WorldWideScience

Sample records for internal geomagnetic multipoles

  1. International Geomagnetic Reference Field

    DEFF Research Database (Denmark)

    Finlay, Chris; Maus, S.; Beggan, C. D.

    2010-01-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2009 by the International Association of Geomagnetism and Aeronomy Working Group V‐MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field...... model for epoch 2010.0, and a linear predictive secular variation model for 2010.0–2015.0. In this note the equations defining the IGRF model are provided along with the spherical harmonic coefficients for the eleventh generation. Maps of the magnetic declination, inclination and total intensity...

  2. Internal conversion coefficients of high multipole transitions: Experiment and theories

    International Nuclear Information System (INIS)

    Gerl, J.; Vijay Sai, K.; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K.

    2008-01-01

    A compilation of the available experimental internal conversion coefficients (ICCs), α T , α K , α L , and ratios K/L and K/LM of high multipole (L > 2) transitions for a number of elements in the range 21 ≤ Z ≤ 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Roesel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%Δ) have been calculated for each of the above theories and the averages (%Δ-bar) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values

  3. International Geomagnetic Reference Field: the 12th generation

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Beggan, Ciarán D.

    2015-01-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch ...

  4. International Geomagnetic Reference Field: the 12th generation

    OpenAIRE

    Thébault , Erwan; Finlay , Christopher ,; Beggan , Ciarán ,; Alken , Patrick; Aubert , Julien ,; Barrois , Olivier; Bertrand , François; Bondar , Tatiana; Boness , Axel; Brocco , Laura; Canet , Elisabeth ,; Chambodut , Aude; Chulliat , Arnaud ,; Coïsson , Pierdavide ,; Civet , François

    2015-01-01

    International audience; The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, p...

  5. The Contribution of a Geophysical Data Service: The International Service of Geomagnetic Indices

    Directory of Open Access Journals (Sweden)

    M Menvielle

    2013-01-01

    Full Text Available Geomagnetic indices are basic data in Solar-Terrestrial physics and in operational Space Weather activities. The International Service of Geomagnetic Indices (ISGI is in charge of the derivation and dissemination of the geomagnetic indices that are acknowledged by the International Association of Geomagnetism and Aeronomy (IAGA, an IUGG association. Institutes that are not part of ISGI started early in the Internet age to circulate on-line preliminary values of geomagnetic indices. In the absence of quality stamping, this resulted in a very confusing situation. The ISGI label was found to be the simplest and the safest way to insure quality stamping of circulated geomagnetic indices.

  6. The International Geomagnetic Reference Field: the twelfth generation

    Science.gov (United States)

    Thebault, Erwan; Finlay, Christopher; The IGRF Working Group

    2015-04-01

    The IGRF is an internationally-agreed reference model of the Earth's magnetic field produced under the auspices of the International Association of Geomagnetism and Aeronomy. The IGRF-12 is the latest update of this well-known model which is used each year by many thousands of users for both industrial and scientific purposes. In October 2014, ten institutions worldwide have made contributions to the IGRF. These models were evaluated and the twelfth generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014. In this presentation, we will report on the IGRF activities, briefly describe the candidate models, summarize the evaluation of models performed by different independent teams, show how the IGRF-12 models were calculated and finally discuss some of the main magnetic features of this new model.

  7. Special issue “International Geomagnetic Reference Field—the twelfth generation”

    DEFF Research Database (Denmark)

    Thébault, E.; Finlay, C. C.; Toh, H.

    2015-01-01

    This special issue of Earth, Planets and Space, synthesizes the efforts made during the construction of the twelfth generation of the International Geomagnetic Reference Field (IGRF-12) that was released online in December 2014 (http://www.ngdc.noaa.gov/IAGA/vmod/ igrf.html). The IGRF-12 is a ser......This special issue of Earth, Planets and Space, synthesizes the efforts made during the construction of the twelfth generation of the International Geomagnetic Reference Field (IGRF-12) that was released online in December 2014 (http://www.ngdc.noaa.gov/IAGA/vmod/ igrf.html). The IGRF-12...

  8. Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2012-12-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth’s geomagnetic filed by space weather, we use the international quiet days’ data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components’ quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation’s amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth’s atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

  9. Special issue “International Geomagnetic Reference Field—the twelfth generation”

    OpenAIRE

    Thébault, E.; Finlay, C. C.; Toh, H.

    2015-01-01

    This special issue of Earth, Planets and Space, synthesizes the efforts made during the construction of the twelfth generation of the International Geomagnetic Reference Field (IGRF-12) that was released online in December 2014 (http://www.ngdc.noaa.gov/IAGA/vmod/ igrf.html). The IGRF-12 is a series of standard mathematical models describing the large scale internal part of the Earth’s magnetic field between epochs 1900.0 and 2015.0 with a forecast to epoch 2020.0. This activity has been main...

  10. The International Geomagnetic Reference Field (IGRF) generation 12: BGS candidates and final models

    OpenAIRE

    Beggan, Ciaran D.; Hamilton, Brian; Taylor, Victoria; Macmillan, Susan; Thomson, Alan

    2015-01-01

    The International Geomagnetic Reference Field (IGRF) model is a reference main field magnetic model updated on a quinquennial basis. The latest revision (generation 12) was released in January 2015. The IGRF-12 consists of a definitive model (DGRF2010) of the main field for 2010.0, a model for the field at 2015.0 (IGRF2015) and a prediction of secular variation (IGRF-12 SV) for the forthcoming five years until 2020.0. The remaining coefficients of IGRF-12 are unchanged from IGRF-11. Nin...

  11. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  12. Geomagnetic aa Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The geomagnetic aa indices are the continuation of the series beginning in the year 1868. A full description of these indices is given in the International...

  13. Geomagnetism 4

    CERN Document Server

    Jacobs, John A

    2013-01-01

    Geomagnetism, Volume 4 focuses on the processes, methodologies, technologies, and approaches involved in geomagnetism, including electric fields, solar wind plasma, pulsations, and gravity waves.The selection first offers information on solar wind, magnetosphere, and the magnetopause of the Earth. Discussions focus on magnetopause structure and transfer processes, magnetosphere electric fields, geomagnetically trapped radiation, microstructure of the solar wind plasma, and hydro magnetic fluctuations and discontinuities. The text then examines geomagnetic tail, neutral upper atmosphere, and ge

  14. Electromagnetic multipole fields of neutron stars

    International Nuclear Information System (INIS)

    Roberts, W.J.

    1979-01-01

    There is now indisputable evidence that some pulsars possess space velocities so high that internal asymmetries in the dynamics of their formation are strongly implied. We develop in this paper a complete formalism for the calculation of the only such mechanism that has yet been subjected to quantitative analysis: electromagnetic recoil radiation. To make the general problem tractable without doing violence to the physics, we have made the following simplifying assumptions: (1) the magnetic induction B in athin shell enclosing the surface can be satisfactorily approximated by a sum of vacuum multipole fields; (2) the star is spherical, and all parts are in good electrical contact; (3) vertical-bar Ω X r vertical-barvery-much-less-thanc everywhere within the star; and (4) the star is surrounded by a vacuum. Our qualitative conclusions hold even if these assumptions are violated, but corrections to our quantitative results required by a relaxation of our assumptions are not easily computed.Given this simple electrodynamic model of a neutron star, we solve the following problems: (1) What electric multipoles are induced by each magnetic multipole. (2) What is the general formula for the recoil produced by the projection on the rotational axis of a net linear momentum flux produced by the rotation of any two magnetic multipoles. (3) What is the set of centered multipoles that represents the field of an arbitrary off-centered multipole. We use these general results go perform a detailed analysis of the linear momentum radiated by an off-centered dipole. We find a force larger by a factor 6 than that obtained for the special case treated in the best previous calculation. In spite of this considerable increase in the computed strengrh of the effect, we still believe it to be too weak to produce the large space velocities observed for pulsars. For the mechanism to be effective, the pulsar must be born rotating near the breakup velocity

  15. Geomagnetic storms

    International Nuclear Information System (INIS)

    McNamara, A.G.

    1980-01-01

    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  16. Challenges Handling Magnetospheric and Ionospheric Signals in Internal Geomagnetic Field Modelling

    DEFF Research Database (Denmark)

    Finlay, Chris; Lesur, V.; Thébault, E.

    2017-01-01

    systems in the ionosphere and magnetosphere. In order to fully exploit magnetic data to probe the physical properties and dynamics of the Earth’s interior, field models with suitable treatments of external sources, and their associated induced signals, are essential. Here we review the methods presently......-by-track analysis to characterize magnetospheric field fluctuations, differences in internal field models that result from alternative treatments of the quiet-time ionospheric field, and challenges associated with rapidly changing, but spatially correlated, magnetic signatures of polar cap current systems. Possible...

  17. 15 cm mercury multipole thruster

    Science.gov (United States)

    Longhurst, G. R.; Wilbur, P. J.

    1978-01-01

    A 15 cm multipole ion thruster was adapted for use with mercury propellant. During the optimization process three separable functions of magnetic fields within the discharge chamber were identified: (1) they define the region where the bulk of ionization takes place, (2) they influence the magnitudes and gradients in plasma properties in this region, and (3) they control impedance between the cathode and main discharge plasmas in hollow cathode thrusters. The mechanisms for these functions are discussed. Data from SERT II and cusped magnetic field thrusters are compared with those measured in the multipole thruster. The performance of this thruster is shown to be similar to that of the other two thrusters. Means of achieving further improvement in the performance of the multipole thruster are suggested.

  18. Multipole structure and coordinate systems

    International Nuclear Information System (INIS)

    Burko, Lior M

    2007-01-01

    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the lowest non-vanishing one.) This result is demonstrated for the case of two equal like electric charges. Specifically, an adapted coordinate system in which the potential is given by a monopole term only is explicitly found, the coefficients of all higher multipoles vanish identically. It is suggested that this result can be generalized to other potential problems, by making equal coordinate surfaces adapt to the potential problem's equipotential surfaces

  19. Comparison of ion temperature and ion density measured during geomagnetically very quiet conditions on board of the geophysical rocket ''Vertical-6'' with the international reference ionosphere

    International Nuclear Information System (INIS)

    Bencze, P.; Kovacs, K.; Apathy, I.; Szemerey, I.; Afonin, V.; Bezrukih, V.; Shutte, N.

    1980-05-01

    Ion temperature and ion density, measured on October 25, 1977 during the flight of the geophyisical rocket ''Vertical-6'' by means of a group of five retarding potential analyzers looking into different directions of space, are compared with the International Reference Ionosphere 1978. The measurements were carried out in a geomagnetically quiet period to a height of 1500 km. The results show that both the ion temperature and the ion density are lower than the values predicted by the Reference Ionosphere, the difference is decreasing with increasing altitude. (author)

  20. The Egyptian geomagnetic reference field to the Epoch, 2010.0

    Directory of Open Access Journals (Sweden)

    H.A. Deebes

    2017-06-01

    The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF 2010 is indicated.

  1. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  2. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    Science.gov (United States)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  3. Geomagnetic Principal Magnetic Storms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The abbreviations used for observatory names are as follows: GEOMAGNETIC OBSERVATORIES Code Station Geomagnetic Latitude ABG Alibag AMS Martin de Vivie. These data...

  4. Validation of foF2 and TEC Modeling During Geomagnetic Disturbed Times: Preliminary Outcomes of International Forum for Space Weather Modeling Capabilities Assessment

    Science.gov (United States)

    Shim, J. S.; Tsagouri, I.; Goncharenko, L. P.; Kuznetsova, M. M.

    2017-12-01

    To address challenges of assessment of space weather modeling capabilities, the CCMC (Community Coordinated Modeling Center) is leading the newly established "International Forum for Space Weather Modeling Capabilities Assessment." This presentation will focus on preliminary outcomes of the International Forum on validation of modeled foF2 and TEC during geomagnetic storms. We investigate the ionospheric response to 2013 Mar. geomagnetic storm event using ionosonde and GPS TEC observations in North American and European sectors. To quantify storm impacts on foF2 and TEC, we first quantify quiet-time variations of foF2 and TEC (e.g., the median and the average of the five quietest days for the 30 days during quiet conditions). It appears that the quiet time variation of foF2 and TEC are about 10% and 20-30%, respectively. Therefore, to quantify storm impact, we focus on foF2 and TEC changes during the storm main phase larger than 20% and 50%, respectively, compared to 30-day median. We find that in European sector, both foF2 and TEC response to the storm are mainly positive phase with foF2 increase of up to 100% and TEC increase of 150%. In North America sector, however, foF2 shows negative effects (up to about 50% decrease), while TEC shows positive response (the largest increase is about 200%). To assess modeling capability of reproducing the changes of foF2 and TEC due to the storm, we use various model simulations, which are obtained from empirical, physics-based, and data assimilation models. The performance of each model depends on the selected metrics, therefore, only one metrics is not enough to evaluate the models' predictive capabilities in capturing the storm impact. The performance of the model also varies with latitude and longitude.

  5. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  6. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  7. Maxwell's Multipole Vectors and the CMB

    OpenAIRE

    Weeks, Jeffrey R.

    2004-01-01

    The recently re-discovered multipole vector approach to understanding the harmonic decomposition of the cosmic microwave background traces its roots to Maxwell's Treatise on Electricity and Magnetism. Taking Maxwell's directional derivative approach as a starting point, the present article develops a fast algorithm for computing multipole vectors, with an exposition that is both simpler and better motivated than in the author's previous work. Tests show the resulting algorithm, coded up as a ...

  8. On the multipole moments of charge distributions

    International Nuclear Information System (INIS)

    Khare, P.L.

    1977-01-01

    There are two different standard methods for showing the equivalence of a charge distribution in a small volume tau surrounding a point O, to the superposition of a monopole, a dipole, a quadrupole and poles of higher moments at the point O: (a) to show that the electrostatic potential due to the charge distribution at an outside point is the same as due to these superposed multipoles (including a monopole). (b) to show that the energy of interaction of an external field with the charge distribution is the same as with the superposed equivalent monopole and multipoles. Neither of these methods gives a physical picture of the equivalence of a charge distribution to the superposition of different multipoles. An attempt is made to interpret in physical terms the emergence of the multipoles of different order, that are equivalent to a charge distribution and to show that the magnitudes of the moments of these multipoles are in agreement with the results of both the approaches (a) and (b). This physical interpretation also helps to understand, in a simple manner, some of the wellknown properties of the multipole moments of atoms and nuclei. (K.B.)

  9. Tensor spherical harmonics and tensor multipoles. II. Minkowski space

    International Nuclear Information System (INIS)

    Daumens, M.; Minnaert, P.

    1976-01-01

    The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation

  10. Geomagnetic field, global pattern

    OpenAIRE

    Macmillan, Susan

    2011-01-01

    The geomagnetic field is generated in the fluid outer core region of the Earth by electrical currents flowing in the slowly moving molten iron. In addition to sources in the Earth’s core, the geomagnetic field observable on the Earth’s surface has sources in the crust and in the ionosphere and magnetosphere. The signal from the core dominates, accounting for over 95% of the field at the Earth’s surface. The geomagnetic field varies on a range of scales, both temporal and spatial; the...

  11. Permanent multipole magnets with adjustable strength

    International Nuclear Information System (INIS)

    Halbach, K.

    1983-01-01

    Preceded by a short discussion of the motives for using permanent magnets in accelerators, a new type of permanent magnet for use in accelerators is presented. The basic design and most important properties of a quadrople will be described that uses both steel and permanent magnet material. The field gradient produced by this magnet can be adjusted without changing any other aspect of the field produced by this quadrupole. The generalization of this concept to produce other multipole fields, or combination of multipole fields, will also be presented

  12. Giant multipole resonances: an experimental review

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1979-01-01

    During the past several years experimental evidence has been published for the existance of nondipole giant resonances. These giant multipole resonances, the so-called new giant resonances were first observed through inelastic hadron and electron scattering and such measurements have continued to provide most of the information in this field. A summary is provided of the experimental evidence for these new resonances. The discussion deals only with results from inelastic scattering and only with the electric multipoles. Emphasis is placed on the recent observations of the giant monopole resonance. Results from recent heavy-ion and pion inelastic scattering are discussed. 38 references

  13. Permanent multipole magnets with adjustable strength

    International Nuclear Information System (INIS)

    Halbach, K.

    1983-03-01

    Preceded by a short discussion of the motives for using permanent magnets in accelerators, a new type of permanent magnet for use in accelerators is presented. The basic design and most important properties of a quadrupole will be described that uses both steel and permanent magnet material. The field gradient produced by this magnet can be adjusted without changing any other aspect of the field produced by this quadrupole. The generalization of this concept to produce other multipole fields, or combination of multipole fields, will also be presented

  14. Stream lines for a pure multipole current distribution

    International Nuclear Information System (INIS)

    Gongora-T, A.

    1990-01-01

    We give an equation describing the electric current stream-lines on the surface of a sphere that generates a magnetic field which contains a single multipole component. The equation shows how to wind a coil in order to produce a pure multipole field and helps to give an intuitive grasp of how well existing traps approximate multipoles. (Author)

  15. Geomagnetic Indices Bulletin (GIB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geomagnetic Indices Bulletin is a one page sheet containing the magnetic indices Kp, Ap, Cp, An, As, Am and the provisional aa indices. The bulletin is published...

  16. On multipole moments in general relativity

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1986-01-01

    In general situations, involving gravitational waves the question of multiple moments in general relativity restricts the author to stationary axisymmetric situations. Here it has been shown that multipole moments, a set of numbers defined at spatial infinity as far away from the source as possible, determine a solution of Einstein's equations uniquely. With the rather powerful methods for generating solutions one might hope to get solutions with predefined multipole moments. Before doing so, however, one needs an efficient algorithm for calculating the moments of a given solution. Chapter 2 deals with a conjecture pertaining to such a calculational procedure and shows it to be not true. There is another context in which multipole moments are important. Consider a system composed of several objects. To separate, if possible, the various parts of their interaction, one needs a definition for multipole moments of individual members of a many body system. In spite of the fact that there is no definition for individual moments, with the exception of mass and angular momentum, Chapter 3 shows what can be done for the double Kerr solution. The authors can identify various terms in he interaction of two aligned Kerr objects and show that gravitational spin-spin interaction is indeed proportional to the product of the angular momenta

  17. Rovibrational matrix elements of the multipole moments

    Indian Academy of Sciences (India)

    Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...

  18. Multipole Analysis of Circular Cylindircal Magnetic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Selvaggi, Jerry P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2005-12-01

    This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six

  19. Self energy QED: Multipole spontaneous emission

    International Nuclear Information System (INIS)

    Salamin, Y.I.

    1990-08-01

    Within the context of Barut's self-field approach, we write the exact expression of the spontaneous atomic decay rate (Phys. Rev. A37, 2284 (1988)), in the long wavelength approximation, in terms of electric- and magnetic-like multipole contributions which are related to the matrix elements of the transition charge and current distributions of the relativistic electron. A number of features of these expressions are discussed and their generalization to interacting composite systems is also pointed out. (author). 8 refs

  20. Self-energy quantum electrodynamics: Multipole radiation

    International Nuclear Information System (INIS)

    Salamin, Y.I.

    1993-01-01

    Within the context of Barut's self-field approach to quantum electrodynamics, it is shown that the exact relativistic expression for the Einstein A-coefficient of atomic spontaneous emission reduces, in the long wavelength approximation, to a form containing electric- and magnetic-like multipole contributions related to the transition charge and current distributions of the relativistic electron. A number of interesting features of the expressions involved are discussed, and their generalization to interacting composite systems is also pointed out. 10 refs

  1. Geomagnetic radioflash unfold (GRUF)

    International Nuclear Information System (INIS)

    Malik, J.S.

    1975-08-01

    A method of inverting the geomagnetic component of the radioflash signal from a nuclear explosion to obtain the gamma-ray time history was proposed by E. D. Dracott of the Atomic Weapons Research Establishment. A simplified development of an elaboration by B. R. Suydam has been programmed for small calculators in a form suitable for interim field analysis of such data. The development of the program is contained in the report

  2. Planar permanent magnet multipoles: Measurements and configurations

    International Nuclear Information System (INIS)

    Cremer, T.; Tatchyn, R.

    1995-05-01

    Biplanar arrays of N rectangular permanent magnet (PM) blocks can be used to generate high quality N-pole fields in close proximity to the array axis. In applications featuring small-diameter charged particle beams, N-poles of adequate quality can be realized at relatively low cost using small volumes of PM material. In this paper we report on recent measurements performed on planar PM multipoles, and discuss techniques for improving the field quality of such devices at distances appreciably far away from the axis. Applications to hybrid/PM insertion device designs for linac-driven Free Electron Laser (FEL) operation in the x-ray range are described

  3. Isotopic dependence of giant multipole resonances

    International Nuclear Information System (INIS)

    Bar Touv, J.; Moalem, A.; Shlomo, S.

    1980-01-01

    A procedure is presented which allows the application of linear response theory and the random phase approximation to an open shell. The procedure is applied to Ca isotopes. The general features of giant multipole resonances are found to vary smoothly with the mass. The resonances exhibit more structure in the open lfsub(7/2) shell nuclei. While the energy-weighted dipole sum is practically constant in all isotopes, the isoscalar quadrupole and octupole energy weighted sums increase continuously by approx. 30% from 40 Ca to 48 Ca. (orig.)

  4. Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  5. Multipole stack for the 4 rings of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.

  6. The national geomagnetic initiative

    Science.gov (United States)

    1993-01-01

    The Earth's magnetic field, through its variability over a spectrum of spatial and temporal scales, contains fundamental information on the solid Earth and geospace environment (the latter comprising the atmosphere, ionosphere, and magnetosphere). Integrated studies of the geomagnetic field have the potential to address a wide range of important processes in the deep mantle and core, asthenosphere, lithosphere, oceans, and the solar-terrestrial environment. These studies have direct applications to important societal problems, including resource assessment and exploration, natural hazard mitigation, safe navigation, and the maintenance and survivability of communications and power systems on the ground and in space. Studies of the Earth's magnetic field are supported by a variety of federal and state agencies as well as by private industry. Both basic and applied research is presently supported by several federal agencies, including the National Science Foundation (NSF), U.S. Geological Survey (USGS), U.S. Department of Energy (DOE), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), and U.S. Department of Defense (DOD) (through the Navy, Air Force, and Defense Mapping Agency). Although each agency has a unique, well-defined mission in geomagnetic studies, many areas of interest overlap. For example, NASA, the Navy, and USGS collaborate closely in the development of main field reference models. NASA, NSF, and the Air Force collaborate in space physics. These interagency linkages need to be strengthened. Over the past decade, new opportunities for fundamental advances in geomagnetic research have emerged as a result of three factors: well-posed, first-order scientific questions; increased interrelation of research activities dealing with geomagnetic phenomena; and recent developments in technology. These new opportunities can be exploited through a national geomagnetic initiative to define objectives and

  7. Multipole Stack for the 800 MeV PS Booster

    CERN Multimedia

    1975-01-01

    The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.

  8. A multipole acceptability criterion for electronic structure theory

    International Nuclear Information System (INIS)

    Schwegler, E.; Challacombe, M.; Head-Gordon, M.

    1998-01-01

    Accurate and computationally inexpensive estimates of multipole expansion errors are crucial to the success of several fast electronic structure methods. In this paper, a new nonempirical multipole acceptability criterion is described that is directly applicable to expansions of high order moments. Several model calculations typical of electronic structure theory are presented to demonstrate its performance. For cases involving small translation distances, accuracies are increased by up to five orders of magnitude over an empirical criterion. The new multipole acceptance criterion is on average within an order of magnitude of the exact expansion error. Use of the multipole acceptance criterion in hierarchical multipole based methods as well as in traditional electronic structure methods is discussed. copyright 1998 American Institute of Physics

  9. Tracer dispersion in planar multipole flows

    International Nuclear Information System (INIS)

    Koplik, J.; Redner, S.; Hinch, E.J.

    1994-01-01

    We study the motion of passive Brownian tracer particles in steady two-dimensional potential flows between sources and sinks. Our primary focus is understanding the long-time properties of the transit time probability distribution for the tracer to reach the sink p(t) and the influence of the flow geometry on this probability. A variety of illustrative case studies is considered. For radial potential flow in an annular region, competition between convection and diffusion leads to nonuniversal decay of the transit time probability. Dipolar and higher multipole flows are found to exhibit generic features, such as a power-law decay in p(t) with an exponent determined by the multipole moment, an exponential cutoff related to stagnation points, and a ''shoulder'' in p(t) that is related to reflection from the system boundaries. For spatially extended sinks, it is also shown that the spatial distribution of the collected tracer is independent of the overall magnitude of the flow field and that p(t) decays as a power law with a geometry-dependent exponent. Our results may offer the possibility of using tracer measurements to characterize the flow geometry of porous media

  10. Macroscopic description of isoscalar giant multipole resonances

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1980-01-01

    On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb

  11. Shannon information of the geomagnetic field for the past 7000 years

    OpenAIRE

    De Santis, A.; Qamili, E.

    2010-01-01

    The present behaviour of the geomagnetic field as expressed by the International Geomagnetic Reference Field (IGRF) deserves special attention when compared with that shown over the past few thousands of years by two paleomagnetic/archeomagnetic models, CALS3K and CALS7K. The application of the Information theory in terms of Shannon Information and K-entropy to these models shows characteristics of an instable geomagnetic field. Although the result is mitigated when we correct the CALS7K mode...

  12. Geomagnetic Reversals during the Phanerozoic.

    Science.gov (United States)

    McElhinny, M W

    1971-04-09

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.

  13. The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states

    Science.gov (United States)

    Azizi, K.; Özdem, U.

    2018-05-01

    The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.

  14. Poloidal ohmic heating in a multipole

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Sprott, J.C.

    1982-07-01

    The feasibility of using poloidal currents to heat plasmas confined by a multipole field has been examined experimentally in Tokapole II, operating the machine as a toroidal octupole. The plasma resistivity ranges from Spitzer to about 1500 times Spitzer resistivity, as predicted by mirror-enhanced resistivity theory. This allows large powers (approx. 2 MW) to be coupled to the plasma at modest current levels. However, the confinement time is reduced by the heating, apparently due to a combination of the input power location (near the walls of the vacuum tank) and fluctuation-enhanced transport. Current-driven drift instabilities and resistive MHD instabilities appear to be the most likely causes for the fluctuations

  15. Dipole-sheet multipole magnets for accelerators

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1993-01-01

    The dipole-sheet formalism can be used to describe both cylindrical current-sheet multipole magnets and cylindrical-bore magnets made up of permanent magnet blocks. For current sheets, the formalism provides a natural way of finding a finite set of turns that approximate a continuous distribution. The formalism is especially useful In accelerator applications where large-bore, short, high-field-quality magnets that are dominated by fringe fields are needed. A further advantage of the approach is that in systems with either open or cylindrically symmetric magnetic boundaries, analytical expressions for the three-dimensional fields that are suitable for rapid numerical evaluation can be derived. This development is described in some detail. Also, recent developments in higher-order particle-beam optics codes based on the formalism are described briefly

  16. Multipole superconducting electric motors for ship propulsion

    International Nuclear Information System (INIS)

    Thullen, P.; Keim, T.A.; Minervini, J.V.

    1975-01-01

    While a great deal of attention has been paid to two-pole superconducting synchronous machines, very little analysis of low speed, multipole superconducting synchronous machines has been done. Such machines may prove desirable as drive motors in ship drive systems. Results are presented of an analysis which assumes a motor of sufficient size that the airgap may be considered to be flat. A power output expression is given which shows the effects of machine geometry and superconductor characteristics on machine size. Based on this expression, a 40,000 hp 120 rpm motor is sized, and the resulting machine is compared with a conventional ship drive motor. The comparison illustrates possible size reductions through the application of superconductivity

  17. A task parallel implementation of fast multipole methods

    KAUST Repository

    Taura, Kenjiro; Nakashima, Jun; Yokota, Rio; Maruyama, Naoya

    2012-01-01

    This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM

  18. Electron density distribution in Si and Ge using multipole, maximum ...

    Indian Academy of Sciences (India)

    Si and Ge has been studied using multipole, maximum entropy method (MEM) and ... and electron density distribution using the currently available versatile ..... data should be subjected to maximum possible utility for the characterization of.

  19. Evaluation of candidate geomagnetic field models for IGRF-12

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Alken, Patrick

    2015-01-01

    Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical...... by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Each candidate model was carefully evaluated and compared to all other models and a mean model...

  20. Evaluation of candidate geomagnetic field models for IGRF-12

    OpenAIRE

    Erwan Thébault; Christopher C. Finlay; Patrick Alken; Ciaran D. Beggan; Elisabeth Canet; Arnaud Chulliat; Benoit Langlais; V. Lesur; Frank J. Lowes; Chandrasekharan Manoj; Martin Rother; Reyko Schachtschneider

    2015-01-01

    Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical harmonic main field models for epochs 2010.0 (DGRF-2010) and 2015.0 (IGRF-2015) and predictive linear secular variation for the interval 2015.0-2020.0 (SV-2010-2015). Findings: The models were deri...

  1. Uncertainty Quantification in Geomagnetic Field Modeling

    Science.gov (United States)

    Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.

    2017-12-01

    Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.

  2. Feasibility of artificial geomagnetic field generation by a superconducting ring network

    International Nuclear Information System (INIS)

    Motojima, Osamu; Yanagi, Nagato

    2008-05-01

    The geomagnetic field shields the Earth from a large proportion of incoming radiation, and has thus played a key role in sustaining life on Earth. Paleomagnetic measurements have shown that the geomagnetic field undergoes many reversals of polarity. Continuous observations of the field intensity have revealed a weakening of approximately 10% over the last 150 years. If we assume that this trend indicates the onset of polarity reversal, the geomagnetic field, particularly the dipole component, may weaken sufficiently over the next thousand years to expose the atmosphere and nearby space to significantly increased levels of cosmic and solar radiation. This may have a serious impact on vital infrastructure such as satellites, air traffic, and electricity networks, as well as on global climate changes, indicating that measures should better be taken in an attempt to support the limited protection provided by the remaining higher-order multipole fields and atmosphere. Here we show that a series of planet-encircling superconducting rings can provide an artificial geomagnetic field equivalent to 10% of the present-day field necessary to prevent adverse effects. A feasible system consists of 12 latitudinal high-temperature superconducting rings, each carrying 6.4 MA current with a modest 1 GW of power requirement. (author)

  3. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  4. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis

    2015-11-01

    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  5. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  6. Cardiac magnetic source imaging based on current multipole model

    International Nuclear Information System (INIS)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared. (general)

  7. The Egyptian geomagnetic reference field to the Epoch, 2010.0

    Science.gov (United States)

    Deebes, H. A.; Abd Elaal, E. M.; Arafa, T.; Lethy, A.; El Emam, A.; Ghamry, E.; Odah, H.

    2017-06-01

    The present work is a compilation of two tasks within the frame of the project ;Geomagnetic Survey & Detailed Geomagnetic Measurements within the Egyptian Territory; funded by the ;Science and Technology Development Fund agency (STDF);. The National Research Institute of Astronomy and Geophysics (NRIAG), has conducted a new extensive land geomagnetic survey that covers the whole Egyptian territory. The field measurements have been done at 3212 points along all the asphalted roads, defined tracks, and ill-defined tracks in Egypt; with total length of 11,586 km. In the present work, the measurements cover for the first time new areas as: the southern eastern borders of Egypt including Halayeb and Shlatin, the Quattara depresion in the western desert, and the new roads between Farafra and Baharia oasis. Also marine geomagnetic survey have been applied for the first time in Naser lake. Misallat and Abu-Simble geomagnetic observatories have been used to reduce the field data to the Epoch 2010. During the field measurements, whenever possible, the old stations occupied by the previous observers have been re-occupied to determine the secular variations at these points. The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF) and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF) 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF) 2010 is indicated.

  8. Geomagnetic Components D, H, X, Y, Z, and R 10-second Instantaneous Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are generated as part of the International Magnetospheric Study. The file consists of 10-second instantaneous measurements for the geomagnetic components...

  9. Atom-partitioned multipole expansions for electrostatic potential boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M., E-mail: michael.s.lee131.civ@mail.mil [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Leiter, K. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Eisner, C. [Secure Mission Solutions, a Parsons Company (United States); Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Knap, J. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2017-01-01

    Applications such as grid-based real-space density functional theory (DFT) use the Poisson equation to compute electrostatics. However, the expected long tail of the electrostatic potential requires either the use of a large and costly outer domain or Dirichlet boundary conditions estimated via multipole expansion. We find that the oft-used single-center spherical multipole expansion is only appropriate for isotropic mesh domains such as spheres and cubes. In this work, we introduce a method suitable for high aspect ratio meshes whereby the charge density is partitioned into atomic domains and multipoles are computed for each domain. While this approach is moderately more expensive than a single-center expansion, it is numerically stable and still a small fraction of the overall cost of a DFT calculation. The net result is that when high aspect ratio systems are being studied, form-fitted meshes can now be used in lieu of cubic meshes to gain computational speedup.

  10. Advanced multipoles for accelerator magnets theoretical analysis and their measurement

    CERN Document Server

    Schnizer, Pierre

    2017-01-01

    This monograph presents research on the transversal beam dynamics of accelerators and evaluates and describes the respective magnetic field homogeneity.  The widely used cylindrical circular multipoles have disadvantages for elliptical apertures or curved trajectories, and the book also introduces new types of advanced multipole magnets, detailing their application, as well as the numerical data and measurements obtained. The research presented here provides more precise descriptions of the field and better estimates of the beam dynamics. Moreover, the effects of field inhomogeneity can be estimated with higher precision than before. These findings are further elaborated to demonstrate their usefulness for real magnets and accelerator set ups, showing their advantages over cylindrical circular multipoles. The research findings are complemented with data obtained from the new superconducting beam guiding magnet models (SIS100) for the FAIR (Facility for Antiproton and Ion Research) project.  Lastly, the book...

  11. The generalized multipole technique for light scattering recent developments

    CERN Document Server

    Eremin, Yuri

    2018-01-01

    This book presents the Generalized Multipole Technique as a fast and powerful theoretical and computation tool to simulate light scattering by nonspherical particles. It also demonstrates the considerable potential of the method. In recent years, the concept has been applied in new fields, such as simulation of electron energy loss spectroscopy and has been used to extend other methods, like the null-field method, making it more widely applicable. The authors discuss particular implementations of the GMT methods, such as the Discrete Sources Method (DSM), Multiple Multipole Program (MMP), the Method of Auxiliary Sources (MAS), the Filamentary Current Method (FCM), the Method of Fictitious Sources (MFS) and the Null-Field Method with Discrete Sources (NFM-DS). The Generalized Multipole Technique is a surface-based method to find the solution of a boundary-value problem for a given differential equation by expanding the fields in terms of fundamental or other singular solutions of this equation. The amplitudes ...

  12. Multipole expansion of the retarded interatomic dispersion energy: derivation from quantum electrodynamics

    NARCIS (Netherlands)

    Michels, M.A.J.; Suttorp, L.G.

    1972-01-01

    The multipole expansion of the retarded dispersion energy of two atoms in nondegenerate ground states is derived. The result shows that multipoles of different order may give rise to dispersion energies varying in the same way for large interatomic separations.

  13. Performance Benchmarking of Fast Multipole Methods

    KAUST Repository

    Al-Harthi, Noha A.

    2013-06-01

    The current trends in computer architecture are shifting towards smaller byte/flop ratios, while available parallelism is increasing at all levels of granularity – vector length, core count, and MPI process. Intel’s Xeon Phi coprocessor, NVIDIA’s Kepler GPU, and IBM’s BlueGene/Q all have a Byte/flop ratio close to 0.2, which makes it very difficult for most algorithms to extract a high percentage of the theoretical peak flop/s from these architectures. Popular algorithms in scientific computing such as FFT are continuously evolving to keep up with this trend in hardware. In the meantime it is also necessary to invest in novel algorithms that are more suitable for computer architectures of the future. The fast multipole method (FMM) was originally developed as a fast algorithm for ap- proximating the N-body interactions that appear in astrophysics, molecular dynamics, and vortex based fluid dynamics simulations. The FMM possesses have a unique combination of being an efficient O(N) algorithm, while having an operational intensity that is higher than a matrix-matrix multiplication. In fact, the FMM can reduce the requirement of Byte/flop to around 0.01, which means that it will remain compute bound until 2020 even if the cur- rent trend in microprocessors continues. Despite these advantages, there have not been any benchmarks of FMM codes on modern architectures such as Xeon Phi, Kepler, and Blue- Gene/Q. This study aims to provide a comprehensive benchmark of a state of the art FMM code “exaFMM” on the latest architectures, in hopes of providing a useful reference for deciding when the FMM will become useful as the computational engine in a given application code. It may also serve as a warning to certain problem size domains areas where the FMM will exhibit insignificant performance improvements. Such issues depend strongly on the asymptotic constants rather than the asymptotics themselves, and therefore are strongly implementation and hardware

  14. Biological effects of geomagnetic storms

    International Nuclear Information System (INIS)

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  15. Energy-independent multipole analysis of single-pion photoproduction from protons

    Energy Technology Data Exchange (ETDEWEB)

    Get' man, V.A.; Sanin, V.M.; Telegin, Y.N.; Shalatskii, S.V.

    1983-08-01

    For the first time photoproduction multipole amplitudes are evaluated unambiguously on the basis of new experimental data on pion photoproduction from protons and the latest ..pi..N scattering phase shifts. The multipole amplitudes obtained are compared with the results of previous multipole analyses and dispersion-relation predictions.

  16. Energy-independent multipole analysis of single-pion photoproduction from protons

    International Nuclear Information System (INIS)

    Get'man, V.A.; Sanin, V.M.; Telegin, Y.N.; Shalatskii, S.V.

    1983-01-01

    For the first time photoproduction multipole amplitudes are evaluated unambiguously on the basis of new experimental data on pion photoproduction from protons and the latest πN scattering phase shifts. The multipole amplitudes obtained are compared with the results of previous multipole analyses and dispersion-relation predictions

  17. Mantle superplumes induce geomagnetic superchrons

    Directory of Open Access Journals (Sweden)

    Peter eOlson

    2015-07-01

    Full Text Available We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs, and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  18. On multipole expansions in the theory of electromagnetic radiation

    NARCIS (Netherlands)

    Bouwkamp, C.J.; Casimir, H.B.G.

    1954-01-01

    A new method is developed for expanding the electromagnetic field of radiating charges and currents in multipole components. Outside a sphere enclosing all sources, the field is represented in terms of Debye potentials which are shown to be closely related to the radial components of the electric

  19. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman; Yokota, Rio; Ahmadia, Aron

    2012-01-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach

  20. Multipole analyses and photo-decay couplings at intermediate energies

    International Nuclear Information System (INIS)

    Workman, R.L.; Arndt, R.A.; Zhujun Li

    1992-01-01

    The authors describe the results of several multipole analyses of pion-photoproduction data to 2 GeV in the lab photon energy. Comparisons are made with previous analyses. The photo-decay couplings for the delta are examined in detail. Problems in the representation of photoproduction data are discussed, with an emphasis on the recent LEGS data. 16 refs., 4 tabs

  1. Fast Multipole-Based Elliptic PDE Solver and Preconditioner

    KAUST Repository

    Ibeid, Huda

    2016-01-01

    extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM

  2. Multipole interactions of charged particles with the electromagnetic field

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)

  3. Strain and stress of the ASDEX multipole magnetic coils

    International Nuclear Information System (INIS)

    Jandl, O.; Pillsticker, M.

    1978-01-01

    A brief description of the technical concept of the multipole magnetic field coils for the ASDEX tokamak is given. The various loads of the coils are explained in quality. To compute displacement and stress of the coils FEM computer programs are used. The computing models applied to this problem are founded and the results and the conclusions are reported. (orig.) [de

  4. Multipole expansion of vertex functions in an arbitrary frame

    International Nuclear Information System (INIS)

    Daumens, Michel

    1977-01-01

    Vertex functions are expanded on the bases of tensor spherical harmonics and tensor multipoles. The coefficients of the expansions are rotational invariant form factors. The relations with those defined in particular frames by Durand, De Celles and Marr, and by De Rafael are exhibited. Finally multipolar form factors are built which are irreducible under pure Lorentz transformations [fr

  5. Rovibrational matrix elements of the multipole moments and of the ...

    Indian Academy of Sciences (India)

    The rovibrational matrix elements of the multipole moments and polarizability of molecules find applications in the study of infrared spectra, intermolecular potential and collision-induced absorption phenomena, especially in homonuclear molecules. Because of its simplicity and fundamental importance, the hydrogen ...

  6. The Multipole Plasma Trap-PIC Modeling Results

    Science.gov (United States)

    Hicks, Nathaniel; Bowman, Amanda; Godden, Katarina

    2017-10-01

    A radio-frequency (RF) multipole structure is studied via particle-in-cell computer modeling, to assess the response of quasi-neutral plasma to the imposed RF fields. Several regimes, such as pair plasma, antimatter plasma, and conventional (ion-electron) plasma are considered. In the case of equal charge-to-mass ratio of plasma species, the effects of the multipole field are symmetric between positive and negative particles. In the case of a charge-to-mass disparity, the multipole RF parameters (frequency, voltage, structure size) may be chosen such that the light species (e.g. electrons) is strongly confined, while the heavy species (e.g. positive ions) does not respond to the RF field. In this case, the trapped negative space charge creates a potential well that then traps the positive species. 2D and 3D particle-in-cell simulations of this concept are presented, to assess plasma response and trapping dependences on multipole order, consequences of the formation of an RF plasma sheath, and the effects of an axial magnetic field. The scalings of trapped plasma parameters are explored in each of the mentioned regimes, to guide the design of prospective experiments investigating each. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615.

  7. Improved Multilevel Fast Multipole Method for Higher-Order discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion b...

  8. The Analytical Evaluation Of Three-Center Magnetic Multipole Moment Integrals By Using Slater Type Orbitals

    International Nuclear Information System (INIS)

    Oztekin, E.

    2010-01-01

    In this study, magnetic multipole moment integrals are calculated by using Slater type orbitals (STOs), Fourier transform and translation formulas. Firstly, multipole moment operators which appear in the three-center magnetic multipole moment integrals are translated to b-center from 0-center. So, three-center magnetic multipole moment integrals have been reduced to the two-center. Then, the obtained analytical expressions have been written in terms of overlap integrals. When the magnetic multipole moment integrals calculated, matrix representations for x-, y- and z-components of multipole moments was composed and every component was separately calculated to analytically. Consequently, magnetic multipole moment integrals are also given in terms of the same and different screening parameters.

  9. Possible relationship between the Earth's rotation variations and geomagnetic field reversals over the past 510 Myr

    OpenAIRE

    Pacca, Igor G.; Frigo, Everton; Hartmann, Gelvam A.

    2015-01-01

    The Earth's rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth's rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can...

  10. Ice ages and geomagnetic reversals

    Science.gov (United States)

    Wu, Patrick

    1992-01-01

    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  11. Shannon information of the geomagnetic field for the past 7000 years

    Directory of Open Access Journals (Sweden)

    A. De Santis

    2010-02-01

    Full Text Available The present behaviour of the geomagnetic field as expressed by the International Geomagnetic Reference Field (IGRF deserves special attention when compared with that shown over the past few thousands of years by two paleomagnetic/archeomagnetic models, CALS3K and CALS7K. The application of the Information theory in terms of Shannon Information and K-entropy to these models shows characteristics of an instable geomagnetic field. Although the result is mitigated when we correct the CALS7K model for its typical spectral damping, the present geomagnetic field as represented by IGRF is still rather distinct, at least for the past 4000 years, a result that is further confirmed by the CALS3K model. This is consistent with a significant global critical state started at around 1750, and still present, characterised by significant decays of the geomagnetic dipole, energy and Shannon information and high K-entropy. The details of how these characteristics may develop are not clear, since the present state could move toward an excursion or a geomagnetic polarity reversal, but we cannot exclude the possibility that the "critical" behaviour will become again more "normal", stopping the apparent trend of the recent geomagnetic field decay.

  12. Geomagnetic effects caused by rocket exhaust jets

    Directory of Open Access Journals (Sweden)

    Lipko Yu.V.

    2016-09-01

    Full Text Available In the space experiment Radar–Progress, we have made 33 series of measurements of geomagnetic variations during ignitions of engines of Progress cargo spacecraft in low Earth orbit. We used magneto-measuring complexes, installed at observatories of the Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences, and magnetotelluric equipment of a mobile complex. We assumed that engine running can cause geomagnetic disturbances in field tubes crossed by the spacecraft. When analyzing experimental data, we took into account the following space weather factors: solar wind parameters, total daily mid-latitude geomagnetic activity index Kр, geomagnetic auroral electrojet index AE, global geomagnetic activity. The empirical data we obtained indicate that 18 of the 33 series showed geomagnetic variations with various periods.

  13. Geomagnetic Observations for Main Field Studies

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Chulliat, A.; Mandea, M.

    2010-01-01

    Direct measurements of the geomagnetic field have been made for more than 400 years, beginning with individual determinations of the angle between geographic and magnetic North. This was followed by the start of continuous time series of full vector measurements at geomagnetic observatories...... and the beginning of geomagnetic repeat stations surveys in the 19th century. In the second half of the 20th century, true global coverage with geomagnetic field measurements was accomplished by magnetometer payloads on low-Earth-orbiting satellites. This article describes the procedures and instruments...... for magnetic field measurements on ground and in space and covers geomagnetic observatories, repeat stations, automatic observatories, satellites and historic observations. Special emphasis is laid on the global network of geomagnetic observatories....

  14. The Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  15. Form factors and radiation widths of the giant multipole resonances

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1990-01-01

    Simple analytic relations for the form factors of inelastic electron scattering in the Born approximation and radiation widths of the isovector and isoscalar giant multipole resonances are derived. The dynamic relationship between the volume and surface density vibrations were taken into account in this calculation. The form factors in the Born approximation were found to be in satisfactory agreement with experimental data in the region of small transferred momenta. The radiation widths of isoscalar multipole resonances increase when the number of nucleons increase as A 1/3 , and for isovector resonances this dependence has the form f(A)A 1/3 , where f(A) is a slowly increasing function of A. Radiation widths well fit the experimental data

  16. Discussions on performance of two types of permanent multipole magnets

    International Nuclear Information System (INIS)

    Xu Jianming; Xu Qing; Yin Zhaosheng

    1987-01-01

    The field distributions of MMD type and MW type multipole permanent magnets are calculated by means of programme POISCR and the results are summarized and discussed in this paper. The resutls show that, considering the nonlinearity of the real demagnetization curve of permanent magnet material, the field distributions of both types of permanent magnets with the same aperature are about the same but the field strength of MW type magnet with soft iron shield is higher than that of MMD type magnet

  17. The multipole resonance probe: characterization of a prototype

    Energy Technology Data Exchange (ETDEWEB)

    Lapke, Martin; Oberrath, Jens; Brinkmann, Ralf Peter; Mussenbrock, Thomas [Lehrstuhl fuer Theoretische Elektrotechnik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Schulz, Christian; Rolfes, Ilona [Lehrstuhl fuer Hochfrequenzsysteme, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Storch, Robert; Musch, Thomas [Lehrstuhl fuer Elektronische Schaltungstechnik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Styrnoll, Tim; Awakowicz, Peter [Lehrstuhl fuer Allgemeine Elektrotechnik und Plasmatechnik, Ruhr Universitaet Bochum, D-44780 Bochum (Germany); Zietz, Christian [Institut fuer Hochfrequenztechnik und Funksysteme, Leibniz Universitaet Hannover, D-30167 Hannover (Germany)

    2011-08-15

    The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements. (brief communication)

  18. Spiraling solitons and multipole localized modes in nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.; Bang, Ole; Krolikowski, Wieslaw; Kivshar, Yuri S.

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form

  19. Prediction of conformationally dependent atomic multipole moments in carbohydrates.

    Science.gov (United States)

    Cardamone, Salvatore; Popelier, Paul L A

    2015-12-15

    The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings. © 2015 Wiley Periodicals, Inc.

  20. Extension of the Multipole Approach to Random Metamaterials

    Directory of Open Access Journals (Sweden)

    A. Chipouline

    2012-01-01

    Full Text Available Influence of the short-range lateral disorder in the meta-atoms positioning on the effective parameters of the metamaterials is investigated theoretically using the multipole approach. Random variation of the near field quasi-static interaction between metaatoms in form of double wires is shown to be the reason for the effective permittivity and permeability changes. The obtained analytical results are compared with the known experimental ones.

  1. Proof of a multipole conjecture due to Geroch

    International Nuclear Information System (INIS)

    Beig, R.; Simon, W.

    1980-01-01

    A result, first conjectured by Geroch, is proved to the extent, that the multipole moments of a static space-time characterize this space-time uniquely. As an offshoot of the proof one obtains an essentially coordinate-free algorithm for explicitly writing down a geometry in terms of it's moments in a purely algebraic manner. This algorithm seems suited for symbolic manipulation on a computer. (orig.)

  2. Closed expressions for the magnetic field of toroidal multipole configurations

    International Nuclear Information System (INIS)

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration

  3. Determination of gross plasma equilibrium from magnetic multipoles

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, C.E.

    1986-05-01

    A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies.

  4. Determination of gross plasma equilibrium from magnetic multipoles

    International Nuclear Information System (INIS)

    Kessel, C.E.

    1986-05-01

    A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies

  5. Direct vs statistical decay of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1986-07-01

    A theoretical framework for the description of the decay of giant multipole resonances is developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the GR is not necessarily correctly described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt

  6. Direct vs statistical decay of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Carlson, B.V.; Merchant, A.C.; Adhikari, S.K.

    1986-01-01

    A theoretical framework for the description of the decay of giant multipole resonances id developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the giant resonance is not necessarily described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt

  7. Spiralling solitons and multipole localized modes in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form....

  8. Asynchronous Execution of the Fast Multipole Method Using Charm++

    OpenAIRE

    AbdulJabbar, Mustafa; Yokota, Rio; Keyes, David

    2014-01-01

    Fast multipole methods (FMM) on distributed mem- ory have traditionally used a bulk-synchronous model of com- municating the local essential tree (LET) and overlapping it with computation of the local data. This could be perceived as an extreme case of data aggregation, where the whole LET is communicated at once. Charm++ allows a much finer control over the granularity of communication, and has a asynchronous execution model that fits well with the structure of our FMM code. Unlike previous ...

  9. Development of a multi-pole magnetorheological brake

    International Nuclear Information System (INIS)

    Shiao, Yaojung; Nguyen, Quang-Anh

    2013-01-01

    This paper presents a new approach in the design and optimization of a novel multi-pole magnetorheological (MR) brake that employs magnetic flux more effectively on the surface of the rotor. MR brakes with conventional single ring-type electromagnetic poles have reached the limits of torque enhancement. One major reason is the limitation of the magnetic field strength within the active area of the MR fluid due to the geometric constraints of the coil. The multi-pole MR brake design features multiple electromagnetic poles surrounded by several coils. As a result, the active chaining areas for the MR fluid are greatly increased, and significant brake torque improvement is achieved. The coil structure, as a part of the stator, becomes flexible and customizable in terms of space usage for the winding and bobbin design. In addition, this brake offers extra options in its dimensions for torque enhancement because either the radial or the axial dimensions of the rotor can be increased. Magnetic circuit analysis was conducted to analyze the effects of the design parameters on the field torque. After that, simulations were done to find the optimal design under all major geometric constraints with a given power supply. The results show that the multi-pole MR brake provides a considerable braking torque increase while maintaining a compact and solid design. This is confirmation of its feasibility in actual braking applications. (paper)

  10. Electroexcitation of giant multipole resonances in 208Pb

    International Nuclear Information System (INIS)

    Sasao, M.; Torizuka, Y.

    1977-01-01

    Electroexcitation of the nuclear continuum for 208 Pb at excitation energies up to 100 MeV has been measured at momentum transfers in the range from 0.45 to 1.2 fm -1 . Unfolding of the radiation tail was performed using a tail function which takes into account the multiple-photon emission effect. The spectra at these momentum transfers deviate significantly from the prediction of the Fermi-gas model but are consistent with the sum of the multipole strengths of the random-phase approximation; the excess cross section on the low excitation energy side indicates the excitation of multipole resonances. A series of 208 Pb spectra at low momentum transfers was expanded into E1, E2 (E0), E3, and higher multipole components using the q dependence of the Tassie model for isoscalar modes and the Goldhaber-Teller or Steinwedel-Jensen model for isovector modes. The giant dipole resonance thus obtained is consistent with that from photoreactions. Isoscalar and isovector giant quadrupole resonances are seen, respectively, at 11 and 22.5 MeV and an octupole resonance at 16 MeV. A monopole resonance is suggested at 13.5 MeV. The reduced 2 > 2 , B (E1), B (E2), and B (E3) consume most of the corresponding energy weighted sum rule if the q dependences of the Tassie and Goldhaber-Teller models are assumed. The results with these models are consistent with the random-phase approximation

  11. Windowed multipole sensitivity to target accuracy of the optimization procedure

    International Nuclear Information System (INIS)

    Josey, Colin; Forget, Benoit; Smith, Kord

    2015-01-01

    This paper compares the accuracy of the windowed multipole direct Doppler broadening method to that of the ENDF-B/VII.1 libraries that come with MCNP6. Various windowed multipole libraries were generated with different maximum allowed relative errors. Then, the libraries were compared to the MCNP6 data via resonance integral and through single assembly Monte Carlo analysis. Since the windowed multipole uses resonance parameters, resonance integrals are only affected by the number of resonances included in the library and not by the order of the background fitting function. The relative performance of each library with varying maximum allowed error was evaluated. It was found that setting a maximum target relative error of 0.1% in the library provided highly accurate data that closely matches the MCNP6 data for all temperatures of interest, while still having suitable computational performance. Additionally, a library with a maximum relative error of 1% also provided reasonable accuracy on eigenvalue and reaction rates with a noticeable improvement on performance, but with a few statistically significant differences with the MCNP6 data. (author)

  12. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    Science.gov (United States)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  13. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  14. VLF Wave Properties During Geomagnetic Storms

    Science.gov (United States)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  15. Daily variation characteristics at polar geomagnetic observatories

    Science.gov (United States)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  16. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping.

    Science.gov (United States)

    Burt, Eric A; Diener, William A; Tjoelker, Robert L

    2008-12-01

    The multi-pole linear ion trap frequency standard (LITS) being developed at the Jet Propulsion Laboratory (JPL) has demonstrated excellent short- and long-term stability. The technology has now demonstrated long-term field operation providing a new capability for timekeeping standards. Recently implemented enhancements have resulted in a record line Q of 5 x 10(12) for a room temperature microwave atomic transition and a short-term fractional frequency stability of 5 x 10(-14)/tau(1/2). A scheme for compensating the second order Doppler shift has led to a reduction of the combined sensitivity to the primary LITS systematic effects below 5 x 10(-17) fractional frequency. Initial comparisons to JPL's cesium fountain clock show a systematic floor of less than 2 x 10(-16). The compensated multi-pole LITS at JPL was operated continuously and unattended for a 9-mo period from October 2006 to July 2007. During that time it was used as the frequency reference for the JPL geodetic receiver known as JPLT, enabling comparisons to any clock used as a reference for an International GNSS Service (IGS) site. Comparisons with the laser-cooled primary frequency standards that reported to the Bureau International des Poids et Mesures (BIPM) over this period show a frequency deviation less than 2.7 x 10(-17)/day. In the capacity of a stand-alone ultra-stable flywheel, such a standard could be invaluable for long-term timekeeping applications in metrology labs while its methodology and robustness make it ideal for space applications as well.

  17. A new regard about Surlari National Geomagnetic Observatory

    Science.gov (United States)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Pestina, Agata-Monica

    2010-05-01

    Geomagnetic field study in Romanian stations has started with irregular measurements in late XIXth century. In 1943, the foundation of Surlari National Geomagnetic Observatory (SNGO) marks the beginning of a new era in the systematic study of geomagnetic field by a continuous registration of its variations and by carrying out standard absolute measurements in a fundamental station. The location of the observatory meets the highest exigencies, being situated in physical-geological conditions of a uniform local field, at a reasonably long distance from human activities. Its laboratories observe strict conditions of non-magnetism, ensuring the possibility of absolute standard measurements (national magnetic standards) for all the units in the country, civil or military, which are endowed with equipment based on geomagnetic metrology. These basic conditions have allowed the observatory to become by developing its initial preoccupations a centre of complex geomagnetic research, constantly involved in national and international issues, promoting new themes in our country and bringing significant contributions. During the last two decades, infrastructure and equipment used in monitoring geomagnetic field at European and planetary level have experienced a remarkable development. New registering techniques have allowed a complete to automate of data acquisition, and sampling step and their precision increased by two classes of size. Systems of transmitting these data in real time to world collecting centres have resulted in the possibility of approaching globalize studies, suitable for following some phenomena at planetary scale. At the same time, a significant development in the procedures of processing primary data has been registered, based on standardized programmes. The new stage of this fundamental research, largely applicable in various fields, is also marked by the simultaneous observation of space-time distribution of terrestrial electromagnetic field by means of

  18. Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing

    Science.gov (United States)

    Love, Jeffrey J.

    2009-01-01

    The thirteenth biennial International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing was held in the United States for the first time on June 9-18, 2008. Hosted by the U.S. Geological Survey's (USGS) Geomagnetism Program, the workshop's measurement session was held at the Boulder Observatory and the scientific session was held on the campus of the Colorado School of Mines in Golden, Colorado. More than 100 participants came from 36 countries and 6 continents. Preparation for the workshop began when the USGS Geomagnetism Program agreed, at the close of the twelfth workshop in Belsk Poland in 2006, to host the next workshop. Working under the leadership of Alan Berarducci, who served as the chairman of the local organizing committee, and Tim White, who served as co-chairman, preparations began in 2007. The Boulder Observatory was extensively renovated and additional observation piers were installed. Meeting space on the Colorado School of Mines campus was arranged, and considerable planning was devoted to managing the many large and small issues that accompany an international meeting. Without the devoted efforts of both Alan and Tim, other Geomagnetism Program staff, and our partners at the Colorado School of Mines, the workshop simply would not have occurred. We express our thanks to Jill McCarthy, the USGS Central Region Geologic Hazards Team Chief Scientist; Carol A. Finn, the Group Leader of the USGS Geomagnetism Program; the USGS International Office; and Melody Francisco of the Office of Special Programs and Continuing Education of the Colorado School of Mines. We also thank the student employees that the Geomagnetism Program has had over the years and leading up to the time of the workshop. For preparation of the proceedings, thanks go to Eddie and Tim. And, finally, we thank our sponsors, the USGS, IAGA, and the Colorado School of Mines.

  19. Excitation and photon decay of giant multipole resonances

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1990-01-01

    A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provide for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a ''tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 14 refs., 12 figs., 1 tab

  20. Tests of planar permanent magnet multipole focusing elements

    International Nuclear Information System (INIS)

    Cobb, J.; Tatchyn, R.

    1993-08-01

    In recent work, planar configurations of permanent magnets were proposed as substitutes for conventional current-driven iron quadrupoles in applications limited by small aperture sizes and featuring small beam occupation diameters. Important examples include the configuring of focusing lattices in small-gap insertion devices, and the implementation of compact mini-beta sections on linear or circular machines. In subsequent analysis, this approach was extended to sextupoles and higher-order multipoles. In this paper we report on initial measurements conducted at the Stanford Linear Accelerator Center on recently fabricated planar permanent magnet quadrupoles and sextupoles configured out of SmCo and NdFe/B

  1. Higher order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1978-01-01

    The reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and the spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular the spline method may be useful in three-dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length. (Auth.)

  2. Higher-order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1977-12-01

    Reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular, spline method may be useful in three dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length

  3. Multilevel Fast Multipole Method for Higher Order Discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....

  4. Multipole electromagnetic moments of neutrino in dispersive medium

    International Nuclear Information System (INIS)

    Semikov, V.B.; Smorodinskij, Ya.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1989-01-01

    Four multipole moments for a Dirac and Majorana neutrino in a dispersive medium are calculated viz., the electric monopole (charge), electric dipole, magnetic dipole and anapole dipole moment. For comparison the same quantities are presented in the case of vacuum. The neutrino does not possess an (induced) anapole moment in an isotropic medium; however, in a ferromagnetic such a moment exists and for the Majorana neutrino it is the only electromagnetic cjaracteristic. As an example the cross section for elastic scattering of a Majorana neutrino by nuclei in an isotropic plasma is calculated

  5. Time variations in geomagnetic intensity

    Science.gov (United States)

    Valet, Jean-Pierre

    2003-03-01

    After many years spent by paleomagnetists studying the directional behavior of the Earth's magnetic field at all possible timescales, detailed measurements of field intensity are now needed to document the variations of the entire vector and to analyze the time evolution of the field components. A significant step has been achieved by combining intensity records derived from archeological materials and from lava flows in order to extract the global field changes over the past 12 kyr. A second significant step was due to the emergence of coherent records of relative paleointensity using the remanent magnetization of sediments to retrace the evolution of the dipole field. A third step was the juxtaposition of these signals with those derived from cosmogenic isotopes. Contemporaneous with the acquisition of records, new techniques have been developed to constrain the geomagnetic origin of the signals. Much activity has also been devoted to improving the quality of determinations of absolute paleointensity from volcanic rocks with new materials, proper selection of samples, and investigations of complex changes in magnetization during laboratory experiments. Altogether these developments brought us from a situation where the field changes were restricted to the past 40 kyr to the emergence of a coherent picture of the changes in the geomagnetic dipole moment for at least the past 1 Myr. On longer timescales the field variability and its average behavior is relatively well documented for the past 400 Myr. Section 3 gives a summary of most methods and techniques that are presently used to track the field intensity changes in the past. In each case, current limits and potential promises are discussed. The section 4 describes the field variations measured so far over various timescales covered by the archeomagnetic and the paleomagnetic records. Preference has always been given to composite records and databases in order to extract and discuss major and global geomagnetic

  6. Kinematic reversal schemes for the geomagnetic dipole.

    Science.gov (United States)

    Levy, E. H.

    1972-01-01

    Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.

  7. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  8. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  9. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  10. Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009

    Directory of Open Access Journals (Sweden)

    J. L. Zerbo

    2012-02-01

    Full Text Available We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989 and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification.

  11. Multipole resonance in the interaction of a spherical Ag nanoparticle with an emitting dipole

    International Nuclear Information System (INIS)

    Liu Jia-Dong; Song Feng; Zhang Jun; Wang Feng-Xiao; Wang Li-Chao; Liu Shu-Jing

    2014-01-01

    The effect of multipole resonance in the interaction between a spherical metallic nanoparticle (MNP) and an emitting dipole is studied with the Mie theory. The results show that the absorption peak of the MNP with respect to the field of the emitting dipole is blue-shifted with the decrease of the spacing between MNP and emitting dipole due to the enhanced multipole resonance. At a short distance, the enhanced multipole terms of scattering are not obvious compared with the dipole term. For the decay rate of the emitting dipole, multipole resonance brings about the enhancement of it largely at short spacing. For the radiative decay rate, the behavior is quite different. The dipole term is dominant at a short spacing, and the multipole term is dominant at a larger spacing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Acoustic scattering by multiple elliptical cylinders using collocation multipole method

    International Nuclear Information System (INIS)

    Lee, Wei-Ming

    2012-01-01

    This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical–cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.

  13. Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules.

    Science.gov (United States)

    Ren, Pengyu; Wu, Chuanjie; Ponder, Jay W

    2011-10-11

    An empirical potential based on permanent atomic multipoles and atomic induced dipoles is reported for alkanes, alcohols, amines, sulfides, aldehydes, carboxylic acids, amides, aromatics and other small organic molecules. Permanent atomic multipole moments through quadrupole moments have been derived from gas phase ab initio molecular orbital calculations. The van der Waals parameters are obtained by fitting to gas phase homodimer QM energies and structures, as well as experimental densities and heats of vaporization of neat liquids. As a validation, the hydrogen bonding energies and structures of gas phase heterodimers with water are evaluated using the resulting potential. For 32 homo- and heterodimers, the association energy agrees with ab initio results to within 0.4 kcal/mol. The RMS deviation of hydrogen bond distance from QM optimized geometry is less than 0.06 Å. In addition, liquid self-diffusion and static dielectric constants computed from molecular dynamics simulation are consistent with experimental values. The force field is also used to compute the solvation free energy of 27 compounds not included in the parameterization process, with a RMS error of 0.69 kcal/mol. The results obtained in this study suggest the AMOEBA force field performs well across different environments and phases. The key algorithms involved in the electrostatic model and a protocol for developing parameters are detailed to facilitate extension to additional molecular systems.

  14. On the Fly Doppler Broadening Using Multipole Representation

    International Nuclear Information System (INIS)

    Khassenov, Azamat; Choi, Sooyoung; Lee, Deokjung

    2015-01-01

    On the Fly Doppler broadening is the technique to avoid pre-generation of the microscopic cross section, in other words, reduce the amount of storage. Currently, there are different types of formalisms used by NJOY code to generate reaction cross section and accomplish its Doppler broadening. Single-Level Breit-Wigner (SLBW) formalism is limited to well-separated resonances, in other words, it does not consider interference between energy levels. Multi-Level Breit- Wigner formalism (MLBW) was tested as the candidate for the cross section generation in the Monte Carlo code, which is under development in UNIST. According to the results, MLBW method requires huge amount of computational time to produce cross section at certain energy point. Reich-Moore (RM) technique can generate only 0K cross section, which means that it cannot produce broaden cross section directly from resonance parameters. The first step was to convert resonance parameters given in nuclear data file into multipoles. MPR shows very high potential to be used as the formalism in the on-the-fly Doppler broadening module of MCS. One of the main reasons is that comparison of the time cost shown in Table IV supports application of multipole representation

  15. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman

    2012-06-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.

  16. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  17. The Complexity of Solar and Geomagnetic Indices

    Science.gov (United States)

    Pesnell, W. Dean

    2017-08-01

    How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.

  18. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  19. Toward a possible next geomagnetic transition?

    OpenAIRE

    A. De Santis; E. Qamili; L. Wu

    2013-01-01

    The geomagnetic field is subject to possible reversals or excursions of polarity during its temporal evolution. Considering that: (a) the typical average time between one reversal and the next (the so-called chron) is around 300 000 yr, (b) the last reversal occurred around 780 000 yr ago, (c) more excursions (rapid changes of polarity) can occur within the same chron and (d) the geomagnetic field dipole is currently decreasing, a possible imminent geomagne...

  20. How the geomagnetic field vector reverses polarity

    Science.gov (United States)

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  1. On the conversion of the high multipole transition between the 23/2- 3qp state and the 17/2+ rotational state in 177Lu

    International Nuclear Information System (INIS)

    Deepa, S.; Vijay Sai, K.; Ashish, T.; Venkataramaniah, K.; Kailas, S.

    2012-01-01

    Gerl et al through a compilation of Internal Conversion Coefficients (ICCs) of high multipole transitions and a comparison with various theoretical calculations and experimental data concluded that the theoretical values of BRICC are close to experimental values within 1-2% when compared to Hager and Seltzer and Rosel et al values. In a programme supported through a DAE BRNS project, we have been trying to experimentally determine the ICCs of high multipole transitions with high precision to garner support and evidence for the findings of Gerl et al. The present measurement is a part of such an effort. The prolate deformed nucleus 177 Lu lies in the rare earth region with Z = 71 and N = 106 between closed shells. Several three-quasiparticle states as well as states originating from the coupling of a quasi-particle to the γ-vibration of the core were established in 177 Lu at energies above 1200 keV by different groups

  2. Fast Multipole-Based Preconditioner for Sparse Iterative Solvers

    KAUST Repository

    Ibeid, Huda; Yokota, Rio; Keyes, David E.

    2014-01-01

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.

  3. The low-lying collective multipole response of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Spieker, Mark; Derya, Vera; Hennig, Andreas; Pickstone, Simon G.; Prill, Sarah; Vielmetter, Vera; Weinert, Michael; Wilhelmy, Julius; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest (Romania)

    2016-07-01

    We present experimental results on the low-lying multipole response, which were obtained with the recently established DSA-method in Cologne. Nuclear level lifetimes in the sub-ps regime are extracted by means of centroid-shifts utilizing the (p,p{sup '}γ) reaction at the 10 MV FN-Tandem accelerator in Cologne. The scattered protons are coincidently detected with the deexciting γ rays using the SONIC rate at HORUS detector array, which allows for a precise determination of the reaction kinematics. In addition to the pioneering results on octupole and hexadecapole mixed-symmetry states of {sup 96}Ru, this contribution will feature new results on low-lying quadrupole-octupole coupled states and on the low-lying E2 strength of {sup 112,114}Sn, which was recently discussed to be generated due to a quadrupole-type oscillation of the neutron skin against the isospin-saturated core.

  4. Point sources and multipoles in inverse scattering theory

    CERN Document Server

    Potthast, Roland

    2001-01-01

    Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration. Point Sources and Multipoles in Inverse Scattering Theory provides a survey of recent developments in inverse acoustic and electromagnetic scattering theory. Focusing on methods developed over the last six years by Colton, Kirsch, and the author, this treatment uses point sources combined with several far-reaching techniques to obtain qualitative reconstruction methods. The author addresses questions of uniqueness, stability, and reconstructions for both two-and three-dimensional problems.With interest in extracting information about an object through scattered waves at an all-ti...

  5. Giant resonance of electrical multipole from droplet model

    International Nuclear Information System (INIS)

    Tauhata, L.

    1984-01-01

    The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author) [pt

  6. Distorted black holes in terms of multipole moments

    International Nuclear Information System (INIS)

    Suen, W.

    1986-01-01

    In terms of a multipole-moment formalism previously developed for non-asymptotically-flat systems in general relativity, the metric of a Schwarzschild black hole in an external quadrupolar gravitational field is studied. Among other results, we find that the black hole develops an induced quadrupole moment, which in turn generates a tidal field opposing the applied field. This effect, plus the fact that the horizon cannot expand when a quasistatic tidal force is applied, can be described in terms of effective 2-dimensional elastic moduli for the black-hole horizon. The bulk modulus is kappa = ∞, and the shear modulus is mu = -63/(20πM), where M is the hole's mass

  7. Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials

    CERN Document Server

    Morozov, I

    2017-01-01

    We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.

  8. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    KAUST Repository

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  9. Convergence problems of Coulomb and multipole sums in crystals

    International Nuclear Information System (INIS)

    Kholopov, Evgenii V

    2004-01-01

    Different ways of calculating Coulomb and dipole sums over crystal lattices are analyzed comparatively. It is shown that the currently alleged disagreement between various approaches originates in ignoring the requirement for the self-consistency of surface conditions, which are of fundamental importance due to the long-range nature of the bulk interactions that these sums describe. This is especially true of surfaces arising when direct sums for infinite translation-invariant structures are truncated. The charge conditions for actual surfaces being self-consistently adjusted to the bulk state are formally the same as those on the truncation surface, consistent with the concept of the thermodynamic limit for the bulk-state absolute equilibrium and with the fact that the surface energy contribution in this case is, naturally, statistically small compared to the bulk contribution. Two-point multipole expansions are briefly discussed, and the problems associated with the boundary of their convergence circle are pointed out. (reviews of topical problems)

  10. On some orthogonality properties of Maxwell's multipole vectors

    International Nuclear Information System (INIS)

    Gramada, Apostol

    2007-01-01

    We determine the location of the expansion points with respect to which the two Maxwell's multipole vectors of the quadrupole moment and the dipole vector of a distribution of charge form an orthogonal trihedron. We find that with respect to these 'orthogonality centres' both the dipole and the quadrupole moments are each characterized by a single real parameter. We further show that the orthogonality centres coincide with the stationary points of the magnitude of the quadrupole moment and, therefore, they can be seen as an extension of the concept of centre of the dipole moment of a neutral system introduced previously in the literature. The nature of the stationary points then provides the means for the classification of a distribution of charge in two different categories

  11. Magnetic X-ray measurements using the elliptical multipole wiggler

    International Nuclear Information System (INIS)

    Montano, P. A.; Li, Y.; Beno, M. A.; Jennings, G.; Kimball, C. W.

    1999-01-01

    The EMW at the BESSRC beam lines at the APS provides high photon flux at high energies with the capability of producing circular polarization on axis. The authors observe a high degree of circularly polarized x-rays at such energies. The polarization and frequency tunability of the elliptical multipole wiggler (EMW) is an ideal source for many magnetic measurements from X-ray Magnetic Circular Dichroism (XMCD) to Compton scattering experiments. They performed Compton scattering measurements to determine the polarization and photon flux at the sample as a function of the deflection parameters K y and K x . They used for their measurements a Si (220) Laue monochromator providing simultaneous photon energies at 50 keV, 100 keV and 150 keV. Magnetic Compton Profiles were determined by either switching the magnet polarity or the photon helicity. The results obtained using Fe(110) single crystals were very similar

  12. Fast Multipole-Based Preconditioner for Sparse Iterative Solvers

    KAUST Repository

    Ibeid, Huda

    2014-05-04

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.

  13. Communications overlapping in fast multipole particle dynamics methods

    International Nuclear Information System (INIS)

    Kurzak, Jakub; Pettitt, B. Montgomery

    2005-01-01

    In molecular dynamics the fast multipole method (FMM) is an attractive alternative to Ewald summation for calculating electrostatic interactions due to the operation counts. However when applied to small particle systems and taken to many processors it has a high demand for interprocessor communication. In a distributed memory environment this demand severely limits applicability of the FMM to systems with O(10 K atoms). We present an algorithm that allows for fine grained overlap of communication and computation, while not sacrificing synchronization and determinism in the equations of motion. The method avoids contention in the communication subsystem making it feasible to use the FMM for smaller systems on larger numbers of processors. Our algorithm also facilitates application of multiple time stepping techniques within the FMM. We present scaling at a reasonably high level of accuracy compared with optimized Ewald methods

  14. Modified multipole structure for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, P.

    2006-07-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar16+. (orig.)

  15. Modified multipole structure for electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Suominen, P.

    2006-01-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar 16+ . (orig.)

  16. Parallel Fast Multipole Boundary Element Method for crustal dynamics

    International Nuclear Information System (INIS)

    Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar

    2010-01-01

    Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.

  17. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hwang, Ching-Shiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  18. Analytical study of the conjecture rule for the combination of multipole effects in LHC

    CERN Document Server

    Guignard, Gilbert

    1997-01-01

    This paper summarizes the analytical investigation done on the conjecture law found by tracking for the effect on the dynamic aperture of the combination of two multipoles of various order. A one-dimensional model leading to an integrable system has been used to find closed formulae for the dynamic aperture associated with a fully distributed multipole. The combination has then been studied and the resulting expression compared with the assumed conjecture law. For integrated multipoles small with respect to the focusing strength, the conjecture appears to hold, though with an exponent different from the one expected by crude reasoning.

  19. The Formation of Multipoles during the High-Temperature Creep of Austenitic Stainless Steels

    DEFF Research Database (Denmark)

    Howell, J.; Nielsson, O.; Horsewell, Andy

    1981-01-01

    It is shown that multipole dislocation configurations can arise during power-law creep of certain austenitic stainless steels. These multipoles have been analysed in some detail for two particular steels (Alloy 800 and a modified AISI 316L) and it is suggested that they arise either during...... instantaneous loading or during the primary creep stage. Trace analysis has shown that the multipoles are confined to {1 1 1} planes during primary creep but are not necessarily confined to these planes during steady-state creep unless they are pinned by interstitials....

  20. Real-time geomagnetic monitoring for space weather-related applications: Opportunities and challenges

    Science.gov (United States)

    Love, Jeffrey J.; Finn, Carol A.

    2017-07-01

    An examination is made of opportunities and challenges for enhancing global, real-time geomagnetic monitoring that would be beneficial for a variety of operational projects. This enhancement in geomagnetic monitoring can be attained by expanding the geographic distribution of magnetometer stations, improving the quality of magnetometer data, increasing acquisition sampling rates, increasing the promptness of data transmission, and facilitating access to and use of the data. Progress will benefit from new partnerships to leverage existing capacities and harness multisector, cross-disciplinary, and international interests.

  1. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  2. Possible relationship between the Earth’s rotation variations and geomagnetic field reversals over the past 510 Myr

    Directory of Open Access Journals (Sweden)

    Igor Gil Pacca

    2015-04-01

    Full Text Available The Earth’s rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth’s rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can be used as a possible indicator to explain the length of day (LOD variations and consequently the reversal field frequency over the past 510 Myr. Therefore, our analysis suggests that the relationships between the geomagnetic reversal frequency rates and the Earth’s rotation changes during the Phanerozoic. However, more reversal data are required for periods before the KRS to strengthen the perspective of using the geomagnetic reversal data as a marker for the LOD variations through geological times.

  3. Time-causal decomposition of geomagnetic time series into secular variation, solar quiet, and disturbance signals

    Science.gov (United States)

    Rigler, E. Joshua

    2017-04-26

    A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.

  4. Geometric effects of ICMEs on geomagnetic storms

    Science.gov (United States)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  5. Testing the statistical isotropy of large scale structure with multipole vectors

    International Nuclear Information System (INIS)

    Zunckel, Caroline; Huterer, Dragan; Starkman, Glenn D.

    2011-01-01

    A fundamental assumption in cosmology is that of statistical isotropy - that the Universe, on average, looks the same in every direction in the sky. Statistical isotropy has recently been tested stringently using cosmic microwave background data, leading to intriguing results on large angular scales. Here we apply some of the same techniques used in the cosmic microwave background to the distribution of galaxies on the sky. Using the multipole vector approach, where each multipole in the harmonic decomposition of galaxy density field is described by unit vectors and an amplitude, we lay out the basic formalism of how to reconstruct the multipole vectors and their statistics out of galaxy survey catalogs. We apply the algorithm to synthetic galaxy maps, and study the sensitivity of the multipole vector reconstruction accuracy to the density, depth, sky coverage, and pixelization of galaxy catalog maps.

  6. Lessons learned from recent geomagnetic disturbance model validation activities

    Science.gov (United States)

    Pulkkinen, A. A.; Welling, D. T.

    2017-12-01

    Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.

  7. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  8. Recent Activities Of The World Data Centre For Geomagnetism (Edinburgh)

    OpenAIRE

    Reay, Sarah; Humphries, Tom; Macmillan, Susan; Flower, Simon; Stevenson, Peter; Clarke, Ellen

    2015-01-01

    For almost 50 years the World Data Centre for Geomagnetism (Edinburgh) has been a custodian of geomagnetic data. In particular, over recent years the scope of the data holdings has been increased, quality control measures introduced and better interfaces to make the data more accessible to users are being developed. The WDC hold geomagnetic time-series data from around 280 observatories worldwide at a number of time resolutions along with various magnetic survey, model, and geomagnetic ac...

  9. Static spacetimes with prescribed multipole moments: a proof of a conjecture by Geroch

    International Nuclear Information System (INIS)

    Herberthson, Magnus

    2009-01-01

    In this paper we give sufficient conditions on a sequence of multipole moments for a static spacetime to exist with precisely these moments. The proof is constructive in the sense that a metric having prescribed multipole moments up to a given order can be calculated. Since these sufficient conditions agree with already known necessary conditions, this completes the proof of a long standing conjecture due to Geroch.

  10. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    International Nuclear Information System (INIS)

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered

  11. Correlated isocurvature fluctuation in quintessence and suppressed cosmic microwave background anisotropies at low multipoles.

    Science.gov (United States)

    Moroi, Takeo; Takahashi, Tomo

    2004-03-05

    We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.

  12. Active internal corrector coils

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.; Dahl, P.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained

  13. First-principles Theory of Magnetic Multipoles in Condensed Matter Systems

    Science.gov (United States)

    Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.

    2018-04-01

    The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.

  14. Higher magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Green, M.A.

    1990-01-01

    Correction elements in colliding beam accelerators such as the Superconducting Super Collider (SSC) can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. Multipole magnetization field components have been measured within the HERA storage ring dipole magnets. Calculations of these components using the SCMAG04 code, which agree substantially with the measured multipoles, are presented in the report. As a result, in the proposed continuous correction winding for the SSC, dipoles have been replaced with lumped correction elements every six dipole magnets (about 120 meters apart). Nested lumped correction elements will also produce undesirable higher magnetization multipoles. This report shows a method by which the higher multipole generated by nested correction elements can be identified. (author)

  15. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca

    2011-01-01

    between observatories and the establishment of observatory networks has harmonized standards and practices across the world; improving the quality of the data product available to the user. Nonetheless, operating a highquality geomagnetic observatory is non-trivial. This article gives a record...... of the current state of observatory instrumentation and methods, citing some of the general problems in the complex operation of geomagnetic observatories. It further gives an overview of recent improvements of observatory data quality based on presentation during 11th IAGA Assembly at Sopron and INTERMAGNET...

  16. A simple statistical model for geomagnetic reversals

    Science.gov (United States)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  17. Geomagnetic Storm Impact On GPS Code Positioning

    Science.gov (United States)

    Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet

    2017-04-01

    This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm

  18. Fast Multipole-Based Elliptic PDE Solver and Preconditioner

    KAUST Repository

    Ibeid, Huda

    2016-12-07

    Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity

  19. Molecular multipole moments of water molecules in ice Ih

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1998-01-01

    We have used an induction model including dipole, dipole endash quadrupole, quadrupole endash quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments to study the electric field in ice. The self-consistent induction calculations gave an average total dipole moment of 3.09 D, a 67% increase over the dipole moment of an isolated water molecule. A previous, more approximate induction model study by Coulson and Eisenberg [Proc. R. Soc. Lond. A 291, 445 (1966)] suggested a significantly smaller average value of 2.6 D. This value has been used extensively in recent years as a reference point in the development of various polarizable interaction potentials for water as well as for assessment of the convergence of water cluster properties to those of bulk. The reason for this difference is not due to approximations made in the computational scheme of Coulson and Eisenberg but rather due to the use of less accurate values for the molecular multipoles in these earlier calculations. copyright 1998 American Institute of Physics

  20. Data-driven execution of fast multipole methods

    KAUST Repository

    Ltaief, Hatem

    2013-09-17

    Fast multipole methods (FMMs) have O (N) complexity, are compute bound, and require very little synchronization, which makes them a favorable algorithm on next-generation supercomputers. Their most common application is to accelerate N-body problems, but they can also be used to solve boundary integral equations. When the particle distribution is irregular and the tree structure is adaptive, load balancing becomes a non-trivial question. A common strategy for load balancing FMMs is to use the work load from the previous step as weights to statically repartition the next step. The authors discuss in the paper another approach based on data-driven execution to efficiently tackle this challenging load balancing problem. The core idea consists of breaking the most time-consuming stages of the FMMs into smaller tasks. The algorithm can then be represented as a directed acyclic graph where nodes represent tasks and edges represent dependencies among them. The execution of the algorithm is performed by asynchronously scheduling the tasks using the queueing and runtime for kernels runtime environment, in a way such that data dependencies are not violated for numerical correctness purposes. This asynchronous scheduling results in an out-of-order execution. The performance results of the data-driven FMM execution outperform the previous strategy and show linear speedup on a quad-socket quad-core Intel Xeon system.Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Multipole analysis of redshift-space distortions around cosmic voids

    Energy Technology Data Exchange (ETDEWEB)

    Hamaus, Nico; Weller, Jochen [Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians Universität, Scheinerstr. 1, D-81679 München (Germany); Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie, E-mail: hamaus@usm.lmu.de, E-mail: cousinou@cppm.in2p3.fr, E-mail: pisani@cppm.in2p3.fr, E-mail: maubert@cppm.in2p3.fr, E-mail: escoffier@cppm.in2p3.fr, E-mail: jochen.weller@usm.lmu.de [Aix Marseille Univ., CNRS/IN2P3, CPPM, 163 avenue de Luminy, F-13288, Marseille (France)

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  2. A task parallel implementation of fast multipole methods

    KAUST Repository

    Taura, Kenjiro

    2012-11-01

    This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM, experiences have almost exclusively been limited to formulation based on flat homogeneous parallel loops. FMM in fact contains operations that cannot be readily expressed in such conventional but restrictive models. We show that task parallelism, or parallel recursions in particular, allows us to parallelize all operations of FMM naturally and scalably. Moreover it allows us to parallelize a \\'\\'mutual interaction\\'\\' for force/potential evaluation, which is roughly twice as efficient as a more conventional, unidirectional force/potential evaluation. The net result is an open source FMM that is clearly among the fastest single node implementations, including those on GPUs; with a million particles on a 32 cores Sandy Bridge 2.20GHz node, it completes a single time step including tree construction and force/potential evaluation in 65 milliseconds. The study clearly showcases both programmability and performance benefits of flexible parallel constructs over more monolithic parallel loops. © 2012 IEEE.

  3. Multipole analysis of redshift-space distortions around cosmic voids

    Science.gov (United States)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  4. Scalable fast multipole methods for vortex element methods

    KAUST Repository

    Hu, Qi

    2012-11-01

    We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.

  5. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    Science.gov (United States)

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  6. Electron inelastic scattering by compound nuclei and giant multipole resonances

    International Nuclear Information System (INIS)

    Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.

    1980-01-01

    Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru

  7. Vacuum energies due to delta-like currents: multipole interactions

    International Nuclear Information System (INIS)

    Barone, F.A.; Borges, K.; Flores-Hidalgo, G.

    2009-01-01

    Full text. This work is devoted to a study about the quantum description of multipoles distributions by the use of external static currents concentrated along specific regions of space. For this task we consider models of bosonic quantum fields (scalar and electromagnetic fields) interacting with external currents which simulate the presence of charges, dipoles and quadrupoles distributions along D-dimensional static branes. Along the work we consider models in d+D+1 dimensions described by a quantum field coupled with an external current composed by two parts: the first one concentrated along a D-brane and the other one concentrated at a given point of space. This last part represents a point-like test-charge which is used to investigate the force field produced by the former one. Specifically, we consider models for the scalar field, with and without mass, coupled to currents describing distributions of charges, dipoles and quadrupoles currents along D-branes. These currents are given, respectively, by a Dirac's delta function, a directional derivative of a Dirac's delta function and the second derivative of a Dirac's delta function (coupled with a second rank tensor). We also extend the previous results for the electromagnetic case in order to bring them to more realistic contexts. We show that, as expected, there is an overall minus sing in comparing the results obtained for the scalar and electromagnetic fields. (author)

  8. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  9. Multipole analysis of redshift-space distortions around cosmic voids

    International Nuclear Information System (INIS)

    Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie

    2017-01-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h −1 Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599 +0.134 −0.124 and β( z-bar =0.54)=0.457 +0.056 −0.054 , with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  10. Design of High Field Multipole Wiggler at PLS

    International Nuclear Information System (INIS)

    Kim, D. E.; Park, K. H.; Lee, H. G.; Suh, H. S.; Han, H. S.; Jung, Y. G.; Chung, C. W.

    2007-01-01

    Pohang Accelerator Laboratory (PAL) is developing a high field multipole wiggler for new EXAFS beamline. The beamline is planning to utilize very high photon energy (∼40keV) synchrotron radiation at Pohang Light Source (PLS). To achieve higher critical photon energy, the wiggler field need to be maximized. A magnetic structure with wedged pole and blocks with additional side blocks which are similar to asymmetric wiggler of ESRF are designed to achieve higher flux density. The end structures were designed to be asymmetric along the beam direction to ensure systematic zero 1st field integral. The thickness of the last magnets were adjusted to minimize the transition sequence to the fully developed periodic field. This approach is more convenient to control than adjusting the strength of the end magnets. The final design features 140mm period, 2.5 Tesla peak flux density at 12mm pole gap, 1205mm magnetic structure length with 16 full field poles. In this article, all the design, engineering efforts for the HFMSII wiggler will be described

  11. Wind turbine integrated multipole permanent magnet generator (PMG)

    Energy Technology Data Exchange (ETDEWEB)

    Vilsboell, N.; Pinegin, A.; Goussarov, D.

    1996-01-01

    Designed permanent magnet generator (PMG - 20 kW) possesses a number of advantages: it makes possible to replace gearbox, the generator and possibly the hub of the wind turbine by combining wind rotor with external rotor of the generator; use of rare earth magnets Nd-Fe-B allows to reduce mass and dimensions of the generator; use of the PMG for wind turbines increases the reliability of the construction during the life time, comparing to the conventional design (gearbox, asynchronous generator). The test of the PMG -20 kW informs that design method, developed for calculation of multipole permanent magnet generators is correct in general and meets engineering requirements. The calculation uncertainty of the magnetic system and output characteristics does not exceed 2-3%. The test shows, that the maximum efficiency of the PGM - 20 kW with full load can be achieved as high as 90-91.5% and excels the efficiency of the traditional system `generator-gearbox` by 4-5.5%. Designing permanent magnet generator, it is recommended to take into account voltage stabilization (capacitance). Efficiency is expected to be higher, mass and production cost of the generator can be reduced by 25-30%. The frequency converter shall be used not only for control of rotational speed, but also to obtain sinusoidal capacitive current on the generator side. For PMG - 20 kW the angle between voltage and current should be within the range 0-23%. (au)

  12. Geomagnetic activity and the North Atlantic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2014-01-01

    Roč. 58, č. 3 (2014), s. 461-472 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : geomagnetic activity * solar wind * polar vortex intensification * downward winds Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  13. Geomagnetic secular variation at the African observatories

    International Nuclear Information System (INIS)

    Haile, T.

    2002-10-01

    Geomagnetic data from ten observatories in the African continent with time series data length of more than three decades have been analysed. All-day annual mean values of the D, H and Z components were used to study secular variations in the African region. The residuals in D, H and Z components obtained after removing polynomial fits have been examined in relation to the sunspot cycle. The occurrence of the 1969-1970 worldwide geomagnetic impulse in each observatory is studied. It is found that the secular variation in the field can be represented for most of the observatories with polynomials of second or third degree. Departures from these trends are observed over the Southern African region where strong local magnetic anomalies have been observed. The residuals in the geomagnetic field components have been shown to exhibit parallelism with the periods corresponding to double solar cycle for some of the stations. A clear latitudinal distribution in the geomagnetic component that exhibits the 1969-70 jerk is shown. The jerk appears in the plots of the first differences in H for the southern most observatories of Hermanus, Hartebeesthoek, and Tsuemb, while the Z plots show the jerk for near equatorial and equatorial stations of Antananarivo, Luanda Belas, Bangui and Addis Ababa. There is some indication for this jerk in the first difference plots of D for the northern stations of M'Bour and Tamanrasset. The plots of D rather strongly suggest the presence of a jerk around 1980 at most of the stations. (author)

  14. Geomagnetic activity and the global temperature

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2009-01-01

    Roč. 53, č. 4 (2009), s. 571-573 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : global warming * Southern Oscillation * geomagnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.000, year: 2009

  15. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  16. What do we mean by accuracy in geomagnetic measurements?

    Science.gov (United States)

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  17. Geomagnetic field evolution during the Laschamp excursion

    Science.gov (United States)

    Leonhardt, Roman; Fabian, Karl; Winklhofer, Michael; Ferk, Annika; Laj, Carlo; Kissel, Catherine

    2009-02-01

    Since the last geomagnetic reversal, 780,000 years ago, the Earth's magnetic field repeatedly dropped dramatically in intensity. This has often been associated with large variations in local field direction, but without a persistent global polarity flip. The structure and dynamics of geomagnetic excursions, and especially the difference between excursions and polarity reversals, have remained elusive so far. For the best documented excursion, the Laschamp event at 41,000 years BP, we have reconstructed the evolution of the global field morphology by using a Bayesian inversion of several high-resolution palaeomagnetic records. We have obtained an excursion scenario in which inverse magnetic flux patches at the core-mantle boundary emerge near the equator and then move poleward. Contrary to the situation during the last reversal (Leonhardt, R., Fabian, K., 2007. Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172-195), these flux patches do not cross the hydrodynamic boundary of the inner-core tangent cylinder. While the last geomagnetic reversal began with a substantial increase in the strength of the non-dipolar field components, prior to the Laschamp excursion, both dipolar and non-dipolar field decay at the same rate. This result suggests that the nature of an upcoming geomagnetic field instability can be predicted several hundred years in advance. Even though during the Laschamp excursion the dipolar field at the Earth's surface was dominant, the reconstructed dynamic non-dipolar components lead to considerable deviations among predicted records at different locations. The inverse model also explains why at some locations no directional change during the Laschamp excursion is observed.

  18. Evaluation of a new paleosecular variation activity index as a diagnostic tool for geomagnetic field variations

    Science.gov (United States)

    Panovska, Sanja; Constable, Catherine

    2015-04-01

    Geomagnetic indices like Dst, K and A, have been used since the early twentieth century to characterize activity in the external part of the modern geomagnetic field and as a diagnostic for space weather. These indices reflect regional and global activity and serve as a proxy for associated physical processes. However, no such tools are yet available for the internal geomagnetic field driven by the geodynamo in Earth's liquid outer core. To some extent this reflects limited spatial and temporal sampling for longer timescales associated with paleomagnetic secular variation, but recent efforts in both paleomagnetic data gathering and modeling activity suggest that longer term characterization of the internal geomagnetic weather/climate and its variability would be useful. Specifically, we propose an index for activity in paleosecular variation, useful as both a local and global measure of field stability during so-called normal secular variation and as a means of identifying more extreme behavior associated with geomagnetic excursions and reversals. To date, geomagnetic excursions have been identified by virtual geomagnetic poles (VGPs) deviating more than some conventional limit from the geographic pole (often 45 degrees), and/or by periods of significant intensity drops below some critical value, for example 50% of the present-day field. We seek to establish a quantitative definition of excursions in paleomagnetic records by searching for synchronous directional deviations and lows in relative paleointensity. We combine paleointensity variations with deviations from the expected geocentric axial dipole (GAD) inclination in a single parameter, which we call the paleosecular variation (PSV) activity index. This new diagnostic can be used on any geomagnetic time series (individual data records, model predictions, spherical harmonic coefficients, etc.) to characterize the level of paleosecular variation activity, find excursions, or even study incipient reversals

  19. Geomagnetism and Aeronomy activities in Italy during IGY, 1957/58

    Directory of Open Access Journals (Sweden)

    Lucilla Alfonsi

    2009-06-01

    Full Text Available In 2007 several events were organized to celebrate the fiftieth anniversary of the International Geophysical Year
    (IGY, 1957-1958. The celebrations will last until 2009 and are taking place within different contexts: the International
    Polar Year (IPY, the International Heliophysical Year (IHY, the electronic Geophysical Year (eGY
    and the International Year of Planet Earth (IYPE.
    IGY offered a very appropriate and timely occasion to undertake a series of coordinated observations of various
    geophysical phenomena all over the globe. Italy took part in the broad international effort stimulated by IGY. In
    fact, Italy participated in observations and studies in many of the proposed scientific areas, in particular Geomagnetism
    and Aeronomy. The Istituto Nazionale di Geofisica (ING started the installation of observatories,
    and updated and ensured continuous recording of geophysical observations. Geomagnetism, ionospheric
    physics, seismology, and other geophysical disciplines, were advanced. Although much of the work was undertaken
    in Italy, some attention was also devoted to other areas of the world, in particular Antarctica, where Italy
    participated in seismological observations. This paper gives a summary of the Geomagnetism and Ionospheric
    Physics activities within IGY. Furthermore, we highlight the importance of this historical event and its outcomes
    for the improvement of geophysical observations and the post-IGY growth of scientific investigations in Italy.

  20. Fast multipole preconditioners for sparse matrices arising from elliptic equations

    KAUST Repository

    Ibeid, Huda

    2017-11-09

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.

  1. Fast multipole preconditioners for sparse matrices arising from elliptic equations

    KAUST Repository

    Ibeid, Huda; Yokota, Rio; Pestana, Jennifer; Keyes, David E.

    2017-01-01

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.

  2. First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries.

    Science.gov (United States)

    London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco

    2018-04-20

    Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2,|m|=2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m|)=(2,2),(3,3),(4,4),(2,1),(3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.

  3. A Fourier-series-based kernel-independent fast multipole method

    International Nuclear Information System (INIS)

    Zhang Bo; Huang Jingfang; Pitsianis, Nikos P.; Sun Xiaobai

    2011-01-01

    We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency.

  4. First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries

    Science.gov (United States)

    London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco

    2018-04-01

    Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2 ,|m |=2 ) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m |)=(2 ,2 ),(3 ,3 ),(4 ,4 ),(2 ,1 ),(3 ,2 ),(4 ,3 ) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.

  5. Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

    Science.gov (United States)

    Lee, Seokcheon

    2018-02-01

    Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.

  6. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    Science.gov (United States)

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions.

  7. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions

    International Nuclear Information System (INIS)

    Chu, W.; Univ. of Chinese Academy of Sciences, Beijing; Qin, G.

    2016-01-01

    Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.

  8. Geographical localisation of the geomagnetic secular variation

    DEFF Research Database (Denmark)

    Aubert, Julien; Finlay, Chris; Olsen, Nils

    2013-01-01

    the model and geomagnetic data previously processed in the same way. Our results suggest that conservation of angular momentum and heterogeneous thermochemical boundary control in the coupled inner core / outer core / mantle system are central to understanding how Earth’s magnetic field currently evolves......., westward moving, magnetic flux patches at the core surface. Despite its successes in explaining the main morphological properties of Earth’s magnetic field, self-consistent numerical modelling of the geodynamo has so far failed to reproduce this field variation pattern. Furthermore its magnetohydrodynamic...... control from either, or both, the inner-core boundary and the core-mantle boundary. In addition to presenting an Earth-like magnetic field morphology, these new numerical models also reproduce the morphology and localization of geomagnetic secular variation. In our models, the conservation of the angular...

  9. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  10. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  11. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  12. Tunable multipole resonances in plasmonic crystals made by four-beam holographic lithography

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Li, X.; Zhang, X.; Prybolsky, S.; Shepard, G. D.; Strauf, S., E-mail: Strauf@stevens.edu [Department of Physics and Engineering Physics, Stevens Institute of Technology, Castle Point on the Hudson, Hoboken, New Jersey 07030 (United States)

    2016-02-01

    Plasmonic nanostructures confine light to sub-wavelength scales, resulting in drastically enhanced light-matter interactions. Recent interest has focused on controlled symmetry breaking to create higher-order multipole plasmonic modes that store electromagnetic energy more efficiently than dipole modes. Here we demonstrate that four-beam holographic lithography enables fabrication of large-area plasmonic crystals with near-field coupled plasmons as well as deliberately broken symmetry to sustain multipole modes and Fano-resonances. Compared with the spectrally broad dipole modes we demonstrate an order of magnitude improved Q-factors (Q = 21) when the quadrupole mode is activated. We further demonstrate continuous tuning of the Fano-resonances using the polarization state of the incident light beam. The demonstrated technique opens possibilities to extend the rich physics of multipole plasmonic modes to wafer-scale applications that demand low-cost and high-throughput.

  13. Visual Multipoles And The Assessment Of Visual Sensitivity To Displayed Images

    Science.gov (United States)

    Klein, Stanley A.

    1989-08-01

    The contrast sensitivity function (CSF) is widely used to specify the sensitivity of the visual system. Each point of the CSF specifies the amount of contrast needed to detect a sinusoidal grating of a given spatial frequency. This paper describes a set of five mathematically related visual patterns, called "multipoles," that should replace the CSF for measuring visual performance. The five patterns (ramp, edge, line, dipole and quadrupole) are localized in space rather than being spread out as sinusoidal gratings. The multipole sensitivity of the visual system provides an alternative characterization that complements the CSF in addition to offering several advantages. This paper provides an overview of the properties and uses of the multipole stimuli. This paper is largely a summary of several unpublished manuscripts with excerpts from them. Derivations and full references are omitted here. Please write me if you would like the full manuscripts.

  14. Geomagnetic oriented electromagnetic radiation in the ionosphere

    International Nuclear Information System (INIS)

    Benton, C.U.; Fowles, H.M.; Goen, P.K.

    1976-08-01

    Strong bursts of electromagnetic radiation were observed in the ionosphere during the Waso rocket Electromagnetic Pulse (EMP) experiment. The pulses have a frequency content from below 20 MHz to above 70 MHz. They vary in duration between 5 μs and 2 ms and in peak-amplitudes of 2 mV/m to greater than 200 mV/m. These pulses show a high degree of geomagnetic correlation and are of unknown origin

  15. Geomagnetic fluctuations during a polarity transition

    Science.gov (United States)

    Audunsson, Haraldur; Levi, Shaul

    1997-01-01

    The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.

  16. Modeling the ocean effect of geomagnetic storms

    DEFF Research Database (Denmark)

    Olsen, Nils; Kuvshinov, A.

    2004-01-01

    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  17. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  18. Elliptical magnetic clouds and geomagnetic storms

    Czech Academy of Sciences Publication Activity Database

    Antoniadou, I.; Geranios, A.; Vandas, Marek; Panagopoulou, M.; Zacharopoulou, O.; Malandraki, O.

    2008-01-01

    Roč. 56, 3-4 (2008), s. 492-500 ISSN 0032-0633 R&D Projects: GA AV ČR 1QS300120506; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic clouds * geomagnetic storms * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.506, year: 2008

  19. Domino model for geomagnetic field reversals.

    Science.gov (United States)

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  20. AI techniques in geomagnetic storm forecasting

    Science.gov (United States)

    Lundstedt, Henrik

    This review deals with how geomagnetic storms can be predicted with the use of Artificial Intelligence (AI) techniques. Today many different Al techniques have been developed, such as symbolic systems (expert and fuzzy systems) and connectionism systems (neural networks). Even integrations of AI techniques exist, so called Intelligent Hybrid Systems (IHS). These systems are capable of learning the mathematical functions underlying the operation of non-linear dynamic systems and also to explain the knowledge they have learned. Very few such powerful systems exist at present. Two such examples are the Magnetospheric Specification Forecast Model of Rice University and the Lund Space Weather Model of Lund University. Various attempts to predict geomagnetic storms on long to short-term are reviewed in this article. Predictions of a month to days ahead most often use solar data as input. The first SOHO data are now available. Due to the high temporal and spatial resolution new solar physics have been revealed. These SOHO data might lead to a breakthrough in these predictions. Predictions hours ahead and shorter rely on real-time solar wind data. WIND gives us real-time data for only part of the day. However, with the launch of the ACE spacecraft in 1997, real-time data during 24 hours will be available. That might lead to the second breakthrough for predictions of geomagnetic storms.

  1. Geomagnetic storm under laboratory conditions: randomized experiment

    Science.gov (United States)

    Gurfinkel, Yu I.; Vasin, A. L.; Pishchalnikov, R. Yu; Sarimov, R. M.; Sasonko, M. L.; Matveeva, T. A.

    2017-10-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  2. Geomagnetic storm under laboratory conditions: randomized experiment.

    Science.gov (United States)

    Gurfinkel, Yu I; Vasin, A L; Pishchalnikov, R Yu; Sarimov, R M; Sasonko, M L; Matveeva, T A

    2018-04-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  3. Efficient Compression of Far Field Matrices in Multipole Algorithms based on Spherical Harmonics and Radiating Modes

    Directory of Open Access Journals (Sweden)

    A. Schroeder

    2012-09-01

    Full Text Available This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.

  4. High magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Green, M.A.

    1990-04-01

    Correction elements in colliding beam accelerators such as the SSC can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. 6 refs., 2 figs., 2 tabs

  5. Effects of Crab Cavities' Multipole Content in an Electron-Ion Collider

    International Nuclear Information System (INIS)

    Satogata, Todd J.; Morozov, Vasiliy; Delayen, Jean R.; Castillo, Alejandro

    2015-09-01

    The impact on the beam dynamics of the Medium Energy Electron-Ion Colider (MEIC) due to the multipole content of the 750 MHz crab cavity was studied using thin multipole elements for 6D phase space particle tracking in ELEGANT. Target values of the sextupole component for the cavity's field expansion were used to perform preliminary studies on the proton beam stability when compared to the case of pure dipole content of the rf kicks. Finally, important effects on the beam sizes due to non-linear components of the crab cavities' fields were identified, and some criteria for their future study were proposed.

  6. Effects of Crab Cavities' Multipole Content in an Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd J. [Jefferson Lab., Newport News, VA (United States); Morozov, Vasiliy [Jefferson Lab., Newport News, VA (United States); Delayen, Jean R. [Old Dominion Univ., Norfolk, VA (United States); Jefferson Lab., Newport News, VA (United States); Castillo, Alejandro [Old Dominion Univ., Norfolk, VA (United States)

    2015-09-01

    The impact on the beam dynamics of the Medium Energy Electron-Ion Colider (MEIC) due to the multipole content of the 750 MHz crab cavity was studied using thin multipole elements for 6D phase space particle tracking in ELEGANT. Target values of the sextupole component for the cavity’s field expansion were used to perform preliminary studies on the proton beam stability when compared to the case of pure dipole content of the rf kicks. Finally, important effects on the beam sizes due to non-linear components of the crab cavities’ fields were identified, and some criteria for their future study were proposed.

  7. Highly parallel demagnetization field calculation using the fast multipole method on tetrahedral meshes with continuous sources

    Science.gov (United States)

    Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.

    2017-11-01

    The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.

  8. An impending geomagnetic transition? Hints from the past

    OpenAIRE

    Laj, Carlo; Kissel, Catherine

    2015-01-01

    The rapid decrease of the geomagnetic field intensity in the last centuries has led to speculations that an attempt to a reversal or an excursion might be under way. Here we investigate this hypothesis by examining past records of geomagnetic field intensity obtained from sedimentary cores and from the study of cosmogenic nuclides. The selected records describe geomagnetic changes with an unprecedented temporal resolution between 20 and 75 kyr B.P. We find that some aspects of the present-day...

  9. Modelling the quiet-time geomagnetic daily variations using observatory data

    OpenAIRE

    Hamilton, Brian; Macmillan, Susan

    2008-01-01

    We present on-going work towards building a global model of the quiet-time geomagnetic daily variation using bservatory data. We select hourly mean data during June 2006 (solar minimum). We fit Fourier series in time, with a fundamental period of 24 hours, to the data at each observatory. We then use global spherical harmonic expansions to separate the daily variation signal, as characterised by the Fourier coefficients in time, into external and induced internal contributions. The mode...

  10. Editorial: Topical Volume on Earth's Magnetic Field - Understanding Geomagnetic Sources from the Earth's Interior and its Environment

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Richmond, Arthur D.

    2017-01-01

    (seconds to days) magnetic field variations that are caused by currents in the ionosphere and magnetosphere when solar activity, and correspondingly the electric currents in Earth’s environment, are enhanced. However, for studying the internal sources of the geomagnetic field, originating in the core...

  11. Investigation of the Effects of Solar and Geomagnetic Changes on the Total Electron Content: Mid-Latitude Region

    Science.gov (United States)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.

  12. American West Tephras – Geomagnetic polarity events redefined through calibration of radio-isotopic and astronomical time

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael

    calibration. Although this geomagnetic event is not part of the most recent geologic timescale, refined ages on short-lived excursions could hold importance to understanding time scales for the wavering nature of Earth’s magnetic field. We propose a new 40Ar/39Ar age for the Quaternary mineral dating standard......The foundation of the EARTHTIME/GTSnext initiative seeks to construct an internally consistent geologic timescale based on astronomical and radio-isotopic geochronology. American west tephras offer a prime opportunity to integrate these two independent timescales with the geomagnetic timescale....... Using an astronomically calibrated age for the monitor mineral Fish Canyon sanidine (FCs;28.201 ± 0.046 Ma, Kuiper, et al., 2008), ages of Pleistocene geomagnetic polarity events are reexamined. Of particular interest, the Quaternary mineral dating standard Alder Creek sandine (ACs) is the type locality...

  13. Passive superconductor: A viable method of controlling magnetization multipoles in the SSC dipole

    International Nuclear Information System (INIS)

    Green, M.A.

    1989-02-01

    At injection, the magnetization of the superconductor produces the dominant field error in the SSC dipole magnets. The field generated by magnetization currents in the superconductor is rich in higher symmetric multipoles (normal sextupole, normal decapole, and so on). Pieces of passive superconductor properly located within the bore of the dipole magnet can cancel the higher multipoles generated by the SSC dipole coils. The multipoles generated by the passive superconductor (predominantly sextupole and decapole) are controlled by the angular and radial location of the superconductor, the volume of superconductor, and the size of the superconducting filaments within the passive conductor. This paper will present the tolerances on each of these factors. The paper will show that multipole correction using passive superconductor is in general immune to the effects of temperature and magnetization decay due to flux creep, provided that dipole superconductor and the passive correction superconductor are properly specified. When combined with a lumped correction system, the passive superconductor can be a viable alternative to continuous correction coils within the SSC dipoles. 20 refs., 8 figs., 2 tabs

  14. Passive superconductor a viable method of controlling magnetization multipoles in the SSC dipole

    International Nuclear Information System (INIS)

    Green, M.A.

    1989-01-01

    At injection, the magnetization of the superconductor produces the dominant field error in the SSC dipole magnets. The field generated by magnetization currents in the superconductor is rich in higher symmetric multipoles (normal sextupole, normal decapole, and so on). Pieces of passive superconductor properly located within the bore of the dipole magnet can cancel the higher multipoles generated by the SSC dipole coils. The multipoles generated by the passive superconductor (predominantly sextupole and decapole) are controlled by the angular and radial location of the superconductor, the volume of superconductor, and the size of the superconducting filaments within the passive conductor. This paper will present the tolerances on each of these factors. The paper will show that multipole correction using passive superconductor is in general immune to the effects of temperature and magnetization decay due to flux creep, provided that dipole superconductor and the passive correction superconductor are properly specified. When combined with a lumped correction system, the passive superconductor can be a viable alternative to continuous correction coils within the SSC dipoles. 20 refs., 8 figs., 2 tabs

  15. Extended gamma sources modelling using multipole expansion: Application to the Tunisian gamma source load planning

    International Nuclear Information System (INIS)

    Loussaief, Abdelkader

    2007-01-01

    In this work we extend the use of multipole moments expansion to the case of inner radiation fields. A series expansion of the photon flux was established. The main advantage of this approach is that it offers the opportunity to treat both inner and external radiation field cases. We determined the expression of the inner multipole moments in both spherical harmonics and in cartesian coordinates. As an application we applied the analytical model to a radiation facility used for small target irradiation. Theoretical, experimental and simulation studies were performed, in air and in a product, and good agreement was reached.Conventional dose distribution study for gamma irradiation facility involves the use of isodose maps. The establishment of these maps requires the measurement of the absorbed dose in many points, which makes the task expensive experimentally and very long by simulation. However, a lack of points of measurement can distort the dose distribution cartography. To overcome these problems, we present in this paper a mathematical method to describe the dose distribution in air. This method is based on the multipole expansion in spherical harmonics of the photon flux emitted by the gamma source. The determination of the multipole coefficients of this development allows the modeling of the radiation field around the gamma source. (Author)

  16. Superconformal algebra and central extension of meromorphic vector fields with multipoles on super-Riemann sphere

    International Nuclear Information System (INIS)

    Wang Shikun; Xu Kaiwen.

    1989-12-01

    The superconformal algebras of meromorphic vector fields with multipoles, the central extension and the relevant abelian differential of the third kind on super Riemann sphere were constructed. The background of our theory is concerned with the interaction of closed superstrings. (author). 9 refs

  17. Collective doorways and statistical doorways: The decay properties of giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Adhikari, S.K.

    1985-01-01

    A theoretical framework for the description of the decay of giant multipole resonances is developed. It is shown that the statistical decay of the GMR is not necessarily described by the Hauser-Feschbach theory owing to the existence of a mixing parameter. The contribution of pre-equilibrium emission to the GMR decay is also discussed. (Author) [pt

  18. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    International Nuclear Information System (INIS)

    Kharchenko, V.F.

    2015-01-01

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities

  19. Comparison of Multipole Stimulus Configurations With Respect to Loudness and Spread of Excitation.

    Science.gov (United States)

    Vellinga, Dirk; Briaire, Jeroen Johannes; van Meenen, David Michael Paul; Frijns, Johannes Hubertus Maria

    Current spread is a substantial limitation of speech coding strategies in cochlear implants. Multipoles have the potential to reduce current spread and thus generate more discriminable pitch percepts. The difficulty with multipoles is reaching sufficient loudness. The primary goal was to compare the loudness characteristics and spread of excitation (SOE) of three types of phased array stimulation, a novel multipole, with three more conventional configurations. Fifteen postlingually deafened cochlear implant users performed psychophysical experiments addressing SOE, loudness scaling, loudness threshold, loudness balancing, and loudness discrimination. Partial tripolar stimulation (pTP, σ = 0.75), TP, phased array with 16 (PA16) electrodes, and restricted phased array with five (PA5) and three (PA3) electrodes was compared with a reference monopolar stimulus. Despite a similar loudness growth function, there were considerable differences in current expenditure. The most energy efficient multipole was the pTP, followed by PA16 and PA5/PA3. TP clearly stood out as the least efficient one. Although the electric dynamic range was larger with multipolar configurations, the number of discriminable steps in loudness was not significantly increased. The SOE experiment could not demonstrate any difference between the stimulation strategies. The loudness characteristics all five multipolar configurations tested are similar. Because of their higher energy efficiency, pTP and PA16 are the most favorable candidates for future testing in clinical speech coding strategies.

  20. The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

    DEFF Research Database (Denmark)

    Kiewidt, Lars; Karamehmedovic, Mirza

    2018-01-01

    In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...

  1. Higher-order multipole amplitude measurement in psi ' -> gamma chi(c2)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Alberto, D.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A. C.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tian, H. L.; Toth, D.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.

    2011-01-01

    Using 106 x 10(6) psi' events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition psi' -> gamma chi(c2) -> gamma pi(+)pi(-)/gamma K+K- are measured. A fit to the chi(c2) production and decay angular distributions yields M2

  2. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm

    Science.gov (United States)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe

    2015-04-01

    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  3. Ten cycles of solar and geomagnetic activity

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1981-01-01

    Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle. (orig.)

  4. Properties of Pliocene sedimentary geomagnetic reversal records from the Mediterranean

    NARCIS (Netherlands)

    Linssen, J.H.

    1991-01-01

    In the history of the Earth the dipolar geomagnetic field has frequently reversed polarity. Though this property was already known early this century (Brunhes, 1906), nowadays the characteristics and the origin of polarity transitions are still largely unknown. The geomagnetic field and its

  5. Geomagnetic observations on Tristan da Cunha, South Atlantic Ocean

    DEFF Research Database (Denmark)

    Matzka, J.; Olsen, Nils; Maule, C. F.

    2009-01-01

    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37 degrees 05' S, 12 degrees 18' W, is therefore of cr...

  6. Computation of geomagnetic elements for Nigeria for the year 2000 ...

    African Journals Online (AJOL)

    The Earth's magnetic field may be considered to be the sum of two parts, the main geomagnetic field which originates from the earth's fluid core, and the anomaly field that has its sources in the earth crust. The analysis of the geomagnetic field residual or anomaly, obtained from the difference between these two sources are ...

  7. Geomagnetic Field Variation during Winter Storm at Localized ...

    Indian Academy of Sciences (India)

    that transports plasma and magnetic flux which create the geomagnetic field variation. Key words. Dst—vertical component of interplanetary magnetic field and geomagnetic field components. 1. Introduction. The magnetic field is one of the important properties of the earth. The main magnetic field originates from ...

  8. Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview

    International Nuclear Information System (INIS)

    Kazimirovsky, E.S.

    1989-01-01

    The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control

  9. COMPARATIVE EVALUATION OF THE INFLUENCING EFFECTS OF GEOMAGNETIC SOLAR STORMS ON EARTHQUAKES IN ANATOLIAN PENINSULA

    Directory of Open Access Journals (Sweden)

    Yesugey Sadik Cengiz

    2009-07-01

    Full Text Available Earthquakes are tectonic events that take place within the fractures of the earth's crust, namely faults. Above certain scale, earthquakes can result in widespread fatalities and substantial financial loss. In addition to the movement of tectonic plates relative to each other, it is widely discussed that there are other external influences originate outside earth that can trigger earthquakes. These influences are called "triggering effects". The purpose of this article is to present a statistical view to elaborate if the solar geomagnetic storms trigger earthquakes.As a model, the research focuses on the Anatolian peninsula, presenting 41 years of historical data on magnetic storms and earthquakes collated from national and international resources. As a result of the comparative assessment of the data, it is concluded that the geomagnetic storms do not trigger earthquakes.

  10. Study about geomagnetic variations from data recorded at Surlari Geomagnetic Observatory

    Science.gov (United States)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Sandulescu, Agata Monica; Niculici, Eugen

    2013-04-01

    This paper presents statistical and spectral analysis of data from Surlari Geomagnetic Observatory that contributing to study of geomagnetic variations. Thus were highlighted, for long series of records over several solar cycles, periodicities of 22 years and 11 years. Following the same procedures for medium recording series (multi-annual) have highlighted annual, seasonal and monthly periodicities. For shorter data series, we highlighted diurnal, semidiurnal, 8 hours and even lower periodicities. For very short series with a high sample rate and for few magnetotellurics records, we highlight different types of pulsations (Pc2 - Pc5 and Pi 2). Geomagnetic signals are the convolution product of the atomic stationary signals mono-frequential of different amplitudes associated to phenomena with a very broad band of periodicities and nondeterministic signals associated with geomagnetic disturbances and non-periodic phenomena. Among analysis processes used for discrete series of geomagnetic data with different lengths and sampling rates, can conclude the following: Moving average works as a low pass filter in frequency or high pass in time. By eliminating high frequency components (depending on mobile window size used) can be studied preferential periodicities greater than a given value. Signal linearization (using least squares) provides information on linear trend of the entire series analyzed. Thus, for the very long data series (several decades) we extracted the secular variation slope for each geomagnetic component, separately. The numeric derivative of signal versus time proved to be a very reliable indicator for geomagnetic disturbed periods. Thus, the derivative value may be increased by several orders of magnitude during periods of agitation in comparisons to calm periods. The correlation factor shows significant increases when between two time series a causal relationship exists. Variation of the correlation factor, calculated for a mobile window containing k

  11. Optimal Transmission Line Switching under Geomagnetic Disturbances

    International Nuclear Information System (INIS)

    Lu, Mowen; Nagarajan, Harsha; Yamangil, Emre; Bent, Russell; Backhaus, Scott

    2017-01-01

    Recently, there have been increasing concerns about how geomagnetic disturbances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs) can saturate transformers, induce hot spot heating and increase reactive power losses. These effects can potentially cause catastrophic damage to transformers and severely impact the ability of a power system to deliver power. To address this problem, we develop a model of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers as a function of normal Alternating Current (AC) and 2) reactive power losses as a function of GIC. We also use this model to derive an optimization problem that protects power systems from GIC impacts through line switching, generator dispatch, and load shedding. We then employ state-of-the-art convex relaxations of AC power flow equations to lower bound the objective. We demonstrate the approach on a modified RTS96 system and UIUC 150-bus system and show that line switching is an effective means to mitigate GIC impacts. We also provide a sensitivity analysis of decisions with respect to GMD direction.

  12. Resolving issues concerning Eskdalemuir geomagnetic hourly values

    Directory of Open Access Journals (Sweden)

    S. Macmillan

    2011-02-01

    Full Text Available The hourly values of the geomagnetic field from 1911 to 1931 derived from measurements made at Eskdalemuir observatory in the UK, and available online from the World Data Centre for Geomagnetism at http://www.wdc.bgs.ac.uk/, have now been corrected. Previously they were 2-point averaged and transformed from the original north, east and vertical down values in the tables in the observatory yearbooks. This paper documents the course of events from discovering the post-processing done to the data to the final resolution of the problem. As it was through the development of a new index, the Inter-Hour Variability index, that this post-processing came to light, we provide a revised series of this index for Eskdalemuir and compare it with that from another European observatory. Conclusions of studies concerning long-term magnetic field variability and inferred solar variability, whilst not necessarily consistent with one another, are not obviously invalidated by the incorrect hourly values from Eskdalemuir. This series of events illustrates the challenges that lie ahead in removing any remaining errors and inconsistencies in the data holdings of different World Data Centres.

  13. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  14. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  15. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer

    2000-02-01

    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  16. Plasmaspheric noise radiation during geomagnetic storms

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.

    1981-01-01

    Variations of plasmospheric background radiations during geomagnetic storms of different intensity are investigated. Used are results of ELF and VLF radiation measurements as well as electron fluxes of energies Esub(e)>40 keV carried out by Intercosmos 3 and Intercosmos 5 satellites. Dependences of radiation amplitude variations at 1.6 and 25 kHz frequencies on L shell for various geomagnetic activity in the day-time as well as data on variations of quasicaptured electron fluxes at Esub(e)>40 keV, are given. It is shown that experimental data agree with the existing theories of plasmospheric noise excitation. It is concluded that the plasmospheric noise excitation area Lsub(max) is always in the region of gap between radiation belts and inner slope of external radiation belt during magnetic storms. During magnetic storms Lsub(max) area moves simultaneously with the area, where particle flux of the external radiation belt is the most intensive [ru

  17. Solar Wind Charge Exchange During Geomagnetic Storms

    Science.gov (United States)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  18. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei.

    Science.gov (United States)

    Mogro-Campero, A.

    1972-01-01

    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  19. Angular momentum partitioning and the subshell multipole moments in impulsively excited argon ions

    International Nuclear Information System (INIS)

    Al-Khateeb, H.M.; Birdsey, B.G.; Gay, T.J.

    2005-01-01

    We have investigated collisions between transversely polarized electrons and Ar, in which the Ar is simultaneously ionized and excited to the Ar +* [3p 4 ( 1 D)4p] states. The Stokes parameters of the fluorescence emitted in the following transitions was measured: ( 1 D)4s 2 D 5/2 -( 1 D)4p 2 F 7/2 (461.0 nm), ( 1 D)4s 2 D 5/2 -( 1 D)4p 2 F 5/2 (463.7 nm) ( 1 P)3d 2 D 5/2 -( 1 D)4p 2 D 5/2 (448.2 nm), and ( 1 D)4s 2 D 3/2 -( 1 D)4p 2 P 3/2 (423.7 nm). We develop the angular momentum algebra necessary to extract from these data, starting from the overall atomic J multipoles, the partitioning of orbital angular momentum into the 1 D core electric quadrupole and hexadecapole moments, and the outer 4p electric quadrupole moment. The magnetic dipole of the outer electron is also determined. This procedure requires the assumption of good LS coupling for these states, which is justified. We recouple these individual core- and outer-electron moments to calculate the initial electric quadrupoles, hexadecapoles, and hexacontatetrapoles of the initial excited-state manifold. The detailed time structure of the electron-atom collision is considered, as well as the time evolution of the excited ionic state. The Rubin-Bederson hypothesis is thus shown to hold for the initial ionic L and S terms. The consequences of the breakdown of LS coupling are considered. From the circular polarization data, estimates of the relative importance of direct and exchange excitation cross section are made. We discuss experimental issues related to background contributions, Hanle depolarization of the fluorescence signal, and cascade contributions. Nonlinearity of the equations relating the Stokes parameters to the subshell multipole moments complicates the data analysis. Details of the Monte Carlo terrain-search algorithm used to extract multipole data is discussed, and the implications of correlation between the various subshell multipole moments is analyzed. The physical significance of the

  20. Angular correlation experiments for the study of giant multipole resonances and currents of the second kind in atomic nuclei

    International Nuclear Information System (INIS)

    1986-03-01

    The project dealt with angular correlation experiments for the study of giant multipole resonances and currents of the second kind in atomic nuclei. Both partial projects were worked in the period of the report. (orig.) [de

  1. Geomagnetic response to solar and interplanetary disturbances

    Directory of Open Access Journals (Sweden)

    Maris Georgeta

    2013-07-01

    Full Text Available The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc. and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in

  2. Unbiased analysis of geomagnetic data sets and comparison of historical data with paleomagnetic and archeomagnetic records

    Science.gov (United States)

    Arneitz, Patrick; Egli, Ramon; Leonhardt, Roman

    2017-03-01

    Reconstructions of the past geomagnetic field provide fundamental constraints for understanding the dynamics of the Earth's interior, as well as serving as basis for magnetostratigraphic and archeomagnetic dating tools. Such reconstructions, when extending over epochs that precede the advent of instrumental measurements, rely exclusively on magnetic records from archeological artifacts, and, further in the past, from rocks and sediments. The most critical component of such indirect records is field intensity because of possible biases introduced by material properties and by laboratory protocols, which do not reproduce exactly the original field recording conditions. Large biases are usually avoided by the use of appropriate checking procedures; however, smaller ones can remain undetected in individual studies and might significantly affect field reconstructions. We introduce a new general approach for analyzing geomagnetic databases in order to investigate the reliability of indirect records. This approach is based on the comparison of historical records with archeomagnetic and volcanic data, considering temporal and spatial mismatches with adequate weighting functions and error estimation. A good overall agreement is found between indirect records and historical measurements, while for several subsets systematic bias is detected (e.g., inclination shallowing of lava records). We also demonstrate that simple approaches to analyzing highly inhomogeneous and internally correlated paleomagnetic data sets can lead to incorrect conclusions about the efficiency of quality checks and corrections. Consistent criteria for selecting and weighting data are presented in this review and can be used to improve current geomagnetic field modeling techniques.

  3. Response of the middle atmosphere to the geomagnetic storm of November 2004

    Science.gov (United States)

    Hocke, Klemens

    2017-02-01

    Ozone and temperature profiles of the satellite microwave limb sounder Aura/MLS are used for the derivation of the middle atmospheric response to the geomagnetic superstorm of 9 November 2004. We find a destruction of the tertiary ozone layer at 0.022 hPa (77 km) in the northern winter hemisphere lasting for about one week. This effect is surely due to the solar proton event (SPE) of November 2004. At the same time, the zonal mean temperature is enhanced by 5-10 K in the northern polar mesosphere. On the other hand, the zonal mean temperature is decreased by 5-10 K in the northern polar stratosphere. We do not think that the strong temperature perturbations are directly related to the SPE. It seems that the polar vortex was moved by the geomagnetic storm, and this vortex movement caused the strong temperature variations in the zonal mean. However, internal variability of temperature in the polar middle atmosphere in winter without any significant link to the geomagnetic storm cannot be excluded.

  4. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu

    2008-01-01

    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  5. Statistical Study of False Alarms of Geomagnetic Storms

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Vennerstrøm, Susanne; Veronig, A.

    . A subset of these halo CMEs did not cause a geomagnetic storm the following four days and have therefore been considered as false alarms. The properties of these events are investigated and discussed here. Their statistics are compared to the geo-effective CMEs. The ability to identify potential false......Coronal Mass Ejections (CMEs) are known to cause geomagnetic storms on Earth. However, not all CMEs will trigger geomagnetic storms, even if they are heading towards the Earth. In this study, front side halo CMEs with speed larger than 500 km/s have been identified from the SOHO LASCO catalogue...

  6. RPYFMM: Parallel adaptive fast multipole method for Rotne-Prager-Yamakawa tensor in biomolecular hydrodynamics simulations

    Science.gov (United States)

    Guan, W.; Cheng, X.; Huang, J.; Huber, G.; Li, W.; McCammon, J. A.; Zhang, B.

    2018-06-01

    RPYFMM is a software package for the efficient evaluation of the potential field governed by the Rotne-Prager-Yamakawa (RPY) tensor interactions in biomolecular hydrodynamics simulations. In our algorithm, the RPY tensor is decomposed as a linear combination of four Laplace interactions, each of which is evaluated using the adaptive fast multipole method (FMM) (Greengard and Rokhlin, 1997) where the exponential expansions are applied to diagonalize the multipole-to-local translation operators. RPYFMM offers a unified execution on both shared and distributed memory computers by leveraging the DASHMM library (DeBuhr et al., 2016, 2018). Preliminary numerical results show that the interactions for a molecular system of 15 million particles (beads) can be computed within one second on a Cray XC30 cluster using 12,288 cores, while achieving approximately 54% strong-scaling efficiency.

  7. An implementation of multiple multipole method in the analyse of elliptical objects to enhance backscattering light

    Science.gov (United States)

    Jalali, T.

    2015-07-01

    In this paper, we present dielectric elliptical shapes modelling with respect to a highly confined power distribution in the resulting nanojet, which has been parameterized according to the beam waist and its beam divergence. The method is based on spherical bessel function as a basis function, which is adapted to standard multiple multipole method. This method can handle elliptically shaped particles due to the change of size and refractive indices, which have been studied under plane wave illumination in two and three dimensional multiple multipole method. Because of its fast and good convergence, the results obtained from simulation are highly accurate and reliable. The simulation time is less than minute for two and three dimension. Therefore, the proposed method is found to be computationally efficient, fast and accurate.

  8. Design Concept of Superconducting Multipole Wiggler with Variably Polarized X-Ray

    International Nuclear Information System (INIS)

    Hwang, C.S.; Chang, C.H.; Li, W.P.; Lin, F.Y.

    2004-01-01

    In response to the growing demand for X-ray research, and to satisfy future needs for generating circularly polarized synchrotron radiation in the X-ray region, a 3.5 T superconducting multipole with a periodic length of 6 cm was designed to produce horizontal linearly polarized, and circularly polarized light on a 1.5 GeV electron storage ring. Differently arranged excitation current loop for the same coil design switched between the operation of symmetric and asymmetric modes to creat the linearly and circularly polarized light, respectively. This study elucidates the design concepts of the superconducting multipole wiggler with symmetric and asymmetric operation modes. The design of the magnetic circuit and the field calculation are also discussed. Meanwhile, the spectra characteristics of the symmetric and asymmetric modes are calculated and presented in this article

  9. Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model

    International Nuclear Information System (INIS)

    Goncharova, N.G.; Zhivopistsev, F.A.

    1977-01-01

    Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV

  10. Multipole surface solitons supported by the interface between linear media and nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Shi, Zhiwei; Li, Huagang; Guo, Qi

    2012-01-01

    We address multipole surface solitons occurring at the interface between a linear medium and a nonlocal nonlinear medium. We show the impact of nonlocality, the propagation constant, and the linear index difference of two media on the properties of the surface solitons. We find that there exist a threshold value of the degree of the nonlocality at the same linear index difference of two media, only when the degree of the nonlocality goes beyond the value, the multipole surface solitons can be stable. -- Highlights: ► We show the impact of nonlocality and the linear index difference of two media on the properties of the surface solitons. ► For the surface solitons, only when the degree of the nonlocality goes beyond a threshold value, they can be stable. ► The number of poles and the index difference of two media can all influence the threshold value.

  11. Multipole analysis in the radiation field for linearized f (R ) gravity with irreducible Cartesian tensors

    Science.gov (United States)

    Wu, Bofeng; Huang, Chao-Guang

    2018-04-01

    The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.

  12. From geodesics of the multipole solutions to the perturbed Kepler problem

    International Nuclear Information System (INIS)

    Hernandez-Pastora, J. L.; Ospino, J.

    2010-01-01

    A static and axisymmetric solution of the Einstein vacuum equations with a finite number of relativistic multipole moments (RMM) is written in multipole symmetry adapted (MSA) coordinates up to certain order of approximation, and the structure of its metric components is explicitly shown. From the equation of equatorial geodesics, we obtain the Binet equation for the orbits and it allows us to determine the gravitational potential that leads to the equivalent classical orbital equations of the perturbed Kepler problem. The relativistic corrections to Keplerian motion are provided by the different contributions of the RMM of the source starting from the monopole (Schwarzschild correction). In particular, the perihelion precession of the orbit is calculated in terms of the quadrupole and 2 4 -pole moments. Since the MSA coordinates generalize the Schwarzschild coordinates, the result obtained allows measurement of the relevance of the quadrupole moment in the first order correction to the perihelion frequency-shift.

  13. Method of reducing multipole content in a conductor assembly during manufacture

    Science.gov (United States)

    Meinke, Rainer

    2013-08-20

    A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.

  14. GEOMAGNETIC CONJUGACY OF MODERN TECTONIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    G. Ya. Khachikyan

    2013-01-01

    Full Text Available An earthquake is an element of the global electric circuit (GEC –  this new idea suggested in the space age is tested in our study. In the frame of the GEC concept, one may expect that tectonic structures of the northern and southern hemispheres may be magnetically conjugated. It is found that the midocean ridges of the southern hemisphere, located along the boundary of the Antarctic lithosphere plate, are magnetically conjugated with the areas of the junction of continental orogens and platforms in the northern hemisphere. The closest geomagnetic conjugacy exists between the southern boundary of Nazca lithospheric plate and the northern boundaries of Cocos and Caribbean lithospheric plates.

  15. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    presents our investigation of the corresponding solar eventsand their characteristics. The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well...... occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data...... %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented. Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar...

  16. Geomagnetism and paleomagnetism 1979-1983

    Science.gov (United States)

    Fuller, M.

    My function, in writing these notes, is to bring you up to date in Geomagnetism and Paleomagnetism, in as painless a manner as possible—without tears, as the French language texts for tourists used to promise. In writing this account of progress in the past quadrennium, I must first acknowledge that it is a personal and subjective viewpoint;; another reporter would surely emphasize other developments. Yet, there is some virture in writing of things, about which one knows something, so I leave to future reporters the task of redresssing the balance in matters covered.At the outset, one very sad event must be recorded. On April 3, 1981, Sir Edward Bullard died. His published work alone marks him as one of the leaders of geomagnetism in our times. Yet his contribution was much greater; many an American geophysicist, as well as a whole generation of British colleagues, have felt the benefit of his perceptive advice on their research. To those who saw him in the last few months of his life, his courage in the face of his illness was a remarkable example of fortitude. It is by now well known that the definitive paper, which he wrote with Malin, on secular variation at London, was only completed immediately before his death. The transmittal letter had been typed, but death prevented him from signing it. Bullard returned in this final paper to a topic to which he had contributed much. In it, he notes the role of Halley, who first described the phenomenon of westward drift, to which Bullard gave a new numerical precision, two and a half centuries later. I seem to remember Bullard saying in a lecture years ago that, while the Newtons of this world seem other than mortal, Halley was a scientist whose life and acheivements could encourage one's own efforts. Bullard, like Halley, inspires and encourages us.

  17. Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond

    DEFF Research Database (Denmark)

    Svendsen, H.; Overgaard, J.; Busselez, R.

    2010-01-01

    between experiment and theory, and the study therefore demonstrates that synchrotron powder diffraction can indeed provide accurate structure-factor values based on data measured in minutes with limited sample preparation. Thus, potential systematic errors such as extinction and twinning commonly......Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data...

  18. The multilevel fast multipole algorithm (MLFMA) for solving large-scale computational electromagnetics problems

    CERN Document Server

    Ergul, Ozgur

    2014-01-01

    The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examplesCovers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objectsDiscusses applications including scattering from airborne targets, scattering from red

  19. Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch

    Directory of Open Access Journals (Sweden)

    Mario Brkić

    2013-12-01

    Full Text Available After more than half a century, scientific book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch describes the recent geomagnetic field on Croatian territory. A review of research in the past decade as well as the original solutions makes the book a document of contribution to geodesy and geomagnetism in Croatia.The book’s introduction gives an overview of two centuries of history and the strategic, security, economic and scientific significance of knowing the geomagnetic field on the Croatian territory. All the activities related to the updating of the geomagnetic information, which took place in the last decade, signified a big step toward the countries where geomagnetic survey is a mature scientific and technical discipline, and a scientific contribution to understanding of the nature of the Earth's magnetism.The declination, inclination and total intensity maps (along with the normal annual changes for the epoch 2009.5 are given in the Appendix. The book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch (ISBN 978-953-293-521-9 is published by the State Geodetic Administration of the Republic of Croatia. Beside editor in chief, M. Brkić, the authors are: E. Vujić, D. Šugar, E. Jungwirth, D. Markovinović, M. Rezo, M. Pavasović, O. Bjelotomić, M. Šljivarić, M. Varga and V. Poslončec-Petrić. The book contains 48 pages and 3 maps, and is published in 200 copies. CIP record is available in digital catalogue of the National and University Library in Zagreb under number 861937.

  20. Correction of dynamic multipoles for APPLE-II undulator with flat wires

    International Nuclear Information System (INIS)

    Kikuchi, Y.; Hosaka, M.; Takashima, Y.; Yamamoto, N.; Adachi, M.; Zen, H.; Katoh, M.

    2010-01-01

    APPLE-II undulator can produce quasi-monochromatic light of different polarization though it is a relatively simple magnetic circuit. Therefore, it has been installed in many synchrotron radiation facilities and will be installed in Central Japan Synchrotron Radiation Research Facility under construction in Aichi prefecture. APPLE-II undulator also has been installed in UVSOR facility. When the undulator is operated in vertical polarization mode with narrower gap of 40 mm, the lifetime of electron beam through the storage ring significantly decreases.The reason is considered as dynamic multipole kicks in the undulator, which strongly depends on the undulator gap. Multi-wires, which are installed in the upper surface and the under surface of undulator beam duct, are candidate to compensate the multipole effects, because the multi-wires can generate arbitrary magnetic fields. This paper reports the result of numerical investigation on multipoles in the undulator by a three-dimensional magnetostatics computer code RADIA, the orbital calculation based on the numerical analysis and the preliminary experiment with flat wires. (author)

  1. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    Science.gov (United States)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  2. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  3. From Mie to Fresnel through effective medium approximation with multipole contributions

    International Nuclear Information System (INIS)

    Malasi, Abhinav; Kalyanaraman, Ramki; Garcia, Hernando

    2014-01-01

    The Mie theory gives the exact solution to scattering from spherical particles while the Fresnel theory provides the solution to optical behavior of multilayer thin film structures. Often, the bridge between the two theories to explain the behavior of materials such as nanoparticles in a host dielectric matrix, is done by effective medium approximation (EMA) models which exclusively rely on the dipolar response of the scattering objects. Here, we present a way to capture multipole effects using EMA. The effective complex dielectric function of the composite is derived using the Clausius–Mossotti relation and the multipole coefficients of the approximate Mie theory. The optical density (OD) of the dielectric slab is then calculated using the Fresnel approach. We have applied the resulting equation to predict the particle size dependent dipole and quadrupole behavior for spherical Ag nanoparticles embedded in glass matrix. This dielectric function contains the relevant properties of EMA and at the same time predicts the multipole contributions present in the single particle Mie model. (papers)

  4. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    International Nuclear Information System (INIS)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    An empirically parameterized intermolecular force field is developed for crystal structure modelling and prediction. The model is optimized for use with an atomic multipole description of electrostatic interactions. We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%

  5. Effects of geomagnetic storm on low latitude ionospheric total ...

    Indian Academy of Sciences (India)

    1Department of Physics, Tripura University, Suryamaninagar, Tripura 799 022, India. ... the fact that the electro-dynamic effect of geomagnetic storms around EIA region is more effective than ... causes range of error in GPS communication.

  6. Research on Stealthy Headphone Detector Based on Geomagnetic Sensor

    Directory of Open Access Journals (Sweden)

    Liu Ya

    2016-01-01

    Full Text Available A kind of stealth headphone detector based on geomagnetic sensor has been developed to deal with the stealth headphones which are small, extremely stealthy and hard to detect. The U.S. PNI geomagnetic sensor is chosen to obtain magnetic field considering the strong magnetic performance of stealth headphones. The earth’s magnetic field at the geomagnetic sensor is eliminated by difference between two geomagnetic sensors, and then weak variations of magnetic field is detected. STM8S103K2 is chosen as the central controlling chip, which is connected to LED, buzzer and LCD 1602. As shown by the experimental results, the probe is not liable to damage by the magnetic field and the developed device has high sensitivity, low False Positive Rate (FAR and satisfactory reliability.

  7. A comprehensive analysis of the geomagnetic storms occurred dur

    Directory of Open Access Journals (Sweden)

    Essam Ghamry

    2016-06-01

    Full Text Available The Geomagnetic storms are considered as one of the major natural hazards. Egyptian geomagnetic observatories observed multiple geomagnetic storms during 18 February to 2 March 2014. During this period, four interplanetary shocks successively hit the Earth’s magnetosphere, leading to four geomagnetic storms. The storm onsets occurred on 18, 20, 23 and 27 February. A non-substorm Pi2 pulsation was observed on 26 February. This Pi2 pulsation was detected in Egyptian observatories (Misallat and Abu Simbel, Kakioka station in Japan and Carson City station in US with nearly identical waveforms. Van Allen Probe missions observed non-compressional Pc4 pulsations on the recovery phase of the third storm. This Pc4 event is may be likely attributed to the decay of the ring current in the recovery phase.

  8. A Probabilistic Assessment of the Next Geomagnetic Reversal

    Science.gov (United States)

    Buffett, Bruce; Davis, William

    2018-02-01

    Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply well-established methods to evaluate the probability of the next geomagnetic reversal as a function of time. For a present-day axial dipole moment of 7.6 × 1022 A m2, the probability of the dipole entering a reversed state is less than 2% after 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomagnetic reversal is not supported by paleomagnetic observations. The current rate of decline in the dipole moment is unusual but within the natural variability predicted by the stochastic model.

  9. An Impending geomagnetic transition? Hints from the past.

    Directory of Open Access Journals (Sweden)

    Carlo eLAJ

    2015-10-01

    Full Text Available The rapid decrease of the geomagnetic field intensity in the last centuries has led to speculations that an attempt to a reversal or an excursion might be under way. Here we investigate this hypothesis by examining past records of geomagnetic field intensity obtained from sedimentary cores and from the study of cosmogenic nuclides. The selected records describe geomagnetic changes with an unprecedented temporal resolution between 20 and 75 kyr B.P. We find that some aspects of the present-day geomagnetic field have some similarities with those documented for the Laschamp excursion 41 kyr ago. Under the assumption that the dynamo processes for an eventual future reversal or excursion would be similar to those of the Laschamp excursion, we tentatively suggest that, whilst irreversible processes that will drive the geodynamo into a polarity change may have already started, a reversal or an excursion should not be expected before 500 to 1000 years.

  10. Characteristic features of the geomagnetic field of the Earth

    International Nuclear Information System (INIS)

    Petrova, G.N.

    1978-01-01

    The laws of the earth magnetism permitting to make a model of the earth magnetic field are popularly investigated. The modern methods of investigations used in the development of geomagnetism and determining the quantity and direction of the earth magnetic field from the moment of rock formation are described. Considered are the characteristic peculiarities of geomagnetic field: the inclination of the magnetic axis to the rotational axis of the Earth, the western drift of the geomagnetic field, the magnetic field asymmetry, its pole exchange and secular variations. The sources of the continuous magnetic field are investigated. The theory of hydromagnatic dinamo operating in the earth core is described. According to the invariance of the geomagnetic field characteristics it is possible to assume that the core has not significantly evolved for milliard years

  11. Geomagnetic field models for satellite angular motion studies

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.

    2018-03-01

    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  12. A Probabilistic Assessment of the Next Geomagnetic Reversal

    OpenAIRE

    Buffett, B; Davis, W

    2018-01-01

    ©2018. American Geophysical Union. All Rights Reserved. Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply wel...

  13. Properties of Pliocene sedimentary geomagnetic reversal records from the Mediterranean

    OpenAIRE

    Linssen, J.H.

    1991-01-01

    In the history of the Earth the dipolar geomagnetic field has frequently reversed polarity. Though this property was already known early this century (Brunhes, 1906), nowadays the characteristics and the origin of polarity transitions are still largely unknown. The geomagnetic field and its variations are recorded in rocks as a natural remanent magnetization (NRM) during the formation of these rocks. The study of the NRM in sedimentary reversal records is the subject of this dissertation.

  14. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    Science.gov (United States)

    Azcárate, T; Mendoza, B

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  15. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  16. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  17. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  18. Automated detection of geomagnetic storms with heightened risk of GIC

    Science.gov (United States)

    Bailey, Rachel L.; Leonhardt, Roman

    2016-06-01

    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  19. A Quaternary Geomagnetic Instability Time Scale

    Science.gov (United States)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  20. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Finlay, Chris; Hesse, M.

    2017-01-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagneticmain field. Observations from...... the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine...

  1. Wide aperture multipole magnets of the kinematic separator COMBAS. Correcting pair of multipole magnets M3M4 (M5M6) with compensation for higher order aberrations

    International Nuclear Information System (INIS)

    Artyukh, A.G.; Gridnev, G.F.; Teterev, Yu.G.

    1999-01-01

    The high-resolving large aperture separator COMBAS has been created and commissioned. The magneto-optical structure of the separator is based on the strong focusing principle. The separator consists of eight wide aperture multipole magnets M1-M8. The magnets M1, M2, M7, M8 forming the 1 st order optics together with some higher order optical corrections and M3-M6 being dedicated to higher order corrections of the chromatic and spherical aberrations at the intermediate and exit foci of the separator. The multipole correctors M3-M6 contain the dipolar, sextupole and octupole components in their magnetic field distributions. It was the use of the rectangular dipoles M3-M6 as carriers of sextupole and octupole field components that let achieve high values of the separator angular and momentum acceptances. Measurements of the magnetic field distributions in the median planes of the pairs of magnets M3M6 (M4M5) have been performed. These measurements allowed one to analyze the magnets manufacturing quality. Based on the analysis, shimming of pole pieces of the pair of magnets M3M6 have been done. Pole surface correcting coils for the magnets M4M5 have been foreseen to compensate for small deviations (within a few percents) of the 2 nd and 3 rd order field components from the design values, which are probable due to manufacturing errors in all the magnets M1-M8. The measured magnetic field distributions are supposed to be used for particle trajectory simulations throughout the entire separator

  2. Average configuration of the geomagnetic tail

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1979-01-01

    Over 3000 hours of Imp 6 magnetic field data obtained between 20 and 33 R/sub E/ in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5-min averages of B/sub z/ as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks (B-bar/sub z/=3.γ) than near midnight (B-bar/sub z/=1.8γ). The tail field projected in the solar magnetospheric equatorial plane deviates from the x axis due to flaring and solar wind aberration by an angle α=-0.9 Y/sub SM/-2.7, where Y/sub SM/ is in earth radii and α is in degrees. After removing these effects, the B/sub y/ component of the tail field is found to depend on interplanetary sector structure. During an 'away' sector the B/sub y/ component of the tail field is on average 0.5γ greater than that during a 'toward' sector, a result that is true in both tail lobes and is independent of location across the tail. This effect means the average field reversal between northern and southern lobes of the tail is more often 178 0 rather than the 180 0 that is generally supposed

  3. Geomagnetism during solar cycle 23: Characteristics

    Directory of Open Access Journals (Sweden)

    Jean-Louis Zerbo

    2013-05-01

    Full Text Available On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT and yearly averaged solar wind speed (364 km/s are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s, associated to the highest value of the yearly averaged aa index (37 nT. We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  4. Comment on ``Annual variation of geomagnetic activity'' by Alicia L. Clúa de Gonzales et al.

    Science.gov (United States)

    Sonnemann, G. R.

    2002-10-01

    Clúa de Gonzales et al. (J. Atmos. Terr. Phys. 63 (2001) 367) analyzed the monthly means of the geomagnetic /aa-index available since 1868 and found enhanced geomagnetic activity in July outside of the known seasonal course of semiannual variation. They pointed out that this behavior is mainly caused by the high values of the geomagnetic activity. Their analysis confirmed results obtained from an analysis of Ap-values nearly 30 years ago but widely unknown to the scientific community. At that time the entire year was analyzed using running means of the activity values averaged to the same date. Aside from the July period, the calculations revealed distinct deviations from the seasonal course-called geomagnetic singularities. The most marked singularity occurs from the middle of March to the end of March characterized by a strong increase from, on average, relatively calm values to the actually strongest ones during the entire year. Some typical time patterns around and after equinox are repeated half a year later. An analysis in 1998 on the basis of the available /aa-values confirmed the findings derived from Ap-values and the local activity index Ak from Niemegk, Germany available since 1890. The new results will be presented and discussed. Special attention is paid to the statistical problem of the persistence of geomagnetic perturbations. The main problem under consideration is that the variation of the mean activity is not caused by an accidental accumulation of strong perturbations occurring within certain intervals of days. We assume that the most marked variations of the mean value are not accidental and result from internal processes within the earth's atmosphere but different, particularly small-scale features, are most probably accidental.

  5. Transitional geomagnetic impulse hypothesis: Geomagnetic fact or rock-magnetic artifact?

    Science.gov (United States)

    Camps, Pierre; Coe, Robert S.; PréVot, Michel

    1999-08-01

    A striking feature of the Steens Mountain (Oregon) geomagnetic polarity reversal is the two (maybe three) extremely rapid field directional changes (6 degrees per day) proposed to account for unusual behavior in direction of remanent magnetization in a single lava flow. Each of these very fast field changes, or impulses, is associated with a large directional gap (some 90°) in the record. In order to check the spatial reproducibility of the paleomagnetic signal over distances up to several kilometers, we have carried out a paleomagnetic investigation of two new sections (B and F) in the Steens summit region which cover the second and the third directional gap. The main result is the description of two new directions, which are located between the pre second and post second impulse directions. These findings weigh against the hypothesis that the geomagnetic field cause the unusual intraflow fluctuations, which now appears to be more ad hoc as an explanation of the paleomagnetic data. However, the alternative baking hypothesis remains also ad hoc since we have to assume variable rock magnetic properties that we have not yet been able to detect within the flows at the original section Steens A and D 1.5 km to the north. In addition, new results for 22 transitional and normal lava flows in section B are presented that correlate well with earlier results from section A.

  6. A study of geomagnetic field variations along the 80° S geomagnetic parallel

    Directory of Open Access Journals (Sweden)

    S. Lepidi

    2017-01-01

    Full Text Available The availability of measurements of the geomagnetic field variations in Antarctica at three sites along the 80° S geomagnetic parallel, separated by approximately 1 h in magnetic local time, allows us to study the longitudinal dependence of the observed variations. In particular, using 1 min data from Mario Zucchelli Station, Scott Base and Talos Dome, a temporary installation during 2007–2008 Antarctic campaign, we investigated the diurnal variation and the low-frequency fluctuations (approximately in the Pc5 range, ∼ 1–7 mHz. We found that the daily variation is clearly ordered by local time, suggesting a predominant effect of the polar extension of midlatitude ionospheric currents. On the other hand, the pulsation power is dependent on magnetic local time maximizing around magnetic local noon, when the stations are closer to the polar cusp, while the highest coherence between pairs of stations is observed in the magnetic local nighttime sector. The wave propagation direction observed during selected events, one around local magnetic noon and the other around local magnetic midnight, is consistent with a solar-wind-driven source in the daytime and with substorm-associated processes in the nighttime.

  7. Point charges optimally placed to represent the multipole expansion of charge distributions.

    Directory of Open Access Journals (Sweden)

    Ramu Anandakrishnan

    Full Text Available We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance 2x the extent of the charge distribution--the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom, is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å is half that of the point multipole expansion up to the octupole

  8. Multipole expansion of acoustical Bessel beams with arbitrary order and location.

    Science.gov (United States)

    Gong, Zhixiong; Marston, Philip L; Li, Wei; Chai, Yingbin

    2017-06-01

    An exact solution of expansion coefficients for a T-matrix method interacting with acoustic scattering of arbitrary order Bessel beams from an obstacle of arbitrary location is derived analytically. Because of the failure of the addition theorem for spherical harmonics for expansion coefficients of helicoidal Bessel beams, an addition theorem for cylindrical Bessel functions is introduced. Meanwhile, an analytical expression for the integral of products including Bessel and associated Legendre functions is applied to eliminate the integration over the polar angle. Note that this multipole expansion may also benefit other scattering methods and expansions of incident waves, for instance, partial-wave series solutions.

  9. Enhancing monochromatic multipole emission by a subwavelength enclosure of degenerate Mie resonances

    KAUST Repository

    Zhao, Jiajun

    2017-07-06

    Sound emission is inefficient at low frequencies as limited by source size. This letter presents enhancing emission of monochromatic monopole and multipole sources by enclosing the source with a subwavelength circular enclosure filled of an anisotropic material of a low radial sound speed. The anisotropy is associated with an infinite tangential density along the azimuth. Numerical simulations show that emission gain is produced at frequencies surrounding degenerate Mie resonant frequencies of the enclosure, and meanwhile the radiation directivity pattern is well preserved. The degeneracy is theoretically analyzed. A realization of the material is suggested by using a space-coiling structure.

  10. Geometry Effects on Multipole Components and Beam Optics in High-Velocity Multi-Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [ODU, JLAB; Deitrick, Kirsten E. [ODU, JLAB; Delayen, Jean R. [ODU, JLAB

    2013-12-01

    Velocity-of-light, multi-spoke cavities are being proposed to accelerate electrons in a compact light-source. There are strict requirements on the beam quality which require that the linac have only small non-uniformities in the accelerating field. Beam dynamics simulations have uncovered varying levels of focusing and defocusing in the proposed cavities, which is dependent on the geometry of the spoke in the vicinity of the beam path. Here we present results for the influence different spoke geometries have on the multipole components of the accelerating field and how these components, in turn, impact the simulated beam properties.

  11. Stability properties of a toroidal z-pinch in an external magnetic multipole field

    International Nuclear Information System (INIS)

    Eriksson, H.G.

    1987-01-01

    MHD stability of m=1, axisymmetric, external modes of a toroidal z-pinch immersed in an external multipole field (Extrap configuration) is studied. The description includes the effects of a weak toroidicity, a non-circular plasma cross-section and the influence of induced currents in the external conductors. It is found that the non-circularity of the plasma cross-section always has a destabilizing effect but that the m=1 mode can be stabilized by the external feedback if the non-circularity is small. (author)

  12. Convergence of highly parallel stray field calculation using the fast multipole method on irregular meshes

    Science.gov (United States)

    Palmesi, P.; Abert, C.; Bruckner, F.; Suess, D.

    2018-05-01

    Fast stray field calculation is commonly considered of great importance for micromagnetic simulations, since it is the most time consuming part of the simulation. The Fast Multipole Method (FMM) has displayed linear O(N) parallelization behavior on many cores. This article investigates the error of a recent FMM approach approximating sources using linear—instead of constant—finite elements in the singular integral for calculating the stray field and the corresponding potential. After measuring performance in an earlier manuscript, this manuscript investigates the convergence of the relative L2 error for several FMM simulation parameters. Various scenarios either calculating the stray field directly or via potential are discussed.

  13. Multipole lenses with implicit poles and with harmonic distribution of current density in a coil

    International Nuclear Information System (INIS)

    Skachkov, V.S.

    1984-01-01

    General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed

  14. Fast multipole acceleration of the MEG/EEG boundary element method

    International Nuclear Information System (INIS)

    Kybic, Jan; Clerc, Maureen; Faugeras, Olivier; Keriven, Renaud; Papadopoulo, Theo

    2005-01-01

    The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric boundary element method (BEM). It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption

  15. Adaptive grouping for the higher-order multilevel fast multipole method

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Jørgensen, Erik; Meincke, Peter

    2014-01-01

    An alternative parameter-free adaptive approach for the grouping of the basis function patterns in the multilevel fast multipole method is presented, yielding significant memory savings compared to the traditional Octree grouping for most discretizations, particularly when using higher-order basis...... functions. Results from both a uniformly and nonuniformly meshed scatterer are presented, showing how the technique is worthwhile even for regular meshes, and demonstrating that there is no loss of accuracy in spite of the large reduction in memory requirements and the relatively low computational cost....

  16. Symmetry aspects of multipole moments in electromagnetism and mechanics of continua

    International Nuclear Information System (INIS)

    Baleanu, D.; Dubovik, V.M.; Misiku, S.

    1998-01-01

    We investigate the form of some multipole tensors, which arise in the expansion of a system of charges and currents, in terms of second-order Killing-Yano tensors in the phase space of classical mechanics. We related some of these tensors to the generators of dynamical symmetries like the angular momentum, the mass-inertia tensor, the conformal operator and the momentum conjugate Runge-Lenz vector. In this way we associate a geometrical meaning to such physical observables of the continua

  17. Intermittency and multifractional Brownian character of geomagnetic time series

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2013-07-01

    Full Text Available The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008, which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  18. Improving geomagnetic observatory data in the South Atlantic Anomaly

    Science.gov (United States)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia

    2016-04-01

    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  19. The Geomagnetic Control Concept of The Ionospheric Long- Term Trends

    Science.gov (United States)

    Mikhailov, A. V.

    The geomagnetic control concept has been developed to explain long-term trends of the electron concentration in the F2 and E ionospheric regions. Periods with negative and positive foF2, hmF2 and foE trends correspond to the periods of increasing or decreasing geomagnetic activity with the turning points around the end of 1950s, 1960s, and 1980s where trends change their signs. Strong latitudinal and diurnal variations revealed for the foF2 and hmF2 trends can be explained by neutral composition, temperature and thermospheric wind changes. Particle precipitation is important in the auroral zone. The newly proposed concept proceeds from a natural origin of the F2-layer trends rather than an artificial one related to the greenhouse effect. Using the proposed method a very long-term foF2 and foE trends related with general increase of geomagnetic activity in the 20th century has been revealed for the first time. The firstly revealed relationship of the foE trends with geomagnetic activity is due to nitric oxide variations at the E-region heights. This "natural" relationship of the foE trends with geomagnetic activity breaks down around 1970 on many stations presumably due to chemical polution of the upper atmosphere. The increasing rate of rocket and satellite launchings in the late 1960s is considered as a reason.

  20. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.

    1979-01-01

    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  1. Dynamical similarity of geomagnetic field reversals.

    Science.gov (United States)

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  2. A superposed epoch analysis of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1994-06-01

    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  3. Fluxgate Magnetometer Array for Geomagnetic Abnormal Phenomena Tracking

    Directory of Open Access Journals (Sweden)

    Xiaomei Wang

    2011-06-01

    Full Text Available The objective of this project is to develop a flexible observation mode for a geomagnetic abnormal phenomena tracking system. The instrument, based on ring core fluxgate magnetometer technology, improves the field environment performance. Using wireless technology provides on-the-spot mobile networking for the observational data, with efficient access to the earthquake precursor observation network. It provides a powerful detection method for earthquake short-term prediction through installation of a low-noise fluxgate magnetometer array, intensely observing the phenomenon of geomagnetic disturbances and abnormal low-frequency electromagnetic signals in different latitudes, then carrying out observational data processing and exploring the relationship between earthquake activity and geomagnetic field changes.

  4. F layer positive response to a geomagnetic storm - June 1972

    International Nuclear Information System (INIS)

    Miller, N.J.; Grebowsky, J.M.; Mayr, H.G.; Harris, I.; Tulunay, Y.K.

    1979-01-01

    A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside mid-latitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17--18, 1972. We infer that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in apparent response to magnetospheric E x B drifts. A summer F layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics

  5. Operations of the World Data Centre for Geomagnetism, Edinburgh

    Directory of Open Access Journals (Sweden)

    S J Reay

    2013-01-01

    Full Text Available The British Geological Survey has operated a World Data Centre for Geomagnetism since 1966. Geomagnetic time-series data from around 280 observatories worldwide at a number of time resolutions are held along with various magnetic survey, model, and activity index data. The operation of this data centre provides a valuable resource for the geomagnetic research community. The operation of the WDC and details of the range of data held are presented. The quality control procedures that are applied to incoming data are described as is the work to collaborate with other data centres to distribute and improve the overall consistency of data held worldwide. The development of standards for metadata associated with datasets is demonstrated, and current efforts to digitally preserve the BGS analogue holdings of magnetograms and observatory yearbooks are described.

  6. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.

    Science.gov (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2013-01-22

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to 40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.

  7. Anomalous changes of vertical geomagnetic field in Kamchatka

    Directory of Open Access Journals (Sweden)

    Moroz Yuriy

    2016-01-01

    Full Text Available Secular variations of the vertical geomagnetic field at Paratunka (Kamchatka, Kakioka (Honshu, Mamambetsu (Hokkaido and Patrony (Irkutsk are considered from 1968 to 2014. Comparative analysis of secular variations showed that from 1968 to 2001, similar variations with the intensity of first hundreds on nT are obvious at four observatories. For the following period from 2001 to 2014, the secular variation at Paratunka observatory differs from other observatories. This disagreement of the secular geomagnetic variation at Paratunka observatory is timed to the increase of seismicity at the depth of 400-700 km in South Kamchatka region. It is suggested that in the result of increase of the seismicity in the region of transition from the upper to lower mantle, physical and chemical processes became more active. That caused formation of a large geo-electrical inhomogeneity which affected the behavior of the vertical component of geomagnetic field.

  8. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties

    International Nuclear Information System (INIS)

    Clegg, J; Robinson, M P

    2012-01-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole–Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz–10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit. (paper)

  9. Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sihvola, Ari [Helsinki University of Technology (Finland)

    2005-03-11

    'Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin{exclamation_point} 'It can't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where

  10. BOOK REVIEW: Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    Science.gov (United States)

    Sihvola, Ari

    2005-03-01

    `Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! `It canÂ't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the `old

  11. Real-space quadrature: A convenient, efficient representation for multipole expansions

    International Nuclear Information System (INIS)

    Rogers, David M.

    2015-01-01

    Multipoles are central to the theory and modeling of polarizable and nonpolarizable molecular electrostatics. This has made a representation in terms of point charges a highly sought after goal, since rotation of multipoles is a bottleneck in molecular dynamics implementations. All known point charge representations are orders of magnitude less efficient than spherical harmonics due to either using too many fixed charge locations or due to nonlinear fitting of fewer charge locations. We present the first complete solution to this problem—completely replacing spherical harmonic basis functions by a dramatically simpler set of weights associated to fixed, discrete points on a sphere. This representation is shown to be space optimal. It reduces the spherical harmonic decomposition of Poisson’s operator to pairwise summations over the point set. As a corollary, we also shows exact quadrature-based formulas for contraction over trace-free supersymmetric 3D tensors. Moreover, multiplication of spherical harmonic basis functions translates to a direct product in this representation

  12. Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

    Science.gov (United States)

    Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.

    2018-05-01

    We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He, O 16 ,22 ,24 , and Ca,4840. These resonance modes have been widely observed in experiment. In addition, we use a renormalized chiral potential Vlow-k, based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev. C 68, 041001 (2011), 10.1103/PhysRevC.68.041001]. This introduces a dependency on the cutoff parameter used in the normalization procedure as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced three-body forces in the calculations. Our results for neutron-rich O,2422 show a mixing nature of isoscalar and isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar quadrupole resonances at energies lower than 5 MeV.

  13. Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    International Nuclear Information System (INIS)

    Sihvola, Ari

    2005-01-01

    'Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! 'It can't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the 'old

  14. Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake

    Science.gov (United States)

    Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin

    2018-02-01

    This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m-2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W-1.

  15. A multipole-expanded effective field theory for vortex ring-sound interactions

    Science.gov (United States)

    Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto

    2018-02-01

    The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.

  16. Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories

    OpenAIRE

    Filippi, Enrico

    2016-01-01

    The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...

  17. IMF sector behavior estimated from geomagnetic data at South Pole

    International Nuclear Information System (INIS)

    Matsushita, S.; Xu, W.h.

    1981-01-01

    IMF sector behavior which has previously been estimated from the geomagnetic data at Godhavn is confirmed by study of the data at South Pole for 1959--1970 with the same estimation technique, taking the difference between northern and southern hemispheres into consideration. A method to improve (about 18%) the agreement between assigned and actual sector structures by study of the data at the two stations is suggested. Geomagnetic disturbance effects on sector estimation are discussed, and reversed sector effects in winter are given special emphasis

  18. Westward ionospheric currents over the dip equator during geomagnetic disturbances

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1975-01-01

    During geomagnetic disturbed periods, the q type of sporadic E layer near the dip equator is shown to disappear with maximum error of five minutes during the period when the difference of the geomagnetic H field between the equatorial and non-equatorial station decreases below the night level. These periods are identified with the reversal to westward direction of the electrojet currents at the base of the E region around 100 km level irrespective of the changes in the S/subq/ current system which might be produced by the disturbance

  19. Eliminating large-scale magnetospheric current perturbations from long-term geomagnetic observatory data

    Science.gov (United States)

    Pick, L.; Korte, M. C.

    2016-12-01

    Magnetospheric currents generate the largest external contribution to the geomagnetic field observed on Earth. Of particular importance is the solar-driven effect of the ring current whose fluctuations overlap with internal field secular variation (SV). Recent core field models thus co-estimate this effect but their validity is limited to the last 15 years offering satellite data. We aim at eliminating magnetospheric modulation from the whole geomagnetic observatory record from 1840 onwards in order to obtain clean long-term SV that will enhance core flow and geodynamo studies.The ring current effect takes form of a southward directed external dipole field aligned with the geomagnetic main field axis. Commonly the Dst index (Sugiura, 1964) is used to parametrize temporal variations of this dipole term. Because of baseline instabilities, the alternative RC index was derived from hourly means of 21 stations spanning 1997-2013 (Olsen et al., 2014). We follow their methodology based on annual means from a reduced station set spanning 1960-2010. The absolute level of the variation so determined is "hidden" in the static lithospheric offsets taken as quiet-time means. We tackle this issue by subtracting crustal biases independently calculated for each observatory from an inversion of combined Swarm satellite and observatory data.Our index reproduces the original annual RC index variability with a reasonable offset of -10 nT in the reference time window 2000-2010. Prior to that it depicts a long-term trend consistent with the external dipole term from COV-OBS (Gillet et al., 2013), being the only long-term field model available for comparison. Sharper variations that are better correlated with the Ap index than the COV-OBS solution lend support to the usefulness of our initial modeling approach. Following a detailed sensitivity study of station choice future work will focus on increasing the resolution from annual to hourly means.

  20. Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm

    OpenAIRE

    Thomson, Alan W.P.; McKay, Allan J.; Clarke, Ellen; Reay, Sarah J.

    2005-01-01

    A surface electric field model is used to estimate the UK surface E field during the 30 October 2003 severe geomagnetic storm. This model is coupled with a power grid model to determine the flow of geomagnetically induced currents (GIC) through the Scottish part of the UK grid. Model data are compared with GIC measurements at four sites in the power network. During this storm, measured and modeled GIC levels exceeded 40 A, and the surface electric field reached 5 V/km at sites in ...

  1. Densities, form factors, transitions and multipole moments in the s-d shell, with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1977-09-01

    The nuclear densities, radii, multipole moments, form-factors and transition probabilities obtained for the A = 4n type of nuclei in the s-d shell are reported, using the Hartree-Fock wave functions calculated with the Skyrme force. Experimental data and theoretical values derived by others are shown for comparison [pt

  2. Interacting sp-boson model with isospin: an unified description of giant multipole resonances and other collective motions

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    1980-10-01

    A unified description of the following classes of nuclear collective states in terms of an interacting sp-boson model is proposed: (i) Low-lying collective states in the light nuclei, both odd-odd and even-even; (ii) Giant multipole resonances (GMR), and (iii) pairing collective motions. (Author) [pt

  3. Protection of power transformers against geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2011-01-01

    Full Text Available The article examines the problem of saturation and failure of power transformers under geomagnetically induced currents and currents of the E3 component of high-altitude nuclear explosions. It also describes a special protective relay reacting on DC component in the transformer neutral current.

  4. Geomagnetic matching navigation algorithm based on robust estimation

    Science.gov (United States)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan

    2017-08-01

    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  5. Recent investigation at INPE in magnetospheric physics and geomagnetism

    International Nuclear Information System (INIS)

    Gonzales, W.D.; Trivedi, N.B.

    1984-01-01

    During recent years the following research activities related to the earth's magnetosphere have been intensified: a) studies on electric field and energy transfer from the solar wind to the magnetosphere; b) studies on high latitude magnetospheric electric fields and on their penetration into the plasmasphere; c) measurements of atmospheric-large scale-electric fields, related to the low latitude magnetospheric-ionospheric coupling and to the local atmospheric electrodynamics, using detectors on board stratospheric balloons; and d) measurements of atmospheric X-rays, related to the process of energetic particle precipitation at the South Atlantic Magnetic Anomaly, using detectors also on board stratospheric balloons. Similarly, the following research activities related to geomagnetism are being pursued: a) studies on the variability of the geomagnetic field and on the dynamics of the equatorial electrojet from local geomagnetic field measurements; b) studies on terrestrial electromagnetic induction through local measurements of the geo-electromagnetic field; and c) studies on the influence of geomagnetic activity on particle precipitation at the South Atlantic Magnetic Anomaly. (Author) [pt

  6. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  7. Evidence for a new geomagnetic jerk in 2014

    DEFF Research Database (Denmark)

    Torta, J. Miquel; Pavón-Carrasco, Francisco Javier; Marsal, Santiago

    2015-01-01

    The production of quasi-definitive data at Ebre observatory has enabled us to detect a new geomagnetic jerk in early 2014. This has been confirmed by analyzing data at several observatories in the European-African and Western Pacific-Australian sectors in the classical fashion of looking for the ...

  8. Long-term trends in geomagnetic and climatic variability

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2002-01-01

    Roč. 27, 6/7 (2002), s. 427-731 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3012806 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic forcing * climatic variability * global warming Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  9. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  10. Geomagnetic core field models in the satellite era

    DEFF Research Database (Denmark)

    Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.

    2011-01-01

    After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...

  11. New insights on geomagnetic storms from observations and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzgeomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  12. The Ranges Of Subauroral Geomagnetic Field Elements | Rabiu ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... An anomaly in seasonal response of range at high solar activity is observed on disturbed condition. ... apart from the anomaly - maintain the order e>j>d of seasonal variation which is in agreement with the popular equinoctial maximum observed in geomagnetic activity.

  13. Eruptive prominences and long-delay geomagnetic storms

    International Nuclear Information System (INIS)

    Wright, C.S.

    1983-01-01

    The relationship between disappearing solar fragments and geomagnetic disturbances was investigated. It is shown that long-delay storms are associated with filaments well removed from the disc centre, and particularly in the case of large filaments and prominences, the proportion of events that produce long-delay storms increases with angular distance from the centre

  14. Effects of geomagnetic storms on the bottomside ionospheric F region

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia

    2005-01-01

    Roč. 35, - (2005), s. 429-439 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Geomagnetic storm * Bottomside F region electron density Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.706, year: 2005

  15. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  16. Transport from chaotic orbits in the geomagnetic tail

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.

    1991-01-01

    The rapid change in direction and magnitude of the magnetic field vector in crossing the quasineutral sheet in the geomagnetic tail leads to deterministic Hamiltonian chaos. The finite correlation times in the single particle orbits due to the continuum of orbital frequencies leads to well-defined collisionless transport coefficients. The transport coefficients are derived for plasma trapped in the quasineutral sheet

  17. Yukawa multipole electrostatics and nontrivial coupling between electrostatic and dispersion interactions in electrolytes

    International Nuclear Information System (INIS)

    Kjellander, Roland; Ramirez, Rosa

    2008-01-01

    An exact treatment of screened electrostatics in electrolyte solutions is presented. In electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule extends to the far field region. The full directional dependence of the electrostatic potential from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole moments). In particular, the range of the potential from an ion and that from an electroneutral polar particle is generally exactly the same. This is in contrast to the case in vacuum or pure polar liquids, where the potential from a single charge is longer ranged than that from a dipole, which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence of the exponentially screened electrostatic interaction between two molecules in electrolytes is therefore rather complex even at long distances. These facts are formalized in Yukawa multipole expansions of the electrostatic potential and the pair interaction free energy based on the Yukawa function family exp(-κr)/r m , where r is the distance, κ is a decay parameter and m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent and in the primitive model, provided the non-Coulombic interactions between the particles are sufficiently short ranged. The results can also be applied in the Poisson-Boltzmann approximation. Differences and similarities to the ordinary multipole expansion of electrostatics are pointed out. On the other hand, when the non-Coulombic interactions between the constituent particles of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a molecule decays like a power law for long distances rather than as a Yukawa function. This is due to nontrivial coupling between the electrostatic and dispersion interactions. There remains an exponentially decaying component in the electrostatic potential, but it becomes

  18. Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns

    Science.gov (United States)

    Pan, Y.; Zhu, R.

    2017-12-01

    The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in

  19. A comparison of least squares linear regression and measurement error modeling of warm/cold multipole correlation in SSC prototype dipole magnets

    International Nuclear Information System (INIS)

    Pollock, D.; Kim, K.; Gunst, R.; Schucany, W.

    1993-05-01

    Linear estimation of cold magnetic field quality based on warm multipole measurements is being considered as a quality control method for SSC production magnet acceptance. To investigate prediction uncertainties associated with such an approach, axial-scan (Z-scan) magnetic measurements from SSC Prototype Collider Dipole Magnets (CDM's) have been studied. This paper presents a preliminary evaluation of the explanatory ability of warm measurement multipole variation on the prediction of cold magnet multipoles. Two linear estimation methods are presented: least-squares regression, which uses the assumption of fixed independent variable (xi) observations, and the measurement error model, which includes measurement error in the xi's. The influence of warm multipole measurement errors on predicted cold magnet multipole averages is considered. MSD QA is studying warm/cold correlation to answer several magnet quality control questions. How well do warm measurements predict cold (2kA) multipoles? Does sampling error significantly influence estimates of the linear coefficients (slope, intercept and residual standard error)? Is estimation error for the predicted cold magnet average small compared to typical variation along the Z-Axis? What fraction of the multipole RMS tolerance is accounted for by individual magnet prediction uncertainty?

  20. Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

  1. The effect of geomagnetic storms on suicide

    African Journals Online (AJOL)

    QuickSilver

    of possible low-frequency electromagnetic field disturbances from the solar terrestrial .... tion in the magnetic field of the earth can be observed on the .... Perception and Motor Skills 1973; 36: 1131-1159. ... Manual of the international statistical.

  2. Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria

    2018-02-01

    We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.

  3. Multipole mixtures for (2γ+-2g+) transitions in nonspherical nuclei with N = 90-110

    International Nuclear Information System (INIS)

    Demidov, A.M.; Govor, L.I.; Kurkin, V.A.; Mikhajlov, I.V.

    1999-01-01

    The multipole mixture σ-sings for (2 γ + -2 g + ) transitions of nuclei with neutron number N = 90-110 are considered. It is found that the correlations of the σ-sings (σ γ + -2 g + ) and (4 γ + -4 g + ) transitions and also the anti-correlations of the σ-sings for (2 γ + -2 g + ) and (2 β + -2 g + ) transitions are observed in majority of cases. There are exclusions from these rules due to inter-cation between β- and γ-vibrational excitations, when they approach each other in energy, and as well due to the contribution given by the two-proton configuration of proton Nilsson orbits in the 2 γ + -level [ru

  4. Multilevel fast multipole method based on a potential formulation for 3D electromagnetic scattering problems.

    Science.gov (United States)

    Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome

    2013-06-01

    A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations.

  5. Adaptation and performance of the Cartesian coordinates fast multipole method for nanomagnetic simulations

    International Nuclear Information System (INIS)

    Zhang Wen; Haas, Stephan

    2009-01-01

    An implementation of the fast multiple method (FMM) is performed for magnetic systems with long-ranged dipolar interactions. Expansion in spherical harmonics of the original FMM is replaced by expansion of polynomials in Cartesian coordinates, which is considerably simpler. Under open boundary conditions, an expression for multipole moments of point dipoles in a cell is derived. These make the program appropriate for nanomagnetic simulations, including magnetic nanoparticles and ferrofluids. The performance is optimized in terms of cell size and parameter set (expansion order and opening angle) and the trade off between computing time and accuracy is quantitatively studied. A rule of thumb is proposed to decide the appropriate average number of dipoles in the smallest cells, and an optimal choice of parameter set is suggested. Finally, the superiority of Cartesian coordinate FMM is demonstrated by comparison to spherical harmonics FMM and FFT.

  6. Periodic boundary conditions and the error-controlled fast multipole method

    Energy Technology Data Exchange (ETDEWEB)

    Kabadshow, Ivo

    2012-08-22

    The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific research. Especially the calculation of long-range interactions poses limitations to the system size, since these interactions scale quadratically with the number of particles. Fast summation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). This work extends the possible range of applications of the FMM to periodic systems in one, two and three dimensions with one unique approach. Together with a tight error control, this contribution enables the simulation of periodic particle systems for different applications without the need to know and tune the FMM specific parameters. The implemented error control scheme automatically optimizes the parameters to obtain an approximation for the minimal runtime for a given energy error bound.

  7. Can cosmic shear shed light on low cosmic microwave background multipoles?

    Science.gov (United States)

    Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha

    2003-11-28

    The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.

  8. Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics.

    Science.gov (United States)

    Grinter, Roger; Jones, Garth A

    2018-02-01

    The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

  9. Field analysis and enhancement of multi-pole magnetic components fabricated on printed circuit board

    International Nuclear Information System (INIS)

    Chiu, K.-C.; Chen, C.-S.

    2007-01-01

    A multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1 mm is very difficult to achieve by using traditional methods. Moreover, it requires a precise mechanical process and a complicated magnetization system. Different fine magnetic pole pitches of 300, 350 and 400 μm have been accomplished on 9-pole magnetic components through the printed circuit board (PCB) manufacturing technology. Additionally, another fine magnetic pole pitch of 500 μm was also fabricated on a dual-layered (DL) wire circuit structure to investigate the field enhancement. After measurements, a gain factor of 1.37 was obtained in the field strength. The field variations among different magnetic pole pitches were analyzed in this paper

  10. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomiştilor Str. Nr. 409, 077125 Măgurele, Ilfov (Romania); Giurgiu, Liviu C. [University of Bucharest, Faculty of Physics, Atomistilor Str. Nr. 405, 077125 Măgurele (Romania); Stan, Cristina [Department of Physics, Politehnica University, 313 Splaiul Independenţei, RO-060042 Bucharest (Romania); Filinov, Vladimir; Lapitsky, Dmitry, E-mail: dmitrucho@yandex.ru; Deputatova, Lidiya; Syrovatka, Roman [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Str. 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  11. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    International Nuclear Information System (INIS)

    Mihalcea, Bogdan M.; Vişan, Gina T.; Ganciu, Mihai; Giurgiu, Liviu C.; Stan, Cristina; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  12. Large geomagnetic field anomalies revealed in Bronze to Iron Age archeomagnetic data from Tel Megiddo and Tel Hazor, Israel

    Science.gov (United States)

    Shaar, Ron; Tauxe, Lisa; Ron, Hagai; Ebert, Yael; Zuckerman, Sharon; Finkelstein, Israel; Agnon, Amotz

    2016-05-01

    Geomagnetic field measurements from the past few centuries show heightened secular variation activity in the southern hemisphere associated with the south Atlantic anomaly (SAA). It is uncertain whether geomagnetic anomalies at a similar scale have existed in the past owing to limited coverage and uncertainties in the paleomagnetic database. Here we provide new evidence from archaeological sources in the Levant suggesting a large positive northern hemisphere anomaly, similar in magnitude to the SAA during the 9th-8th centuries BCE, called ;Levantine Iron Age anomaly;. We also report an additional geomagnetic spike in the 8th century. The new dataset comprises 73 high precision paleointensity estimates from ca. 3000 BCE to 732 BCE, and five directional measurements between the 14th and the 9th centuries BCE. Well-dated pottery and cooking ovens were collected from twenty archaeological strata in two large contemporaneous stratigraphical mounds (tells) in Israel: Tel Megiddo and Tel Hazor. The new data are combined with previously published data and interpreted automatically using the PmagPy Thellier GUI program. The Tel Megiddo and Tel Hazor data sets demonstrate excellent internal consistency and remarkable agreement with published data from Mesopotamia (Syria). The data illustrate the evolution of an extreme geomagnetic high that culminated in at least two spikes between the 11th and the 8th centuries BCE (Iron Age in the Levant). The paleomagnetic directional data of the 9th century BCE show positive inclination anomalies, and deviations of up to 22° from the averaged geocentric axial dipole (GAD) direction. From comparison of the Levantine archaeomagnetic data with IGRF model for 2015 we infer the ;Levantine Iron Age anomaly; between the 10th and the 8th centuries BCE is a local positive anomaly. The eastward extent of the anomaly is currently unknown.

  13. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  14. Exchange splitting of the interaction energy and the multipole expansion of the wave function

    Energy Technology Data Exchange (ETDEWEB)

    Gniewek, Piotr, E-mail: pgniewek@tiger.chem.uw.edu.pl; Jeziorski, Bogumił, E-mail: jeziorsk@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2015-10-21

    The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.

  15. Geomagnetic Core Field Secular Variation Models

    DEFF Research Database (Denmark)

    Gillet, N.; Lesur, V.; Olsen, Nils

    2010-01-01

    highlight the difficulty of resolving the time variability of the high degree secular variation coefficients (i.e. the secular acceleration), arising for instance from the challenge to properly separate sources of internal and of external origin. In addition, the regularisation process may also result...

  16. Spatial correlation structure of the ionosphere predicted by geomagnetic indices and application to global field modelling

    Science.gov (United States)

    Holschneider, M.; Ferrat, K.; Lesur, V.; Stolle, C.

    2017-12-01

    Ionospheric fields are modelled in terms of random structures taking into account a mean behaviour as well as random fluctuations which are described through two point correlation kernels. These kernels are estimated from long time series of numerical simulations from various models. These correlations are best expressed in SM system of coordinates. For the moment we limit ourselves to spatial correlations only in this coordinate system. We study the influence of various indices as possible predictor parameters for these correlations as well as seasonal effects. The various time series of ionospheric fields are stored in a HDF5 database which is accessible via a web interface. The obtained correlation structures serve as prior information to separate external and internal field components from observatory based measurements. We present a model that predicts the correlations as a function of time and some geomagnetic indices. First results of the inversion from observatory data are presented.

  17. Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations

    Directory of Open Access Journals (Sweden)

    T. Alberti

    2016-11-01

    Full Text Available We used the empirical mode decomposition (EMD to investigate the time variation of the magnetospheric and ground-based observations of the Earth's magnetic field during both quiet and disturbed periods. We found two timescale variations in magnetospheric data which are associated with different magnetospheric current systems and the characteristic diurnal orbital variation, respectively. On the ground we identified three timescale variations related to the solar-wind–magnetosphere high-frequency interactions, the ionospheric processes, and the internal dynamics of the magnetosphere. This approach is able to identify the different physical processes involved in solar-wind–magnetosphere–ionosphere coupling. In addition, the large-timescale contribution can be used as a local index for the identification of the intensity of a geomagnetic storm on the ground.

  18. Low-altitude trapped protons at the geomagnetic equator

    Science.gov (United States)

    Guzik, T. G.; Miah, M. A.; Mitchell, J. M.; Wefel, J. P.

    1989-01-01

    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of about 10 deg but with no appreciable longitudinal variation. Between 170 and 290 Km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969-1982) of the intensity.

  19. Low-altitude trapped protons at the geomagnetic equator

    International Nuclear Information System (INIS)

    Guzik, T.G.; Miah, M.A.; Mitchell, J.W.; Wefel, J.P.

    1989-01-01

    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of ∼10 0 but with no appreciable longitudinal variation. Between 170 and 290 km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969--1982) of the intensity. copyright American Geophysical Union 1989

  20. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  1. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1999-03-01

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  2. Forecasting intense geomagnetic activity using interplanetary magnetic field data

    Science.gov (United States)

    Saiz, E.; Cid, C.; Cerrato, Y.

    2008-12-01

    Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.

  3. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  4. Geomagnetic storms in the Antarctic F-region

    International Nuclear Information System (INIS)

    Wrenn, G.L.; Rodger, A.S.; Rishbeth, H.

    1987-01-01

    New analysis procedures are used to show that the main phase mid-latitude storm effects conform to consistent patterns in local time when suitable selection rules are applied, with averaging over several years. Changes in the maximum plasma frequency, foF2, with respect to estimated quiet-time values, are analysed in terms of asub(p)(t), a new geomagnetic index derived to take account of integrated disturbance. Reduction of foF2 is greatest during the early morning hours, in summer, at higher geomagnetic latitudes, near solar minimum and through the more active periods. The various dependencies are quantitatively determined for the first time by creating an average 'steady state' disturbance, rather than following specific storm events. This approach permits tests of competing theories using available modelling programs. (author)

  5. Modeling Geomagnetic Variations using a Machine Learning Framework

    Science.gov (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  6. No alignment of cattle along geomagnetic field lines found

    OpenAIRE

    Hert, J.; Jelinek, L.; Pekarek, L.; Pavlicek, A.

    2011-01-01

    This paper presents a study of the body orientation of domestic cattle on free pastures in several European states, based on Google satellite photographs. In sum, 232 herds with 3412 individuals were evaluated. Two independent groups participated in our study and came to the same conclusion that, in contradiction to the recent findings of other researchers, no alignment of the animals and of their herds along geomagnetic field lines could be found. Several possible reasons for this discrepanc...

  7. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  8. Double streams of protons in the distant geomagnetic tail

    Science.gov (United States)

    Villante, U.; Lazarus, A. J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region.

  9. The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries

    Science.gov (United States)

    Constable, C.

    2017-12-01

    Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow

  10. Geomagnetic secular variation at Addis Ababa over the last four ...

    African Journals Online (AJOL)

    Addis Ababa Observatory (aae) geomagnetic data analysed over the time-span 1958—1998 show that the annual mean values of the intensity have decreased since 1965 from 36186 nT to 35950 nT at a non-linear regression rate of 8—9 nT per year. Directional changes in the Earth's magnetic field that could be ...

  11. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  12. Double streams of protons in the distant geomagnetic tail

    International Nuclear Information System (INIS)

    Villante, U.; Lazarus, A.J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region

  13. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1977-01-01

    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  14. Mathematical models of some geomagnetic storms with SC

    International Nuclear Information System (INIS)

    Ivanova, P.K.

    1990-01-01

    Regressive equations for H horizontal component of three geomagnetic storms with Sc:0.1.03.82, 24.01.74 and 23.03.69 -are calculated using step-by-step regression analysis. These equations relate H with parameters of solar wind and interplanetary magnetic field. Nonlinear, square, logarithmic and trigonometric dependences are considered, as well. Most essential parameters, which contribute mostly into Sc, are determined from multiplicity (46 factors) of independent parameters

  15. Geophysical fluids, geomagnetic jerks, and their impact on Earth orientation

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Ron, Cyril

    2017-01-01

    Roč. 96, č. 1 (2017), s. 51-60 ISSN 0373-3742. [National Conference of Astronomers of Serbia /17./. Belgrade, 23.09.2014-27.09.2014] R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : Earth orientation * geophysical fluids * geomagnetic jerks Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  16. Advances in Residential Design Related to the Influence of Geomagnetism

    Directory of Open Access Journals (Sweden)

    Francisco Glaria

    2018-02-01

    Full Text Available Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing.

  17. Archaeomagnetic Dating in Europe Using a Global Geomagnetic Field Model

    Science.gov (United States)

    Lodge, A.; Suttie, N.; Holme, R.; Shaw, J.; Hill, M. J.; Linford, P.

    2009-12-01

    Using up-to-date archaeomagnetic data from Europe and CALS7K.2 as an apriori model, we produce a global geomagnetic field model to be used for archaeomagnetic dating in Europe. More details on the modelling process will be presented elsewhere (in session GP12, abstract: Geophysical insights from archaeomagnetic dating). Here we apply the global geomagnetic field model to a series of test cases from both recently published data and unpublished data to demonstrate its application to archaeomagnetic dating. We compare the results produced using our model with those from the spherical cap harmonic model, SCHA.DIF.3K (Pavón-Carrasco et al., 2009), the global geomagnetic field model, ARCH3K.1 (Korte et al., 2009) and those produced using the palaeosecular variation curves generated using Bayesian statistics (Lanos, 2004). We include examples which emphasise the importance of using three component data (declination, inclination and intensity) to produce an improved archaeomagnetic date. In addition to the careful selection of an appropriate model for archaeomagnetic dating, the choice of errors on the model curves is vital for providing archaeologists with an age range of possible dates. We discuss how best to constrain the errors on the model curves and alternative ways to the mathematical method of Lanos (2004) for producing an archaeomagnetic date for archaeologists.

  18. Advances in Residential Design Related to the Influence of Geomagnetism

    Science.gov (United States)

    Arnedo, Israel; Sánchez-Ostiz, Ana

    2018-01-01

    Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing. PMID:29473902

  19. A global geomagnetic model based on historical and paleomagnetic data

    Science.gov (United States)

    Arneitz, P.; Leonhardt, R.; Fabian, K.

    2015-12-01

    Two main types of data are available to reconstruct the temporal and spatial geomagnetic field evolution. Historical instrumental measurements (direct data) extend from present day to the late Middle Age, and, prior the 19th century, consist mainly of declination values. Further back in the past, field reconstructions rely exclusively on the magnetization acquired by archaeological artefacts and rocks or sediments (indirect data). The major challenges for a reliable inversion approach are the inhomogeneous data distribution, the highly variable data quality, and inconsistent quality parameters. Available historical, archeomagnetic and volcanic records have been integrated into a single database together with corresponding metadata. This combination of compilations enables a joint evaluation of geomagnetic field records from different origins. In particular, data reliability and quality of indirect records are investigated using a detailed comparison with their direct counterparts. The collection forms the basis for combined inverse modeling of the geomagnetic field evolution. The iterative Bayesian inversion approach targets the implementation of reliable error treatments, which allow to combine data from different sources. Furthermore, a verification method scrutinizing the limitations of the applied inversion scheme and the used datasets is developed. Here, we will present strategies for the integration of different data types into the modeling procedure. The obtained modeling results and their validity will be discussed.

  20. Up-to-date Geomagnetic Coordinate Transforms with AACGM

    Science.gov (United States)

    Stephens, G. K.; Morrison, D.; Barnes, R. J.; Potter, M.; Schaefer, R. K.

    2017-12-01

    Geomagnetic plasmas organize along magnetic field lines, thus, it is often appropriate to use magnetic field line conjunctions for comparisons between spacecraft observations. Due to the expense of tracing magnetic field lines, the Altitude-Adjusted Corrected GeoMagnetic (AACGM) coordinate system is used. The (AACGM) coordinates are defined by the best fit dipole of the Earth's magnetic field and have been a standard tool used by the SPA community for a long time. However, standard 5 year updated coefficients for this transform are no longer available after the 2010 set. A new version of AACGM (V2 - Shepard, 2014) has been defined. AACGM V2 is fit to a spherical harmonic expansion. A pitfall with this V2 coordinate system is that it is undefined near the magnetic equator, which is problematic for determining conjunctions for spacecraft that with ground stations that pass through these regions. We have derived a new set of coefficients valid for the current epoch that allow us to continue to use the original version of AACGM. We also explore the errors that are introduced by ignoring the magnetic field caused by magnetospheric electric currents. The derived coefficients are made available to the public along with Java software that can be used to evaluate the AACGM coordinates. Shepard, S., 2014, Altitude-Adjusted Corrected Geomagnetic Coordinates: Definition and Functional Approximations, Jour. Geophys. Res., 119, 020264, DOI:10.1002/2014JA020264

  1. Long-term biases in geomagnetic K and aa indices

    Science.gov (United States)

    Love, J.J.

    2011-01-01

    Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. The K data show persistent biases, especially for high (low) K-activity levels at British (Australian) observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4. ?? 2011 Author(s).

  2. Remagnetization of lava flows spanning the last geomagnetic reversal

    Science.gov (United States)

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando

    2017-08-01

    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  3. Long-term biases in geomagnetic K and aa indices

    Directory of Open Access Journals (Sweden)

    J. J. Love

    2011-08-01

    Full Text Available Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0–2009.0, solar cycles 11–23. The K data show persistent biases, especially for high (low K-activity levels at British (Australian observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4.

  4. A first generation numerical geomagnetic storm prediction scheme

    International Nuclear Information System (INIS)

    Akasofu, S.-I.; Fry, C.F.

    1986-01-01

    Because geomagnetic and auroral disturbances cause significant interference on many electrical systems, it is essential to develop a reliable geomagnetic and auroral storm prediction scheme. A first generation numerical prediction scheme has been developed. The scheme consists of two major computer codes which in turn consist of a large number of subroutine codes and of empirical relationships. First of all, when a solar flare occurs, six flare parameters are determined as the input data set for the first code which is devised to show the simulated propagation of solar wind disturbances in the heliosphere to a distance of 2 a.u. Thus, one can determine the relative location of the propagating disturbances with the Earth's position. The solar wind speed and the three interplanetary magnetic field (IMF) components are then computed as a function of time at the Earth's location or any other desired (space probe) locations. These quantities in turn become the input parameters for the second major code which computes first the power of the solar wind-magnetosphere dynamo as a function of time. The power thus obtained and the three IMF components can be used to compute or infer: the predicted geometry of the auroral oval; the cross-polar cap potential; the two geomagnetic indices AE and Dst; the total energy injection rate into the polar ionosphere; and the atmospheric temperature, etc. (author)

  5. Geomagnetic storm forecasting service StormFocus: 5 years online

    Science.gov (United States)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  6. International

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)

  7. Production of large number of water-cooled excitation coils with improved techniques for multipole magnets of INDUS -2

    International Nuclear Information System (INIS)

    Karmarkar, M.G.; Sreeramulu, K.; Kulshreshta, P.K.

    2003-01-01

    Accelerator multipole magnets are characterized by high field gradients powered with relatively high current excitation coils. Due to space limitations in the magnet core/poles, compact coil geometry is also necessary. The coils are made of several insulated turns using hollow copper conductor. High current densities in these require cooling with low conductivity water. Additionally during operation, these are subjected to thermal fatigue stresses. A large number of coils ( Qty: 650 nos.) having different geometries were required for all multipole magnets like quadrupole (QP), sextupole (SP). Improved techniques for winding, insulation and epoxy consolidation were developed in-house at M D Lab and all coils have been successfully made. Improved technology, production techniques adopted for magnet coils and their inspection are briefly discussed in this paper. (author)

  8. Tracking studies on the effects of magnet multipoles on the aperture of the RHIC heavy ion collider

    International Nuclear Information System (INIS)

    Dell, G.F.; Parzen, G.

    1985-01-01

    Tracking studies including the effects of random multipoles resulting from construction errors have been made for RHIC with two independent tracking programs at three different tunes. The studies were made using ten different sets of random errors for each of the programs. The aperture was defined as the worst case, and the results of the two programs are in good agreement. A second set of studies was made for which the number of dipoles was doubled to determine whether doubling the number of independent random errors results in a reduction of the effects or random multipoles. The results for the two cases, one dipole per half cell and two dipoles per half cell, indicate there is little difference in dynamic aperture. 3 refs., 3 figs

  9. The Development of Models for Assessment of the Geomagnetically Induced Currents Impact on Electric Power Grids during Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    VAKHNINA, V. V.

    2015-02-01

    Full Text Available A model and an algorithm for the calculation of the functioning of an electric power grid of arbitrary configuration and complexity during geomagnetic storms were developed. The calculations were performed in the MATLAB mathematical package and the Simulink environment. The binding of objects to geographical coordinates is realized in the model, which enables to determine the matrix of potentials of geoelectric fields in nodal points. In order to define the instantaneous magnetizing currents, the power transformers are designed on the basis of the T-shaped equivalent circuit with a nonlinear mutual inductance of magnetization branch. Calculation of RMS values of active, reactive and total power values in all the elements is done with regard to the impact of harmonic components of the current and voltage. The results of modeling of the impact of geomagnetic storms of various intensity with the west-east direction of the geoelectric field vector for Samara region electric power grid are given.

  10. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    Science.gov (United States)

    Mather, J. W.; Ahluwalia, H. S.

    1988-01-01

    The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.

  11. Long-term rise in geomagnetic activity - A close connection between quiet days and storms

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2000-01-01

    Geomagnetic quiet days and magnetic storms are naturally believed to be due to very different solar wind conditions. In this study we however demonstrate that the long-term variation of geomagnetic quiet and disturbed days are surprisingly similar. By the use of daily averages of the geomagnetic.......7. The results indicate that the longterm,increase is due to an increase in the background solar wind parameters, rather than in the number of solar wind disturbances....

  12. Relative location of a powerful flare, the heliospheric current sheet and the Earth favourable for the onset of a strong geomagnetic storm

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.; Romashets, E.P.

    1992-01-01

    Problem of magnetic clouds propagation in regular-nonuniform internal heliosphere is discussed. High dependence of their retardation and consequently intensity of interplanetary and geomagnetic disturbances on mutual location of flares, heliospheric current sheet and the Earth is identified. Eight solar flares, four of which caused strong storms, and another four led to weak disturbances, all of them being in fair agreement with theoretical conclusions, are presented as examples

  13. Compensation of the Persistent Current Multipoles in the LHC Dipoles by making the Coil Protection Sheet from Soft Magnetic Material

    CERN Document Server

    Völlinger, C

    2000-01-01

    This note presents a scheme for compensating the persistent current multipole errors of the LHC dipoles by making the coil protection sheets from soft magnetic material of 0.5 mm thickness. The material properties assumed in this study are those of iron sheets with a very low content of impurities (99.99% pure Fe). The non-linearities in the upramp cycle on the b3 multipole component can be reduced by the factor of four (while decreasing the b5 variation by the factor of two. Using sheets of slightly different thicknesses offers a tuning possibility for the series magnet coils and can compensate deviations arising from cables of different suppliers. The calculation method is based on a semi-analytical hysteresis model for hard superconductors and an M(B) - iteration using the method of coupled boundary elements - finite elements (BEM - FEM). It is now possible to compute persistent current multipole errors of geometries with arbitrarily shaped iron yokes and thin layers of soft magnetic material such as tunin...

  14. The Mono Lake geomagnetic excursion recorded in loess: Its application as time marker and implications for its geomagnetic nature

    Science.gov (United States)

    Hambach, U.; Hark, M.; Zeeden, C.; Reddersen, B.; Zöller, L.; Fuchs, M.

    2009-04-01

    One of the youngest and worldwide documented geomagnetic excursions in the Brunhes Chron is the Mono Lake excursion (MLE). It has been detected in marine and terrestrial sedimentary archives as well as in lavas. Recent age determinations and age estimates for the MLE centre around an age interval of approximately 31 - 34 ka. Likewise the Laschamp excursion the MLE goes along with a distinct peak in cosmogenic radionuclides in ice cores and sedimentary archives. It provides therefore an additional geomagnetic time marker for various geoarchives to synchronise different climate archives. Here we report on a detailed record of the MLE from a loess site at Krems, Lower Austria. The site is situated on the southern slope of the Wachtberg hill in the vicinity of the old city centre of Krems. The archive comprises Middle to Upper Würmian (Late Pleistocene) loess in which an Upper Palaeolithic (Early Gravettian) cultural layer is embedded. The most spectacular finds are a double infant burial found in 2005 and a single burial discovered in 2006 (Einwögerer et al., 2006). Generally, archaeological findings show an extraordinarily good preservation due to embedding in rapidly sedimented loess (Händel et al., 2008). The about 10 m thick loess pile consists of calcareous sandy, coarse silt which is rich in mica indicating local sources. It is well stratified with brownish horizons representing embryonic soils pointing to incipient pedogenesis. Some of the pedo-horizons show occasionally indications of minor erosion and bedding-parallel sediment transport, but no linear erosional features. Pale greyish horizons are the result of partial gleying under permafrost conditions. No strong pedogenesis including decalcification and clay formation is present. The cultural layer is still covered by more than 5 m of loess, and dated by radiocarbon to ~27 ka 14C BP (Einwögerer et al., 2006). Below this layer up to 2.5 m of loess resting on Lower Pleistocene fluvial gravels are

  15. Re-Evaluation of Geomagnetic Field Observation Data at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    K Takahashi

    2013-05-01

    Full Text Available The Japanese Antarctic Research Expedition has conducted geomagnetic observations at Syowa Station, Antarctica, since 1966. Geomagnetic variation data measured with a fluxgate magnetometer are not absolute but are relative to a baseline and show drift. To enhance the importance of the geomagnetic data at Syowa Station, therefore, it is necessary to correct the continuous variation data by using absolute baseline values acquired by a magnetic theodolite and proton magnetometer. However, the database of baseline values contains outliers. We detected outliers in the database and then converted the geomagnetic variation data to absolute values by using the reliable baseline values.

  16. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data

    Science.gov (United States)

    KIM, J. H.; Chang, H. Y.

    2017-12-01

    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  17. Worldwide Magnetograms with Geomagnetic Components D, H, Z, or X, Y, and Z

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receives magnetograms from over 200 geomagnetic observatories....

  18. Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Paar, N.; Papakonstantinou, P.; Hergert, H.; Roth, R.

    2006-01-01

    We investigate collective multipole excitations for closed shell nuclei from 16 O to 208 Pb using correlated realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant short-range central and tensor correlations a re treated explicitly within the Unitary Correlation Operator Method (UCOM), which provides a phase-shift equivalent correlated interaction VUCOM adapted to simple uncorrelated Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated transition operators. Using VUCOM we solve the Hartree-Fock problem and employ the single-particle states as starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e. the same correlated nucleon-nucleon interact ion is used in calculations of the HF ground state and in the residual RPA interaction. Consequently, the spurious state associated with the center-of-mass motion is properly removed and the sum-rules are exhausted within ±3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole, and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole resonance, the resonance energies are in agreement with experiment hinting at a reasonable compressibility. However, in the 1 - and 2 + channels the resonance energies are overestimated due to missing long-range correlations and three-body contributions. (orig.)

  19. Effects of foreign gases on H- formation in a magnetic multipole hydrogen plasma source

    International Nuclear Information System (INIS)

    Mosbach, T

    2005-01-01

    The effects of admixtures of argon and xenon and of nitrogen (for the purpose of comparison between atomic and molecular additives) to a given H 2 base pressure are investigated with respect to the vibrational populations of hydrogen molecules in the electronic ground state, to the density of negative ions and to the electron energy distribution function (EEDF). This work aims to unravel the influence of the vibrational population distribution and the EEDF on the formation of negative hydrogen ions in the volume of a magnetic multipole plasma source. The admixtures of these foreign gases lead to a measurable state-specific decrease in the population of the high vibrational states of the H 2 molecule. Higher states exhibit a clearly stronger decrease with increasing foreign gas partial pressure. The measured density of the negative ions decreases with increasing noble gas partial pressure, despite the fact that the low-energy fraction of the measured EEDF is modified such that the efficiency of ion formation by dissociative attachment is more favourable. The various measurements are compared for the case of the H 2 -Ar discharge, with a global model developed for the stationary plasma state. The decrease in the density of the negative ions with increasing argon admixture can be reproduced by the model with high accuracy on the basis of measured population distributions of the vibrationally excited H 2 molecules and the measured EEDF

  20. Hartree-Fock limit values of multipole moments, polarizabilities, and hyperpolarizabilities for atoms and diatomic molecules

    Science.gov (United States)

    Kobus, Jacek

    2015-02-01

    Recently it has been demonstrated that the finite difference Hartree-Fock method can be used to deliver highly accurate values of electric multipole moments together with polarizabilities αz z,Az ,z z , and hyperpolarizabilities βz z z, γz z z,Bz z ,z z , for the ground states of various atomic and diatomic systems. Since these results can be regarded as de facto Hartree-Fock limit values their quality is of the utmost importance. This paper reexamines the use of the finite field method to calculate these electric properties, discusses its accuracy, and presents an updated list of the properties for the following atoms and diatomic molecules: H-, He, Li, Li+,Li2 +,Li-,Be2 + , Be, B+,C2 + , Ne, Mg2 +, Mg, Al+,Si2 + , Ar, K+,Ca2 +,Rb+,Sr2 +,Zr4 +,He2 , Be2,N2,F2,O2 , HeNe, LiH2 +, LiCl, LiBr, BH, CO, FH, NaCl, and KF. The potential energy curves and the dependence of the electric properties on the internuclear distance is also studied for He2,LiH+,Be2 , and HeNe systems.

  1. Petascale molecular dynamics simulation using the fast multipole method on K computer

    KAUST Repository

    Ohno, Yousuke; Yokota, Rio; Koyama, Hiroshi; Morimoto, Gentaro; Hasegawa, Aki; Masumoto, Gen; Okimoto, Noriaki; Hirano, Yoshinori; Ibeid, Huda; Narumi, Tetsu; Taiji, Makoto

    2014-01-01

    In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.

  2. Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    Science.gov (United States)

    Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai

    2010-12-01

    FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been

  3. Design and experimental results of a new electron gun using a magnetic multipole plasma generator

    International Nuclear Information System (INIS)

    Tanaka, S.; Yokoyama, K.; Akiba, M.; Araki, M.; Dairaku, M.; Inoue, T.; Mizuno, M.; Okumura, Y.; Ohara, Y.; Seki, M.; Watanabe, K.

    1991-01-01

    A new electron gun utilizing a magnetic multipole plasma generator was designed and fabricated as the heat source of the high heat flux test facility, called JEBIS (JAERI electron beam irradiation stand). By changing the acceleration grids, this electron gun is able to produce a pencil to a sheetlike electron beams up to 4 A at 100 keV for 1 ms to continuous mode. In this electron gun, magnetic lens system is not adopted to focus the electron beam, but the space charge neutralization effect by the beam plasma produced downstream of the electron gun is utilized to prevent the blow-up of the electron beam. In addition, high permeability metal is embedded in the first and the second grids to magnetically shield the earth field and the stray field from the beam bending magnet. It was experimentally demonstrated that wide range of heat flux from 0.2 MW/m 2 to over 2000 MW/m 2 can be realized at the test sample position about 1.7 m downstream of the electron gun

  4. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    Science.gov (United States)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  5. MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Z.; Lin, W. P. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Kang, X., E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn [Partner Group of MPI for Astronomy, Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China)

    2013-03-10

    An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.

  6. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    Science.gov (United States)

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  7. Petascale molecular dynamics simulation using the fast multipole method on K computer

    KAUST Repository

    Ohno, Yousuke

    2014-10-01

    In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.

  8. Study on Optimum Design of Multi-Pole Interior Permanent Magnet Motor with Concentrated Windings

    Science.gov (United States)

    Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki

    Interior Permanent Magnet Synchronous Motors (IPMSM) have been found in many applications because of their high-power density and high-efficiency. The existence of a complex magnetic circuit, however, makes the design of this machine quite complicated. Although FEM is commonly used in the IPMSM design, one of disadvantages is long CPU times. This paper presents a simple non-linear magnetic analysis for a multi-pole IPMSM as a preliminary design tool of FEM. The proposed analysis consists of the geometric-flux-tube-based equivalent-magnetic-circuit model. The model includes saturable permeances taking into account the local magnetic saturation in the core. As a result, the proposed analysis is capable of calculating the flux distribution and the torque characteristics in the presence of magnetic saturation. The effectiveness of the proposed analysis is verified by comparing with FEM in terms of the analytical accuracy and the computation time for two IPMSMs with different specifications. After verification, the proposed analysis-based optimum design is examined, by which the minimization of motor volume is realized while satisfying the necessary maximum torque for target applications.

  9. Combining the multilevel fast multipole method with the uniform geometrical theory of diffraction

    Directory of Open Access Journals (Sweden)

    A. Tzoulis

    2005-01-01

    Full Text Available The presence of arbitrarily shaped and electrically large objects in the same environment leads to hybridization of the Method of Moments (MoM with the Uniform Geometrical Theory of Diffraction (UTD. The computation and memory complexity of the MoM solution is improved with the Multilevel Fast Multipole Method (MLFMM. By expanding the k-space integrals in spherical harmonics, further considerable amount of memory can be saved without compromising accuracy and numerical speed. However, until now MoM-UTD hybrid methods are restricted to conventional MoM formulations only with Electric Field Integral Equation (EFIE. In this contribution, a MLFMM-UTD hybridization for Combined Field Integral Equation (CFIE is proposed and applied within a hybrid Finite Element - Boundary Integral (FEBI technique. The MLFMM-UTD hybridization is performed at the translation procedure on the various levels of the MLFMM, using a far-field approximation of the corresponding translation operator. The formulation of this new hybrid technique is presented, as well as numerical results.

  10. MAXIMUM CORONAL MASS EJECTION SPEED AS AN INDICATOR OF SOLAR AND GEOMAGNETIC ACTIVITIES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  11. Latitudinal variation rate of geomagnetic cutoff rigidity in the active Chilean convergent margin

    Science.gov (United States)

    Cordaro, Enrique G.; Venegas, Patricio; Laroze, David

    2018-03-01

    We present a different view of secular variation of the Earth's magnetic field, through the variations in the threshold rigidity known as the variation rate of geomagnetic cutoff rigidity (VRc). As the geomagnetic cutoff rigidity (Rc) lets us differentiate between charged particle trajectories arriving at the Earth and the Earth's magnetic field, we used the VRc to look for internal variations in the latter, close to the 70° south meridian. Due to the fact that the empirical data of total magnetic field BF and vertical magnetic field Bz obtained at Putre (OP) and Los Cerrillos (OLC) stations are consistent with the displacement of the South Atlantic magnetic anomaly (SAMA), we detected that the VRc does not fully correlate to SAMA in central Chile. Besides, the lower section of VRc seems to correlate perfectly with important geological features, like the flat slab in the active Chilean convergent margin. Based on this, we next focused our attention on the empirical variations of the vertical component of the magnetic field Bz, recorded in OP prior to the Maule earthquake in 2010, which occurred in the middle of the Chilean flat slab. We found a jump in Bz values and main frequencies from 3.510 to 5.860 µHz, in the second derivative of Bz, which corresponds to similar magnetic behavior found by other research groups, but at lower frequency ranges. Then, we extended this analysis to other relevant subduction seismic events, like Sumatra in 2004 and Tohoku in 2011, using data from the Guam station. Similar records and the main frequencies before each event were found. Thus, these results seem to show that magnetic anomalies recorded on different timescales, as VRc (decades) and Bz (days), may correlate with some geological events, as the lithosphere-atmosphere-ionosphere coupling (LAIC).

  12. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  13. Geomagnetic response to sudden expansions of the magnetosphere

    International Nuclear Information System (INIS)

    Araki, Tohru; Nagano, Hiroshi

    1988-01-01

    The geomagnetic response to five successive sudden expansions of the magnetosphere was examined by the use of magnetic data observed on the ground and by satellites. At the geosynchronous orbit between 0800 and 1100 LT the magnetic field component parallel to Earth's rotation axis decreased successively. The amplitude and the fall time of each decrease were 20-30 nT and 2.5-3.5 min, respectively. The decrease was propagated about 10 min later to the distance of about 31 R E from Earth in the antisunward direction, indicating propagation speed of about 300 km/s. The H component of ground magnetograms from low-latitude stations showed decreases with waveform similar to that at the geosynchronous orbit, but each decrease at the dayside equator was greatly enhanced and preceded by a short small positive impulse. Each of the corresponding geomagnetic variations at high latitude stations consisted of two successive sharp pulses of opposite sense with 2-3 min duration. The dominant component and the sense of these high-latitude pulses were highly dependent upon local time and latitude. The distribution of equivalent ionospheric current arrows for each high-latitude pulse showed clear twin vortices centered at 70-76 degree geomagnetic latitude in the dayside and was approximately symmetric with respect to the noon meridian. The current direction of the vortices was reversed from the first pulse to the second. it suggests successive appearance of a dawn-to-dusk and then a dusk-to-dawn electric field, both of which were transmitted from the magnetosphere to the polar ionosphere. The effect of ionospheric currents due to these polar electric fields was superposed on the simple magnetic decrease produced by an expansion of the whole magnetosphere and produced the complex waveform distribution on the ground

  14. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  15. K-type geomagnetic index nowcast with data quality control

    Directory of Open Access Journals (Sweden)

    René Warnant

    2011-07-01

    Full Text Available

    A nowcast system for operational estimation of a proxy K-type geomagnetic index is presented. The system is based on a fully automated computer procedure for real-time digital magnetogram data acquisition that includes screening of the dataset and removal of the outliers, estimation of the solar regular variation (SR of the geomagnetic field, calculation of the index, and issuing of an alert if storm-level activity is indicated. This is a time-controlled (rather than event-driven system that delivers the regular output of: the index value, the estimated quality flag, and eventually, an alert. The novel features provided are first, the strict control of the data input and processing, and second, the increased frequency of production of the index (every 1 h. Such quality control and increased time resolution have been found to be of crucial importance for various applications, e.g. ionospheric monitoring, that are of particular interest to us and to users of our service. The nowcast system operability, accuracy and precision have been tested with instantaneous measurements from recent years. A statistical comparison between the nowcast and the definitive index values shows that the average root-mean-square error is smaller than 1 KU. The system is now operational at the site of the Geophysical Centre of the Royal Meteorological Institute in Dourbes (50.1ºN, 4.6ºE, and it is being used for alerting users when geomagnetic storms take place.

  16. The use of various interplanetary scintillation indices within geomagnetic forecasts

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available Interplanetary scintillation (IPS, the twinkling of small angular diameter radio sources, is caused by the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and observations of a sufficiently large number of sources may be used to track large-scale disturbances as they propagate from close to the Sun to the Earth. Therefore, such observations have potential for use within geomagnetic forecasts. We use daily data from the Mullard Radio Astronomy Observatory, made available through the World Data Centre, to test the success of geomagnetic forecasts based on IPS observations. The approach discussed here was based on the reduction of the information in a map to a single number or series of numbers. The advantages of an index of this nature are that it may be produced routinely and that it could ideally forecast both the occurrence and intensity of geomagnetic activity. We start from an index that has already been described in the literature, INDEX35. On the basis of visual examination of the data in a full skymap format modifications were made to the way in which the index was calculated. It was hoped that these would lead to an improvement in its forecasting ability. Here we assess the forecasting potential of the index using the value of the correlation coefficient between daily Ap and the IPS index, with IPS leading by 1 day. We also compare the forecast based on the IPS index with forecasts of Ap currently released by the Space Environment Services Center (SESC. Although we find that the maximum improvement achieved is small, and does not represent a significant advance in forecasting ability, the IPS forecasts at this phase of the solar cycle are of a similar quality to those made by SESC.

  17. Relative outflow enhancements during major geomagnetic storms – Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Schillings

    2017-12-01

    Full Text Available The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst  < −100 nT or Kp  > 7+. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere are distorted during large magnetic storms, we use both plasma beta (β and ion characteristics to define a spatial box where the upward O+ flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only O+ data were used because H+ may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004 and the highest scaled O+ outflow observed is 2  ×  1014 m−2 s−1 (29 October 2003.

  18. IAGA Geomagnetic Data Analysis format - Analysis_IAGA

    Science.gov (United States)

    -Emilian Toader, Victorin; Marmureanu, Alexandru

    2013-04-01

    Geomagnetic research involves a continuous Earth's magnetic field monitoring and software for processing large amounts of data. The Analysis_IAGA program reads and analyses files in IAGA2002 format used within the INTERMAGNET observer network. The data is made available by INTERMAGNET (http://www.intermagnet.org/Data_e.php) and NOAA - National Geophysical Data Center (ftp://ftp.ngdc.noaa.gov/wdc/geomagnetism/data/observatories/definitive) cost free for scientific use. The users of this software are those who study geomagnetism or use this data along with other atmospheric or seismic factors. Analysis_IAGA allows the visualization of files for the same station, with the feature of merging data for analyzing longer time intervals. Each file contains data collected within a 24 hour time interval with a sampling rate of 60 seconds or 1 second. Adding a large number of files may be done by dividing the sampling frequency. Also, the program has the feature of combining data files gathered from multiple stations as long as the sampling rate and time intervals are the same. Different channels may be selected, visualized and filtered individually. Channel properties can be saved and edited in a file. Data can be processed (spectral power, P / F, estimated frequency, Bz/Bx, Bz/By, convolutions and correlations on pairs of axis, discrete differentiation) and visualized along with the original signals on the same panel. With the help of cursors/magnifiers time differences can be calculated. Each channel can be analyzed separately. Signals can be filtered using bandpass, lowpass, highpass (Butterworth, Chebyshev, Inver Chebyshev, Eliptic, Bessel, Median, ZeroPath). Separate graphics visualize the spectral power, frequency spectrum histogram, the evolution of the estimated frequency, P/H, the spectral power. Adaptive JTFA spectrograms can be selected: CSD (Cone-Shaped Distribution), CWD (Choi-Williams Distribution), Gabor, STFT (short-time Fourier transform), WVD (Wigner

  19. Exploration of geomagnetic field anomaly with balloon for geophysical research

    Science.gov (United States)

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  20. Ionospheric parameters as the precursors of disturbed geomagnetic conditions

    Science.gov (United States)

    Blagoveshchensky, D. V.; Sergeeva, M. A.; Kozlovsky, A.

    2017-12-01

    Geomagnetic storms and substorms are the principal elements of the disturbed Space Weather conditions. The aim of the study was to reveal the ionospheric precursors that can be used to forecast geomagnetic disturbance beginning. To study the ionospheric processes before, during and after magnetic storms and substorms data from Sodankylä Geophysical Observatory was used (geomagnetic coordinates: 64.1oN, 119.2oE). In earlier works the Main Effect (ME) was revealed for substorms. It consists of the following steps: (a) the increase of critical frequency foF2 from its quiet median before and during the substorm growth phase, four-five hours before To moment that is the moment of the expansion phase onset, (b) the foF2 decrease to the level lower than its median just after To and until Te that is the moment of the end of the expansion phase, (c) the issue ;a; repeated during the recovery phase (d) two bell-shape spikes in the cutoff frequency values foEs: first spike occurs three hours before To, second spike - during the expansion phase within the interval between To and Te. In the present work it is shown that ME manifestations can be used as precursors of magnetic substorms at high-latitudes (geomagnetic latitudes 50oN-65oN). In particular, the foF2 growth some hours before To can be used as a precursor of substorm development. The first foEs bell-shaped spike also can be used for short-term forecasting, two-three hours in advance of a substorm. Furthermore, the storms between 2008 and 2012 were studied. It was revealed that the similar ME also takes place in the case of magnetic storms but within the different time scale. More specifically, the first ME maximum in foF2 values occurs one-two days before the storm beginning and can be used as its precursor. In addition, the foEs spike takes place approximately ten hours before a storm and also can be used for the prediction of the storm beginning.

  1. The Study of Westward Drift in the Main Geomagnetic Field

    OpenAIRE

    Bayanjargal, G.

    2013-01-01

    We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t) entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991...

  2. The Study of Westward Drift in the Main Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    G. Bayanjargal

    2013-01-01

    Full Text Available We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991 to 2006. These drifts are similar to results of other studies.

  3. Spatial power spectrum of the geomagnetic field since 1945

    International Nuclear Information System (INIS)

    Senanayake, W.E.

    1987-04-01

    The Geomagnetic field for the period 1945-1990 has been analyzed in terms of Spatial Power Spectra of the Main Field and its Secular Variation. It is observed that for the above interval, the magnetic energy density at the core-mantle boundary is almost conserved. This supports the idea that an exchange of energy between different spherical harmonic constituents could occur. The distinctive behaviour of the first two terms (Dipole and Quadrupole), as seen from the spectra of the main field and secular variation, probably indicates somewhat different feature associated with the field origin. (author). 28 refs, 3 figs, 1 tab

  4. Regional corrections and checking the reliability of geomagnetic forecasts

    International Nuclear Information System (INIS)

    Afanas'eva, V.I.; Shevnin, A.D.

    1978-01-01

    Regional corrections of the K index mark estimate with respect to the Moskva observatory are reviewed in order to improve the short-range forecast of the geomagnetic activity and to promote it within the aqua area. The forecasts of the storms of all categories and weak perturbations have been verified for the predominant days in the catalogue of the magnetic storms family. It is shown that the adopted methods of forecasts yield considerably good results for weak perturbations as well as for weak and moderate magnetic storms. Strong and very strong storms are less predictable

  5. Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices

    DEFF Research Database (Denmark)

    Tomita, S; Nose´, M; Iyemori, T

    2010-01-01

    activity in the auroral zone. In the present study, we examine magnetic local time (MLT) dependence of geomagnetic field variations contributing to the AU and AL indices. We use 1-min geomagnetic field data obtained in 2003. It is found that both AU and AL indices have two ranges of MLT (AU: 15:00-22:00MLT...

  6. Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?

    Directory of Open Access Journals (Sweden)

    Weronika Erdmann

    Full Text Available Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada, which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.

  7. Relation of geomagnetic pulsations to parmeters of mid-latitude lower ionosphere

    International Nuclear Information System (INIS)

    Dorokhov, V.L.; Kostrov, L.S.; Martynenko, S.I.; Piven', L.A.; Pushin, V.F.; Shemet, A.S.

    1989-01-01

    Results of experimental investigation of the effect of geomagnetic pulsations on parameters of medium-latitude lower ionosphere with the use of methods of partial reflections and Doppler probing at short waves are presented. The relation between changes in geomagnetic field and intensity of partially reflected radiosignals is detected

  8. Advancements in Chinese Geomagnetism and Aeronomy during the Last Thirty Years,

    Science.gov (United States)

    1981-02-09

    movements of charged particles in geomagnetic fields and neutral line magnetic fields and they vigorously initiated simulated tests. References (120-121... telluric prospecting and related probems; (6) Magnetic prospecting and interpretation of data; (7) Some research on geomagnetic instruments; (8

  9. The geomagnetic observatory on Tristan da Cunha: Setup, operation and experiences

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Husøy, Bjørn-Ove; Berarducci, Alan

    2011-01-01

    The island Tristan da Cunha is located in the South Atlantic Anomaly, and until recently the area has been one of the largest gaps in the global geomagnetic observatory network. As part of the Danish project SAADAN we set up a geomagnetic observatory on the island. Here we report on how we establ...

  10. Climatic influence in NRM and 10 Be-derived geomagnetic paleointensity data

    NARCIS (Netherlands)

    1999-01-01

    One can determine geomagnetic paleointensities from natural remanent magnetizations (NRM) and by inverting production rates of cosmogenic isotopes such as 10 Be and 14 C. Recently, two independently derived 200-kyr stacks [Y. Guyodo, J.-P. Valet, Relative variations in geomagnetic intensity from

  11. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    International Nuclear Information System (INIS)

    Mather, J.W.; Ahluwalia, H.S.

    1988-01-01

    The authors describe the complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results

  12. Effect of geomagnetic storms on VHF scintillations observed at low latitude

    Science.gov (United States)

    Singh, S. B.; Patel, Kalpana; Singh, A. K.

    2018-06-01

    A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.

  13. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.

    1988-01-01

    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed

  14. The response of the 11 August 1999 total solar eclipse in the geomagnetic field

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    85-86, 1/3 (2001), s. 561-566 ISSN 0167-9295 R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic pulsations * geomagnetic variations * total solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.457, year: 2001

  15. The effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 335-338 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * geomagnetic pulsations * geomagnetic observatories Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  16. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin

    DEFF Research Database (Denmark)

    Ou, Jiaming; Du, Aimin; Finlay, Chris

    2017-01-01

    Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also of cruc...... primarily originates from the current systems due to the solar wind-magnetosphere-ionosphere coupling process....... postmidnight sectors, and the results from spherical harmonic analysis, verify that the majority of geomagnetic QBO is of external origin. We furthermore find a very high correlation between the geomagnetic QBO and the QBOs in solar wind speed and solar wind dynamic pressure. This suggests the geomagnetic QBO......Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also...

  17. New forecasting methods of the intensity and time development of geomagnetic and ionospheric storms

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1981-01-01

    The main phase of a geomagnetic storm develops differently from one storm to another. A description is given of the solar wind quantity which controls directly the development of the main phase of geomagnetic storms. The parameters involved include the solar wind speed, the magnetic field intensity, and the polar angle of the solar wind magnetic field projected onto the dawn-dusk plane. A redefinition of geomagnetic storm and auroral activity is given. It is pointed out that geomagnetic disturbances are caused by the magnetic fields of electric currents which are generated by the solar wind-magnetosphere dynamo. Attention is given to approaches for forecasting the occurrence and intensity of geomagnetic storms and ionospheric disturbances

  18. Assessing the Performance of GPS Precise Point Positioning Under Different Geomagnetic Storm Conditions during Solar Cycle 24

    Directory of Open Access Journals (Sweden)

    Xiaomin Luo

    2018-06-01

    Full Text Available The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP. However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF and single-frequency (SF PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS stations. The global root mean square (RMS maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.

  19. Beam-beam interaction and Pacman effects in the SSC with random nonlinear multipoles

    International Nuclear Information System (INIS)

    Goderre, G.P.; Ohnuma, S.

    1988-01-01

    In order to find the combined effects of beam-beam interaction (head-on and long-range) and random nonlinear multipoles in dipole magnets, transverse tunes and smears have been calculated as a function of oscillation amplitudes. Two types of particles, ''regular'' and ''Pacman,'' have been investigated using a modified version of tracking code TEAPOT. Regular particles experience beam-beam interactions in all four interaction regions (IR's), both head-on and long range, while pacman particles interact with bunches of the other beam in one medium-beta and one low-beta IR's only. The model for the beam-beam interaction is of weak-strong type and the strong beam is assumed to have a round Gaussian charge distribution. Furthermore, it is assumed that the vertical closed orbit deviation arising from the finite crossing angle of 70 μrad is perfectly compensated for regular particles. The same compensation applied to pacman particles creates a closed orbit distortion. Linear tunes are adjusted for regular particles to the design values but there are no nonlinear corrections except for chromaticity correcting sextupoles in two families. Results obtained in this study do not show any reduction of dynamic or linear aperture for pacman particles but some doubts exist regarding the validity of defining the linear aperture from the smear alone. Preliminary results are given for regular particles when (Δp/p) is modulated by the synchrotron oscillation. For these, fifty oscillations corresponding to 26,350 revolutions have been tracked. A very slow increase in the horizontal amplitude, /approximately/4 /times/ 10/sup /minus/4//oscillation (relative), is a possibility but this should be confirmed by trackings of larger number of revolutions. 11 refs., 18 figs., 2 tabs

  20. 1+3 covariant cosmic microwave background anisotropies I: Algebraic relations for mode and multipole expansions

    International Nuclear Information System (INIS)

    Gebbie, Tim; Ellis, G.F.R.

    2000-01-01

    This is the first of a series of papers systematically extending a 1+3 covariant and gauge-invariant treatment of kinetic theory in curved space-times to a treatment of cosmic microwave background temperature anisotropies arising from inhomogeneities in the early universe. The present paper deals with algebraic issues, both generically and in the context of models linearised about Robertson-Walker geometries. The approach represents radiation anisotropies by projected symmetric and trace-free tensors. The angular correlation functions for the mode coefficients are found in terms of these quantities, following the Wilson-Silk approach, but derived and dealt with in 1+3 covariant and gauge-invariant form. The covariant multipole and mode-expanded angular correlation functions are related to the usual treatments in the literature. The 1+3 covariant and gauge-invariant mode expansion is related to the coordinate approach by linking the Legendre functions to the projected symmetric trace-free representation, using a covariant addition theorem for the tensors to generate the Legendre polynomial recursion relation. This paper lays the foundation for further papers in the series, which use this formalism in a covariant and gauge-invariant approach to developing solutions of the Boltzmann and Liouville equations for the cosmic microwave background before and after decoupling, thus providing a unified covariant and gauge-invariant derivation of the variety of approaches to cosmic microwave background anisotropies in the current literature, as well as a basis for extension of the theory to include nonlinearities

  1. A performance model for the communication in fast multipole methods on high-performance computing platforms

    KAUST Repository

    Ibeid, Huda

    2016-03-04

    Exascale systems are predicted to have approximately 1 billion cores, assuming gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. The fast multipole method (FMM) was originally developed for accelerating N-body problems in astrophysics and molecular dynamics but has recently been extended to a wider range of problems. Its high arithmetic intensity combined with its linear complexity and asynchronous communication patterns make it a promising algorithm for exascale systems. In this paper, we discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on internode communication. We focus on the communication part only; the efficiency of the computational kernels are beyond the scope of the present study. We develop a performance model that considers the communication patterns of the FMM and observe a good match between our model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization of internode communication in FMM that validates the model against actual measurements of communication time. The ultimate communication model is predictive in an absolute sense; however, on complex systems, this objective is often out of reach or of a difficulty out of proportion to its benefit when there exists a simpler model that is inexpensive and sufficient to guide coding decisions leading to improved scaling. The current model provides such guidance.

  2. Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics

    Science.gov (United States)

    Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.

    2018-04-01

    We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.

  3. Long-Term Geomagnetically Induced Current Observations From New Zealand: Peak Current Estimates for Extreme Geomagnetic Storms

    Science.gov (United States)

    Rodger, Craig J.; Mac Manus, Daniel H.; Dalzell, Michael; Thomson, Alan W. P.; Clarke, Ellen; Petersen, Tanja; Clilverd, Mark A.; Divett, Tim

    2017-11-01

    Geomagnetically induced current (GIC) observations made in New Zealand over 14 years show induction effects associated with a rapidly varying horizontal magnetic field (dBH/dt) during geomagnetic storms. This study analyzes the GIC observations in order to estimate the impact of extreme storms as a hazard to the power system in New Zealand. Analysis is undertaken of GIC in transformer number six in Islington, Christchurch (ISL M6), which had the highest observed currents during the 6 November 2001 storm. Using previously published values of 3,000 nT/min as a representation of an extreme storm with 100 year return period, induced currents of 455 A were estimated for Islington (with the 95% confidence interval range being 155-605 A). For 200 year return periods using 5,000 nT/min, current estimates reach 755 A (confidence interval range 155-910 A). GIC measurements from the much shorter data set collected at transformer number 4 in Halfway Bush, Dunedin, (HWB T4), found induced currents to be consistently a factor of 3 higher than at Islington, suggesting equivalent extreme storm effects of 460-1,815 A (100 year return) and 460-2,720 A (200 year return). An estimate was undertaken of likely failure levels for single-phase transformers, such as HWB T4 when it failed during the 6 November 2001 geomagnetic storm, identifying that induced currents of 100 A can put such transformer types at risk of damage. Detailed modeling of the New Zealand power system is therefore required to put this regional analysis into a global context.

  4. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    Energy Technology Data Exchange (ETDEWEB)

    Myllys, M. [Helsinki Univ. (Finland). Dept. of Physics; Partamies, N. [Finnish Meteorological Institute, Helsinki (Finland); University Centre in Svalbard, Longyearbyen (Norway). Dept. of Arctic Geophysics; Juusola, L. [Finnish Meteorological Institute, Helsinki (Finland)

    2015-09-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  5. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    International Nuclear Information System (INIS)

    Myllys, M.

    2015-01-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  6. The neutral thermosphere at Arecibo during geomagnetic storms

    International Nuclear Information System (INIS)

    Burnside, R.G.; Tepley, C.A.; Sulzer, M.P.; Fuller-Rowell, T.J.; Torr, D.G.; Roble, R.G.

    1991-01-01

    Over the past five years, simultaneous incoherent scatter and optical observations have been obtained at Arecibo, Puerto Rico, during two major geomagnetic storms. The first storm the authors examine occurred during the World Day campaign of 12-16 January 1988, where on 14 January 1988, Kp values greater than 7 were recorded. An ion-energy balance calculation shows that atomic oxygen densities at a fixed height on 14 January 1988 were about twice as large as they were on the quiet days in this period. Simultaneous radar and Fabry-Perot interferometer observations were used to infer nightime O densities on 14-15 January 1988 that were about twice as large as on adjacent quiet nights. On this night, unusually high westward ion velocities were observed at Arecibo. The Fabry-Perot measurements show that the normal eastward flow of the neutral wind was reversed on this night. The second storm they examine occured on the night of 13-14 July 1985, when Kp values reached only 4+, but the ionosphere and thermosphere responded in a similar manner as they did in January 1988. On the nights of both 13-14 July 1985 and 14-15 January 1988, the electron densities observed at Arecibo were significantly higher than they were on nearby geomagnetically quiet nights. These results indicate that major storm effects in thermospheric winds and composition propagate to low latitudes and have a pronounced effect on the ionospheric structure over Arecibo

  7. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    Science.gov (United States)

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  8. Marine turtles use geomagnetic cues during open-sea homing.

    Science.gov (United States)

    Luschi, Paolo; Benhamou, Simon; Girard, Charlotte; Ciccione, Stephane; Roos, David; Sudre, Joël; Benvenuti, Silvano

    2007-01-23

    Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.

  9. K-Ar ages of the Auckland geomagnetic excursions

    International Nuclear Information System (INIS)

    Mochizuki, Nobutatsu; Tsunakawa, Hideo; Shibuya, Hidetoshi; Tagami, Takahiro; Ozawa, Ayako; Cassidy, John; Smith, E.M.

    2004-01-01

    K-Ar age determinations were made on two monogenetic volcanoes in the Auckland volcanic field, New Zealand, which have recorded the Auckland geomagnetic excursions. For the Wiri volcano with the north-down intermediate paleomagnetic direction, five samples gave a weighted mean age of 27±5 (1σ) ka. For the Hampton Park volcano with the west-up intermediate direction, three samples gave a weighted mean of 55±5(1σ) ka. Since these two K-Ar ages are distinguished at 2σ level, it is inferred that at least two geomagnetic excursions can be recognized in Auckland. The age of the Hampton Park is barely distinguished from the established age range of the Laschamp excursion (39-45 ka) at 2σ level. The age of the Wiri coincides with the age of c. 30 ka in which excursions have been found from sedimentary and volcanic records. The reported excursions from volcanic rocks show a VGP cluster in the central to northern Pacific region which is distinct from the VGP paths or clusters during polarity reversals. (author)

  10. Geomagnetic spikes on the core-mantle boundary

    Science.gov (United States)

    Davies, C. J.; Constable, C.

    2017-12-01

    Extreme variations of Earth's magnetic field occurred in the Levantine region around 1000 BC, where the field intensity rose and fell by a factor of 2-3 over a short time and confined spatial region. There is presently no coherent link between this intensity spike and the generating processes in Earth's liquid core. Here we test the attribution of a surface spike to a flux patch visible on the core-mantle boundary (CMB), calculating geometric and energetic bounds on resulting surface geomagnetic features. We show that the Levantine intensity high must span at least 60 degrees in longitude. Models providing the best trade-off between matching surface spike intensity, minimizing L1 and L2 misfit to the available data and satisfying core energy constraints produce CMB spikes 8-22 degrees wide with peak values of O(100) mT. We propose that the Levantine spike grew in place before migrating northward and westward, contributing to the growth of the axial dipole field seen in Holocene field models. Estimates of Ohmic dissipation suggest that diffusive processes, which are often neglected, likely govern the ultimate decay of geomagnetic spikes. Using these results, we search for the presence of spike-like features in geodynamo simulations.

  11. Multipole decomposition analysis of the 27Al, 90Zr, 208Pb(p, n) reactions at 295 MeV

    International Nuclear Information System (INIS)

    Wakasa, T.; Greenfield, M.B.; Koori, N.; Okihana, A.; Hatanaka, K.

    1996-01-01

    Differential cross sections at θ lab between 0 and 15 and the polarization transfer D NN at zero degrees for the 27 Al, 90 Zr, 208 Pb(p,n) reactions are measured at a bombarding energy of 295 MeV. A multipole decomposition (MD) technique is applied to extract L=0, L=1, and L≥2 contributions to the cross sections. The summed Gamow-Teller strength B(GT) is compared with shell-model calculations for the 27 Al(p,n) and 90 Zr(p,n) reactions. The usefulness of the polarization transfer observable in the MD analysis is discussed. (orig.)

  12. E2,M1 multipole mixing ratios in even-even nuclei, 58< or =A< or =150

    International Nuclear Information System (INIS)

    Krane, K.S.

    1977-01-01

    A survey is presented of E2,M1 multipole mixing ratios of gamma-ray transitions in even-even nuclei in the mass range 58< or =A< or =150. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included based on averages of results from various studies. The survey includes data available in the literature up to December 1976

  13. The response of European Daphnia magna Straus and Australian Daphnia carinata King to changes in geomagnetic field.

    Science.gov (United States)

    Krylov, Viacheslav V; Bolotovskaya, Irina V; Osipova, Elena A

    2013-03-01

    This study investigates the effects of lifelong exposure to reversed geomagnetic and zero geomagnetic fields (the latter means absence of geomagnetic field) on the life history of Daphnia carinata King from Australia and Daphnia magna Straus from Europe. Considerable deviation in the geomagnetic field from the usual strength, leads to a decrease in daphnia size and life span. Reduced brood sizes and increased body length of neonates are observed in D. magna exposed to unusual magnetic background. The most apparent effects are induced by zero geomagnetic field in both species of Daphnia. A delay in the first reproduction in zero geomagnetic field is observed only in D. magna. No adaptive maternal effects to reversed geomagnetic field are found in a line of D. magna maintained in these magnetic conditions for eight generations. Integrally, the responses of D. magna to unusual geomagnetic conditions are more extensive than that in D. carinata. We suggest that the mechanism of the effects of geomagnetic field reversal on Daphnia may be related to differences in the pattern of distribution of the particles that have a magnetic moment, or to moving charged organic molecules owing to a change in combined outcome and orientation of the geomagnetic field and Earth's gravitational field. The possibility of modulation of self-oscillating processes with changes in geomagnetic field is also discussed.

  14. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity.

    The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours.

    We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  15. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity. The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours. We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  16. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    International Nuclear Information System (INIS)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J.

    1991-01-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R e upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance

  17. NARX neural network Prediction of SYMH and ASYH indices for geomagnetic storms of solar cycle 24 including recent St. Patrick's day, 2015 storm

    Science.gov (United States)

    Bhaskar, A. T.; Vichare, G.

    2017-12-01

    Here, an attempt is made to develop a prediction model for SYMH and ASYH geomagnetic indices using Artificial Neural Network (ANN). SYMH and ASYH indices represent longitudinal symmetric and asymmetric component of the ring current. The ring current state depends on its past conditions therefore, it is necessary to consider its history for prediction. To account this effect Nonlinear Autoregressive Network with eXogenous inputs (NARX) is implemented. This network considers input history of 30 minutes and output feedback of 120 minutes. Solar wind parameters mainly velocity, density and interplanetary magnetic field are used as inputs. SYMH and ASYH indices during geomagnetic storms of 1998-2013, having minimum SYMH training two independent networks. We present the prediction of SYMH and ASYH indices during 9 geomagnetic storms of solar cycle 24 including the recent largest storm occurred on St. Patrick's day, 2015. The present prediction model reproduces the entire time profile of SYMH and ASYH indices along with small variations of 10-30 minutes to good extent within noise level, indicating significant contribution of interplanetary sources and past state of the magnetosphere. However, during the main phase of major storms, residuals (observed-modeled) are found to be large, suggesting influence of internal factors such as magnetospheric processes.

  18. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    Science.gov (United States)

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  19. A critical appraisal of the zero-multipole method: Structural, thermodynamic, dielectric, and dynamical properties of a water system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han, E-mail: wang-han@iapcm.ac.cn [CAEP Software Center for High Performance Numerical Simulation, Huayuan Road 6, 100088 Beijing, China and Zuse Institute Berlin (ZIB), Berlin (Germany); Nakamura, Haruki [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukuda, Ikuo, E-mail: ifukuda@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2016-03-21

    We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm{sup −1} for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.

  20. A critical appraisal of the zero-multipole method: Structural, thermodynamic, dielectric, and dynamical properties of a water system.

    Science.gov (United States)

    Wang, Han; Nakamura, Haruki; Fukuda, Ikuo

    2016-03-21

    We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm(-1) for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.

  1. A Correlation Study between Geometry of Collared Coils and Normal Quadrupole Multipole in the Main LHC Dipoles

    CERN Document Server

    Bertinelli, F; Berthollon-Vitte, S; Glaude, D; Vanenkov, I

    2006-01-01

    The quality control implemented at all LHC dipole assemblers includes precise mechanical measurements of the geometry of collared coils. A cross-analysis performed between mechanical and magnetic measurements data shows a correlation between collared coils outer dimensions and the normal quadrupole multipole (b2) for one dipole assembler. The profile geometry of the single collars - as determined from 3D measurements at the collar suppliers and CERN - could not account alone for the significant left – right aperture asymmetry observed. This triggered a deeper investigation on different elements of the geometry of single collars. The results of this work show that the relative positioning of the collaring holes, allowing a small bending deformation of collars under the effect of coil pre-stress, is an important effect that generates a b2 multipole at the limit of specification. The study has deepened the understanding of the factors affecting collared coil geometry and field quality. The precision of 3D m...

  2. Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Terliuk, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Altmann, D.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Kopper, C.; Kurahashi, N.; Larsen, D.T.; Maruyama, R.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics, Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Anderson, T.; Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Hellwig, D.; Jagielski, K.; Koob, A.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Penek, Oe.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Beatty, J.J. [Ohio State University, Department of Physics, Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Felde, J.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [Technische Universitaet Muenchen, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2015-01-01

    Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e.g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the nullhypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution left angle σ{sub A}υ right angle down to 1.9 x 10{sup -23} cm{sup 3} s{sup -1} for a dark matter particle mass of 700-1,000 GeV and direct annihilation into ν anti ν. The resulting exclusion limits come close to exclusion limits from γ-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels. (orig.)

  3. 3D simulation of accelerator conventional magnets with end pole defined by an analytical approach controlling multipoles and magnetic length

    CERN Document Server

    Delferrière, O; Duperrier, R

    2000-01-01

    During the design of a magnet, people generally pay particular attention to get the largest transverse section with small contribution of undesirable multipoles, and the 2D cross-section is adjusted in that way with a good accuracy. But the poles are often cut with sharp ends in the beam direction. Otherwise, in order to minimize the stray field to avoid interaction with other elements on the beam lines and corner saturation, it is common to define a simple 45 degrees chamber. The such truncated poles will create an amount of multipoles that could exceed the magnet required tolerances. The magnetic length is also affected by the way that the truncation is done. We propose in this paper a handy analytical model that allows both to control integrated focusing forces and magnetic lengths for each type of conventional magnets (dipole, quadrupole, sextupole). The different end pole profiles are simulated with the 3D-program TOSCA for the dipole and the quadrupole cases. To estimate a possible damaging of optical q...

  4. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    Science.gov (United States)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  5. Long-term variations in the geomagnetic activity level Part II: Ascending phases of sunspot cycles

    Directory of Open Access Journals (Sweden)

    V. Mussino

    1994-08-01

    Full Text Available Monthly averages of the Helsinki Ak-values have been reduced to the equivalent aa-indices to extend the aa-data set back to 1844. A periodicity of about five cycles was found for the correlation coefficient (r between geomagnetic indices and sunspot numbers for the ascending phases of sunspot cycles 9 to 22, confirming previous findings based on a minor number of sunspot cycles. The result is useful to researchers in topics related to solar-terrestrial physics, particularly for the interpretation of long-term trends in geomagnetic activity during the past, and to forecast geomagnetic activity levels in the future.

  6. Interplanetary magnetic field associated changes in cosmic ray intensity and geomagnetic field during 1973-75

    International Nuclear Information System (INIS)

    Singh, R.L.; Shukla, J.P.; Shukla, A.K.; Sharma, S.M.; Agrawal, S.P.

    1979-01-01

    The effects of interplanetary magnetic field (IMF) B and its Bsub(z) component on cosmic ray intensity and geomagnetic field variations have been examined for the period 1973-75. It is observed that: (1) B >= 10γ (magnetic blobs) is pre-requisite in producing cosmic ray intensity and geomagnetic field variations of varying magnitudes, (2) the longer existence of magnetic blobs on successive days produces larger decreases in cosmic ray intensity and geomagnetic field and (3) the southward component (Bsub(z)) of IMF generally gives rise to large Asub(p) changes, though it is not effective in producing cosmic ray intensity decreases. (auth.)

  7. Geophysical variables and behavior: XXI. Geomagnetic variation as possible enhancement stimuli for UFO reports preceding earthtremors.

    Science.gov (United States)

    Persinger, M A

    1985-02-01

    The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region.

  8. Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere

    Directory of Open Access Journals (Sweden)

    D. R. Palamara

    2004-03-01

    Full Text Available We consider various aspects of the link between solar-modulated geomagnetic activity and the Northern Annular Mode (NAM. Our results indicate that the geomagnetic forcing of atmospheric circulation in the Northern Hemisphere is temporally and seasonally restricted, modulated by the Quasi-Biennial Oscillation (QBO, and reliant on stratosphere-troposphere coupling. When the data are restricted to January values after 1965, for years in which the January QBO is eastwards, the correlation coefficient between the geomagnetic AA index and the NAM is 0.85. These results can account for many of the enigmatic features of Northern Hemisphere circulation. Key words. Meterology and atmospheric dynamics (general circulation, climatology

  9. VLF emissions and whistlers observed during geomagnetic storms

    Science.gov (United States)

    Ondoh, T.; Tanaka, Y.; Nishizaki, R.; Nagayama, M.

    1974-01-01

    Whistler-triggered emissions and a narrowband hiss are described which were observed over Japan by ISIS 2 during the main phase of the geomagnetic storm of August 9, 1972. The characteristics of the narrowband hiss and increases in the whistler rate during the storm are discussed, and the ISIS-2 data are compared with data on whistler cutoffs and VLF noise breakups obtained by OGO 4 and Alouette I. Since the whistlers and narrowband hiss are usually observed inside and outside the plasmapause, it is thought that the plasmapause may have been located near the low-latitude end of the narrowband hiss during the main phase of the storm. It is suggested that the increases in the whistler rate may have been caused by the formation of whistler ducts in the disturbed plasmapause.

  10. Towards an Integrated Geomagnetic Polarity Reversal Timescale for the Pleistocene

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Kuiper, Klaudia

    The development of the geomagnetic polarity timescale (GPTS) in the mid 20th century led to the greater understanding of seafloor spreading and plate tectonics (Heirtzler et al., 1968). Over 40 years later, the GPTS continues to be refined, particularly in terms of integrating multiple dating...... minerals. Each of these ages is then compared to independent astronomical ages for the events in order to define tie-points for constructing a Pleistocene a multi-chronometer GPTS. Although only three reversals are addressed here, the methodology applied shows promise to refining short-lived excursions...... to enable further understanding of the wavering magnetic field. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 215458....

  11. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Science.gov (United States)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  12. A new trajectory concept for exploring the earth's geomagnetic tail

    Science.gov (United States)

    Farquhar, R. W.; Dunham, D. W.

    1981-01-01

    An innovative trajectory technique for a magnetotail mapping mission is described which can control the apsidal rotation of an elliptical earth orbit and keep its apogee segment inside the tail region. The required apsidal rotation rate of approximately 1 deg/day is achieved by using the moon to carry out a prescribed sequence of gravity-assist maneuvers. Apogee distances are alternately raised and lowered by the lunar-swingby maneuvers; several categories of the 'sun-synchronous' swingby trajectories are identified. The strength and flexibility of the new trajectory concept is demonstrated by using real-world simulations showing that a large variety of trajectory shapes can be used to explore the earth's geomagnetic tail between 60 and 250 R sub E.

  13. Solar and lunar daily geomagnetic variations at Dourbes

    International Nuclear Information System (INIS)

    De Meyer, F.

    1980-01-01

    Spectral analysis of the Dourbes H component hourly data from the period 1960-1978 revealed the existence of a number of minor terms, in addition to the main solar and lunar peaks. The relative amplitudes of oscillations in the geomagnetic spectrum are unrelated with those predicted through lunar tide theory. The minor terms agree more closely with the 27-day amplitude modulation mechanism. A high frequency resolution power spectrum clearly shows the splitting of the solar diurnal and semi-diurnal line, and even of the lunar semi-diurnal line by the annual variation and its harmonics. The correlation between the amplitude of the M 2 wave and the mean sunspot number is of no significance. (author)

  14. Archeomagnetic Intensity Spikes: Global or Regional Geomagnetic Field Features?

    Directory of Open Access Journals (Sweden)

    Monika Korte

    2018-03-01

    Full Text Available Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

  15. Local Geomagnetic Indices and the Prediction of Auroral Power

    Science.gov (United States)

    Newell, P. T.; Gjerloev, J. W.

    2014-12-01

    As the number of magnetometer stations and data processing power increases, just how auroral power relates to geomagnetic observations becomes a quantitatively more tractable question. This paper compares Polar UVI auroral power observations during 1997 with a variety of geomagnetic indices. Local time (LT) versions of the SuperMAG auroral electojet (SME) are introduced and examined, along with the corresponding upper and lower envelopes (SMU and SML). Also, the East-West component, BE, is investigated. We also consider whether using any of the local indices is actually better at predicting local auroral power than a single global index. Each index is separated into 24 LT indices based on a sliding 3-h MLT window. The ability to predict - or better reconstruct - auroral power varies greatly with LT, peaking at 1900 MLT, where about 75% of the variance (r2) can be predicted at 1-min cadence. The aurora is fairly predictable from 1700 MLT - 0400 MLT, roughly the region in which substorms occur. Auroral power is poorly predicted from auroral electrojet indices from 0500 MLT - 1500 MLT, with the minima at 1000-1300 MLT. In the region of high predictability, the local variable which works best is BE, in contrast to long-standing expectations. However using global SME is better than any local variable. Auroral power is best predicted by combining global SME with a local index: BE from 1500-0200 MLT, and either SMU or SML from 0300-1400 MLT. In the region of the diffuse aurora, it is better to use a 30 min average than the cotemporaneous 1-min SME value, while from 1500-0200 MLT the cotemporaneous 1-min SME works best, suggesting a more direct physical relationship with the auroral circuit. These results suggest a significant role for discrete auroral currents closing locally with Pedersen currents.

  16. Dynamics of total electron content distribution during strong geomagnetic storms

    Science.gov (United States)

    Astafyeva, E. I.; Afraimovich, E. L.; Kosogorov, E. A.

    We worked out a new method of mapping of total electron content TEC equal lines displacement velocity The method is based on the technique of global absolute vertical TEC value mapping Global Ionospheric Maps technique GIM GIM with 2-hours time resolution are available from Internet underline ftp cddisa gsfc nasa gov in standard IONEX-files format We determine the displacement velocity absolute value as well as its wave vector orientation from increments of TEC x y derivatives and TEC time derivative for each standard GIM cell 5 in longitude to 2 5 in latitude Thus we observe global traveling of TEC equal lines but we also can estimate the velocity of these line traveling Using the new method we observed anomalous rapid accumulation of the ionosphere plasma at some confined area due to the depletion of the ionization at the other spacious territories During the main phase of the geomagnetic storm on 29-30 October 2003 very large TEC enhancements appeared in the southwest of North America TEC value in that area reached up to 200 TECU 1 TECU 10 16 m -2 It was found that maximal velocity of TEC equal lines motion exceeded 1500 m s and the mean value of the velocity was about 400 m s Azimuth of wave vectors of TEC equal lines were orientated toward the center of region with anomaly high values of TEC the southwest of North America It should be noted that maximal TEC values during geomagnetically quiet conditions is about 60-80 TECU the value of TEC equal lines

  17. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  18. GDS (Geomagnetic Depth Sounding in Italy: applications and perspectives

    Directory of Open Access Journals (Sweden)

    M. Gambetta

    1998-06-01

    Full Text Available The analysis of geomagnetic field variations is a useful tool to detect electrical conductivity contrasts within the Earth. Lateral resolution of outlined patterns depends on the array dimensions and density of measurement sites over the investigated area. The inspection depth is constrained by the period of geomagnetic variations considered in data processing. Regions with significant geological features such as boundaries of continental plates, marginal areas of contact between tectonic units or other geodynamical processes, are of primary interest for the application of the MagnetoVariational (MV method. In the last ten years, in the frame of the ElectroMagnetic (EM sounding techniques in applied geophysics, this method has been applied in Italy by researchers of the Istituto Nazionale di Geofisica, Rome, the Dipartimento di Scienze della Terra, Universitá di Genova and the Czech Science Academy of Prague. The Ivrea body in the Northwestern Alps and their junction with the Apennine chain, the micro-plate of the Sardinian-Corsican system and, recently, the central part of the peninsula along Tyrrhenian-Adriatic lithospheric transects were investigated. Studies in time and frequency-domain used in the first investigations, have been followed by more refined analysis involving tests on the induced EM field dimension, computations of single site Transfer Functions (TFs through Parkinson arrows' and Fourier maps in the Hypothetical Event technique (HE. It was possible to describe the electrical conductivity distribution in the inner part of the SW Alpine arc and to confirm the presence of lithospheric and asthenospheric anomalies obtained by other geophysical methods. For the Sardinia-Corsica system, 2D and 3D inversion models highlighted the existence of two major conducting bodies, one north of Corsica, and the other south of Sardinia. In Central Italy, the regional electrical conductivity distribution pointed out a deep conductive structure

  19. Volcano Popocatepetl, Mexico: ULF geomagnetic anomalies observed at Tlamacas station during March–July, 2005

    Directory of Open Access Journals (Sweden)

    A. Kotsarenko

    2007-01-01

    Full Text Available In this paper the first results of ULF (Ultra Low Frequency geomagnetic anomalies observed at Tlamacas station (Long. 261.37, Lat. 19.07 located at 4 km near the volcano Popocatepetl (active volcano, Long. 261.37, Lat. 19.02 for the period March–July, 2005 and their analysis are presented. The geomagnetic data were collected with a 3-axial fluxgate magnetometer designed at UCLA (University of California, Los Angeles, 1 Hz sampling rate frequency, GPS. Our analysis reveals some anomalies which are suspected to be generated by local volcanic origin: the EM background in the vicinity of the volcano is significantly noisier than in other reference stations; the sporadic strong noise-like geomagnetic activity observed in the H-component; locally generated geomagnetic pulsations (without preferred polarization are detected only at Tlamacas station.

  20. Power spectrum of the geomagnetic field by the maximum entropy method

    International Nuclear Information System (INIS)

    Kantor, I.J.; Trivedi, N.B.

    1980-01-01

    Monthly mean values of Vassouras (state of Rio de Janeiro) geomagnetic field are analyzed us the maximum entropy method. The method is described and compared with other methods of spectral analysis, and its advantages and disadvantages are presented. (Author) [pt