a new method of recovering industrial waste heat and conversion to electricity using a Thermo-Electric Generator (TEG). For this purpose, a lab scale bench-top prototype of waste heat recovery and electricity conversion system was designed and fabricated. This bench top system consists of Bismuth Telluride (Bi 2 Te 3 ) based TEG sandwiched between two heat pipes. The first heat pipe was connected to the hot side of the TEG and the second to the cold side of TEG. The waste heat was simulated by using a 2 kW electric heater for heating the air in the system. Experiments were conducted to evaluate the system performance in terms of the heat transfer rate, heat exchanger effectiveness, and maximum output power. It was found that the highest heat exchanger effectiveness of 41% was achieved when the airspeed was set at 1.1 m/s. The system could recover around 1079 W of heat and produce around 7 W of electric power. This equated to 0.7% of thermal-to-electric conversion efficiency. The theoretical predictions showed good agreement compared to the experimental results.

  11. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  12. Fourth international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    Tuomisto, H.; Purhonen, H.; Kouhia, V.

    1997-01-01

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries

  13. Heat diffusion and magnetic field generation

    International Nuclear Information System (INIS)

    Holstein, P.A.

    1983-10-01

    In the report of CECAM workshop in 1982 some results of heat diffusion, when the spontaneous B-field is calculated, have been given. Separately, a similar code (magneto-calo-dynamic or MCD code) has been built and it was interesting to compare them. Comparisom has been made during the workshop of October 1983

  14. Propagation of Fire Generated Smoke and Heat Transfer in Shipboard Spaces with a Heat Source

    National Research Council Canada - National Science Library

    Vegara, Billy

    2000-01-01

    The propagation of fire generated smoke and heat transfer into a shipboard space has been computationally modeled using a commercial code generated by Computational Fluid Dynamics Research Corporation (CFDRC...

  15. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  16. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    . A lowered district heating demand and thereby lowered CHP-bound electricity generation would appear to increase the possibility of integration wind power but due to the ancillary services supplied by CHP plants, the situation is in fact the opposite. Heat savings may not be technically feasible......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable......In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input...

  17. Generation 4 International Forum. 2007 annual report

    International Nuclear Information System (INIS)

    2007-01-01

    This annual report is the first to be issued by GIF (Generation IV International Forum). It summarizes the GIF goals and accomplishments throughout 2007, describes its membership and organization, and provides an overview of its cooperation with other international endeavors for the development of nuclear energy. Future editions will focus on technical progress. Chapter 2 provides an overview on the goals of Generation IV nuclear energy systems and outlines the main characteristics of the six systems selected for joint development by GIF (VHTR - Very High Temperature Reactor; SFR - Sodium-cooled Fast Reactor; SCWR - Super-Critical Water cooled Reactor; GFR - Gas-cooled Fast Reactor; LFR - Lead-cooled Fast Reactor; and MSR - Molten Salt Reactor). Chapter 3 describes the membership and organization of the GIF, the structure of its cooperative research and development (R-D) arrangements, and the status of Member participation in these arrangements. Chapter 4 summarizes the R-D plans and achievements of the Forum until now. It highlights the R-D challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made regarding the development of methodologies for assessing Generation IV systems with respect to the established goals. Chapter 5 reviews other major international collaborative projects in the field of nuclear energy and explains how the GIF interacts and cooperates with them. Bibliographical references are provided in each chapter in order to facilitate access to public information about the GIF objectives, goals and outcomes

  18. Generation 4 International Forum. 2008 annual report

    International Nuclear Information System (INIS)

    2008-01-01

    This 2008 Annual Report is the second annual report issued by GIF (Generation IV International Forum). It provides an update on the GIF organization, membership, and participation in research and development (R-D) projects for each Generation IV system. It summarizes the milestones for development of each system and progress of the R-D toward their accomplishment. Finally, it includes a brief description of the cooperation between GIF and other international endeavors for the development of nuclear energy. Chapter 2 describes the membership and organization of the GIF, the structure of its cooperative research and development arrangements, and the status of Member participation in those arrangements. Chapter 3 provides a summary of the GIF R-D plans, and its activities and achievements during 2008. It highlights the R-D challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made regarding the development of methodologies for assessing Generation IV systems with respect to the established goals of GIF. Chapter 4 reviews other major international collaborative projects in the field of nuclear energy and explains how the GIF interacts and cooperates with them. Appendix 1 provides an overview on the goals of Generation IV nuclear energy systems and outlines the main characteristics of the six systems selected for joint development by GIF. The list of abbreviations and acronyms given at the end of the report defines terms used in the various chapters including various nuclear energy systems and international programs referred to in connection with GIF R-D activities. Some bibliographical references are given in order to facilitate access to public information about R-D progress and achievements on specific technical issues for GIF systems

  19. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  20. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....

  1. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    Science.gov (United States)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  2. Gas Generation of Heated PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Matthew David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-07

    Uniaxially pressed samples of PBX 9502 were heated until self-ignition (cookoff) in order to collect pressure and temperature data relevant for model development. Samples were sealed inside a small gas-tight vessel, but were mechanically unconfined. Long-duration static pressure rise, as well as dynamic pressure rise during the cookoff event, were recorded. Time-lapse photography of the sample was used to measure the thermal expansion of the sample as a function of time and temperature. High-speed videography qualitatively characterized the mechanical behavior and failure mechanisms at the time of cookoff. These results provide valuable input to modeling efforts, in order to improve the ability to predict pressure output during cookoff as well as the effect of pressure on time-toignition.

  3. Generation 4 International Forum. 2009 annual report

    International Nuclear Information System (INIS)

    2009-01-01

    This 2009 Annual Report is the third annual report issued by GIF (Generation 4. International Forum). It includes 3 chapters in addition to an introduction plus 4 appendices, as follows. Chapter 2 describes the membership and organization of GIF, the structure of its cooperative research and development arrangements as well as the status of Members' participation in such arrangements. Chapter 3 summarizes GIF research and development plans, activities and achievements during 2009. It highlights the scientific and technical challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made on the development of methodologies for assessing Generation IV systems with respect to the established goals of GIF. Chapter 4 reviews the cooperation between GIF and other international programs dealing with the development of nuclear energy. Appendix 1 provides an overview on the goals of Generation IV nuclear energy systems and an outline of the main characteristics of the six systems selected for joint development by GIF. Appendix 2 presents the objectives that have been set for the various System Steering Committees and the associated Project Management Boards for the next 5 years. Appendix 3 reproduces the Table of Contents of the Proceedings from the GIF Symposium held in Paris (France) in 2009. Appendix 4 provides a list of abbreviations and acronyms (with the corresponding definitions) which are used in this report or are relevant to GIF activities

  4. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  5. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  6. Measurement of heat generation from simulated bituminized product

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yoshiyuki; Yoneya, Masayuki [TRP Safety Evaluation and Analysis team, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    1999-09-01

    The fire and explosion incident occurred at Bituminization Demonstration Facility of PNC Tokai Works on March 11, 1997. In order to ascertain the cause of incident, the investigation has been pushed forward. For the investigation, we prepared simulated bituminized product of measurement of heat generation in low temperature region less than 200degC. We used calvet Calorimeter MS80 for the heat generation measurement. Result of measurement, we were able to catch the feeble heat generation from bituminized product. The maximum calorific value that was able to detect it in isothermal measurement was approximately 1 mW/g in 160degC. It was approximately 2 mW/g in 200degC. And, as the another measurement, the measurement condition went heat rate by 0.01degC/minute, the highest temperature 190degC. As a result, the maximum generation of heat value that was able to detect it was approximately 0.5 mW/g. I changed simulated bituminized products and measured these. A difference of condition is salt particle size, salt content rate (45%, 60%), addition of the simulated precipitate. But there was not a difference in the generation of heat characteristic detected. (author)

  7. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  8. Finned Tube With Vortex Generators For A Heat Exchanger.

    Science.gov (United States)

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  9. Effect of constant and uniform heat generation on the thermal behaviour of porous solids with asymmetric boundary conditions

    International Nuclear Information System (INIS)

    Heggs, P.J.; Dare, J.

    2007-01-01

    The generation of heat due to chemical reaction will have a significant effect on the temperature profile and heat transfer within a porous body. Most forms of analysis only consider the symmetric situation or else make use of various assumptions that greatly simplify the analysis, for example: the Semenov or the Frak-kamenetskii models. The objective of this paper is to develop an improved understanding of the thermal behaviour of a porous body with uniform internal heat generation, which is in contact with two fluids at different temperatures and with different heat transfer coefficients. The mathematical representation is a one dimensional Poisson equation with asymmetric boundary conditions. The analytical solution reveals four regimes for heat flow: (a) purely conduction at zero heat generation, (b) a combination of heat flow by conduction through the body between the hot and cold fluids and all heat generated passing to the colder fluid, (c) no heat flow by conduction between the two fluids and all heat generated passing the cold flow - the so-called critical heat generation, and (d) the heat generated passes to both the cold and hot fluids and there is a maximum temperature within the body greater than that of the hot fluid, the so-called supercritical region. Expressions are developed to allow predictions of the conditions pertaining to each regime. This new representation covers the Semenov and Frank-Kamenetskii models and all possible solutions intermediate of the them. (authors)

  10. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  11. International symposium on transient convective heat transfer: book of abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting

  12. Light bulb heat exchanger for magnetohydrodynamic generator applications - Preliminary evaluation

    Science.gov (United States)

    Smith, J. M.; Hwang, C. C.; Seikel, G. R.

    1974-01-01

    The light-bulb heat-exchanger concept is investigated as a possible means of using a combustion heat source to supply energy to an inert gas MHD power generator system. In this concept, combustion gases flow through a central passage which consists of a duct with transparent walls through which heat is transferred by radiation to a radiation receiver which in turn heats the inert gas by convection. The effects of combustion-gas emissivity, transparent-wall-transmissivity, radiation-receiver emissivity, and the use of fins in the inert gas coolant passage are studied. The results indicate that inert gas outlet temperatures of 2500 K are possible for combustion temperatures of 3200 K and that sufficient energy can be transferred from the combustion gas to reduce its temperature to approximately 2000 K. At this temperature more conventional heat exchangers can be used.

  13. Generation 4 International Forum. 2014 Annual Report

    International Nuclear Information System (INIS)

    2015-01-01

    This eighth edition of the Generation IV International Forum (GIF) Annual Report highlights the main achievements of the Forum in 2014, and in particular progress made in the collaborative RandD activities of the eleven existing project arrangements for the six GIF systems: the gas-cooled fast reactor, the sodium-cooled fast reactor, the supercritical-water-cooled reactor and the very-high-temperature reactor. Progress made under the memoranda of understanding for the lead-cooled fast reactor and the molten salt reactor is also reported. In May 2014, China joined the supercritical-water-cooled reactor system arrangement; and in October 2014, the project arrangement on system integration and assessment for the sodium-cooled fast reactor became effective. GIF also continued to develop safety design criteria and guidelines for the sodium-cooled fast reactor, and to engage with regulators on safety approaches for generation IV systems. Finally, GIF initiated an internal discussion on sustainability approaches to complement ongoing work on economics, safety, proliferation resistance and physical protection

  14. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  15. Flow visualization in heat-generating porous media

    International Nuclear Information System (INIS)

    Lee, D.O.; Nilson, R.H.

    1977-11-01

    The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models

  16. Coherent mode generation during EBW heating in TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti Morales, Rennan; Koehn, Alf; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany)

    2014-07-01

    Electron Bernstein waves (EBWs) can be used to heat overdense plasmas when the plasma cut-off frequency is higher than the frequency of the injected microwaves. EBWs are electrostatic waves, which cannot propagate in vacuum and, therefore, need to be generated by mode conversion processes. The generation of EBWs is possible when the microwave heating power is high enough to increase the plasma density beyond the cut-off density. At this stage, the EBW mode conversion takes place and heating at the electron cyclotron resonance frequency (ECRF) and its harmonics is achieved. This heating scheme is successfully used in the stellarator TJ-K to heat overdense plasmas in low magnetic fields at ECRF harmonics. Recent discharges using this heating scenario showed a quasi-coherent mode in density and potential fluctuations. This mode at approximately 4 kHz is dominant in the power spectrum and is evident from the center to the edge of the plasma, peaking at the separatrix region. In the presence of the coherent mode, the broadband turbulent fluctuations appear to be suppressed. This feature is more pronounced during discharges with the lower neutral gas pressures. In this contribution, the generation of this mode and its impact on the ambient turbulence is studied by means of Langmuir probe measurements.

  17. International cost relations in electric power generation

    International Nuclear Information System (INIS)

    Schmitt, D.; Duengen, H.; Wilhelm, M.

    1986-01-01

    In spite of the fact that analyses of the cost of electric power generation as the result of international comparative evaluations are indisputably relevant, problems pending in connection with the costs of representative power plant technologies are of the methodological bind. German authors have hitherto also been failing to clear up and consider all aspects connected with the problems of data acquisition and the adequate interpretation of results. The analysis presented by the paper abstracted therefore aims at the following: 1) Systematization of the different categories of cost relevant in connection with international comparative evaluation. Classification into different categories of decision making and development of standards meeting the requirements of international comparative evaluation. 2) Calculation of relevant average financial costs of Western German, America and French fossil-fuel and nuclear power plants by means of adequate calculation models, that is the assessment of costs with regard to countries and power plant technologies which are relevant to the Federal Republic of Germany. 3) Analysis of the resulting differences and determinantal interpretation. (orig./UA) [de

  18. History of heat pumps - Swiss contributions and international milestones

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, M.

    2008-05-15

    Compared to conventional boilers, heating by heat pumps cuts down fuel consumption and CO{sub 2} emissions to about 50%. Compared to electric resistance heating, the energy consumption is even reduced up to 80%. Therefore, the impressive market penetration growth of heat pumps will continue. Swiss pioneers were the first to realize functioning vapour recompression plants. The first European heat pumps were realized in Switzerland. To date it remains one of the heat pump champions. Swiss pioneering work in the development of borehole heat exchangers, sewage heat recovery, oil free piston compressors and turbo compressors is well known. The biggest heat pump ever built comes from Switzerland. Although there is a fairly comprehensive natural gas distribution grid, 75% of the new single-family homes built in Switzerland are currently heated by heat pumps. This paper presents some of the highlights of this success story focusing on Swiss developments and relating them to the international milestones. In order to indicate the direction in which the future development might go to, some recent Swiss research projects are presented as well. (author)

  19. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  20. Fifth CNS international steam generator conference

    International Nuclear Information System (INIS)

    2006-01-01

    The Fifth CNS International Steam Generator Conference was held on November 26-29, 2006 in Toronto, Ontario, Canada. In contrast with other conferences which focus on specific aspects, this conference provided a wide ranging forum on nuclear steam generator technology from life-cycle management to inspection and maintenance, functional and structural performance characteristics to design architecture. The 5th conference has adopted the theme: 'Management of Real-Life Equipment Conditions and Solutions for the Future'. This theme is appropriate at a time of transition in the industry when plants are looking to optimize the performance of existing assets, prevent costly degradation and unavailability, while looking ahead for new steam generator investments in life-extension, replacements and new-build. More than 50 technical papers were presented in sessions that gave an insight to the scope: life management strategies; fouling, cleaning and chemistry; replacement strategies and new build design; materials degradation; condition assessment/fitness for service; inspection advancements and experience; and thermal hydraulic performance

  1. Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor

    Science.gov (United States)

    Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.

    2014-04-01

    The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.

  2. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  3. Heat-Transfer Enhancement by Artificially Generated Streamwise Vorticity

    Science.gov (United States)

    Ghanem, Akram; Habchi, Charbel; Lemenand, Thierry; Della Valle, Dominique; Peerhossaini, Hassan

    2012-11-01

    Vortex-induced heat transfer enhancement exploits longitudinal and transverse pressure-driven vortices through the deliberate artificial generation of large-scale vortical flow structures. Thermal-hydraulic performance, Nusselt number and friction factor are experimentally investigated in a HEV (high-efficiency vortex) mixer, which is a tubular heat exchanger and static mixer equipped with trapezoidal vortex generators. Pressure gradients are generated on the trapezoidal tab initiating a streamwise swirling motion in the form of two longitudinal counter-rotating vortex pairs (CVP). Due to the Kelvin-Helmholtz instability, the shear layer generated at the tab edges, which is a production site of turbulence kinetic energy (TKE), becomes unstable further downstream from the tabs and gives rise to periodic hairpin vortices. The aim of the study is to quantify the effects of hydrodynamics on the heat- and masstransfer phenomena accompanying such flows for comparison with the results of numerical studies and validate the high efficiency of the intensification process implementing such vortex generators. The experimental results reflect the enhancement expected from the numerical studies and confirm the high status of the HEV heat exchanger and static mixer.

  4. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  5. Internal ultrasonic testing of steam generator tubes

    International Nuclear Information System (INIS)

    Furlan, J.; Soleille, G.; Chalaye, H.

    1983-01-01

    The ''in situ'' inspection of steam generator tubes uses generally Foucault currents before starting and along its life. This inspection aims at searching cracks and corrosion defects. The Foucault current method is quite badly adapted to ''closed crack'' detection, for it doesn't introduce neither resistivity or magnetic permeability variation, or lack of matter. More, it is sensible to the magnetic properties of the tube itself and to its environment (tubular or support plates). It is why, this first systematic inspection has to be completed by an ultrasonic one allowing to bring new elements in the uncertain cases. A device with an internal probe has been developed. It ''lights'' the tube wall with the aid of a transducer of which beam reflects on a mirror. Operating conditions are the same as for Foucault current testing, that is to say the probe moves inside the tube without rotation of the device (bent parts are excluded) [fr

  6. Experimental study on local heat transfer characteristics of porous media with internal heat source

    International Nuclear Information System (INIS)

    Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping

    2008-01-01

    Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)

  7. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  8. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  9. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  10. The effect of heat generation in inclined slats on the natural convective heat transfer from an isothermal heated vertical plate

    International Nuclear Information System (INIS)

    Oosthuizen, P.H.; Sun, L.; Naylor, D.

    2003-01-01

    Natural convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat surfaces (termed 'slats') near the heated surface, these surfaces being, in general, inclined to the heated surface. There is, in general, a uniform heat generation in the slats. The slats are pivoted about their centre-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air being considered. The heat generation in the slats in this situation is the result of solar radiation passing through the window and falling on and being absorbed by the slats of the blind. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. The solution has the following parameters: (1) the Rayleigh number (2) the Prandtl number (3) the dimensionless heat generation rate in the slats per unit frontal area (4) the dimensionless distance of the slat center point (the pivot point) from the surface (5) the dimensionless slat size (6) the dimensionless slat spacing (7) the angle of inclination of the slats. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated vertical surface has been examined. (author)

  11. Network model of free convection within internally heated porous media

    International Nuclear Information System (INIS)

    Conrad, P.W.

    1977-01-01

    A hypothetical core-disruptive accident (HCDA) in a liquid metal fast breeder reactor (LMFBR) may result in the formation of an internally heated debris bed. Considerable attention has been given to postulated mechanisms by which such beds may be cooled. It is the purpose of the work described to demonstrate a method for computing the heat transfer from such a bed to the overlying sodium pool due to single-phase, free convection

  12. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  13. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. A. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  14. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  15. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  16. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  17. Pitfalls in modeling mantle convection with internal heat production

    Science.gov (United States)

    Korenaga, Jun

    2017-05-01

    The mantle of the Earth, and probably of other terrestrial planets as well, is heated from below and within. The heating mode of mantle convection is thus mixed heating, and it is also time dependent because the amount of heat-producing isotopes in the mantle is steadily decreasing by radioactive decay and because the basal heat flux originating in the cooling of the core can vary with time. This mode of transient mixed heating presents its own challenges to the study of mantle convection, but such difficulties are not always appreciated in the recent literature. The purpose of this tutorial is to clarify the issue of heating mode by explaining relevant concepts in a coherent manner, including the internal heating ratio, the Urey ratio, secular cooling, and the connection between the thermal budget of the Earth and the geochemical models of the Earth. The importance of such basic concepts will be explained with some illustrative examples in the context of the thermal evolution of the Earth, and a summary of common pitfalls will be provided, with a possible strategy for how to avoid them.

  18. Composite electric generator equipped with steam generator for heating reactor coolant

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato

    1997-08-12

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  19. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  20. Underground disposal of UK heat-generating wastes: repository design considerations

    International Nuclear Information System (INIS)

    Steadman, J.A.

    1993-12-01

    The report discusses the likely differences in design between a deep repository for disposal of UK heat-generating radioactive wastes and that of the planned Nirex ILW/LLW repository at Sellafield, based on a review of international published information. The main differences arise from the greater heat and radiation outputs of the waste, and in the case of intact PWR spent fuel elements, the greater length and weight of the disposal packages. Published cost estimates for other OECD countries for disposal of heat-generating wastes are considerably lower than that for the UK, partly because in most cases they are for co-disposal with a larger quantity of ILW. (author)

  1. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  2. Articulated Multimedia Physics, Lesson 13, Internal Energy, Heat, and Temperature.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    As the thirteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to internal energy, heat, and temperature. The topics are concerned with collisions, thermometers, friction forces, degrees Centigrade and Fahrenheit, calories, Brownian motion, and state changes. The…

  3. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  4. Economic aspects of electricity and industrial heat generating reactors

    International Nuclear Information System (INIS)

    Gaussens, J.; Moulle, N.; Dutheil, F.

    1964-01-01

    The economic advantage of electricity-generating nuclear stations decreases when their size decreases. However, when a counter-pressure turbine is joined on to a reactor and the residual heat can be properly used, it can be shown that fairly low capacity nuclear equipment may compete with conventional equipment under certain realistic enough conditions. The aim of this paper is to define these special conditions under which nuclear energy can be profitable. They are connected with the location and the general economic environment of the station, the pattern of the electricity and heat demands it must meet, the level of fuel and specific capital costs, nuclear and conventional. These conditions entail certain technical and economic specifications for the reactors used in this way otherwise they are unlikely to be competitive. In addition, these results are referred to the potential steam and electricity market, which leads us to examine certain uses for the heat generated by double purpose power stations; for example, to supply combined industrial plants, various types of town heating and for removal of salt from sea water. (authors) [fr

  5. Development of micro-thermophotovoltaic power generator with heat recuperation

    International Nuclear Information System (INIS)

    Yang, W.M.; Chua, K.J.; Pan, J.F.; Jiang, D.Y.; An, H.

    2014-01-01

    Highlights: • Recuperator can significantly increase the wall temperature of micro combustor. • A prototype micro-thermophotovoltaic power generator is assembled and tested. • The output power of the micro-TPV system is increased by 83% with recuperator. - Abstract: A high and uniform wall temperature distribution is desirable for Micro-TPV system application. In this work, numerical simulation combined with experimental test is conducted to study the combustion of hydrogen–air mixture in a microcylindrical combustor with and without a heat recuperator. The results indicate that the temperature distribution along the wall of the micro combustor with a heat recuperator is more uniform and the mean wall temperature is increased by up to 123 K compared to that without a heat recuperator. A micro-TPV system is also prototyped and the performance is tested under various operating conditions, and the results indicate that the electrical power of the system is significantly increased for the micro-TPV system with a heat recuperator. When H 2 flow rate is 4.02 g/h and H 2 /air equivalence ratio is 0.8, the electrical power of the micro-TPV system with a heat recuperator is increased from 0.74 W to 1.26 W, corresponding to an increase of 70%

  6. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2004-01-01

    The integration of flutuating wind power is an important issue for the future development of sustainable energy systems. In Denmark, the integration is affected by a large amount of cogeneration of heat and power. This gives possibilities as well as sets restraints. The paper shows...... that with ancillary services supplied by large-scale condensation and CHP-plants, a certain degree of large-scale generation is required regardless of momentary wind input....

  7. Car companies look to generate power from waste heat

    Science.gov (United States)

    Schirber, Michael

    2008-04-01

    You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.

  8. Transient thermal stresses in composite hollow circular cylinder due to partial heat generation

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1979-01-01

    Clad materials are adopted for the machines and structures used in contact with high temperature, corrosive atmosphere in view of their strength and economy. Large thermal stress sometimes arises in clad cylinders due to uneaven temperature field and the difference in linear thermal expansion. Vessels are often heated uneavenly, and shearing stress occurs, which is not observed in uniform heating. In this study, infinitely long, concentric cylinders of two layers were analyzed, when the internal heat changing in stepped state is generated in cylindrical form. The unsteady thermal stress occurred was determined, using thermo-elastic potential and stress functions, and assuming the thermal properties and elastic modulus of materials as constant regardless of the temperature. Laplace transformation was used, and the basic equations for thermo-elastic displacement were employed as the basis of calculation. The analysis of the temperature distribution and stress is explained. Numerical calculation was carried out on the example of an internal cylinder of SUS 304 stainless steel and an external cylinder of mild steel. The maximum shearing stress occurred in the direction of 40 deg from the heat source, and was affected largely by the position of heat generation. The effect became remarkable as time elapsed. (Kako, I.)

  9. Next generation CANDU heat transport system parameter assessment

    International Nuclear Information System (INIS)

    Hau, K.F.; Love, J.W.; Vadera, M.; Vecchiarelli, J.

    2001-01-01

    AECL has initiated an innovative program to develop the next generation of technologies for CANDU reactors, and to apply them to a highly cost-effective new family of next generation power plants. Four major design changes were considered in the present conceptual design of the Heat Transport System (HTS) for the Next Generation (NG) CANDU. These include: light water replacement of heavy water as coolant, a compact core design resulting from a fuel channel lattice pitch reduction, use of Slightly Enriched Uranium (SEU) CANFLEX fuel bundles, and higher HTS and Turbine Generator (TG) operating pressures and temperatures. In designing the HTS, the goal is to reduce the capital cost while meeting the design and safety requirements with robust safety margins. This paper describes the studies to optimize key HTS parameters, including the assessment methodology and the basis of proposed design conditions for the NG CANDU HTS. (author)

  10. A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation

    International Nuclear Information System (INIS)

    Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel

    2013-01-01

    Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy

  11. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  12. International symposium on radiative heat transfer: Book of abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting

  13. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  14. Design and optimization of geothermal power generation, heating, and cooling

    Science.gov (United States)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  15. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  16. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...

  17. A thermoelectric generator using loop heat pipe and design match for maximum-power generation

    KAUST Repository

    Huang, Bin-Juine

    2015-09-05

    The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.

  18. 8th International Symposium on Heating, Ventilation and Air Conditioning

    CERN Document Server

    Zhu, Yingxin; Li, Yuguo; Vol.1 Indoor and Outdoor Environment; Vol.2 HVAC&R Component and Energy System; Vol.3 Building Simulation and Information Management

    2014-01-01

    Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning is based on the 8th International Symposium of the same name (ISHVAC2013), which took place in Xi’an on October 19-21, 2013. The conference series was initiated at Tsinghua University in 1991 and has since become the premier international HVAC conference initiated in China, playing a significant part in the development of HVAC and indoor environmental research and industry around the world. This international conference provided an exclusive opportunity for policy-makers, designers, researchers, engineers and managers to share their experience. Considering the recent attention on building energy consumption and indoor environments, ISHVAC2013 provided a global platform for discussing recent research on and developments in different aspects of HVAC systems and components, with a focus on building energy consumption, energy efficiency and indoor environments. These categories span a broad range of topics, and the proce...

  19. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  20. A heat transfer study for vertical straight-tube steam generators heated by liquid metal

    International Nuclear Information System (INIS)

    Valette, M.

    1984-04-01

    A single-tube mockup of a vertical straight-tube steam generator heated by sodium-potassium alloy NaK was submitted to thermal and hydraulic testing in conditions representative of fast breeder reactor operation. The mockup consisted of a 10mm I.D. ferritic steel heat exchange tube centered inside a cylindrical stainless steel shell. The complete assembly was 20.9 meters long. Water flowed upward inside the exchange tube, and NaK flowed downward in the annular gap between the tube and the shell. The steam outlet pressure ranged from 90 to 195 bars, while the liquid metal temperature at the mockup inlet was between 480 and 580 0 C. The water flowrate in the tube ranged from 153 to 2460 kg.m -2 .s -1 . During the tests the fluid inlet and outlet temperatures, flowrate and pressures were measured, as was the NaK temperature profile over the full length of the device. The test results were subsequently compared with heat exchange and pressure drop values calculated using the standard formulas for straight-tube heat exchangers. The heat exchange coefficients predicted by these correlations in the boiling zone were found to be largely overestimated, while the calculated pressure drop values proved satisfactory. A set of modified correlations is proposed to account for the observed phenomena, and for use in designing commercial units, provided the sodium flow in the tube bundle is adequately distributed

  1. Cloud-generated radiative heating and its generation of available potential energy

    Science.gov (United States)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  2. International Geomagnetic Reference Field: the 12th generation

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Beggan, Ciarán D.

    2015-01-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch ...

  3. Mental Arithmetic Activates Analogic Representations of Internally Generated Sums

    Science.gov (United States)

    Kallai, Arava Y.; Schunn, Christian D.; Fiez, Julie A.

    2012-01-01

    The internal representation of numbers generated during calculation has received little attention. Much of the mathematics learning literature focuses on symbolic retrieval of math facts; in contrast, we critically test the hypothesis that internally generated numbers are represented analogically, using an approximate number system. In an fMRI…

  4. High-Temperature Reactor For Power Generation and District Heating

    International Nuclear Information System (INIS)

    Herzberger, Karlheinz

    1987-01-01

    The multinational BBC Brown Brave Group, which has its head-quarters in Baden/Switzerland, was founded in 1891. Its German company is Brown, Brave and CIEs AGM, Mannheim. The field of operation covers wide areas of electrical engineering: These includes mainly the manufacture of installations and equipment for the generation, conversion, distribution and utilization of electric power, with special emphasis on the capital goods sector. BBC erects turnkey power plants and manufactures electrical equipment for industrial plants and urban transport and main line trains. Also of major importance are standard electrical products such as motors, switches, cables, semiconductor devices as well as measuring and control equipment. In the field of nuclear power BBC is engaged in particular in the development and construction of high-temperature reactors for the generation of electric power and process heat. The following presentation gives a short view on the milestones of the HTR development achieved in 1987

  5. Monitoring the risk of loss of heat sink during plant shutdowns at Bruce Generating Station 'A'

    International Nuclear Information System (INIS)

    Krishnan, K.S.; Mancuso, F.; Vecchiarelli, D.

    1996-01-01

    A relatively simple loss of shutdown heat sink fault tree model has been developed and used during unit outages at Bruce Nuclear Generation Station 'A' to assess, from a risk and reliability perspective, alternative heat sink strategies and to aid in decisions on allowable outage configurations. The model is adjusted to reflect the various unit configurations planned during a specific outage, and identifies events and event combinations leading to loss of fuel cooling. The calculated failure frequencies are compared to the limits consistent with corporate and international public safety goals. The importance measures generated by the interrogation of the fault tree model for each outage configuration are also used to reschedule configurations with high fuel damage frequency later into the outage and to control the configurations with relatively high probability of fuel damage to short intervals at the most appropriate time into the outage. (author)

  6. Start up system for hydrogen generator used with an internal combustion engine

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  7. A review on process intensification in internally heat-integrated distillation columns

    NARCIS (Netherlands)

    Kiss, Anton Alexandru; Olujic, Zarko

    2014-01-01

    Internally heat-integrated distillation column (HIDiC) is the most radical approach of a heat pump design, making efficient use of internal heat-integration: the rectifying section of a distillation column operating at a higher pressure becomes the heat source, while the stripping part of the column

  8. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  9. Data for occupancy internal heat gain calculation in main building categories

    Directory of Open Access Journals (Sweden)

    Kaiser Ahmed

    2017-12-01

    Full Text Available Heat losses from occupant body by means of convection, radiation, vapor, and sweat are essential data for indoor climate and energy simulations. Heat losses depend on the metabolic activity and body surface area. Higher variations of body surface area of occupants are observed in day care centers, kinder gardens and schools compared to other building categories (Tables 2 and 3 and these variations need to be accounted, otherwise in these building categories heat gains, CO2 and humidity generation are overestimated. Indoor temperature, humidity level, air velocity, and clothing insulation have significant influences on dry and total heat losses from occupant body leading to typical values for summer and winter. The data presented in this article are related to the research article entitled Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards (Ahmed et al., 2017 [1]. Keywords: Body surface area, Metabolic rate, Dry heat loss, Total heat loss, Internal heat gain

  10. The international cooperation for 4. generation systems

    International Nuclear Information System (INIS)

    Bouchard, J.

    2007-01-01

    This series of slides begins with a likely scenario for the demand of nuclear power in 2050: 3.2 Gtep compared to the 0.7 Gtep of today. The demand could be even bigger if more constraints were appearing on the use of fossil energies. Today's industrial offer of nuclear reactors is based on second and third generation design of reactors but sustainable development implies to close the fuel cycle to spare uranium resource and to minimize the volume of high-level radioactive wastes produced so a new generation of reactors is required. 6 concepts have been selected for the fourth generation of reactors. 1) VHTR (Very High Temperature Reactors) for the production of hydrogen. The countries interested in VHTR are: EURATOM countries, France, the Usa, Japan, Switzerland and South-Korea. 2) SFR (Sodium cooled Fast Reactors), the countries interested in SFR are: EURATOM countries, France, Japan, the Usa and South-Korea. 3) LFR (Lead or Bismuth/Lead cooled Fast Reactors), the LFR steering committee is composed of Switzerland, Japan, the Usa and South-Korea. 4) GFR (Gas cooled Fast Reactors), the countries interested in GFR are EURATOM countries, France, Japan and Switzerland. 5) SCWR (Super-Critical Water cooled Reactors), the countries interested in this concept are Canada, EURATOM countries and Japan. 6) MSR (Molten Salt Reactors), the MSR steering committee is composed of France, EURATOM countries and the Usa. Other countries like Argentina, Brazil and United-Kingdom have shown interest in the VHTR concept but have lacked willingness till now to take part into the program. (A.C.)

  11. Development of a national anthropogenic heating database with an extrapolation for international cities

    Science.gov (United States)

    Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.

    2015-10-01

    Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential

  12. Buoyancy and thermocapillary driven convection flow of electrically conducting fluid in an enclosure with heat generation

    International Nuclear Information System (INIS)

    Hossain, Md. Anwar; Rees, D.A.S.

    2002-05-01

    The effect of surface tension on unsteady laminar natural convection flow of a viscous incompressible fluid in a rectangle enclosure with internal heat generation and in presence of a uniform transverse magnetic field acting in the direction normal to the gravity has been investigated. The top horizontal surface of the rectangular cavity is assumed to be free and the bottom ones insulated; whereas the left vertical wall is cold and the right one is uniformly hot. The equations are non-dimensionalized and solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of heat generation together with the combined effects of the magnetic field and the surface tension are presented graphically in terms of isotherms, streamlines and velocity vector plots. The effects of varying the physical parameters on the rate of heat transfer from the heated surface of the enclosure are also depicted. The fluid here has Prandtl number Pr=0.054 while the value of the Grashof number is 2x10 4 . (author)

  13. Current Induced Heat Generation in Ferromagnet-Quantum Dot-Ferromagnet System

    Science.gov (United States)

    Zhao, Lili; Chen, Qiao; Zhang, Yamin; Zhao, Lina

    2015-01-01

    We study the heat generation in ferromagnet-quantum dot-ferromagnet system by the non-equilibrium Green’s functions method. Heat generation under the influence of ferromagnet leads is very different compared with a system with normal metal leads. The significant effects in heat generation are caused by the polarization angle θ associated with the orientation of polarized magnetic moment of electron in the ferromagnetic terminals. From the study of heat generation versus source drain bias (Q-eV) curves, we find that the heat generation decreases as θ increases from 0 to 0.7π. The heat generation versus gate voltage (Q-eVg) curves also display interesting behavior with increasing polarization angle θ. Meanwhile, heat generation is influenced by the relative angle θ of magnetic moment in the ferromagnetic leads. These results will provide theories to this quantum dot system as a new material of spintronics. PMID:28793411

  14. Current Induced Heat Generation in Ferromagnet-Quantum Dot-Ferromagnet System

    Directory of Open Access Journals (Sweden)

    Lili Zhao

    2015-06-01

    Full Text Available We study the heat generation in ferromagnet-quantum dot-ferromagnet system by the non-equilibrium Green’s functions method. Heat generation under the influence of ferromagnet leads is very different compared with a system with normal metal leads. The significant effects in heat generation are caused by the polarization angle θ associated with the orientation of polarized magnetic moment of electron in the ferromagnetic terminals. From the study of heat generation versus source drain bias (Q-eV curves, we find that the heat generation decreases as θ increases from 0 to 0.7π. The heat generation versus gate voltage (Q-eVg curves also display interesting behavior with increasing polarization angle θ. Meanwhile, heat generation is influenced by the relative angle θ of magnetic moment in the ferromagnetic leads. These results will provide theories to this quantum dot system as a new material of spintronics.

  15. Milliwatt generator heat source. Progress report, July-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Mershad, E.A.

    1982-04-08

    As part of the Milliwatt Generator (MWG) Program, a second series of pressure burst capsules welded offsite was tested; the resulting data indicate that the welds are very similar to those in the first series of capsules. Sufficient hardware was fabricated to meet all scheduled commitments. To provide a unit for feasibility testing, a heat source clad with Hastelloy C was reclad with Inconel 600. Forming development tests on Inconel 600 were conducted with favorable results. A QAS-3 survey was conducted and a satisfactory rating was received. Lot 11 qualification began on T-111 materials. The production period ended with an overall process yield of 99.6%, and a dollar percent defective rate of 0.60%.

  16. Two-phase dynamics of gas-heated steam generators

    International Nuclear Information System (INIS)

    Schittke, H.J.

    1977-01-01

    The dynamic behavior of a once-through steam generator plant operating in the secondary loop of a gas-cooled high-temperature reactor is considered. The mathematical model used for the description of the thermohydraulics of the problem comprises not only the dynamic behavior of the primary heating gas flow and the tube wall temperatures but especially the effects of pressure dynamics in the secondary fluid and the relevant two-phase flow phenomena: using an additional momentum balance equation for the dynamics of the slip velocity it is shown that the analytical computation of the slip velocity it is shown that the analytical computation of slip and two-phase pressure drop effects from the model equations is possible without the use of external correlations. Based on this mathematical model a generally applicable computer model is used to simulate the dynamic response of a given system

  17. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    Science.gov (United States)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  18. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer

  19. International Space Station (ISS) Addition of Hardware - Computer Generated Art

    Science.gov (United States)

    1995-01-01

    This computer generated scene of the International Space Station (ISS) represents the first addition of hardware following the completion of Phase II. The 8-A Phase shows the addition of the S-9 truss.

  20. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  1. Stability of Continental Lithosphere based on Analogue Experiments with Microwave Induced Internal Heating

    Science.gov (United States)

    Fourel, Loic; Limare, Angela; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude

    2015-04-01

    Continental lithosphere is usually depicted as the upper conductive layer of the Earth. Its formation is achieved through melt depletion that generates a residue that is less dense and more viscous than the underlying convecting mantle. As it is cooled from above, continental lithosphere can develop its own convective currents and may become unstable depending on its thickness and density contrast with the mantle. But chemical differentiation due to mantle magmatism also enriches continental lithosphere in heat producing elements. According to present estimates, the Earth's mantle may have lost as much as half of its radioactive elements in favour of continental crust and this stratified redistribution of heat sources has two main effects. First, mantle convection vigor decreases and becomes increasingly sensitive to heat supply from the core. Second, localized heat production at the top surface increases the continental insulating effects and competes against lithospheric instabilities. In the present study, we focus on the later and we determine which amount of internal heating is required to keep the lithosphere stable for a given rate of cooling from the top. The physics underlying instability triggering corresponds to the problem of a two differentially heated layered system cooled from above, where the top layer is less dense and more viscous than the bottom one, representative of the lithosphere-mantle system. Few studies have been devoted to the intrinsic characteristics of this layered type of convection. Here, we present a state of the art laboratory setup to generate internal heating in controlled conditions based on microwave (MW) absorption. The volumetric heat source can be localized in space and its intensity can be varied in time. Our tank prototype has horizontal dimensions of 30 cm x 30 cm and 5 cm height. A uniform and constant temperature is maintained at the upper boundary by an aluminium heat exchanger and adiabatic conditions are imposed at

  2. Effects of the Spin Heat Accumulation on the Heat Generation in a Quantum Dot Coupled to Leads

    Science.gov (United States)

    Liu, Jia; Zhou, Yun; Chi, Feng; Ma, Yong-Hong

    2018-01-01

    Heat generation by a spin-polarized current in a single-level quantum dot (QD) subjected to spin heat accumulation (SHA), which denotes the spin-dependent electron temperature, is studied by using the nonequilibrium Green's function technique. The heat generation originates from the energy exchange between the conduction electrons and the phonon reservoir coupled to the QD. Due to the SHA, the spin-up and spin-down heat generations are opposite in sign, and each has a maximum when the QD level is aligned to the chemical potentials of the leads, where the electric current is zero. Under a magnetic field, the maxima of the spin-up and spin-down heat generations are shifted to different dot level regimes. Now total negative heat generation emerges, indicating that the electron absorbs heat from the phonon reservoir to the dot. By tuning the dot levels and the system temperature, the magnitude of the negative heat generation can be enhanced accompanied by weakened electric current, an ideal condition for the realization of nanorefrigerator.

  3. Investigation of Battery Heat Generation and Key Performance Indicator Efficiency Using Isothermal Calorimeter

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    , and the heat flux of the battery cell at the same time. Temperatures on the surface of the cell are measured using contact thermocouples, whereas, the heat flux is measured simultaneously by the isothermal calorimeter. This heat flux measurement is used for determining the heat generation inside the cell...

  4. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  5. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    Science.gov (United States)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  6. Investigation on the performance of a prototype of thermo-electric generation with heat pipe-heat sink

    Directory of Open Access Journals (Sweden)

    Elghool Ali

    2017-01-01

    Full Text Available A significant problem in thermo-electric generators is the thermal design of the heat sink because it affects the performance of thermo-electric modules. As compared to conventional cooling systems, heat pipe heat sink have numerous advantages. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (passive system. This paper presents the analysis of power generation using the combination of heat pipes and thermo-electric generators. The aim is to improve power output by an appropriate design of the heat sink. The average geometrical parameters of heat sink (fin height, fin space and fin thickness were obtained from data collected from previous studies closely similar to this prototype. The prototype was tested and the temperature, voltage and current data were collected. All data were recorded by using a temperature data recorder, power meter and multimeter. It was found that the highest maximum power output was 1.925 watts at a temperature difference of 85°C. However, the prototype did not achieve the maximum output expected. This was a result of limitation of TEG model (where only one TEG was used and the limitation of the performance of the prototype. The prototype successfully generated enough power to charge a cell phone and laptop when connected to two or three TEGs. Moreover the heat pipe heat sink needs optimization to meet the design output from the manufacturer of the TEG at hot side temperature and cold side temperature

  7. A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Tahani Mojtaba

    2013-01-01

    Full Text Available There are a substantial amount of waste heat through exhaust gas and coolant of an Internal Combustion Engine. Organic Rankine cycle is one of the opportunities in Internal Combustion Engines waste heat recovery. In this study, two different configurations of Organic Rankine cycle with the capability of simultaneous waste heat recovery from exhaust gas and coolant of a 12L diesel engine were introduced: Preheat configuration and Two-stage. First, a parametric optimization process was performed for both configurations considering R-134a, R-123, and R-245fa as the cycle working fluids. The main objective in optimization process was maximization of the power generation and cycle thermal efficiency. Expander inlet pressure and preheating temperature were selected as design parameters. Finally, parameters like hybrid generated power and reduction of fuel consumption were studied for both configurations in different engine speeds and full engine load. It was observed that using R-123 as the working fluid, the best performance in both configurations was obtained and as a result the 11.73% and 13.56% reduction in fuel consumption for both preheat and Two-stage configurations were found respectively.

  8. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

    Directory of Open Access Journals (Sweden)

    C.Q. Su

    2014-11-01

    Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

  9. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  10. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle

    Science.gov (United States)

    Lenka, Maheswata; Sarkar, Debasis

    2018-03-01

    This work investigates the effect of internal seeding and an initial cooling/heating cycle on the final crystal size distribution (CSD) during a combined cooling/antisolvent crystallization of L-asparagine monohydrate from it's aqueous solution using isopropyl-alcohol as antisolvent. Internal seeds were generated by one-pot addition of various amounts of antisolvent to the crystallizer. It was then followed by a cooling/heating cycle to dissolve the fines produced and thus obtain a suitable initial seed. A combined cooling/antisolvent crystallization was then followed by employing a linear cooling profile with simultaneous addition of antisolvent with a constant mass flow rate to promote the growth of the internally generated seeds. The amount of initial antisolvent influences the characteristics of the internal seeds generated and the effect of initial amount of antisolvent on the final CSD is investigated. It was found that the introduction of a single cooling/heating cycle significantly improves the reproducibility of final CSD as well as the mean size. Overall, the study indicates that the application of internal seeding with a single cooling/heating cycle for fines dissolution is an effective technique to tailor crystal size distribution.

  11. Comparison of the heat generation of light curing units.

    Science.gov (United States)

    Bagis, Bora; Bagis, Yildirim; Ertas, Ertan; Ustaomer, Seda

    2008-02-01

    The aim of this study was to evaluate the heat generation of three different types of light curing units. Temperature increases were recorded from a distance of 1 mm from a thermocouple to the tip of three different types of light curing units including one quartz-tungsten halogen (QTH), one plasma arc (PAC), and one light emitting diode (LED) unit. An experimental model was designed to fix the 1 mm distance between the tip of the light curing units and the thermocouple wire. Temperature changes were recorded in 10 second intervals up to 40 seconds. (10, 20, 30, and 40 seconds). Temperature measurements were repeated three times for every light curing unit after a one hour standby period. Statistical analysis of the results was performed using the analysis of variance (ANOVA) and the Bonferroni Test. The highest temperature rises (54.4+/-1.65 degrees C) occurred during activation of a PAC light curing unit for every test period (p<.05). The least temperature increase (11.8+/-1.3 degrees C) occurred with a LED curing unit for each tested period except for the measurement of the temperature rise using the QTH curing unit at the tenth second interval (p<.05). These results indicate the choice of light activation unit and curing time is important when polymerizing light activated resin based restorations to avoid any thermal damage to the pulp.

  12. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    Science.gov (United States)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  13. Self-Sustained Flameless Heat Generator Based on Catalytic Oxidation of Methane or Propane-Butane Mixture for Various Object Heating Including Field Heating

    Directory of Open Access Journals (Sweden)

    Strizhak, P.Ye.

    2016-09-01

    Full Text Available An effective catalyst based on ceramic block support with honeycomb structure made of synthetic cordierite with low coefficient of temperature linear expansion has been developed. Flameless heat generator based on oxidation of methane or propane-butane mixture has been designed. Laboratory and bench testing revealed that the effectiveness of the generators is identical to foreign analogues. The production of self-sustained flameless heat catalytic generators and the catalysts have been adjusted.

  14. Geographies of generation: age restrictions in international adoption.

    Science.gov (United States)

    Leinaweaver, Jessaca

    International adoption relocates minors, and only minors, from one country to another. The centrality of age to adoptive migration may prevent us from seeing the significance of generation: the prospective parent's age is also examined and evaluated for its relationship to the child's age and what this relationship will mean for the creation of a family. Because international adoption results in children crossing borders to enter new kinship formations, the assumptions under which it operate require closer geographical analysis. Generation, or the age range that separates dependents and their caretakers, is a significant but unstated motivator of international adoption policies and practices. This article argues that a normative and biologised sense of intergenerational difference is embedded in international adoption. The presence of generational ideology in national laws and international norms regarding international adoption demonstrate a broader sense in which policies situate more privileged families as acceptable and others as inadequate. I draw material for this analysis from both legal documents and documents which aim to provide interpretation of those laws, with reference to international adoptions from Peru.

  15. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2015-01-01

    District heating and cooling are here to stay, but the district heating technology has to change. It has to adjust to the requirements of a future smart energy development. Therefore, research is essential, but not only research in university laboratories. Demonstration projects and innovation an...... and collaboration between industry and universities are important, not only in terms of technical improvements, but also institutional and organizational aspects.......District heating and cooling are here to stay, but the district heating technology has to change. It has to adjust to the requirements of a future smart energy development. Therefore, research is essential, but not only research in university laboratories. Demonstration projects and innovation...

  16. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  17. Effect of variable thermal conductivity on entropy generation in a plate with internal energy generation

    Directory of Open Access Journals (Sweden)

    Favas T. K.

    2018-01-01

    Full Text Available The current numerical investigation aims at analyzing the effect of variable thermal conductivity on local and global entropy generation rates in an energy generating plate dissipating heat by conjugate conduction-forced convection heat transfer. In order to fulfill this objective, the physical model of the plate dissipating heat into surrounding coolant is transformed into a mathematical model governing the temperature field in the plate as well as flow and thermal fields in the fluid. The resulting mathematical model, being a set of coupled and non linear partial differential equations, is solved by adopting stream function-vorticity formulation and by employing Alternating direction implicit scheme. Keeping Prandtl number of the fluid, temperature of the free stream coolant and maximum permissible plate temperature as fixed, numerical predictions are obtained for wide range of values of aspect ratio, conduction-convection parameter, energy generation parameter and flow Reynolds number. It is concluded that unrealistic constant thermal conductivity assumption leads to underestimation of entropy generation rates. It is also found that an increase in energy generation parameter results in significant increase in underestimation of global entropy generation rate.

  18. Effects of Fluid Directions on Heat Exchange in Thermoelectric Generators

    DEFF Research Database (Denmark)

    Suzuki, Ryosuke; Sasaki, Yuto; Fujisaka, Takeyuki

    2012-01-01

    Thermal fluids can transport heat to the large surface of a thermoelectric (TE) panel from hot and/or cold sources. The TE power thus obtainable was precisely evaluated using numerical calculations based on fluid dynamics and heat transfer. The commercial software FLUENT was coupled with a TE model...

  19. Sealing and monitoring a container containing heat generating materials

    International Nuclear Information System (INIS)

    Bourrelly, P.; Monier, J.; Parin, H.; Sanson, C.; Schoepp, R.

    1986-01-01

    The sealing system includes one or several seals on the container wall. These seals comprise resistors electrically connected and thermally insulated for monitoring heat transfer between the seal and the container or the environment by producing an electric signal to a remote monitor. Opening the container changes the heat flux which is detected. Application is made for monitoring radioactive waste containers [fr

  20. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  1. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. Thermoelectric power generators that convert heat directly into electricity can offer a very promising way for waste heat recovery. However, the requirements for this task place in the materia...

  2. From Modules to a Generator: An Integrated Heat Exchanger Concept for Car Applications of a Thermoelectric Generator

    Science.gov (United States)

    Bosch, Henry

    2016-03-01

    A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.

  3. Performance of ammonia–water based cycles for power generation from low enthalpy heat sources

    International Nuclear Information System (INIS)

    Mergner, Hanna; Weimer, Thomas

    2015-01-01

    Cost efficient power generation from low temperature heat sources requires an optimal usage of the available heat. In addition to the ORC (Organic Rankine Cycles), cycles with ammonia and water as working fluid show promising results regarding efficiency. Due to their non-isothermal phase change, mixtures can adapt well to a liquid heat source temperature profile and reduce the exergetic losses. In this analysis thermodynamic calculations on the layouts of two existing ammonia–water cycles are compared: a geothermal power plant based on a Siemens’ patent and a modified lab plant based on a patent invented by Kalina (KCS-34). The difference between the two cycles is the position of the internal heat recovery. Cycle simulations were carried out at defined boundary conditions in order to identify optimal operation parameters. For the selected heat source of 393.15 K (hot water) the ammonia mass fraction between 80% and 90% results in the best performance in both configurations. In general, the layout of Siemens achieves a slightly better efficiency compared to the KCS-34. Compared to an ORC using R245fa as working fluid, the exergetic efficiency can be increased by the ammonia/water based cycles by approximately 25%. - Highlights: • Two NH 3 /H 2 O based cycles based on existing plants are analyzed and compared. • A simple KCS-34 focuses on a high enthalpy difference at the turbine. • The Kalina cycle of a Siemens patent KC SG1 runs on a high vapor mass flow. • The layout of the KC SG1 shows slightly better results compared to the KCS-34. • NH 3 /H 2 O cycles show an efficiency increase compared to a regular ORC with R245fa

  4. Evaluating Thermoelectric Power Generation Device Performance Using a Rectangular Microchannel Heat Sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2011-01-01

    In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 x 10-4 m and that of t......In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 x 10-4 m...... and thermal parameters are considered for both laminar and turbulent regimes in the channels. Furthermore, using the temperature difference through each TEG, the system efficiency is calculated. The results show that the microchannel heat sink gives a higher pressure drop, but the heat flow across the TEG...

  5. Zirconium diboride nanofiber generation via microwave arc heating.

    Science.gov (United States)

    Baldridge, Tyson; Gupta, Mool C

    2008-07-09

    Ultrahigh temperature zirconium diboride nanofibers were produced by microwave arc heating using micron-sized raw powder. While microwave heating the ZrB(2) powder, the development of local arcing led to rapid heating and solidification of the samples, along with the creation of nanofibers. The morphology of these high aspect ratio nanofibers was characterized using scanning electron microscopy and transmission electron microscopy. Energy dispersive x-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction showed the composition to contain zirconium, boron, nitrogen, aluminum and oxygen as well as the crystallographic orientation. ZrB(2) nanofiber applications include aerospace and other harsh environments.

  6. Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer

    International Nuclear Information System (INIS)

    Gould, C.A.; Shammas, N.Y.A.; Grainger, S.; Taylor, I.

    2011-01-01

    Thermoelectric cooling and micro-power generation from waste heat within a standard desktop computer has been demonstrated. A thermoelectric test system has been designed and constructed, with typical test results presented for thermoelectric cooling and micro-power generation when the computer is executing a number of different applications. A thermoelectric module, operating as a heat pump, can lower the operating temperature of the computer's microprocessor and graphics processor to temperatures below ambient conditions. A small amount of electrical power, typically in the micro-watt or milli-watt range, can be generated by a thermoelectric module attached to the outside of the computer's standard heat sink assembly, when a secondary heat sink is attached to the other side of the thermoelectric module. Maximum electrical power can be generated by the thermoelectric module when a water cooled heat sink is used as the secondary heat sink, as this produces the greatest temperature difference between both sides of the module.

  7. Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

    Science.gov (United States)

    Russell, Louis M.; Thurman, Douglas R.; Poinsatte, Philip E.; Hippensteele, Steven A.

    1998-01-01

    An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45,000, 335,000, and 726,000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45,000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335,000 and 726,000 compared well with the more standard method of measuring pressures by using discrete holes.

  8. Transport phenomena in a steam-methanol reforming microreactor with internal heating

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong-Se; Lee, Ming-Tsang; Greif, Ralph; Grigoropoulos, Costas P. [Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740 (United States)

    2009-01-15

    An experimental and theoretical study of steam reforming of methanol is carried out in a packed-bed microreactor with internal heating. Experimental results of the methanol conversion and carbon monoxide concentration in an internally heated reformer are compared with those of an externally heated reformer. Higher methanol conversion and carbon monoxide concentration are obtained for internal heating at the same conditions. The results show the conversion efficiency of methanol and CO concentration increase with increasing internal heating rate over the range of operating conditions. A correlation for the conversion efficiency of methanol has been obtained as a function of the internal heating rate and a dimensionless time parameter which represents the ratio of the characteristic time of the methanol flow to the time for chemical reaction. (author)

  9. An analytical model for the heat generation in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2004-01-01

    The objective of this work is to establish an analytical model for heat generation by friction stir welding (FSW), based on different assumptions of the contact condition between the rotating tool surface and the weld piece. The material flow and heat generation are characterized by the contact...

  10. Estimation of shutdown heat generation rates in GHARR-1 due to ...

    African Journals Online (AJOL)

    Fission products decay power and residual fission power generated after shutdown of Ghana Research Reactor-1 (GHARR-1) by reactivity insertion accident were estimated by solution of the decay and residual heat equations. A Matlab program code was developed to simulate the heat generation rates by fission product ...

  11. Experimental observation of current generation by asymmetrical heating of ions in a tokamak plasma

    International Nuclear Information System (INIS)

    Gahl, J.; Ishihara, O.; Wong, K.L.; Kristiansen, M.; Hagler, M.

    1986-01-01

    The first experimental observation of current generation by asymmetrical heating of ions is reported. Ions were asymmetrically heated by a unidirectional fast Alfven wave launched by a slow wave antenna inside a tokamak. Current generation was detected by measuring the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column

  12. Is carbon / CO2 taxes implementation timely for electricity and heat generation in Romania ?

    International Nuclear Information System (INIS)

    Tutuianu, O.; Fulger, E.D.; Vieru, A.; Feher, M.

    1996-01-01

    Lately, carbon / CO 2 taxes are very much discussed in Europe and in many countries of the world as economic and financial instruments for reducing the CO 2 emissions. Some countries have already introduced such taxes while in other countries or international organisations they are under study, especially concerning the moment, the way of implementation and the amount of taxes. CO 2 emissions in Romania, in absolute and specific values (per capita, per kWh equivalent) are lower than in other countries. This can be justified by the low level of electricity and heat output owing to the recent economic restructuring and by the energy sector characteristics: natural gas major contribution, hydroelectric power, cogeneration and nuclear power implementation. We can also mention, as a positive factor, the CO 2 absorption potential of the Romanian forests. Carbon / CO 2 taxes introduction has severe economic and social impact, such as: domestic coal extraction blockage, increase in the electricity and heat prices, decrease of Romanian export products competitiveness and reduction of population standard of living. Therefore, the authors are considering that carbon / CO 2 taxes introduction is not timely by the year 2000 for the Romanian electricity and heat generation. (author). 3 figs. 2 tabs. 10 refs

  13. Thermal power generation during heat cycle near room temperature

    Science.gov (United States)

    Shibata, Takayuki; Fukuzumi, Yuya; Kobayashi, Wataru; Moritomo, Yutaka

    2018-01-01

    We demonstrate that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogue (PBA) with different electrochemical thermoelectric coefficients (S EC ≡ ∂V/∂T V and T are the redox potential and temperature, respectively) produces electrical energy during heat cycles. The device produces an electrical energy of 2.3 meV/PBA per heat cycle between 295 K (= T L) and 323 K (= T H). The ideal thermal efficiency (η = 1.0%), which is evaluated using the heat capacity (C = 4.16 meV/K) of ideal Na2Co[Fe(CN)6], reaches 11% of the Carnot efficiency (ηth = 8.7%). Our SIB-type thermocell is a promising thermoelectric device that harvests waste heat near room temperature.

  14. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat

    OpenAIRE

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the tran...

  15. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  16. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    Science.gov (United States)

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  17. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.

  18. A Critical Heat Generation for Safe Nuclear Fuels after a LOCA

    Directory of Open Access Journals (Sweden)

    Jae-Yong Kim

    2014-01-01

    Full Text Available This study applies a thermo-elasto-plastic-creep finite element procedure to the analysis of an accidental behavior of nuclear fuel as well as normal behavior. The result will be used as basic data for the robust design of nuclear power plant and fuels. We extended the range of mechanical strain from small or medium to large adopting the Hencky logarithmic strain measure in addition to the Green-Lagrange strain and Almansi strain measures, for the possible large strain situation in accidental environments. We found that there is a critical heat generation after LOCA without ECCS (event category 5, under which the cladding of fuel sustains the internal pressure and temperature for the time being for the rescue of the power plant. With the heat generation above the critical value caused by malfunctioning of the control rods, the stiffness of cladding becomes zero due to the softening by high temperature. The weak position of cladding along the length continuously bulges radially to burst and to discharge radioactive substances. This kind of cases should be avoid by any means.

  19. Critical heat flux and transition boiling characteristics for a sodium-heated steam generator tube for LMFBR applications

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, S.; Holmes, D.H.

    1977-04-01

    An experimental program was conducted to characterize critical heat flux (CHF) in a sodium-heated steam generator tube model at a proposed PLBR steam generator design pressure of 7.2 MPa. Water was circulated vertically upward in the tube and the heating sodium was flowing counter-current downward. The experimental ranges were: mass flux, 110 to 1490 kg/s.m/sup 2/ (0.08 to 1.10 10/sup 6/ lbm/h.ft/sup 2/); critical heat flux, 0.16 to 1.86 MW/m/sup 2/ (0.05 to 0.59 10/sup 6/ Btu/h.ft/sup 2/); and critical quality, 0.48 to 1.0. The CHF phenomenon for the experimental conditions is determined to be dryout as opposed to departure from nucleate boiling (DNB). The data are divided into high- and low-mass flux regions.

  20. Future aspects for liquid metal heated steam generators

    International Nuclear Information System (INIS)

    Jansing, W.; Ratzel, W.; Vinzens, K.

    1975-01-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  1. Heat generation in lithium/thionyl chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, H.F.

    1980-01-01

    The flow of heat from lithium/thionyl chloride batteries has been measured in two conduction calorimeters. Several types of cells have been studied, both at rest and during low- and high-rate discharge. In contrast with other reports in the literature, no conditions were found under which the discharge of lithium/thionyl chloride batteries was endothermic. Results at low currents, which are described in terms of the thermodynamic formalism developed previously, are consistent with measurements of the temperature dependence of the open-circuit potential. Cells discharged at higher currents produced more heat flux than predicted by the simple thermodynamic treatment. The current and time variation of the additional heat is consistent with a current-dependent corrosion of the lithium electrode. 14 refs.

  2. Self-generated stochastic heating in an rf discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.

    1992-01-01

    We have studied the nonlinear dynamics of stochastic heating arising from the reflection of electrons from moving sheaths as an underlying mechanism for electron power deposition in r.f. discharges. We examined the dynamics of the electron collision with the sheaths in the regime in which the sheath motion is small compared to the average electron velocity to de rive a mop that describes the electron motion. We have shown that for high frequency, ({omega}/2{pi}{approx gt}50MHz), the electrons will strike the moving wall with random phase. At low pressures this stochasticity is an intrinsic property of the dynamics. The stochastic electron heating leads to a power law electron distribution. The stochastic heating was determined in both the slow sheath and fast sheath velocity regimes assuming an incident Maxwellian distribution.

  3. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems

    International Nuclear Information System (INIS)

    Sornek, Krzysztof; Filipowicz, Mariusz; Rzepka, Kamila

    2016-01-01

    Highlights: • Application of thermoelectric generators in the stove-fireplace with accumulation. • Construction of the thermoelectric generator is limited by the heat accumulation. • Variants of the heat exchanger’s construction are discussed. • The control method is related on velocity of flue gas and water cooling. • The power limit of 30 W for self-sufficient operation is sufficient. - Abstract: A significant part of the world’s population (about 40%) cooks their meals and provides heating for their homes using wood-burning heating devices. Due to the relatively low cost of fuel and their aesthetic design, solid fuel stoves capable of heat accumulation are convenient and common. The use of dedicated small-scale power generators provides also additional benefits. This paper presents the results of a study conducted to verify the possibility of generating power using stove-fireplaces with heat accumulation systems. In such units, the temperature of the flue gas should be kept at a certain level for the purposes of storing heat, which results from certain limitations of the thermoelectric generators. To verify the possibility of applying thermoelectric modules in such heating devices, a dedicated system with thermoelectric generators was selected from among various microcogeneration systems and implemented. Three types of heat exchangers were studied and the most efficient unit was selected for further testing. Two types of generators, with maximum operating temperatures of 320 and 175 °C, were compared. Subsequently, the characteristics of the latter were determined. The conducted tests allowed to determine the performance and the total efficiency of the generators that were used. It has been demonstrated that the maximum power of the generator would not exceed ca. 30 W e and that there is no economic justification for such a device. However, providing a self-powered and self-sufficient operation of stove-fireplaces with heat accumulation systems

  4. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine...

  5. Determination of Factors Related to Students' Understandings of Heat, Temperature and Internal Energy Concepts

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2018-01-01

    The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…

  6. Milliwatt generator heat source. Progress report, July-December 1983

    International Nuclear Information System (INIS)

    Mershad, E.A.

    1984-01-01

    All LANL hardware requirements were met during the reporting period as scheduled. Lot 12 of T-111 alloy sheet and Lot 8 of yttrium platelets were procured to meet future WR production needs. The GEND IP schedule requirements for 49 fueled MC2893 heat sources were met. Pressure burst surveillance activities continued to be conducted in accordance with SNLA document BB328965. Final results of evaluations of two pressure-burst capsules were normal, suggesting that the corresponding heat sources should be in good condition. The hardware production period ended with an overall hardware process yield of 98.4%

  7. Milliwatt generator heat source. Progress report, July-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Mershad, E.A.

    1984-03-02

    All LANL hardware requirements were met during the reporting period as scheduled. Lot 12 of T-111 alloy sheet and Lot 8 of yttrium platelets were procured to meet future WR production needs. The GEND IP schedule requirements for 49 fueled MC2893 heat sources were met. Pressure burst surveillance activities continued to be conducted in accordance with SNLA document BB328965. Final results of evaluations of two pressure-burst capsules were normal, suggesting that the corresponding heat sources should be in good condition. The hardware production period ended with an overall hardware process yield of 98.4%.

  8. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump

    International Nuclear Information System (INIS)

    Xue, Bing; Meng, Xiangrui; Wei, Xinli; Nakaso, Koichi; Fukai, Jun

    2015-01-01

    A novel zeolite–water adsorption heat pump system based on a direct-contact heat exchange method to generate steam from low-grade waste gas and water has been proposed and examined experimentally. Superheated steam (200 °C, 0.1 MPa) is generated from hot water (70–80 °C) and dry air (100–130 °C). A dynamic model for steam generation process is developed to describe local mass and heat transfer. This model features a three-phase calculation and a moving water–gas interface. The calculations are carried out in the zeolite–water and zeolite–gas regions. Model outputs are compared with experimental results for validation. The thermal response inside the reactor and mass of steam generated is well predicted. Numerical results show that preheat process with low-temperature steam is an effective method to achieve local equilibrium quickly, thus generation process is enhanced by prolonging the time and increasing mass of the generated steam. Besides, high-pressure steam generation up to 0.5 MPa is possible from the validated dynamic model. Future work could be emphasized on enhancing high-pressure steam generation with preheat process or mass recovery operation

  9. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  10. Study of the relation between evaluation of strain distribution on superconducting coil and mechanical heat generation

    Science.gov (United States)

    Seino, Hiroshi; Kurihara, Minoru; Herai, Toshiki; Suzuki, Eiji

    2002-10-01

    In the superconducting Maglev system, on-board superconducting magnets (SCMs) are vibrated at various frequencies according to the train speed by the electromagnetic disturbance which is caused when the train passes over ground coils. Then a mechanical loss is generated inside the inner vessel in the SCM. This phenomenon increases the heat load on the cryogenic equipment in the SCM. It has been surmised that the mechanical heat inside the inner vessel is generated by the frictional heat caused by the relative microscopic slips between fasteners and superconducting coil (SC coil). Nevertheless, heat generation mechanisms inside the inner vessel have not been studied sufficiently. In this study, we suggest a hypothesis that the frictional heat generated by the relative microscopic slips between fasteners and a SC coil will be indicated if the calculated strain distribution on the SC coil is evaluated. The results of this study supported this hypothesis.

  11. Heat generation rates in lithium thionyl chloride cells

    Science.gov (United States)

    Frank, H.

    1982-03-01

    An empirical equation that is useful for good first approximation in thermal modeling is presented. Indications and measurements of electrochemical heat effects were investigated. The particular cells of interest are of the D size, with spiral wound configuration and were instrumented with a thermocouple. It is found that cathode limited cells can explode on reversal at moderate temperatures.

  12. Outlook of nuclear power generation and international situation

    International Nuclear Information System (INIS)

    Eklund, S.

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, the Nuclear energy has larger economic advantages over the petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonble. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contribution largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial. (Mori, K.)

  13. International project GT-MHR - New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Vasyaev, A.; Kodochigov, N.; Kuzavkov, N.; Kuznetsov, L.

    2001-01-01

    Gas turbine-modular helium reactor (GT-MHR) is the reactor of new generation, which satisfies the requirements of the progressing large-scale nuclear power engineering. The activities in GT-MHR Project started in 1995. In 1997 the Conceptual Design was developed under four-side Agreement (MINATOM, General Atomics, FRAMATOME, Fuji Electric); it has passed through the internal and international reviews, has been approved and recommended for further development as one of new trends in creation of new generation plants. Starting from 1999, the activities in the development of the Preliminary Design of the plant were deployed under the Agreement between the Government of the United States of America and the Government of the Russian Federation on Scientific and Technical Cooperation in the Management of Plutonium That Has Been Withdrawn From Nuclear Military Programs dated July 24, 1998. The activities are established under the Contract between MINATOM and OKBM Russia, and under the General Agreement between Department of Energy (DOE), USA and OKBM. The GT-MHR Project is included into 'Development Strategy of Russian Nuclear Power in the first Half of the XXI-st Century' providing for 'the participation in an international project on the development and construction of GT-MHR nuclear power plant till year 2010 and 'operation of GT-MHR prototype unit and creation of fuel fabrication facility (within framework of International Project) till year 2030'. (author)

  14. Heat Driven Acoustic Power Source Coupled to an Electric Generator

    OpenAIRE

    Hofler, Thomas J.

    1999-01-01

    Patent The electricity generating engine has modest efficiency, but may be attractive in remote applications where highreliability or low cost or low environmental noise or solar powering is important. The generator is likely to be most attractive in capacities of a few kW to below 100 W where a tiny engine would be impractical using other technologies.

  15. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers

    International Nuclear Information System (INIS)

    Araiz, M.; Martínez, A.; Astrain, D.; Aranguren, P.

    2017-01-01

    Highlights: • Thermosyphon with phase change heat exchanger computational model. • Construction and experimentation of a prototype. • ±9% of maximum deviation from experimental values of the main outputs. • Influence of the auxiliary equipment on the net power generation. - Abstract: An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (because fans or pumps are not required); and the fact that these systems are wickless. A computational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the computational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [−8.09; 7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.

  16. Heat Generation Effects on U-Mo/Al through ABAQUS FEM Simulation

    International Nuclear Information System (INIS)

    Cho, Taewon; Jeong, Gwan Yoon; Lee, Cheol Min; Sohn Dongseong

    2014-01-01

    U-Mo/Al dispersion fuels have been considered a most promising candidate for a replacement of Highly Enriched Uranium (HEU) fuel in many research reactors. Coulson developed a FEM model which show the fuel meat realistically and compared the thermal conductivity results of two and three dimensional model. Williams also developed a FEM model which are different from the former in that it use regularly meshed unit cells. He showed a heat generation effects through FEM simulation and the effective thermal conductivity of the fuel with heat generated in the fuel particles is a little lower than that of the fuel with no heat generated. In the current work, the heat generation effects are analyzed and discussed in a wider range of volume fraction with more realistic models by using ABAQUS finite element package. The FEM model is used to determine the effective thermal conductivity of U-Mo/Al and to simulate the heat generation effects in the study. This model reflected the microscopic morphology of the fuel very well by making random distribution particles although the particle shape is considered as sphere. All simulation results show the heat generation effects although the effects are small when the volume fraction of fuels are high. When the particles are surrounded with interaction layers, the heat transfer from the particle to matrix is disturbed by interaction layers due to the low thermal conductivity of interaction layers. However this effects decreases when the sum of the volume fraction of fuels and interaction layers exceeds 40-50 vol% because a great portion of the heat must pass through fuels and interaction layers although the heat is applied on the surface. Therefore particle size and initial particle volume fractions will be the important factors for the heat generation effects when interaction layers grow during irradiations

  17. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  18. Generation 4 International Forum (GIF). 2015 Annual Report

    International Nuclear Information System (INIS)

    2016-01-01

    This ninth edition of the Generation IV International Forum (GIF) Annual Report highlights the main achievements of the Forum in 2015. On 26 February 2015, the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems was extended for another ten years, thereby paving the way for continued collaboration among participating countries. GIF organised the 3. Symposium in Makuhari Messe, Japan in May 2015 to present progress made in the development of the six generation IV systems: the gas-cooled fast reactor, the sodium-cooled fast reactor, the supercritical-water-cooled reactor, the very-high-temperature reactor, the lead-cooled fast reactor and the molten salt reactor. The report gives a detailed description of progress made in the 11 existing project arrangements. It also describes the development of safety design criteria and guidelines for the sodium-cooled fast reactor, in addition to the outcome of GIF engagement with regulators on safety approaches for generation IV systems. (authors)

  19. Work-Related Attitudes of Czech Generation Z: International Comparison

    Directory of Open Access Journals (Sweden)

    Jaroslava Kubátová,

    2016-12-01

    Full Text Available The goal of this article is to present work-related attitudes of a sample of Czech Generation Z and their comparison to the results of an international research study. Currently, there are three important trends influencing the labor market: (1 the origin and development of a ubiquitous working environment, (2 the thriving of coworking centers, and (3 Generation Z's entering the labor market. Instead of traditional jobs, the bearers of human capital tend to choose independent work in an online environment, and often work in coworking centers. Using self-determination theory, we substantiate why they thrive better this way. Based on the results of an international research project focused on work attitudes among Generation Z and the results of a replication study we carried out in the Czech Republic, we attest that members of Generation Z may prefer independent virtual work in coworking centers, too. The total amount of available human capital, the lack of which is pointed out by companies, may grow thanks to new ways of working. Companies, which can use human capital of independent workers, gain a competitive advantage.

  20. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    Science.gov (United States)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  1. IAEA Technical Meeting on Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the thermal reactors diminish. Further, the fast-fission fuel cycle in which material is recycled (a basic requirement to meet sustainability criteria) offers the flexibility needed to contribute decisively towards solving the problem of growing “spent” fuel inventories by greatly reducing the volume, the heat load and the radiotoxic inventory of high-level wastes that must be disposed of in long-term geological repositories. This is a waste management option that will play an increasingly important role in the future, and help to ensure that nuclear energy remains a sustainable long-term option in the world’s overall energy mix. In recognition of the fast reactor’s importance for the sustainability of the nuclear option, currently there is worldwide renewed interest in fast reactor technology development, as indicated, e.g., by the outcome of the Generation IV International Forum (GIF) technology review, which concluded with 3 out of 6 innovative systems to be fast reactors (gas cooled fast reactor, sodium cooled fast reactor, and heavy liquid metal cooled fast reactor), plus a potential fast core for a 4th concept, the super-critical water reactor. Currently, fast reactor construction projects are ongoing in India (PFBR) and Russian Federation (BN-800), whilst in China the first experimental fast reactor (CEFR) is in the commissioning phase. Fast reactor programs are also carried out in Europe (in particular in France), Japan, Republic of Korea and the USA. The most important challenges for fast reactors are in the areas of cost competitiveness with respect to LWRs and other energy sources, enhanced safety, non-proliferation, and public acceptance. With the exception of this latter, these translate into technology development challenges, i.e. the development of advanced reactor

  2. Numerical Study of Entropy Generation Within Thermoacoustic Heat Exchangers with Plane Fins

    Directory of Open Access Journals (Sweden)

    Antonio Piccolo

    2015-12-01

    Full Text Available In this paper a simplified two-dimensional computational model for studying the entropy generation characteristics of thermoacoustic heat exchangers with plane fins is presented. The model integrates the equations of the standard linear thermoacoustic theory into an energy balance-based numerical calculus scheme. Relevant computation results are the spatial distribution of the time-averaged temperature, heat fluxes and entropy generation rates within a channel of a parallel-plate stack and adjoining heat exchangers. For a thermoacoustic device working in the refrigeration mode, this study evidences as a target refrigeration output level can be achieved selecting simultaneously the heat exchangers fin length and fin interspacing for minimum entropy generation and that the resulting configuration is a point of maximum coefficient of performance. The proposed methodology, when extended to other configurations, could be used as a viable design tool for heat exchangers in thermoacoustic applications.

  3. Qualification of Alloy 800 for sodium heated steam generators

    International Nuclear Information System (INIS)

    Duke, J.M.; Sessions, C.E.; Ray, W.E.

    1976-01-01

    A reference specification of Alloy 800 for use in LMFBR steam generators is defined considering waterside corrosion, weldability and mechanical properties. Additional mechanical test data are being generated to support ASME Code acceptance. Candidate weld filler metals were assessed for use in subsequent weld process development. Progress on resolving technical concerns related to the role of tertiary creep identified the impact of test conditions and gamma prime strengthening in determining the creep behavior of Alloy 800

  4. Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)

    Science.gov (United States)

    Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.

  5. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  6. The role of dynamo fluctuations in anomalous ion heating, mode locking, and flow generation

    International Nuclear Information System (INIS)

    Terry, P.W.; Gatto, R.; Fiksel, G.; Fitzpatrick, R.; Hegna, C.C.

    2001-01-01

    Anomalous ion heating intrinsic to magnetic fluctuation-induced electron heat transport, the locking of global modes through wall conditions, and flow generation via the magnetic Reynolds stress all derive from the global, m=1 tearing modes familiar in the RFP as the dynamo modes. These important processes are investigated analytically and numerically, yielding new insights and predictions for comparison with experiment. (author)

  7. Thermal state of ventilated containers with spent heat-generation assembly of reactor WWER-1000

    International Nuclear Information System (INIS)

    Alyokhina, S.V.; Goloshchapov, V.M.; Kostikov, A.O.

    2009-01-01

    By computer modeling the thermal state of ventilated containers of storage of the spent nuclear fuel which contain heat-generation assembly with different intensity of a thermal emission is explored. The problem is viewed in stationary three-dimensional conjugate statement taking into account activity of mechanisms of a natural convection and radiant heat exchange

  8. A thermoelectric power generating heat exchanger: Part I – Experimental realization

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Sarhadi, Ali; Pryds, Nini

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal...

  9. Development of Thermoelectric Power Generators for high temperature Waste Heat Recovery

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    By converting heat directly into electricity, thermoclectric generators (TEGs) provide a very promising solution for emerging energy saving and environmental issues. These devices could be incorporated in a variety of applications, in particular those making use of waste heat recovery. To expand ...

  10. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution in the chann...

  11. Effects of Hall current on convective heat generating fluid in slip flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.S.; Ram, P.C. (Kenyatta Univ., Nairobi (KE). Dept. of Mathematics); Stower, G.X. (Jomo Kenyatta Univ. College of Agriculture and Technology, Nairobi (KE). Dept. of Mathematics and Computer Science)

    1992-08-01

    The problem of free convection flow of a viscous heat generating rarefied gas is considered for the case when a strong magnetic field is imposed perpendicularly to the plane of flow. Analytical expressions for the velocity field and temperature are obtained, and the influence of the Hall currents m and the heat source parameter {delta} on the velocity field and temperature are discussed. (Author).

  12. Transition to chaos in a square enclosure containing internal heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Baytas, A.C. [Institute For Nuclear Energy, Istanbul (Turkey)

    1995-09-01

    A numerical investigation is performed to study the transition from steady to chaotic flow of a fluid confined in a two-dimensional square cavity. The cavity has rigid walls of constant temperature containing uniformly distributed internal heat source. Effects of the Rayleigh number of flow and heat transfer rates are studied. In addition to, same problem is solved for sinusoidally changing internal heat source to show its effect on the flow model and heat transfer of the enclosures. Details of oscillatory solutions and flow bifurcations are presented.

  13. The Role of Distributed Generation and Combined Heat and Power (CHP) Systems in Data Centers

    Science.gov (United States)

    This report reviews how distributed generation (DG) resources such as fuel cells, reciprocating engines, and gas turbines can offer powerful energy efficiency savings in data centers, particularly when configured in combined heat and power (CHP) mode.

  14. Milliwatt-generator heat source. Progress report, January-June 1983

    International Nuclear Information System (INIS)

    Mershad, E.A.

    1983-01-01

    Progress is reported in the following: heat source shipments, reimbursable orders, hardware shipments, raw material qualification/procurement, DOE audit and milliwatt generator process review, surveillance capsule evaluations, pressure burst testing, and hardware fabrication and quality

  15. Milliwatt-generator heat source. Progress report, January-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Mershad, E.A.

    1983-09-20

    Progress is reported in the following: heat source shipments, reimbursable orders, hardware shipments, raw material qualification/procurement, DOE audit and milliwatt generator process review, surveillance capsule evaluations, pressure burst testing, and hardware fabrication and quality. (MHR)

  16. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  17. Measuring the linear heat generation rate of a nuclear reactor fuel pin

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A miniature gamma thermometer is described which is capable of travelling through bores distributed in an array through a nuclear reactor core and measure the linear heat generation rate of the fuel pins. (U.K.)

  18. Internally generated natural variability of global-mean temperatures

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Raper, S.C.B.

    1990-01-01

    Quantitative frequency-domain and time-domain estimates are made of an important aspect of natural variability of global-mean temperatures, namely, passive internal variability resulting from the modulation of atmospheric variability by the ocean. The results are derived using an upwelling-diffusion, energy-balance climate model. In the frequency domain, analytical spectral results show a transition from a high-frequency region in which the response is determined by the mixed-layer heat capacity and is independent of the climate sensitivity (time scales less than around 10 years), to a low-frequency region in which the response depends only on the climate sensitivity. In the former region the spectral power is proportional to f -2 , where f is the frequency, while in the latter the power is independent of frequency. The range of validity of these results depends on the components of the climate system that are included in the model. In this case these restrict the low-frequency results to time scales less than about 1,000 years. A qualitative extrapolation is presented in an attempt to explain the observed low-frequency power spectra from deep-sea-core δ 18 O time series. The spectral results are also used to estimate the effective heat capacity of the ocean as a function of frequency. At low frequencies, this can range up to 50 times greater than the heat capacity of the mixed layer. Results in the time domain are obtained by solving the model equations numerically

  19. Increased Heat Generation in Postcardiac Arrest Patients During Targeted Temperature Management Is Associated With Better Outcomes.

    Science.gov (United States)

    Uber, Amy J; Perman, Sarah M; Cocchi, Michael N; Patel, Parth V; Ganley, Sarah E; Portmann, Jocelyn M; Donnino, Michael W; Grossestreuer, Anne V

    2018-04-03

    Assess if amount of heat generated by postcardiac arrest patients to reach target temperature (Ttarget) during targeted temperature management is associated with outcomes by serving as a proxy for thermoregulatory ability, and whether it modifies the relationship between time to Ttarget and outcomes. Retrospective cohort study. Urban tertiary-care hospital. Successfully resuscitated targeted temperature management-treated adult postarrest patients between 2008 and 2015 with serial temperature data and Ttarget less than or equal to 34°C. None. Time to Ttarget was defined as time from targeted temperature management initiation to first recorded patient temperature less than or equal to 34°C. Patient heat generation ("heat units") was calculated as inverse of average water temperature × hours between initiation and Ttarget × 100. Primary outcome was neurologic status measured by Cerebral Performance Category score; secondary outcome was survival, both at hospital discharge. Univariate analyses were performed using Wilcoxon rank-sum tests; multivariate analyses used logistic regression. Of 203 patients included, those with Cerebral Performance Category score 3-5 generated less heat before reaching Ttarget (median, 8.1 heat units [interquartile range, 3.6-21.6 heat units] vs median, 20.0 heat units [interquartile range, 9.0-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.3 hr [interquartile range, 1.5-4.0 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01) than patients with Cerebral Performance Category score 1-2. Nonsurvivors generated less heat than survivors (median, 8.1 heat units [interquartile range, 3.6-20.8 heat units] vs median, 19.0 heat units [interquartile range, 6.5-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.2 hr [interquartile range, 1.5-3.8 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01). Controlling for average water temperature between initiation and Ttarget, the

  20. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    Science.gov (United States)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  1. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    International Nuclear Information System (INIS)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan

    2012-01-01

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number

  2. Surface Modification and Heat Generation of FePt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Da-Hua Wei

    2017-02-01

    Full Text Available The chemical reduction of ferric acetylacetonate (Fe(acac3 and platinum acetylacetonate (Pt(acac2 using the polyol solvent of phenyl ether as an agent as well as an effective surfactant has successfully yielded monodispersive FePt nanoparticles (NPs with a hydrophobic ligand and a size of approximately 3.8 nm. The present FePt NPs synthesized using oleic acid and oleylamine as the stabilizers under identical conditions were achieved with a simple method. The surface modification of FePt NPs by using mercaptoacetic acid (thiol as a phase transfer reagent through ligand exchange turned the NPs hydrophilic, and the FePt NPs were water-dispersible. The hydrophilic NPs indicated slight agglomeration which was observed by transmission electron microscopy images. The thiol functional group bond to the FePt atoms of the surface was confirmed by Fourier transform infrared spectroscopy (FTIR spectra. The water-dispersible FePt NPs employed as a heating agent could reach the requirement of biocompatibility and produce a sufficient heat response of 45 °C for magnetically induced hyperthermia in tumor treatment fields.

  3. Thermal modeling of a novel thermosyphonic waste heat absorption system for internal combustion engines

    International Nuclear Information System (INIS)

    Nwosu, Paul Nwachukwu; Nuutinen, Mika; Larmi, Martti

    2014-01-01

    This paper investigates a thermal system that absorbs waste heat from an internal combustion (IC) engine in order to raise the temperature of a working fluid to a saturated state using thermosyphonic flow, non-intrusive of the engine operations. The absorbed heat is rejected to an enclosed space, suitable for in-transit drying. The thermal system comprises a cross-flow heat exchanger connected to a radiator which preheats the working fluid from an insulated (storage) tank. The preheated fluid flows through a radiant heat absorber which absorbs radiant heat from the exhaust manifold. To ensure that the system efficiently performs, a temperature differential is maintained by the heated space while the fluid is cyclically delivered to the tank. The system’s operations are described using a novel flow cycle, and the results indicate a significant heat recovery potential. - Highlights: • This paper investigates a thermal system that absorbs waste heat from an internal combustion (IC) engine. • The absorbed heat is used to raise the temperature of a working fluid employing thermosyphonic flow. • The preheated fluid flows through a radiant heat absorber which absorbs radiant heat from the exhaust manifold. • To ensure that the system efficiently performs, a temperature differential is maintained by a heated space. • The system's operations are described using a novel flow cycle

  4. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  5. 238PuO2 fines generation in radioisotopic heat sources

    International Nuclear Information System (INIS)

    Teaney, P.E.

    1983-01-01

    Fuel aging studies were performed on the fuel form (plutonium-238 dioxide and yttrium) used in the Milliwatt Generator Radioisotopic Heat Source to determine the possibility of fuel degradation and of the resultant generation of respirable fines. In addition to long-term thermal aging of the fuel, evaluations included the effects of thermal ramping of the aged fuel to 1000 0 C and of impacting thermally hot (450 0 C) heat sources at 150 m/sec after thermal aging

  6. /sup 238/PuO/sub 2/ fines generation in radioisotopic heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Teaney, P.E.

    1983-06-23

    Fuel aging studies were performed on the fuel form (plutonium-238 dioxide and yttrium) used in the Milliwatt Generator Radioisotopic Heat Source to determine the possibility of fuel degradation and of the resultant generation of respirable fines. In addition to long-term thermal aging of the fuel, evaluations included the effects of thermal ramping of the aged fuel to 1000/sup 0/C and of impacting thermally hot (450/sup 0/C) heat sources at 150 m/sec after thermal aging.

  7. Dryout in sodium-heated helically-coiled steam generator tubes

    International Nuclear Information System (INIS)

    Tomita, Y.; Kosugi, T.; Kubota, J.; Nakajima, K.; Tsuchiya, T.

    1984-01-01

    Experimental research on the dryout phenomenon in sodium heated, helically coiled steam generator tubes was carried out. The fluctuation of the tube wall temperature caused by dryout was measured with thermocouples installed in the center of the tube wall. Empirical correlations of dryout quality were developed as functions of critical heat flux, water mass velocity and saturation pressure. These correlations confirmed that the design criterion of the MONJU steam generator was reasonable. (author)

  8. Steam generator blowdown heat exchangers degradations operational experience on EDF French NPP fleet

    International Nuclear Information System (INIS)

    Praud, M.; Doyen, F.; Wintergest, M.; Jourdain, W.; Roussillon, M.; Zidane, A.; Mayos, M.

    2015-01-01

    The main function of the Steam Generator Blowdown System (SGBS) is to purify the secondary fluid from all kinds of pollutions: corrosion products from the secondary system, consequences of raw water pollutions through condenser's leakage, potential radiochemical pollutions resulting from Primary-to-Secondary leaks. The topic of this paper is to present the main SGBS dysfunctions linked to the degradation of the tubular heat exchangers, which sometimes can lead to integrity failure, through corrosion phenomenon. The degradation mechanisms have been characterized by various visual inspections and destructive examinations performed on pulled tubes and bundles. It appears that SGBS tubes suffer two main forms of corrosion. First, for the non-regenerative heat exchangers, where external surface of tubes is exposed to intermediate fluid, alkaline corrosion under tube sheet or shell-side baffles may occur. Caustic attack results from Na 3 PO 4 decomposition by thermal or chemical process. Secondly, mainly for regenerative heat exchangers, pitting and under-deposits corrosion linked to lay-up conditions during outages. This kind of attack is the root cause of a potential 'domino effect': a steam jet from the leaking tube can induce mechanical and/or erosion on many tubes located in its vicinity. Concerning the external degradation by caustic corrosion, only design modifications and strong monitoring of the raw water inlet may able to limit the occurrence of tube perforation. The lay-up guidelines should be carefully followed to mitigate internal corrosion: a controlled atmosphere (limited humidity) and cleanliness of the tube (avoiding deposits formation on the bottom line) seem to be the main parameters

  9. Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat

    Science.gov (United States)

    Singh, Baljit; Baharin, Nuraida `Aadilia; Remeli, Muhammad Fairuz; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    Salinity gradient solar ponds act as an integrated thermal solar energy collector and storage system. The temperature difference between the upper convective zone and the lower convective zone of a salinity gradient solar pond can be in the range of 40-60°C. The temperature at the bottom of the pond can reach up to 90°C. Low-grade heat (solar ponds is currently converted into electricity by organic Rankine cycle engines. Thermoelectric generators can operate at very low temperature differences and can be a good candidate to replace organic Rankine cycle engines for power generation from salinity gradient solar ponds. The temperature difference in a solar pond can be used to power thermoelectric generators for electricity production. This paper presents an experimental investigation of a thermoelectric generators heat exchanger system designed to be powered by the hot water from the lower convective zone of a solar pond, and cold water from the upper convective zone of a solar pond. The results obtained have indicated significant prospects of such a system to generate power from low-grade heat for remote area power supply systems.

  10. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  11. Heat exchanger tubing materials for CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Taylor, G.F.

    1977-07-01

    The performance of steam generator tubing (nickel-chromium-iron alloy in NPD and nickel-copper alloy in Douglas Point and Pickering generating stations) has been outstanding and no corrosion-induced failures have occurred. The primary coolant will be allowed to boil in the 600 MW (electrical) CANDU-PHW reactors. An iron-nickel-chromium alloy has been selected for the steam generator tubing because it will result in lower radiation fields than the alloys used before. It is also more resistant than nickel-chromium-iron alloy to stress corrosion cracking in the high purity water of the primary circuit, an unlikely but conceivable hazard associated with higher operating temperatures. Austenitic alloy and ferritic-austenitic stainless steel tubing have been selected for the moderator coolers in CANDU reactors being designed and under construction. These materials will reduce the radiation fields around the moderator circuit while retaining the good resistance to corrosion in service water that has characterized the copper-nickel alloys now in use. Brass and bronze tubes in feedwater heaters and condensers have given satisfactory service but do, however, complicate corrosion control in the steam cycle and, to reduce the transport of corrosion products from the feedtrain to the steam generator, stainless steel is preferred for feedwater heaters and stainlss steel or titanium for condensers. (author)

  12. Review on Korea Participation of Generation IV International Forum (GIF)

    International Nuclear Information System (INIS)

    Lee, Jewhan; Jeong, Ji-Young; Hahn, Dohee

    2015-01-01

    Generation IV International Forum (GIF) originates from US proposal of an initiative in 2000. The vision was to leapfrog LWR technology and collaborate with international partners to share R and D on advanced nuclear systems. Nine countries and EU joined the initiative and Gen IV concept was defined via technology goals and legal framework. Two years study with more than 100 experts worldwide has evaluated nearly 100 reactor designs and down selected six most promising concepts. In 2005, the first signatures on Framework Agreement were collected and the first research projects were defined in 2006. Korea is one of the founding members of GIF and actively participating in various areas. In 2013, TD was assigned to Korean expert and Korea is endeavoring to enhance the benefit of participation since this turning point. In this paper, pros and cons of engaging with GIF were briefly introduced and items to maximize the benefit were suggested

  13. Oscillating heat pipe cooler for heat-generating elements of electronics

    Directory of Open Access Journals (Sweden)

    Alekseik E. S.

    2013-02-01

    Full Text Available The article presents a newly-developed compact heat removal system (HRS with water used for coolant, operable in any position in space. In conditions of forced convection at output power of 120 Wt (160 Wt input power thermal resistance of the HRS is 0.1 K/Wt and the system provides the average temperature of the cooled object over the range of 58 to 60°C. Heat transfer characteristics of the HRS can be improved, as there is potential for its modification.

  14. HEAT RECOVERY FROM A NATURAL GAS POWERED INTERNAL COMBUSTION ENGINE BY CO2 TRANSCRITICAL POWER CYCLE

    Directory of Open Access Journals (Sweden)

    Mahmood Farzaneh-Gord

    2010-01-01

    Full Text Available The present work provides details of energy accounting of a natural gas powered internal combustion engine and achievable work of a utilized CO2 power cycle. Based on experimental performance analysis of a new designed IKCO (Iran Khodro Company 1.7 litre natural gas powered engine, full energy accounting of the engine were carried out on various engine speeds and loads. Further, various CO2 transcritical power cycle configurations have been appointed to take advantages of exhaust and coolant water heat lost. Based on thermodynamic analysis, the amount of recoverable work obtainable by CO2 transcritical power cycles have been calculated on various engine conditions. The results show that as much as 18 kW power could be generated by the power cycle. This would be considerable amount of power especially if compared with the engine brake power.

  15. Utilization of waste heat from electricity generating stations

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1977-06-01

    Historically the nuclear power station has been designed solely as an electricity producer. But in Canada today only 15 percent of our energy consumption is as electricity. The non-electrical needs today are supplied almost entirely by natural gas and oil. There is an incentive to see whether a nuclear station could supply energy for some of these non-electrical needs, thus freeing gas and oil for uses for which they may be more valuable and suitable, especially in transportation. A group located at the Whiteshell Nuclear Research Establishment undertook a series of studies to examine this problem. These studies were done in sufficient depth to provide technological and economic answers, and as a result several reports have been published on various topics. In this report, the findings from these studies are drawn together in an assessment of the potential in Canada for using waste heat. (author)

  16. Fluid induced structural vibrations in steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Catton, I.; Adinolfi, P.; Alquaddoomi, O.

    2003-01-01

    Fluid-elastic instability (FEI) in tube bundle heat exchangers was studied experimentally. The motion of an array of 15 stainless steel vibrating tubes (Φ 25.4mm) in water cross-flow, suspended using stainless steel piano wire has been recorded with a CCD camera. The individual motion and relative motion of the tubes are reported and can be used for computational model validation. The relative displacement of the tubes allows identification of the most potentially damaging patterns of tube bundle vibration. A critical reduced velocity may be determined by specification of an allowable limit on tube motion amplitude. Measurements were made for various tube array configurations, tube natural frequencies and flow conditions. (author)

  17. International heat pump status and policy review 1993-1996. Part 2. National Position Papers

    International Nuclear Information System (INIS)

    Breembroek, G.; Lazaro, F.

    1999-07-01

    Four years after the publication of the International heat pump status and policy review, the International Energy Agency (IEA) Heat Pump Centre set out to compile an update of this study. The update reviews developments in the years 1993-96 and provides an outlook on future developments. Where available it includes data on 1997 as well. In 1997, roughly 90 million heat pumps were in operation worldwide (55 million in 1992). The main objective of the update of the International heat pump status and policy review is to provide an assessment of basic factors affecting heat pumps, policy measures regarding heat pumps, the status of various heat pump technologies and the current and expected penetration of heat pumps in all marker sectors. The analysis is based on a survey of the heat pump situation in 18 countries: Austria, Canada, China, Denmark, France, Germany, Greece, Italy, Japan, the Netherlands, Norway, South Africa, South Korea, Spain, Sweden, Switzerland, UK and USA. In part one, for which a separate abstract has been prepared, the information from all these countries is brought together, compared and analysed. The information is gathered from detailed reviews of the situations in the individual countries, the so-called National Position Papers, which can be found in this volume (part two) of the report. The reports reveal that overall the heat pump market showed a favourable development in the years 1993-96

  18. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  19. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  20. Qualitative and Quantitative Analysis of Organic Impurities in Feedwater of a Heat-Recovery Steam Generator

    Science.gov (United States)

    Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.

    2018-03-01

    In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce

  1. Selective Internal Heat Distribution in Modified Trombe Wall

    Science.gov (United States)

    Szyszka, Jerzy; Kogut, Janusz; Skrzypczak, Izabela; Kokoszka, Wanda

    2017-12-01

    At present, the requirements for thermal insulation of the external walls in buildings are being increased. There is a need to reduce energy consumption for heating rooms during the winter season. This may be achieved by increasing the thermal resistance of the outer partitions, using solutions that utilize either recuperation or solar radiation. The most popular systems include either solar collectors, or heat pump links or ground exchangers. Trombe walls (TW) are a very promising passive heating system, which requires little or no effort to operate, and may be very convenient in different climate conditions. A typical TW consists of a masonry wall painted a dark, heat absorbing paint colour and faced with a single or double layer of glass. The principle of operation is based on the photothermal conversion of solar radiation. There are various modifications of TW. They may improve the energy efficiency in relation to the climate conditions in which they operate. The hybrid solutions are also known. The efficiency of walls is related to the use of proper materials. In TW, the compromise should be sought between the thermal resistance and the ability to distribute heat from the absorbed energy of solar radiation. The paper presents an overview of the most commonly used solutions and discusses its own concept dedicated to the climate conditions of Central Europe.

  2. Parametric numerical investigaion of natural convection in a heat-generating fluid with phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N. [Institute of Nuclear Safety Russian Academy Science, Moscow (Russian Federation)

    1995-09-01

    Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.

  3. Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed......-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found...

  4. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  5. Analysis of a sandwich-type generator with self-heating thermoelectric elements

    International Nuclear Information System (INIS)

    Kim, Mikyung; Yang, Hyein; Wee, Daehyun

    2014-01-01

    Highlights: • A novel and unique type of thermoelectric generators is proposed. • Heat source is combined in thermoelectric elements, reducing heat transfer problems. • Embedding radioactive isotopes is proposed as a way to implement the new design. • Conversion efficiency and power density are estimated for the proposed design. - Abstract: A novel and unique design of thermoelectric generators, in which a heat source is combined with thermoelectric elements, is proposed. By placing heat-generating radioactive isotopes inside the thermoelectric elements, the heat transfer limitation between the generator and the heat source can be eliminated, ensuring simplicity. The inner electrode is sandwiched between identical thermoelectric elements, which naturally allows the inner core to act as the hot side. Analysis shows that conversion efficiency and power density increase as the heat density inside the thermoelectric elements increases and as the thermoelectric performance of the material improves. The theoretical maximum efficiency is shown to be 50%. However, realistic performance under practical constraint is much worse. In realistic cases, the efficiency would be about 3% at best. The power density of the proposed design exhibits a much more reasonable value as high as 3000 W/m 2 . Although the efficiency is low, the simplicity of the proposed design combined with its reasonable power density may result in some, albeit limited, potential applications. Further investigation must be performed in order to realize such potential

  6. Internal dust recirculation system for a fluidized bed heat exchanger

    Science.gov (United States)

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  7. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  8. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field.

    Science.gov (United States)

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

  9. An experimental investigation of a thermoelectric power generation system with different cold-side heat dissipation

    Science.gov (United States)

    Li, Y. H.; Wu, Z. H.; Xie, H. Q.; Xing, J. J.; Mao, J. H.; Wang, Y. Y.; Li, Z.

    2018-01-01

    Thermoelectric generation technology has attracted increasing attention because of its promising applications. In this work, the heat transfer characteristics and the performance of a thermoelectric generator (TEG) with different cold-side heat dissipation intensity has been studied. By fixing the hot-side temperature of TEG, the effects of various external conditions including the flow rate and the inlet temperature of the cooling water flowing through the cold-sided heat sink have been investigated detailedly. It was showed that the output power and the efficiency of TEG increased with temperature different enlarged, whereas the efficiency of TEG reduced with flow rate increased. It is proposed that more heat taken by the cooling water is attributed to the efficiency decrease when the flow rate of the cooling water is increased. This study would provide fundamental understanding for the design of more refined thermoelectric generation systems.

  10. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  11. Generation and sustainment of plasma rotation by ICRF heating

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this process introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a non-slip boundary condition at the separatrix. Second, Monte-Carlo calculations show that energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts the on-axis rotation frequency Ω to be Ω=(4q max WJ*)eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where vertical bar J* vertical bar ∼ 5-10 is a non-dimensional rotation frequency calculated by the Monte-Carlo ORBIT code. Overall, agreement with experiment is good, when the resonance is on the low-field-side of the magnetic axis. The rotation becomes more counter-current and reverses sign on the high field side for a no-slip boundary. The velocity shear layer position is controllable and of sufficient magnitude to affect microinstabilities. (author)

  12. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  13. Abstracts of international symposium on heat and mass transfer under plasma conditions

    International Nuclear Information System (INIS)

    1994-01-01

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting

  14. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  15. Finite element simulations of internal stresses generated during the ferroelastic deformation of NiTi bodies

    International Nuclear Information System (INIS)

    Manach, P.Y.; Favier, D.; Rio, G.

    1996-01-01

    The aim of this paper is to analyse the generation of internal stresses during the predeformation of NiTi shape memory alloys in the martensitic state. This allows to determine the initial stress state in which the material will transform during the shape memory effect due to heating consecutively to this prestrain. In that way a three-dimensional finite element model of the deformation of shape memory alloys has been developed, the constitutive law being defined using an elastohysteresis tensor model. The influence of behavioural and geometrical factors are illustrated considering the numerical simulation of different cases of practical importance for industrial applications : the study of the bending behaviour of a NiTi cantilever beam as well as the study of the swelling of a pipe connection under both uniform and non uniform internal displacement fields. (orig.)

  16. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    Energy Technology Data Exchange (ETDEWEB)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  17. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    Science.gov (United States)

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  18. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mehrez, Zouhaier, E-mail: zouhaier.mehrez@yahoo.fr [Laboratoire d’Energétique et des Transferts Thermique et Massique (LETTM), Département de Physique, Faculté des Sciences de Tunis, Université d’el Manar, El Manar 2092 (Tunisia); ISSAT Gabes, Rue Omar Ibn Khattab, Université de Gabes, 6072 Zrig, Gabes (Tunisia); El Cafsi, Afif; Belghith, Ali [Laboratoire d’Energétique et des Transferts Thermique et Massique (LETTM), Département de Physique, Faculté des Sciences de Tunis, Université d’el Manar, El Manar 2092 (Tunisia); Le Quéré, Patrick [LIMSI-CNRS Bat. 508, B.P. 133, 91403 Orsay Cedex (France)

    2015-01-15

    The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu–water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers. - Highlights: • MHD effects on Cu–water nanofluid flow into an open cavity are studied. • Entropy generation and heat transfer are strongly influenced by the magnetic field. • The effect of nanoparticles volume fraction depends on Hartmann number. • The influence of the magnetic field varies by varying Reynolds and Richardson numbers.

  19. Entropy Generation Analysis and Performance Evaluation of Turbulent Forced Convective Heat Transfer to Nanofluids

    Directory of Open Access Journals (Sweden)

    Yu Ji

    2017-03-01

    Full Text Available The entropy generation analysis of fully turbulent convective heat transfer to nanofluids in a circular tube is investigated numerically using the Reynolds Averaged Navier–Stokes (RANS model. The nanofluids with particle concentration of 0%, 1%, 2%, 4% and 6% are treated as single phases of effective properties. The uniform heat flux is enforced at the tube wall. To confirm the validity of the numerical approach, the results have been compared with empirical correlations and analytical formula. The self-similarity profiles of local entropy generation are also studied, in which the peak values of entropy generation by direct dissipation, turbulent dissipation, mean temperature gradients and fluctuating temperature gradients for different Reynolds number as well as different particle concentration are observed. In addition, the effects of Reynolds number, volume fraction of nanoparticles and heat flux on total entropy generation and Bejan number are discussed. In the results, the intersection points of total entropy generation for water and four nanofluids are observed, when the entropy generation decrease before the intersection and increase after the intersection as the particle concentration increases. Finally, by definition of Ep, which combines the first law and second law of thermodynamics and attributed to evaluate the real performance of heat transfer processes, the optimal Reynolds number Reop corresponding to the best performance and the advisable Reynolds number Read providing the appropriate Reynolds number range for nanofluids in convective heat transfer can be determined.

  20. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity

    International Nuclear Information System (INIS)

    Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick

    2015-01-01

    The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu–water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers. - Highlights: • MHD effects on Cu–water nanofluid flow into an open cavity are studied. • Entropy generation and heat transfer are strongly influenced by the magnetic field. • The effect of nanoparticles volume fraction depends on Hartmann number. • The influence of the magnetic field varies by varying Reynolds and Richardson numbers

  1. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    Science.gov (United States)

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  2. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  3. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    Science.gov (United States)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  4. Specification of steam generator, condenser and regenerative heat exchanger materials for nuclear applications

    International Nuclear Information System (INIS)

    Jovasevic, J.V.; Stefanovic, V.M.; Spasic, Z.LJ.

    1977-01-01

    The basic standards specifications of materials for nuclear applications are selected. Seamless Ni-Cr-Fe alloy Tubes (Inconel-600) for steam generators, condensers and other heat exchangers can be employed instead of austenitic stainless steal or copper alloys tubes; supplementary requirements for these materials are given. Specifications of Ni-Cr-Fe alloy plate, sheet and strip for steam generator lower sub-assembly, U-bend seamless copper-alloy tubes for heat exchanger and condensers are also presented. At the end, steam generator channel head material is proposed in the specification for carbon-steel castings suitable for welding

  5. MHTGR steam generator on-line heat balance, instrumentation and function

    International Nuclear Information System (INIS)

    Klapka, R.E.; Howard, W.W.; Etzel, K.T.; Basol, M.; Karim, N.U.

    1991-09-01

    Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints

  6. Volatile organic acids generated from kerogen during laboratory heating.

    Science.gov (United States)

    Kawamura, K; Tannenbaum, E; Huizinga, B J; Kaplan, I R

    1986-01-01

    Low molecular weight organic acids were studied in the course of pyrolysis experiments (200-400 degrees C, 2-1,000 h) of kerogen (Green River Formation and Monterey Formation) with and without the presence of water and minerals (montmorillonite, illite and calcite). C1-C10 aliphatic acids and benzoic acid were identified in the pyrolysis products of kerogen. Their distribution is characterized by a dominance of acetic acid followed by formic and propionic acids with an even/odd preference in the range of C4-C10. Total concentrations of these acids amounted to 0.3% of initial kerogen, indicating that kerogen has a good potential for producing organic acids. Geochemical implications of these organic acids are; (1) they are possible intermediates from kerogen to natural gas (CO2, H2, CH4, C2H6, etc.) by decarboxylation, and (2) they may be important and potential contributors to the generation of secondary porosity by dissolving minerals.

  7. A methodology for the geometric design of heat recovery steam generators applying genetic algorithms

    International Nuclear Information System (INIS)

    Durán, M. Dolores; Valdés, Manuel; Rovira, Antonio; Rincón, E.

    2013-01-01

    This paper shows how the geometric design of heat recovery steam generators (HRSG) can be achieved. The method calculates the product of the overall heat transfer coefficient (U) by the area of the heat exchange surface (A) as a function of certain thermodynamic design parameters of the HRSG. A genetic algorithm is then applied to determine the best set of geometric parameters which comply with the desired UA product and, at the same time, result in a small heat exchange area and low pressure losses in the HRSG. In order to test this method, the design was applied to the HRSG of an existing plant and the results obtained were compared with the real exchange area of the steam generator. The findings show that the methodology is sound and offers reliable results even for complex HRSG designs. -- Highlights: ► The paper shows a methodology for the geometric design of heat recovery steam generators. ► Calculates product of the overall heat transfer coefficient by heat exchange area as a function of certain HRSG thermodynamic design parameters. ► It is a complement for the thermoeconomic optimization method. ► Genetic algorithms are used for solving the optimization problem

  8. The international heat pump market as seen from the 'Business Development' point of view

    International Nuclear Information System (INIS)

    Schilli, A. S.; Afjei, T.

    2002-01-01

    This article takes a close look at the prerequisites that are decisive for successful business development in the international heat pump market and the challenges placed by them. The article examines the quality of market information and data that is available, especially regarding the market potential for heating and cooling in residential, commercial and industrial buildings. The results of various national and international surveys and studies made in this area are discussed. Several characteristics of the heat pump market - both in the buying and selling areas - are examined in order to clarify the requirements for market and business development in these sectors

  9. Integrating Renewable Generation into Grid Operations: Four International Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mylrea, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Botterud, Audun [Argonne National Lab. (ANL), Argonne, IL (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-22

    International experiences with power sector restructuring and the resultant impacts on bulk power grid operations and planning may provide insight into policy questions for the evolving United States power grid as resource mixes are changing in response to fuel prices, an aging generation fleet and to meet climate goals. Australia, Germany, Japan and the UK were selected to represent a range in the level and attributes of electricity industry liberalization in order to draw comparisons across a variety of regions in the United States such as California, ERCOT, the Southwest Power Pool and the Southeast Reliability Region. The study draws conclusions through a literature review of the four case study countries with regards to the changing resource mix and the electricity industry sector structure and their impact on grid operations and planning. This paper derives lessons learned and synthesizes implications for the United States based on answers to the above questions and the challenges faced by the four selected countries. Each country was examined to determine the challenges to their bulk power sector based on their changing resource mix, market structure, policies driving the changing resource mix, and policies driving restructuring. Each countries’ approach to solving those changes was examined, as well as how each country’s market structure either exacerbated or mitigated the approaches to solving the challenges to their bulk power grid operations and planning. All countries’ policies encourage renewable energy generation. One significant finding included the low- to zero-marginal cost of intermittent renewables and its potential negative impact on long-term resource adequacy. No dominant solution has emerged although a capacity market was introduced in the UK and is being contemplated in Japan. Germany has proposed the Energy Market 2.0 to encourage flexible generation investment. The grid operator in Australia proposed several approaches to maintaining

  10. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  11. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  12. Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects

    Directory of Open Access Journals (Sweden)

    Bhadauria B. S.

    2014-01-01

    Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.

  13. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  14. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  15. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A. S.

    2010-09-01

    The majority of NPPs worldwide are currently light water reactors, using ordinary water as both coolant and moderator. (...) For the longer-term future, viz. beyond the year 2030, Research and Development is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Since the very beginning of the international cooperation on Generation IV, viz. the year 2000, the main research interest in Europe as regards the advanced fast-spectrum systems needed for achieving complete fuel cycle closure, has been for the Sodium-cooled Fast Reactor (SFR). However, the Gas-cooled Fast Reactor (GFR) is currently considered as the main back-up solution. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For depressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be

  16. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Science.gov (United States)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  17. Combining several thermal indices to generate a unique heat comfort assessment methodology

    OpenAIRE

    Wissam EL Hachem; Joseph Khoury; Ramy Harik

    2015-01-01

    Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology), surrounding temperatures (heat balance and environmental factors) and cognitive treatment (physiology).This paper proposes a combination of different multidisciplinary variables to generate a unique heat comf...

  18. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    OpenAIRE

    Ravi Kumar Naradasu; Rama Krishna Konijeti; Sita Rama Raju Venkata Alluru

    2007-01-01

    Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is a...

  19. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  20. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Science.gov (United States)

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  1. A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance

    International Nuclear Information System (INIS)

    Elghool, Ali; Basrawi, Firdaus; Ibrahim, Thamir Khalil; Habib, Khairul; Ibrahim, Hassan; Idris, Daing Mohamad Nafiz Daing

    2017-01-01

    Highlights: • Coupling a thermoelectric power generation (TEG) to a heat sink is presented. • Review the classifications and parameters affecting performance of the TEG with heat sink. • Discuss different mathematical models of the heat sinks. • The passive heat sinks are most appropriate because of the inherent efficiency of TEG. • Medium temperature range below 300 °C is found to be most suitable for HPHS. - Abstract: In recent years, there have been growing interests in key areas related to global warming resulting from environmental emissions, and the diminishing sources of fossil fuel. The increased interest has led to significant research efforts towards finding novel technologies in clean energy production. Consequently, the merits of a thermo-electric generator (TEG) have promised a revival of alternative means of producing green energy. It is, however, impractical to account for the cost of thermal energy input to the TEG which is in the form of final waste heat. This is because the technology presents critical limitations in determining its cost efficiency nor its economic disadvantages. This paper reviews the principles of thermo-electric power production, as well the materials use, performance achieved, and application areas. The paper also takes a particular deliberation on TEG heat sinks geometries and categories. The review emphasizes more on the TEG performance while considering a number of heat sink parameters related to its performance.

  2. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    Science.gov (United States)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  3. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  4. Calculating the heat transfer coefficient of frame profiles with internal cavities

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2004-01-01

    or by measurements in accordance to European or international standards. Comparing measured and calculated heat transfer coefficients for two typical frame profiles with cavities shows considerable differences. This investigation considers two typical frame profiles in aluminium and PVC with internal cavities....... The heat transfer coefficient is determined by two-dimensional numerical calculations and by measurements. Calculations are performed in Therm (LBNL (2001)), which is developed at Lawrence Berkeley National Laboratory, USA. The calculations are performed in accordance with the future European standards...... and measurements have been performed at two German research institutes. The internal cavities have a large influence on the overall thermal performance of the frame profiles and the investigation shows that the applied method for modelling the heat transfer by radiation exchange in the internal cavities...

  5. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  6. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  7. Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle

    International Nuclear Information System (INIS)

    Hossain, Shekh Nisar; Bari, Saiful

    2013-01-01

    Highlights: • Diesel engine exhaust contains 40% energy which can be used to produce extra power. • Extra 11% power gained with optimized heat exchangers using water as working fluid. • As a result brake specific fuel consumption improved by 12%. • Parallel arrangement of heat exchangers showed better performance than series. • Optimum working fluid pressure varies with the engine power. - Abstract: Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40 kW diesel generator using two ‘off-the-shelf’ heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15 bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15 bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in

  8. Estimation on Achievable Parameter Regime of Warm Dense Matter Generated by Isochoric Heating Discharge using Intense Pulsed Power Generator

    Science.gov (United States)

    Hayashi, Ryota; Kashine, Kenji; Tokuchi, Akira; Tamura, Fumihiro; Watabe, Arata; Kudo, Takahiro; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.; Jiang, Weihua

    2016-03-01

    An evaluation method for warm dense matter (WDM) with similar timescale in inertial confinement fusion (ICF) by isochoric heating using intense pulsed power generator ETIGO-II is considered for evaluating target behavior. The temperature increase of the sample is estimated from the numerical calculation using the measured current. As a result, in the case that the shape of sample is ϕ2 mm x 10 mm and the density is 0.01 times solid density of copper, the temperature of sample increases up to 30000 K. It is expected that the WDM is generated using the proposed method with ICF implosion timescale.

  9. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  10. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  11. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  12. Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators

    Directory of Open Access Journals (Sweden)

    Shengqiang Bai

    2014-11-01

    Full Text Available Ideal heat exchangers recover as much heat as possible from an engine exhaust at the cost of an acceptable pressure drop. They provide primary heat for a thermoelectric generator (TEG, and their capacity and efficiency is dependent on the material, shape, and type of the heat exchanger. Six different exhaust heat exchangers were designed within the same shell, and their computational fluid dynamics (CFD models were developed to compare heat transfer and pressure drop in typical driving cycles for a vehicle with a 1.2 L gasoline engine. The result showed that the serial plate structure enhanced heat transfer by 7 baffles and transferred the maximum heat of 1737 W. It also produced a maximum pressure drop of 9.7 kPa in a suburban driving cycle. The numerical results for the pipe structure and an empty cavity were verified by experiments. Under the maximum power output condition, only the inclined plate and empty cavity structure undergoes a pressure drop less than 80 kPa, and the largest pressure drop exceeds 190 kPa. In this case, a mechanism with a differential pressure switch is essential to bypass part of the exhaust.

  13. Diagnostic system of steam generator, especially molten metal heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1986-01-01

    A diagnostic system is described and graphically represented consisting of a leak detector, a medium analyzer and sensors placed on the piping connected to the indication sections of both tube plates. The advantage of the designed system consists in the possibility of detecting tube failure immediately on leak formation, especially in generators with duplex tubes. This shortens the period of steam generator shutdown for repair and reduces power losses. The design also allows to make periodical leak tests during planned steam generator shutdowns. (A.K.)

  14. The Heat Transfer of Microencapsulated Phase Change Material Slurry and Its Thermal Energy Storage Performance of Combined Heat and Power Generating Units

    Directory of Open Access Journals (Sweden)

    Yonghong Guo

    2017-10-01

    Full Text Available The application of thermal energy storage (TES is an effective way of improving the power load regulation capability of combined heat and power (CHP generating units. In this paper, a theoretical investigation on the thermal energy storage system of a CHP unit that employs the microencapsulated phase change material slurry (MPCMS as the working fluid is carried out. The results indicate that the microcapsule particle internal melting rate is progressively small; 90% latent heat can be absorbed in 63% total melting time. The melting time of particles in micron is very short, and the diameter is an important factor for microcapsule melting. For the MPCMS flow in a circular tube, the temperature distribution between laminar flows and turbulent flows is different. In a turbulent flow, there is an approximate isothermal section along the tube, which cannot be found in a laminar flow. Additionally, a thermal storage system with MPCMS as heat transfer fluid for a CHP unit is proposed. A case study for a 300 MW CHP unit found that the use of an MPSMS thermal energy storage system increases the power peak shaving capacity by 81.4%. This indicates that the thermal storage system increases the peak shaving capacity of cogeneration units.

  15. Condition monitoring of steam generator by estimating the overall heat transfer coefficient

    International Nuclear Information System (INIS)

    Furusawa, Hiroaki; Gofuku, Akio

    2013-01-01

    This study develops a technique for monitoring in on-line the state of the steam generator of the fast-breeder reactor (FBR) “Monju”. Because the FBR uses liquid sodium as coolant, it is necessary to handle liquid sodium with caution due to its chemical characteristics. The steam generator generates steam by the heat of secondary sodium coolant. The sodium-water reaction may happen if a pinhole or crack occurs at the thin metal tube wall that separates the secondary sodium coolant and water/steam. Therefore, it is very important to detect an anomaly of the wall of heat transfer tubes at an early stage. This study aims at developing an on-line condition monitoring technique of the steam generator by estimating overall heat transfer coefficient from process signals. This paper describes simplified mathematical models of superheater and evaporator to estimate the overall heat transfer coefficient and a technique to diagnose the state of the steam generator. The applicability of the technique is confirmed by several estimations using simulated process signals with artificial noises. The results of the estimations show that the developed technique can detect the occurrence of an anomaly. (author)

  16. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  17. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  18. Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer

    International Nuclear Information System (INIS)

    Chen, Xue; Xia, Xin-Lin; Liu, Hua; Li, Yang; Liu, Bo

    2016-01-01

    Highlights: • A model coupling solar radiation transport and internal heat transfer is developed. • Two other treatment approaches for the concentrated solar radiation are compared. • Porous parameters significantly affect the distribution of absorbed solar radiation. • The TBC approach overestimates the solid temperature with a deviation up to 76.4%. • The CIR approach provides acceptable temperature field with deviation less than 3.4%. - Abstract: Volumetric receivers have become a promising technology for the solar thermal conversion. The absorption of concentrated solar radiation and the heat transfer to the working fluid are the two dominant processes. To effectively investigate the thermal performance of receiver, a numerical model coupling the solar radiation transport and the internal heat transfer is presented. Solar radiation transport from the dish concentrator to the interior of receiver is simulated with the Monte Carlo ray tracing method. Combining the distribution of absorbed solar energy in the receiver, the local thermal non-equilibrium model with P1 approximation is used to solve the internal heat transfer. Two other treatment approaches for the concentrated solar radiation are compared. One considers the solar radiation on the front surface of receiver as thermal boundary condition (TBC) and the other as a collimated incident radiation (CIR) beam. The results show that the porosity and mean cell size have a great effect on the distribution of absorbed solar radiation. Compared with the coupling approach, the TBC approach overestimates the solid temperature near the front surface with a deviation up to 76.4%, while the CIR approach provides acceptable temperature field with a deviation less than 3.4%. In addition, the fluid and solid temperatures both decrease as the slope error of concentrator increases.

  19. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  20. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    Science.gov (United States)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  1. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

    Science.gov (United States)

    Wang, Xiao-Qiao; Tan, Chuan Fu; Chan, Kwok Hoe; Xu, Kaichen; Hong, Minghui; Kim, Sang-Woo; Ho, Ghim Wei

    2017-10-24

    At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (V oc ) and short circuit current (I sc ) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO 2 /Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

  2. Power performance of the general-purpose heat source radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Rock, B.J.

    1986-01-01

    The General-Purpose Heat Source Radioisotope Thermoelectric Generator (GRHS-RTG) has been developed under the sponsorship of the Department of Energy (DOE) to provide electrical power for the National Aeronautics and Space Administration (NASA) Galileo mission to Jupiter and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun. A total of five nuclear-heated generators and one electrically heated generator have been built and tested, proving out the design concept and meeting the specification requirements. The GPHS-RTG design is built upon the successful-technology used in the RTGs flown on the two NASA Voyager spacecraft and two US Air Force communications satellites. THe GPHS-RTG converts about 4400 W(t) from the nuclear heat source into at least 285 W(e) at beginning of mission (BOM). The GPHS-RTG consists of two major components: the General-Purpose Heat Source (GPHS) and the Converter. A conceptual drawing of the GPHs-RTG is presented and its design and performance are described

  3. Study of heat transfer through a cavity receiver for a solar powered advanced Stirling engine generator

    International Nuclear Information System (INIS)

    Hussain, T.; Islam, M.D.; Kubo, I.; Watanabe, T.

    2016-01-01

    Stirling engine operated by concentrated solar energy can be a great mean to generate power. Highly concentrated solar radiations with minimum heat loss from cavity receiver are required to operate the Stirling engine. Therefore, heat transfer study of the cavity receiver is required for the maximum utilization of solar energy with minimum heat losses for the efficient Stirling engine generator. In this study, experiments were performed to find the most suitable cavity receiver configuration for maximum solar radiation utilizations by an Advanced Stirling Engine Generator (ADSEG). Dimensionless parameter: aperture ration (AR = d/D) and aperture position (AP = H/D) were used to characterize the different configurations of cylindrical cavity receiver. Experimental heat loss analysis (Convection, radiation and total heat loss) as well as air film temperature profiles along the wall height (H) of the receiver for different configurations of the cavity receiver was performed in this experiment for its selection. Based on experimental results, among the four different configurations of cylindrical cavity receiver, Type IV (AR = 0.5 AP = 0.53) was found to be the most suitable receiver for the ADSEG system.

  4. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    DEFF Research Database (Denmark)

    Goudarzi, A.M.; Mazandarani, P.; Panahi, R.

    2013-01-01

    a complete combustion for wood. In addition, thermoelectric generators (TEG) produce power that can be used to satisfy all basic needs. In this study, a water-base cooling system is designed to increase the efficiency of TE generators that also produces hot water for residential uses. Through a range....... The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water and the essential heat for warming the room and cooking....

  5. Cooling with heat. New generation of compact chillers; Mit Waerme kuehlen. Eine neue Generation kompakter Kaeltemaschinen fuehlt und heizt mit Niedertemperaturwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2012-11-01

    The economic and ecological success of many CHP plants, district heating networks and large-scale solar power systems very much depends on the utilisation of heat outside of the heating periods. An increasingly interesting market for low-temperature heat is cooling and air-conditioning buildings as well as generating process cooling energy with thermally driven chillers. Scientists from Berlin and Bavaria have developed a new generation of particularly compact, efficient absorption chillers with small capacities for cooling and heating operations. (orig.)

  6. Internal and ancestral controls of cell-generation times

    Science.gov (United States)

    Kubitschek, H. E.

    1969-01-01

    Lateral and longitudinal correlations between related cells reveal associations between the generation times of cells for an intermediate period /three generations in bacteral cultures/. Generation times of progeny are influenced by nongenetic factors transmitted from their ancestors.

  7. Surface renewal model for heat transfer calculation between a porous solid wall and an internally heated bubbling pool

    International Nuclear Information System (INIS)

    Tourniaire, B.

    2005-01-01

    Full text of publication follows: This work has been performed in the frame of the study of severe accident of LWR involving core meltdown and failure of the reactor vessel with molten corium relocation in the reactor pit. One of the main issue in nuclear safety is the estimation of the time when the reactor cavity may fail due to the erosion of the basemat since it would lead to the contamination of the groundwater. The calculation of the basemat erosion velocity requires the knowledge of the heat transfer between the corium pool and the concrete. Due to the gas release (mainly CO 2 and H 2 O) resulting from the concrete erosion, two-phase flow heat transfers occur during molten core concrete interaction (MCCI). Two-phase flow heat transfer between a porous horizontal wall and an internally heated bubbling pool has been already extensively investigated on the experimental side by several authors (Kutateladze and Malenkov, Duignan et al, Bonnet et al, Bilbao y Leon et al). The effect of various parameters such as the physical properties of the fluid or the pool aspect ratio has been studied so that many experimental data are available. From dimensional analysis (Kutateladze-Malenkov, Bonnet et al) or theoretical approach (Konsetov) and from these experimental data, heat transfer correlations have been proposed based on usual non-dimensional groups as Nu, Pr, Ra, etc. Today, the most widely used correlation in MCCI study are those proposed by Konsetov and by Kutateladze and Malenkov. Comparisons of the results of these correlations with available experimental data show that not all tendencies are well reproduced. The main purpose of this paper is to present an alternative heat transfer correlation that can be used in MCCI study. This correlation has been proposed by Deckwer in the frame of the study of heat transfer in bubble column reactors dedicated to chemical engineering. This correlation has been deduced from a theoretical analysis based on a surface renewal

  8. First experimental demonstration of a Self-Oscillating Fluidic Heat Engine (SOFHE) with piezoelectric power generation

    Science.gov (United States)

    Monin, T.; Tessier-Poirier, A.; Léveillé, E.; Juneau-Fecteau, A.; Skotnicki, T.; Formosa, F.; Monfray, S.; Fréchette, L. G.

    2016-11-01

    In this paper, we present the working principle and first experimental demonstration of an innovative approach to harvest low-quality heat sources, the Self-Oscillating Fluidic Heat Engine (SOFHE). Thermal energy is first converted into pressure pulsations by a selfexcited thermo-fluidic oscillator driven by periodic phase change of a fluid in an enclosed channel. A piezoelectric membrane then converts this mechanical energy into an electrical power. After describing the working principle, an experimental demonstration is presented. The P-V diagram of this new thermodynamic cycle is measured, showing a mechanical power of 3.3mW. Combined with a piezoelectric spiral membrane, the converted electrical power generation achieved is close to 1μ W in a 1MΩ load. This work sets the basis for future development of this new type of heat engine for waste heat recovery and to power wireless sensors.

  9. A concept of heat dissipation coefficient for thermal cloak based on entropy generation approach

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    2016-09-01

    Full Text Available In this paper, we design a 3D spherical thermal cloak with eight material layers based on transformation thermodynamics and it worked at steady state before approaching ‘static limit’. Different from the present research, we introduce local entropy generation to present the randomness in the cloaking system and propose the concept of a heat dissipation coefficient which is used to describe the capacity of heat diffusion in the ‘cloaking’ and ‘protected’ region to characterize the cloaking performance on the basis of non-equilibrium thermodynamics. We indicate the ability of heat dissipation for the thermal cloak responds to changes in anisotropy (caused by the change in the number of layers and differential temperatures. In addition, we obtain a comparison of results of different cloaks and believe that the concept of a heat dissipation coefficient can be an evaluation criterion for the thermal cloak.

  10. Co-optimized design of microchannel heat exchangers and thermoelectric generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Yazawa, K.; Rosendahl, Lasse

    2013-01-01

    Designs of heat exchangers have mostly been disconnected to the performance of thermoelectric generator (TEG) systems. The development work, mostly focused on thermoelectric materials, required a significant amount of engineering parametric analysis. In this work, a micro plate-fin heat exchanger...... applied to a TEG is investigated and optimized to maximize the output power and the cost performance of generic TEG systems. The cost per performance is counted by a measure of price per power output ($/W). The channel width, channel height, fin thickness of heat exchanger, and fill factor of TEG...... are theoretically optimized for a wide range of pumping power. In conjunction with effective numeric tests, the model discusses the optimum size of the system components’ dimensions at two area sizes of the substrate plate of heat exchanger. Results show that at every pumping power, there are particular values...

  11. Entropy Generation Analysis through Helical Coil Heat Exchanger in an Agitated Vessel

    Science.gov (United States)

    Ashok Reddy, K.

    2018-03-01

    Entropy Generation have been obtained while conducting the experiments for different sodium carboxymethyl cellulose concentrations 0.05%,0.1%,0.15% and 0.2% of Newtonian and non Newtonian fluids and the data made available by passing the test fluid at different flow rates through a helical coil in a mixing coil using paddle impeller. Heating of fluids depend on operational parameters, geometry of the mixing vessel and the type of impeller used. A new design of heating element was design and fabricated by providing kanthal wire inserted into a glove knitted with fiber glass yarn as glass fabric is flexible, heat resistant and can accommodate to adopt small difference in size of the vessel, perfectly. The knitted fabric is made to the shape of vessel used in the experiment and the heating elements are inserted so that it gets embedded and forms part of the glove knitted with yarn of fiber glass.

  12. District heating system of Belgrade supplied from the co-generation plant 'Obrenovac' (Yugoslavia)

    International Nuclear Information System (INIS)

    Tomic, P.; Dobric, Z.; Studovic, M.

    2000-01-01

    The paper presents most relevant technical and economic features of the Project called 'System for supplying Belgrade with heat' (SDGB) from the thermal power plant 'Obrenovac', based on domestic coal and reconstruction of condensing power plant for combined generation of electricity and heat for the needs of municipal energy consumption. The system is designed for transport thermal energy, with capacity of 730 MJ/s from the Thermal Power Plant 'Nikola Tesla' / A to the existing heat plant 'Novi Beograd' based on the natural gas. The paper also gives the comparison of most important technical and economic features of 'SDGB' Project with the similar Project of District Heating System for supplying Prague with the thermal energy from Thermal Power Plant Melnik. (Author)

  13. A review of solar energy based heat and power generation systems

    DEFF Research Database (Denmark)

    Modi, Anish; Bühler, Fabian; Andreasen, Jesper Graa

    2017-01-01

    The utilization of solar energy based technologies has attracted increased interest in recent times in order to satisfy the various energy demands of our society. This paper presents a thorough review of the open literature on solar energy based heat and power plants. In order to limit the scope...... of the review, only fully renewable plants with at least the production of electricity and heat/hot water for end use are considered. These include solar photovoltaic and solar thermal based plants with both concentrating and non-concentrating collectors in both solar-only and solar-hybrid configurations....... The paper also presents a selection of case studies for the evaluation of solar energy based combined heat and power generation possibility in Denmark. The considered technologies for the case studies are (1) solar photovoltaic modules, (2) solar flat plate collectors, (3) a ground source heat pump, (4...

  14. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    Energy Technology Data Exchange (ETDEWEB)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2018-01-09

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.

  15. The General-Purpose Heat Source Radioisotope Thermoelectric Generator: Power for the Galileo and Ulysses missions

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Hemler, R.J.; Peterson, J.R.

    1986-01-01

    Electrical power for NASA's Galileo mission to Jupiter and ESA's Ulysses mission to explore the polar regions of the Sun will be provided by General-Purpose Heat Source Radioisotope Thermo-electric Generators (GPHS-RTGs). Building upon the successful RTG technology used in the Voyager program, each GPHS-RTG will provide at least 285 W(e) at beginning-of-mission. The design concept has been proven through extensive tests of an electrically heated Engineering Unit and a nuclear-heated Qualification Unit. Four flight generators have been successfully assembled and tested for use on the Galileo and Ulysses spacecraft. All indications are that the GPHS-RTGs will meet or exceed the power requirement of the missions

  16. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  17. Study of heat and mass transfer in a steam generator with chemically reacting coolant

    International Nuclear Information System (INIS)

    Lemeshev, V.U.; Mikhalevich, A.A.; Nemtsev, V.A.; Nesterenko, V.B.

    1983-01-01

    A one-dimensional mathematical model is represented once-through type and heat and mass transfer steam generator with turbulent flow of chemically reacting N 2 O 4 -NO coolant is investigated. During development of the mathematical model it has been assumed that the process of heating and boiling of liquid N 2 O 4 -NO coolant as well as superheating of produced vapour at subcritical parameters or heating of pseudo-liquid and superheating of produced pseudovapour at supercritical parameters (the heated side) is carried out at the expense of gaseous N 2 O 4 -NO coolant cooling (the heating side). The process of heating and cooling of the N 2 O 4 -NO system is followed by N 2 O 4 reversible 2NO 2 (1); 2NO 2 reversible 2NO+O 2 (2); N 2 O 3 reVersible NO 2 +NO (3) reactions, whereas the reactions (1) and (3) are practically equilibrium and the reaction (2) proceeds for the time comparable with the coolant residence time in the reactor circuit and the reaction rate is to be taken into account at mathematical modelling of the heat and mass transfer processes in the equipment. The modelling of thermal and hydrodynamic processes in the elements of a powergenerating components is needed for developing power plants with a dissociating coolant

  18. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  19. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat.

    Science.gov (United States)

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  20. Numerical Investigation of Heat Transfer Augmentation through Geometrical Optimization of Vortex Generators

    DEFF Research Database (Denmark)

    Gorji, Mofid; Mirgolbabaei, Hessam; Barari, Amin

    2010-01-01

    In this paper a two-dimensional numerical simulation of a steady incompressible and turbulent model has been carried out to study the effects of vortex generators in a compact heat exchanger in a curvilinear coordinate system. The mesh which is applied in this study is boundary fitted and has been...

  1. Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers

    DEFF Research Database (Denmark)

    Gorji, M.; Mirgolbababei, H.; Barari, Amin

    2011-01-01

    In this paper, numerical, curvilinear and turbulent model has been used to investigate the effect of vortex generator's longitudinal displacement on heat transfer and fluid flow in different Reynolds numbers ranging from 500 to 3000. The numerical model has been validated with experimental result...

  2. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field

    International Nuclear Information System (INIS)

    Lima, E Jr; De Biasi, E; Mansilla, M Vasquez; Saleta, M E; Granada, M; Troiani, H E; Zysler, R D; Effenberger, F B; Rossi, L M; Rechenberg, H R

    2013-01-01

    The role of agglomeration and magnetic interparticle interactions in heat generation of magnetic ferrofluids in an ac magnetic field is still unclear, with apparent discrepancy between the results presented in the literature. In this work, we measured the heat generating capability of agglomerated ferrite nanoparticles in a non-invasive ac magnetic field with f = 100 kHz and H 0 = 13 kA m -1 . The nanoparticles were morphologically and magnetically characterized, and the specific absorption rate (SAR) for our ac magnetic field presents a clear dependence on the diameter of the nanoparticles, with a maximum SAR = 48 W g -1 for 15 nm. Our agglomerated nanoparticles have large hydrodynamic diameters, thus the mechanical relaxation can be neglected as a heat generation mechanism. Therefore, we present a model that simulates the SAR dependence of the agglomerated samples on the diameter of the nanoparticles based on the hysteresis losses that is valid for the non-linear region (with H 0 comparable to the anisotropy field). Our model takes into account the magnetic interactions among the nanoparticles in the agglomerate. For comparison, we also measured the SAR of non-agglomerated nanoparticles in a similar diameter range, in which Néel and Brown relaxations dominate the heat generation.

  3. Experimental and analytical investigation of natural vibration of steam generator heat transfer tubes

    International Nuclear Information System (INIS)

    Han Liangbi; Shi Guolin; Yao Weida; Wang Yufen; Zhang Fugao; Ye Weijuan

    1987-11-01

    Experimental and analytical investigation of model steam generator heat transfer tubes with clearance and elastic supported effect was carried out. The experimental natural frequencies and normal modes of model tubes are found to be in good agreement with the corresponding analytical results. Both analytical and experimental results indicate that the antivibration bars between bends of tubes are effective

  4. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  5. Experimental study on heat transfer characteristics of internal heat exchangers for CO{sub 2} system under cooling condition

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Chul [Sunmoon University, Asan (Korea, Republic of); Kim, Dae Hoon; Lee, Jae Heon [Hanyang University, Seoul (Korea, Republic of); Choi, Jun Young [Korea Testing Laboratory, Ansan (Korea, Republic of); Lee, Sang Jae [Korea Institute of Industral Technology, Cheonan (Korea, Republic of)

    2009-03-15

    This paper presents the heat transfer characteristics of the internal heat exchanger (IHX) for CO{sub 2} heat pump system. The influence on the IHX length, the mass flow rate, the shape of IHX, the operating condition, and the oil concentration was investigated under a cooling condition. Four kinds of IHX with a coaxial type and a micro-channel type, a mass flow meter, a pump, and a measurement system. With increasing of the IHX length, the capacity, the effectiveness, and the pressure drop increased. For the mass flow rate, the capacity of micro-channel IHX are higher about 2 times than those of coaxial IHX. The pressure drop was larger at cold-side than at hot-side. In the transcritical CO{sub 2} cycle, system performance is very sensitive to the IHX design. Design parameters are closely related with the capacity and the pressure drop of CO{sub 2} heat pump system. Along the operating condition, the performance of CO{sub 2} IHXs is different remarkably. For oil concentration 1, 3, 5%, the capacity decreases and the pressure drop increased, as compared with oil concentration 0%

  6. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    International Nuclear Information System (INIS)

    Mani, S.; Sokhansanj, S.; Tagore, S.; Turhollow, A.F.

    2010-01-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam 3 ). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  7. Asymptotic expansions of solutions of the heat conduction equation in internally bounded cylindrical geometry

    Science.gov (United States)

    Ritchie, R.H.; Sakakura, A.Y.

    1956-01-01

    The formal solutions of problems involving transient heat conduction in infinite internally bounded cylindrical solids may be obtained by the Laplace transform method. Asymptotic series representing the solutions for large values of time are given in terms of functions related to the derivatives of the reciprocal gamma function. The results are applied to the case of the internally bounded infinite cylindrical medium with, (a) the boundary held at constant temperature; (b) with constant heat flow over the boundary; and (c) with the "radiation" boundary condition. A problem in the flow of gas through a porous medium is considered in detail.

  8. The experimental design of solar heating thermoelectric generator with wind cooling chimney

    International Nuclear Information System (INIS)

    Özdemir, Ali Ekber; Köysal, Yavuz; Özbaş, Engin; Atalay, Tahsin

    2015-01-01

    Highlights: • We model an experimental design of thermal electrical generator. • Electrical parameters were collected under the solar radiation. • All the calculated values were obtained from collected data. • Generated power and electrical efficiency were changed by thermal gradient. - Abstract: In this paper we present an experimental design of new solar based thermoelectric generator with wind chimney. Presented generator mainly consists of four parts: a heat pipe with solar collector tube for solar heating, a wind chimney for cooling, a thermoelectric (TE) module for electricity generation and measurement devices-sensors. Presented generator based on experimental design. Aim of this experimental design is to show an alternative way for cheap and efficiently renewable energy producing. The most important features of presented generator are uncomplicated structure, efficiently and cheapness. This experimental design can be improved and used for domestic and commercial application. For this reason, main parts of system can be enhanced and system can be improved. To evaluate of presented generator we collected some experimental data on designed system. Then maximum output power, electrical efficiency and Seebeck coefficient are calculated from obtained data. Results of the measurement are displayed in the form of graphs and tables. Our experiment was carried out on 16th and 21th August, in Samsun, on the north coast of Turkey with the exact location 41°14′N 36°26′E with sea level. Collection of the data was performed from 8:30 a.m. to 4 p.m

  9. Entropy generation in hydromagnetic boundary flow under the effects of frictional and Joule heating: Exact solutions

    Science.gov (United States)

    Afridi, Muhammad Idrees; Qasim, Muhammad; Shafie, Sharidan

    2017-09-01

    The objective of the present article is to discuss the effects of viscous dissipation and Joule heating on entropy generation in a hydromagnetic boundary layer flow. Governing equations are reduced to self-similar equations via suitable similarity transformations. The expressions for the volumetric entropy generation rate and the Bejan number are also obtained using similarity transformations. The exact solution of the transformed energy equation is computed using the Laplace transform treatment. The obtained exact solutions are utilized to calculate the entropy generation number and the Bejan number. The impacts of Prandtl number, viscous dissipation parameter (Eckert number), magnetic parameter, mass suction and temperature difference parameter on entropy generation and Bejan number are discussed graphically. The increasing value of the temperature difference parameter reduces the entropy generation. The entropy generation increases with the increasing values of the magnetic parameter, the Eckert number, the mass suction parameter and the Prandtl number.

  10. Generation 4 International Forum. 2009 GIF R and D outlook for generation 4 nuclear energy systems

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the state, at mid 2009, of research and development of the 6 reactor types that were selected in the framework of the GIF (Generation 4 International Forum): VHTR (Very High Temperature Reactor), SFR (Sodium-cooled Fast Reactor), SCWR (Super-Critical Water Reactor), GFR (Gas-cooled Fast Reactor), LFR (Lead-cooled reactor), and MSR (Molten Salt Reactor). Regarding each type of reactors, the state of advancement is reported for the reactor itself, its specific components and materials, its nuclear fuel, and its fuel cycle. The outlook of development and research work is also given for the next 5 years for the 6 types of reactors. (A.C.)

  11. Next-generation models for Canadian collaboration in international ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Through this project, the Canadian Council for International Cooperation (CCIC), in partnership with the Canadian Association for the Study of International Development, will identify and promote new ways for Canadian practitioners, academics, and public policymakers to work together in international development.

  12. The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer

    International Nuclear Information System (INIS)

    Caldas, Miguel; Semiao, Viriato

    2007-01-01

    The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence

  13. Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun

    2017-09-01

    We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.

  14. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    Directory of Open Access Journals (Sweden)

    Gil Choong-Sup

    2017-01-01

    Full Text Available Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  15. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.

    2016-02-05

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  16. Faculty as Bridges to Co-Curricular Engagement and Community for First-Generation International Students

    Science.gov (United States)

    Glass, Chris R.; Gesing, Peggy; Hales, Angela; Cong, Cong

    2017-01-01

    The proportion of first-generation international students at US institutions ranges from one-tenth to one-half of the total international student body. First-generation status is an underexplored, and potentially significant, demographic factor in international students' adaptation to college. Researchers used structural equation modelling (SEM)…

  17. Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process

    Science.gov (United States)

    Kuroki, Takashi; Murai, Ryota; Makino, Kazuya; Nagano, Kouji; Kajihara, Takeshi; Kaibe, Hiromasa; Hachiuma, Hirokuni; Matsuno, Hidetoshi

    2015-06-01

    In Japan, integrated steelworks have greatly lowered their energy use over the past few decades through investment in energy-efficient processes and facilities, maintaining the highest energy efficiency in the world. However, in view of energy security, the steelmaking industry is strongly required to develop new technologies for further energy saving. Waste heat recovery can be one of the key technologies to meet this requirement. To recover waste heat, particularly radiant heat from steel products which has not been used efficiently yet, thermoelectric generation (TEG) is one of the most effective technologies, being able to convert heat directly into electric power. JFE Steel Corporation (JFE) implemented a 10-kW-class grid-connected TEG system for JFE's continuous casting line with KELK Ltd. (KELK), and started verification tests to generate electric power using radiant heat from continuous casting slab at the end of fiscal year 2012. The TEG system has 56 TEG units, each containing 16 TEG modules. This paper describes the performance and durability of the TEG system, which has been investigated under various operating conditions at the continuous casting line.

  18. Possible generation of heat from nuclear fusion in Earth's inner core.

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2 D +  2 D +  2 D → 2 1 H +  4 He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10 12  J/m 3 , based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  19. Data for occupancy internal heat gain calculation in main building categories

    DEFF Research Database (Denmark)

    Ahmed, Kaiser; Kurnitski, Jarek; Olesen, Bjarne W.

    2017-01-01

    Heat losses from occupant body by means of convection, radiation, vapor, and sweat are essential data for indoor climate and energy simulations. Heat losses depend on the metabolic activity and body surface area. Higher variations of body surface area of occupants are observed in day care centers......, kinder gardens and schools compared to other building categories (Tables 2 and 3) and these variations need to be accounted, otherwise in these building categories heat gains, CO2 and humidity generation are overestimated. Indoor temperature, humidity level, air velocity, and clothing insulation have...

  20. Mechanism of heat generation from loading gaseous hydrogen isotopes into palladium nanoparticles

    Science.gov (United States)

    Dmitriyeva, Olga

    I have carried out the study of hydrogen isotope reactions in the presence of palladium nanoparticles impregnated into oxide powder. My goal was to explain the mechanisms of heat generation in those systems as a result of exposure to deuterium gas. Some researchers have associated this heating with a nuclear reaction in the Pd lattice. While some earlier experiments showed a correlation between the generation of excess heat and helium production as possible evidence of a nuclear reaction, the results of that research have not been replicated by the other groups and the search for radiation was unsuccessful. Therefore, the unknown origin of the excess heat produced by these systems is of great interest. I synthesized different types of Pd and Pt-impregnated oxide samples similar to those used by other research groups. I used different characterization techniques to confirm that the fabrication method I used is capable of producing Pd nanoparticles on the surface of alumina support. I used a custom built gas-loading system to pressurize the material with hydrogen and deuterium gas while measuring heat output as a result of these pressurizations. My initial study confirmed the excess heat generation in the presence of deuterium. However, the in-situ radiometry and alpha-particle measurements did not show any abnormal increase in counts above the background level. In the absence of nuclear reaction products, I decided to look for a conventional chemical process that could account for the excess heat generation. It was earlier suggested that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. To prove the chemical nature of the observed phenomena I demonstrated that the reaction can be either exo- or endothermic based on the water isotope trapped in the material and the type of gas provided to the system. The H/D exchange was confirmed by RGA, NMR and FTIR analysis. I quantified the amount of energy that can be released due

  1. Generating Bona Fide Mammalian Prions with Internal Deletions.

    Science.gov (United States)

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2016-08-01

    disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Meng, Jing-Hui; Wang, Xiao-Dong; Chen, Wei-Hsin

    2016-01-01

    Highlights: • A new model for automobile exhaust thermoelectric generator system is proposed. • Based on the system reliability, the counter flow cooling pattern is recommended. • There exists an optimal thermoelectric unit number to maximize system output power. • Better performance is predicted with less thermoelectric materials consumption. - Abstract: This work develops a multiphysics thermoelectric generator model for automobile exhaust waste heat recovery, in which the exhaust heat source and water-cooling heat sink are actually modeled. Special emphasis is put on the non-uniformity of temperature difference across thermoelectric units along the streamwise direction, which may affect the performance of exhaust thermoelectric generator systems significantly. The main findings are: (1) The counter flow cooling pattern is recommended, although it cannot elevate the overall output power as compared with the parallel flow counterpart, it reduces the temperature non-uniformity effectively, and hence ensures the system reliability. (2) The temperature non-uniformity strikingly deteriorates the output power of thermoelectric unit along the streamwise direction; meanwhile, an additional lateral heat conduction effect exists within the exhaust channel wall, the both mechanisms leads to that the maximum output power of the system is not enhanced but is actually reduced when too many thermoelectric units are adopted. (3) When the exhaust channel length is fixed, the maximum output power of the system can be elevated by increasing the thermoelectric unit number but keeping thermoelectric unit spacing unchanged. This means that the system performance can be improved under the condition of less thermoelectric materials consumption.

  3. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  4. Modeling and Analysis of Entropy Generation in Light Heating of Nanoscaled Silicon and Germanium Thin Films

    Directory of Open Access Journals (Sweden)

    José Ernesto Nájera-Carpio

    2015-07-01

    Full Text Available In this work, the irreversible processes in light heating of Silicon (Si and Germanium (Ge thin films are examined. Each film is exposed to light irradiation with radiative and convective boundary conditions. Heat, electron and hole transport and generation-recombination processes of electron-hole pairs are studied in terms of a phenomenological model obtained from basic principles of irreversible thermodynamics. We present an analysis of the contributions to the entropy production in the stationary state due to the dissipative effects associated with electron and hole transport, generation-recombination of electron-hole pairs as well as heat transport. The most significant contribution to the entropy production comes from the interaction of light with the medium in both Si and Ge. This interaction includes two processes, namely, the generation of electron-hole pairs and the transferring of energy from the absorbed light to the lattice. In Si the following contribution in magnitude comes from the heat transport. In Ge all the remaining contributions to entropy production have nearly the same order of magnitude. The results are compared and explained addressing the differences in the magnitude of the thermodynamic forces, Onsager’s coefficients and transport properties of Si and Ge.

  5. On the spectrum of vertically propagating gravity waves generated by a transient heat source

    Directory of Open Access Journals (Sweden)

    M. J. Alexander

    2004-01-01

    Full Text Available It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30min. Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.

  6. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  7. The thermoelectric generators use for waste heat utilization from conventional power plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Full Text Available On the base of available data, it is estimated that the industrial approx. 20-50% of the energy is removed into the atmosphere as waste heat include in the form of hot flue gases, cooling water, the heat losses from the equipment hot surfaces or heated products. However, according to the data from the US market in 2010, in the form of waste heat is emitted more than 96 · 106 TJ annually (2.7 · 1010 MWh, means more than 57% of the produced energy. According to statistics, currently the energy production in the US amounts to approx. 26% of the world's energy production. Assuming the same indicators, the total annual amount of waste heat in the scale of the world equals 370 · 106 TJ (10.4 · 1010 MWh. One of the ways to increase the energy efficiency of manufacturing processes and reducing energy consumption and negative impacts to the environment is the use of waste energy [1,2,3] In this work it was investigated the possibilities of the waste heat utilization from conventional thermal power plant using thermoelectric generators, the operation of which is based on the Seebeck effect.

  8. An overview of the VASIMR engine: High power space propulsion with RF plasma generation and heating

    Science.gov (United States)

    Díaz, F. R. Chang

    2001-10-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of exhaust modulation at constant power. While the plasma is produced by a helicon discharge, the bulk of the energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH). Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. However, other complementary techniques are also being studied. Operational and performance considerations favor the light gases. The physics and engineering of this device have been under study since the late 1970s. A NASA-led, research effort, involving several terms in the United States, continues to explore the scientific and technological foundations of this concept. The research involves theory, experiment, engineering design, mission analysis, and technology development. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen and Deuterium, as well as mixtures of these gases. Key issues involve the optimization of the helicon discharge for high-density operation and the efficient coupling of ICRH to the plasma, prior to acceleration by the magnetic nozzle. Theoretically, the dynamics of the magnetized plasma are being studied from kinetic and fluid perspectives. Plasma acceleration by the magnetic nozzle and subsequent detachment has been demonstrated in numerical simulations. These results are presently undergoing experimental verification. A brisk technology development effort for space-qualified, compact, solid-state RF equipment, and high temperature superconducting magnets is under way in support of this project. A conceptual point design for an early space demonstrator on the International Space Station has been defined

  9. Flow-induced vibration analysis of heat exchanger and steam generator designs

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Sylvestre, Y.; Campagna, A.O.

    1977-08-01

    Tube and shell heat exchange components such as steam generators, heat exchangers and condensers are essential parts of CANDU nuclear power stations. Excessive flow-induced vibration may cause tube failures by fatigue or more likely by fretting-wear. Such failures may lead to station shutdowns that are very undesirable in terms of lost production. Hence good performance and reliability dictate a thorough flow-induced vibration analysis at the design stage. This paper presents our approach and techniques in this respect. (author)

  10. Infrared signal generation from AC induction field heating of graphite foam

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James W.; Rios, Orlando

    2018-02-27

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  11. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  12. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  13. Prospects Pertaining to Application of Heat-and-Pump Technology in Power-and-Hear generation Complex

    Directory of Open Access Journals (Sweden)

    A. V. Ovsiannik

    2008-01-01

    Full Text Available The existing conditions of heat supply operation create favorable possibilities for repeat involvement of large capabilities of low-potential heat at power objects of heat supply system in the fuel and energy balance of urban power engineering facilities and, first of all, it is possible due to introduction of power-saving heat-and-pump technology.Diversity of conditions concerning organization of heat supply and sources of low-potential heat which can be used with the help of heat-and-pump technology in the system of centralized heat-supply reveals the necessity to take more serious approach to investigation of real possibilities of their application, owing to them it is possible to involve repeatedly used heat in the technological cycle of the urban power-and-heat generation complex.

  14. Faroe Islands Wind-Powered Space Heating Microgrid Using Self-Excited 220 kW Induction Generator

    DEFF Research Database (Denmark)

    Thomsen, Bjarti; Guerrero, Josep M.; Thogersen, Paul

    2014-01-01

    energy and required space heating and mismatches can be reduced by using simple water tanks as heat storages. A traditional Danish induction generator wind turbine has been erected on the island of Nólsoy to produce energy for space heating. The system is designed as a stand-alone Microgrid which needs...

  15. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  16. Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows

    Science.gov (United States)

    Zhuromskii, V. M.

    2018-01-01

    The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.

  17. Heating internal channels of a catalyst carrier with periodic structure by impinging supersonic jet

    Science.gov (United States)

    Postnikov, B. V.; Lomanovich, K. A.

    2017-10-01

    Experimental research aimed to heat internal cavities of a cordierite catalyst carrier placed in supersonic flow was carried out. The samples were mounted axisymmetrically to the nozzle inside a metal container closed from the rear. A thermocouple was laid in the bottom of the housing to register temperature.

  18. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  19. High temperature technological heat exchangers and steam generators with helical coil assembly tube bundle

    International Nuclear Information System (INIS)

    Korotaev, O.J.; Mizonov, N.V.; Nikolaevsky, V.B.; Nazarov, E.K.

    1990-01-01

    Analysis of thermal hydraulics characteristics of nuclear steam generators with different tube bundle arrangements and waste heat boilers for ammonia production units was performed on the basis of operating experience results and research and development data. The present report involves the obtained information. The estimations of steam generator performances and repair-ability are given. The significant temperature profile of the primary and secondary coolant flows are attributed to all steam generator designs. The intermediate mixing is found to be an effective means of temperature profile overcoming. At present the only means to provide an effective mixing in heat exchangers of the following types: straight tubes, field tubes, platen tubes and multibank helical coil tubes (with complicated bend distribution along their length) are section arrangements in series in conjunction with forced and natural mixing in connecting lines. Development of the unificated system from mini helical coil assemblies allows to design and manufacture heat exchangers and steam generators within the wide range of operating conditions without additional expenses on the research and development work

  20. Analyses of internal tides generation and propagation over a Gaussian ridge in laboratory and numerical experiments

    Science.gov (United States)

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Floor, Jochem

    2010-05-01

    test the dynamics and energetics of the numerical model, but also to advance the analysis based on combined wavelet and empirical orthogonal function. In particular, we focus on the study of the transient regime of internal wave generation near the ridge. Our analyses of the experimental fields show that, for fixed background stratification and topography, the evolution of the stratification anomaly strongly depends on the forcing frequency. The duration of the transient regime, as well as the amplitude reached in the stationary state vary significantly with the parameter ω/N (where ω is the forcing frequency, and N is the background Brunt-Väisälä frequency). We also observe that, for particular forcing frequencies, for which the ridge slope matches the critical slope of the first harmonic mode, internal waves are excited both at the fundamental and the first harmonic frequency. Associated energy transfers are finally evaluated both experimentally and numerically, enabling us to highlight the similarities and discrepancies between the laboratory experiments and the numerical simulations. References [1] Munk W. and C. Wunsch (1998): Abyssal recipes II: energetics of tidal and wind mixing Deep-Sea Res. 45, 1977-2010 [2] Tailleux R. (2009): On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy, J. Fluid Mech. 638, 339-382 [3] Knigge C., D. Etling, A. Paci and O. Eiff (2010): Laboratory experiments on mountain-induced rotors, Quarterly Journal of the Royal Meteorological Society, in press. [4] Auclair F., C. Estournel, J. Floor, C. N'Guyen and P. Marsaleix, (2009): A non-hydrostatic, energy conserving algorithm for regional ocean modelling. Under revision. [5] Wunsch, C. & R. Ferrari (2004): Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36:281-314.

  1. Development of three-tier heat, temperature and internal energy diagnostic test

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2015-05-01

    Background:Misconceptions are major obstacles to learning physics, and the concepts of heat and temperature are some of the common misconceptions that are encountered in daily life. Therefore, it is important to develop valid and reliable tools to determine students' misconceptions about basic thermodynamics concepts. Three-tier tests are effective assessment tools to determine misconceptions in physics. Although a limited number of three-tier tests about heat and temperature are discussed in the literature, no reports discuss three-tier tests that simultaneously consider heat, temperature and internal energy. Purpose:The aim of this study is to develop a valid and reliable three-tier test to determine students' misconceptions about heat, temperature and internal energy. Sample:The sample consists of 462 11th-grade Anatolian high school students. Of the participants, 46.8% were female and 53.2% were male. Design and methods:This research takes the form of a survey study. Initially, a multiple-choice test was developed. To each multiple-choice question was added one open-ended question asking the students to explain their answers. This test was then administered to 259 high school students and the data were analyzed both quantitatively and qualitatively. The students' answers for each open-ended question were analyzed and used to create the choices for the second-tier questions of the test. Depending on those results, a three-tier Heat, Temperature and Internal Energy Diagnostic Test (HTIEDT) was developed by adding a second-tier and certainty response index to each item. This three-tier test was administered to the sample of 462 high school students. Results:The Cronbach alpha reliability for the test was estimated for correct and misconception scores as .75 and .68, respectively. The results of the study suggested that HTIEDT could be used as a valid and reliable test in determining misconceptions about heat, temperature and internal energy concepts.

  2. Water experiment on phased array acoustic leak detection system for sodium-heated steam generator

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Yoshiuji, Takahiro

    2015-01-01

    Highlights: • An acoustic leak detection system for sodium heated steam generator is proposed. • The new system can separate leak source from steam generator background noise. • Performance of the new system has been confirmed in water experiments. - Abstract: A phased array acoustic leak detection system for sodium heated steam generator has been proposed. The major advantage of the new system is it could provide information of acoustic source direction. An acoustic source of a sodium–water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the new system could separate the target leak source from steam generator background noise. In the previous study, the methodology was proposed and basic performance was confirmed by numerical analysis. However, in the numerical analysis, acoustic transportation through the SG tube bundle was not modeled. In the present study, performance the proposed system has been confirmed in water experiments with mockup tube bundles

  3. Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

    National Research Council Canada - National Science Library

    Russell, Louis

    1997-01-01

    ... cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling...

  4. Fin-and-tube heat exchanger enhancement with a combined herringbone and vortex generator design

    DEFF Research Database (Denmark)

    Välikangas, Turo; Singh, Shobhana; Sørensen, Kim

    2018-01-01

    Vortex generators (VGs) are the most commonly investigated enhancement methods in the field of improved heat exchangers. The aim of present work is to study the effect of VGs in a fin-and-tube heat exchanger (FTHE) with herringbone fin shape. The delta winglet VG design with length (s) and height...... (H) is selected based on previous studies. The investigated VG design is simple and considered realistic from the manufacturing point of view. The combined enhancement with herringbone fin and the VG is evaluated by simulating the conjugate heat transfer and the air flow. The structured mesh...... transfer in the herringbone fin but also decrease the pressure drop. The highest and longest investigated VG design is found to perform the best because of its ability to delay the flow detachment from the tube, to feed high kinetic energy flow to the recirculation zone and to create longitudinal vortices...

  5. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based on a...

  6. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  7. Heat transfer characteristics in a sudden expansion pipe equipped with swirl generators

    International Nuclear Information System (INIS)

    Zohir, A.E.; Abdel Aziz, A.A.; Habib, M.A.

    2011-01-01

    This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65 o ) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.

  8. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    Science.gov (United States)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  9. Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units

    International Nuclear Information System (INIS)

    Knizley, Alta A.; Mago, Pedro J.; Smith, Amanda D.

    2014-01-01

    The benefits of using a combined cooling, heating, and power system with dual power generation units (D-CCHP) is examined in nine different U.S. locations. One power generation unit (PGU) is operated at base load while the other is operated following the electric load. The waste heat from both PGUs is used for heating and for cooling via an absorption chiller. The D-CCHP configuration is studied for a restaurant benchmark building, and its performance is quantified in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Cost spark spread, PEC spark spread, and CDE spark spread are examined as performance indicators for the D-CCHP system. D-CCHP system performance correlates well with spark spreads, with higher spark spreads signifying greater savings through implementation of a D-CCHP system. A new parameter, thermal difference, is introduced to investigate the relative performance of a D-CCHP system compared to a dual PGU combined heat and power system (D-CHP). Thermal difference, together with spark spread, can explain the variation in savings of a D-CCHP system over a D-CHP system for each location. The effect of carbon credits on operational cost savings with respect to the reference case is shown for selected locations. - Highlights: • We investigate benefits from using combined cooling, heating, and power systems. • A dual power generation unit configuration is considered for CCHP and CHP. • Spark spreads for cost, energy, and emissions correlate with potential savings. • Thermal difference parameter helps to explain variations in potential savings. • Carbon credits may increase cost savings where emissions savings are possible

  10. Study of the heat flux generated by accelerated electrons on the components near the plasma

    International Nuclear Information System (INIS)

    Laugier, J.

    2003-01-01

    Experimental data have shown that a heat flux appears on components situated near the wave guide of the lower hybrid antenna of Tore-Supra. This heat flux is due to the energy release during collisions that occur between the component surface and the electrons accelerated by the high frequency field generated by the antenna. Simulations show that the electrons may reach an energy of 2-3 keV and that the heat flux generated in the shield may reach 10 MW/m 2 . In this work a correlation has been established between the local heat flux due to electron impact and the mean electrical field near the antenna: Φ (W/m 2 ) = 4.10 -4 x E -6 (10 5 V/m). It is also shown that the ratio of electrons that reach the shield is roughly not dependent on the value of the mean electrical field. In the hypothesis of a Gaussian distribution of electron initial velocities this ratio is 10%. (A.C.)

  11. Unsteady Flow of Reactive Viscous, Heat Generating/Absorbing Fluid with Soret and Variable Thermal Conductivity

    Directory of Open Access Journals (Sweden)

    I. J. Uwanta

    2014-01-01

    Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.

  12. Experimental study of humidity distribution inside electronic enclosure and effect of internal heating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2016-01-01

    Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in a wide range of temperature and humidity during day and night time periods. Corrosion failures are still a challenge due to the combined effects...... of temperature, humidity and corrosion accelerating species in the atmosphere. Moreover the surface region of printed circuit board assemblies is often contaminated by various aggressive chemical species.This study describes the overall effect of the exposure to severe climate conditions and internal heat cycles...... on the humidity and temperature profile inside typical electronic enclosures. Defined parameters include external temperature and humidity conditions, temperature and time of the internal heat cycle, thermal mass, and ports/openings size. The effect of the internal humidity on electronic reliability has been...

  13. Evaluation of heat transfer tube failure propagation due to sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi

    1978-01-01

    An evaluation was made of heat transfer tube failure propagation due to sodium-water reaction wastage in a sodium heated steam generator, by comparing an empirically derived wastage equation with leak detector responses. The experimental data agreed well with the wastage equation even for different values of distance-to-nozzle diameter ratio, though the formula had been based on wastage data obtained for only one given distance. The time taken for failure propagation was estimated for a prototype steam generator, and compared with the responses characteristics of acoustic detectors and level gages. It was found that there exists a range of leak rate between 0.5 and 100 g/sec, where the level gage can play a useful role in leak detection. The acoustic detector can be expected to respond more rapidly than the cover gas pressure gage, if noise is kept below ten times the value observed in an experimental facility, SWAT-2. (auth.)

  14. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  15. Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat

    International Nuclear Information System (INIS)

    Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Recovering cold energy generated in the regasification process of liquefied natural gas (LNG) can help to improve the energy efficiency of LNG power generation systems, meanwhile, abundant low-grade waste heat can also be exploited from the exhaust gas of gas turbines. This study proposes to apply the thermoacoustic Stirling electric generator to recover LNG cold energy and waste heat simultaneously. A pair of linear alternators is directly coupled with the thermoacoustic loop by replacing the long and bulky resonator completely. Numerical simulation is conducted on the basis of the thermoacoustic theory to characterize and optimize the operations of the system. The effects of the back volumes of linear alternators, feedback tube length and regenerator length on the output performances are investigated. The distributions of key parameters, including pressure, volume flow rate, phase difference, acoustic power and exergy flow, are further studied. One design of the thermoacoustic Stirling electric generator operated with 4 MPa helium gas is capable of generating 2.3 kW electric power with the highest exergy efficiency of 0.253 when the cold and hot ends are maintained at 110 K and 500 K. Performances can be further improved if the conversion efficiency of the linear alternators is further increased. - Highlights: • Thermoacoustic Stirling generator for LNG cold energy and waste heat is proposed. • Linear alternators are directly coupled with the thermoacoustic loop. • Back volume of linear alternators and feedback tube length are critical. • Electric power of 2.3 kW with a highest exergy efficiency of 0.253 is achieved. • Exergy efficiency of acoustic power is around 0.4.

  16. Combining several thermal indices to generate a unique heat comfort assessment methodology

    Directory of Open Access Journals (Sweden)

    Wissam EL Hachem

    2015-11-01

    Full Text Available Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology, surrounding temperatures (heat balance and environmental factors and cognitive treatment (physiology.This paper proposes a combination of different multidisciplinary variables to generate a unique heat comfort assessment methodology. The variables at stake are physiological, biological, and environmental. Our own heat analysis is thoroughly presented and all relevant equations are described. Findings: Most companies are oblivious about potential dangers of heat stress accidents and thus about methods to monitor and prevent them. This methodology enables the company or the concerned individual to conduct a preliminary assessment with minimal wasted resources and time in unnecessary steps whilst providing a guideline for a detailed study with minimal error rates if needed. More so, thermal comfort is an integral part of sound ergonomics practices, which in turn are decisive for the success of any lean six sigma initiative. Research limitations/implications: This methodology requires several full implementations to finalize its design. Originality/value: Most used heat comfort models are inherently uncertain and tiresome to apply. An extensive literature review confirms the need for a uniform assessment methodology that combines the different thermal comfort models such as the Fanger comfort model (PMV, PPD and WGBT since high error rates coupled with tiresome calculations often hinder the thermal assessment process.

  17. Evaluation of Next Generation Nuclear Power Plant (NGNP) Intermediate Heat Exchanger (IHX) Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    E. A. Harvego

    2006-04-01

    This report summarizes results of a preliminary evaluation to determine the operating conditions for the Next Generation Nuclear Plant (NGNP) Intermediate Heat Exchanger (IHX) that will transfer heat from the reactor primary system to the demonstration hydrogen production plant(s). The Department of Energy is currently investigating two primary options for the production of hydrogen using a high temperature reactor as the power source. These options are the High Temperature Electrolysis (HTE) and Sulfur-Iodine (SI) thermochemical hydrogen production processes. However, since the SI process relies entirely on process heat from the reactor, while the HTE process relies primarily on electrical energy with only a small amount of process heat required, the design of the IHX is dictated by the SI process heat requirements. Therefore, the IHX operating conditions were defined assuming 50 MWt is available for the production of hydrogen using the SI process. Three configurations for the intermediate loop were evaluated, including configurations for both direct and indirect power conversion systems. The HYSYS process analysis software was used to perform sensitivity studies to determine the influence of reactor outlet temperatures, intermediate loop working fluids (helium and molten salt), intermediate loop pressures, and intermediate loop piping lengths on NGNP performance and IHX operating conditions. The evaluation of NGNP performance included assessments of overall electric power conversion efficiency and estimated hydrogen production efficiency. Based on these evaluations, recommended IHX operating conditions are defined.

  18. A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine

    Science.gov (United States)

    Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro

    2017-05-01

    In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.

  19. Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover

    Science.gov (United States)

    Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.

    2012-01-01

    The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of

  20. Results of out-of-pile experiments to investigate the possibilities of cooling a core melt with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1976-01-01

    After serious hypothetical reactor accidents, melted core materials with internal heat production can occur in large quantities. A retention of these molten core masses within the containment must be ensured. The knowledge of the heat transport from volume-heated layers is necessary to clarify this matter. (orig./LH) [de

  1. International comparison of energy efficiency of fossil power generation

    International Nuclear Information System (INIS)

    Graus, W.H.J.; Voogt, M.; Worrell, E.

    2007-01-01

    The purpose of this study is to compare the energy efficiency of fossil-fired power generation for Australia, China, France, Germany, India, Japan, Nordic countries (Denmark, Finland, Sweden and Norway aggregated), South Korea, United Kingdom and Ireland, and United States. Together these countries generate 65% of worldwide fossil power generation. Separate benchmark indicators are calculated for the energy efficiency of natural gas, oil and coal-fired power generation, based on weighted-average energy efficiencies. These indicators are aggregated to an overall benchmark for fossil-fired power generation. The weighted average efficiencies are 35% for coal, 45% for natural gas and 38% for oil-fired power generation. The Nordic countries, Japan and United Kingdom and Ireland are found to perform best in terms of fossil power generating efficiency and are, respectively 8%, 8% and 7% above average in 2003. South Korea and Germany are, respectively 6% and 4% above average and the United States and France are, respectively 2% and 4% below average. Australia, China and India perform 7%, 9% and 13%, respectively below average. The energy savings potential and CO 2 emission reduction potential if all countries produce electricity at the highest efficiencies observed (42% for coal, 52% for natural gas and 45% for oil-fired power generation), corresponds to 10 EJ and 860 Mtonne CO 2 , respectively

  2. Steam generator design for solar towers using solar salt as heat transfer fluid

    Science.gov (United States)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  3. Application of Carbon Nanotube Assemblies for Sound Generation and Heat Dissipation

    Science.gov (United States)

    Kozlov, Mikhail; Haines, Carter; Oh, Jiyoung; Lima, Marcio; Fang, Shaoli

    2011-03-01

    Nanotech approaches were explored for the efficient transformation of an electrical signal into sound, heat, cooling action, and mechanical strain. The studies are based on the aligned arrays of multi-walled carbon nanotubes (MWNT forests) that can be grown on various substrates using a conventional CVD technique. They form a three-dimensional conductive network that possesses uncommon electrical, thermal, acoustic and mechanical properties. When heated with an alternating current or a near-IR laser modulated in 0.01--20 kHz range, the nanotube forests produce loud, audible sound. High generated sound pressure and broad frequency response (beyond 20 kHz) show that the forests act as efficient thermo-acoustic (TA) transducers. They can generate intense third and fourth TA harmonics that reveal peculiar interference-like patterns from ac-dc voltage scans. A strong dependence of the patterns on forest height can be used for characterization of carbon nanotube assemblies and for evaluation of properties of thermal interfaces. Because of good coupling with surrounding air, the forests provide excellent dissipation of heat produced by IC chips. Thermoacoustic converters based on forests can be used for thermo- and photo-acoustic sound generation, amplification and noise cancellation.

  4. Numerical research on natural convection in molten salt reactor with non-uniformly distributed volumetric heat generation

    International Nuclear Information System (INIS)

    Qian Libo; Qiu Suizheng; Zhang Dalin; Su Guanghui; Tian Wenxi

    2010-01-01

    Molten salt reactor is one of the six Generation IV systems capable of breeding and transmutation of actinides and long-lived fission products, which uses the liquid molten salt as the fuel solvent, coolant and heat generation simultaneously. The present work presents a numerical investigation on natural convection with non-uniform heat generation through which the heat generated by the fluid fuel is removed out of the core region when the reactor is under post-accident condition or zero-power condition. The two-group neutron diffusion equation is applied to calculated neutron flux distribution, which leads to non-uniform heat generation. The SIMPLER algorithm is used to calculate natural convective heat transfer rate with isothermal or adiabatic rigid walls. These two models are coupled through the temperature field and heat sources. The peculiarities of natural convection with non-uniform heat generation are investigated in a range of Ra numbers (10 3 ∼ 10 7 ) for the laminar regime of fluid motion. In addition, the numerical results are also compared with those containing uniform heat generation.

  5. A novel method of generating and remembering international morse codes

    Digital Repository Service at National Institute of Oceanography (India)

    Charyulu, R.J.K.

    untethered communications have been advanced, despite as S.O.S International Morse Code will be at rescue as an emergency tool, when all other modes fail The details of hte method and actual codes have been enumerated....

  6. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2016-10-08

    Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master-and-slave configuration and the aforementioned internal heat recovery scheme. The present model captures the reversed adsorption/desorption phenomena frequently associated with the unmatched switching periods. Mesoporous silica gel and water vapor emanated from the evaporation of the seawater are employed as the adsorbent and adsorbate pair. The experimental data and investigation for such configurations are reported for the first time at heat source temperatures from 50 °C to 70 °C. The numerical model is validated rigorously and the parametric study is conducted for the performance of the cycle at assorted operation conditions such as hot and cooling water inlet temperatures and the cycle times. The specific daily water production (SDWP) of the present cycle is found to be about 10 m/day per tonne of silica gel for the heat source temperature at 70 °C. Performance comparison is conducted for various types of adsorption desalination cycles. It is observed that the AD cycle with the current configuration provides superior performance whilst is operational at unprecedentedly low heat source temperature as low as 50 °C.

  7. PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)

    Science.gov (United States)

    2015-09-01

    The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.

  8. Inquiry on the valorisation of heat produced by methanization with co-generation in France. Energy and territory: Valorisation of heat produced by methanization

    International Nuclear Information System (INIS)

    Bazin, Florian; David, Laura; Heuraux, Thalie; Jeziorny, Thibaud; Massazza, Michael; Mosse, Noemie; Nguyen Dai, Kim Yen; Pruvost, Paul; Regimbart, Amelie; Rogee, Pierre-Emmanuel; Roy, Samuel; Segret, Emilien

    2014-01-01

    A leaflet first proposes graphs which illustrate the valorisation of heat produced by methanization with co-generation in France: material and methods, farm characterisation, plant sources, valorisation modes. The second document proposes detailed and discussed presentations of the various involved processes. Contributions address methanization as a whole, valorisation of heat produced by co-generation through heating of agricultural and domestic buildings or through digestate dehydration, digestate hygienisation, and other types of valorisation such as fodder drying, cereal drying, wood drying, compost drying, fabrication of rape seed, greenhouse crops, cultures of micro algae, and mushroom farming

  9. Effect of thermal radiation on free convection flow and heat transfer over a truncated cone in the presence of pressure work and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Elbashbeshy E.M.A.

    2016-01-01

    Full Text Available Effect of heat generation or absorption and thermal radiation on free convection flow and heat transfer over a truncated cone in the presence of pressure work is considered. The governing boundary layer equations are reduced to non-similarity boundary layer equations and solved numerically by using Mathematica technique. Comparisons with previously published work on special cases of the problem are performed and the results are found to be in excellent agreement. The solutions are presented in terms of local skin friction, local Nusselt number, velocity and temperature profiles for values of Prandtl number, pressure work parameter, radiation parameter and heat generation or absorption parameter.

  10. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  11. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  12. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown dur...

  13. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.L.; Yuecel, A.; Nadkarny, S.

    1988-05-01

    The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.

  14. Book of short papers : International symposium on convective heat and mass transfer in sustainable energy conv - 09. Volume 2

    International Nuclear Information System (INIS)

    2009-01-01

    This book contains the short papers from the International Symposium on convective heat and Mass Transfer in sustainable Energy ( conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer

  15. Book of short papers : International symposium on convective heat and mass transfer in sustainable energy Conv - 09. Volume 1

    International Nuclear Information System (INIS)

    2009-01-01

    This book contains the short papers from the International Symposium on Convective heat and Mass Transfer in sustainable Energy ( Conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer

  16. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kasmani, Ruhaila Md; Bhuvaneswari, M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sivasankaran, S.; Siri, Zailan [Institute of Mathematical Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  17. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods

    International Nuclear Information System (INIS)

    Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.

    2015-01-01

    In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.

  18. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  19. Constructal design and optimization of a dual pressure heat recovery steam generator

    International Nuclear Information System (INIS)

    Mehrgoo, Morteza; Amidpour, Majid

    2017-01-01

    Optimum design of the Heat Recovery Steam Generator (HRSG) has noticeable effects on the thermal efficiency of the combined cycle power plants. In this paper, constructal design of a dual pressure HRSG is proposed. It is shown how to simultaneously optimize the operating and geometric design parameters of the HRSG by using the constructal theory. Considering the minimum total entropy generation as objective function, optimum parameters of the HRSG unit are derived by using the genetic algorithm method under the fixed total volume condition. The optimized total volume, aspect ratios of the units, the number of tubes through the length and width, the heat transfer area of the HRSG and thermodynamic properties are significant features of the flow configuration resulted from constructal design. Optimal aspect ratios of the units are correlated to the pressure and temperature and effects of these variables on the main geometric characteristics of HRSG are obtained. The results show that there is an optimum value for total volume of the HRSG and most of the overall heat transfer coefficient (UA) are allocated to the evaporators. Also, number of the tubes in the longitudinal direction are fewer than the number of tubes in the transverse direction. - Highlights: • Constructal design of a dual pressure heat recovery steam generator is introduced. • The main focus of design is on the physical configuration of the HRSG. • The Genetic Algorithm is used to optimize the exergy destruction of unit. • Optimal aspect ratios of the units are correlated to pressure and temperature. • Optimum value for the total volume of HRSG is derived.

  20. The Next Generation Information Infrastructure for International Trade

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Gal, Uri; Bjørn-Andersen, Niels

    2011-01-01

    Regulators and actors in international trade are facing a difficult challenge of increasing control and security while at the same time lowering the administrative burden for traders. As a tentative response, the European Commission has introduced the concept of “trusted traders”: certified traders...... that are in control of their business. Trusted traders are entitled to trade facilitations, faster border crossing, and fewer physical inspections. To enable the use of trusted traders, changes are required to the information infrastructure (II) of international trade. This article complements existing works on e......-Government interoperability by a theoretically driven approach with theoretical development of the II concept and how II can be modified as additional focus. Following the principles of IS design research, this paper presents a design proposition for the II of international trade. Using theories of II development and change...

  1. The Next Generation Information Infrastructure for International Trade

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Gal, Uri; Bjørn-Andersen, Niels

    2011-01-01

    Regulators and actors in international trade are facing a difficult challenge of increasing control and security while at the same time lowering the administrative burden for traders. As a tentative response, the European Commission has introduced the concept of “trusted traders”: certified traders......-Government interoperability by a theoretically driven approach with theoretical development of the II concept and how II can be modified as additional focus. Following the principles of IS design research, this paper presents a design proposition for the II of international trade. Using theories of II development and change...

  2. Test and evaluation of Alco/BLH prototype sodium-heated steam generator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, C.J.; Auge, L.J.; Cho, S.M.; Hanna, R.W.; Prevost, J.R.; Steger, N.A.; Wagner, R.K.

    1971-01-31

    A 30-Mwt prototype sodium-to-sodium intermediate heat exchanger and a 30-Mwt prototype sodium-heated steam generator were tested in combined operation in its Sodium Components Test Installation. This report contains the results of test and evaluation of the steam generator. During plant performance tests, performance degradation was observed, which resulted in the initiation of a diagnostic test series. This test series revealed that under certain operating conditions, the thermohydraulic characteristic of the steam generator changed either suddenly or gradually, resulting in overall performance degradation. A structural failure, requiring retirement of the unit, occurred before the diagnostic test series and analytical support effort were completed. This report describes the thermohydraulic and structural performance, including the structural failures, and related evaluation analyses of the Alco/BLH prototype steam generator performed prior to termination of the test and evaluation program. In addition, the report presents a post-test examination plan to obtain data that could possibly explain the cause of performance anomalies and structural failures experienced during testing.

  3. A critical evalluation of internal revenue generating efforts of some ...

    African Journals Online (AJOL)

    In a bid to enhance improvement of local government internal revenue efforts, the federal government has embarked on several policies some of these include; the creation of more local government areas from 96 divisions in 1963 to 774 local government areas in 1993. The local government reform of 1976 and the use of ...

  4. Expanding Horizons--Developing the Next Generation of International Professionals

    Science.gov (United States)

    Barry, Tania; Garcia-Febo, Loida

    2012-01-01

    Today's global library village includes overseas collaboration between colleagues in various continents seeking to provide effective forums for new librarians. This paper features lessons learned as well as recommendations for colleagues undertaking events involving international collaboration. These are based on the authors' experiences whilst…

  5. Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit

    International Nuclear Information System (INIS)

    He, Wei; Su, Yuehong; Riffat, S.B.; Hou, JinXin; Ji, Jie

    2011-01-01

    Highlights: → An analytical model of SHP-TEG unit for the condition of constant solar irradiation. → Simulation of maximum power output and conversion efficiency of SHP-TEG. → Design optimization of SHP-TEG. -- Abstract: This paper describes a solar heat pipe thermoelectric generator (SHP-TEG) unit comprising an evacuated double-skin glass tube, a finned heat pipe and a TEG module. The system takes the advantage of heat pipe to convert the absorbed solar irradiation to a high heat flux to meet the TEG operating requirement. An analytical model of the SHP-TEG unit is presented for the condition of constant solar irradiation, which may lead to different performance characteristics and optimal design parameters compared with the condition of constant temperature difference usually dealt with in other studies. The analytical model presents the complex influence of basic parameters such as solar irradiation, cooling water temperature, thermoelement length and cross-section area and number of thermoelements, etc. on the maximum power output and conversion efficiency of the SHP-TEG. Simulation based on the analytical model has been carried out to study the performance and design optimization of the SHP-TEG.

  6. Heat generation in lithium-thionyl chloride and lithium-SO2 cells

    Science.gov (United States)

    Cohen, R.; Melman, A.; Livne, N.; Peled, E.

    1992-09-01

    The effects of current density, temperature, depth of discharge (DOD), and storage on the heat generation rate and faradaic efficiency of Li/Tc and Li/SO2 cells have been determined. Several C-size commercial cells from different manufacturers have been tested. The faradaic efficiency for both systems was found to be very high, typically 96-100 percent even at high current density and high temperatures (55 C). It does not change much with DOD and decreases only slightly with the increase of current density and high temperature (tested up to 4.5 mA/sq cm at 50 percent DOD and 55 C). A performance degradation problem was found for some Li/TC cells. The heat factor, the ratio between the useful electric power and the thermal power generated by the cell, is about the same for fresh Li/TC cells and Li/SO2 cells. However, some Li/TC cells stored for 3 years showed a poor heat factor. It was confirmed that the maximum thermoneutral voltage for the Li/TC and Li/SO2 cells is 3.80 and 3.22 V, respectively.

  7. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  8. Numerical study of forced convection in a vertical channel filled with heat-generating porous medium

    International Nuclear Information System (INIS)

    Yang Jian; Zeng Min; Wang Qiuwang; Yan Xiao

    2009-01-01

    Steady laminar non-Darcian forced convection in a vertical channel filled with heat-generating porous medium is studied numerically by using the local thermal non-equilibrium model. The heat source generated by solid framework is uniform and kept constant; and the temperature of vertical walls is kept at constant temperature T 0 . The flow inside porous medium is modelled by using Forchheimer-Brinkman extended Darcy model. The effects of Reynolds number (0.5 ≤Re ≤ 50), effective fluid-to-solid thermal conductivity ratio Γ(0.001 ≤ Γ ≤ 1.0)and Darcy number (10 -3 ≤ Da ≤ 10 -5 ) are analyzed in detail. It is found that, the effects of Re, Γ and Da are remarkable; at low values of Re and Γ, and at high value of Da, the effect of local thermal non-equilibrium is significant and the local thermal non-equilibrium model should be adopted for predicting the heat transfer characteristics exactly. (authors)

  9. Thermoelectric Generators on Satellites—An Approach for Waste Heat Recovery in Space

    Directory of Open Access Journals (Sweden)

    Marian von Lukowicz

    2016-07-01

    Full Text Available Environmental radiation in space (from the Sun, etc. and operational thermal loads result in heat flows inside the structure of satellites. Today these heat flows remain unused and are collected, transported to a radiator and emitted to space to prevent the satellite from overheating, but they hold a huge potential to generate electrical power independently of solar panels. Thermoelectric generators are a promising approach for such applications because of their solid state characteristics. As they do not have any moving parts, they do not cause any vibrations in the satellite. They are said to be maintenance-free and highly reliable. Due to the expected small heat flows modern devices based on BiTe have to be considered, but these devices have no flight heritage. Furthermore, energy harvesting on space systems is a new approach for increasing the efficiency and reliability. In this paper, different systems studies and applications are discussed based some experimental characterisation of the electrical behaviour and their dependence on thermal cycles and vibration.

  10. Heat stress attenuates new cell generation in the hypothalamus: a role for miR-138.

    Science.gov (United States)

    Kisliouk, T; Cramer, T; Meiri, N

    2014-09-26

    The anterior hypothalamus (Ant Hyp) of the brain serves as the main regulator of numerous homeostatic functions, among them body temperature. Fine-tuning of the thermal-response set point during the critical postnatal sensory-developmental period involves neuronal network remodeling which might also be accompanied by alterations in hypothalamic cell populations. Here we demonstrate that heat stress during the critical period of thermal-control establishment interferes with generation of new cells in the chick hypothalamus. Whereas conditioning of the 3-day-old chicks under high ambient temperatures for 24h diminished the number of newborn cells in anterior hypothalamic structures 1 week after the treatment, mild heat stress did not influence the amount of new cells. Phenotypic analysis of these newborn cells indicated a predominant decrease in non-neuronal cell precursors, i.e. cells that do not express doublecortin (DCX). Furthermore, heat challenge of 10-day-old previously high-temperature-conditioned chicks abolished hypothalamic neurogenesis and significantly decreased the number of cells of non-neural origin. As a potential regulatory mechanism for the underlying generation of new cells in the hypothalamus, we investigated the role of the microRNA (miRNA) miR-138, previously reported by us to promote hypothalamic cell migration in vitro and whose levels are reduced during heat stress. Intracranial injection into the third ventricle of miR-138 led to an increase in the number of newborn cells in the Ant Hyp, an effect which might be partially mediated by inhibition of its direct target reelin. These data demonstrate the role of ambient temperature on the generation of new cells in the hypothalamus during the critical period of thermal-control establishment and highlight the long-term effect of severe heat stress on hypothalamic cell population. Moreover, miRNAs, miR-138 in particular, can regulate new cell generation in the hypothalamus. Copyright © 2014 IBRO

  11. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

    2004-01-01

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by

  12. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  13. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    Science.gov (United States)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  14. Testing and evaluation of doubly impacted simulant-fueled Milliwatt Generator heat sources

    International Nuclear Information System (INIS)

    Teaney, P.E.; Cartmill, W.B.; Wise, R.L.

    1982-01-01

    As part of the Milliwatt Generator (MWG) Program, 12 simulant-fueled heat sources were fabricated double impact tested, and evaluated at Mound. Ten assemblies were tested at approx. 80 m/sec, and two were tested at approx. 105 m/sec. None of the strength members were breached; therefore, no fuel would have been released as a result of double impacts at the velocities and orientations tested at 450 0 C. There was little difference in results for duplicate tests conducted approx. 80 and approx. 105 m/sec. Ten units contained liners that were embrittled prior to testing. This resulted in cracks in some of the liner that would not have occurred in normally fueled heat sources

  15. Testing and evaluation of doubly impacted simulant-fueled Milliwatt Generator heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Teaney, P.E.; Cartmill, W.B.; Wise, R.L.

    1982-04-09

    As part of the Milliwatt Generator (MWG) Program, 12 simulant-fueled heat sources were fabricated double impact tested, and evaluated at Mound. Ten assemblies were tested at approx. 80 m/sec, and two were tested at approx. 105 m/sec. None of the strength members were breached; therefore, no fuel would have been released as a result of double impacts at the velocities and orientations tested at 450/sup 0/C. There was little difference in results for duplicate tests conducted approx. 80 and approx. 105 m/sec. Ten units contained liners that were embrittled prior to testing. This resulted in cracks in some of the liner that would not have occurred in normally fueled heat sources.

  16. Assessment of NJOY generated neutron heating factors based on JEF/EFF-1

    International Nuclear Information System (INIS)

    Vontobel, P.

    1990-01-01

    Using the NJOY nuclear data processing system, a coupled neutron-photon multigroup MATXS-formatted nuclear data library was generated based on the files JEF/EFF-1. The neutron heating factors contained in this VITAMIN-J structured library are compared with those of MACLIB-IV. The main differences are due to the included decay heat of shortlived reaction products in MACKLIB-IV and/or due to too high/low photon production data of some JEF/EFF-1 isotopes. It is recommended to check carefully the energy balance of new evaluations containing photon production data. How this can be done with the help of the NJOY HEATR module is shown in an example. (author) 35 figs., 9 refs

  17. Does the internet generate economic growth, international trade, or both?

    OpenAIRE

    Meijers, H.H.M.

    2012-01-01

    Recent cross country panel data studies find a positive impact of internet use on economic growth and a positive impact of internet use on trade. The present study challenges the first finding by showing that internet use does not explain economic growth directly in a fully specified growth model. In particular openness to international trade variables seems to be highly correlated with internet use and the findings in the literature that internet use causes trade is confirmed here, suggestin...

  18. G20: Engaging with International Organizations to Generate Growth

    Directory of Open Access Journals (Sweden)

    Marina Larionova

    2017-08-01

    Full Text Available Born in response to economic and financial crises which existing institutions were unable to address adequately, the G20 transformed from a crisis management group into the premier forum for international economic cooperation. Like its predecessor, the G7 (which was set up in 1975, and BRICS (established in 2009, G20 is an informal club or summit institution. To ensure continuity, legitimacy and efficiency in fulfilling their global governance functions of deliberation, direction-setting, decision-making, delivery and the development of global governance, the G20 members engage other international organizations. It is hypothesized that to maximize benefits from its engagement with international organizations, the G20 resorts to a combination of the “catalyst”, “core group” and “parallel treatment” approaches exercised by summit institutions. These include exerting an influence in promoting changes to international organizations through endorsement or stimulus, compelling them to reform, imparting a new direction by giving a lead that the other organizations would follow, and creating original mechanisms, working in parallel with existing institutions. The article tests this assumption. To trace the dynamics of G20 engagement with multilateral organizations and identify preferred models across the presidencies and policy areas, the analysis is carried out within the rational choice institutionalist paradigm, drawing on the quantitative and qualitative analysis of documents adopted by the G20. Findings from the study indicate that the intensity of the G20 engagement with the IOs is very high and G20 mostly resorts to a combination of the catalyst and core group approaches, though the pattern depends on the policy area, the IOs and the presidency agenda. The intensity of G20 engagement with the IMF, Financial Stability Board, World Bank, and Organization for Economic Co-operation and Development by far exceeds the intensity of its

  19. A study of cloud-generated radiative heating and its generation of available potential energy. I - Theoretical background. II - Results for a climatological zonal mean January

    Science.gov (United States)

    Stuhlmann, R.; Smith, G. L.

    1988-01-01

    The effect of radiative heating and cooling by clouds on the available potential energy (APE) is theoretically discussed. It is shown that the cloud radiative contribution to the generation of APE is determined by the net cloud radiative heating and the efficiency factor, which is a function of the temperature distribution of the atmosphere. Results are presented for low and middle cloud effects for three atmospheric layers. Cloud radiative heating is found to be a single function of cloud optical thickness for all classes designed in terms of cloud top heights and optical thickness. Low clouds at low latitudes destroy APE an midclouds generate APE. A concept is developed to relate the cloud radiative heating to cloud heights and optical depths. Cloud-generated radiative heating is computed for January zonal mean conditions for low and midclouds. For both cases, the strongest influence is found in the low troposphere, with marked differences in signs and magnitudes. At extratropical latitudes, both cloud classes generate net radiative cooling. In the tropics, the effect of low cloud changes from net cooling to the net heating as the optical thickness increases, and midclouds cause net heating. A mechanism is described whereby this dependence produces a strong positive feedback effect on the development of SST anomalies in the tropical oceans.

  20. Characterization of elevated temperature properties of heat exchanger and steam generator alloys

    International Nuclear Information System (INIS)

    Wright, J.K.; Carroll, L.J.; Cabet, C.; Lillo, T.M.; Benz, J.K.; Simpson, J.A.; Lloyd, W.R.; Chapman, J.A.; Wright, R.N.

    2012-01-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 °C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 °C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 °C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 and Alloy 800H has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep–fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep–fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  1. Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys

    International Nuclear Information System (INIS)

    Wright, J.K.; Carroll, L.J.; Benz, J.K.; Simpson, J.A.; Wright, R.N.; Lloyd, W.R.; Chapman, J.A.

    2010-01-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. In general dynamic strain aging is observed to begin at higher temperatures and serrated flow persists to higher temperatures in Alloy 617 compared to Alloy 800H. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. The role of dynamic strain aging in the creep-fatigue behavior of Alloy 617 at temperatures of 800 C and above has also been examined in detail. Serrated flow is found to persist in cyclic stress-strain curves up to nearly the cycle to failure in some temperature and strain regimes. Results of those experiments and implications for creep-fatigue testing protocols will be described.

  2. Calculation and analysis of generator limiting regimes with respect to stator end core heating

    Directory of Open Access Journals (Sweden)

    Kostić Miloje

    2015-01-01

    Full Text Available A new simplified procedure for defining the limiting operating regimes on the generator capability curve, with respect to stator end core heating, is proposed and described in this paper. First of all, a simplified analysis of axial flux leakage that penetrates into the end plates of the stator is carried out and the corresponding power losses are calculated. Then the analysis of measured point temperature increases over the stator end core, and a qualitative and quantitative overview of the effects, are presented. A simplified procedure for defining the limiting regime with regard to the heating stator end core, which is illustrated for the case of an operating diagram for a given generator of apparent power of 727 MVA (B2 is also described. The given limiting line constructed using this method is similar to the appropriate line constructed on the basis of complex and lengthy factory and on-site tests performed by the manufacturer and the user. According to the results and the check, the proposed method has been proved and the application of the simplified procedure can be recommended for use along with other procedures, at least when it comes to similar synchronous generators in Serbia's Electric Power Industry.

  3. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  4. Biomass Gasification for Power Generation Internal Combustion Engines. Process Efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia-Faure, Luis; Oliva-Ruiz, Luis; Pajarín-Rodríguez, Juan; Revilla-Suarez, Dennis

    2016-01-01

    Biomass is a renewable energy sources worldwide greater prospects for its potential and its lower environmental impact compared to fossil fuels. By different processes and energy conversion technologies is possible to obtain solid, liquid and gaseous fuels from any biomass.In this paper the evaluation of thermal and overall efficiency of the gasification of Integral Forestry Company Santiago de Cuba is presented, designed to electricity generation from waste forest industry. The gasifier is a downdraft reactor, COMBO-80 model of Indian manufacturing and motor (diesel) model Leyland modified to work with producer gas. The evaluation was conducted at different loads (electric power generated) of the motor from experimental measurements of flow and composition of gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25 %. (author)

  5. Effect of irrigation and stainless steel drills on dental implant bed heat generation.

    Science.gov (United States)

    Bullon, B; Bueno, E F; Herrero, M; Fernandez-Palacin, A; Rios, J V; Bullon, P; Gil, F J

    2015-02-01

    The objective of this study is assessing the influence of the use of different drill types and external irrigation on heat generation in the bone. In-vitro study to compare two different sequences for implant-bed preparation by means of two stainless steels: precipitation-hardening stainless steel (AISI 420B) (K drills), and martensitic stainless steel (AISI 440) (S drills). Besides, the drilled sequences were realized without irrigation, and with external irrigation by means of normal saline solution at room temperature. The study was realized on bovine ribs using: K without irrigation (KSI) and with irrigation (KCI) and S without irrigation (SSI) and with irrigation (SCI) with five drills for each system. Each drill was used 100 times. Bone temperature was measured with a thermocouple immediately after drilled. Average bone temperature with irrigation was for K drills 17.58±3.32 °C and for S drills 16.66±1.30 °C. Average bone temperature without irrigation was for K drills 23.58±2.94 °C and for S drills 19.41±2.27 °C. Statistically significant differences were found between K without irrigation versus S with irrigation and K with irrigation (pirrigated groups (K=5.6%, S=5.1% vs. without irrigation groups K=9.4%, S=9.3%). The first K drill generated more heat than the remaining drills. No significant differences were detected among temperature values in any of the analyzed drill groups. Unlike irrigation, drill use and type were observed to have no significant impact on heat generation. The stainless steel AISI 420B presents better mechanical properties and corrosion resistance than AISI440.

  6. Various bio-mechanical factors affecting heat generation during osteotomy preparation: A systematic review.

    Science.gov (United States)

    Chauhan, Chirag J; Shah, Darshana N; Sutaria, Foram B

    2018-01-01

    As implant site preparation and bone are critical precursors to primary healing, thermal and mechanical damage to the bone must be minimized during the preparation of the implant site. Moreover, excessively traumatic surgery can adversely affect the maturation of bone tissue at the bone/implant interface and consequently diminish the predictability of osseointegration. So, this study was carried out to evaluate the various biological and mechanical factors responsible for heat generation during osteotomy site preparation to reduce the same for successful osseointegration of dental implants. A broad search of the dental literature in PubMed added by manual search was performed for articles published between 1992 and December 2015. Various bio-mechanical factors related to dental implant osteotomy preparation such as dental implant drill designs/material/wear, drilling methods, type of irrigation, and bone quality were reviewed. Titles and abstracts were screened and articles which fulfilled the inclusion criteria were selected for a full-text reading. The initial database search yielded 123 titles, of which 59 titles were discarded after reading the titles and abstracts, 30 articles were again excluded based on inclusion and exclusion criteria, and finally 34 articles were selected for data extraction. Many biological and mechanical factors responsible for heat generation were found. Literatures of this review study have indicated that there are various bio-mechanical reasons, which affect the temperature rise during osteotomy and suggest that the amount of heat generation is a multifactorial in nature and it should be minimized for better primary healing of the implant site.

  7. Various bio-mechanical factors affecting heat generation during osteotomy preparation: A systematic review

    Directory of Open Access Journals (Sweden)

    Chirag J Chauhan

    2018-01-01

    Full Text Available Background: As implant site preparation and bone are critical precursors to primary healing, thermal and mechanical damage to the bone must be minimized during the preparation of the implant site. Moreover, excessively traumatic surgery can adversely affect the maturation of bone tissue at the bone/implant interface and consequently diminish the predictability of osseointegration. So, this study was carried out to evaluate the various biological and mechanical factors responsible for heat generation during osteotomy site preparation to reduce the same for successful osseointegration of dental implants. Study Design: A broad search of the dental literature in PubMed added by manual search was performed for articles published between 1992 and December 2015. Various bio-mechanical factors related to dental implant osteotomy preparation such as dental implant drill designs/material/wear, drilling methods, type of irrigation, and bone quality were reviewed. Titles and abstracts were screened and articles which fulfilled the inclusion criteria were selected for a full-text reading. Results: The initial database search yielded 123 titles, of which 59 titles were discarded after reading the titles and abstracts, 30 articles were again excluded based on inclusion and exclusion criteria, and finally 34 articles were selected for data extraction. Many biological and mechanical factors responsible for heat generation were found. Conclusion: Literatures of this review study have indicated that there are various bio-mechanical reasons, which affect the temperature rise during osteotomy and suggest that the amount of heat generation is a multifactorial in nature and it should be minimized for better primary healing of the implant site.

  8. Numerical investigation of heat transfer and entropy generation of laminar flow in helical tubes with various cross sections

    International Nuclear Information System (INIS)

    Kurnia, Jundika C.; Sasmito, Agus P.; Shamim, Tariq; Mujumdar, Arun S.

    2016-01-01

    Highlights: • Heat transfers of helical coiled tube with several cross section profiles are evaluated. • Helical tubes offer higher heat transfer and lower entropy generation. • Square cross-section generates the highest entropy, followed by ellipse and circular. • Study could serve as a guideline in designing an efficient helical tube heat exchanger. - Abstract: This study evaluates heat transfer performance and entropy generation of laminar flow in coiled tubes with various cross-sections geometries i.e. circular, ellipse and square, relatives to the straight tubes of similar cross-sections. A computational fluid dynamics model is developed and validated against empirical correlations. Good agreement is obtained within range of Reynolds and Dean numbers considered. Effect of geometry, wall temperature, Reynolds number and heating/cooling mode were examined. To evaluate the heat transfer performance of the coiled tube configurations, a parameter referred as Figure of Merit (FoM) is defined as the ratio heat transfer rate to the required pumping power. In addition, exergy analysis is carried out to examine the inefficiency of the coiled tube configurations. The results indicate that coiled tubes provide higher heat transfer rate. In addition, it was found to be more efficient as reflected by lower entropy generation as compared to straight tubes. Among the studied cross-section, square cross-section generates the highest entropy, followed by ellipse and circular counterpart. Entropy production from heat transfer contribution is two order-of-magnitude higher than that of entropy contribution from viscous dissipation. Cooling case produces slightly higher entropy than heating counterpart. Finally, this study can provide practical guideline to design more efficient coiled heat exchanger.

  9. Design of reactor protection systems for HTR plants generating electric power and process heat problems and solutions

    International Nuclear Information System (INIS)

    Craemer, B.; Dahm, H.; Spillekothen, H.G.

    1982-06-01

    The design basis of the reactor protection system (RPS) for HTR plants generating process heat and electric power is briefly described and some particularities of process heat plants are indicated. Some particularly important or exacting technical measuring positions for the RPS of a process heat HTR with 500 MWsub(th) power (PNP 500) are described and current R + D work explained. It is demonstrated that a particularly simple RPS can be realized in an HTR with modular design. (author)

  10. The effect of the removal of steam generator tube ID deposits of heat transfer

    International Nuclear Information System (INIS)

    Klimas, S.J.; Miller, D.G.; Semmler, J.; Turner, C.W.

    1998-12-01

    The thermal resistance of boiler primary-side tube deposits from the Gentilly-2 Nuclear Generating Station (Hydro-Quebec) was evaluated by an experimental comparison of the heat-transfer rates between fouled samples and identical, factory-new, 'clean' tubing. The deposits were subsequently removed using either a chemical decontamination process (CAN-DEREM Plus) or a mechanical cleaning process (Siemens SIVABLAST) in two stages. After each removal, the thermal resistance of the remaining deposit was remeasured. The 90- to 150-μm-thick deposits on the inside diameter of steam generator cold-leg tubes were found to pose significant resistance to heat transfer (0.05 to 0.06 m 2 ·K/kW at 210 degrees C). However, the 10- to 30-μm-thick dense layers remaining on the tubes after the decontamination were found to have no measurable effect on the heat transfer. The thin, 2-μm tube deposit on the steam generator hot leg slightly enhanced heat transfer. The measured thermal resistance results in a calculated thermal conductivity of 1.5 W/m·K for the 90-μm-thick deposit. The 150-μm-thick deposits were found to consist of two layers: an outer surface layer having an average porosity of 50% and a conductivity of 2.3 W/m·K, and an inner layer having an average porosity of 5% and a conductivity of >3.0 W/m·K. The previous best estimate of the thermal conductivity was 1.4 W/m.K for the porous magnetite deposits that had formed with a thickness <90 μm on the primary side of nuclear steam generators. This work confirms this number, but also demonstrates that it is applicable only for porous, unconsolidated deposits. The conductivity increases for thicker deposits because of increasing deposit consolidation, particularly at the innermost layer adjacent to the tube metal. (author)

  11. The effect of the removal of steam generator tube ID deposits of heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Klimas, S.J.; Miller, D.G.; Semmler, J.; Turner, C.W

    1998-12-01

    The thermal resistance of boiler primary-side tube deposits from the Gentilly-2 Nuclear Generating Station (Hydro-Quebec) was evaluated by an experimental comparison of the heat-transfer rates between fouled samples and identical, factory-new, 'clean' tubing. The deposits were subsequently removed using either a chemical decontamination process (CAN-DEREM Plus) or a mechanical cleaning process (Siemens SIVABLAST) in two stages. After each removal, the thermal resistance of the remaining deposit was remeasured. The 90- to 150-{mu}m-thick deposits on the inside diameter of steam generator cold-leg tubes were found to pose significant resistance to heat transfer (0.05 to 0.06 m{sup 2}{center_dot}K/kW at 210 degrees C). However, the 10- to 30-{mu}m-thick dense layers remaining on the tubes after the decontamination were found to have no measurable effect on the heat transfer. The thin, 2-{mu}m tube deposit on the steam generator hot leg slightly enhanced heat transfer. The measured thermal resistance results in a calculated thermal conductivity of 1.5 W/m{center_dot}K for the 90-{mu}m-thick deposit. The 150-{mu}m-thick deposits were found to consist of two layers: an outer surface layer having an average porosity of 50% and a conductivity of 2.3 W/m{center_dot}K, and an inner layer having an average porosity of 5% and a conductivity of >3.0 W/m{center_dot}K. The previous best estimate of the thermal conductivity was 1.4 W/m.K for the porous magnetite deposits that had formed with a thickness <90 {mu}m on the primary side of nuclear steam generators. This work confirms this number, but also demonstrates that it is applicable only for porous, unconsolidated deposits. The conductivity increases for thicker deposits because of increasing deposit consolidation, particularly at the innermost layer adjacent to the tube metal. (author)

  12. Numerical Simulation on Heat Transfer Performance of Silicon Carbide/ Nitrate Composite for Solar Power Generation

    OpenAIRE

    Zhou, Ruixin; Chen, Xiaole; Lu, Yang; Guo, Bei

    2016-01-01

    KNO3 was used as the phase change material (PCM), but its thermal conductivity is too low to transfer heat between the PCM and conduction oil efficiently. In this thesis, on the basis of the previous studies (Yong Li, 2015), the solar power generation efficiency is enhanced with high temperature interval (280℃—400℃), and the new composite which are composed by the SiC honeycomb (SCH) frame and infiltrated KNO3 is simulated by using Fluent software. The results show that the new composit...

  13. Nonlinear thermal interaction between a heat-generating particulate bed and a solid

    International Nuclear Information System (INIS)

    Cheung, F.B.; Stein, R.P.; Epstein, M.; Gabor, J.D.; Bingle, J.D.

    1980-01-01

    The process of combined conduction and radiation in a large, heat-generating, dry particulate bed in sudden contact with a semi-infinite solid is studied analytically by a successive approximation method and numerically by a finite difference method. The transient behavior of the system, in particular, the behavior of the temperature at the particulate bed-solid interface, is obtained as a function of two dimensionless controlling parameters. Also obtained are the conditions leading to incipient melting of the system. Based upon the finite difference solution, the present approximate method, which is shown to be rather simple and convenient to use, is found to yield rapidly converging and sufficiently accurate results

  14. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  15. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  16. Dynamic heat transfer performance study of steam generator based on distributed parameter method

    International Nuclear Information System (INIS)

    Zhang, Guolei; Zhang, Yu; Yang, Yuanlong; Li, Yanjun; Sun, Baozhi

    2014-01-01

    Highlights: • One-dimensional mathematical model is built based on the distributed parameter method. • Dynamic simulation program is applied based on MATLAB using Runge–Kutta method. • The variations of primary and secondary parameters with power and space is discussed. • The highest temperature positions for the u-tube inner and outer wall are obtained. - Abstract: Using the steam generator of Daya Bay nuclear power plant as prototype, a one-dimensional dynamic mathematical model of nuclear-powered steam generator is built addressing the primary side fluid, the secondary side fluid and the inner and outer walls of the u-tubes based on distributed parameter method and reasonable assumptions. A dynamic simulation program is developed based on MATLAB using Runge–Kutta method and dynamic heat transfer performance simulation of steam generator is conducted under varying power. The calculation results show that the outlet temperature of primary side, the vapor saturation temperature and the mass fraction of secondary side agree with actual operating data of Daya Bay Nuclear Power Plant. Outer wall temperature at interface between parallel flow preheating-section and boiling-section is the highest. It provides a theoretical basis for the analysis of steam generator actual operating condition to build a one-dimensional mathematical model of steam generator based on the distributed parameter method and apply in simulation successfully

  17. Optimum design of heat exchanger for environmental control system of an aircraft using entropy generation minimization (EGM) technique

    CSIR Research Space (South Africa)

    Bello-Ochende, T

    2016-07-01

    Full Text Available In this paper, the geometrical parameters of two heat exchangers in a typical commercial aircraft’s ECS system are designed using the Entropy Generation Minimization (EGM) design technique. The irreversibilities of all the thermodynamic devices...

  18. A new approach to the joined estimation of the heat generated by a semicontiunuous emulsion polymerization Qr and the overall heat exchange parameter UA

    Directory of Open Access Journals (Sweden)

    Freire F. B.

    2004-01-01

    Full Text Available This work is concerned with the coupled estimation of the heat generated by the reaction (Qr and the overall heat transfer parameter (UA during the terpolymerization of styrene, butyl acrylate and methyl methacrylate from temperature measurements and the reactor heat balance. By making specific assumptions about the dynamics of the evolution of UA and Q R, we propose a cascade of observers to successively estimate these two parameters without the need for additional measurements of on-line samples. One further aspect of our approach is that only the energy balance around the reactor was employed. It means that the flow rate of the cooling jacket fluid was not required.

  19. Electronic Commerce – An International Phenomenon, Generating Commercial Litigations

    Directory of Open Access Journals (Sweden)

    Angelica Roşu

    2012-05-01

    Full Text Available Although the e-commerce boom of the past few years has produced plenty of satisfied e-shoppersand successful Web-based companies, many consumers and businesses are left wondering where they can goto resolve their online disputes. The legal system (such as the court system and classical arbitration cannoteffectively respond to the challenges posed by conducting electronic commerce and this paper is proposed toanalyse the types of disputes that can arise from those e-commerce operations. The aim of this approach isrepresented by our attempt to explain why conflict resolution cannot be reasonably accomplished usingtraditional legal system and consequently the measures that have been taken by the international bodies tofacilitate consumers' right to a fair and effective trial services.

  20. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  1. Method of controlling steam temperature of a fluid heating separation type steam generator

    International Nuclear Information System (INIS)

    Iwashita, Tsuyoshi; Monta, Kazuo.

    1975-01-01

    Object: To keep constant the stability and normal deviation in the entire control system by connecting an element of variable gain substantially in proportion to a preset load in series with the ordinary PID type control system. Structure: Changes in steam temperature at an evaporator outlet due to changes in sodium flow rate are detected by a thermocouple. The resultant detection signal is compared with a preset value of the steam generator output temperature, and a portion proportional to the difference between them is added as an operating signal, the operating signal also being used as a sodium flow rate control signal coupled to a sodium flow rate control means. In this method of control of vapor temperature of a fluid heating separation type steam generator, a control gain variable means is connected in series with a temperature control system to obtain control substantially proportional to the preset load. (Kamimura, M.)

  2. Study of Second Generation Biofuels in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Dhandapani

    2012-07-01

    fuel, vis-a-vis neat diesel fuel (DF). The CO, THC, smoke and TPM emissions were reduced significantly, while NOx emissions were somewhat higher with BD blended fuels compared to neat FT fuel. The reductions in CO, THC, smoke and TPM emissions with BD blends were mainly due to the oxygen content in the BD blended fuel, while the increases in NOx emissions with BD fuels were due to advances in injection timing, higher percentages of fatty acids with double bonds in the carbon chain and higher heat release in the pre-mixed combustion. Secondly, a four-stroke, single-cylinder, naturally-aspirated (NA), direct-injection (DI) diesel engine with 8 BHP at 1500 rpm coupled with water-cooled, eddy current dynamometer was used for the experiments. Ethanol (5% by volume) was injected into the intake manifold by the port injection method with the assistance of a mechanical fuel injection pump. Therefore, the volumetric blending percentages of ethanol, BD and diesel fuels (E:D:JME) are (0:100:0), (5:95:0), (5:75:20), (5:55:40), (5:35:60), (5:15:80) (5:0:95) and (0:0:100) respectively. Ethanol pre-mixed with intake air, assisted in improving combustion in both diesel and the JME blends. The addition of ethanol to high-viscosity Jatropha methyl ester (JME) through port injection is investigated in order to determine its effect on the fuels viscosity and thereby on the diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME was studied in particular. It was found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which in turn, alter the engines operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for up to 25% blending of diesel with biofuels, while

  3. Effect of latent heat of freezing on crustal generation at low spreading rates

    Science.gov (United States)

    Sleep, Norman H.; Warren, Jessica M.

    2014-08-01

    Lithospheric structure changes at low spreading rates (ridges and that the mode of crust generation is variable. One important effect on lithospheric structure is the latent heat released when basaltic magma freezes within the mantle, instead of being transported all the way to the surface. Using thermal models, we show that freezing of melt at mantle depths buffers temperature due to the latent heat of crystallization. Two quasi-stable seafloor-spreading patterns are imposed on the model: (1) upwelling of magma along a narrow axial zone and (2) pure shear extension over a broad zone. The variability in crustal structure predicted by these models explains variability observed in dredge lithology statistics at eight slow to ultraslow spreading ridge segments. For example, the Gakkel Eastern Volcanic Zone and Sparsely Magmatic Zone are both spreading at 12 mm a-1, but the former is composed of 7% peridotite, whereas the latter is 46% peridotite. This difference can be explained by a change from a narrow axis regime with ˜2 km thick crust to a wide axis regime with a crust-mantle mix. Overall, dredge statistics and thermal models suggest that some, but not all, latent heat of ascending magmas is released at mantle depths and that various ridge axial morphologies can occur.

  4. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  5. Trans-generational plasticity in response to immune challenge is constrained by heat stress.

    Science.gov (United States)

    Roth, Olivia; Landis, Susanne H

    2017-06-01

    Trans-generational plasticity (TGP) is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent-offspring environments. In a global change scenario, several performance-related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of TGP. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans-generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat-killed bacterial epitope treatment. Differential gene expression (immune genes and DNA- and histone-modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans-generational effects are limited. Temperature is the master regulator of trans-generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of TGP as a short-term option to buffer environmental variation in the light of climate change.

  6. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Phil Ligrani

    2013-01-01

    Full Text Available To provide an overview of the current state of the art of heat transfer augmentation schemes employed for internal cooling of turbine blades and components, results from an extensive literature review are presented with data from internal cooling channels, both with and without rotation. According to this survey, a very small number of existing investigations consider the use of combination devices for internal passage heat transfer augmentation. Examples are rib turbulators, pin fins, and dimples together, a combination of pin fins and dimples, and rib turbulators and pin fins in combination. The results of such studies are compared with data obtained prior to 2003 without rotation influences. Those data are comprised of heat transfer augmentation results for internal cooling channels, with rib turbulators, pin fins, dimpled surfaces, surfaces with protrusions, swirl chambers, or surface roughness. This comparison reveals that all of the new data, obtained since 2003, collect within the distribution of globally averaged data obtained from investigations conducted prior to 2003 (without rotation influences. The same conclusion in regard to data distributions is also reached in regard to globally averaged thermal performance parameters as they vary with friction factor ratio. These comparisons, made on the basis of such judgment criteria, lead to the conclusion that improvements in our ability to provide better spatially-averaged thermal protection have been minimal since 2003. When rotation is present, existing investigations provide little evidence of overall increases or decreases in overall thermal performance characteristics with rotation, at any value of rotation number, buoyancy parameter, density ratio, or Reynolds number. Comparisons between existing rotating channel experimental data and the results obtained prior to 2003, without rotation influences, also show that rotation has little effect on overall spatially-averaged thermal

  7. Nuclear Co-Generating Plants for Powering and Heating to Cleaning the Warsaw's Environment

    International Nuclear Information System (INIS)

    Baurski, J.

    2010-01-01

    In 2009 the Polish Government made a decision to introduce nuclear power to Poland. Two nuclear power plants (NPPs) will be constructed nearly at the same time - the first unit should start operation in 2020, and by 2030 there should be about 6000 MWe added to the national electrical grid. The Commissioner of the Government was nominated to introduce the Polish Nuclear Power Program (PNPP). One of the four vertically integrated - the biggest energy company (PGE - the Polish Energy Group with headquarters in Warsaw) was appointed to prepare investments. These activities are planned in four stages: I. up to 31.12.2010 - The PNPP will be prepared and the program must then be accepted by the Government. II. 2011 - 2013 - Sites will be determined, and the contract for construction of the first NPP will be closed. III. 2014 - 2015 - Technical specifications will be prepared and accepted according the law. IV. 2016 - 2020 - The first NPP in Poland will be constructed. At present, the Government is receiving proposals from some regions of Poland asking that they be chosen for the NPP. One of the obvious locations for the NPP is a 40-kilometer vicinity of Warsaw (1.8 mln inhabitants). The need for both electric power and heat is increasing because of the rapidly growing town. It gives the extremely valuable chance for a very high thermodynamic efficiency of 80% in co-generation instead of 33% (max 36% for EPR-1600) for NPP generated electric power only. The Warsaw heating system has a capacity of 3950 MWt and is the biggest among EU countries. It is the third biggest in the world. Two NPPs, each of 2 x 1000 MWe could be built on the Vistula River up and down the town. In 2005, UE calculated losses caused by gas emissions at 24 mld eur, and the span of human lives was six months shorter in western countries and 8 months shorter in Poland. Warsaw's atmosphere is very polluted also because there are four heat and power generating plants: three coal and one oil -fired. In these

  8. Internal stress-induced melting below melting temperature at high-rate laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I., E-mail: vlevitas@iastate.edu [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-06-30

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.

  9. Inspiring the Next Generation: The International Space Station Education Accomplishments

    Science.gov (United States)

    Alleyne, Camille W.; Hasbrook, Pete; Knowles, Carolyn; Chicoine, Ruth Ann; Miyagawa, Yayoi; Koyama, Masato; Savage, Nigel; Zell, Martin; Biryukova, Nataliya; Pinchuk, Vladimir; hide

    2014-01-01

    The International Space Station (ISS) has a unique ability to capture the imagination of both students and teachers worldwide. Since 2000, the presence of humans onboard ISS has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM). Over 43 million students around the world have participated in ISS-related educational activities. Projects such as YouTube Space Lab, Sally Ride Earth Knowledge-based Acquired by Middle Schools (EarthKAM), SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) Zero-Robotics, Tomatosphere, and MAI-75 events among others have allowed for global student, teacher and public access to space through student classroom investigations and real-time audio and video contacts with crewmembers. Educational activities are not limited to STEM but encompass all aspects of the human condition. This is well illustrated in the Uchu Renshi project, a chain poem initiated by an astronaut while in space and continued and completed by people on Earth. With ISS operations now extended to 2024, projects like these and their accompanying educational materials are available to more students around the world. From very early on in the program's history, students have been provided with a unique opportunity to get involved and participate in science and engineering projects. Many of these projects support inquiry-based learning that allows students to ask questions, develop hypothesis-derived experiments, obtain supporting evidence and identify solutions or explanations. This approach to learning is well-published as one of the most effective ways to inspire students to pursue careers in scientific and technology fields. Ever since the first space station element was launched, a wide range of student experiments and educational activities have been performed, both individually and collaboratively, by all the

  10. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    Science.gov (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  11. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  12. Advanced marine reactor MRX and its application for electricity and heat co-generation

    International Nuclear Information System (INIS)

    Ishida, T.; Ochiai, M.; Hoshi, T.

    2000-01-01

    The basic concept of an innovative advanced marine reactor MRX has been established by design study toward the goals of light-weightiness, compactness, and safety and reliability improvement with adoption of several new technologies. The MRX is the integral-type PWR aimed for use of ship propulsion. Adoption of a water-filled containment makes the reactor light-weighted and compact greatly. The total weight and volume of the reactor are 1600 tons and 1210 m 3 , which are equivalent to halves of the Mutsu, although the reactor power of MRX is three times greater. An engineered safety system of the MRX is a simplified passive system, function of which is confirmed by the safety analysis to be able to keep the reactor integrity even in a case of accident. Reliability of the system is evaluated by the PSA and revealed to have two orders smaller core damage occurrence frequency than existing PWRs. The MRX can be applied to an energy supply system of electricity and heat co-generation. Concept of the nuclear energy supply system is designed to generate electricity, heat and fresh water. The nuclear barge is shown to be a possible nuclear energy supply system with advantage of being easily moveable. (author)

  13. Themoeconomic optimization of triple pressure heat recovery steam generator operating parameters for combined cycle plants

    Directory of Open Access Journals (Sweden)

    Mohammd Mohammed S.

    2015-01-01

    Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.

  14. The generation of internal waves on the continental shelf by Hurricane Andrew

    Science.gov (United States)

    Keen, Timothy R.; Allen, Susan E.

    2000-11-01

    Observed currents, temperature, and salinity from moored instruments on the Louisiana continental slope and shelf reveal multiple baroclinic oscillations during Hurricane Andrew in August 1992. These measurements are supplemented by numerical models in order to identify possible internal wave generation mechanisms. The Princeton Ocean Model is run with realistic topography, stratification, and wind forcing to extend the observations to Mississippi Canyon and other areas on the shelf. A two-layer isopycnal model is used with idealized topography and spatially uniform winds to isolate internal waves generated in and around the canyon. The combination of the observations and the results from the numerical models indicates several possible mechanisms for generating long internal waves: (1) near-inertial internal waves were generated across the slope and shelf by dislocation of the thermocline by the wind stress; (2) interaction of inertial flow with topography generated internal waves along the shelf break, which bifurcated into landward and seaward propagating phases; (3) downwelling along the coast depressed the thermocline; after downwelling relaxes, an internal wave front propagates as a Kelvin wave; and (4) Poincaré waves generated within Mississippi Canyon propagate seaward while being advected westward over the continental slope. These processes interact to produce a three-dimensional internal wave field, which was only partly captured by the observations.

  15. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    Directory of Open Access Journals (Sweden)

    Leif Holmlid

    2015-08-01

    Full Text Available Previous results from laser-induced processes in ultra-dense deuterium D(0 give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles HN(0 of ultra-dense hydrogen (size of a few pm escape with a substantial fraction of the energy. Heat loss to the D2 gas (at <1 mbar pressure is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  16. A thermoelectric power generating heat exchanger: Part II – Numerical modeling and optimization

    International Nuclear Information System (INIS)

    Sarhadi, Ali; Bjørk, Rasmus; Lindeburg, Niels; Viereck, Peter; Pryds, Nini

    2016-01-01

    Highlights: • A comprehensive model was developed to optimize the integrated TEG-heat exchanger. • The developed model was validated with the experimental data. • The effect of using different interface materials on the output power was assessed. • The influence of TEG arrangement on the power production was investigated. • Optimized geometrical parameters and proper interface materials were suggested. - Abstract: In Part I of this study, the performance of an experimental integrated thermoelectric generator (TEG)-heat exchanger was presented. In the current study, Part II, the obtained experimental results are compared with those predicted by a finite element (FE) model. In the simulation of the integrated TEG-heat exchanger, the thermal contact resistance between the TEG and the heat exchanger is modeled assuming either an ideal thermal contact or using a combined Cooper–Mikic–Yovanovich (CMY) and parallel plate gap formulation, which takes into account the contact pressure, roughness and hardness of the interface surfaces as well as the air gap thermal resistance at the interface. The combined CMY and parallel plate gap model is then further developed to simulate the thermal contact resistance for the case of an interface material. The numerical results show good agreement with the experimental data with an average deviation of 17% for the case without interface material and 12% in the case of including additional material at the interfaces. The model is then employed to evaluate the power production of the integrated system using different interface materials, including graphite, aluminum (Al), tin (Sn) and lead (Pb) in a form of thin foils. The numerical results show that lead foil at the interface has the best performance, with an improvement in power production of 34% compared to graphite foil. Finally, the model predicts that for a certain flow rate, increasing the parallel TEG channels for the integrated systems with 4, 8, and 12 TEGs

  17. Reactor type choice and characteristics for a small nuclear heat and electricity co-generation plant

    International Nuclear Information System (INIS)

    Liu Kukui; Li Manchang; Tang Chuanbao

    1997-01-01

    In China heat supply consumes more than 70 percent of the primary energy resource, which makes for heavy traffic and transportation and produces a lot of polluting materials such as NO x , SO x and CO 2 because of use of the fossil fuel. The utilization of nuclear power into the heat and electricity co-generation plant contributes to the global environmental protection. The basic concept of the nuclear system is an integral type reactor with three circuits. The primary circuit equipment is enclosed in and linked up directly with reactor vessel. The third circuit produces steam for heat and electricity supply. This paper presents basic requirements, reactor type choice, design characteristics, economy for a nuclear co-generation plant and its future application. The choice of the main parameters and the main technological process is the key problem of the nuclear plant design. To make this paper clearer, take for example a double-reactor plant of 450 x 2MW thermal power. There are two sorts of main technological processes. One is a water-water-steam process. Another is water-steam-steam process. Compared the two sorts, the design which adopted the water-water-steam technological process has much more advantage. The system is simplified, the operation reliability is increased, the primary pressure reduces a lot, the temperature difference between the secondary and the third circuits becomes larger, so the size and capacity of the main components will be smaller, the scale and the cost of the building will be cut down. In this design, the secondary circuit pressure is the highest among that of the three circuits. So the primary circuit radioactivity can not leak into the third circuit in case of accidents. (author)

  18. Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators

    Science.gov (United States)

    Khanoknaiyakarn, C.; Promvonge, P.; Thianpong, C.; Skullong, S.

    2018-01-01

    A novel tubular heat exchanger incorporated with punched delta-winglet vortex generators (called perforated delta-winglet vortex generator, P-DWVG) is proposed for improving its thermal performance and energy saving. The P-DWVG elements are punched out from a straight tape having its width nearly equal to the tube diameter before insertion. The main aim at employing the P-DWVG insert is to produce counter-rotating vortices along the tube to promote turbulence intensity inside as well as to transport the cold fluid at the central core to the near-wall regions. The experiment was performed to study thermal behaviors in a uniform heat-fluxed tube inserted with P-DWVGs. The P-DWVGs with the attack angle of 45° were mounted periodically with three different blockage ratios (BR = 0.1, 0.2 and 0.3) and two pitch ratios (PR = 2 and 3). Air as the test fluid was varied to obtain turbulent airflow for Reynolds number (Re) in a range of 4,150-25,500. The experimental results show that the P-DWVG provides a considerable increase in the rate of heat transfer around 3.1-4.01 times whereas friction factor increases around 11.44- 34.23 times higher than the plain tube. To assess the real benefits of P-DWVGs, thermal performance factor (TEF) is examined and in the range of 1.39-1.48 where its maximum is at BR = 0.1 and PR = 2.

  19. The heat generated by yeast cultures with a mixed metabolism in the transition between respiration and fermentation.

    Science.gov (United States)

    von Stockar, U; Birou, B

    1989-06-05

    The heat generated by both batch and continuous cultures of the yeast K. fragilis was studied using a modified Bench Scale Calorimeter. Batch cultures were used to measure the heat dissipation rates and the heat yields during fully aerobic and completely anaerobic growth, whereas continuous cultures enabled, in addition, a quantitative study of heat dissipation rates during growth on mixed metabolism. In this case, the extent of fermentation versus respiration could be specified and controlled by varying the degree of oxygen limitation. The heat dissipated per unit biomass formed was highest for fully respirative catabolism and fell continuously to a much lower value typical of anaerobic cultures as the catabolism was shifted increasingly to the fermentative mode. The heat generated per mole of oxygen taken up stayed quite close to the fully aerobic value of 506 kJ mol(-1) even when a sizable fraction of the substrate available to catabolism was fermented. If the fraction of respiration in the metabolism is lowered beyond a certain threshold, the ratio of the heat generation to oxygen consumption starts to increase dramatically and finally tends to infinity for fully anaerobic growth. All experimental results were quantitatively analyzed and explained on the basis of a simple model which formally describes the cultures in terms of two parallel "chemical" reactions. In simple cases such as the one presented here, the model enables calculation of the whole stoichiometry of the culture from a single measured heat yield.

  20. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.