WorldWideScience

Sample records for internal friction developed

  1. Internal Friction And Instabilities Of Rotors

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  2. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  3. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  4. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  5. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  6. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  7. On high temperature internal friction in metallic glasses

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.; Roshchupkin, A.M.

    1992-01-01

    High temperature background of internal friction in amorphous lanthanum-aluminium alloys was investigated. More rapid growth of internal friction was observed at temperature ∼ 453 K reaching maximal value at 495 K. Crystallization process was accompanied by decrease of internal friction. Increase of mechanical vibration frequency to 1000 Hz leads to rise of internal friction background in the range of room temperatures and to decrease at temperatures above 370 K. Bend was observed on temperature dependence of internal friction at 440 K

  8. High temperature internal friction in pure aluminium

    International Nuclear Information System (INIS)

    Aboagye, J.K.; Payida, D.S.

    1982-05-01

    The temperature dependence of internal friction of nearly pure aluminium (99.99% aluminium) has been carefully measured as a function of annealing temperature and hence grain size. The results indicate that, provided the frequency and annealing temperature are held constant, the internal friction increases with temperature until some maximum value is attained and then begins to go down as the temperature is further increased. It is also noted that the internal friction decreases with annealing temperature and that annealing time has the same effect as annealing temperature. It is also noted that the internal friction peak is shifted towards higher temperatures as annealing temperature is increased. It is surmised that the grain size or the total grain boundary volume determines the height of the internal friction curve and that the order-disorder transitions at the grain boundaries induced by both entropy and energy gradients give rise to internal friction peaks in polycrystals. (author)

  9. Internal friction in uranium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1975-01-01

    Results are presented of studies conducted to relate internal friction measurements in U to allotropic transformations. It was found that several internal friction peaks occur in α-uranium whose magnitude changed drastically after annealing in the β phase. All of the allotropic transformations in uranium are diffusional in nature under slow heating and cooling conditions. Creep at regions of high stress concentration appears to be responsible for high temperature internal friction in α-uranium. The activation energy for grain boundary relaxation in α-uranium was found to be 65.1 +- 4 kcal/mole. Impurity atoms interfere with the basic mechanism for grain boundary relaxation resulting in a distribution in activation energies. A considerable distribution in ln tau 0 was also found which is a measure of the distribution in local order and in the Debye frequency around a grain boundary

  10. Elastic constants and internal friction of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1982-01-01

    We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely

  11. Internal friction and microplasticity of ice Isub(h)

    International Nuclear Information System (INIS)

    Perez, J.; Mai, C.; Tatibouet, J.; Vassoille, R.

    1976-01-01

    This study is concerned with internal-friction measurements made at low frequency (torsion pendulum) on specimens of ice Isub(h). In the case of a single crystal, the spectrum of internal friction vs. temperature exhibits the classical relaxation peak. This peak is followed by an increase of damping above 260 K. Furthermore, in this temperature range, the internal friction delta is shown to be amplitude dependent: delta increases with shear strain γ as long as the temperature T is high. These features are strongly modified by plastic deformation of ice in particular i) high-temperature internal friction is increased as long as the plastic defomation ratio is important, ii) high-temperature internal friction becomes more amplitude dependent. In the high-temperature range the mobility of dislocations in ice increase quickly. During the internal-friction measurements the cyclic stress causes movement of linear defects and, hence, damping phenomena. Then, the theoretical analysis of the dynamic behaviour of dislocations in ice has been used to interpret the preceding results. This interpretation allows us to connect our damping data with the microplastic behaviour of ice

  12. Internal friction in martensitic carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2009-01-01

    This paper proposes relationships between the internal friction and the microstructure of two steels containing 0.626 and 0.71 wt.% carbon. The steels were annealed at 1093 K for 5 min, quenched into water and tempered for 10 min at 423, 573 and 723 K. Internal friction was measured by using a forced vibration pendulum, in a temperature range from 100 to 450 K. The internal friction spectrum is decomposed into four peaks: P1 at 215 K, P2 at 235 K, P3 at 260 K and P4 at 380 K for 3 Hz. Peak P1 is attributed to the interactions between dislocations and carbon atoms. Peak P2 is related to the interaction between dislocations and carbide. Peak P3 is related to the generations of kink - pairs along edge dislocations. Peak P4 is attributed to epsilon carbide precipitation.

  13. Effects of tempering on internal friction of carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2011-01-01

    Research highlights: → Time tempering dependent microstructure of two steels is studied by internal friction. → Internal friction indicates the interactions of dislocations with carbon and carbides. → Internal friction detects the first stage of tempering. → Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  14. Internal Friction Angle of Metal Powders

    Directory of Open Access Journals (Sweden)

    Jiri Zegzulka

    2018-04-01

    Full Text Available Metal powders are components with multidisciplinary usage as their application is very broad. Their consistent characterization across all disciplines is important for ensuring repeatable and trouble-free processes. Ten metal powders were tested in the study. In all cases, the particle size distribution and morphology (scanning electron microscope—SEM photos were determined. The aim of this work was to inspect the flow behavior of metal powders through another measured characteristic, namely the angle of internal friction. The measured values of the effective internal friction angle in the range 28.6–32.9°, together with the spherical particle shape and the particle size distribution, revealed the likely dominant mode of the metal particle transfer mechanism for stainless steel 316L, zinc and aluminum powder. This third piston flow mechanism is described and illustrated in detail. The angle of internal friction is mentioned as another suitable parameter for the characterization of metal powders, not only for the relative simplicity of the determination but also for gaining insight into the method of the movement of individual particles during the flow.

  15. Effects of internal friction on contact formation dynamics of polymer chain

    Science.gov (United States)

    Bian, Yukun; Li, Peng; Zhao, Nanrong

    2018-04-01

    A theoretical framework is presented to study the contact formation dynamics of polymer chains, in accompany with an electron-transfer quenching. Based on a non-Markovian Smoluchowski equation supplemented with an exponential sink term, we derive the mean time of contact formation under Wilemski-Fixman approximation. Our particular attentions are paid to the effect of internal friction. We find out that internal friction induces a novel fractional viscosity dependence, which will become more remarkable as internal friction increases. Furthermore, we clarify that internal friction inevitably promotes a diffusion-controlled mechanism by slowing the chain relaxation. Finally, we apply our theory to rationalise the experimental investigation for contact formation of a single-stranded DNA. The theoretical results can reproduce the experimental data very well with quite reasonable estimation for the intrinsic parameters. Such good agreements clearly demonstrate the validity of our theory which has appropriately addressed the very role of internal friction to the relevant dynamics.

  16. Hysteresis effects on the high-temperature internal friction of polycrystalline zirconium

    International Nuclear Information System (INIS)

    Povolo, F.; Molinas, B.J.; Rosario Univ. Nacional

    1985-01-01

    Hysteresis effects present on the high temperature internal friction of annealed polycrystalline zirconium are investigated in detail. It is shown that two internal friction maxima are present when the measurements are performed on heating. If a high enough temperature is reached, only one internal friction maximum is observed on cooling. Furthermore, when the temperature is not decreased below a certain value (critical temperature) only the lower temperature peak is present during a subsequent heating cycle. The critical temperature is strongly dependent on the grain size. Finally, both the hysteresis effects and the internal friction maxima are explained by relaxation mechanisms associated with grain boundary sliding and segregation of impurities to the grain boundaries. (author)

  17. High temperature internal friction in α-zirconium

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Sprungman, K.W.

    1981-03-01

    The high temperature internal friction spectrum of α-Zr is resolved into five peaks, P 0 to P 4 , in addition to a background, B, that increases exponentially with the temperature. P 0 is attributed to the thermally assisted unpinning of dislocations from oxygen interstitial pinning points. P 1 is caused by the longitudinal redistribution of the same pinning points in the dislocation core, while P 2 is caused by the transverse core diffusion of these pinning points. Both P 0 and P 1 give rise to characteristic peaks of internal friction as a function of strain amplitude. The ratio of the modulus defect to the internal friction at the peak position is 0.5 in the case of unpinning, and significantly greater than 0.5 in the case of longitudinal core diffusion. A behavioural phase diagram or map is constructed to interpret the complex non-linear behaviour occurring in the temperature-strain amplitude plane in the regions where P 0 , P 1 and P 2 overlap. (author)

  18. Internal friction in irradiated textolite

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Kozhamkulov, B.A.; Koztaeva, U.P.

    1996-01-01

    Structural relaxation in irradiated textolite of ST and ST-EhTF trade marks presenting pressed material got by method of impregnation of fibreglass by phenole and epoxytriphenole binders relatively. Measuring of temperature dependences of internal friction (TDIF) is carried out in torsional pendulum at oscillation frequency 0.6-1.0 Hz before and after irradiation by stopped gamma-quanta with energy 3 MeV on electron accelerator EhLU-4. α and β peaks, related with segments motion in base and side chains of macromolecular have being observed on TDIF of all textolite. Growth of peaks height after irradiation evident about increase of segments mobility in base chain and about de-freezing of segments in side chains and it could be considered as qualitative measure of radiation destruction rate. Comparison of temperature dependences of internal friction indicates on higher radiation stability of textolite of ST-EhTF trade mark

  19. Internal friction of Ti-Ni-Cu ternary shape memory alloys

    International Nuclear Information System (INIS)

    Yoshida, I.; Monma, D.; Iino, K.; Ono, T.; Otsuka, K.; Asai, M.

    2004-01-01

    Low frequency internal friction was measured on three specimens of Ti-Ni-Cu ternary alloys, the Cu content varying from 10 to 20 at.%, while Ti content was fixed at 50 at.%. The internal friction spectrum consists mainly of two peaks, a sharper one associated with the B2-B19 transformation and the other one at around 250 K, which is much broader and higher than the former. The peak height of the latter is 0.2 for the specimen containing 20% Cu, which shows that this alloy can be an excellent high damping material. Transformation behavior was studied by electrical resistivity, thermopower and DSC measurements, and was compared with the result of internal friction measurements. Solution treatment at higher temperatures lowers the internal friction peak markedly. Scanning electron microscopy observation reveals that the behaviors of precipitates are different for different solution treatment temperature, suggesting that the precipitation behavior is crucial in the damping properties

  20. Internal friction in Al alloys after neutron irradiation at low temperature

    International Nuclear Information System (INIS)

    Takamura, S.; Kobiyama, M.

    1985-01-01

    Internal friction and elastic modulus of dilute Al alloys have been measured after fast neutron irradiation at about 5 K. The internal friction spectra in Al-Pb, Al-Si, Al-Zn, Al-Ag, Al-Sn and Al-In are very similar. This result suggests that the configuration of the interstitial-solute atom complex in these alloys is very similar. In Al-Mg, the main complexes have the configuration with nearly symmetry, but its internal friction spectrum is different from that of the above-mentioned alloys. The internal friction spectra and their annealing behavior in Al-Be, Al-Mn, Al-Fe and Al-Cu demonstrate that the configuration of their interstitial-solute atom complex seems to be different from each other and the main complex in these alloys is immobile until stage III. (author)

  1. Influence of radiation damage on internal friction background

    International Nuclear Information System (INIS)

    Burbelo, R.M.; Grinik, Eh.U.; Paliokha, M.I.; Orlinskij, A.B.

    1984-01-01

    Influence of radiation damage on internal friction background in samples of polycrystalline nickel and iron irradiated by a fast neutron flux approximately 10 14 neutr/(cm 2 xs) at 350 deg C has been studied using the low-frequency unit of the reverse torsion pendulum type. It has been established experimentally that a high-temperature background of internal friction of iron and nickel samples decreases as accumulating radiation defects occurring under neutron irradiation. Assumptions on a possible mechanism of the effect have been proposed. Simple expression for the background magnitude evaluation has been suggested

  2. Measuring internal friction at sonic and ultrasonic frequencies in high temperature superconductors

    International Nuclear Information System (INIS)

    Anderson, A.R.; Russell, G.J.

    1996-01-01

    Internal friction measurements provide a sensitive means for probing some structural properties of materials. Defect relaxation processes and phase changes are frequently reflected in internal friction measurements as a function of temperature. Relaxation processes associated with oxygen content have been observed in YBCO and BSCCO (2212). By measuring the internal friction at different frequencies activation energies associated with relaxation processes can be determined. Structural changes are temperature dependent and independent of frequency. The composite bar technique developed employs a piezoelectric quartz bar (with lengths of 2 cm or 3 cm and resonant frequencies of approximately 85 kHz or 120 kHz) with a resonant bar of HTSC attached to one end. The quartz bar is suspended at its nodal points and the system excited electrically using a regenerative feedback system. The composite bar method can also be used at low kilohertz frequencies by attaching the HTSC specimen used in the previous technique to the end of a much longer (e g 30 cm) fused silica rod which has very low damping. The resulting composite bar can be excited electrostatically or electromagnetically at frequencies below 10 kHz. The internal friction can be measured by scanning through the resonant frequency and measuring the bandwidth or by observing the decay of free oscillation in the bar. The advantage of using the two composite bar techniques is that the measurements can be made on the same specimen at different frequencies

  3. An internal friction peak caused by hydrogen in maraging steel

    International Nuclear Information System (INIS)

    Usui, Makoto; Asano, Shigeru

    1996-01-01

    Internal friction in hydrogen-charged iron and steel has so far been studied by a large number of investigators. For pure iron, a well-defined peak of internal friction has been observed under the cold-worked and hydrogen-charged conditions. This is called the hydrogen cold-work peak, or the Snoek-Koester relaxation, which originates from the hydrogen-dislocation interaction. In the present study, a high-strength maraging steel (Fe-18Ni-9Co-5Mo) was chosen as another high-alloy steel which is known to be very susceptible to hydrogen embrittlement. The purpose of this paper is to show a new internal friction peak caused by hydrogen in the maraging steel and to compare it with those found in stainless steels which have so far been studied as typical engineering high-alloy materials

  4. On the nature of low temperature internal friction peaks in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khonik, V.A. [State Pedagogical Univ., Voronezh (Russian Federation); Spivak, L.V. [State Univ., Perm (Russian Federation)

    1996-01-01

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs via formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.

  5. Effect of precipitation on internal friction of AZ91 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    刘树伟; 姜海昌; 李秀艳; 戎利建

    2010-01-01

    The effect of precipitation on the internal friction(IF)of AZ91 magnesium alloy was investigated by using X-ray diffraction(XRD)analysis,scanning electron microscope(SEM)observation,and dynamic mechanical analysis(DMA).Six different states of alloy were prepared by applying different heat treatment processes:as-cast,in-complete solid solution,complete solid solution,micro-precipitation,continuous precipitation and continuous-discontinuous precipitation.It was found that the internal friction of in-completely solid-solutionized,completely solid-solutionized and micro-precipitated specimens showed a similar characteristic,and the grain boundary relaxation is completed depressed due to the Al atoms supersaturated in theα-Mg solution.However,a thermal relaxation internal friction peak was observed for continuously precipitated and continuously-discontinuously precipitated specimens at around 438 K and frequency of about 1 Hz,which was attributed to the grain boundaries relaxation.Furthermore,it was found that the relaxation of theβ-Mg17Al12/α-Mg phase interfaces should give its contribution to the background internal friction in the as-cast,continuously precipitated and continuously-discontinuously precipitated specimens.

  6. Internal friction and dislocation collective pinning in disordered quenched solid solutions

    Science.gov (United States)

    D'Anna, G.; Benoit, W.; Vinokur, V. M.

    1997-12-01

    We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.

  7. Internal friction and elastic softening in polycrystalline Nb3Sn

    International Nuclear Information System (INIS)

    Bussiere, J.F.; Faucher, B.; Snead, C.L. Jr.; Welch, D.O.

    1981-01-01

    The vibrating-reed technique was used to measure internal friction and Young's modulus of polycrystalline Nb 3 Sn in the form of composite Nb/Nb 3 Sn tapes from 6 to 300 K. In tapes with only small residual strain in the A15 layers, a dramatic increase in internal friction with decreasing temperature is observed with an abrupt onset at approx.48 K. The internal friction Q -1 between 6 and 48 K is believed to be associated with stress-induced motion of martensitic-domain walls. In this temperature range, Q -1 is approximately proportional to the square of the tetragonal strain of the martensitic phase; Q -1 α (c/a-1) 2 . With residual compressive strains of approx.0.2%, the internal friction associated with domain-wall motion is considerably reduced. This is attributed to a biasing of domain-wall orientation with residual stress, which reduces wall motion induced by the (much smaller) applied stress. The transformation temperature, however, is unchanged (within +- 1 K) by residual strains of up to 0.2%. Young's modulus exhibits substantial softening on cooling from 300 to 6 K. This softening, is substantially reduced in the presence of small residual compressive strains, indicating a highly nonlinear stress-strain relationship as previously reported for V 3 Si

  8. Young modulus and internal friction of a fiber-reinforced composite

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  9. Determination of crystal oscillatory spectra by internal friction data spectroscopic analysis

    International Nuclear Information System (INIS)

    Zaykin, Yu.A.

    1998-01-01

    Technique for relaxation spectra determination on the basis of internal friction averaging over relaxation frequencies is developed. It is shown that mathematically the problem is reduced to solution of the first type Fredholm integral equation. Impurity oscillatory spectra in alpha-iron, molybdenum and Fe-Cr-Ni alloy are obtained. (author)

  10. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  11. Internal friction and shear modulus in Al-Ga alloys (80-320 K)

    International Nuclear Information System (INIS)

    Chountas, K.; Andronikos, P.; Papathanassopoulos, K.

    1977-01-01

    The internal friction and shear modulus of polycrystalline Al + (0.2, 0.7, 2 and 4) at.% Ga was measured as a function of temperature, using measurements of logarithmic decrement and frequency of free sample vibration. The internal friction curves for the smaller solute concentrations went through a maximum (peak) at 230 K. The height of the peak increased initially with solute concentration, then disappeared at higher concentrations. This peak is probably due to the interaction of solute atoms with dislocations. The continuous increase in internal friction at higher temperatures, reported in pure Al, was not found in these alloys. This absence is probably due to the pinning of dislocations by Ga atoms. (author)

  12. On the nature of low temperature internal friction peaks in metallic glasses

    International Nuclear Information System (INIS)

    Khonik, V.A.; Spivak, L.V.

    1996-01-01

    Low temperature (30 60 Nb 40 subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs via formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin

  13. Mechanical spectroscopy, internal friction and ultrasonic attenuation: Collection of works

    International Nuclear Information System (INIS)

    Magalas, L.B.

    2009-01-01

    An extensive collection of recommended books and proceedings from numerous conferences on internal friction, mechanical spectroscopy, and ultrasonic attenuation is provided. Reflecting the complicated history of the 20th century, books published in English and in Russian are presented in two separate sections. International and national conferences organized in various countries are listed. Supplementary lists referring to conferences held in the People's Republic of China, Poland, Russia, the Soviet Union, and Ukraine are also provided. The interesting evolution of mechanical spectroscopy from internal friction and ultrasonic attenuation in solids is clearly demonstrated, and a choice list of retrospective papers illustrates the evolution of the field. A brief review of mechanical spectroscopy, therefore, is included. Numerous research areas investigated by internal friction and mechanical spectroscopy are addressed, including point defect relaxations, electronic and phonon relaxations, dislocation relaxations, grain boundary relaxations, domain induced relaxations (magnetic, ferroelectric), magnetomechanical relaxations, phase transformations, glass transitions, interface effects as well as a wide array of applications specific to physics and materials science. For many years now, there has been a definite need to provide a thorough list of references that might cover major national conferences and books published in English and other languages. This work strives to achieve this goal.

  14. Digitally controlled measurement of sonic elastic moduli and internal friction by phase analysis

    International Nuclear Information System (INIS)

    O'Brien, M.H.; Hunter, O. Jr.; Rasmussen, M.D.; Skank, H.D.

    1983-01-01

    An automated system is described for measuring internal friction and elastic moduli using sonic resonance techniques. This mirocomputer-controlled device does phase angle analysis in addition to traditional decay and peak-width internal friction measurement. The apparatus may be programmed to make measurements at any sequence of temperatures between room temperature and 1600 0 C

  15. Internal friction study of microplasticity of aluminum thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Tanahashi, K.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-12-01

    Internal friction in aluminum thin films 0.2 to 2.0 {mu}m thick on silicon substrates has been investigated between 180 and 360 K as a function of strain amplitude by means of a free-decay method of flexural vibration. According to the constitutive equation, the internal friction in the film alone can be evaluated separately from the data on the film/substrate composite. The amplitude-dependent part of internal friction in aluminum films is found in the strain range approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction can be converted into the plastic strain as a function of the effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 in creases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of the microplastic deformation. At all temperatures examined, the microflow stress at a constant level of the plastic strain varies inversely with the film thickness, which qualitatively agrees with the variation in macroscopic yield stress. 36 refs., 7 figs.

  16. Influence of electron irradiation on internal friction and structure evolution of polymer composites

    International Nuclear Information System (INIS)

    Ismailova, G.A.

    2007-01-01

    Full text: Important qualitative information on structural evolution and radiation alterations in polymer materials under the action of ionizing radiation can be obtained from the analysis of the temperature dependences of internal friction. Changing of internal friction parameters of relax maxima during irradiation is qualitative degree parameter of radiation scission-cross linking of the polymer molecules. In this work, the general phenomenological approach is realized by introduction of the effective 'observed' parameters into the simple kinetic equations. The applicability of such approach is justified by the fact that kinetics of both internal friction and scission-cross linking processes can be characterized by the same effective parameters. Temperature dependences of internal friction are experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses (D=3 MGy, 6 MGy and 9 MGy). Time dependences of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking are analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the arbitrary effective order of radical recombination. It is shown that in the range of doses and dose rates under study radiation-induced scission predominates during polymer irradiation but in a certain period of time after irradiation scission changes to cross-linking. Characteristics of the kinetic curves obtained essentially depend on the dose

  17. Instrumentation, computer software and experimental techniques used in low-frequency internal friction studies at WNRE

    International Nuclear Information System (INIS)

    Sprugmann, K.W.; Ritchie, I.G.

    1980-04-01

    A detailed and comprehensive account of the equipment, computer programs and experimental methods developed at the Whiteshell Nuclear Research Estalbishment for the study of low-frequency internal friction is presented. Part 1 describes the mechanical apparatus, electronic instrumentation and computer software, while Part II describes in detail the laboratory techniques and various types of experiments performed together with data reduction and analysis. Experimental procedures for the study of internal friction as a function of temperature, strain amplitude or time are described. Computer control of these experiments using the free-decay technique is outlined. In addition, a pendulum constant-amplitude drive system is described. (auth)

  18. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models

    Science.gov (United States)

    Cheng, Ryan R.; Hawk, Alexander T.; Makarov, Dmitrii E.

    2013-02-01

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  19. Measurement of Internal Friction for Tungsten by the Curve Vibrating Method with Variation of Voltage and Temperature

    Directory of Open Access Journals (Sweden)

    Elin Yusibani

    2013-12-01

    Full Text Available Application of a curved vibrating wire method (CVM to measure gas viscosity has been widely used. A fine Tungsten wire with 50 mm of diameter is bent into a semi-circular shape and arranged symmetrically in a magnetic field of about 0.2 T. The frequency domain is used for calculating the viscosity as a response for forced oscillation of the wire. Internal friction is one of the parameter in the CVM which is has to be measured beforeahead. Internal friction coefficien for the wire material which is the inverse of the quality factor has to be measured in a vacuum condition. The term involving internal friction actually represents the effective resistance of motion due to all non-viscous damping phenomena including internal friction and magnetic damping. The testing of internal friction measurement shows that at different induced voltage and elevated temperature at a vacuum condition, it gives the value of internal friction for Tungsten is around 1 to 4 10-4.

  20. Effect of frequency on amplitude-dependent internal friction in niobium

    International Nuclear Information System (INIS)

    Ide, Naoki; Atsumi, Tomohiro; Nishino, Yoichi

    2006-01-01

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10 -9 was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency

  1. Internal friction and lattice anomalies of single-phase Hg-1223

    International Nuclear Information System (INIS)

    Zhang, Q.M.; Nanjing Univ.; Shao, H.M.; Nanjing Univ.; Huang, Y.N.; Nanjing Univ.; Shen, H.M.; Nanjing Univ.; Wang, Y.N.; Nanjing Univ.

    1997-01-01

    Internal friction in the kHz range has been performed for single-phase HgBa 2 Ca 2 Cu 3 O 8+δ with the critical temperature T c = 120 K. The results indicate that two peaks of internal friction appear near 150 and 250 K. X-ray diffraction exhibits a lattice parameter stepping at tens of Kelvin above T c . The Grueneisen parameter γ is estimated from the value of thermal expansion coefficients obtained from X-ray diffraction measurements. The discussion suggests that the anomaly at 150 K is caused by lattice instabilities and the other one near 250 K may be associated with a Neel transition. (orig.)

  2. Effect of frequency on amplitude-dependent internal friction in niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Naoki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)]. E-mail: ide@nitech.ac.jp; Atsumi, Tomohiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishino, Yoichi [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2006-12-20

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10{sup -9} was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency.

  3. Internal friction of hydrated soda-lime-silicate glasses.

    Science.gov (United States)

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-07

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α.

  4. Internal friction and linear expansion coefficient in zirconium and cobalt within the range of phase transitions

    International Nuclear Information System (INIS)

    Boyarskij, S.V.

    1986-01-01

    Experimental results are presented for internal friction and linear expansion coefficient at zirconium and cobalt in the temperature range from 440 K to the point of the phase transition of the first kind (1138 K for Zr and 706 for Co). Anomalous changes of the internal friction and linear expansion coefficient in the phase transition region are found. Theoretical considerations are given to explain the sharp decrease of the internal friction as temperature approaches the phase transition point

  5. A review of literature from the First International Conference on Friction Stir Welding

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    2000-06-01

    The papers from the first international conference on Friction Stir Welding (FSW) have been reviewed. Taken together the papers provide a very optimistic picture for the development and application of friction stir welding in general and to the case of the copper canister in particular. Whilst a considerable development effort is in progress the process has been industrialised for joining of aluminium sheet and it is accepted by Lloyds register for this purpose. Development of procedures and equipment to weld thicker materials and a wider range of materials is progressing ahead of the research activity to aid the understanding of the process at this stage. Nevertheless, well-established weld assessment procedures are being applied to experimental welds with very encouraging results. Summaries of the key papers are presented in an appendix

  6. Internal friction of metallic glass Ni74P16B6Al4 near T/sub x/

    International Nuclear Information System (INIS)

    Li Xiao-Guang; He Yizhen

    1986-01-01

    The internal friction of metallic glass Ni 74 P 16 B 6 Al 4 near the crystallization temperature T/sub x/ is investigated using a conventional torsion pendulum. Two internal friction peaks, P 1 and P 2 , are observed and the dependence of the peak positions on heating rate is described by the Kissinger equation. Pre-crystallization reduces the height of the peaks (P 1 and P 2 ) and shifts the positions of these peaks but in opposite directions. A formula showing the dependence of apparent internal friction on volume fraction transformed is derived. The variation of internal friction with annealing corresponds to the variation of the fraction transformed. (author)

  7. Low-temperature internal friction in high-purity monocrystalline and impure polycrystalline niobium after plastic deformation

    International Nuclear Information System (INIS)

    Wasserbaech, W.; Thompson, E.

    2001-01-01

    The internal friction Q -1 of plastically deformed, high-purity monocrystalline and impure polycrystalline niobium specimens was measured in the temperature range between 65 mK and about 2 K. Plastic deformation has a pronounced effect on the internal friction Q -1 of the high-purity monocrystalline specimens, and the effect has been found to be almost temperature independent. By contrast, surprisingly, the internal friction Q -1 of the impure polycrystalline specimens was found to be almost independent of the extent of plastic deformation. Comparison of the experimental results with different models of a dynamic scattering of acoustic phonons by dislocations leads to the conclusion that the results cannot be explained with the two-level tunneling model. Instead it is suggested that a strong interaction between acoustic phonons and geometrical kinks in non-screw dislocations is responsible for the observed internal friction Q -1 . (orig.)

  8. Amplitude Dependent Internal Friction in a Mg-Al-Zn Alloy Studied after Thermal and Mechanical Treatment

    Directory of Open Access Journals (Sweden)

    Zuzanka Trojanová

    2017-10-01

    Full Text Available The amplitude-dependent internal friction of continuously-cast and rolled AZ31 magnesium alloy was measured in this study. Samples were annealed and quenched step by step; immediately after the treatment, the amplitude dependence of the logarithmic decrement was measured. Changes in the microstructure due to thermomechanical treatment were reflected in changes in the damping. Internal friction is influenced by the dislocation substructure and its modification due to solute atoms migration, microplastic deformation, and twins’ formation. Internal friction in the rolled sheets is affected by the rolling texture.

  9. Low-Frequency Internal Friction Study on the Structural Changes in Polymer Melts

    International Nuclear Information System (INIS)

    Xue-Bang, Wu; Qiao-Ling, Xu; Shu-Ying, Shang; Jia-Peng, Shui; Chang-Song, Liu; Zhen-Gang, Zhu

    2008-01-01

    With the help of the low-frequency internal friction method, we investigate the structural properties of polymer melts, such as amorphous polystyrene (PS), poly(methyl methacrylate) (PMMA), and semi-crystalline poly(ethylene oxide) (PEO). An obvious peak of relaxation type is found in each of the internal friction curves. The peak temperature T p follows the relation T p ≈ (1.15 – 1.18) T g for PS and PMMA melts, while it follows T p ≈ 1.22T m for PEO melt, with T g being the glass transition temperature and T m the melting temperature. Based on the analysis of the features of this peak, it is found that this peak is related to the liquid-liquid transition temperature T u of polymer melts. Mechanism of the liquid-liquid transition is suggested to be thermally-activated collective relaxation through cooperation. This finding may be helpful to understand the structural changes in polymer melts. In addition, the internal friction technique proves to be effective in studying dynamics in polymer melts

  10. A study on the determination of diffusion coefficient of carbon in 304 austenitic stainless steels by internal friction method

    International Nuclear Information System (INIS)

    Kim, K.S.; Kim, T.H.

    1982-01-01

    Internal friction peaks associated with the presence of carbon in 18-8 type 304 stainless steel have been observed from measurements with a torsion pendulum. The temperature for maximum internal friction lies between 250degC and 300degC with a frequency of vibration. The height of the peak rises and the position of the peak shifts to a lower temperature with an increase of the carbon content. And a comparison of the activation energy and the diffusion coefficient determined by internal friction methods with those measured in conventional macro-diffusion experiments reveals that the diffusion data measured by internal friction method and the diffusion data measured by conventional method exist in the same line. It follows from the above fact that observed internal friction peak is associated with the stress-induced diffusion of carbon in face-centered cubic alloys. (Author)

  11. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a) 2 from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V 2 Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy β/m wall motion relative to the easy m/m motion of the A15's. For the V 2 Zr, a peak in delta is observed, qualitatively in agreement with expected β/m wall motion

  12. Internal friction behaviours in Zr57Al10Ni12.4Cu15.6Nb5 bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang Bo; Zu Fangqiu; Zhen Kang; Shui Jiapeng; Wen Ping

    2002-01-01

    The internal friction patterns of Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 bulk metallic glass (BMG) were investigated with different frequencies and heating rates. An internal friction peak with extremely large magnitude is observed in the internal friction curves as a function of temperature (Q -1 -T curves). The internal friction peak was fitted by an equation Q -1 =AX(T)/η, where A is a constant, X(T) is the fraction of the glass/supercooled liquid and the viscosity η obeys the Vogel-Fulcher-Tammann relation. We confirm that the internal friction peak originates from both of the glass transition and crystallization. The anomalous behaviours of the peak suggest that Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 BMG has a wide supercooled liquid region and the magnitude of the peak can be used to judge the glass forming ability (GFA) of the glass forming alloys. In addition, the internal friction technique proved to be a new powerful tool for studying structural relaxation and phase transition as well as the GFA of BMG. (author)

  13. Internal friction in cold-rolled metallic glasses Cu50Ti50 and Ni78Si8B14

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Khonik, V.A.; Ryabtseva, T.N.; Belyavskii, V.I.

    1989-01-01

    The influence of cold rolling on the low temperature (30 to 300 K) internal friction of metallic glasses Cu 50 Ti 50 and Ni 78 Si 8 B 14 is investigated. It is shown that cold rolling of both metallic glasses up to 2 to 6% results in the appearance of a high relaxation damping peak around 260 to 280 K. The internal friction background below the peak shows a strong amplitude dependence. In highly predeformed specimens (∼ 16%) the internal friction peak is absent. Electron irradiation (2 MeV, 10 19 cm -2 ) leads to the suppression of the deformation-induced internal friction peak. The results are interpreted in the framework of the dislocation models of plastic flow of metallic glasses. (author)

  14. An automatic measuring system of internal friction at low frequency

    International Nuclear Information System (INIS)

    Iwasaki, K.

    1979-01-01

    An inverted torsion pendulum is automatized by means of Tectanel electronic system. Internal friction and the period of vibration are measured fully automatically as a function of temperature and the data obtained are analysed with a computer. (Author) [pt

  15. Microplasticity and dislocation mobility in copper-nickel single crystals evaluated from strain-amplitude-dependent internal friction. [CuNi

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Y.; Okada, Y.; Asano, S. (Dept. of Materials Science and Engineering, Nagoya Inst. of Tech. (Japan))

    1992-02-16

    Internal friction in copper-0.4 to 7.6 at% nickel single crystals is measured as a function of strain amplitude at various temperatures. Analysis of the data on the amplitude-dependent internal friction yields the relation of effective stress and microplastic strain of the order of 10{sup -9}. The stress-strain responses thus obtained exhibit that the microplastic flow stress increases more rapidly on alloying than the macroscopic yield stress. The mean dislocation velocity is also evaluated from the internal-friction data, which corresponds well to the etch-pit data. It is shown that the dislocation motion is impeded by friction due to dispersed solute atoms. (orig.).

  16. Internal friction around Tc connected with superconductivity in high Tc superconductors

    International Nuclear Information System (INIS)

    Wang Yening

    1993-01-01

    Internal friction and ultrasonic measurements show that there always exists a phase-like transition (PLT) characterized by the jump of lattice parameters at tens degrees above Tc in superconducting YBaCuO, BiSrCaCuO and TlBaCaCuO. Ferroelastic loops and shape memory effect associated with elastic softening invariably occur at the PLT temperature, showing the characteristics of thermoelastic martensitic transition. Internal frictions in KHz of Bi(Pb)SrCaCuO reveal a static hysteretic plateau (Qp -1 ) above Tc that drops linearly with temperature below Tc. The Qp -1 of YBaCuO decreases with decreasing oxygen content. The origin of the hysteretic Qp -1 is attributed to the lattice distortions around the carriers. (orig.)

  17. Contribution to the study of internal friction in graphites

    International Nuclear Information System (INIS)

    Merlin, J.

    1969-03-01

    A study has been made of the internal friction in different graphites between -180 C and +500 C using a torsion pendulum; the graphites had been previously treated thermo-mechanically, by neutron irradiation and subjected to partial annealings. It has been shown that there occurs: a hysteretic type dissipation of energy, connected with interactions between dislocations and other defects in the matrix; a dissipation having a partially hysteretic character which can be interpreted by a Granato-Luke type formalism and which is connected with the presence of an 'ultra-micro porosity'; a dissipation by a relaxation mechanism after a small dose of irradiation; this is attributed to the reorientation of bi-interstitials; a dissipation having the characteristics of a solid state transformation, this during an annealing after irradiation. It is attributed to the reorganization of interstitial defects. Some information has thus been obtained concerning graphites, in particular: their behaviour at low mechanical stresses, the nature of irradiation defects and their behaviour during annealing, the structural changes occurring during graphitization, the relationship between internal friction and macroscopic mechanical properties. (author) [fr

  18. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  19. Effect of pulse electron beam characteristics on internal friction and structural alterations in epoxy

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Ismailova, G.A.; Al-Sheikhly, M.

    2007-01-01

    Temperature dependence of internal friction is experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses. Time dependence of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking is analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the pulse irradiation mode and an arbitrary effective order of radical recombination

  20. Comparison of internal friction in high Tc superconductors and CuO

    International Nuclear Information System (INIS)

    Gzowski, O.; Davoli, I.; Stizza, S.; Mancini, G.; Kusz, B.; Barczynski, R.; Gazda, M.; Sadowski, W.; Murawski, L.

    1990-01-01

    This paper reports on the internal friction and shielding effect in CuO, superconducting yttrium and bismuth ceramics and yttrium monocrystal that have been measured. Several features, some of them common for all specimens, have been found

  1. Study on frictional pressure drop of steam-water two phase flow in optimized four-head internal-ribbed tube

    International Nuclear Information System (INIS)

    Wang Weishu; Zhu Xiaojing; Bi Qincheng; Wu Gang; Yu Shuiqing

    2012-01-01

    The optimized internal-ribbed tube is different from the normal internal-ribbed tube on the frictional pressure drop characteristics. The frictional pressure drop characteristics of steam-water two phase flow in horizontal four-head optimized internal-ribbed were studied under adiabatic condition. According to the experimental and calculation results, the two-phase multiplier is greatly affected by the steam quality and pressure. The two-phase multiplier increases with increasing quality, and decreases with increasing pressure. In the near-critical pressure region, the two-phase multiplier is close to 1. The frictional pressure drop of two phase flow in optimized tube is less than that in the normal tube under the same work condition. The good hydrodynamic condition could be achieved when the optimized internal-ribbed tube is used in the heat transfer equipment because the self-compensating characteristics exist due to the reduction of frictional pressure drop. (authors)

  2. Friction

    Science.gov (United States)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to

  3. Internal friction in a new kind of metal matrix composites

    International Nuclear Information System (INIS)

    San Juan, J.; No, M.L.

    2006-01-01

    We have developed a new kind of metal matrix composites, based on powders of Cu-Al-Ni shape memory alloys (SMAs) surrounded by an indium matrix, specifically designed to exhibit high mechanical damping. The damping properties have been characterized by mechanical spectroscopy as a function of temperature between 150 and 400 K, frequency between 3 x 10 -3 and 3 Hz, and strain amplitude between 5 x 10 -6 and 10 -4 . The material exhibits, in some range of temperature, internal friction as high as 0.54. The extremely high damping is discussed in the light of the microstructure of the material, which has been characterized in parallel

  4. Effect of plastic deformation and impurities on internal friction in solid He4

    International Nuclear Information System (INIS)

    Tsymbalenko, V.L.; AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela)

    1979-01-01

    The internal friction in solid He 4 samples of 20.55 cm 3 molar volume is measured at frequencies of 15 and 78 kHz. The samples are grown under constant pressure and also by the blocked capillary technique. The construction of the container was such that the damping on plastic deformation of solid helium could be measured. Internal friction is also investigated in solid helium samples containing admixtures of He 3 (from 0.01 to 0.1 at.%). A number of dislocation parameters could be determined on basis of the temperature and amplitude dependences of the damping predicted by the Granato-Lucke theory

  5. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Borgia, Alessandro; Wensley, Beth G.; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B.; Hoffmann, Armin; Pfeil, Shawn H.; Lipman, Everett A.; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes. PMID:23149740

  6. A molecular dynamics analysis of internal friction effects on the plasticity of Zr65Cu35 metallic glass

    International Nuclear Information System (INIS)

    Feng, Shidong; Qi, Li; Zhao, Fengli; Pan, Shaopeng; Li, Gong; Ma, Mingzhen; Liu, Riping

    2015-01-01

    Highlights: • Effects of internal friction on plasticity is investigated at the atomic level. • The simulations allow reproduction of images of internal friction evolution. • The simulation results are in good agreement with experiments and theories. • This simulation can predict the deformation mode with different internal friction. - Abstract: The effects of internal friction (IF) on Zr 65 Cu 35 metallic glass plasticity are investigated through molecular dynamics simulations. Results show that the Voronoi polyhedron 〈0, 3, 6, 3〉 increases as IF increases, thereby effectively inhibiting localized deformation and improving metallic glass plasticity. The simulations allow reproduction of images of IF evolution in metallic glasses subjected to isothermal annealing at 730 K and 850 K respectively, which can help explain the experimental observations. IF could be adjusted by selecting suitable annealing temperatures and cooling rates. The results of this work provide a strong foundation for future metallic glass designs

  7. Internal friction of molybdenum during microplastic deformation in the temperature range of ductile-brittle transition

    International Nuclear Information System (INIS)

    Beloshenko, V.A.; Datsko, O.I.; Shakhova, A.D.

    1986-01-01

    Internal friction of Q -1 samples prepared of technically pure molybdenum wire 1.2 mm in diameter in the initial state and after annealing in the inert atmosphere at 800, 1050, 1200 deg C respectively during 2.5 ad 13 hours is investigated. The initial material had fibrous structure. It is shown that the method of low-frequency internal friction can be applied to study ductile-brittle transition (DBT) in metals at amplitude of oscillations bringing about irreversible microplastic strain

  8. Nonlinear internal friction, chaos, fractal and musical instruments

    International Nuclear Information System (INIS)

    Sun, Z.Q.; Lung, C.W.

    1995-08-01

    Nonlinear and structure sensitive internal friction phenomena in materials are used for characterizing musical instruments. It may be one of the most important factors influencing timbre of instruments. As a nonlinear dissipated system, chaos and fractals are fundamental peculiarities of sound spectra. It is shown that the concept of multi range fractals can be used to decompose the frequency spectra of melody. New approaches are suggested to improve the fabrication, property characterization and physical understanding of instruments. (author). 18 refs, 4 figs

  9. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    Frictional coefficient depending on active friction radius with BPV and BTV in automobile disc braking system. ... International Journal of Engineering, Science and Technology. Journal Home · ABOUT ... AJOL African Journals Online. HOW TO ...

  10. Internal friction study of neutron-irradiation effects on an amorphous Cu40Ti60 alloy

    International Nuclear Information System (INIS)

    Dong, Y.; Wu, G.; Xiao, K.; Li, X.; He, Y.

    1988-01-01

    Effects of neutron irradiation on the structure of an amorphous Cu 40 Ti 60 alloy have been studied by internal friction measurements. After irradiation, the position of the first internal friction peak remains almost unchanged and the shoulder position shifts towards a higher temperature by about 5 K, which indicates that the Cu 40 Ti 60 glass becomes more stable. These results are finally discussed based on the concept of changes of chemical short-range ordering and geometrical short-range ordering due to radiation damage

  11. Internal Friction of Li7La3Zr2O12 Based Lithium Ionic Conductors

    Directory of Open Access Journals (Sweden)

    Wang X.P.

    2016-03-01

    Full Text Available The diffusion mechanisms of lithium ions in tetragonal phase as well as in Al and Nb stabilized cubic Li7La3Zr2O12 compounds were investigated by low-frequency internal friction technique. In the cubic Li7La3Zr2O12 phase, a remarkable relaxation-type internal friction peak PC with a peak height up to 0.12 was observed in the temperature range from 15°C to 60°C. In the tetragonal phase however, the height of the PT peak dropped to 0.01. The obvious difference of the relaxation strength between the cubic and tetragonal phases is due to the different distribution of lithium ions in lattice, ordered in the tetragonal phase and disordered in the cubic phase. Based on the crystalline structure of the cubic garnet-type Li7La3Zr2O12 compound, it is suggested that the high internal friction peak in the cubic phase may be attributed to two diffusion processes of lithium ions: 96h↔96h and 96h↔24d.

  12. Study by internal friction of curing low temperature irradiation defects in graphite

    International Nuclear Information System (INIS)

    Rouby, Dominique.

    1974-01-01

    Micromechanical properties and anelastic effects of neutrons irradiated graphites at 300 and 77 0 K are investigated by internal friction analysis and elasticity modulus variations. Defects created by irradiation are studied and evolution versus dose and annealing is followed [fr

  13. Studies on internal friction in electron-irradiated iron crystals after plastic deformation

    International Nuclear Information System (INIS)

    Wolf, J.

    1986-01-01

    For the analysis of atomic point defects in high-purity the generation of atomic point defects was, above all, carried out by electron radiation, but in addition, also by plastic deformation. The exposure to radiation was realized at different temperatures in the Dynamitron of the University of Stuttgart (80 K, 160 K) and also in the low-temperature radiation facility of the nuclear research plant (KfA) Juelich (50 K). The radiation doses ranged between 2.7.10 21 e - /m 2 and 1.0.10 23 e - /m 2 . In situ plastic deformation was achieved at about 80 K (torsion, 4%). Internal friction which was determined in an inverse torsion pendulum in the temperature range of 80 K - 700 K and at frequencies of about 1 Hz served as defect indicator. In this study simulation programs were developed which were to give information prior to the realization of measurements on the temperatures and the intensity of the damping peaks to be expected. The internal friction peaks measured in the framework of this study could be assigned to the recovery stages I-IV. The measured values were discussed for three temperature ranges with main emphasis on the investigation of the recovering, radiation-induced or deformation-induced, atomic point defect in the temperature range of the recovery stage III (200 K - 270 K). (orig./MM) [de

  14. Development of a penetration friction apparatus (PFA) to measure the frictional performance of surgical suture.

    Science.gov (United States)

    Zhang, Gangqiang; Ren, Tianhui; Lette, Walter; Zeng, Xiangqiong; van der Heide, Emile

    2017-10-01

    Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their functionality. The high friction force of surgical sutures in the suturing process may cause inflammation and pain to the person, leading to a longer recovery time, and the second trauma of soft or fragile tissue. Thus, the investigation into the frictional performance of surgical suture is essential. Despite the unquestionable fact, little is actually known on the friction performances of surgical suture-tissue due to the lack of appropriate test equipment. This study presents a new penetration friction apparatus (PFA) that allowed for the evaluation of the friction performances of various surgical needles and sutures during the suturing process, under different contact conditions. It considered the deformation of tissue and can realize the puncture force measurements of surgical needles as well as the friction force of surgical sutures. The developed PFA could accurately evaluate and understand the frictional behaviour of surgical suture-tissue in the simulating clinical conditions. The forces measured by the PFA showed the same trend as that reported in literatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Glass and crystallization like transitions at low temperature in Zr-Cu based glasses by internal friction measurements

    Directory of Open Access Journals (Sweden)

    Aboki A.T.

    2011-05-01

    Full Text Available Low temperature β internal friction peak evolution upon thermal cycles shows two peculiar peaks similar to high temperature internal friction peak. The modulus softening associated to these peaks suggest a phase transformation phenomenon and the relaxation time τo in order of 10-23–10-35s, close to that observed in grains boundary sliding are due to interface motions in the amorphous structure under combined thermal and mechanical energies.

  16. On the nature of low temperature internal friction peaks in metallic glasses

    NARCIS (Netherlands)

    Khonik, VA; Spivak, LV

    Low temperature (30 internal friction in a metallic glass Ni60Nb40 subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar

  17. Effect of the superconducting transition on amplitude-dependent dislocation internal friction in metals

    International Nuclear Information System (INIS)

    Lomakin, V.V.; Pankrat'eva, G.L.; Roshchupkin, A.M.

    1983-01-01

    In terms of the Granato-Lucke model, an explanation of the amplitude-dependent internal friction change at the superconducting transition is proposed which takes into account the influence of the electronic viscosity on the fluctuation unpinning of dislocations from local obstacles

  18. Internal friction in irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Pajzullakhanov, M.S.; Khajdarov, T.; Ummatov, Kh.

    1999-01-01

    The submicroscopic heterogeneities in mono- and polycrystal silicon and the influence of X-ray radiation on them were investigated using the ultrasound resonance method. Disk-shaped samples of 27.5 mm in diameter and 4 mm in thickness, with the flat surface parallel to crystallographic plane (111), were irradiated by X-ray beam of 1 Wt/cm 2 (50 KeV, Mo K α ) during 10 hours. Relations of internal frictions (Q -1 ) of samples and their relative attitude (ψ) - Q -1 (ψ) show that there is a presence of double-humped configuration for monocrystal silicon with the peaks at ψ=900 and 270 degrees. The relations Q -1 (ψ) remain the same after the irradiation. However, the peak width becomes larger. This data show that the configuration and attitude of the heterogeneities remain the same after the irradiation. The double-humped configuration was not discovered for the relations Q -1 (ψ) of polycrystal silicon. It is explained by the fact that there is an isotropic distribution in the content of many blocks and granules

  19. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    Science.gov (United States)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  20. Recent developments in Micro Friction Stir Welding: A review

    International Nuclear Information System (INIS)

    Sithole, Keydon; Rao, Veeredhi Vasudeva

    2016-01-01

    The advent of friction stir welding (FSW) in 1991 has been evolutionary in the joining of metals and related materials. Friction stir welding has enabled the joining of metals that could not be joined by other welding processes. Research has shown that dissimilar materials with very different properties, plastics, composites and even wood can be joined by FSW. Recent activities in the application of FSW has seen the development of micro friction stir welding (μFSW), which is the FSW of very thin sections of thickness 1000 μm (1 mm) or less. Micro friction stir welding further extends the applications of FSW to areas such as copper electrical contacts, tailor-welded blanks, wood. Though μFSW is relatively new development significant work has been done to date with interesting research findings being reported. This paper aims to review developments in μFSW to date. The focus of the paper will be on problems peculiar to μFSW due to downscaling to the micro scale and other practical considerations. (paper)

  1. Study on phase transformations in superconducting Ti-50%Nb alloy using temperature-dependent internal friction method

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Tikhinskij, G.F.; Somov, A.I.; Chernyj, O.V.; Rudycheva, T.Yu.; Andrievskaya, N.F.

    1980-01-01

    The internal friction method is used to study phase transformations in the Ti-50%Nb alloy parallel with other methods. The effect of annealing temperature and time, as well as the content of interstitial impurities in the alloy and its thermomechanical treatment (TMT) is studied. In the 250-300 deg C temperature range the complex maximum of internal friction caused by extraction of secondary phases is observed. The latter is confirmed by the measurement data of mechanical properties and electron microscopic analysis. The maximum consists of three overlapping peaks that reflects stepped form of the decomposition process of the metastable solid solution. The preliminary thermo-mechanical alloy treatment consisting of equidirectional plastic deformation with the following recrystallization annealing leads to peak increase. This fact testifies to the stimulating effect of thermo-mechanical treatment on the degree of solid solution decomposition and reveals in the increase of the critical current density of a wire made of the ingot. The increase of the interstitial impurity content in the alloy has the analogous effect. The reduction of the internal friction level during isothermal stand-up at temperatures higher than the third peak temperature proceeds in two stages [ru

  2. Frictional pressure drop of high pressure steam-water two-phase flow in internally helical ribbed tubes

    International Nuclear Information System (INIS)

    Tingkuan, C.; Xuanzheng, C.

    1987-01-01

    It is well known that the internally helical ribbed tubes are effective in suppressing the dry-out in boiling tubes at high pressures, so they are widely used as furnace water wall tubes in modern large steam power boilers. Design of the boilers requires the data on frictional pressure drop characteristics of the ribbed tubes, but they are not sufficient now. This paper describes the experimental results on the adiabatic frictional pressure drop in both horizontal ribbed tubes with measured mean inside diameter of 11.69 mm and 35.42 mm at high pressure from 10 to 21 MPa, mass flow rate from 350 to 3800 kg/m/sup 2/s and steam quality from 0 to 1 in our high pressure electrically heated water loop. Simultaneously, both smooth tubes under the same conditions for comparison. Based on the tests the correlation for determining the frictional pressure drop of internally ribbed tubes are proposed

  3. Internal frictions and their application in the supervision and inspection of a manufacture

    International Nuclear Information System (INIS)

    Bourgain, L.; Samson, G.; Blay, D.

    1975-01-01

    The internal frictions of materials subjected to flexion or compression waves were studied. In the first part of the report, devoted to the theoretical aspect of the problem, an attempt is made to estimate how much of the total friction measured is exterior to the structure and how much is intrinsic. The mathematical models generally used to account for these phenomena, those of Maxwell and Voigt, were applied for this purpose. Part two deals with measurement methods and precautions necessary if good precision and reproducible experimental results are required. The last part gives several examples of application. It is shown how internal damping measurements are used to detect variations in a given manufacture. In the application specific to sintered materials a physical explanation is tentatively put forward to account for the peaks recorded at middle frequency (between 1000 and 10000 hertz) in the damping spectrum; these are connected with interface phenomena between the grains, sometimes known as surface/volume effect [fr

  4. Search for stress dependence in the internal friction of fused silica

    International Nuclear Information System (INIS)

    Willems, Phil; Lamb, Corinne; Heptonstall, Alastair; Hough, Jim

    2003-01-01

    The quality factor (Q) of the vertical bounce mode of a fused silica fiber pendulum is measured at high and low stresses. The internal friction of fused silica fibers is found to be independent of stress from 12.8 to 213 MPa at a level of 1.6x10 -8 . Comparison with Q's of fiber bending modes is consistent with losses concentrated in the surface of the fiber

  5. Phenomenological description of internal friction spectra in glass-forming and glassy systems

    International Nuclear Information System (INIS)

    Lomovskij, V.A.

    1999-01-01

    Dissipative events in different by chemical nature glass-forming systems, including B 2 O 3 , are studied. It is established from the spectra of internal friction of these systems that the maxima of the energy dissipation of the external power impact are positioned both in the area of viscous flow metastable structural liquid state and in the area of solid elastic state

  6. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    International Nuclear Information System (INIS)

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  7. Internal friction and microplasticity of carbon-fiber-reinforced SiC ceramics; Tanso sen`i kyoka SiC ceramics no hakai zenku katei ni okeru naibu masatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Nishino, Y.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-08-20

    Mechanical responses of carbon-fiber-reinforced SiC ceramics before fracture were measured in the strain range below 2 {times} 10{sup {minus}3} by two experimental methods: mechanical hysteresis and internal friction. Load-deflection curves were obtained by the three-point bending deformation in loading-unloading cycles. A little permanent strain was found after the first cycle even in the range where fracture never occurred. A closed hysteresis loop was observed after several cycles and stabilized with a symmetrical shape after more than twenty cycles. Such a stabilized hysteresis loop is attributed to the steady-state microplastic deformation and may cause the amplitude-dependent internal friction. Internal friction was measured in the fundamental mode of free-free resonant vibration as a function of strain amplitude. With increasing the amount of prestrain in the bending deformation, internal friction increased and became sensitive to the strain amplitude. The amplitude-dependent internal friction in the composites is considered to originate from fiber pull-out or microcrack propagation. The internal friction data were analyzed on the basis of the microplasticity theory and converted into the plastic strain expressed as a function of stress. Therefore, it becomes possible to non-destructively study the forerunning process of fracture of the fiber-reinforced ceramics. 23 refs., 6 figs.

  8. Development of a Simulink® toolbox for friction control design and compensation

    Directory of Open Access Journals (Sweden)

    Teodor DUMITRIU

    2005-12-01

    Full Text Available This paper focuses on the development of a MATLAB/Simulink® library for servo-systems with friction as a part of a new simulation platform dedicated to model, analysis and control design of friction. It is well known that friction is a very important process for the control engineering both for high-precision servo – mechanisms and simple pneumatic and hydraulic systems. Highly nonlinear process, friction may result in steady state errors, limit cycles and poor performance. It is therefore important for control engineering to understand friction phenomena and to know how to deal with them. Moreover, a reliable library of friction models that captures the friction behavior provides an important tool in order to investigate by analysis and simulation the properties of friction that are relevant to control design.

  9. Studying on tempering transformation and internal friction for low carbon bainitic steel

    International Nuclear Information System (INIS)

    Li, Weijuan; Cai, Mingyu; Wang, Dong; Zhang, Junwei; Zhao, Shengshi; Shao, Peiying

    2017-01-01

    The changes of microstructure during the process of tempering transformation were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction and internal friction (IF) for low carbon bainite steel. The yield strength of the steel was tested after tempering transformation. The results showed that the microstructures of the experimental steel in rolled state were composed of lath bainite and granular bainite with a little Mo 2 C and NbC precipitates. The lath width of bainite increased continuously with the tempering time. More cell structures with different orientations were formed in bainite laths. Furthermore, poly-gonization gradually began in some laths. The microstructure of granular bainite increased and was coarsened when it devoured the lath bainite continuously. The dislocation density of the bainitic ferrite decreased continuously as Mo 2 C and NbC precipitations were further increasing. The peak value of Snoek decreased continuously in internal friction-temperature spectrum. The peak value of SKK at the surface decreased at first and then increased. The peak value of SKK at the center decreased firstly and then had little change. Besides, the yield strength of the steel increased firstly and then decreased.

  10. Studying on tempering transformation and internal friction for low carbon bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijuan, E-mail: liweijuan826@163.com; Cai, Mingyu; Wang, Dong; Zhang, Junwei; Zhao, Shengshi; Shao, Peiying

    2017-01-02

    The changes of microstructure during the process of tempering transformation were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction and internal friction (IF) for low carbon bainite steel. The yield strength of the steel was tested after tempering transformation. The results showed that the microstructures of the experimental steel in rolled state were composed of lath bainite and granular bainite with a little Mo{sub 2}C and NbC precipitates. The lath width of bainite increased continuously with the tempering time. More cell structures with different orientations were formed in bainite laths. Furthermore, poly-gonization gradually began in some laths. The microstructure of granular bainite increased and was coarsened when it devoured the lath bainite continuously. The dislocation density of the bainitic ferrite decreased continuously as Mo{sub 2}C and NbC precipitations were further increasing. The peak value of Snoek decreased continuously in internal friction-temperature spectrum. The peak value of SKK at the surface decreased at first and then increased. The peak value of SKK at the center decreased firstly and then had little change. Besides, the yield strength of the steel increased firstly and then decreased.

  11. Weld defect identification in friction stir welding using power spectral density

    Science.gov (United States)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  12. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    Science.gov (United States)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  13. Labour market frictions and migration

    NARCIS (Netherlands)

    Cremers, Jan

    2016-01-01

    The 4th contribution to the series INT-AR papers is dedicated to the methods of assessing labour market frictions. The paper provides a (brief) international comparison of the role of labour migration in solving these frictions.

  14. Design and assembly of a torsion pendulum for the measurement of internal friction at low temperatures

    International Nuclear Information System (INIS)

    San Juan, J. M.; Gallego, I.; No, M. L.

    2001-01-01

    In this work we describe the assembly, operation and specifications of an inverted torsion pendulum designed to measure internal friction at low temperatures (from 4.2 K to 500 K). The high precision mechanics allow us to obtain internal friction spectra with low levels of noise from amplitudes as small as 2x10''7. The inertia components of the pendulum have been built with specific materials, so that the resonance frequency of the pendulum can be changed within two orders of magnitude (0.1-10Hz). In addition, the sample can be in situ deformed at any temperature and can be inserted into the pendulum at liquid nitrogen temperature. The operation of the pendulum, all the control p recesses and data acquisition are completely automated. (Author) 4 refs

  15. Corrosion behaviour of stainless steels by internal friction method

    International Nuclear Information System (INIS)

    Postnikov, V.S.; Kovalevskij, V.I.

    1987-01-01

    Corrosion of austenite chromium-nickel stainless steels 12 Kh18N9, 12Kh18N9T, 12Kh18N10 and 12Kh18N10T is investigated. Wire samples 0.7...0.8 mm in diameter before tests were subjected to quenching in water from the temperature of 1050...1100 deg C and part of them - to tempering at 650 deg C for 2 h. Pitting corrosion was brought about by different concentration of iron chloride solutions (C FeCl 3 ). Total corrosion has a slight effect on the character of IF (internal friction) variation that increases without the whole test period up to the moment when mechanical strength of the sample

  16. Internal friction in hydrited Zircaloy 4

    International Nuclear Information System (INIS)

    Piquin, R.; Ghilarducci, Ada A.; Salva, Horacio R.

    2007-01-01

    The aim of this work is to investigate the microscopic basis of inelastic effects on standard Zry4 alloy, after plastic deformation and hydriding. Polycrystalline samples with cylindrical geometry were taken with dimension 1.62mm in diameter and 40 mm in length. In order to obtain the internal friction and elastic modulus spectra at low frequencies (0.01 to 10Hz), a sub resonant forced pendulum was used, with resonance at about 130Hz. The results are peaks between 150 and 350K. They are analysed on the basis of their response at frequency changes, amplitude of measurement, grade of plastic deformation 'in situ' and cathodical hydriding (650 H wt ppm). The peaks are interpreted as follows: the 250K peak corresponds to the interaction between dislocations and Cottrel cloud of solute atoms surrounding the dislocation cores. After hydruration, the spectrum is dominated by the 220K peak, which is attributed to the hydrogen atoms in solid solution trapped by the dislocation cores. The anelastic parameters allow to evaluate the H concentration segregated on dislocations, in this case it is 300 wt ppm H. (author) [es

  17. Development of low friction materials for LMFBR components

    International Nuclear Information System (INIS)

    Johnson, R.N.; Aungst, R.C.; Hoffman, N.J.; Cowgill, M.G.; Whitlow, G.A.; Wilson, W.L.

    1976-01-01

    The number of materials capable of providing low friction, low wear, and good corrosion resistance in low-oxygen (less than 1 ppM) sodium at temperatures up to 650 0 C are extremely limited. The paper describes the development, evaluation, and qualification of low-friction materials for this environment with emphasis on chromium carbide base coatings and nickel aluminide diffusion coatings. Design criteria and typical applications in liquid-metal-cooled reactors are described and recommendations offered for conditions under which these materials should and, perhaps more importantly, should not be used. Design parameters required to achieve optimum performance of these materials are discussed

  18. Deconvolution analysis to determine relaxation time spectra of internal friction peaks

    International Nuclear Information System (INIS)

    Cost, J.R.

    1985-01-01

    A new method for analysis of an internal friction vs temperature peak to obtain an approximation of the spectrum of relaxation time responsible for the peak is described. This method, referred to as direct spectrum analysis (DSA), is shown to provide an accurate estimate of the distribution of relaxation times. The method is validated for various spectra, and it is shown that: (1) It provides approximations to known input spectra which replicate the position, amplitude, width and shape with good accuracy (typically 10%). (2) It does not yield approximations which have false spectral peaks

  19. Internal Friction in L.A.S. Type Glass and Glass-Ceramics

    OpenAIRE

    Arnault , L.; RiviÈre , A.

    1996-01-01

    Internal friction measurements have been performed on glass and glass-ceramics of the Li2O-Al2O3-SiO2 type by isothermal mechanical spectroscopy. Experiments were carried out over a large frequency range (10-4Hz - 31.6 Hz) for various temperatures between 260K and 850K. For the glass, a relaxation peak is observed at low temperature (276K for 1Hz). This peak does not appear in the glass-ceramics ; however, for each of them, two other peaks were observed : the first one at about 343K (1Hz) and...

  20. Account of internal friction when estimating recoverable creep strain

    International Nuclear Information System (INIS)

    Demidov, A.S.

    1986-01-01

    It is supposed that a difference of empirical and calculated data on the creep strain recovery for Kh18N10T steel under conditions of cyclic variations in stress is specified by the effect of internal friction. In the accepted model of creep β-flow is considered to be reversible and γ-flow- irreversible. Absorptivity is determined as a ratio of the difference between the expended work and work of strain recovery forces to the work expended in cycle. A notion of the equivalent stress acting in the period of the creep strain recovery is introduced. Results of the calculation according to the empirical formula where absorptivity was introduced into are compared with empirical data obtained for Kh18N10T steel at 750 deg C

  1. Normal-state anomalous behaviours studied by the internal friction of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta

    CERN Document Server

    Ying, X N; Zhang, Q M; Huang, Y N; Wang, Y N

    2002-01-01

    The internal friction of Ca partially substituted Y sub 1 sub - sub x Ca sub x Ba sub 2 Cu sub 3 O sub 7 sub - subdelta ceramics was measured using the vibrating reed method from liquid-nitrogen temperature to room temperature at kilohertz frequency. There are two thermally activated relaxation peaks (called P1 and P2 at 95 K and 120 K, respectively). The intensity of P1 almost remains unchanged with Ca substitution, while that of P2 decreases. Another internal friction peak appears around 220 K (called P3). With the increase of Ca content, the intensity of P3 decreases and the peak position shifts toward low temperature. We also have observed that Zn substitution affects P3 much less and Fe substitution seems to result in another contribution to the internal friction around 250 K. We expect that the P3 peak originates from a charge-carrier crossover and possibly has some relationship with the occurrence of the dynamic stripe at low temperature.

  2. Mechanism of high-temperature background of internal friction in metals

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Arzhavitin, V.M.

    1988-01-01

    Data of theoretical and experimental studies on energy dissipation in vibrating metal at small amplitudes and elevated temperatures (high temperature background of internal friction) are generalized and systematized. Evolution of knowledge of the background as a phenomenon influenced mainly by crystal structure defects - their form, quantity, mobility and interaction is followed. Considered is a wide range of investigated metal states and measurement conditions, and interrelations with other characteristics, for instance, strength ones. On the basis of the data obtained by authors and other investigations a concept of an additional third stage of the background increase with the temperature - the stage of deviation from exponential dependence at premelting point, is introduced. 107 refs.; 32 figs.; 3 tabs

  3. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  4. Regularized friction and continuation: Comparison with Coulomb's law

    OpenAIRE

    Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno

    2016-01-01

    International audience; Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-freedom system (mass, spring, damper, belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is co...

  5. Rheology of confined granular flows: scale invariance, glass transition, and friction weakening.

    Science.gov (United States)

    Richard, P; Valance, A; Métayer, J-F; Sanchez, P; Crassous, J; Louge, M; Delannay, R

    2008-12-12

    We study fully developed, steady granular flows confined between parallel flat frictional sidewalls using numerical simulations and experiments. Above a critical rate, sidewall friction stabilizes the underlying heap at an inclination larger than the angle of repose. The shear rate is constant and independent of inclination over much of the flowing layer. In the direction normal to the free surface, the solid volume fraction increases on a scale equal to half the flowing layer depth. Beneath a critical depth at which internal friction is invariant, grains exhibit creeping and intermittent cage motion similar to that in glasses, causing gradual weakening of friction at the walls.

  6. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Linjun [Zhejiang Univ. of Technology, Hangzhou (China). College of Mechanical Engineering; Xue, Guohong; Zhang, Ming [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China)

    2017-11-15

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  7. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    International Nuclear Information System (INIS)

    Xie, Linjun

    2017-01-01

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  8. Development of a Constitutive Friction Law based on the Frictional Interaction of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    F. Beyer

    2015-12-01

    Full Text Available Friction has a considerable impact in metal forming. This is in particular true for sheet-bulk metal-forming (SBMF in which local highly varying contact loads occur. A constitutive friction law suited to the needs of SBMF is necessary, if numerical investigations in SBMF are performed. The identification of the friction due to adhesion and ploughing is carried out with an elasto-plastic half-space model. The normal contact is verified for a broad range of normal loads. In addition, the model is used for the characterization of the occurring shear stress. Ploughing is determined by the work which is necessary to plastically deform the surface asperities of the new area that gets into contact during sliding. Furthermore, the surface patches of common half-space models are aligned orthogonally to the direction in which the surfaces approach when normal contact occurs. For a better reflection of the original surfaces, the element patches become inclined. This leads to a geometric share of lateral forces which also contribute to friction. Based on these effects, a friction law is derived which is able to predict the contact conditions especially for SBMF.

  9. Internal friction in iron-aluminium alloys having a high aluminium content

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Silvent, A.

    1966-01-01

    By using a torsion pendulum to measure the internal friction of iron-aluminium alloys containing between 25 and 50 atom per cent of aluminium, it has been possible to show the existence of three damping peaks due to interstitial carbon. Their evolution is followed as a function of the carbon content, of the thermal treatment and of the aluminium content. A model based on the preferential occupation of tetrahedral sites is proposed as an interpretation of the results. A study of the Zener peak in these substitution alloys shows also that a part of the short distance disorder existing at high temperatures can be preserved by quenching. (author) [fr

  10. Discovery of an internal-friction peak in the metallic glass Nb3Ge

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.; Tsuei, C.C.

    1978-01-01

    A well-defined internal-friction peak has been observed near 260 K in amorphous rf-sputtered films of Nb 3 Ge, studied at audio frequencies by a vibrating-reed technique. The characteristics of the peak are consistent with a stress-induced ordering mechanism involving a presently unidentified center which undergoes reorientation by an atomic jump with a sharply defined activation energy of 0.52 eV. The peak appears to be the first example of its type found in a metallic glass

  11. Friction of elastomer-on-glass system and direct observation of its frictional interface

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro

    2007-01-01

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers

  12. Internal Friction of (SiO2)1-x (GeO2)x Glasses

    OpenAIRE

    Kosugi , T.; Kobayashi , H.; Kogure , Y.

    1996-01-01

    Internal friction of (SiO2)1-x (GeO2)x glasses (x = 0, 5, 10, 24 and 100 mole%) is measured at temperatures between 1.6 and 280 K. The data are filted with the equations for thermally activated relaxation with distributing activation energies in symmetrical double-well potentials. From the determined relaxation strength spectra for each sample, the contributions from each type of microscopic structural units are calculated assuming that transverse motion of the bridging O atom in Si-O-Si, Si-...

  13. Acoustics of friction

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  14. A hierarchical estimator development for estimation of tire-road friction coefficient.

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    Full Text Available The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  15. A hierarchical estimator development for estimation of tire-road friction coefficient.

    Science.gov (United States)

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  16. Recovery of amplitude dependent internal friction in plastically deformed LiF single crystals

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1977-01-01

    The internal friction due to is studied interactions between point defects and dislocations produced in pure LiF single crystais by plastic deformation. The recovery of amplitude dependent damping is investigated in these crystais in the low frequency range. The logarithmic decrement is measured as a function of strain amplitude at several different temperatures in the range 8C - 35C in order to observe thermal breakaway. The results were interpred according to the theory developed by Granato and Lucke. Systematic measurements are also been carried out to determine the logarithmic decrement as a function of time at different temperatures, after driving the specimens at high strains amplitudes, yelding the following results: I) there is a recovery of the amplitude dependent damping upon removal of the high strain excitations, and II) the Kinetic of the recovery follows initially a t sup(2/3) ageing law, changing to tsup(1/3) afterwards [pt

  17. Development of niobium alloy/stainless steel joint by friction welding, (1)

    International Nuclear Information System (INIS)

    Kikuchi, Taiji; Kawamura, Hiroshi.

    1988-08-01

    The niobium alloy and stainless steel have been jointed by the nicrobrazing method generally. However the strength of the jointed part is weaker than that of the mother material. Therefore we developed the niobium alloy(Nb-1 % Zr)/stainless steel(SUS 304) transition joint by the friction welding method. As the tests for the development. We conducted the mechanical tests (tensile test at room temperature, 300 deg C, 500 deg C and 700 deg C, torsion fatigue test and burst test), metallographical observation and electron prove X-ray microanalysis observation. Those tests proved jointed part by the friction welding had enough properties for general uses. (author)

  18. A review of the physics of ice surface friction and the development of ice skating.

    Science.gov (United States)

    Formenti, Federico

    2014-01-01

    Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.

  19. Relaxation features of the Young's modulus and internal friction of lanthanum

    International Nuclear Information System (INIS)

    Bodryakov, V.Yu.

    1993-01-01

    E Young module and Q -1 inner friction of polycrystalline lanthanum specimens are studied comprehensively within 4.2-420 K temperature range using bend autovibrations of a specimen represented by a thin rod within ∼ 1-2 kHz frequency range. Three maximums of relaxation nature innner friction are detected under ∼ 380-410, 250-270 and 90-120 K temperatures with 0.29, 0.21 and 0.02 eV activation energies, respectively, on Q -1 (T) curves. Maximums of inner friction are accompanied by peculiarities of E(T) Young module behaviour. 21 refs., 3 figs., 2 tabs

  20. Internal friction and ultrasonic attenuation in solids, including high Tc superconductors

    International Nuclear Information System (INIS)

    Magalas, L.B.; Gorczyca, S.

    1993-01-01

    This volume contains seven invited papers and about eighty refereed contributions from the main sessions of the Sixth European Conference on Internal Friction and Ultrasonic Attenuation in Solids (ECIFUAS-6) held at the Academy of Mining and Metallurgy (Akademia Gorniczo-Hutnicza, AGH) in Krakow, Poland, 5-7 September, 1991. In addition, this volume contains six invited lectures and eight contributed papers presented at the Workshop on High Tc Superconductors on 5 September, 1991. Together these documents constitute the Proceedings of the ECIFUAS-6 Conference. A total of 140 scientists from 20 countries participated in the Conference. The programme of the Conference and the Workshop consisted of 16 invidet papers and 119 contributed papers. 107 papers were presented during 8 poster sessions. (orig.)

  1. Temperature dependence of Young's modulus and internal friction of G-10CR and G-11CR epoxy resins

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Maerz, G.

    1980-01-01

    The Young's moduli of the epoxy-resin matrix material used in NEMA-designation G-10CR and G-11CR fiberglass-cloth-reinforced composites were measured dynamically and semicontinuously between ambient and liquid-nitrogen temperatures. Both materials exhibit regular temperature behavior, showing large Young's-modulus changes, about 125 and 50%, respectively. Internal friction decreased about 80% during cooling to liquid-nitrogen temperature (76 0 K). The different thermoelastic coefficients of the two materials indicate a different internal structure

  2. Internal friction and mechanical properties of Zr - 2.5% Nb alloy after programme loading

    International Nuclear Information System (INIS)

    Gindin, I.A.; Chirkina, L.A.; Okovit, V.S.; Netesov, V.M.

    1984-01-01

    Temperature dependence of internal friction in the range 20-600 deg C of the alloy Zr-2.5% Nb in the initial state after programmed loading up to 0.1% of residual elongation and static deformation to the same deformation degree has been studied. It is shown, that the programmed loading promotes the decrease in relaxation rate at 20 and 200 deg C and the increase of strength characteristics of the alloy without the decrease in plasticity margin to fracture in the range 20-400 deg C

  3. Origin of the low-frequency internal friction background of gold

    Science.gov (United States)

    Baur, J.; Benoit, W.

    1986-11-01

    The internal friction (IF) background of gold is studied in the kHz frequency range. Systematic measurements of IF as a function of frequency, strain amplitude, and temperature show that the IF is due to the superposition of two contributions: the thermoelastic effect and a dislocation effect. The thermoelastic effect is responsible for the IF background observed when the strain amplitude tends to zero. It is the only contribution to the IF background which is strain amplitude independent. On the contrary, the dislocation effect contributes only to the strain amplitude-dependent IF background. This effect is proportional to the strain amplitude. In particular, it is zero when the strain amplitude tends to zero. Furthermore, the dislocation contribution is frequency independent. The experimental results show that the dislocation effect cannot be explained by a viscous damping of dislocation motion, but must be related to an hysteretic and athermal motion of dislocations.

  4. Two new methods to determine the adhesion by means of internal friction in materials covered with films

    International Nuclear Information System (INIS)

    Colorado, H. A.; Ghilarducci, A. A.; Salva, H. R.

    2006-01-01

    Two new models are proposed to determine the adhesion energy be means of the internal friction technique (IF) in thin films layered materials. for the first method is necessary to determine enthalpy by means of the IF technique, for which the adhesion work has been determined with experimental data. In the second method are necessary to perform IF tests at constant temperature. (Author)

  5. Internal friction and absence of dilatancy of packings of frictionless polygons.

    Science.gov (United States)

    Azéma, Émilien; Radjaï, Farhang; Roux, Jean-Noël

    2015-01-01

    By means of numerical simulations, we show that assemblies of frictionless rigid pentagons in slow shear flow possess an internal friction coefficient (equal to 0.183±0.008 with our choice of moderately polydisperse grains) but no macroscopic dilatancy. In other words, despite side-side contacts tending to hinder relative particle rotations, the solid fraction under quasistatic shear coincides with that of isotropic random close packings of pentagonal particles. Properties of polygonal grains are thus similar to those of disks in that respect. We argue that continuous reshuffling of the force-bearing network leads to frequent collapsing events at the microscale, thereby causing the macroscopic dilatancy to vanish. Despite such rearrangements, the shear flow favors an anisotropic structure that is at the origin of the ability of the system to sustain shear stress.

  6. Correlation between microstructure and internal friction in a Zr41.2-Ti13.8-Cu12.5-Ni8- Be22.5-Fe2 bulk metallic glass

    International Nuclear Information System (INIS)

    Wang, Q.; Pelletier, J.M.; Da Dong, Y.; Ji, Y.F.; Xiu, H.

    2004-01-01

    The microstructural evolution in a Zr-Ti-Cu-Ni-Be-Fe bulk metallic glass (BMG) has been investigated by measurements of dynamical shear modulus and internal friction combined with other analytical methods such as differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). When heated from room temperature up to 873 K, the as-received BMG exhibits an exponential increase in internal friction accompanying the strong decrease of storage modulus and the presence of the first loss modulus peak during the dynamic glass transition, which can be well described using quasi-point defect model. The correlative changes of the mechanical response at higher temperature are associated with the crystallisation process of the supercooled liquid phase, which occurs in four different stages. It is shown that the main crystallisation process is completed in the first two stages. With further increasing temperature, the remaining amorphous phases crystallise and/or the metastable crystalline phases are transformed into the stable ones. Isothermal annealing were also performed at temperatures in the supercooled liquid region far below the onset temperature of the crystallisation process (T x ). Their influence on microstucture and internal friction behaviour of the BMG is also presented in this paper. The most striking result is that the internal friction is very sensitive to the local atomic short range ordering induced by the preheating treatment

  7. Experimental research on friction coefficient between grain bulk and bamboo clappers

    Science.gov (United States)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  8. Development of a Numerical Model for Orthogonal Cutting. Discussion about the Sensitivity to Friction Problem

    Science.gov (United States)

    San Juan, M.; de la Iglesia, J. M.; Martín, O.; Santos, F. J.

    2009-11-01

    In despite of the important progresses achieved in the knowledge of cutting processes, the study of certain aspects has undergone the very limitations of the experimental means: temperature gradients, frictions, contact, etc… Therefore, the development of numerical models is a valid tool as a first approach to study of those problems. In the present work, a calculation model under Abaqus Explicit code is developed to represent the orthogonal cutting of AISI 4140 steel. A bidimensional simulation under plane strain conditions, which is considered as adiabatic due to the high speed of the material flow, is chosen. The chip separation is defined by means of a fracture law that allows complex simulations of tool penetration in the workpiece. The strong influence of friction on cutting is proved, therefore a very good definition of materials behaviour laws could be obtained, but an erroneous value of friction coefficient could notably reduce the reliability. Considering the difficulty of checking the friction models used in the simulation, from the tests carried out habitually, the most efficacious way to characterize the friction would be to combine simulation models with cutting tests.

  9. Novel friction law for the static friction force based on local precursor slipping.

    Science.gov (United States)

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-09-10

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control.

  10. Low temperature internal friction on γ-irradiated polyvinylidene fluoride (PVDF)

    International Nuclear Information System (INIS)

    Callens, A.; Eersels, L.; De Batist, R.

    1978-01-01

    A least-squares fitting of the below room temperature part of the internal friction spectra, obtained by the torsion pendulum technique on as-received and γ-irradiated (up to 1 Grad) strips and fibres of polyvinylidene fluoride by a superposition of single Debye functions, reveals that the spectral component features are determined not only by purely amorphous chain characteristics but also by the dose-dependence of crystallinity. A careful analysis of the relaxation spectra confirms that at least one relaxation effect (approximately 236 K) is created upon irradiation. The analysis of the dose dependence of the characteristics of the β (glass transition; approximately 220 K) and βsub(u) (apparent upper glass transition; approximately 270 K) relaxations, suggests the probable influence of crystallinity on the molecular motion in the amorphous phase. The increase of the intensity of the γ relaxation (approximately 190 K) is related to the irradiation-induced crystallite degradation. (author)

  11. Internal friction of flux motion in Hg-system high-Tc superconductors

    International Nuclear Information System (INIS)

    Tian, W.; Zhu, J.S.; Shao, H.M.; Li, J.; Wang, Y.N.

    1996-01-01

    The internal friction(IF) and modulus as functions of temperature were measured for several Hg-system high-Tc superconductors(Hg1201, Hg1223, Hg1223 doped with Fe and Pb), under the applied magnetic field, with vibrating reed technique. An IF peak associated with flux motion can be found below Tc for all samples. The temperature of the IF peak increases with reducing vibrating amplitude. This amplitude dependence of IF indicates that the flux motion is characterized by nonlinear behavior. No apparent shift of IF peak position can be detected by varying the frequency in the range from 10 2 Hz to 10 3 Hz. Furthermore, the IF peak height satisfies a scaling law Q -1 ∝ω -n . This may be originated from phase transition of flux line lattice(FLL) rather than a thermally activated diffusion process. (orig.)

  12. METHODS TO MEASURE, PREDICT AND RELATE FRICTION, WEAR AND FUEL ECONOMY

    Energy Technology Data Exchange (ETDEWEB)

    Gravante, Steve [Ricardo, Inc.; Fenske, George [Argonne National Lab. (ANL), Argonne, IL (United States); Demas, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States); Erck, Robert [Argonne National Lab. (ANL), Argonne, IL (United States)

    2018-03-19

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAK and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110 °C. Ricardo's objective is to use this data along with advanced CAE methods to develop empirical characterizations of friction and wear mechanisms in internal combustion engines such that the impact of such mechanisms of engine fuel consumption and/or vehicle fuel economy can be estimated. The value of such predictive schemes is that if one knows how a particular friction reduction technology changes oil viscosity and/or the friction coefficient then the fuel consumption or fuel economy impacts can be estimated without the excessive cost of motored or fired engine tests by utilizing cost effective lab scale tests and in combination with advanced analytical methods. One accomplishment made during this work was the development and validation of a novel technique for quantifying wear using data from WLI through the use of

  13. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  14. Progressive friction mobilization and enhanced Janssen's screening in confined granular rafts

    Science.gov (United States)

    Saavedra V., Oscar; Elettro, Hervé; Melo, Francisco

    2018-04-01

    Confined two-dimensional assemblies of floating particles, known as granular rafts, are prone to develop a highly nonlinear response under compression. Here we investigate the transition to the friction-dominated jammed state and map the gradual development of the internal stress profile with flexible pressure sensors distributed along the raft surface. Surprisingly, we observe that the surface stress screening builds up much more slowly than previously thought and that the typical screening distance later dramatically decreases. We explain this behavior in terms of progressive friction mobilization, where the full amplitude of the frictional forces is only reached after a macroscopic local displacement. At further stages of compression, rafts of large length-to-width aspect ratio experience much stronger screenings than the full mobilization limit described by the Janssen's model. We solve this paradox using a simple mathematical analysis and show that such enhanced screening can be attributed to a localized compaction front, essentially shielding the far field from compressive stresses.

  15. Friction dampers, the positive side of friction

    NARCIS (Netherlands)

    Lopez Arteaga, I.; Nijmeijer, H.; Busturia, J.M.; Sas, P.; Munck, de M.

    2004-01-01

    Friction is frequently seen as an unwanted phenomenon whose influence has to be either minimised or controlled. In this work one of the positive sides of friction is investigated: friction damping. Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of

  16. Effect of grain size on amplitude-dependent internal friction in polycrystalline copper. Do takessho no naibu masatsu no shinpuku izon sei ni oyobosu kessho ryukei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Goto, H.; Nishino, Y.; Asano, S. (Nagoya Inst. of Technology, Nagoya (Japan))

    1991-08-20

    In this research, amplitude-dependency of internal friction was measured on various polycrystalline copper of varying grain size. Furthermore, the measurement data of amplitude-dependency of internal friction were analyzed from the phenomenological standpoint and microplastic strain was calculated as a function of stress. The obtained correlation between microplastic strain and stress corresponded to the stress-strain curve obtainable from normal tensile tests. Hence, comparing with the Hall-Petch relation, the relationship between flow stress and grain size in the microplastiic zone was discussed. The obtained results are summarized as follows: When grains were refined, amplitude dependency of internal friction was inhibited. As a result of the analysis of the data obtained, it was found that the flow stress in the microplastic zone increased following refining of grains. This agreed qualitatively with the macro deformation obtained from normal tensile tests. The grain size dependency of flow stress in the microplastic zone did not follow the normal Hall-Pitch relation, but the plastic strain increased, the dependency moved towards it. 16 refs., 4 figs.

  17. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  18. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  19. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  20. Development of a New Method to Investigate the Dynamic Friction Behavior of Interfaces Using a Kolsky Tension Bar

    International Nuclear Information System (INIS)

    Sanborn, B.; Song, B.; Nishida, E.

    2017-01-01

    In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steel and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.

  1. Pressure and Friction Injuries in Primary Care.

    Science.gov (United States)

    Phillips, Shawn; Seiverling, Elizabeth; Silvis, Matthew

    2015-12-01

    Pressure and friction injuries are common throughout the lifespan. A detailed history of the onset and progression of friction and pressure injuries is key to aiding clinicians in determining the underlying mechanism behind the development of the injury. Modifying or removing the forces that are creating pressure or friction is the key to both prevention and healing of these injuries. Proper care of pressure and friction injuries to the skin is important to prevent the development of infection. Patient education on positioning and ergonomics can help to prevent recurrence of pressure and friction injuries. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ductile damage development in friction stir welded aluminum (AA2024) joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    Ductile damage development in a friction stir welded aluminum joint subjected to tension is analyzed numerically by FE-analysis, based on a total Lagrangian formulation. An elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids is applied. Main focus...

  3. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.

    Science.gov (United States)

    Leung, Lap Yin; Mao, Chen; Srivastava, Ishan; Du, Ping; Yang, Chia-Yi

    2017-07-01

    The purpose of this study was to demonstrate that the flow function (FFc) of pharmaceutical powders, as measured by rotational shear cell, is predominantly governed by cohesion but not friction coefficients. Driven by an earlier report showing an inverse correlation between FFc and the cohesion divided by the corresponding pre-consolidation stress (Wang et al. 2016. Powder Tech. 294:105-112), we performed analysis on a large data set containing 1130 measurements from a ring shear tester and identified a near-perfect inverse correlation between the FFc and cohesion. Conversely, no correlation was found between FFc and friction angles. We also conducted theoretical analysis and estimated such correlations based on Mohr-Coulomb failure model. We discovered that the correlation between FFc and cohesion can sustain as long as the angle of internal friction at incipient flow is not significantly larger than the angle of internal friction at steady-state flow, a condition covering almost all pharmaceutical powders. The outcome of this study bears significance in pharmaceutical development. Because the cohesion value is strongly influenced by the interparticle cohesive forces, this study effectively shows that it is more efficient to improve the pharmaceutical powder flow by lowering the interparticle cohesive forces than by lowering the interparticle frictions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Development of friction welding method by electric servo motors; Dendo servo shiki masatsu assetsuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Onuma, M; Hasegawa, T; Sakamoto, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The standard friction welding has two methods; the brake method and the inertia method. We have developed a new friction welding method with the electric servo motor system. The forming of plastic fluidity layers of interface is evaluated quantitatively with the feedback control characteristics. The new method has enabled to reduce the heat effect and the burr of friction welding. In the method, we could reduce the getting heat energy, from one-third to half less than the previous methods. 6 refs., 16 figs.

  5. Friction Stir Welding and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Clarke, Kester D.; Krajewski, Paul E.

    2015-05-01

    With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, which organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.

  6. Molecular dynamics simulations of metallic friction and of its dependence on electric currents - development and first results

    Science.gov (United States)

    Meintanis, Evangelos Anastasios

    We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.

  7. Internal friction study of hydrides in zirconium at low hydrogen contents

    International Nuclear Information System (INIS)

    Peretti, H.A.; Corso, H.L.; Gonzalez, O.A.; Fernandez, L.; Ghilarducci, A.A.; Salva, H.R.

    1999-01-01

    Full text: Internal friction and shear modulus measurements were carried out on crystal bar zirconium in the as received and hydride conditions using an inverted forced pendulum. Hydriding was achieved in two ways: inside and out of the pendulum. The final hydrogen content determined by fusion analysis in the 'in situ' hydride sample was of 36 ppm. Another sample was hydride by the cathodic charge method with 25 ppm. The thermal solid solubility (TSS) phase boundary presents hysteresis between the precipitation (TSSP) and the dissolution (TSSD) temperatures for the zirconium hydrides. During the first thermal cycling the anelastic effects could be attributed to the δ, ε and metastable γ zirconium hydrides. After 'in situ' annealing at 490 K, these peaks completely disappear in the electrolytically charged sample, while in the 'in situ' hydride, the peaks remain with decreasing intensity. This effect can be understood in terms of the different surface conditions of the samples. (author)

  8. Modeling Friction in Modelica with the Lund-Grenoble Friction Model

    OpenAIRE

    Aberger, Martin; Otter, Martin

    2002-01-01

    The properties of the Lund-Grenoble friction model are summarized and different types of friction elements - bearing friction, clutch, one-way clutch, are implemented in Modelica using this friction formulation. The dynamic properties of these components are determined in simulations and compared with the friction models available in the Modelica standard library. This includes also an automatic gearbox model where 6 friction elements are coupled dynamically.

  9. Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials

    Science.gov (United States)

    Lee, Wan Kyu; Rhee, Tae Hee; Kim, Hyun Seong; Jang, Ho

    2013-09-01

    The effect of antimony trisulfide (Sb2S3) on the tribological properties of automotive brake friction materials was investigated using a Krauss type tribometer and a 1/5 scale dynamometer with a rigid caliper. Results showed that Sb2S3 improved fade resistance by developing transfer films on the disc surface at elevated temperatures. On the other hand, the rubbing surfaces of the friction material exhibited contact plateaus with a broader height distribution when it contained Sb2S3, indicating fewer contact junctions compared to the friction material with graphite. The friction material with Sb2S3 also exhibited a lower stick-slip propensity than the friction material with graphite. The improved fade resistance with Sb2S3 is attributed to its lubricating capability sustained at high temperatures, while the lower stick-slip propensity of the friction material with Sb2S3 is associated with the slight difference between its static and kinetic coefficients of friction and high normal stiffness.

  10. Understanding dynamic friction through spontaneously evolving laboratory earthquakes.

    Science.gov (United States)

    Rubino, V; Rosakis, A J; Lapusta, N

    2017-06-29

    Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.

  11. Ratchet due to broken friction symmetry

    DEFF Research Database (Denmark)

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...... be provided with sonic internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments...... with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion, In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments, Despite the setup being...

  12. Development and Testing of a Friction-Based Post-Installable Sensor for Subsea Fiber-Optic Monitoring Systems

    Science.gov (United States)

    Bentley, Nicole; Brower, David; Le, Suy Q.; Seaman, Calvin; Tang, Henry

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain

  13. Development and Testing of a Friction-Based Post-Installable Fiber-Optic Monitoring System for Subsea Applications

    Science.gov (United States)

    Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system capable of measuring pressure, strain, and temperature that can be deployed on existing subsea structures. A summary is provided of the design concept, prototype development, prototype performance testing, and subsequent design refinements of the device. The results of laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are also included. Limitations of the initial concept were identified during testing and future design improvements were proposed and later implemented. These new features enhance the coupling of the sensor device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on flowlines, risers, and other subsea structures. The work described in this paper investigates the design and test of a friction-based coupling device (herein referred to as a friction clamp) which is suitable for pipelines and structures that are suspended in the water column as well as for those that are resting on the seabed. The monitoring elements consist of fiberoptic sensors that are bonded to a stainless steel clamshell assembly with a high-friction surface coating. The friction clamp incorporates a single hinge design to facilitate installation of the clamp and dual rows of opposing fasteners to distribute the clamping force along the structure. The friction clamp can be modified to be installed by commercial divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating

  14. Development and Testing of a Friction-Based Post-Installable Sensor for Subsea Fiber-Optic Monitoring System

    Science.gov (United States)

    Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain

  15. Low temperature internal friction in La75Al20Si5 metallic glass

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.

    1991-01-01

    Results of investigation of temperature dependence of internal friction (IF) in amorphous alloy La 75 Al 20 Si 5 are presented. The amorphous state was atteined by quenching from liquid melt at a rate of 10 5 -10 6 K/s. Two IF maxima at Q -1 (T) dependence are observed at the temperatures of 185 and 230 K. Increase in the frequency of mechanical vibrations results in the shift of IF maxima to the side of high temperatures, which indicates their relaxation origin. The first peak of IF in the studied alloy La 75 Al 20 Si 5 is in all probability related to reorientation of chemical bonds La-La and La-Al. The maximum at T∼230 K is related to the switching of La-Si chemical bonds

  16. Modeling and data analysis of the NASA-WSTF frictional heating apparatus - Effects of test parameters on friction coefficient

    Science.gov (United States)

    Zhu, Sheng-Hu; Stoltzfus, Joel M.; Benz, Frank J.; Yuen, Walter W.

    1988-01-01

    A theoretical model is being developed jointly by the NASA White Sands Test Facility (WSTF) and the University of California at Santa Barbara (UCSB) to analyze data generated from the WSTF frictional heating test facility. Analyses of the data generated in the first seconds of the frictional heating test are shown to be effective in determining the friction coefficient between the rubbing interfaces. Different friction coefficients for carobn steel and Monel K-500 are observed. The initial condition of the surface is shown to affect only the initial value of the friction coefficient but to have no significant influence on the average steady-state friction coefficient. Rotational speed and the formation of oxide film on the rotating surfaces are shown to have a significant effect on the friction coefficient.

  17. Development of friction welding process of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Shin, Hyung Seop; Jeong, Young Jin; Kim, Ki Hyun

    2004-01-01

    Bulk Metallic Glasses(BMG) with good mechanical properties have problems that engineering application fields have been limited because of limitation of the alloy size. In order to solving this problem, the friction welding of BMG has been tried using the superplastic-like deformation behavior under the supercooled liquid region. The apparatus for friction welding test was designed and constructed using pneumatic cylinder and gripper based on a conventional lathe. Friction welding have been tried to combination of same BMG alloy and crystalline alloys. The results of welding test were evaluated by X-ray diffraction, measurement of hardness and mechanical properties test. In order to obtain the optimized welding test conditions the temperature of friction interface was measured using Infrared thermal imager

  18. Statistical analysis of the low-temperature dislocation peak of internal friction (Bordoni peak) in nanostructured copper

    International Nuclear Information System (INIS)

    Vatazhuk, E.N.; Natsik, V.D.

    2011-01-01

    The temperature-frequency dependence of internal friction in the nanostructured samples of Cu and fibred composite C-32 vol.%Nb with the sizes of structure fragments approx 200 nm is analyzed. Experiments are used as initial information for such analysis. The characteristic for the heavily deformed copper Bordoni peak, located nearby a temperature 90 K, was recorded on temperature dependence of vibration decrement (frequencies 73-350 kHz) in previous experiments. The peak is due to the resonance interaction of sound with the system of thermal activated relaxators, and its width considerably greater in comparison with the width of standard internal friction peak with the single relaxation time. Statistical analysis of the peak is made in terms of assumption that the reason of broadening is random activation energy dispersion of relaxators as a result of intense distortion of copper crystal structure. Good agreement of experimental data and Seeger theory considers thermal activated paired kinks at linear segments of dislocation lines, placed in potential Peierls relief valley, as relaxators of Bordoni peak, was established. It is shown that the registered peak height in experiment correspond to presence at the average one dislocation segment in the interior of crystalline grain with size of 200 nm. Empirical estimates for the critical Peierls stress σp ∼ 2x10 7 Pa and integrated density of the interior grain dislocations ρ d ∼ 10 13 m -2 are made. Nb fibers in the composite Cu-Nb facilitate to formation of nanostructured copper, but do not influence evidently on the Bordoni peak.

  19. A Physics-Based Rock Friction Constitutive Law: Steady State Friction

    Science.gov (United States)

    Aharonov, Einat; Scholz, Christopher H.

    2018-02-01

    Experiments measuring friction over a wide range of sliding velocities find that the value of the friction coefficient varies widely: friction is high and behaves according to the rate and state constitutive law during slow sliding, yet markedly weakens as the sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to explain this behavior. Using conventional microphysics of creep, we calculate the velocity and temperature dependence of contact stresses during sliding, including the thermal effects of shear heating. Contacts are assumed to reach a coupled thermal and mechanical steady state, and friction is calculated for steady sliding. Results from theory provide good quantitative agreement with reported experimental results for quartz and granite friction over 11 orders of magnitude in velocity. The new model elucidates the physics of friction and predicts the connection between friction laws to independently determined material parameters. It predicts four frictional regimes as function of slip rate: at slow velocity friction is either velocity strengthening or weakening, depending on material parameters, and follows the rate and state friction law. Differences between surface and volume activation energies are the main control on velocity dependence. At intermediate velocity, for some material parameters, a distinct velocity strengthening regime emerges. At fast sliding, shear heating produces thermal softening of friction. At the fastest sliding, melting causes further weakening. This theory, with its four frictional regimes, fits well previously published experimental results under low temperature and normal stress.

  20. Water weakening of chalk explaied from a fluid-solid friction factor

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    to where it is dominated by inertial forces, i.e. when the pore fluid motion lags behind the applied frequency. It is therefore a measure of the internal surface friction between solid and fluid which can be interpreted as a friction factor on the pore scale and we propose it can be extrapolated...... using the Biot critical frequency as a single reference. Other viscoplastic parameters were investigated in the same manner to verify the range of the functioning of the friction factor. The findings show that the Biot critical frequency can be used as a common friction factor and is useful in combining...... laboratory results. It is also inferred that the observed water weakening phenomenon may be attributed to the friction between solid and fluid....

  1. Proposed apparatus for measuring internal friction in rocks at high temperatures and pressures: a design analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.P.

    1977-10-03

    An apparatus is described that measures internal friction in rocks at high temperatures (approximately 800/sup 0/C) and pressures (approximately 1.0 GPa). Steady oscillations (approximately 1.0 Hz) are induced in a jacketed sample while coaxial capacitive transducers monitor the resulting radial strain. Sample strains are continuously compared to the deformation of a low-loss standard, which acts as a stress transducer. The stress state produced is uniaxial stress. We use the theory of viscoelasticity to partition the loss into components depending on pure shear and dilatation. The theoretical results emphasize the importance of ultimately measuring each loss independently.

  2. Internal friction of Fe-B alloys neutron irradiated at low temperature

    International Nuclear Information System (INIS)

    Kitajima, Kazunori; Futagami, Koji; Abe, Hironobu; Yoshida, Hiroyuki.

    1975-01-01

    Measurements were made on the internal friction of Fe-B alloys irradiated by neutron at 16 0 K to the dose of 3x10 16 nvt (>1 MeV) and 6x10 17 nvt (thermal). Boron was used to enhance the production of defects by the nuclear transformation B 10 (n,α)Li 7 . Relaxation peaks were found in specimens containing dispersed fine precipitates of NbB 2 in range of B 500--7200 wt ppm and Nb 2000--30000 wt ppm. The most prominent peak is the one with the peak temperature of 169 0 K at the frequency of 264 c/sec. Activation energy determined from the peak shift is 0.28+-0.01 eV, which is nearly equal to that of migration of self-interstitial reported on pure iron. However activation energy of the decay of peaks by annealing is about 0.7 eV. Interpretation was presented that the peak may be attributed to re-orientation of self-interstitials loosely bound to a boron atom. (auth.)

  3. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  4. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.

    Science.gov (United States)

    Cunningham, J C; Sinka, I C; Zavaliangos, A

    2004-08-01

    In this first of two articles on the modeling of tablet compaction, the experimental inputs related to the constitutive model of the powder and the powder/tooling friction are determined. The continuum-based analysis of tableting makes use of an elasto-plastic model, which incorporates the elements of yield, plastic flow potential, and hardening, to describe the mechanical behavior of microcrystalline cellulose over the range of densities experienced during tableting. Specifically, a modified Drucker-Prager/cap plasticity model, which includes material parameters such as cohesion, internal friction, and hydrostatic yield pressure that evolve with the internal state variable relative density, was applied. Linear elasticity is assumed with the elastic parameters, Young's modulus, and Poisson's ratio dependent on the relative density. The calibration techniques were developed based on a series of simple mechanical tests including diametrical compression, simple compression, and die compaction using an instrumented die. The friction behavior is measured using an instrumented die and the experimental data are analyzed using the method of differential slices. The constitutive model and frictional properties are essential experimental inputs to the finite element-based model described in the companion article. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2022-2039, 2004

  5. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Internal friction studies on dynamic strain aging in P91 ferritic steel

    International Nuclear Information System (INIS)

    Zhou, Hongwei; Fang, Junfei; Chen, Yan; Yang, Lei; Zhang, Hui; Lu, Yun; He, Yizhu

    2016-01-01

    The temperature of dynamic strain aging (DSA) regime in P91 steel is between 523 K and 773 K. The activation energy (Q) for onset of DSA is 73 kJ/mol, while that for finale of DSA is 202 kJ/mol. Two main Internal friction (IF) speaks were observed, Snoek and SKK with the activation energy of 67.9 kJ/mol and 121 kJ/mol, respectively. IF shows that activation energy of 73 kJ/mol is equal to that of C atom body diffusion in α-Fe, and 202 kJ/mol is equal to binding energy between C atoms and moving dislocations. These results confirm that the mechanism of DSA can be explained by the diffusion of C atoms and pinning between C and moving dislocation. These investigations indicate that DSA in P91 steel is resulted from C atom diffusion, instead of Cr or Mo atoms.

  7. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    Science.gov (United States)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  8. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Science.gov (United States)

    Yang, Wei; Luo, Ruiying; Hou, Zhenhua

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously. PMID:28773613

  9. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  10. Paediatric treadmill friction injuries.

    Science.gov (United States)

    Jeremijenko, Luke; Mott, Jonathan; Wallis, Belinda; Kimble, Roy

    2009-05-01

    The aim of this study was to report on the severity and incidence of children injured by treadmills and to promote the implementation of safety standards. This retrospective review of children with treadmill friction injuries was conducted in a single tertiary-level burns centre in Australia between January 1997 and June 2007. The study revealed 37 children who sustained paediatric treadmill friction injuries. This was a presentation of 1% of all burns. Thirty-three (90%) of the injuries occurred in the last 3.5 years (January 2004 to June 2007). The modal age was 3.2 years. Thirty-three (90%) injuries were either full thickness or deep partial friction burns. Eleven (30%) required split thickness skin grafts. Of those who became entrapped, 100% required skin grafting. This study found that paediatric treadmill friction injuries are severe and increasing in incidence. Australian standards should be developed, implemented and mandated to reduce this preventable and severe injury.

  11. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  12. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  13. Empirical analysis of skin friction under variations of temperature

    International Nuclear Information System (INIS)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-01-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  14. Friction in textile thermoplastic composites forming

    NARCIS (Netherlands)

    Akkerman, Remko; ten Thije, R.H.W.; Sachs, Ulrich; de Rooij, Matthias B.; Binetruy, C.; Boussu, F.

    2010-01-01

    A previously developed mesoscopic friction model for glass/PP textile composite laminates during forming is evaluated for glass and carbon/PPS laminates, at higher temperatures and lower viscosities than before. Experiments were performed for tool/ply and ply/ply configurations in a new friction

  15. A continuum based fem model for friction stir welding-model development

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, G. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States) and Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: g.buffa@dtpm.unipa.it; Hua, J. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: hua.14@osu.edu; Shivpuri, R. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: shivpuri.1@osu.edu; Fratini, L. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: abaqus@dtpm.unipa.it

    2006-03-15

    Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone.

  16. A continuum based fem model for friction stir welding-model development

    International Nuclear Information System (INIS)

    Buffa, G.; Hua, J.; Shivpuri, R.; Fratini, L.

    2006-01-01

    Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone

  17. Tribo-performance evaluation of ecofriendly brake friction composite materials

    Science.gov (United States)

    Kumar, Naresh; Singh, Tej; Grewal, G. S.

    2018-05-01

    This paper presents the potential of natural fibre in brake friction materials. Natural fibre filled ecofriendly brake friction materials were developed without Kevlar fibre evaluated for tribo-performance on a chase friction testing machine following SAE J 661a standard. Experimental results indicated that natural fibre enhances the fade performance, but depresses the friction and wear performance, whereas Kevlar fibre improves the friction, wear and recovery performance but depresses the fade performance. Also the results revealed that with the increase in natural fibre content, the friction and fade performances enhanced.

  18. Financial frictions and substitution between internal and external funds in publicly traded Brazilian companies

    Directory of Open Access Journals (Sweden)

    Márcio Telles Portal

    2012-04-01

    Full Text Available The present study aimed to document the effects of financial constraints on the negative relationship between cash flow and external funds, a phenomenon associated with the Pecking Order Theory. This theory suggests that companies subject to more expensive external funds (financially constrained firms should demonstrate a stronger negative relationship with cash flow than companies subject to minor financial frictions (financially unconstrained firms. The results indicate that the external funds of constrained firms consistently present less negative sensitivity to cash flow compared with those of unconstrained companies. Additionally, the internal funds of constrained companies demonstrate a positive sensitivity to cash flow, whereas those of unconstrained companies do not show any such significant behavior. These results are in accordance with the findings of Almeida and Campello (2010, who suggest the following: first, because of the endogenous nature of investment decisions in constrained companies, the complementary relationship between internal and external funds prevails over the substitutive effects suggested by the Pecking Order Theory; and second, the negative relationship between cash flow and external funds cannot be interpreted as evidence of costly external funds and therefore does not corroborate the Pecking Order Theory.

  19. A set-valued force law for spatial Coulomb-Contensou friction

    NARCIS (Netherlands)

    Leine, R.I.; Glocker, C.

    2003-01-01

    The aim of this paper is to develop a set-valued contact law for combined spatial Coulomb-Contensou friction, taking into account a normal friction torque (drilling friction) and spin. The set-valued Coulomb-Contensou friction law is derived from a non-smooth velocity pseudo potential. A

  20. Intelligent Flow Friction Estimation.

    Science.gov (United States)

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  1. Intelligent Flow Friction Estimation

    Directory of Open Access Journals (Sweden)

    Dejan Brkić

    2016-01-01

    Full Text Available Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ. In the present study, a noniterative approach using Artificial Neural Network (ANN was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re and the relative roughness of pipe (ε/D were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re and the relative roughness (ε/D ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  2. Frictions in Project-Based Supply of Permits

    International Nuclear Information System (INIS)

    Liski, M.; Virrankoski, J.

    2004-01-01

    Emissions trading in climate change can entail large overall cost savings and transfers between developed and developing countries. However, the search for acceptable JI or CDM projects implies a deviation from the perfect market framework used in previous estimations. Our model combines the search market for projects with a frictionless permit market to quantify the supply-side frictions in the CO2 market. We also decompose the effects of frictions into the effects of search friction, bargaining, and bilateralism. A calibration using previous cost estimates of CO2 reductions illustrate changes in cost savings and allocative implications

  3. Analysis of the Journal Bearing Friction Losses in a Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Christoph Knauder

    2015-04-01

    Full Text Available Internal combustion engines (ICE for the use in heavy-duty trucks and buses have to fulfil demanding requirements for both vehicle efficiency as well as for emission of greenhouse gases. Beside the piston assembly the journal bearings are among the largest contributors to friction in the ICE. Through a combination of measurements and validated simulation methods the journal bearing friction losses of a state-of-the-art heavy-duty Diesel engine are investigated for a large range of real world operating conditions. To this task recently developed and extensively validated simulation methods are used together with realistic lubricant models that consider the Non-Newtonian behaviour as well as the piezoviscous effect. In addition, the potential for further friction reduction with the use of ultra-low viscosity lubricants is explored. The results reveal a potential of about 8% friction reduction in the journal bearings using a 0W20 ultra-low viscosity oil with an HTHS-viscosity (The HTHS-viscosity is defined as the dynamic viscosity of the lubricant measured at 150 °C and at a shear rate of 106 s

  4. Identification of GMS friction model without friction force measurement

    International Nuclear Information System (INIS)

    Grami, Said; Aissaoui, Hicham

    2011-01-01

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  5. Friction and wear performance of low-friction carbon coatings under oil lubrication

    International Nuclear Information System (INIS)

    Kovalchenko, A.; Ajayi, O. O.; Erdemir, A.; Fenske, G. R.

    2001-01-01

    Amorphous carbon coatings with very low friction properties were recently developed at Argonne National Laboratory. These coatings have shown good promise in mitigating excessive wear and scuffing problems associated with low-lubricity diesel fuels. To reduce the negative effect of sulfur and other lubricant additives in poisoning the after-treatment catalyst, a lubricant formulation with a low level of sulfur may be needed. Exclusion of proven sulfur-containing extreme pressure (EP) and antiwear additives from oils will require other measures to ensure durability of critical lubricated components. The low-friction carbon coating has the potential for such applications. In the present study, we evaluated the friction and wear attributes of three variations of the coating under a boundary lubrication regime. Tests were conducted with both synthetic and mineral oil lubricants using a ball-on-flat contact configuration in reciprocating sliding. Although the three variations of the coating provided modest reductions in friction coefficient, they all reduced wear substantially compared to an uncoated surface. The degradation mode of oxidative wear on the uncoated surface was replaced by a polishing wear mode on the coated surfaces

  6. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress

    Science.gov (United States)

    Whitney, G. A.; Mansour, J. M.; Dennis, J. E.

    2015-01-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395

  7. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress.

    Science.gov (United States)

    Whitney, G A; Mansour, J M; Dennis, J E

    2015-09-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy.

  8. Bioinspired orientation-dependent friction.

    Science.gov (United States)

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  9. Friction and Lubrication of Large Tilting-Pad Thrust Bearings

    Directory of Open Access Journals (Sweden)

    Michał Wasilczuk

    2015-04-01

    Full Text Available Fluid film bearings have been extensively used in the industry because of their unbeatable durability and extremely low friction coefficient, despite a very low coefficient of friction dissipation of energy being noticeable, especially in large bearings. Lubricating systems of large tilting pad thrust bearings utilized in large, vertical shaft hydrogenerators are presented in this paper. A large amount of heat is generated due to viscous shearing of the lubricant large tilting pad thrust bearings, and this requires systems for forced cooling of the lubricant. In the dominant bath lubrication systems, cooling is realized by internal coolers or external cooling systems, with the latter showing some important advantages at the cost of complexity and also, potentially, lower reliability. Substantial losses in the bearings, reaching 1 MW in extreme cases, are a good motivation for the research and development aimed at reducing them. Some possible methods and their potential efficiency, along with some effects already documented, are also described in the paper.

  10. Development of low-friction and wear-resistant surfaces for low-cost Al hot stamping tools

    Directory of Open Access Journals (Sweden)

    Dong Y.

    2015-01-01

    Full Text Available In this study, advanced surfaces and coatings have been developed using plasma thermochemical treatment, PVD coating, electroless Ni-BN plating and duplex surface engineering to produce low-friction and wear-resistant surfaces for cast iron stamping tools. Their microstructural and nano-mechanical properties were systematically analysed and the tribological behaviour of these new surfaces and coatings were evaluated. The experimental results have shown that under dry sliding condition, the tribological behaviour of aluminium differed great from that of steel regardless of the counterpart material. Highly reactive aluminium had a strong tendency to solder with tool surfaces during dry sliding. However, the lubricity of gray cast irons can be significantly improved by Ni-BN and DLC coatings. The coefficient of friction reduced from about 0.5 for untreated cast irons to about 0.2 sliding against aluminium. Duplex treatment combining plasma nitrocarburising with low-friction coatings showed superior durability than both DLC and Ni-BN coatings.

  11. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  12. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    Science.gov (United States)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  13. Optimum design of brake friction material using hybrid entropy-GRA approach

    Directory of Open Access Journals (Sweden)

    Kumar Naresh

    2016-01-01

    Full Text Available The effect of Kevlar and natural fibres on the performance of brake friction materials was evaluated. Four friction material specimens were developed by varying the proportion of Kevlar and natural fibres. Two developed composite contained 5-10 wt.% of Kevlar fibre while in the other two the Kevlar fibre was replaced with same amount of natural fibre. SAE J661 protocol was used for the assessment of the tribological properties on a Chase testing machine. Result shows that the specimens containing Kevlar fibres shows higher friction and wear performance, whereas Kevlar replacement with natural fibre resulted in improved fade, recovery and friction fluctuations. Further hybrid entropy-GRA (grey relation analysis approach was applied to select the optimal friction materials using various performance defining attributes (PDA including friction, wear, fade, recovery, friction fluctuations and cost. The friction materials with 10 wt% of natural fibre exhibited the best overall quality.

  14. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.

  15. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  16. Adjustment of pipe flow explicit friction factor equations for application to tube bundles

    International Nuclear Information System (INIS)

    Wiltz, Christopher L.; Bowen, Mike D.; Von Olnhausen, Wayne A.

    2005-01-01

    Full text of publication follows: The accurate determination of single phase friction losses or friction pressure drop in tube bundles is essential in the thermal-hydraulic analyses of components such as nuclear fuel assemblies, heat exchangers and steam generators. Such friction losses are normally calculated using a friction factor, f, along with the experimental observation that the friction pressure drop in a pipe is proportional to the dynamic pressure (1/2 ρV 2 ) of the flow: ΔP = 1/2 ρV 2 (fL/D). In this equation L is the pipe or tube bundle length and D is the hydraulic diameter of the pipe or tube bundle. The friction factor is normally calculated using one of a number of explicit friction factor equations. A significant amount of work has been accomplished in developing explicit friction factor equations. These explicit equations range from approximations, which were developed for ease of numerical evaluation, to those which are mathematically complex but yield very good fits to the test data. These explicit friction factor equations are based on a large experimental data base, nearly all of which comes from pipe flow geometry information, and have been historically applied to tube bundles. This paper presents an adjustment method which may be applied to various explicit friction factor equations developed for pipe flow to accurately predict the friction factor for tube bundles. The characteristic of the adjustment is based on experimental friction pressure loss data obtained by Framatome ANP through flow testing of a nuclear fuel assembly (tube bundle) at its Richland Test Facility (RTF). Through adjustment of previously developed explicit friction factor equations for pipe flow, the vast amount of historical development and experimentation in the area of single phase pipe flow friction loss may be incorporated into the evaluation of single phase friction losses within tube bundles. Comparisons of the application of one or more of the previously

  17. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner as it degasses and crystallises. This character aids the development of shear zones in the conduit, producing fault surfaces that host gouge, cataclasite and pseudotachylyte and which control the last hundreds of meters of ascent by frictional slip. Recent work has shown that the occurrence of vesiculation of gas bubbles modifies the rheology of frictional melt and in extreme cases can trigger eruption style to switch from effusive to explosive activity. Hence it is of vital importance to recognise the frictional behaviour of volcanic rocks and magmas to understand the continuation of an eruption and associated hazards.

  18. Development of a penetration friction apparatus (PFA) to measure the frictional performance of surgical suture

    NARCIS (Netherlands)

    Zhang, Gangqiang; Ren, Tianhui; Lette, Walter; Zeng, Xiangqiong; van der Heide, Emile

    2017-01-01

    Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their

  19. Effects of Si3+ and H+ Irradiation on Tungsten Evaluated by Internal Friction Method

    International Nuclear Information System (INIS)

    Hu Jing; Wang Xianping; Fang Qianfeng; Liu Changsong; Zhang Yanwen; Zhao Ziqiang

    2013-01-01

    Effects of Si 3+ and H + irradiation on tungsten were investigated by internal friction (IF) technique. Scanning electron microscope (SEM) analysis revealed that sequential dual Si+H irradiation resulted in more serious damage than single Si irradiation. After irradiation, the IF background was significantly enhanced. Besides, two obvious IF peaks were initially found in temperature range of 70∼330 K in the sequential Si+H irradiated tungsten sample. The mechanism of increased IF background for the irradiated samples was suggested to originate from the high density dislocations induced by ion irradiation. On the other hand, the relaxation peak P L and non-relaxation peak P H in the Si+H irradiated sample were ascribed to the interaction process of hydrogen atoms with mobile dislocations and transient processes of hydrogen redistribution, respectively. The obtained experimental results verified the high sensitivity of IF method on the irradiation damage behaviors in nuclear materials

  20. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    International Nuclear Information System (INIS)

    Linjun, Xie; Guohong, Xue; Ming, Zhang

    2016-01-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k f of the HDS is obtained. So, the

  1. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Linjun, Xie, E-mail: linjunx@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Guohong, Xue; Ming, Zhang [Shanghai Nuclear Engineering Research & Design Institute, Shanghai 200233 (China)

    2016-08-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k{sub f} of the HDS is obtained. So, the

  2. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model

    Directory of Open Access Journals (Sweden)

    Xingming Wang

    2017-01-01

    Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.

  3. Frictional ageing from interfacial bonding and the origins of rate and state friction.

    Science.gov (United States)

    Li, Qunyang; Tullis, Terry E; Goldsby, David; Carpick, Robert W

    2011-11-30

    Earthquakes have long been recognized as being the result of stick-slip frictional instabilities. Over the past few decades, laboratory studies of rock friction have elucidated many aspects of tectonic fault zone processes and earthquake phenomena. Typically, the static friction of rocks grows logarithmically with time when they are held in stationary contact, but the mechanism responsible for this strengthening is not understood. This time-dependent increase of frictional strength, or frictional ageing, is one manifestation of the 'evolution effect' in rate and state friction theory. A prevailing view is that the time dependence of rock friction results from increases in contact area caused by creep of contacting asperities. Here we present the results of atomic force microscopy experiments that instead show that frictional ageing arises from the formation of interfacial chemical bonds, and the large magnitude of ageing at the nanometre scale is quantitatively consistent with what is required to explain observations in macroscopic rock friction experiments. The relative magnitude of the evolution effect compared with that of the 'direct effect'--the dependence of friction on instantaneous changes in slip velocity--determine whether unstable slip, leading to earthquakes, is possible. Understanding the mechanism underlying the evolution effect would enable us to formulate physically based frictional constitutive laws, rather than the current empirically based 'laws', allowing more confident extrapolation to natural faults.

  4. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    Science.gov (United States)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  5. Internal friction evidence of intrinsic inhomogeneity in the paramagnetic region of La0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Ma, Y.Q.; Song, W.H.; Zhao, B.C.; Zhang, R.L.; Yang, J.; Lu, W.J.; Du, J.J.; Sun, Y.P.

    2005-01-01

    We have investigated the optimally doped manganite La 0.67 Ca 0.33 MnO 3 by measurements of the resistivity ρ, magnetization M, Young's modulus E and internal friction Q - 1 . A remarkable peak in the Q - 1 curve is observed in the paramagnetic (PM) region, and it is attributed to the formation of magnetic clusters. Furthermore, this peak is characteristic of thermally activated relaxation. Our observation is discussed combined with the analysis of the electrical transport and magnetic properties in PM region

  6. Tribology - friction, lubrication and wear: fifty years on. 2 v

    International Nuclear Information System (INIS)

    1987-01-01

    The paper presents the proceedings of the International Tribology Conference held in London (United Kingdom), 1987, and organised by the Institution of Mechanical Engineers. The aim of the conference was to address the current status and future developments in all aspects of tribology. The conference proceedings contained 121 papers, and the sessions were structured under six headings: hydrodynamic, elastohydrodynamic and mixed lubrication; friction and wear; contact mechanics; materials; design and applications; and lubricants. Four papers were chosen for INIS and indexed separately. (U.K.)

  7. Friction stir welding (FSW) of AA 6061 T6

    International Nuclear Information System (INIS)

    Cabot, Pedro; Monglioni, Alberto; Carella, Eduardo

    2002-01-01

    The friction-stir process (FSW) developed by England's TWI in the last decade is a new concept in solid phase friction welding that is particularly appropriate for soldering aluminum and its alloys. It offers interesting aspects and can advantageously replace the usual arch processes. It is an automatic process that solders together long pieces by butt or lap welding and, therefore, overcomes the greater limitation of the conventional friction process that can be applied only to pieces with revolution symmetry. FSW is based essentially on the use of a cylindrical tool with a special profile, which is inserted between the surfaces where the materials meet to join them together at a certain rotation speed and under a specific force. The pieces must be rigidly butt bonded or overlapped to prevent movement when the tool moves forward along the joint producing the dispersion of oxides, local plastisizing of the material and the weld. Since its creation FSW has been the subject of many international publications, but until the present work there was no technologically relevant data about tools and procedures. For this reason, when its promising and novel nature was noticed, the CNEA began its own development project in 1997. The main characteristics of the tool are reviewed here and the results of tests carried out to evaluate the influence of the feed velocity on the mechanical properties of the butt joining of a 6.25 mm thick AA6061 T6 plate. Different accumulated aspects of the experience are discussed as well (cw)

  8. Transport properties under the influence of finite friction

    Institute of Scientific and Technical Information of China (English)

    展永; 赵同军; 于慧; 宋艳丽

    2002-01-01

    Using the Langevin Monte Carlo method, the influence of friction on the directed motion of a Brownian particle driven by an external noise source is investigated. The results show that the existence and change of the environment friction influence the establishment and development of the steady motion of a Brownian particle derived by non- equilibrium fluctuation. The most probable correlation time, which corresponds to the maximum current, is inversely proportional to the friction coefficient. The abnormal transition of the current with different friction appears because of the coupling between the effective ratchet potential and coloured noise intensity.

  9. Development of a process envelope for friction stir welding of DH36 steel – A step change

    International Nuclear Information System (INIS)

    Toumpis, Athanasios; Galloway, Alexander; Cater, Stephen; McPherson, Norman

    2014-01-01

    Highlights: • The friction stir welding speed on DH36 steel has been substantially increased. • Excellent quality welds offering potential economic advantages are obtained. • Friction stir welding of steel generates a very complex metallurgical system. • Slow and intermediate welding speed tensile samples fractured in the parent material. • Increasing traverse speed is seen to improve the impact toughness of the weld. - Abstract: Friction stir welding of steel presents an array of advantages across many industrial sectors compared to conventional fusion welding techniques. However, the fundamental knowledge of the friction stir welding process in relation to steel remains relatively limited. A microstructure and property evaluation of friction stir welded low alloy steel grade DH36 plate, commonly used in ship and marine applications has been undertaken. In this comprehensive study, plates of 2000 × 200 × 6 mm were butt welded together at varying rotational and traverse speeds. Samples were examined microscopically and by transverse tensile tests. In addition, the work was complemented by Charpy impact testing and micro-hardness testing in various regions of the weld. The study examined a wide range of process parameters; from this, a preliminary process parameter envelope has been developed and initial process parameter sets established that produce commercially attractive excellent quality welds through a substantial increase in the conventionally recognised weld traverse speed

  10. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free

  11. Language friction and partner selection in cross-border R&D alliance formation

    OpenAIRE

    Amol M Joshi; Nandini Lahiri

    2015-01-01

    How does language friction affect alliance formation? Language friction is a form of cultural friction arising from structural differences in the respective languages used by potential partners to reason and solve problems together. A little language friction may prompt partners to rethink solutions, thereby enhancing collaboration, but excessive friction may impede collaboration. We develop a Language Friction Index (LFI) to quantify relative differences in linguistic structure for any langu...

  12. On the nature of the static friction, kinetic friction and creep

    DEFF Research Database (Denmark)

    Persson, B. N. J.; Albohr, O.; Mancosu, F.

    2003-01-01

    of capillary bridges. However, there is no single value of the static friction coefficient, since it depends upon the initial dwell time and on rate of starting.We argue that the correct basis for the Coulomb friction law, which states that the friction force is proportional to the normal load...

  13. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  14. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  15. Validation of measured friction by process tests

    DEFF Research Database (Denmark)

    Eriksen, Morten; Henningsen, Poul; Tan, Xincai

    The objective of sub-task 3.3 is to evaluate under actual process conditions the friction formulations determined by simulative testing. As regards task 3.3 the following tests have been used according to the original project plan: 1. standard ring test and 2. double cup extrusion test. The task...... has, however, been extended to include a number of new developed process tests: 3. forward rod extrusion test, 4. special ring test at low normal pressure, 5. spike test (especially developed for warm and hot forging). Validation of the measured friction values in cold forming from sub-task 3.1 has...... been made with forward rod extrusion, and very good agreement was obtained between the measured friction values in simulative testing and process testing....

  16. Proximity friction reexamined

    International Nuclear Information System (INIS)

    Krappe, H.J.

    1989-01-01

    The contribution of inelastic excitations to radial and tangential friction form-factors in heavy-ion collisions is investigated in the frame-work of perturbation theory. The dependence of the form factors on the essential geometrical and level-density parameters of the scattering system is exhibited in a rather closed form. The conditions for the existence of time-local friction coefficients are discussed. Results are compared to form factors from other models, in particular the transfer-related proximity friction. For the radial friction coefficient the inelastic excitation mechanism seems to be the dominant contribution in peripheral collisions. (orig.)

  17. Friction Stir Welding Development at NASA-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.

    2001-01-01

    This paper presents an overview of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including thin and thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  18. Evolution of the internal friction in SIC particle reinforced 8090 Al-Li metal matrix composite; Evolucion de la friccion interna del material compuesto de matriz Al-Li 8090 reforzado con particulas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Urrutia, I.; Gallego, I.; No, M. L.; San Juan, J. M.

    2001-07-01

    The present study has been undertaken to investigate the mechanisms of thermal stress relief at the range of temperatures below room temperature for the metal matrix composite Al-Li 8090/SiC. For this aim the experimental technique of internal friction has been used which has been showed up very effective. Several thermal cycles from 453 K to 100 K were used in order to measures the internal friction as well as the elastic modules of the material concluding that thermal stresses are relaxed by microplastic deformation around the reinforcements. It has been also related the variation in the elastic modules with the different levels of precipitation. (Author) 18 refs.

  19. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    Science.gov (United States)

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  20. Chemical origins of frictional aging.

    Science.gov (United States)

    Liu, Yun; Szlufarska, Izabela

    2012-11-02

    Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.

  1. Friction in levitated superconductors

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1988-01-01

    A type I superconductor levitated above a magnet of low symmetry has a unique equilibrium position about which it may oscillate freely. In contrast, a type II superconductor has a continuous range of stable equilibrium positions and orientations where it floats rigidly without swinging or orbiting as if it were stuck in sand. A strong internal friction conspicuously indicates the existence and unpinning of flux lines in oxide superconductors levitated above liquid nitrogen. It is shown how these effects follow from the hysteretic magnetization curves and how the energy is dissipated

  2. Friction induced hunting limit cycles : a comparison between the LuGre and switch friction model

    NARCIS (Netherlands)

    Hensen, R.H.A.; Molengraft, van de M.J.G.; Steinbuch, M.

    2003-01-01

    In this paper, friction induced limit cycles are predicted for a simple motion system consisting of a motor-driven inertia subjected to friction and a PID-controlled regulator task. The two friction models used, i.e., (i) the dynamic LuGre friction model and (ii) the static switch friction model,

  3. Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer.

    Science.gov (United States)

    Unwin, A P; Hine, P J; Ward, I M; Fujita, M; Tanaka, E; Gusev, A A

    2018-02-06

    The development of new materials with reduced noise and vibration levels is an active area of research due to concerns in various aspects of environmental noise pollution and its effects on health. Excessive vibrations also reduce the service live of the structures and limit the fields of their utilization. In oscillations, the viscoelastic moduli of a material are complex and it is their loss part - the product of the stiffness part and loss tangent - that is commonly viewed as a figure of merit in noise and vibration damping applications. The stiffness modulus and loss tangent are usually mutually exclusive properties so it is a technological challenge to develop materials that simultaneously combine high stiffness and high loss. Here we achieve this rare balance of properties by filling a solid polymer matrix with rigid inorganic spheres coated by a sub-micron layer of a viscoelastic material with a high level of internal friction. We demonstrate that this combination can be experimentally realised and that the analytically predicted behaviour is closely reproduced, thereby escaping the often termed 'Ashby' limit for mechanical stiffness/damping trade-off and offering a new route for manufacturing advanced composite structures with markedly reduced noise and vibration levels.

  4. Static frictional resistance with the slide low-friction elastomeric ligature system.

    Science.gov (United States)

    Jones, Steven P; Ben Bihi, Saida

    2009-11-01

    This ex-vivo study compared the static frictional resistance of a low-friction ligation system against a conventional elastomeric module, and studied the effect of storage in a simulated oral environment on the static frictional resistance of both ligation systems. Eighty stainless steel brackets were tested by sliding along straight lengths of 0.018 inch round and 0.019 x 0.025 inch rectangular stainless steel wires ligated with either conventional elastomerics or the Slide system (Leone, Florence, Italy). During the tests the brackets and wires were lubricated with artificial saliva. A specially constructed jig assembly was used to hold the bracket and archwire securely. The jig was clamped in an Instron universal load testing machine. Crosshead speed was controlled via a microcomputer connected to the Instron machine. The static frictional forces at 0 degree bracket/wire angulation were measured for both systems, fresh from the pack and after storage in artificial saliva at 37 degrees C for 24 hours. The results of this investigation demonstrated that the Slide ligatures produced significantly lower static frictional resistance than conventional elastomeric modules in the fresh condition and after 24 hours of storage in a simulated oral environment (p static frictional resistance of conventional elastomeric modules and the Slide system (p = 0.525). The claim by the manufacturer that the Slide system produces lower frictional resistance than conventional elastomeric modules is upheld.

  5. Subchannel friction factors for rod bundles: laminar flow predictions and their application to turbulent flows

    International Nuclear Information System (INIS)

    Robinson, D.P.

    1979-02-01

    For the calculation of friction factors the use of correlations validated for smooth circular tubes along with the duct hydraulic diameter is known to be inappropriate for certain non-circular geometries. In order to test the validity and range of application of such correlations to the subchannels of rod bundles a computer programme has been written for the prediction of subchannel laminar velocity distributions and friction coefficients for fully developed flow. The theoretical basis and development of the programme is described along with comparisons between predictions and existing solutions for some simple geometries. Using the computer programme a wide range of calculations have been carried out for flow sections representing edge, corner and internal subchannels of rod bundles with particular emphasis on those of in-line pin bundle geometries. Where comparison can be made the predicted laminar coefficients are in excellent agreement with existing solutions. Although the approach adopted here could be used as the basis of a model for the subchannel axial friction factor, careful account should be taken of enhanced turbulent momentum transfer in situations where the flow is not unidirectional. (UK)

  6. The development of the friction coefficient inspection equipment for skin using a load cell.

    Science.gov (United States)

    Song, Han Wook; Park, Yon Kyu; Lee, Sung Jun; Woo, Sam Yong; Kim, Sun Hyung; Kim, Dal Rae

    2008-01-01

    The skin is an indispensible organ for human because it contributes to the metabolism using its own biochemical functions as well as it protects the human body from the exterior stimuli. Recently, the friction coefficient have been used as the decision index of the progress for the bacterial aliments in the field of the skin physiology and the importance of friction coefficient have been increased in the skin care market because of the needs of the well being times. In addition, the usage of friction coefficient is known to have the big discrimination ability in classification of human constitutions, which is utilized in the alternative medicine. In this study, we designed a system which used the multi axes load cell and hemi-circular probe and tried to measure the friction coefficient of hand skins repeatedly. Using this system, the relative repeatability error for the measurement of the friction coefficient was below 4 %. The coefficient is not concerned in curvatures of tips. Using this system, we will try to establish the standard for classification of constitutions.

  7. Rolling Friction on a Wheeled Laboratory Cart

    Science.gov (United States)

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  8. Frictional behavior of automotive brake materials under wet and dry conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Martin, R.L. [Oak Ridge National Lab., TN (United States); Weintraub, M.H.; Jang, Ho; Donlon, W. [Ford Motor Co., Dearborn, MI (United States)

    1996-12-15

    The purpose of this effort was to develop an improved understanding of the relationship between the structure and frictional behavior of materials in the disc brake/rotor interface with a view toward improving the performance of automotive disc brakes. The three tasks involved in this Cooperative Research and Development Agreement (CRADA) were as follows: Task 1. Investigation of Brake Pads and Rotors. Characterize surface features of worn brake pads and rotors, with special attention to the transfer film which forms on them during operation. Ford to supply specimens for examination and other supporting information. Task 2. Effects of Atmosphere and Repeated Applications on Brake Material Friction. Conduct pin-on-disk friction tests at ORNL under controlled moisture levels to determine effects of relative humidity on frictional behavior of brake pad and rotor materials. Conduct limited tests on the characteristics of friction under application of repeated contacts. Task 3. Comparison of Dynamometer Tests with Laboratory Friction Tests. Compare ORNL friction data with Ford dynamometer test data to establish the degree to which the simple bench tests can be useful in helping to understand frictional behavior in full-scale brake component tests. This final report summarizes work performed under this CRADA.

  9. Nano-friction behavior of phosphorene.

    Science.gov (United States)

    Bai, Lichun; Liu, Bo; Srikanth, Narasimalu; Tian, Yu; Zhou, Kun

    2017-09-01

    Nano-friction of phosphorene plays a significant role in affecting the controllability and efficiency of applying strain engineering to tune its properties. So far, the friction behavior of phosphorene has not been studied. This work studies the friction of single-layer and bilayer phosphorene on an amorphous silicon substrate by sliding a rigid tip. For the single-layer phosphorene, it is found that its friction is highly anisotropic, i.e. the friction is larger along the armchair direction than that along the zigzag direction. Moreover, pre-strain of the phosphorene also exhibits anisotropic effects. The friction increases with the pre-strain along the zigzag direction, but decreases with that along the armchair direction. Furthermore, the strong adhesion between the phosphorene and its substrate increases the friction between the phosphorene and the tip. For bilayer phosphorene, its friction highly depends on its stacking mode, which determines the contact interface with a commensurate or incommensurate pattern. This friction behavior is quite unique and greatly differs from that of graphene and molybdenum disulfide. Detailed analysis reveals that this behavior results from the combination effect of the friction contact area, the potential-energy profile of phosphorene, and its unique elongation.

  10. Frictional Heating with Time-Dependent Specific Power of Friction

    Directory of Open Access Journals (Sweden)

    Topczewska Katarzyna

    2017-06-01

    Full Text Available In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.

  11. Trade finance and international currency

    OpenAIRE

    Liu, Tao

    2015-01-01

    The determinants of international currency received a lot of academic attention since great recession, especially given China's intention to internationalize RMB. Recent empirical studies in history and international economics confi�rmed the importance of �nancial market development in this process. To provide micro-foundation for such observation, I built a two-country monetary search model with �nancial friction. Trade takes a long time, and the lack of trust makes importer and exporter rel...

  12. Internal friction measurements of Mo after low-temperature proton irradiation

    International Nuclear Information System (INIS)

    Tanimoto, H.; Mizubayashi, H.; Masuda, R.; Okuda, S.; Tagishi, Y.

    1992-01-01

    Internal friction measurements are performed in Mo after 20 MeV proton irradiation in order to clarify the behavior of self-interstitial atoms (SIA's) in Mo. In the low dose range, strong dislocation pinning suggesting the free migration of defects is observed at about 40 K and weak pinning at about 25 K. The features are very similar to those reported after neutron irradiation except that the 25 K pinning is much smaller after proton irradiation. The result suggests that the migration of free SIA's is responsible for the 40 K pinning and that of SIA-defect clusters, probably di-SIA's, formed during irradiation for the 25 K pinning. In the high dose range, the relaxation peaks are observed at about 13 and 41 K, where the close similarities are found between the present peaks and the corresponding peaks reported after neutron irradiation except that the peak height of the 41 K peak per unit concentration of Frenkel pairs (FP) tends to increase strongly with decreasing dose here. The latter fact suggests the strong interaction between SIA's. Then the smallness of the 41 K peak reported after electron irradiation with very high dose could be explained by an increased interaction between SIA's, but not by the two-dimensional migration of SIA's as proposed by Jacques and Robrock. Deformation given prior to irradiation causes a drastic decrease in the modulus defects associated with FP's (so-called bulk effect) and in the 13 K peak height. After neutron irradiation, no such effect of deformation was reported. A possible origin for this difference is discussed. (orig.)

  13. Experimental investigation and correlation of two-phase frictional pressure drop of R410A-oil mixture flow boiling in a 5 mm microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guoliang; Hu, Haitao; Huang, Xiangchao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China); Gao, Yifeng [International Copper Association, Shanghai Office, Shanghai 200020 (China)

    2009-01-15

    This study presents experimental two-phase frictional data for R410A-oil mixture flow boiling in an internal spiral grooved microfin tube with outside diameter of 5 mm. Experimental parameters include the evaporation temperature of 5 C, the mass flux from 200 to 400 kg m{sup -2} s{sup -1}, the heat flux from 7.46 to 14.92 kW m{sup -2}, the inlet vapor quality from 0.1 to 0.8, and nominal oil concentration from 0 to 5%. The test results show that the frictional pressure drop of R410A initially increases with vapor quality and then decreases, presenting a local maximum in the vapor quality range between 0.7 and 0.8; the frictional pressure drop of R410A-oil mixture increases with the mass flux, the presence of oil enhances two-phase frictional pressure drop, and the effect of oil on frictional pressure drop is more evident at higher vapor qualities where the local oil concentrations are higher. The enhanced factor is always larger than unity and increases with nominal oil concentration at a given vapor quality. The range of the enhanced factor is about 1.0-2.2 at present test conditions. A new correlation to predict the local frictional pressure drop of R410A-oil mixture flow boiling inside the internal spiral grooved microfin tube is developed based on local properties of refrigerant-oil mixture, and the measured local frictional pressure drop is well correlated with the empirical equation proposed by the authors. (author)

  14. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  15. Status of Stellite 6 friction testing

    International Nuclear Information System (INIS)

    Watkins, J.C.; DeWall, K.G.

    1998-01-01

    For the past several years, researchers at the Idaho National Engineering and Environmental Laboratory, under the sponsorship of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, have been investigating the performance of motor-operated valves subjected to design basis flow and pressure loads. Part of this research addresses the friction that occurs at the interface between the valve disc and the valve body seats during operation of a gate valve. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. Analytical methods exist for predicting the thrust needed to operate these valves at specific pressure conditions. To produce accurate valve thrust predictions, the analyst must have a reasonably accurate, though conservative, estimate of the coefficient of friction at the disc-to-seat interface. One of the questions that remains to be answered is whether, and to what extent, aging of the disc and seat surfaces effects the disc-to-seat coefficient of friction. Specifically, does the environment in a nuclear plants piping system cause the accumulation of an oxide film on these surfaces that increases the coefficient of friction; and if so, how great is the increase? This paper presents results of specimen tests addressing this issue, with emphasis on the following: (1) the characteristics and thickness of the oxide film that develops on Stellite 6 as it ages; (2) the change in the friction coefficient of Stellite 6 as it ages, including the question of whether the friction coefficient eventually reaches a plateau; and (3) the effect in-service cycling has on the characteristics and thickness of the oxide film and on the friction coefficient

  16. Static friction of porous bioceramic beta-TCP on intestinal mucus films.

    Science.gov (United States)

    Wang, Xin-Yu; Han, Ying-Chao; Jiang, Xin; Dai, Hong-Lian; Li, Shi-Pu

    2006-09-01

    The static friction behavior between a porous bioceramic material and an intestinal mucus film was investigated in order to develop a new intestine robotic endoscope. Here, the friction couple is porous beta-tricalcium phosphate (beta-TCP) and an artificial intestine mucus film. The effect of pore size of the beta-TCP material on the friction behavior is investigated. The results illustrated that in this friction system there is a relatively small normal force upon the intestinal mucus film of the intestine wall during locomotion. The maximum static friction force in this friction couple varies with the pore size of the porous beta-TCP material.

  17. Static friction of porous bioceramic β-TCP on intestinal mucus films

    International Nuclear Information System (INIS)

    Wang Xinyu; Han Yingchao; Jiang Xin; Dai Honglian; Li Shipu

    2006-01-01

    The static friction behavior between a porous bioceramic material and an intestinal mucus film was investigated in order to develop a new intestine robotic endoscope. Here, the friction couple is porous β-tricalcium phosphate (β-TCP) and an artificial intestine mucus film. The effect of pore size of the β-TCP material on the friction behavior is investigated. The results illustrated that in this friction system there is a relatively small normal force upon the intestinal mucus film of the intestine wall during locomotion. The maximum static friction force in this friction couple varies with the pore size of the porous β-TCP material

  18. Internal Friction and Young's Modulus Measurements on SiO2 and Ta2O5 Films Done with an Ultra-High Q Silicon-Wafer Suspension

    Directory of Open Access Journals (Sweden)

    Granata M.

    2015-04-01

    Full Text Available In order to study the internal friction of thin films a nodal suspension system called GeNS (Gentle Nodal Suspension has been developed. The key features of this system are: i the possibility to use substrates easily available like silicon wafers; ii extremely low excess losses coming from the suspension system which allows to measure Q factors in excess of 2×108 on 3” diameter wafers; iii reproducibility of measurements within few percent on mechanical losses and 0.01% on resonant frequencies; iv absence of clamping; v the capability to operate at cryogenic temperatures. Measurements at cryogenic temperatures on SiO2 and at room temperature only on Ta2O5 films deposited on silicon are presented.

  19. Internal friction behaviors of Ni-Mn-In magnetic shape memory alloy with two-step structural transformation

    Directory of Open Access Journals (Sweden)

    Zhen-ni Zhou

    2017-06-01

    Full Text Available The internal friction (IF behaviors of dual-phase Ni52Mn32In16 alloy with two-step structural transformation were investigated by dynamic mechanical analyzer. The IF peak for the martensite transformation (MT is an asymmetric shoulder rather than those sharp peaks for other shape memory alloys. The intermartensitic transformation (IMT peak has the maximum IF value. As the heating rate increases, the height of the IMT peak increases and its position is shifted to higher temperatures. In comparison with the IMT peak, the MT peak is independent on the heating rate. The starting temperatures of the IMT peak are strongly dependent on frequency, while the MT peak is weakly dependent. Meanwhile, the heights of both the MT and IMT peak rapidly decrease with increasing the frequency. This work also throws new light on their structural transformation mechanisms.

  20. Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    A. Yamileva

    2014-07-01

    Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.

  1. Cohesive delamination and frictional contact on joining surface via XFEM

    Directory of Open Access Journals (Sweden)

    Francesco Parrinello

    2018-02-01

    Full Text Available In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.

  2. Accurate solutions of Colebrook-White's friction factor formulae ...

    African Journals Online (AJOL)

    Estimations of friction factor (Ff) in pipeline systems and fluid transport are essential ingredients in engineering fields and processes. In this paper explicit friction factor formulae (Fff) were proposed and evaluated with an aim of developing error free Fff. General Fff that relate Ff, Reynolds number (Re) and relative roughness ...

  3. Friction-induced Vibrations in an Experimental Drill-string System for Various Friction Situations

    NARCIS (Netherlands)

    Mihajlovic, N.; Wouw, van de N.; Hendriks, M.P.M.; Nijmeijer, H.

    2005-01-01

    Friction-induced limit cycling deteriorates system performance in a wide variety of mechanical systems. In this paper, we study the way in which essential friction characteristics affect the occurrence and nature of friction-induced limit cycling in flexible rotor systems. This study is performed on

  4. Scale effects in metal-forming friction and lubrication

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Paldan, Nikolas Aulin; Calaon, Matteo

    2011-01-01

    Downscaling of metal-forming operations from macro-to microscale implies significant changes caused by size effects. Among these, the friction increases as reported by researchers using indirect test methods such as the ring-compression test and double-cup-extrusion test. In this study, a new test...... equipment is developed for studies of the size effect in metal-forming friction in the range from macro-to microscale. Investigations confirm a significant friction increase when downscaling. Visual inspection of the workpieces shows this to be explained by the amount of open and closed lubricant pockets....

  5. Celtic Stone Dynamics Revisited Using Dry Friction and Rolling Resistance

    Directory of Open Access Journals (Sweden)

    J. Awrejcewicz

    2012-01-01

    Full Text Available The integral model of dry friction components is built with assumption of classical Coulomb friction law and with specially developed model of normal stress distribution coupled with rolling resistance for elliptic contact shape. In order to avoid a necessity of numerical integration over the contact area at each the numerical simulation step, few versions of approximate model are developed and then tested numerically. In the numerical experiments the simulation results of the Celtic stone with the friction forces modelled by the use of approximants of different complexity (from no coupling between friction force and torque to the second order Padé approximation are compared to results obtained from model with friction approximated in the form of piecewise polynomial functions (based on the Taylor series with hertzian stress distribution. The coefficients of the corresponding approximate models are found by the use of optimization methods, like as in identification process using the real experiment data.

  6. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  7. A Generic Friction Model for Radial Slider Bearing Simulation Considering Elastic and Plastic Deformation

    Directory of Open Access Journals (Sweden)

    Günter Offner

    2015-06-01

    Full Text Available The investigation of component dynamics is one of the main tasks of internal combustion engine (ICE simulation. This prediction is important in order to understand complex loading conditions, which happen in a running ICE. Due to the need for fuel saving, mechanical friction, in particular in radial slider bearings, is one important investigation target. A generic friction modeling approach for radial slider bearings, which can be applied to lubricated contact regimes, will be presented in this paper. Besides viscous friction, the approach considers in particular boundary friction. The parameterization of the friction model is done using surface material and surface roughness measurement data. Furthermore, fluid properties depending on the applied oil additives are being considered. The application of the model will be demonstrated for a typical engineering task of a connecting rod big end study to outline the effects of contact surface texture. AlSn-based and polymer coated bearing shells will be analyzed and compared with respect to friction reduction effects, running-in behavior and thermal load capabilities.

  8. Mechanisms of shock-induced dynamic friction

    International Nuclear Information System (INIS)

    Winter, R E; Ball, G J; Keightley, P T

    2006-01-01

    The mechanism of shock-induced dynamic friction has been explored through an integrated programme of experiments and numerical simulations. A novel experimental technique has been developed for observing the sub-surface deformation in aluminium when sliding against a steel anvil at high velocity and pressure. The experimental observations suggest that slight differences in conditions at the interface between the metals affect frictional behaviour even at the very high-velocity, high-pressure regime studied here. However, a clear finding from the experimental work is the presence of two distinct modes of deformation termed deep and shallow. The deep deformation is observed in a region of the aluminium specimen where the interfacial velocity is relatively low and the shallow deformation is observed in a region where the interfacial velocity is higher. A 1D numerical treatment is presented which predicts the existence of two mechanisms for dynamic friction termed 'asymptotic melting' and 'slide-then-lock'. In both modes there is a warm-up phase in which the interface temperature is increased by frictional heating. For high initial sliding velocity, this is followed by the onset of the asymptotic melting state, in which the temperature is almost constant and melting is approached asymptotically. This mechanism produces low late-time frictional stress and shallow deformation. For lower initial sliding velocity, the warm-up terminates in a violent work hardening event that locks the interface and launches a strong plastic shear wave into the weaker material. This slide-then-lock mechanism is characterized by sustained high frictional stress and deep plastic deformation. These predicted mechanisms offer a plausible and consistent explanation for the abrupt transitions in the depth of sub-surface deformation observed in the experiments. A key conclusion arising from the current work is that the frictional stress does not vary smoothly with pressure or sliding velocity

  9. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Gutkowski, Witold; Rothenburg, L.; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle

  10. Internal friction and elastic modulus of NdxY1-xBa2Cu3Oy (x 0.0-1.0) at 200 kHz near the orthorhombic-to-tetragonal phase transition

    International Nuclear Information System (INIS)

    Inagaki, M.

    2000-01-01

    The internal friction and Young's modulus of a series of superconductors Nd x Y 1-x Ba 2 Cu 3 O y (x = 0.0-1.0) were measured over the temperature range from 300 to 1050 K using a 200 kHz LiNbO3 piezoelectric composite oscillator. Anelastic relaxation peaks due to oxygen migration were observed at about 850 K. The minimum Young's modulus, which is related to the orthorhombic-to-tetragonal phase transition, was also observed near this temperature. The temperature at the minimum Young's modulus decreased with an increase in the neodymium composition. In contrast, the internal friction peak temperature showed an unsystematic shift with an increase in x, while changes of the average cell structure exhibited a linear relationship when plotted versus the average ionic radius for trivalent rare-earth ions with the coordination number eight. (author)

  11. Science 101: What Causes Friction?

    Science.gov (United States)

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  12. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.

    Science.gov (United States)

    Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Novel Friction Law for the Static Friction Force based on Local Precursor Slipping

    OpenAIRE

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-01-01

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µ M, which is considered to be a constant. Here, we conduct experiments demonstrating that the static fricti...

  14. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Han, Seong Ik; Jeong, Chan Se; Yang, Soon Yong

    2012-01-01

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme

  15. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong Ik [Pusan National University, Busan (Korea, Republic of); Jeong, Chan Se; Yang, Soon Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2012-04-15

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme.

  16. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  17. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    Science.gov (United States)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  18. Tool-ply friction in thermoplastic composite forming (CD-rom)

    NARCIS (Netherlands)

    ten Thije, R.H.W.; Akkerman, Remko; van der Meer, L.; Ubbink, M.P.; Boisse, P.

    2008-01-01

    Friction is an important phenomenon that can dominate the resulting product geometry of thermoplastic composites upon forming. A model was developed that predicts the friction between a thermoplastic laminate and a rigid tool. The mesoscopic model, based on the Reynolds’ equation for thin film

  19. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...

  20. Review of friction modeling in metal forming processes

    DEFF Research Database (Denmark)

    Nielsen, C.V.; Bay, N.

    2018-01-01

    Abstract In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several...... research groups have studied and modeled the asperity flattening of workpiece material against tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim to improve understanding of friction in metal forming. This paper aims at giving a review of the most...... conditions, normal pressure, sliding length and speed, temperature changes, friction on the flattened plateaus and deformation of the underlying material. The review illustrates the development in the understanding of asperity flattening and the methods of analysis....

  1. Measurements of skin friction in water using surface stress sensitive films

    International Nuclear Information System (INIS)

    Crafton, J W; Fonov, S D; Jones, E G; Goss, L P; Forlines, R A; Fontaine, A

    2008-01-01

    The measurement of skin friction on hydrodynamic surfaces is of significant value for the design of advanced naval technology, particularly at high Reynolds numbers. Here we report on the development of a new sensor for measurement of skin friction and pressure that operates in both air and water. This sensor is based on an elastic polymer film that deforms under the action of applied normal and tangential loads. Skin friction and pressure gradients are determined by monitoring these deformations and then solving an inverse problem using a finite element model of the elastic film. This technique is known as surface stress sensitive films. In this paper, we describe the development of a sensor package specifically designed for two-dimensional skin friction measurements at a single point. The package has been developed with the goal of making two-dimensional measurements of skin friction in water. Quantitative measurements of skin friction are performed on a high Reynolds number turbulent boundary layer in the 12 inch water tunnel at Penn State University. These skin friction measurements are verified by comparing them to measurements obtained with a drag plate as well as by performing two-dimensional velocity measurements above the sensor using a laser Doppler velocimetry system. The results indicate that the sensor skin friction measurements are accurate to better than 5% and repeatable to better than 2%. The directional sensitivity of the sensor is demonstrated by positioning the sensor at several orientations to the flow. A final interesting feature of this sensor is that it is sensitive to pressure gradients, not to static pressure changes. This feature should prove useful for monitoring the skin friction on a seafaring vessel as the operating depth is changed

  2. Friction and wear methodologies for design and control

    CERN Document Server

    Straffelini, Giovanni

    2015-01-01

    This book introduces the basic concepts of contact mechanics, friction, lubrication, and wear mechanisms, providing simplified analytical relationships that are useful for quantitative assessments. Subsequently, an overview on the main wear processes is provided, and guidelines on the most suitable design solutions for each specific application are outlined. The final part of the text is devoted to a description of the main materials and surface treatments specifically developed for tribological applications and to the presentation of tribological systems of particular engineering relevance. The text is up to date with the latest developments in the field of tribology and provides a theoretical framework to explain friction and wear problems, together with practical tools for their resolution. The text is intended for students on Engineering courses (both bachelor and master degrees) who must develop a sound understanding of friction, wear, lubrication, and surface engineering, and for technicians or professi...

  3. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  4. Transient effects in friction fractal asperity creep

    CERN Document Server

    Goedecke, Andreas

    2013-01-01

    Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...

  5. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.

    Science.gov (United States)

    Liaw, Yu-Cheng; Su, Yu-Yu M; Lai, Yu-Lin; Lee, Shyh-Yuan

    2007-05-01

    Stress-induced martensite formation with stress hysteresis that changes the elasticity and stiffness of nickel-titanium (Ni-Ti) wire influences the sliding mechanics of archwire-guided tooth movement. This in-vitro study investigated the frictional behavior of an improved superelastic Ni-Ti wire with low-stress hysteresis. Improved superelastic Ni-Ti alloy wires (L & H Titan, Tomy International, Tokyo, Japan) with low-stress hysteresis were examined by using 3-point bending and frictional resistance tests with a universal test machine at a constant temperature of 35 degrees C, and compared with the former conventional austenitic-active superelastic Ni-Ti wires (Sentalloy, Tomy International). Wire stiffness levels were derived from differentiation of the polynomial regression of the unloading curves, and values for kinetic friction were measured at constant bending deflection distances of 0, 2, 3, and 4 mm, respectively. Compared with conventional Sentalloy wires, the L & H Titan wire had a narrower stress hysteresis including a lower loading plateau and a higher unloading plateau. In addition, L & H Titan wires were less stiff than the Sentalloy wires during most unloading stages. Values of friction measured at deflections of 0, 2, and 3 mm were significantly (P Sentalloy wires at all bending deflections (P <.05). Stress-induced martensite formation significantly reduced the stiffness and thus could be beneficial to decrease the binding friction of superelastic Ni-Ti wires during sliding with large bending deflections. Austenitic-active alloy wires with low-stress hysteresis and lower stiffness and friction offer significant potential for further investigation.

  6. Experimental and Numerical Studies on Tire Tread Block Friction Characteristics Based on a New Test Device

    Directory of Open Access Journals (Sweden)

    J. Wu

    2014-01-01

    Full Text Available A new device was developed for tire tread block slip friction tests. Then the friction characteristics were investigated under different loads and contact roads. Based on this, a friction model for contact between tire tread block and different road surfaces was developed. A finite element slip friction model of rubber block was developed for studying the tread contact stress, stiffness under different pattern slope angles, and ditch radius. Results indicate that friction coefficient between tread and ice road increases when the temperature decreases; different tread patterns have a certain influence on the friction coefficient; its average difference was less than 10%. Different roads impact the coefficient of friction more significantly; the greater the pattern slope, the greater the radial stiffness.

  7. Development of high-performance sintered friction material for synchronizer ring; Koseino shoketsu synchronizer ring masatsu zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K; Fuwa, Y; Okajima, H; Yoshikawa, K [Toyota Motor Corp., Aichi (Japan); Nakamura, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Increasing vehicle speed and power, high-performance synchronizer ring of manual transmission is required. We develop double layer sintered synchronizer ring for high performance and cost reduction. The main structure is consisted of ferrous sinter for high strength. In this paper, friction materials of sintered synchronizer ring are studied. We can get the good friction and anti-wear property by means of hard particles (FeTi, ZrO2), solid lubricant (Graphite) and suitable porosity in brass sinter matrix. And we also achieve high joining strength between double layers adding Cu-P material. 6 refs., 13 figs., 2 tabs.

  8. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  9. The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication

    International Nuclear Information System (INIS)

    Burkes, D.; Medvedev, P.; Chapple, M.; Amritkar, A.; Wells, P.; Charit, I

    2009-01-01

    The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed

  10. Friction between various self-ligating brackets and archwire couples during sliding mechanics.

    Science.gov (United States)

    Stefanos, Sennay; Secchi, Antonino G; Coby, Guy; Tanna, Nipul; Mante, Francis K

    2010-10-01

    The aim of this study was to evaluate the frictional resistance between active and passive self-ligating brackets and 0.019 × 0.025-in stainless steel archwire during sliding mechanics by using an orthodontic sliding simulation device. Maxillary right first premolar active self-ligating brackets In-Ovation R, In-Ovation C (both, GAC International, Bohemia, NY), and SPEED (Strite Industries, Cambridge, Ontario, Canada), and passive self-ligating brackets SmartClip (3M Unitek, Monrovia, Calif), Synergy R (Rocky Mountain Orthodontics, Denver, Colo), and Damon 3mx (Ormco, Orange, Calif) with 0.022-in slots were used. Frictional force was measured by using an orthodontic sliding simulation device attached to a universal testing machine. Each bracket-archwire combination was tested 30 times at 0° angulation relative to the sliding direction. Statistical comparisons were performed with 1-way analysis of variance (ANOVA) followed by Dunn multiple comparisons. The level of statistical significance was set at P <0.05. The Damon 3mx brackets had significantly the lowest mean static frictional force (8.6 g). The highest mean static frictional force was shown by the SPEED brackets (83.1 g). The other brackets were ranked as follows, from highest to lowest, In-Ovation R, In-Ovation C, SmartClip, and Synergy R. The mean static frictional forces were all statistically different. The ranking of the kinetic frictional forces of bracket-archwire combinations was the same as that for static frictional forces. All bracket-archwire combinations showed significantly different kinetic frictional forces except SmartClip and In-Ovation C, which were not significantly different from each other. Passive self-ligating brackets have lower static and kinetic frictional resistance than do active self-ligating brackets with 0.019 × 0.025-in stainless steel wire. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Characterization of friction and wear behavior of friction modifiers used in wheel-rail contacts

    NARCIS (Netherlands)

    Oomen, M. A.; Bosman, R.; Lugt, P. M.

    2017-01-01

    Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different

  12. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  13. Bamboo Fibre-reinforced Semi-Metallic Brake Friction Materials for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Talib R. J.

    2016-01-01

    Full Text Available Three friction material formulations composed of bamboo fiber along with binder, friction modifiers and filler have been prepared through powder metallurgy process. Sample F1 and F2 are composed of 10 wt. % of copper and barium, respectively, while the other ingredients in both formulations have the same wt. %. The wt. % of bamboo fiber in sample F3 is, however, increased by 100%, while the compositions of the other ingredients are proportionally decreased. The samples were examined for their porosity, hardness, and friction and wear properties using hot bath, Rockwell hardness tester, and CHASE friction dynamometer, respectively. The test results are compared with those of a commercial sample as the benchmark. Normal and hot frictions of all the three samples developed comply with the requirements specified by Automotive Manufacturer Equipment Companies Agency (AMECA. However, sample F3 which is composed of 20 wt. % of bamboo fiber does not comply with the minimum requirement of friction coefficient. Whereas, sample F2, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of barium, has lower friction coefficient than the commercial sample, and has a sudden drop in friction coefficient at a temperature of 500°F. Out of three developed samples, sample F1, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of copper, complies with all the requirements and has higher friction coefficient than the commercial sample, and has higher fade resistance. Thus, it could be postulated that bamboo fiber could be used as a reinforcing fiber with composition of 10 wt. %.

  14. Friction laws at the nanoscale.

    Science.gov (United States)

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  15. Modelling of the temperature field that accompanies friction stir welding

    Directory of Open Access Journals (Sweden)

    Nosal Przemysław

    2017-01-01

    Full Text Available The thermal modelling of the Friction Stir Welding process allows for better recognition and understanding of phenomena occurring during the joining process of different materials. It is of particular importance considering the possibilities of process technology parameters, optimization and the mechanical properties of the joint. This work demonstrates the numerical modelling of temperature distribution accompanying the process of friction stir welding. The axisymmetric problem described by Fourier’s type equation with internal heat source is considered. In order to solve the diffusive initial value problem a fully implicit scheme of the finite difference method is applied. The example under consideration deals with the friction stir welding of a plate (0.7 cm thick made of Al 6082-T6 by use of a tool made of tungsten alloy, whereas the material subjected to welding was TiC powder. Obtained results confirm both quantitatively and qualitatively experimental observations that the superior temperature corresponds to the zone where the pin joints the shoulder.

  16. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  17. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  18. Associated computational plasticity schemes for nonassociated frictional materials

    DEFF Research Database (Denmark)

    Krabbenhoft, K.; Karim, M. R.; Lyamin, A. V.

    2012-01-01

    A new methodology for computational plasticity of nonassociated frictional materials is presented. The new approach is inspired by the micromechanical origins of friction and results in a set of governing equations similar to those of standard associated plasticity. As such, procedures previously...... developed for associated plasticity are applicable with minor modification. This is illustrated by adaptation of the standard implicit scheme. Moreover, the governing equations can be cast in terms of a variational principle, which after discretization is solved by means of a newly developed second...

  19. Data-driven algorithm to estimate friction in automobile engine

    DEFF Research Database (Denmark)

    Stotsky, Alexander A.

    2010-01-01

    Algorithms based on the oscillations of the engine angular rotational speed under fuel cutoff and no-load were proposed for estimation of the engine friction torque. The recursive algorithm to restore the periodic signal is used to calculate the amplitude of the engine speed signal at fuel cutoff....... The values of the friction torque in the corresponding table entries are updated at acquiring new measurements of the friction moment. A new, data-driven algorithm for table adaptation on the basis of stepwise regression was developed and verified using the six-cylinder Volvo engine....

  20. Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials

    Science.gov (United States)

    Diwan, Ravinder M.

    2003-01-01

    The innovative process of Friction Stir Welding (FSW) has generated tremendous interest since its inception about a decade or so ago since the first patent in 1991 by TWI of Cambridge, England. This interest has been seen in many recent international conferences and publications on the subject and relevant published literature. Still the process needs both intensive basic study of deformation mechanisms during this FSW process and analysis and feasibility study to evaluate production methods that will yield high quality strong welds from the stirring action of the appropriate pin tool into the weld plate materials. Development of production processes is a complex task that involves effects of material thickness, materials weldability, pin tool design, pin height, and pin shoulder diameter and related control conditions. The frictional heating with rotational speeds of the pin tool as it plunges into the material and the ensuing plastic flow arising during the traverse of the welding faying surfaces provide the known special advantages of the FSW process in the area of this new advanced joining technology.

  1. Development of mathematical model to predict the mechanical properties of friction stir

    Directory of Open Access Journals (Sweden)

    R. Palanivel

    2011-01-01

    Full Text Available This paper presents a systematic approach to develop the mathematical model for predicting the ultimate tensile strength,yield strength, and percentage of elongation of AA6351 aluminum alloy which is widely used in automotive, aircraft anddefense Industries by incorporating (FSW friction stir welding process parameter such as tool rotational speed, weldingspeed, and axial force. FSW has been carried out based on three factors five level central composite rotatable design withfull replications technique. Response surface methodology (RSM is employed to develop the mathematical model. Analysisof variance (ANOVA Technique is used to check the adequacy of the developed mathematical model. The developedmathematical model can be used effectively at 95% confidence level. The effect of FSW process parameter on mechanicalproperties of AA6351 aluminum alloy has been analyzed in detail.

  2. Friction coefficient determination by electrical resistance measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-05-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino and compatible sensor-based experiments in physics class in order to ensure a better understanding of phenomena, develop theoretical knowledge and multiple experimental skills.

  3. Investigation and modelling of rubber stationary friction on rough surfaces

    International Nuclear Information System (INIS)

    Le Gal, A; Klueppel, M

    2008-01-01

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks

  4. Investigation and modelling of rubber stationary friction on rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Gal, A; Klueppel, M [Deutsches Institut fuer Kautschuktechnologie, Eupener Strasse 33, D-30519 Hannover (Germany)

    2008-01-09

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks.

  5. Study about internal friction in deformed - and irradiated pure titanium

    International Nuclear Information System (INIS)

    Miyada, L.T.

    1979-01-01

    Internal friction and modulus are measured in pure Ti at low temperature using an inverted torsion-pendulum at about 1 Hz. The presence of four relaxation peaks P' sub(d)(-140 0 C), P sub(d)(-101 0 C), P' sub(α)(-75 0 C) and P sub(α)(-50 0 C) has been found, and effects of plastic deformation, heat treatment and neutron irradiation on these peaks are investigated in detail. Activation energies and frequency factors of P sub(d) and Pα peaks are consistent with the data in higher frequency range reproted by other workers. The P sub(d) and P' sub(d) peaks grow after deformation and tend to decay after annealing at high temperatures or after neutron irradiation. Both peaks are resonably interpreted in terms of dislocation relaxation mechanisms (Bordoni type) arising from thermally activated motion of dislocations in different slip planes of h.c.f. structure. Peierls stress of dislocations giving rise to each peak have calculated based on Seeger's theory, and found to be consistent with that of f.c.c. metals. On the other hand, P sub(α) and P' sub(α) peaks grow significantly at the expense of P sub(d) and P' sub(d) peaks after neutron irradiation in deformed samples. The behaviour of these peaks as a function of irradiation dose and annealing temperatures strongly indicated that they are due to relaxations resulting from dislocations-point defects interactions (Hasiguti type). It is tentatively suggested that P sub(α) and P' sub(α) peaks are related with interactions of dislocations with divacancies and single vacancies, respectively. Application of Schiller's model showed a consistent result with regard to the P' sub(α) peak experimentally observed. (Author) [pt

  6. Effect of electrostatic field on dynamic friction coefficient of pistachio

    Directory of Open Access Journals (Sweden)

    M. H Aghkhani

    2016-04-01

    Full Text Available Introduction: Separation and grading of agricultural products from the production to supply, has notable importance. The separation can be done based on physical, electrical, magnetic, optical properties and etc. It is necessary for any development of new systems to study enough on the properties and behavior of agricultural products. Some characteristics for separation are size (length, width and thickness, hardness, shape, density, surface roughness, color, speed limit, aerodynamic properties, electrical conductivity, elasticity and coefficient of static friction point. So far, the friction properties of agricultural products used in the separating process, but the effect of electrostatic charging on static and dynamic coefficients of friction for separation had little attention. The aim of this study was to find out the interactions between electrostatic and friction properties to find a way to separate products that separation is not possible with conventional methods or not sufficiently accurate. In this paper, the separation of close and smiley pistachios by electrostatic charging was investigated. Materials and Methods: Kallehghoochi pistachio cultivar has the top rank in production in Iran. Therefore, it was used as a sample. The experimental design that used in this study, had moisture content at three levels (24.2, 14.5 and 8.1 percent, electric field intensity at three levels (zero, 4000 and 7000 V, speed of movement on the surface at three levels (1300, 2500 and 3300 mm per minute, friction surface (galvanized sheet iron, aluminum and flat rubber and pistachio type at two levels (filled splits and closed that was measured and analyzed in completely randomized factorial design. A friction measuring device (built in Ferdowsi University of Mashhad used to measure the friction force. It has a removable table that can move in two directions with adjustable speed. The test sample put into the vessel with internal dimensions of 300 × 150

  7. Effect of grafted oligopeptides on friction.

    Science.gov (United States)

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  8. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  9. Friction characteristics of the curved sidewall surfaces of a rotary MEMS device in oscillating motion

    International Nuclear Information System (INIS)

    Wu, Jie; Wang, Shao; Miao, Jianmin

    2009-01-01

    A MEMS device with a configuration similar to that of a micro-bearing was developed to study the friction behavior of the curved sidewall surfaces. This friction-testing device consists of two sets of actuators for normal motion and rotation, respectively. Friction measurements were performed at the curved sidewall surfaces of single-crystal silicon. Two general models were developed to determine the equivalent tangential stiffness of the bush-flexure assembly at the contact point by reducing a matrix equation to a one-dimensional formulation. With this simplification, the motions of the contacting surfaces were analyzed by using a recently developed quasi-static stick-slip model. The measurement results show that the coefficient of static friction exhibits a nonlinear dependence on the normal load. The true coefficient of static friction was determined by fitting the experimental friction curve

  10. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  11. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    2011-01-01

    structures in Finland; (b) manufacture of Al-Mg-Si-based alloy 181 FSW-joined bullet- train cabins in Japan; (c) fabrication of 182 Al-Cu-based alloy...Simonsen, Visualisation of Material 857Flow in an Autogenous Friction Stir Weld, Proc. 1st International 858Symp. FSW, Thousand Oaks, CA, 1999 85928...A.P. Reynolds, Visualization of Material Flow in an Autogenous 860Friction Stir Weld, Sci. Technol. Weld. Join., 2000, 5, p 120–124 86129. T.U. Seidel

  12. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  13. Effect of friction time on the microstructure and mechanic properties of friction welded AISI 1040/Duplex stainless steel

    Directory of Open Access Journals (Sweden)

    İhsan Kırık

    2000-06-01

    Full Text Available In this study, the effect on the characteristic microstructure and mechanic properties of friction time on the couple steels AISI 1040/AISI 2205 stainless steel joining with friction welding method was experimentally investigated. Friction welding experiment were carried out in privately prepared PLC controlled continuous friction welding machine by us. Joints were carried out under 1700 rpm rotation speed, with 30MPa process friction pressure, 60MPa forging pressure, 4 second forging pressure and under 3, 5, 7, 9 and 11 second friction time, respectively. After friction welding, the bonding interface microstructures of the specimens were examined by SEM microscopy and EDS analysis. After weld microhardness and tensile strength of specimens were carried out. The result of applied tests and observations pointed out that the properties of microstructure were changed with friction time increased. The excellent tensile strength of joint observed on 1700 rpm rotation speed and 3 second friction time sample.

  14. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  15. Friction in sheet metal forming

    DEFF Research Database (Denmark)

    Wiklund, D.; Liljebgren, M.; Berglund, J.

    2010-01-01

    and calls for functional tool surfaces that are durable in these severe tribological conditions. In this study the influence of tool surface topography on friction has been investigated. The frictional response was studied in a Bending Under Tension test. The results did show that a low frictional response...

  16. Optimization of wheel-rail interface friction using top-of-rail friction modifiers: State of the art

    Science.gov (United States)

    Khan, M. Roshan; Dasaka, Satyanarayana Murty

    2018-05-01

    High Speed Railways and Dedicated Freight Corridors are the need of the day for fast and efficient transportation of the ever growing population and freight across long distances of travel. With the increase in speeds and axle loads carried by these trains, wearing out of rails and train wheel sections are a common issue, which is due to the increase in friction at the wheel-rail interfaces. For the cases where the wheel-rail interface friction is less than optimum, as in case of high speed trains with very low axle loads, wheel-slips are imminent and loss of traction occurs when the trains accelerate rapidly or brake all of a sudden. These vast variety of traction problems around the wheel-rail interface friction need to be mitigated carefully, so that the contact interface friction neither ascents too high to cause material wear and need for added locomotive power, nor be on the lower side to cause wheel-slips and loss of traction at high speeds. Top-of-rail friction modifiers are engineered surface coatings applied on top of rails, to maintain an optimum frictional contact between the train wheels and the rails. Extensive research works in the area of wheel-rail tribology have revealed that the optimum frictional coefficients at wheel-rail interfaces lie at a value of around 0.35. Application of top-of-rail (TOR) friction modifiers on rail surfaces add an extra layer of material coating on top of the rails, with a surface frictional coefficient of the desired range. This study reviews the common types of rail friction modifiers, the methods for their application, issues related with the application of friction modifiers, and a guideline on selection of the right class of coating material based on site specific requirements of the railway networks.

  17. Measurement of friction force between two mica surfaces with multiple beam interferometry

    Directory of Open Access Journals (Sweden)

    Jung J.C.

    2010-06-01

    Full Text Available Friction forces play a crucial role in the tribological behaviour of microcomponents and the application of MEMS products. It is necessary to develop a measurement system to understand and control the material characteristics. In this study, a microscopic measurement system based on multiple beam interferometry is developed to measure the friction force between two mica thin films. Some frictional behaviour between the two mica sheets in contact are reported. The evaluated shear strength of mica agrees well to the existing data. It is possible to use the developed system for micro-tribology study.

  18. Economic development, flow of funds, and the equilibrium interaction of financial frictions

    Science.gov (United States)

    Moll, Benjamin; Townsend, Robert M.; Zhorin, Victor

    2017-01-01

    We use a variety of different datasets from Thailand to study not only the extremes of micro and macro variables but also within-country flow of funds and labor migration. We develop a general equilibrium model that encompasses regional variation in the type of financial friction and calibrate it to measured variation in regional aggregates. The model predicts substantial capital and labor flows from rural to urban areas even though these differ only in the underlying financial regime. Predictions for micro variables not used directly provide a model validation. Finally, we estimate the impact of a policy of counterfactual, regional isolationism. PMID:28592655

  19. High-velocity frictional properties of gabbro

    Science.gov (United States)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  20. Use of Friction Stir Welding and Friction Stir Processing for Advanced Nuclear Fuels and Materials Joining Applications

    International Nuclear Information System (INIS)

    J. I. Cole; J. F. Jue

    2006-01-01

    Application of the latest developments in materials technology may greatly aid in the successful pursuit of next generation reactor and transmutation technologies. One such area where significant progress is needed is joining of advanced fuels and materials. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for joining traditionally difficult to join materials such as aluminum alloys. This relatively new technology, first developed in 1991, has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. An overview of the FSW technology is provided and two specific nuclear fuels and materials applications where the technique may be used to overcome limitations of conventional joining technologies are highlighted

  1. Development and Verification of the Tire/Road Friction Estimation Algorithm for Antilock Braking System

    Directory of Open Access Journals (Sweden)

    Jian Zhao

    2014-01-01

    Full Text Available Road friction information is very important for vehicle active braking control systems such as ABS, ASR, or ESP. It is not easy to estimate the tire/road friction forces and coefficient accurately because of the nonlinear system, parameters uncertainties, and signal noises. In this paper, a robust and effective tire/road friction estimation algorithm for ABS is proposed, and its performance is further discussed by simulation and experiment. The tire forces were observed by the discrete Kalman filter, and the road friction coefficient was estimated by the recursive least square method consequently. Then, the proposed algorithm was analysed and verified by simulation and road test. A sliding mode based ABS with smooth wheel slip ratio control and a threshold based ABS by pulse pressure control with significant fluctuations were used for the simulation. Finally, road tests were carried out in both winter and summer by the car equipped with the same threshold based ABS, and the algorithm was evaluated on different road surfaces. The results show that the proposed algorithm can identify the variation of road conditions with considerable accuracy and response speed.

  2. Research on measurement and modeling of the gastro intestine's frictional characteristics

    International Nuclear Information System (INIS)

    Wang, Kun Dong; Yan, Guo Zheng

    2009-01-01

    The frictional characteristics of an intestine are required basically for the development of a noninvasive endoscope for the human intestine. The frictional force is tested by measuring the current of the motor hauling the frictional coupons at an even speed. A multifunction data acquisition device with model NI-6008 USB is used and the data process is performed on the Labview software. Two kinds of materials with aluminum and copper are used. The surfaces are designed as triangle, rectangular, cylindrical and plane forms. The tested results indicate that the frictional resistance force includes the nominal frictional force and the visco-adhesive force. When the surface contour changes from the triangle to the rectangular, to the cylindrical and finally to the plane, the nominal frictional coefficients will decrease and the visco-adhesive force will increase. The nominal frictional force is related to the elastic restoring force, the real frictional force and the contact angle. The cohesive force is determined by the contact area and the contact angle. This research will provide some preliminary references to the design and the parameter selection of locomotion devices in the human gastro-intestine

  3. Coefficient of friction of a starved lubricated spur gear pair

    International Nuclear Information System (INIS)

    Liu, Huaiju; Zhu, Caichao; Sun, Zhangdong; Zhang, Yuanyuan; Song, Chaosheng

    2016-01-01

    The frictional power loss issue of gear pairs becomes an important concern in both industry and academia due to the requirement of the energy saving and the improvement of power density of gear drives. A thermal starved elastohydrodynamic lubrication model is developed to study the tribological performance of a spur gear pair under starved lubrication conditions. The contact pressure, the film thickness, the temperature rise, the frictional power loss, as well as the coefficient of friction are evaluated by considering the variation of the curvature radius, the sliding/rolling motion, and the load distribution of gear tooth within the meshing period. Effects of lubrication starvation condition, load and speed on the coefficient of friction are studied.

  4. Semi-active friction damper for buildings subject to seismic excitation

    Science.gov (United States)

    Mantilla, Juan S.; Solarte, Alexander; Gomez, Daniel; Marulanda, Johannio; Thomson, Peter

    2016-04-01

    Structural control systems are considered an effective alternative for reducing vibrations in civil structures and are classified according to their energy supply requirement: passive, semi-active, active and hybrid. Commonly used structural control systems in buildings are passive friction dampers, which add energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Semi-Active Variable Friction Dampers (SAVFD) allow the optimum efficiency range of friction dampers to be enhanced by controlling the clamping force in real time. This paper describes the development and performance evaluation of a low-cost SAVFD for the reduction of vibrations of structures subject to earthquakes. The SAVFD and a benchmark structural control test structure were experimentally characterized and analytical models were developed and updated based on the dynamic characterization. Decentralized control algorithms were implemented and tested on a shaking table. Relative displacements and accelerations of the structure controlled with the SAVFD were 80% less than those of the uncontrolled structure

  5. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  6. Friction effects on lateral loading behavior of rigid piles

    DEFF Research Database (Denmark)

    Zania, Varvara; Hededal, Ole

    2012-01-01

    taking into account the shear frictional resistance along the pile. For this purpose efficient three dimensional finite element models of different diameter have been developed. The increase of the side friction and of the diameter of the pile is shown to alter the failure pattern and increase...... the lateral capacity of the pile. The obtained p - y curves demonstrate the importance of the aforementioned parameters in the design of rigid piles, as the reduction of friction along the interface reduces not only the ultimate load but also the stiffness of the soil-pile response. Read More: http...

  7. Friction and anchorage loading revisited.

    Science.gov (United States)

    Dholakia, Kartik D

    2012-01-01

    Contemporary concepts of sliding mechanics explain that friction is inevitable. To overcome this frictional resistance, excess force is required to retract the tooth along the archwire (ie, individual retraction of canines, en masse retraction of anterior teeth), in addition to the amount of force required for tooth movement. The anterior tooth retraction force, in addition to excess force (to overcome friction), produces reciprocal protraction force on molars, thereby leading to increased anchorage loading. However, this traditional concept was challenged in recent literature, which was based on the finite element model, but did not bear correlation to the clinical scenario. This article will reinforce the fact that clinically, friction increases anchorage loading in all three planes of space, considering the fact that tooth movement is a quasistatic process rather than a purely continuous or static one, and that conventional ways of determining the effects of static or dynamic friction on anchorage load cannot be applied to clinical situations (which consist of anatomical resistance units and a complex muscular force system). The article does not aim to quantify friction and its effect on the amount of anchorage load. Rather, a new perspective regarding the role of various additional factors (which is not explained by contemporary concept) that may influence friction and anchorage loading is provided..

  8. Study of the dislocation contribution to the internal friction background of gold

    Science.gov (United States)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  9. The effect of friction in coulombian damper

    Science.gov (United States)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  10. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  11. Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites

    International Nuclear Information System (INIS)

    Yi Gewen; Yan Fengyuan

    2006-01-01

    Calcined petroleum coke (CPC) and hexagonal boron nitride (h-BN) were used as the friction modifiers to improve the friction and wear properties of phenolic resin-based friction composites. Thus, the composites with different relative amounts of CPC and h-BN as the friction modifiers were prepared by compression molding. The hardness and bending strength of the friction composites were measured. The friction and wear behaviors of the composites sliding against cast iron at various temperatures were evaluated using a pin-on-disc test rig. The worn surfaces and wear debris of the friction composites were analyzed by means of scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. It was found that the hybrid of the two friction modifiers was effective to significantly decrease the wear rate and stabilize the friction coefficient of the friction composites at various temperatures by forming a uniform lubricating and/or transferred film on the rubbing surfaces. The uniform and durable transfer films were also able to effectively diminish the direct contact between the friction composite and the cast iron counterpart and hence prevent severe wear of the latter as well. The effectiveness of the hybrid of CPC and h-BN in improving the friction and wear behavior of the phenolic resin-based friction modifiers could be attributed to the complementary action of the 'low temperature' lubricity of CPC and the 'high temperature' lubricity of h-BN. The optimum ratio of the two friction modifiers CPC and h-BN in the friction composites was suggested to be 1:1, and the corresponding friction composite showed the best friction-reducing and antiwear abilities

  12. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

    Science.gov (United States)

    Wu, Dong; Shen, Jun; Zhou, Meng-bing; Cheng, Liang; Sang, Jia-xing

    2017-10-01

    A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

  13. Advances on LuGre friction model

    OpenAIRE

    Fuad, Mohammad; Ikhouane, Fayçal

    2013-01-01

    LuGre friction model is an ordinary differential equation that is widely used in describing the friction phenomenon for mechanical systems. The importance of this model comes from the fact that it captures most of the friction behavior that has been observed including hysteresis. In this paper, we study some aspects related to the hysteresis behavior induced by the LuGre friction model.

  14. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  15. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  16. The impact of microgeometry pistons with a stepped bearing surface for the friction loss of the internal combustion engine

    Directory of Open Access Journals (Sweden)

    Wroblewski Emil

    2017-01-01

    Full Text Available This paper present the results of experimental piston friction losses on stepped bearing surface microgeometry obtained on the test rig. This test rig is equipped with special temperature control system, which provides better stability to temperature than in standard systems. The results of station tests was discussed. Tests was analyzed depending the moment caused by the friction on the oil temperature in the oil sump. Specified conclusions allow to assess the impact of the stepped profile of the pistons bearing surface microgeometry for different values of engine speed and the oil temperature at the friction losses in the main kinematic engine node which is piston-cylinder.

  17. Chirality-dependent friction of bulk molecular solids.

    Science.gov (United States)

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  18. A Simple Device For Measuring Skin Friction

    Directory of Open Access Journals (Sweden)

    Gupta A.B

    1995-01-01

    Full Text Available A simple device for measuring skin friction in vivo is described. The frictional coefficient of normal Indian skin and the effect of hydration and application of talc and glycerol on the frictional coefficient and also the friction of ichthyotic skin have been determined with its help. The average value of friction of friction of normal India skin at forearm is found to be 0.41 +- 0.08, the hydration raises the value to 0.71 +- 0.11 and the effect of glycerol is also to school it up to 0.70+- 0.05, almost equal to that of water. The effect of talc however is opposite and its application lowers the friction to 0.21+-0.07. The mean coeff of friction for ichthyotic skin is found to be 0.21+- 0.0.5, which closely agrees with talc-treated normal skin. A good positive correlation (p<0.01 between friction and sebum level at skin site, with r = 0.64, has been observed.

  19. Investigation of Dynamic Friction Induced by Shock Loading Conditions

    International Nuclear Information System (INIS)

    Juanicotena, A.; Szarzynski, S.

    2006-01-01

    Modeling the frictional sliding of one surface against another under high pressure is often required to correctly describe the response of complex systems to shock loading. In order to provide data for direct code and model comparison, a new friction experiment investigating dry sliding characteristics of metal on metal at normal pressures up to 10 GPa and sliding velocities up to 400 m/s has been developed. The test consists of a specifically designed target made of two materials. A plane shock wave generated by plate impact results in one material sliding against the other. The material velocity of the rear surface of the target is recorded versus time by Doppler Laser Interferometry. The dynamic friction coefficient μ is then indirectly determined by comparison with results of numerical simulations involving the conventional Coulomb law. Using this new experimental configuration, three dynamic friction experiments were performed on AA 5083-Al (H111) / AISI 321 stainless steel tribo-pair. Results suggest a decrease in the friction coefficient with increasing sliding velocity

  20. The role of financing frictions in agricultural investment decisions: an analysis pre and post financial crisis

    OpenAIRE

    O'Toole, Conor M.; Newman, Carol F.; Hennessy, Thia C.

    2011-01-01

    This paper uses a fundamental Q model of investment to consider the role played by financing frictions in agricultural investment decisions, controlling econometrically for censoring, heterogeneity and errors-in-variables. Our findings suggest that farmer's investment decisions are not driven by market fundamentals. We find some evidence that debt overhang restricts investment but investment is not dependent on liquidity or internal funds. The role of financing frictions in determining invest...

  1. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  2. Frictional and elastic energy in gecko adhesive detachment.

    Science.gov (United States)

    Gravish, Nick; Wilkinson, Matt; Autumn, Kellar

    2008-03-06

    Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1 m s(-1). Climbing presents a significant challenge for an adhesive since it requires both strong attachment and easy, rapid removal. Conventional pressure-sensitive adhesives are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). We discovered that the energy required to detach adhering tokay gecko setae (W(d)) is modulated by the angle (theta) of a linear path of detachment. Gecko setae resist detachment when dragged towards the animal during detachment (theta = 30 degrees ) requiring W(d) = 5.0+/-0.86(s.e.) J m(-2) to detach, largely due to frictional losses. This external frictional loss is analogous to viscous internal frictional losses during detachment of pressure-sensitive adhesives. We found that, remarkably, setae possess a built-in release mechanism. Setae acted as springs when loaded in tension during attachment and returned elastic energy when detached along the optimal path (theta=130 degrees ), resulting in W(d) = -0.8+/-0.12 J m(-2). The release of elastic energy from the setal shaft probably causes spontaneous release, suggesting that curved shafts may enable easy detachment in natural, and synthetic, gecko adhesives.

  3. [Evaluation of orthodontic friction using a tribometer with alternating movement].

    Science.gov (United States)

    Pernier, C M; Jablonska-Mazanek, E D; Ponsonnet, L; Grosgogeat, B

    2005-12-01

    It is essential for orthodontists to control the complex phenomenon of friction. The in vitro techniques, usually dynamometers or tensile testing machines, used to measure the frictional resistance between arch wires and brackets are linear and unidirectional and can be criticised because tooth movements, such as tipping and uprighting, as well everyday oral activities, primarily chewing, are not uni-dimensional but more closely resemble the small amplitude oscillatory phenomena known as fretting. We therefore decided to develop a fretting machine not with linear but with alternating movements better suited to evaluate the frictional behaviour of orthodontic bracket-wire combinations. Once we had completed construction of this device, we proceeded to measure the frictional resistance between one stainless steel bracket (MicroArch GAC) and five wires currently used in orthodontics (Two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC--Three titanium-molybdenum alloys: TMA and Low Friction TMA Ormco and Resolve GAC). We were able to set up a classification of the wires according to their coefficient of friction, demonstrating the inefficacy of ion implantation and quantifying the increase in the coefficient of friction which occurs when Resolve wires are placed in the oral environment for approximately one year.

  4. Non-uniform Pressure Distribution in Draw-Bend Friction Test and its Influence on Friction Measurement

    International Nuclear Information System (INIS)

    Kim, Young Suk; Jain, Mukesh K.; Metzger, Don R.

    2005-01-01

    From various draw-bend friction tests with sheet metals at lubricated conditions, it has been unanimously reported that the friction coefficient increases as the pin diameter decreases. However, a proper explanation for this phenomenon has not been given yet. In those experiments, tests were performed for different pin diameters while keeping the same average contact pressure by adjusting applied tension forces. In this paper, pressure profiles at pin/strip contacts and the changes in the pressure profiles depending on pin diameters are investigated using finite element simulations. To study the effect of the pressure profile changes on friction measurements, a non-constant friction model (Stribeck friction model), which is more realistic for the lubricated sheet metal contacts, is implemented into the finite element code and applied to the simulations. The study shows that the non-uniformity of the pressure profile increases and the pin/strip contact angle decreases as the pin diameter decreases, and these phenomena increase the friction coefficient, which is calculated from the strip tension forces using a conventional rope-pulley equation

  5. Kinetic Friction of Sport Fabrics on Snow

    Directory of Open Access Journals (Sweden)

    Werner Nachbauer

    2016-03-01

    Full Text Available After falls, skiers or snowboarders often slide on the slope and may collide with obstacles. Thus, the skier’s friction on snow is an important factor to reduce incidence and severity of impact injuries. The purpose of this study was to measure snow friction of different fabrics of ski garments with respect to roughness, speed, and contact pressure. Three types of fabrics were investigated: a commercially available ski overall, a smooth downhill racing suit, and a dimpled downhill racing suit. Friction was measured for fabrics taped on a short ski using a linear tribometer. The fabrics’ roughness was determined by focus variation microscopy. Friction coefficients were between 0.19 and 0.48. Roughness, friction coefficient, and friction force were highest for the dimpled race suit. The friction force of the fabrics was higher for the higher contact pressure than for the lower one at all speeds. It was concluded that the main friction mechanism for the fabrics was dry friction. Only the fabric with the roughest surface showed friction coefficients, which were high enough to sufficiently decelerate a sliding skier on beginner and intermediate slopes.

  6. Friction coefficient dependence on electrostatic tribocharging

    Science.gov (United States)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  7. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    International Nuclear Information System (INIS)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee

    2015-01-01

    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  8. Determination and Application of Comprehensive Specific Frictional Resistance in Heating Engineering

    Directory of Open Access Journals (Sweden)

    Yanan Tian

    2018-01-01

    Full Text Available In this study, we analyze the deficiencies of specific frictional resistance in heating engineering. Based on economic specific frictional resistance, we put forward the concept of comprehensive specific frictional resistance, which considers the multiple factors of technology, economy, regulation modes, pipe segment differences, and medium pressure. Then, we establish a mathematical model of a heating network across its lifespan in order to develop a method for determining the comprehensive specific frictional resistance. Relevant conclusions can be drawn from the results. As an application, we have planned the heating engineering for Yangyuan County in China, which demonstrates the feasibility and superiority of the method.

  9. Development of Nanofluids as Lubricant to Study Friction and Wear Behavior of Stainless Steels

    Science.gov (United States)

    Sahoo, Rashmi Ranjan; Bhattacharjee, Santu; Das, Tuhin

    A number of nanofluids have been prepared to study the effect of lubrication properties of nanofluids on stainless steels taking Kaolin and Boron Nitride (BN) as the lubricant particles and Sodium Dodecyl Sulfate (SDS), Cetyl Trimethyl Ammonium Bromide (CTAB), Sodium Hexa Meta Phosphate (SHMP) as dispersants in the same liquid medium i.e. water. A pin on disc tribometer is being used to access the tribological behaviour of the prepared nanofluids. The particle size of these particle dispersions are examined with a nanoparticle size analyzer. It has been found that the use of dispersants significantly control the particle size and tribological behavior of the nanofluids as for Boron Nitride particle with Sodium Dodecyl Sulfate (SDS) as dispersant has got a very low value of coefficient of friction being equal to 0.142 while without dispersant the value is 0.498. Similarly, in case of Kaolin water with SDS as dispersant the value of coefficient of friction obtained is 0.161 and without dispersant it is 0.333. Sodium Dodecyl Sulfate (SDS) as dispersant has resulted a very low coefficient of friction compared to other dispersants tested even though it doesn’t always assure a least particle size. The role of SDS in yielding the lowest friction has pursued significant attention for further investigation.

  10. Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.

    Science.gov (United States)

    Kozbial, Andrew; Li, Lei

    2014-03-01

    Understanding the friction mechanism of polysaccharide hydrogels, which is the key component of human cartilage that has very low friction coefficient, is critical to develop next generation artificial joint replacement materials. In this study, the friction of the polysaccharide κ-carrageenan hydrogel was investigated to elucidate the effect of external load, cross-linking density, velocity, and environment on friction. Our experimental results show that (1) coefficient of friction (COF) decreases with normal load in air and remains constant in water, (2) increasing cross-linking density concurrently increases friction and is proportional to Young's modulus, (3) COF increases with testing velocity in both air and water, and (4) friction is reduced in aqueous environment due to the lubricating effect of water. The underlying frictional mechanism is discussed on the basis of water transport from bulk to surface and a previously proposed "repulsion-adsorption" model. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  12. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  13. Amontonian frictional behaviour of nanostructured surfaces.

    Science.gov (United States)

    Pilkington, Georgia A; Thormann, Esben; Claesson, Per M; Fuge, Gareth M; Fox, Oliver J L; Ashfold, Michael N R; Leese, Hannah; Mattia, Davide; Briscoe, Wuge H

    2011-05-28

    With nanotextured surfaces and interfaces increasingly being encountered in technological and biomedical applications, there is a need for a better understanding of frictional properties involving such surfaces. Here we report friction measurements of several nanostructured surfaces using an Atomic Force Microscope (AFM). These nanostructured surfaces provide well defined model systems on which we have tested the applicability of Amontons' laws of friction. Our results show that Amontonian behaviour is observed with each of the surfaces studied. However, no correlation has been found between measured friction and various surface roughness parameters such as average surface roughness (R(a)) and root mean squared (rms) roughness. Instead, we propose that the friction coefficient may be decomposed into two contributions, i.e., μ = μ(0) + μ(g), with the intrinsic friction coefficient μ(0) accounting for the chemical nature of the surfaces and the geometric friction coefficient μ(g) for the presence of nanotextures. We have found a possible correlation between μ(g) and the average local slope of the surface nanotextures. This journal is © the Owner Societies 2011

  14. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  15. Friction welding method

    International Nuclear Information System (INIS)

    Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    A friction welding method for forming a lattice-shaped base and tie plate supporter for fuel elements is disclosed in which a plate formed with a concavity along its edge is pressure welded to a rotating member such as a boss by longitudinally contacting the projecting surfaces remaining on either side of the concavity with the rotating member during the high speed rotation thereof in the presence of an inert gas. Since only the two projecting surfaces of the plate are fused by friction to the rotary member, heat expansion is absorbed by the concavity to prevent distortion; moreover, a two point contact surface assures a stable fitting and promotes the construction of a rigid lattice in which a number of the abovementioned plates are friction welded between rotating members to form any desired complex arrangement. The inert has serves to protect the material quality of the contacting surfaces from air during the welding step. The present invention thus provides a method in which even Zircaloy may be friction welded in place of casting stainless steel in the construction of supporting lattices to thereby enhance neutron economy. (K. J. Owens)

  16. Comparisons of friction models in bulk metal forming

    DEFF Research Database (Denmark)

    Tan, Xincai

    2002-01-01

    A friction model is one of the key input boundary conditions in finite element simulations. It is said that the friction model plays an important role in controlling the accuracy of necessary output results predicted. Among the various friction models, which one is of higher accuracy is still...... unknown and controversial. In this paper, finite element analyses applying five different friction models to experiments of upsetting of AA 6082 lubricated with four lubricants are presented. Frictional parameter values are determined by fitness of data of friction area ratio from finite element analysis...... to experimental results. It is found that calibration curves of the friction area ratio for all of the five chosen friction models used in the finite element simulation do fit the experimental results. Usually, calbration curves of the friction area ratio are more sensitive to friction at the tool...

  17. Anticipating the friction coefficient of friction materials used in automobiles by means of machine learning without using a test instrument

    OpenAIRE

    TİMUR, Mustafa; AYDIN, Fatih

    2013-01-01

    The most important factor for designs in which friction materials are used is the coefficient of friction. The coefficient of friction has been determined taking such variants as velocity, temperature, and pressure into account, which arise from various factors in friction materials, and by analyzing the effects of these variants on friction materials. Many test instruments have been produced in order to determine the coefficient of friction. In this article, a study about the use ...

  18. Structural Damping with Friction Beams

    Directory of Open Access Journals (Sweden)

    L. Gaul

    2008-01-01

    Full Text Available In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed in MATLAB which models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode

  19. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  20. Investigating students’ mental models and knowledge construction of microscopic friction. II. Implications for curriculum design and development

    OpenAIRE

    Edgar D. Corpuz; N. Sanjay Rebello

    2011-01-01

    Our previous research showed that students’ mental models of friction at the atomic level are significantly influenced by their macroscopic ideas. For most students, friction is due to the meshing of bumps and valleys and rubbing of atoms. The aforementioned results motivated us to further investigate how students can be helped to improve their present models of microscopic friction. Teaching interviews were conducted to study the dynamics of their model construction as they interacted with t...

  1. On the skin friction coefficient in viscoelastic wall-bounded flows

    International Nuclear Information System (INIS)

    Housiadas, Kostas D.; Beris, Antony N.

    2013-01-01

    Highlights: ► We decompose the skin friction coefficient to its individual contributions. ► The contributions are evaluated using simulation results in turbulent channel flow. ► We present a fitting curve for the drag reduction. ► A new formula for the skin friction coefficient is also developed. ► The results agree well with experimental data from the literature. -- Abstract: Analysis of the skin friction coefficient for wall bounded viscoelastic flows is performed by utilizing available direct numerical simulation (DNS) results for viscoelastic turbulent channel flow. The Oldroyd-B, FENE-P and Giesekus constitutive models are used. First, we analyze the friction coefficient in viscous, viscoelastic and inertial stress contributions, as these arise from suitable momentum balances, for the flow in channels and pipes. Following Fukagata et al. (Phys. Fluids, 14, p. L73, 2002) and Yu et al. (Int. J. Heat. Fluid Flow, 25, p. 961, 2004) these three contributions are evaluated averaging available numerical results, and presented for selected values of flow and rheological parameters. Second, based on DNS results, we develop a universal function for the relative drag reduction as a function of the friction Weissenberg number. This leads to a closed-form approximate expression for the inverse of the square root of the skin friction coefficient for viscoelastic turbulent pipe flow as a function of the friction Reynolds number involving two primary material parameters, and a secondary one which also depends on the flow. The primary parameters are the zero shear-rate elasticity number, El 0 , and the limiting value for the drag reduction at high Weissenberg number, LDR, while the secondary one is the relative wall viscosity, μ w . The predictions reproduce both types A and B of drag reduction, as first introduced by Virk (Nature, 253, p. 109, 1975), corresponding to partially and fully extended polymer molecules, respectively. Comparison of the results for the

  2. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  3. Skin friction: a novel approach to measuring in vivo human skin

    OpenAIRE

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into three parts. The first part is an introduction to skin friction and to current knowledge on skin friction. The second part presents the RevoltST, the tribometer that was specially developed for skin...

  4. Thermally-activated internal friction peaks in amorphous films of Nb3Ge and Nb3Si

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.

    1978-01-01

    A large number of the thermally-activated internal friction peaks observed in crystalline solids are associated with the general mechanism of stress-induced directional short-range ordering. These peaks are an indirect but nevertheless valuable structural probe, and provide an important means of obtaining quantitative information on the kinetics of local atomic movements. This paper deals with what are thought to be the first-known examples of such peaks in the field of metallic glasses. The peaks have been observed in amorphous films of Nb 3 Ge and Nb 3 Si which are both superconductors with transition temperatures Tsub(c) near 3.6K. Although Tsub(c) is thus well below the record values of approximately equal to 23K reported for crystalline films of Nb 3 Ge, Tsuei has found the amorphous films to be much superior mechanically to their crystalline counterparts. Consequently, the amorphous films have technological interest as an easily-handled source from which the brittle high-Tsub(c) phase may be obtained by a final in-situ anneal. (author)

  5. FRICTION-BOON OR BANE IN ORTHODONTICS

    Directory of Open Access Journals (Sweden)

    Sameer

    2015-11-01

    Full Text Available OBJECTIVE: Most fixed appliance techniques involve some degree of sliding between brackets and arch wires. A sound knowledge of the various factors affecting the magnitude of friction is of paramount importance to the clinician. The present study was performed to evaluate and compare the frictional resistance and characteristics between self-ligating brackets and pre-adjusted edgewise brackets with different types of ligation. MATERIALS AND METHODS: Tidy's frictional test design was used to simulate retraction of tooth along with artificial saliva to simulate wet conditions in oral cavity. The jig with this assembly was mounted on the Instron machine with the cross head moving upwards at a speed of 5mm/min. The movable bracket was suspended from the load cell of the testing machine, while the jig was mounted on cross head of machine and the load cell readings were recorded on digital display. Following wires are used 0.016 HANT, 0.019X 0.025HANT, 0.019X 0.025 SS, 0.021X 0.025 SS wires are used. The brackets used were 0.022 slot Damon, 0.022 Smart clip and 0.022 slot MBT system. RESULTS: Self ligating brackets were shown to produce lesser friction when compared to the conventional brackets used with modules, and stainless steel ligatures. Damon self-ligating brackets produce a least friction of all the brackets used in the study. Stainless steel ligatures produced the least friction compared to elastomeric. CONCLUSION: Self ligation brackets produce lesser friction than the conventional brackets ligated with elastomeric modules and stainless steel ligature. Damon self-ligating brackets produce a least friction of all the brackets used in the study width of the bracket was also found to be directly proportional to the friction produced 0.0016HANT with elastomeric modules produce more friction due increase in flexibility of wire.

  6. Contribution to the study of internal friction in graphites; Contribution a l'etude du frottement interieur des graphites

    Energy Technology Data Exchange (ETDEWEB)

    Merlin, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-03-01

    A study has been made of the internal friction in different graphites between -180 C and +500 C using a torsion pendulum; the graphites had been previously treated thermo-mechanically, by neutron irradiation and subjected to partial annealings. It has been shown that there occurs: a hysteretic type dissipation of energy, connected with interactions between dislocations and other defects in the matrix; a dissipation having a partially hysteretic character which can be interpreted by a Granato-Luke type formalism and which is connected with the presence of an 'ultra-micro porosity'; a dissipation by a relaxation mechanism after a small dose of irradiation; this is attributed to the reorientation of bi-interstitials; a dissipation having the characteristics of a solid state transformation, this during an annealing after irradiation. It is attributed to the reorganization of interstitial defects. Some information has thus been obtained concerning graphites, in particular: their behaviour at low mechanical stresses, the nature of irradiation defects and their behaviour during annealing, the structural changes occurring during graphitization, the relationship between internal friction and macroscopic mechanical properties. (author) [French] L'etude du coefficient de frottement interieur au moyen d'un pendule de torsion entre -180 C et +500 C a ete realisee pour differents graphites apres des traitements thermo-mecaniques, des irradiations neutroniques et des guerisons partielles. Il a ete mis en evidence: une dissipation d'energie a caractere hysteretique, reliee aux interactions des dislocations avec les autres defauts de la matrice; une dissipation a caractere partiellement hysteretique, interpretable par un formalisme type Granato-Lucke et reliee a la presence d'une ''ultra-microporosite''; une dissipation par un mecanisme de relaxation, apres irradiation a faible dose, attribuee a la reorientation de di-interstitiels; une dissipation presentant les caracteristiques d

  7. Active compliant wall for skin friction reduction

    International Nuclear Information System (INIS)

    Pätzold, A.; Peltzer, I.; Nitsche, W.; Goldin, N.; King, R.; Haller, D.; Woias, P.

    2013-01-01

    Highlights: • Objective: Delay of laminar-turbulent transition on a wing by active wall actuation. • Natural, convective TS-instabilities are damped by travelling counter waves. • Piezo driven active wall and model predictive controller were developed. • TS amplitudes were damped by 83.6% (equals 15.7 dB within instability band). • Significant effect on skin friction distribution. -- Abstract: In order to reduce skin friction drag, an active laminarisation method is developed. Laminar-turbulent boundary layer transition caused by Tollmien–Schlichting (TS) waves is delayed by attenuation of these convective instabilities. An actively driven compliant wall is integrated as part of a wing’s surface. Different configurations of piezo-based actuators are combined with an array of sensitive surface flow sensors. Wall-normal actuation as well as inclined wall displacement are investigated. Together with a realtime-control strategy, transition onset is shifted downstream by six average TS-wave lengths. Using the example of flow velocity, the influence of variable flow conditions on TS-damping rates was investigated. Besides, the boundary layer flow downstream of the active wall area as well as required wall deflections and the global damping effect on skin friction are presented in this paper

  8. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    Science.gov (United States)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  9. Friction between silicon and diamond at the nanoscale

    International Nuclear Information System (INIS)

    Bai, Lichun; Srikanth, Narasimalu; Sha, Zhen-Dong; Pei, Qing-Xiang; Wang, Xu; Srolovitz, David J; Zhou, Kun

    2015-01-01

    This work investigates the nanoscale friction between diamond-structure silicon (Si) and diamond via molecular dynamics simulation. The interaction between the interfaces is considered as strong covalent bonds. The effects of load, sliding velocity, temperature and lattice orientation are investigated. Results show that the friction can be divided into two stages: the static friction and the kinetic friction. During the static friction stage, the load, lattice orientation and temperature dramatically affects the friction by changing the elastic limit of Si. Large elastic deformation is induced in the Si block, which eventually leads to the formation of a thin layer of amorphous Si near the Si-diamond interface and thus the beginning of the kinetic friction stage. During the kinetic friction stage, only temperature and velocity have an effect on the friction. The investigation of the microstructural evolution of Si demonstrated that the kinetic friction can be categorized into two modes (stick-slip and smooth sliding) depending on the temperature of the fracture region. (paper)

  10. Fault Frictional Stability in a Nuclear Waste Repository

    Science.gov (United States)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the

  11. Friction-induced skin injuries-are they pressure ulcers? An updated NPUAP white paper.

    Science.gov (United States)

    Brienza, David; Antokal, Steven; Herbe, Laura; Logan, Susan; Maguire, Jeanine; Van Ranst, Jennifer; Siddiqui, Aamir

    2015-01-01

    Friction injuries are often misdiagnosed as pressure ulcers. The reason for the misdiagnosis may be a misinterpretation of classic pressure ulcer literature that reported friction increased the susceptibility of the skin to pressure damage. This analysis assesses the classic literature that led to the inclusion of friction as a causative factor in the development of pressure ulcers in light of more recent research on the effects of shear. The analysis in this article suggests that friction can contribute to pressure ulcers by creating shear strain in deeper tissues, but friction does not appear to contribute to pressure ulcers in the superficial layers of the skin. Injuries to the superficial layers of the skin caused by friction are not pressure ulcers and should not be classified or treated as such.

  12. Breakaway frictions of dynamic O-rings in mechanical seals

    Science.gov (United States)

    Lai, Tom; Kay, Peter

    1993-05-01

    Breakaway friction of a dynamic O-ring affects the mechanical seal's response to large axial shaft movement and face wear. However, little data exist to help designers. Therefore, a test rig was developed to measure breakaway friction. The research quantitatively shows the effects of lubrication with silicone grease and a change of surface finish. By using the Taguchi statistical experimental design method, the significance of test parameters was evaluated with a minimum number of tests. It was found that fluid pressure, dwell time, and O-ring percentage squeeze affect O-ring breakaway friction more than the O-ring cross sectional diameter and axial sliding speed within the range of values tested. The authors showed that breakaway friction increased linearly with pressure. However, O-rings made of different materials had significantly different increase rates, even if they had nominally the same durometer hardness. Breakaway friction also increased with logarithm of dwell time. Again, the increase rate depended strongly on the specific O-ring material tested. These observations led the authors to believe that the typical approach of generalizing data based on generic polymer type and durometer was inappropriate.

  13. Nonmonotonicity of the Frictional Bimaterial Effect

    Science.gov (United States)

    Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran

    2017-10-01

    Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.

  14. Surface Friction of Polyacrylamide Hydrogel Particles

    Science.gov (United States)

    Cuccia, Nicholas; Burton, Justin

    Polyacrylamide hydrogel particles have recently become a popular system for modeling low-friction, granular materials near the jamming transition. Because a gel consists of a polymer network filled with solvent, its frictional behavior is often explained using a combination of hydrodynamic lubrication and polymer-surface interactions. As a result, the frictional coefficient can vary between 0.001 and 0.03 depending on several factors such as contact area, sliding velocity, normal force, and the gel surface chemistry. Most tribological measurements of hydrogels utilize two flat surfaces, where the contact area is not well-defined. We have built a custom, low-force tribometer to measure the single-contact frictional properties of spherical hydrogel particles on flat hydrogel surfaces under a variety of measurement conditions. At high velocities (> 1 cm/s), the friction coefficient depends linearly on velocity, but does not tend to zero at zero velocity. We also compare our measurements to solid particles (steel, glass, etc.) on hydrogel surfaces, which exhibit larger frictional forces, and show less dependence on velocity. A physical model for the friction which includes the lubrication layer between the deformed surfaces will be discussed. National Science Foundation Grant No. 1506446.

  15. Effect of humidity and interlayer cation on frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, H.; Katayama, I.; Sakuma, H.; Tamura, K.

    2016-12-01

    Smectite has been ubiquitously seen in fault gouge (Schleicher et al., 2006; Kuo et al., 2009; Si et al., 2014; Kameda, 2015) and is characteristic by low frictional coefficient (Saffer et al., 2001; Ikari et al., 2007); consequently, it has a key role in fault dynamics. The frictional strength of montmorillonite (a typical type of smectite) is affected by mainly two factors, 1) hydration state and 2) interlayer cation. Previous laboratory experiments have shown that the frictional strength of montmorillonite changes with hydration state (Ikari et al., 2007) and with interlayer cation (Behnsen and Faulkner, 2013). However, experimental study for frictional strengths of interlayer cation-exchanged montmorillonite under controlled hydration state has not been reported. We are developing humidity control system in biaxial friction testing machine and try to investigate the effect of relative humidity and interlayer cation on frictional strength of montmorillonite. The humidity control system consists of two units, 1) the pressure vessel (core holder) unit controlled by a constant temperature and 2) the vapor generating unit controlled by variable temperature. We control relative humidity around sample, which is calculated from the temperature around sample and the vapor pressure at vapor generating unit. Preliminary experiments under controlled humidity show frictional coefficient of montmorillonite decrease with increasing relative humidity. In the meeting, we will report the systematic study of frictional coefficient as function of relative humidity and interlayer cation species.

  16. Interfacial friction in low flowrate vertical annular flow

    International Nuclear Information System (INIS)

    Kelly, J.M.; Freitas, R.L.

    1993-01-01

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  17. Development of friction material by using precast prefired (pcp f) blocks

    Science.gov (United States)

    Dineshkumar, R.; Ramanamurthy, E. V. V.; Krishnapavanteja, Ch

    2017-05-01

    The braking system used to control and stop automobile system. The braking system converts the kinematic energy into heat energy by friction. The performance of the brake pad depends on composition of friction materials. The asbestos brake pads are carcinogenic nature and it makes so many health problems. The present research work is going to replacement of asbestos by new materials. The new material is made by fused ceramic materials from industrial wastage. In this study the industrial waste are recycled and conducted the suitable test to compare the performance of the new material with existing brake pad material. The wear test was conducted by pin on disc experiment. The non asbestos, nonfused, fused samples are represented by x1, x2 and x3. The new brake pad material is formed by non fused and fused ceramic materials. The brake pads are manufactured by powder compacting process.

  18. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  19. Friction welding of A 6061 aluminum alloy and S45C carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, T. [Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya (Japan); Kawata, S. [Post Graduate Student, Nagoya Univ., Nagoya (Japan)

    2004-07-01

    Many researches for friction welding of aluminum with either carbon steel or stainless steel have been carried out. From those results, it is concluded that the greatest problem is the formation of brittle intermetallic compounds at weld interface. However, it is not clearly demonstrated the effect of friction welding parameters on the formation of intermetallic compounds. This research purposes are to evaluate the formation of intermetallic compounds and to investigate the effect of friction welding parameters on the strength of welded joint. For these purposes, A6061 aluminum alloy and S45C carbon steel were used with a continuous drive vertical friction welding machine. Tensile test results revealed that the maximum tensile strength was achieved at extremely short friction time and high upset. The joint strength reached 92% of the tensile strength of A6061 base metal. Tensile strength of friction welding was increasing with increasing upset pressure when friction time 1sec. However, tensile properties were deteriorated with increasing friction time. It was observed that the amount of formed intermetallic compound was increasing with increasing friction time at weld interface. Partly formed intermetallic compound on weld interface were identified when friction time 1 sec. However, intermetallic compound layer were severely developed with longer friction time at weld interface. It was concluded that intermetallic compound layer deteriorated the tensile properties of weld joints. (orig.)

  20. Meniscus formation in a capillary and the role of contact line friction.

    Science.gov (United States)

    Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G

    2014-01-28

    We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

  1. A study on the frictional response of reptilian shed skin

    International Nuclear Information System (INIS)

    Abdel-Aal, H A; Vargiolu, R; Zahouani, H; Mansori, M El

    2011-01-01

    Deterministic surfaces are constructs of which profile, topography and textures are integral to the function of the system they enclose. They are designed to yield a predetermined tribological response. Developing such entities relies on controlling the structure of the rubbing interface so that, not only the surface is of optimized topography, but also is able to self-adjust its tribological behaviour according to the evolution of sliding conditions. In seeking inspirations for such designs, many engineers are turning toward the biological world to study the construction and behaviour of bio-analogues, and to probe the role surface topography assumes in conditioning of frictional response. That is how a bio-analogue can self-adjust its tribological response to adapt to habitat constraints. From a tribological point of view, Squamate Reptiles, offer diverse examples where surface texturing, submicron and nano-scale features, achieves frictional regulation. In this paper, we study the frictional response of shed skin obtained from a snake (Python regius). The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakes. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the backward direction. Diagonal and side winding motion induces a different value of the friction coefficient. We discuss the origin of such a phenomenon in relation to surface texturing and study the energy constraints, implied by anisotropic friction, on the motion of the reptile.

  2. A study on the frictional response of reptilian shed skin

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aal, H A [Arts et Metier ParisTech, Rue Saint Dominique BP 508, 51006 Chalons-en-Champagne (France); Vargiolu, R; Zahouani, H [Laboratoire de Tribology et Dynamique des Systemes, UMR CNRS 5513, ENI Saint Etienne - Ecole Centrale de Lyon -36 Avenue Guy de Collongue, 69131 Ecully cedex. France (France); Mansori, M El, E-mail: Hisham.abdel-aal@ensam.eu [Ecole Nationale Superieure d' Arts et Metiers, 2, cours des Arts et Metiers - 13617 Aix en Provence cedex 1 (France)

    2011-08-19

    Deterministic surfaces are constructs of which profile, topography and textures are integral to the function of the system they enclose. They are designed to yield a predetermined tribological response. Developing such entities relies on controlling the structure of the rubbing interface so that, not only the surface is of optimized topography, but also is able to self-adjust its tribological behaviour according to the evolution of sliding conditions. In seeking inspirations for such designs, many engineers are turning toward the biological world to study the construction and behaviour of bio-analogues, and to probe the role surface topography assumes in conditioning of frictional response. That is how a bio-analogue can self-adjust its tribological response to adapt to habitat constraints. From a tribological point of view, Squamate Reptiles, offer diverse examples where surface texturing, submicron and nano-scale features, achieves frictional regulation. In this paper, we study the frictional response of shed skin obtained from a snake (Python regius). The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakes. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the backward direction. Diagonal and side winding motion induces a different value of the friction coefficient. We discuss the origin of such a phenomenon in relation to surface texturing and study the energy constraints, implied by anisotropic friction, on the motion of the reptile.

  3. Friction of Human Skin against Different Fabrics for Medical Use

    Directory of Open Access Journals (Sweden)

    Luís Vilhena

    2016-03-01

    Full Text Available Knowledge of the tribology of human skin is essential to improve and optimize surfaces and materials in contact with the skin. Besides that, friction between the human skin and textiles is a critical factor in the formation of skin injuries, which are caused if the loads and shear forces are high enough and/or over long periods of time. This factor is of particular importance in bedridden patients, since they are not moving about or are confined to wheelchairs. Decubitus ulcers are one of the most frequently-reported iatrogenic injuries in developed countries. The risk of developing decubitus ulcers can be predicted by using the “Braden Scale for Predicting Pressure Ulcer Risk” that was developed in 1987 and contains six areas of risk (cognitive-perceptual, immobility, inactivity, moisture, nutrition, friction/shear, although there are limitations to the use of such tools. The coefficient of friction of textiles against skin is mainly influenced by: the nature of the textile, skin moisture content and ambient humidity. This study will investigate how skin friction (different anatomical regions varies, rubbing against different types of contacting materials (i.e., fabrics for medical use under different contact conditions and their relationship in the formation and prevention of decubitus ulcers.

  4. Friction mechanisms and interfacial slip at fluid-solid interfaces

    CERN Document Server

    Leger, L

    2003-01-01

    We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...

  5. Integrating experimental and simulation length and time scales in mechanistic studies of friction

    International Nuclear Information System (INIS)

    Sawyer, W G; Perry, S S; Phillpot, S R; Sinnott, S B

    2008-01-01

    Friction is ubiquitous in all aspects of everyday life and has consequently been under study for centuries. Classical theories of friction have been developed and used to successfully solve numerous tribological problems. However, modern applications that involve advanced materials operating under extreme environments can lead to situations where classical theories of friction are insufficient to describe the physical responses of sliding interfaces. Here, we review integrated experimental and computational studies of atomic-scale friction and wear at solid-solid interfaces across length and time scales. The influence of structural orientation in the case of carbon nanotube bundles, and molecular orientation in the case of polymer films of polytetrafluoroethylene and polyethylene, on friction and wear are discussed. In addition, while friction in solids is generally considered to be athermal, under certain conditions thermally activated friction is observed for polymers, carbon nanotubes and graphite. The conditions under which these transitions occur, and their proposed origins, are discussed. Lastly, a discussion of future directions is presented

  6. Showing Area Matters: A Work of Friction

    Science.gov (United States)

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  7. Influence of tribological additives on friction and impact performance of injection moulded polyacetal

    DEFF Research Database (Denmark)

    Laursen, Jens Lolle; Sivebæk, Ion Marius; Christoffersen, L.W.

    2009-01-01

    Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant in the de......Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant...... in the development of tribologically modified grades. In the present study we investigate how two commonly used tribological additives, polydimethylsiloxane and polytetrafluoroethylene, affect friction and impact properties of polyacetal (polyoxymethylene). A new injection mould provides test specimens for both...

  8. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    Science.gov (United States)

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  9. A multivariable model for predicting the frictional behaviour and hydration of the human skin.

    Science.gov (United States)

    Veijgen, N K; van der Heide, E; Masen, M A

    2013-08-01

    The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These

  10. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.

  11. The sound of friction: Real-time models, playability and musical applications

    Science.gov (United States)

    Serafin, Stefania

    Friction, the tangential force between objects in contact, in most engineering applications needs to be removed as a source of noise and instabilities. In musical applications, friction is a desirable component, being the sound production mechanism of different musical instruments such as bowed strings, musical saws, rubbed bowls and any other sonority produced by interactions between rubbed dry surfaces. The goal of the dissertation is to simulate different instrument whose main excitation mechanism is friction. An efficient yet accurate model of a bowed string instrument, which combines the latest results in violin acoustics with the efficient digital waveguide approach, is provided. In particular, the bowed string physical model proposed uses a thermodynamic friction model in which the finite width of the bow is taken into account; this solution is compared to the recently developed elasto-plastic friction models used in haptics and robotics. Different solutions are also proposed to model the body of the instrument. Other less common instruments driven by friction are also proposed, and the elasto-plastic model is used to provide audio-visual simulations of everyday friction sounds such as squeaking doors and rubbed wine glasses. Finally, playability evaluations and musical applications in which the models have been used are discussed.

  12. Non-linear friction in reciprocating hydraulic rod seals: Simulation and measurement

    International Nuclear Information System (INIS)

    Bullock, A K; Tilley, D G; Johnston, D N; Bowen, C R; Keogh, P S

    2009-01-01

    Non-linear seal friction can impede the performance of hydraulic actuation systems designed for high precision positioning with favourable dynamic response. Methods for predicting seal friction are required to help develop sealing systems for this type of application. Recent simulation techniques have claimed progress, although have yet to be validated experimentally. A conventional reciprocating rod seal is analysed using established elastohydrodynamic theory and the mixed lubrication Greenwood-Williamson-average Reynolds model. A test rig was used to assess the accuracy of the simulation results for both instroke and outstroke. Inverse hydrodynamic theory is shown to predict a U 0.5 power law between rod speed and friction. Comparison with experimental data shows the theory to be qualitatively inaccurate and to predict friction levels an order of magnitude lower than those measured. It was not possible to model the regions very close to the inlet and outlet due to the high pressure gradients at the edges of the contact. The mixed lubrication model produces friction levels within the correct order of magnitude, although incorrectly predicts higher friction during instroke than outstroke. Previous experiments have reported higher friction during instroke than outstroke for rectangular seals, suggesting that the mixed lubrication model used could possibly be suitable for symmetric seals, although not for seal tribology in general.

  13. [Friction: self-ligating brackets].

    Science.gov (United States)

    Thermac, Guilhem; Morgon, Laurent; Godeneche, Julien

    2008-12-01

    The manufacturers of self-ligating brackets advertise a reduction of the friction engendered between the wire and the bracket, which is an essential parameter for treatment's speed and comfort. We have compared the friction obtained with four types of self-ligating brackets - In-Ovation R, Damon 3, Smart Clip and Quick - with that of a standard bracket Omniarch associated with an elastomeric ligature. All bracket were tested on a bench of traction with three types of wires: steel .019"x.025", TMA .019"x.025" and NEO sentalloy F300 .020"x.020". The results confirm a clear friction reduction for all tested wire.

  14. Investigating students' mental models and knowledge construction of microscopic friction. II. Implications for curriculum design and development

    Science.gov (United States)

    Corpuz, Edgar D.; Rebello, N. Sanjay

    2011-12-01

    Our previous research showed that students’ mental models of friction at the atomic level are significantly influenced by their macroscopic ideas. For most students, friction is due to the meshing of bumps and valleys and rubbing of atoms. The aforementioned results motivated us to further investigate how students can be helped to improve their present models of microscopic friction. Teaching interviews were conducted to study the dynamics of their model construction as they interacted with the interviewer, the scaffolding activities, and/or with each other. In this paper, we present the different scaffolding activities and the variation in the ideas that students generated as they did the hands-on and minds-on scaffolding activities. Results imply that through a series of carefully designed scaffolding activities, it is possible to facilitate the refinement of students’ ideas of microscopic friction.

  15. Investigating students’ mental models and knowledge construction of microscopic friction. II. Implications for curriculum design and development

    Directory of Open Access Journals (Sweden)

    Edgar D. Corpuz

    2011-07-01

    Full Text Available Our previous research showed that students’ mental models of friction at the atomic level are significantly influenced by their macroscopic ideas. For most students, friction is due to the meshing of bumps and valleys and rubbing of atoms. The aforementioned results motivated us to further investigate how students can be helped to improve their present models of microscopic friction. Teaching interviews were conducted to study the dynamics of their model construction as they interacted with the interviewer, the scaffolding activities, and/or with each other. In this paper, we present the different scaffolding activities and the variation in the ideas that students generated as they did the hands-on and minds-on scaffolding activities. Results imply that through a series of carefully designed scaffolding activities, it is possible to facilitate the refinement of students’ ideas of microscopic friction.

  16. A thermodynamic model of sliding friction

    Directory of Open Access Journals (Sweden)

    Lasse Makkonen

    2012-03-01

    Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.

  17. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  18. Mechanics of granular-frictional-visco-plastic fluids in civil and mining engineering

    Science.gov (United States)

    Alehossein, H.; Qin, Z.

    2013-10-01

    The shear stress generated in mine backfill slurries and fresh concrete contains both velocity gradient dependent and frictional terms, categorised as frictional viscous plastic fluids. This paper discusses application of the developed analytical solution for flow rate as a function of pressure and pressure gradient in discs, pipes and cones for such frictional Bingham-Herschel-Bulkley fluids. This paper discusses application of this continuum fluid model to industrial materials like mine and mineral slurries, backfills and fresh concrete tests.

  19. Friction and wear behavior of Colmonoy and Stellite alloys in sodium environment

    International Nuclear Information System (INIS)

    Kanoh, S.; Mizobuchi, S.; Atsumo, H.

    1976-01-01

    A description is given of a series of experiments in sodium environment for the research and development of friction and wear resistant material used for the sliding components of sodium cooled fast breeder reactor. The study relates to the friction and wear characteristics of nickel-base alloy, Colmonoy, and cobalt-base alloy, Stellite, with respect to temperature, load, sliding velocity, sliding mode, and sodium flushing. The friction behavior of these alloys in sodium is compared with that in argon

  20. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    Science.gov (United States)

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  1. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  2. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  3. Friction measurement in a hip wear simulator.

    Science.gov (United States)

    Saikko, Vesa

    2016-05-01

    A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. © IMechE 2016.

  4. Friction coefficient of skin in real-time.

    Science.gov (United States)

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  5. Double tube heat exchanger with novel enhancement: Part I - flow development length and adiabatic friction factor

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Raghavan, Vijay R. [Universiti Teknologi PETRONAS, Faculty of Mechanical Engineering, Tronoh (Malaysia)

    2012-04-15

    The study is conducted to evaluate the flow characteristics in a double tube heat exchanger using two new and versatile enhancement configurations. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Correlations are proposed for flow development length and friction factor for use in predicting fluid pumping power in thermal equipment as well as in subsequent heat transfer characterization of the surface. (orig.)

  6. Effects of humidity and interlayer cations on the frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, Hiroshi; Katayama, Ikuo; Sakuma, Hiroshi; Tamura, Kenji

    2018-04-01

    We developed a humidity control system in a biaxial friction testing machine to investigate the effect of relative humidity and interlayer cations on the frictional strength of montmorillonite. We carried out the frictional experiments on Na- and Ca-montmorillonite under controlled relative humidities (ca. 10, 30, 50, 70, and 90%) and at a constant temperature (95 °C). Our experimental results show that frictional strengths of both Na- and Ca-montmorillonite decrease systematically with increasing relative humidity. The friction coefficients of Na-montmorillonite decrease from 0.33 (at relative humidity of 10%) to 0.06 (at relative humidity of 93%) and those of Ca-montmorillonite decrease from 0.22 (at relative humidity of 11%) to 0.04 (at relative humidity of 91%). Our results also show that the frictional strength of Na-montmorillonite is higher than that of Ca-montmorillonite at a given relative humidity. These results reveal that the frictional strength of montmorillonite is sensitive to hydration state and interlayer cation species, suggesting that the strength of faults containing these clay minerals depends on the physical and chemical environment.[Figure not available: see fulltext.

  7. Rubber friction and tire dynamics

    International Nuclear Information System (INIS)

    Persson, B N J

    2011-01-01

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  8. Rubber friction and tire dynamics.

    Science.gov (United States)

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  9. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  10. Systematic investigation of the fatigue performance of a friction stir welded low alloy steel

    International Nuclear Information System (INIS)

    Toumpis, Athanasios; Galloway, Alexander; Molter, Lars; Polezhayeva, Helena

    2015-01-01

    Highlights: • The fatigue behaviour of a friction stir welded low alloy steel has been assessed. • The welds’ fatigue lives outperform the International Institute of Welding’s recommendations for fusion welds. • The slow weld exhibits the best fatigue performance of the investigated welds. • Fracture surface analysis shows that minor embedded flaws do not offer crack initiation sites. • Process-related surface breaking flaws have a significant effect on the fatigue life. - Abstract: A comprehensive fatigue performance assessment of friction stir welded DH36 steel has been undertaken to address the relevant knowledge gap for this process on low alloy steel. A detailed set of experimental procedures specific to friction stir welding has been put forward, and the consequent study extensively examined the weld microstructure and hardness in support of the tensile and fatigue testing. The effect of varying welding parameters was also investigated. Microstructural observations have been correlated to the weldments’ fatigue behaviour. The typical fatigue performance of friction stir welded steel plates has been established, exhibiting fatigue lives well above the weld detail class of the International Institute of Welding even for tests at 90% of yield strength, irrespective of minor instances of surface breaking flaws which have been identified. An understanding of the manner in which these flaws impact on the fatigue performance has been established, concluding that surface breaking irregularities such as these produced by the tool shoulder’s features on the weld top surface can be the dominant factor for crack initiation under fatigue loading

  11. Heat generation during plunge stage in friction stir welding

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2013-01-01

    Full Text Available This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW. A three-dimensional finite element model (FEM is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb’s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained.

  12. Micromechanical simulation of frictional behaviour in metal forming

    International Nuclear Information System (INIS)

    Zhang, S.; Hodgson, P.D.; Cardew-Hall, M.J.; Kalyanasundaram, S.

    2000-01-01

    Friction is a critical factor for Sheet Metal Forming (SMF). The Coulomb friction model is usually used in most Finite Element (FE) simulation for SMF. However, friction is a function of the local contact deformation conditions, such as local pressure, roughness and relative velocity. This paper will present a micromechanical model that accounts for the local frictional behaviour through finite element simulations performed at the micromechanical level. Frictional behaviour between contact surfaces can be based on three cases: boundary, hydrodynamic and mixed lubrication. In our microscopic friction model based on FEM, the case of boundary lubrication contact between sheet and tool has been considered. In the view of microscopic geometry, roughness depends upon amplitude and wavelength of surface asperities of sheet and tool. The mean pressure applied on the surface differs from the pressure over the actual contact area. The effect of roughness (microscopic geometric condition) and relative speed of contact surfaces on friction coefficient was examined in the FE model for the microscopic friction behaviour. The analysis was performed using an explicit finite element formulation. In this study, it was found that the roughness of deformable sheet decreases during sliding and the coefficient of friction increases with increasing roughness of contact surfaces. The coefficient of friction increases with the increase of relative velocity and adhesive friction coefficient between contact surfaces. (author)

  13. The friction cost method: a comment.

    Science.gov (United States)

    Johannesson, M; Karlsson, G

    1997-04-01

    The friction cost method has been proposed as an alternative to the human-capital approach of estimating indirect costs. We argue that the friction cost method is based on implausible assumptions not supported by neoclassical economic theory. Furthermore consistently applying the friction cost method would mean that the method should also be applied in the estimation of direct costs, which would mean that the costs of health care programmes are substantially decreased. It is concluded that the friction cost method does not seem to be a useful alternative to the human-capital approach in the estimation of indirect costs.

  14. Simulating Dynamics of the System of Articulated Rigid Bodies with Joint Friction

    Directory of Open Access Journals (Sweden)

    M. V. Michaylyuk

    2016-01-01

    Full Text Available The subject of the work is to simulate dynamics of the system of articulated rigid bodies in the virtual environment complexes. The work aim is to develop algorithms and methods to simulate the multi-body system dynamics with joint friction to ensure all calculations in real time in line with visual realistic behavior of objects in a scene.The paper describes the multibody system based on a maximal set of coordinates, and to simulate the joint friction is used a Coulomb's law of dry friction. Joints are described using the holonomic constraints and their derivatives that specify the constraints on velocities of joined bodies. Based on The Coulomb’s law a correlation for the friction impulse values has been derived as an inequality. If the friction impulse performs a constraint that is a lack of relative motion of two joint-joined bodies, there is a static friction in the joint. Otherwise, there is a dynamic friction in the joint. Using a semi-implicit Euler method allows us to describe dynamics of articulated rigid bodies with joint friction as a system of linear algebraic equations and inequalities for the unknown velocities and impulse values.To solve the obtained system of equations and inequalities is used an iterative method of sequential impulses, which sequentially processes constraints for each joint with impulse calculation and its application to the joined bodies rather than considers the entire system. To improve the method convergence, at each iteration the calculated impulses are accumulated for their further using as an initial approximation at the next step of simulation.The proposed algorithms and methods have been implemented in the training complex dynamics subsystem, developed in SRISA RAS. Evaluation of these methods and algorithms has demonstrated their full adequacy to requirements for virtual environment systems and training complexes.

  15. Development of friction and wear full-scale testing for TKR prostheses with reliable low cost apparatus

    Science.gov (United States)

    Suwandi, Agri; Soemardi, Tresna P.; Kiswanto, Gandjar; Kusumaningsih, Widjajalaksmi; I. Gusti Agung I. G., W.

    2018-02-01

    Prostheses products must undergo simulation and physical testing, before clinical testing. Finite element method is a preliminary simulation for in vivo test. The method visualizes the magnitude of the compressive force and the critical location of the Total Knee Replacement (TKR) prostheses design. In vitro testing is classified as physical testing for prostheses product. The test is conducted to evaluate the potential failure of the product and the characteristics of the prostheses TKR material. Friction and wear testing are part of the in vivo test. Motion of knee joints, which results in the phenomena of extension and deflection in the femoral and tibia insert, is represented by friction and wear testing. Friction and wear tests aim to obtain an approximate lifetime in normal and extreme load patterns as characterized by the shape of the friction surface area. The lifetime estimation requires friction and wear full-scale testing equipments for TKR prostheses products. These are necessary in obtaining initial data on potential product failures and characterizing of the material based on the ASTM F2724-08 standards. Based on the testing result and statistical analysis data, the average wear rate value per year is 2.19 × 10-3 mg/MC, with a 10 % safety limit of volume and 14,400 cycles times, for 15 hours moving nonstop then the prediction of wear life of the component tibia insert is ± 10 years.

  16. Apparatus for measurement of coefficient of friction

    Science.gov (United States)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  17. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2006-01-01

    A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all...... measured directly, thus enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication...

  18. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2004-01-01

    A special BUT-transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all measured directly, thus...... enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication in drawing of stainless steel...

  19. Acoustic emission evolution during sliding friction of Hadfield steel single crystal

    Science.gov (United States)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  20. Modeling of Instabilities and Self-organization at the Frictional Interface

    Science.gov (United States)

    Mortazavi, Vahid

    frictional surface to exhibit "self-protection" and "self-healing" properties. Hence, this research is dealing with the fundamental concepts that allow the possibility of the development of a new generation of tribosystem and materials that reinforce such properties. In chapter 2, we investigate instabilities due to the temperature-dependency of the coefficient of friction. The temperature-dependency of the coefficient of friction can have a significant effect on the frictional sliding stability, by leading to the formation of "hot" and "cold" spots on the contacting surfaces. We formulate a stability criterion and perform a case study of a brake disk. In chapter 3, we study frictional running-in. Running-in is a transient period on the onset of the frictional sliding, in which friction and wear decrease to their stationary values. In this research, running-in is interpreted as friction-induced self-organization process. We introduce a theoretical model of running-in and investigate rough profile evolution assuming that its kinetics is driven by two opposite processes or events, i.e., smoothening which is typical for the deformation-driven friction and wear, and roughening which is typical for the adhesion-driven friction and wear. In chapter 4, we investigate the possibility of the so-called Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. In chapter 5, we investigate how interfacial patterns including propagating trains of stick and slip zones form due to dynamic sliding instabilities. These can be categorized as self-organized patterns. We treat stick and slip as two phases at the interface, and study the effects related to phase transitions. Our

  1. FRICTION TORQUE IN THE SLIDE BEARINGS

    Directory of Open Access Journals (Sweden)

    BONDARENKO L. N.

    2016-09-01

    Full Text Available Summary. Problem statement. Until now slide bearings are used widely in engineering. But the calculation is made on obsolete method that is based on undetermined parameters such as wear of the bearing shell. It is accepted in the literature that if the shaft and liner material are homogeneous, the workpiece surface are cylindrical as they wear and contact between them occurs at all points contact arc. Research objective. The purpose of this study is determine a friction torque in the slide bearings of power-basis parameters. Conclusions. Since the friction is primarily responsible for wear of cinematic pairs “pin – liner” and “pivot – liner” slide bearings. It is shown that the friction torquesof angles wrap, that are obtained by the formulas and given in literature, are not only qualitatively but also quantitatively, namely, the calculation by literature to the formulas the friction torques are proportional to the angle wrap and the calculation by improved formulas the friction torques are inversely proportional to the angle wrap due to the reduction the normal pressure. Underreporting friction torque at large angle wrap is between 40 and 15 %. The difference in the magnitude of friction torque in the run-in and run-out cinematic pairs with real method of machining is 2...3 %, which it is possible to declare of reducing the finish of contacting surface of slide bearings.

  2. Blades Couple Dry Friction Connection

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Radolfová, Alena

    2015-01-01

    Roč. 9, č. 1 (2015), s. 31-40 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : stick-slip dry friction * 3D friction characteristic * tangential contact stiffness * hysterezis loop * response curves Subject RIV: BI - Acoustics

  3. Empirical analysis of skin friction under variations of temperature; Variacion de la resistencia al corte con temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-07-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  4. A Novel Time-Varying Friction Compensation Method for Servomechanism

    Directory of Open Access Journals (Sweden)

    Bin Feng

    2015-01-01

    Full Text Available Friction is an inevitable nonlinear phenomenon existing in servomechanisms. Friction errors often affect their motion and contour accuracies during the reverse motion. To reduce friction errors, a novel time-varying friction compensation method is proposed to solve the problem that the traditional friction compensation methods hardly deal with. This problem leads to an unsatisfactory friction compensation performance and the motion and contour accuracies cannot be maintained effectively. In this method, a trapezoidal compensation pulse is adopted to compensate for the friction errors. A generalized regression neural network algorithm is used to generate the optimal pulse amplitude function. The optimal pulse duration function and the pulse amplitude function can be established by the pulse characteristic parameter learning and then the optimal friction compensation pulse can be generated. The feasibility of friction compensation method was verified on a high-precision X-Y worktable. The experimental results indicated that the motion and contour accuracies were improved greatly with reduction of the friction errors, in different working conditions. Moreover, the overall friction compensation performance indicators were decreased by more than 54% and this friction compensation method can be implemented easily on most of servomechanisms in industry.

  5. Experimental Investigation of the Effect of Particle Shape on Frictional Pressure drop in Particulate Debris Bed

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Eun Ho; Park, Hyun Sun

    2014-01-01

    To ensure the long-term cooling of corium in the reactor cavity, it is important to ensure the coolant ingression into the internally heat generated corium debris bed which is governed by pressure drop in porous media. For this reason, it is necessary to understand pressure drop mechanisms in porous bed to verify the feasibility of water penetration into particulate debris bed. According to the previous investigations on molten fuel-coolant interaction (FCI) experiments, it was found that quenched particulate debris bed was composed of irregular shape particles. Therefore, empirical or semiempirical models based on the Ergun equation (Ergun, 1952) for single-phase flow in porous media composed of single sized spherical particle were developed to consider the effect of particle shape on frictional pressure drop by means of adding a shape factor or modifying the Ergun constants etc. (Leva, 1959, Handley and Heggs, 1968, Macdonald, 1979, Foumeny et al., 1996). An experimental investigate on single-phase frictional pressure drop of water in packed bed was conducted in the transparent cylindrical test section with the inner diameter of 100 mm and the height of 700 mm to study the effect of particle shape on frictional pressure drop in porous media. This paper reports the experimental data for spherical particles with the diameter of 2 mm and 5 mm and cylindrical particles with ED of 2 mm and 5 mm. And also, the experimental data compared with the models to predict frictional pressure drop in particulate bed. The conclusions are summarized as follows. As a result of the experiment to measure frictional pressure drop in particulate bed composed of cylindrical particles the models predict the experimental data well within 22.11 % except the Handley and Heggs model when ED is applied to the models

  6. Experimental Investigation of the Effect of Particle Shape on Frictional Pressure drop in Particulate Debris Bed

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Kim, Eun Ho; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of)

    2014-10-15

    To ensure the long-term cooling of corium in the reactor cavity, it is important to ensure the coolant ingression into the internally heat generated corium debris bed which is governed by pressure drop in porous media. For this reason, it is necessary to understand pressure drop mechanisms in porous bed to verify the feasibility of water penetration into particulate debris bed. According to the previous investigations on molten fuel-coolant interaction (FCI) experiments, it was found that quenched particulate debris bed was composed of irregular shape particles. Therefore, empirical or semiempirical models based on the Ergun equation (Ergun, 1952) for single-phase flow in porous media composed of single sized spherical particle were developed to consider the effect of particle shape on frictional pressure drop by means of adding a shape factor or modifying the Ergun constants etc. (Leva, 1959, Handley and Heggs, 1968, Macdonald, 1979, Foumeny et al., 1996). An experimental investigate on single-phase frictional pressure drop of water in packed bed was conducted in the transparent cylindrical test section with the inner diameter of 100 mm and the height of 700 mm to study the effect of particle shape on frictional pressure drop in porous media. This paper reports the experimental data for spherical particles with the diameter of 2 mm and 5 mm and cylindrical particles with ED of 2 mm and 5 mm. And also, the experimental data compared with the models to predict frictional pressure drop in particulate bed. The conclusions are summarized as follows. As a result of the experiment to measure frictional pressure drop in particulate bed composed of cylindrical particles the models predict the experimental data well within 22.11 % except the Handley and Heggs model when ED is applied to the models.

  7. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  8. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    Science.gov (United States)

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  9. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  10. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  11. [Determination of a Friction Coefficient for THA Bearing Couples].

    Science.gov (United States)

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is

  12. The Development of Customary International Law by International Organizations

    DEFF Research Database (Denmark)

    Odermatt, Jed

    2017-01-01

    In his Fourth Report on the Identification of Customary International Law (2016), Special Rapporteur Michael Wood confirmed that ‘[i]n certain cases, the practice of international organizations also contributes to the expression, or creation, of rules of customary international law.......’ That the practice of international organizations can be relevant when identifying customary international law is relatively uncontroversial. The practice of states within international organizations such as the UN General Assembly, for example, may contribute to the development of custom. Yet, there is little...... discussion about whether and how the practice of international organizations as such may contribute to the development of customary international law. This contribution discusses the organization that is the most capable of contributing to the development of customary international law in its own right...

  13. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    An asbestos free friction material composite for brake linings is synthesized containing fibrous reinforcing constituents, friction imparting and controlling additives, elastomeric additives, fire retarding components and a thermosetting resin. The composite shows exemplary friction characteristics and has great resistance to ...

  14. Skin-friction measurements in high-enthalpy hypersonic boundary layers

    Science.gov (United States)

    Goyne, C. P.; Stalker, R. J.; Paull, A.

    2003-06-01

    Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.

  15. Bottom friction optimization for a better barotropic tide modelling

    Science.gov (United States)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction

  16. Internal friction and Young's modulus measurements in Zr-2.5Nb alloy doped with hydrogen

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Pan, Z.-L.

    1992-01-01

    The presence of hydrides is an important factor in assessing the potential for delayed hydride cracking in Zr-2.5Nb alloys, and consequently, the terminal solid solubility (TSS) of hydrogen in the material is an important parameter. In pure zirconium doped with hydrogen, the TSS is marked by a dissolution peak of internal friction on heating and a truncated precipitation peak associated with hydride nucleation on cooling. These phenomena occur only at low frequencies and are accompanied in torsion pendulum studies by autotwisting of the sample (or zero-point drift) that stops abruptly at the TSS. Neither the dissolution/precipitation peaks nor the autotwisting phenomena are observed in Zr-2.5Nb. However, the TSS is also marked by an abrupt change in the slope of Young's modulus as a function of temperature. This phenomenon is observed regardless of the frequency (in the range 1 Hz to 120 kHz) and in both pure zirconium and Zr-2.5Nb alloys. The reasons for the absence of the dissolution/precipitation peak in Zr-2.5Nb alloys are discussed and the use of Young's modulus changes to investigate the TSS of hydrogen and the hysteresis between heat-up and cool-down TSS curves is demonstrated. (author)

  17. Frictional properties of jointed welded tuff

    International Nuclear Information System (INIS)

    Teufel, L.W.

    1981-07-01

    The results of the experiments on simulated joints in welded tuff from the Grouse Canyon Member of the Belted Range Tuff warrant the following conclusions: (1) The coefficient of friction of the joints is independent of normal stress at a given sliding velocity. (2) The coefficient of friction increases with both increasing time of stationary contact and decreasing sliding velocity. (3) Time and velocity dependence of friction is due to an increase in the real area of contact on the sliding surface, caused by asperity creep. (4) Joints in water-saturated tuff show a greater time and velocity dependence of friction than those in dehydrated tuff. (5) The enhanced time and velocity dependence of friction with water saturation is a result of increased creep at asperity contacts, which is in turn due to a reduction in the surface indentation hardness by hydrolytic weakening and/or stress corrosion cracking

  18. Noise and vibration in friction systems

    CERN Document Server

    Sergienko, Vladimir P

    2015-01-01

    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  19. Servo Reduces Friction In Flexure Bearing

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  20. Friction and wear behavior of glasses and ceramics

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  1. Velocity Dependence in the Cyclic Friction Arising with Gears

    OpenAIRE

    García Armada, Elena; González de Santos, Pablo; Canudas de Wit, Carlos

    2002-01-01

    Recent research on friction in robot joints and transmission systems has considered meshing friction a position-dependent friction component. However, in this paper we show experimental evidence that meshing friction depends highly on joint speed.We identify the meshing friction in the gearboxes of a robotic leg, and we propose a new mathematical model that considers the rate dependency of meshing friction. The resulting model is validated through experimentation. Results...

  2. Are there reliable constitutive laws for dynamic friction?

    Science.gov (United States)

    Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew

    2015-09-28

    Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).

  3. Quantum field theory of van der Waals friction

    International Nuclear Information System (INIS)

    Volokitin, A. I.; Persson, B. N. J.

    2006-01-01

    van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction experiment using state-of-the-art equipment

  4. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  5. Friction Anisotropy with Respect to Topographic Orientation

    Science.gov (United States)

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  6. Assessment of semi-active friction dampers

    Science.gov (United States)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  7. Machine Learning of Fault Friction

    Science.gov (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  8. Predictive multiscale computational model of shoe-floor coefficient of friction.

    Science.gov (United States)

    Moghaddam, Seyed Reza M; Acharya, Arjun; Redfern, Mark S; Beschorner, Kurt E

    2018-01-03

    Understanding the frictional interactions between the shoe and floor during walking is critical to prevention of slips and falls, particularly when contaminants are present. A multiscale finite element model of shoe-floor-contaminant friction was developed that takes into account the surface and material characteristics of the shoe and flooring in microscopic and macroscopic scales. The model calculates shoe-floor coefficient of friction (COF) in boundary lubrication regime where effects of adhesion friction and hydrodynamic pressures are negligible. The validity of model outputs was assessed by comparing model predictions to the experimental results from mechanical COF testing. The multiscale model estimates were linearly related to the experimental results (p < 0.0001). The model predicted 73% of variability in experimentally-measured shoe-floor-contaminant COF. The results demonstrate the potential of multiscale finite element modeling in aiding slip-resistant shoe and flooring design and reducing slip and fall injuries. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. On the geometric phenomenology of static friction.

    Science.gov (United States)

    Ghosh, Shankar; Merin, A P; Nitsure, Nitin

    2017-09-06

    In this note we introduce a hierarchy of phase spaces for static friction, which give a graphical way to systematically quantify the directional dependence in static friction via subregions of the phase spaces. We experimentally plot these subregions to obtain phenomenological descriptions for static friction in various examples where the macroscopic shape of the object affects the frictional response. The phase spaces have the universal property that for any experiment in which a given object is put on a substrate fashioned from a chosen material with a specified nature of contact, the frictional behaviour can be read off from a uniquely determined classifying map on the control space of the experiment which takes values in the appropriate phase space.

  10. Friction and dissipative phenomena in quantum mechanics

    International Nuclear Information System (INIS)

    Kostin, M.D.

    1975-01-01

    Frictional and dissipative terms of the Schroedinger equation are studied. A proof is given showing that the frictional term of the Schroedinger--Langevin equation causes the quantum system to lose energy. General expressions are derived for the frictional term of the Schroedinger equation. (U.S.)

  11. Friction characteristics of hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Friction and self-welding test were conducted on several materials used for the contacting and sliding components of a sodium cooled fast breeder reactor. In the present study, the friction and self-welding characteristics of each material were evaluated through measuring the kinetic and breakaway friction coefficients. The influence of oscillating rotation and vertical reciprocating motion on the friction mode was also investigated. The results obtained are as follows: (1) Colmonoy No.6, the nickel base hardfacing alloy, indicated the lowest kinetic friction coefficient of all the materials in the present study. Also, Cr 3 C 2 /Ni-Cr material prepared by a detonation gun showed the most stable friction behavior. (2) The breakaway friction coefficient of each material was dependent upon dwelling time in a sodium environment. (3) The friction behavior of Cr 3 C 2 /Ni-Cr material was obviously related with the finishing roughness of the friction surface. It was anticipated that nichrome material as the binder of the chrome carbide diffused and exuded to the friction surface by sliding in sodium. (4) The friction coefficient in sliding mode of vertical reciprocating was lower than that of oscillating rotation. (author)

  12. Nonequilibrium Molecular Simulations of New Ionic Lubricants at Metallic Surfaces: Prediction of the Friction.

    Science.gov (United States)

    Mendonça, Ana C F; Pádua, Agílio A H; Malfreyt, Patrice

    2013-03-12

    We report nonequilibrium molecular dynamics of ionic liquids interacting with metallic surfaces. A specific set of interaction parameters for ionic liquids composed of alkylammonium cations and alkylsulfonate anions with an iron surface, which has been previously developed (J. Chem. Theory Comput.2012, 8, 3348) is used here. We develop a procedure for a quantitative prediction of the friction coefficient at different loads and shear rates. The simulated friction coefficient agrees very well with the available experimental ones. The dependence of friction on the load, shear velocity, surface topology, and length of alkyl side chains in the ionic liquid is also investigated. The changes in the frictional forces are explained in terms of the specific arrangements and orientations of groups forming the ionic liquid at the vicinity of the surface.

  13. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    Science.gov (United States)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  14. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction

    International Nuclear Information System (INIS)

    Sahoo, Prasanta

    2006-01-01

    The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient

  15. Learning from Local Wisdom: Friction Damper in Traditional Building

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi P.

    2012-01-01

    Full Text Available Indonesia is situated in the so called “Ring of Fire” where earthquake are very frequent. Despite of all the engineering effort, due to the March 28, 2005 strong earthquake (8.7 on Richter scale a lot of modern buildings in Nias collapsed, while the traditional Northern Nias house (omohada survived without any damage. Undoubtedly many other traditional buildings in other area in Indonesia have survived similar earthquake. Something in common of the traditional building are the columns which usually are not fixed on the ground, but rest on top of flat stones. In this paper some traditional building are subjected to non linear time history analysis to artificial earthquake equivalent to 500 years return period earthquake. This study shows that apparently the columns which rest on top of flat stone acts as friction damper or base isolation. The presence of sliding at the friction type support significantly reduces the internal forces in the structure.

  16. Friction Properties of Carbon Fiber Brush

    OpenAIRE

    大塚, 由佳; 月山, 陽介; 野老山, 貴行; 梅原, 徳次; OHTSUKA, Yuka; TSUKIYAMA, Yosuke; TOKOROYAMA, Takayuki; UMEHARA, Noritsugu

    2011-01-01

    直径数μmのカーボンファイバーを束ねたカーボンファイバーブラシ材料と金属材料のすべり摩擦におけるすべり出しの摩擦及び平均摩擦特性と,金属同士のそれらの摩擦特性の相違を調べ,カーボンファイバーブラシ材料の摩擦の特異性を明らかにした. Friction properties as initial and average friction coefficient were investigated for carbon brush materials. Experimental results shows that static friction coefficient of carbon fiber brush is smaller than kinetic friction after a macro slip. This phenomena is different from the usual friction properties between metals. I...

  17. Friction forces on phase transition fronts

    International Nuclear Information System (INIS)

    Mégevand, Ariel

    2013-01-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling

  18. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  19. Impact-friction vibrations of tubular systems. Numerical simulation and experimental validation

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-05-01

    This note presents a summary on the numerical developments made to simulate impact-friction vibrations of tubular systems, detailing the algorithms used and the expression of impact and friction forces. A synthesis of the experimental results obtained on MASSIF workbench is also presented, as well as their comparison with numerical computations in order to validate the numerical approach. (author). 5 refs

  20. Two new methods to determine the adhesion by means of internal friction in materials covered with films; Dos nuevos metodos para determinar la adhesion mediante friccion interna en materiales recubiertos con peliculas

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H. A.; Ghilarducci, A. A.; Salva, H. R.

    2006-07-01

    Two new models are proposed to determine the adhesion energy be means of the internal friction technique (IF) in thin films layered materials. for the first method is necessary to determine enthalpy by means of the IF technique, for which the adhesion work has been determined with experimental data. In the second method are necessary to perform IF tests at constant temperature. (Author)

  1. Adaptive friction compensation: a globally stable approach

    NARCIS (Netherlands)

    Verbert, K.A.; Tóth, R.; Babuska, R.

    2016-01-01

    In this paper, an adaptive friction compensation scheme is proposed. The friction force is computed as a timevarying friction coefficient multiplied by the sign of the velocity and an on-line update law is designed to estimate this coefficient based on the actual position and velocity errors.

  2. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions

    International Nuclear Information System (INIS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Jin, Guangyuan; Tan, Sichao

    2013-01-01

    Highlights: ► Two-phase flow frictional resistance in narrow duct in rolling is studied. ► Frictional resistance behaviors in rolling are divided into three regions. ► Transient frictional pressure drop fluctuates synchronously with rolling motion. ► Conventional correlations are evaluated against experimental data in rolling motion. ► New correlation for transient frictional resistance in rolling motion is developed. - Abstract: Frictional resistance of air-water two-phase flow in a narrow rectangular duct subjected to rolling motion was investigated experimentally. Time-averaged and transient frictional pressure drop under rolling condition were compared with conventional correlation in laminar flow region (Re l l ⩽ 1400) and turbulent flow region (Re l > 1400) respectively. The result shows that, despite no influence on time-averaged frictional resistance, rolling motion does induce periodical fluctuation of the pressure drop in laminar and transition flow regions. Transient frictional pressure drop fluctuates synchronously with the rolling motion both in laminar and in transition flow region, while it is nearly invariable in turbulent flow region. The fluctuation amplitude of the Relative frictional pressure gradient decreases with the increasing of the superficial velocities. Lee and Lee (2002) correlation and Chisholm (1967) correlation could satisfactorily predict time-averaged frictional pressure drop under rolling conditions, whereas poorly predict the transient frictional pressure drop when it fluctuates periodically. A new correlation with better accuracy for predicting the transient frictional pressure drop in rolling motion is achieved by modifying the Chisholm (1967) correlation on the basis of analyzing the present experimental results with a great number of data points

  3. Skin friction measurements using He-Ne laser

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.H. [Hankuk Aviation University Graduate School, Kyonggi-do (Korea, Republic of); Lee, Y. [Hankuk Aviation University, Kyonggi-do (Korea, Republic of)

    1997-07-01

    An experimental study of the skin friction measurement in a turbulent boundary-layer has been carried out. The skin friction measurements are made using the laser interferometer skin friction (LISF) meter, which optically detects the rate of thinning of an oil applied to the test surface. This technique produces reliable skin friction data over a wide range of flow situations up to 3-dimensional complicated flows with separation, where traditional skin friction measurement techniques are not applicable. The present measured data in a turbulent boundary-layer on a flat plate using the LISF technique shows a good comparison with the result from the previous velocity profile techniques, which proves the validity of the present technique. An extensive error analysis is carried out for the present technique yielding an uncertainty of about {+-}8%, which makes them suitable for CFD code validation purposes. Finally the measurements of the skin friction in a separated region after a surface-mounted obstacle are also presented. (author). 19 refs., 12 figs., 3 tabs.

  4. NASA tire/runway friction projects

    Science.gov (United States)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  5. Multiscale friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.; Felder, Eric; Montmitonnet, Pierre

    2010-01-01

    The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when

  6. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  7. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  8. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  9. Nonlinear friction dynamics on polymer surface under accelerated movement

    Directory of Open Access Journals (Sweden)

    Yuuki Aita

    2017-04-01

    Full Text Available Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  10. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  11. Identification and compensation of friction for a novel two-axis differential micro-feed system

    Science.gov (United States)

    Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang

    2018-06-01

    Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.

  12. Energy based optimization of viscous–friction dampers on cables

    International Nuclear Information System (INIS)

    Weber, F; Boston, C

    2010-01-01

    This investigation optimizes numerically a viscous–friction damper connected to a cable close to one cable anchor for fastest reduction of the total mechanical cable energy during a free vibration decay test. The optimization parameters are the viscous coefficient of the viscous part and the ratio between the friction force and displacement amplitude of the friction part of the transverse damper. Results demonstrate that an almost pure friction damper with negligibly small viscous damping generates fastest cable energy reduction over the entire decay. The ratio between the friction force and displacement amplitude of the optimal friction damper differs from that derived from the energy equivalent optimal viscous damper. The reason for this is that the nonlinearity of the friction damper causes energy spillover from the excited to higher modes of the order of 10%, i.e. cables with attached friction dampers vibrate at several frequencies. This explains why the energy equivalent approach does not yield the optimal friction damper. Analysis of the simulation data demonstrates that the optimally tuned friction damper dissipates the same energy per cycle as if each modal component of the cable were damped by its corresponding optimal linear viscous damper

  13. Reduced friction in engine sealing system for truck engines; Reibungsreduzierende Motorabdichtung bei Nutzfahrzeugmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Joachim [Kaco GmbH und Co. KG, Heilbronn (Germany). RADIA-Dichtsysteme; Schaefer, Peter [Kaco GmbH und Co. KG, Heilbronn (Germany). Nutzfahrzeuganwendungen

    2010-04-15

    The mechanical efficiency of the drive unit components, e.g. the prevention of friction loss, becomes more the focus point of many new developments in engines and drive trains. Radia rotary shaft seal rings as commonly used in utility vehicles cause an accordingly high friction, particularly when in big dimensions. Kaco has engineered a tailor made design of state of the art friction reducing sealing system generation called Fred. In the acronym ''F'' stands for friction and ''red'' stands for reduced. Kaco has defined three focus points of the performance profile from the already established Fred sealing system generation for further engineering when applied in utility vehicles. (orig.)

  14. Modelling and Simulation of a Manipulator with Stable Viscoelastic Grasping Incorporating Friction

    Directory of Open Access Journals (Sweden)

    A. Khurshid

    2016-12-01

    Full Text Available Design, dynamics and control of a humanoid robotic hand based on anthropological dimensions, with joint friction, is modelled, simulated and analysed in this paper by using computer aided design and multibody dynamic simulation. Combined joint friction model is incorporated in the joints. Experimental values of coefficient of friction of grease lubricated sliding contacts representative of manipulator joints are presented. Human fingers deform to the shape of the grasped object (enveloping grasp at the area of interaction. A mass-spring-damper model of the grasp is developed. The interaction of the viscoelastic gripper of the arm with objects is analysed by using Bond Graph modelling method. Simulations were conducted for several material parameters. These results of the simulation are then used to develop a prototype of the proposed gripper. Bond graph model is experimentally validated by using the prototype. The gripper is used to successfully transport soft and fragile objects. This paper provides information on optimisation of friction and its inclusion in both dynamic modelling and simulation to enhance mechanical efficiency.

  15. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.

    2011-08-02

    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  16. Position Control of Servo Systems Using Feed-Forward Friction Compensation

    International Nuclear Information System (INIS)

    Park, Min Gyu; Kim, Han Me; Shin, Jong Min; Kim, Jong Shik

    2009-01-01

    Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation

  17. CISM-IUTAM Summer School on Friction and Instabilities

    CERN Document Server

    Raous, M; Friction and Instabilities

    2000-01-01

    The book addresses instability and bifurcation phenomena in frictional contact problems. The treatment of this subject has its roots in previous studies of instability and bifurcation in elastic, thermoelastic or elastic-plastic bodies, and in previous mathematical, mechanical and computational studies of unilateral problems. The salient feature of this book is to put together and develop concepts and tools for stability and bifurcation studies in mechanics, taking into account the inherent non-smoothness and non-associativity (non-symmetry) of unilateral frictional contact laws. The mechanical foundations, the mathematical theory and the computational algorithms for such studies are developed along six chapters written by the lecturers of a CISM course. Those concepts and tools are illustrated not only with enlightening academic examples but also with some demanding industrial applications, related, namely, to the automotive industry.

  18. Friction correction for model ship resistance and propulsion tests in ice at NRC's OCRE-RC

    Directory of Open Access Journals (Sweden)

    Michael Lau

    2018-05-01

    Full Text Available This paper documents the result of a preliminary analysis on the influence of hull-ice friction coefficient on model resistance and power predictions and their correlation to full-scale measurements. The study is based on previous model-scale/full-scale correlations performed on the National Research Council - Ocean, Coastal, and River Engineering Research Center's (NRC/OCRE-RC model test data. There are two objectives for the current study: (1 to validate NRC/OCRE-RC's modeling standards in regarding to its practice of specifying a CFC (Correlation Friction Coefficient of 0.05 for all its ship models; and (2 to develop a correction methodology for its resistance and propulsion predictions when the model is prepared with an ice friction coefficient slightly deviated from the CFC of 0.05. The mean CFC of 0.056 and 0.050 for perfect correlation as computed from the resistance and power analysis, respectively, have justified NRC/OCRE-RC's selection of 0.05 for the CFC of all its models. Furthermore, a procedure for minor friction corrections is developed. Keywords: Model test, Ice resistance, Power, Friction correction, Correlation friction coefficient

  19. The role of investment, fundamental Q and financing frictions in agricultural investment decisions: an analysis pre and post financial crisis

    OpenAIRE

    Conor M. O'Toole; Carol Newman; Thia Hennessy

    2011-01-01

    This paper uses a fundamental Q model of investment to consider the role played by financing frictions in agricultural investment decisions, controlling econometrically for censoring, heterogeneity and errors-in-variables. Our findings suggest that farmer's in- vestment decisions are not driven by market fundamentals. We find some evidence that debt overhang restricts investment but investment is not dependent on liquidity or internal funds. The role of nancing frictions in determining invest...

  20. Flow Friction or Spontaneous Ignition?

    Science.gov (United States)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  1. Investigation of friction characteristics in segmented piston ring liner assembly of IC engine

    Directory of Open Access Journals (Sweden)

    Tejaskumar Chaudhari

    2016-09-01

    Full Text Available The friction at the piston ring cylinder liner assembly (PRLA is a major contributor in the total friction losses in the I.C. engine. New materials, coatings and high-tech machining processes that previously were considered to be too expensive and therefore only used in complex applications are today becoming more affordable. A significant amount of the total power loss in a modern automotive engine is due to the Friction interaction between the top compression ring and the cylinder liner, especially at the TDC and BDC where boundary lubrication exists. The change in piston speed is accompanied with change the lubrication regime in the cylinder, which results change in friction between the ring and the liner during the entire stroke of the piston. Theoretical modelling of friction force from the various sources of friction will be compared to experimental results for analysing the tribological characteristics. The appropriate sample of piston ring and cylinder liner pair is developed for studying the different tribological parameters on Reciprocating Tribometer. The variable parameters are engine speed, oil viscosity, and load. The experimental results and observations are studied under different operating conditions in speed ranges from 300 rpm to 1500 rpm with constant load of 60 N. It can be seen that as speed increases, the friction force and friction coefficient also decreases.

  2. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    Science.gov (United States)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2017-06-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  3. Force Rendering and its Evaluation of a Friction-Based Walking Sensation Display for a Seated User.

    Science.gov (United States)

    Kato, Ginga; Kuroda, Yoshihiro; Kiyokawa, Kiyoshi; Takemura, Haruo

    2018-04-01

    Most existing locomotion devices that represent the sensation of walking target a user who is actually performing a walking motion. Here, we attempted to represent the walking sensation, especially a kinesthetic sensation and advancing feeling (the sense of moving forward) while the user remains seated. To represent the walking sensation using a relatively simple device, we focused on the force rendering and its evaluation of the longitudinal friction force applied on the sole during walking. Based on the measurement of the friction force applied on the sole during actual walking, we developed a novel friction force display that can present the friction force without the influence of body weight. Using performance evaluation testing, we found that the proposed method can stably and rapidly display friction force. Also, we developed a virtual reality (VR) walk-through system that is able to present the friction force through the proposed device according to the avatar's walking motion in a virtual world. By evaluating the realism, we found that the proposed device can represent a more realistic advancing feeling than vibration feedback.

  4. Friction mediated by redox-active supramolecular connector molecules.

    Science.gov (United States)

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R

    2015-10-06

    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments.

  5. Anomalous friction of graphene nanoribbons on waved graphenes

    Directory of Open Access Journals (Sweden)

    Jun Fang

    2015-11-01

    Full Text Available Friction plays a critical role in the function and maintenance of small-scale structures, where the conventional Coulomb friction law often fails. To probe the friction at small scales, here we present a molecular dynamics study on the process of dragging graphene nanoribbons on waved graphene substrates. The simulation shows that the induced friction on graphene with zero waviness is ultra-low and closely related to the surface energy barrier. On waved graphenes, the friction generally increases with the amplitude of the wave at a fixed period, but anomalously increases and then decreases with the period at a fixed amplitude. These findings provide insights into the ultra-low friction at small scales, as well as some guidelines into the fabrication of graphene-based nano-composites with high performance.

  6. [Study of friction and loosening in hip endoprostheses].

    Science.gov (United States)

    Dovzak Bajs, Ivana; Cvjetko, Ivan; Car, Dolores; Kokić, Visnja

    2002-01-01

    Like any other operative procedure, the implantation of hip prosthesis is associated with certain complications, which diminishes the value and purpose of such a procedure. One of the complications in artificial hip implantation is loosening of the alloplastic material. Therefore, the aim of this study was to examine the effect of lubrication on the torsional moment and its role in the loosening of the femoral component, using an experimental mechanical model. The following hypothesis was tested: the magnitude of torsional loading in the "bone-endoprosthesis-bone cement system" is similar to any other known loading. The testing device was constructed with the possibility of simulation of positions similar to original performances in the implanted hip prosthesis. It refers primarily to the possibilities of achieving definite forces and velocities. The intention was to point quantitatively to the role of friction moment between the acetabular and femoral endoprosthesis part. Trials were conducted by combining 7 types of loading and 4 kinds of lubrication: dry, water, plasma, and light oil. The testing joint (Ring's prosthesis) was connected through tensometric measuring shaft upon the working forepart oscillating mechanism. Graded by the changeable static loading by means of the pendulum and via lever mechanism the testing joint was loaded by force from 610 to 7137 N. As the cause of friction resistance in the moving joint, torque deformaties of the measuring shaft occurred. The testing joint enabled oscillating movement using a four-part mechanism. In this way, it was possible to define not only the maximum values of the frictional moment (or the coefficient of friction) during one movement cycle but also to examine its relation to the kind of lubrication. Change in the measuring torsional moment were computer recorded. Before each trial, the gauging of the complete outfit was performed. Thereafter, cleaning of the frictional surfaces of the whole outfit was done

  7. International business cycles and the relative price of investment goods

    OpenAIRE

    Parantap Basu; Christoph Thoenissen

    2009-01-01

    Is the relative price of investment goods a good proxy for investment frictions? We model this relative price in a flexible price international economy with two fundamental shocks, namely the total factor productivity (TFP) shock and the investment specific technology (IST) shock. The paper argues that the one-to-one correspondence between investment friction and the relative price of investment goods breaks down in an international economy because of the short run correlation between the ter...

  8. Thermal effects in static friction: thermolubricity.

    Science.gov (United States)

    Franchini, A; Bortolani, V; Santoro, G; Brigazzi, M

    2008-10-01

    We present a molecular dynamics analysis of the static friction between two thick slabs. The upper block is formed by N2 molecules and the lower block by Pb atoms. We study the effects of the temperature as well as the effects produced by the structure of the surface of the lower block on the static friction. To put in evidence the temperature effects we will compare the results obtained with the lower block formed by still atoms with those obtained when the atoms are allowed to vibrate (e.g., with phonons). To investigate the importance of the geometry of the surface of the lower block we apply the external force in different directions, with respect to a chosen crystallographic direction of the substrate. We show that the interaction between the lattice dynamics of the two blocks is responsible for the strong dependence of the static friction on the temperature. The lattice dynamics interaction between the two blocks strongly reduces the static friction, with respect to the case of the rigid substrate. This is due to the large momentum transfer between atoms and the N2 molecules which disorders the molecules of the interface layer. A further disorder is introduced by the temperature. We perform calculations at T = 20K which is a temperature below the melting, which for our slab is at 50K . We found that because of the disorder the static friction becomes independent of the direction of the external applied force. The very low value of the static friction seems to indicate that we are in a regime of thermolubricity similar to that observed in dynamical friction.

  9. Friction Compensation in the Upsetting of Cylindrical Test Specimens

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf

    2016-01-01

    This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens....... The methodology is based on minimizing the errorbetween the average surface pressure obtained from the experimental measurements of the force and displacement and thatobtained from the slab method of analysis of metal plasticity.Three different friction models based on Coulomb friction, the constant friction...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...

  10. Analytical and numerical analysis of frictional damage in quasi brittle materials

    Science.gov (United States)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  11. Skin friction related behaviour of artificial turf systems.

    Science.gov (United States)

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  12. Bulk-friction modeling of afterslip and the modified Omori law

    Science.gov (United States)

    Wennerberg, Leif; Sharp, Robert V.

    1997-01-01

    Afterslip data from the Superstition Hills fault in southern California, a creep event on the same fault, the modified Omori law, and cumulative moments from aftershocks of the 1957 Aleutian Islands earthquake all indicate that the original formulation by Dieterich (1981) [Constitutive properties of faults with simulated gouge. AGU, Geophys. Monogr. 24, 103–120] for friction evolution is more appropriate for systems far from instability than the commonly used approximation developed by Ruina (1983) [Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370] to study instability. The mathematical framework we use to test the friction models is a one-dimensional, massless spring-slider under the simplifying assumption, proposed by Scholz (1990) [The Mechanics of Earthquakes and Faulting. Cambridge University Press] and used by Marone et al. (1991) [On the mechanics of earthquake afterslip. J. Geophys. Res., 96: 8441–8452], that the state variable takes on its velocity-dependent steady-state value throughout motion in response to a step in stress. This assumption removes explicit state-variable dependence from the model, obviating the need to consider state-variable evolution equations. Anti-derivatives of the modified Omori law fit our data very well and are very good approximate solutions to our model equations. A plausible friction model with Omori-law solutions used by Wesson (1988) [Dynamics of fault creep. J. Geophys. Res. 93, 8929–8951] to model fault creep and generalized by Rice (1983) [Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443–475] to a rate-and-state variable friction model yields exactly Omori's law with exponents greater than 1, but yields unstable solutions for Omori exponents less than 1. We estimate from the Dieterich formulation the dimensionless parameter a∗ which is equal to the product of the nominal coefficient of friction and the more commonly reported

  13. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  14. Friction of ice measured using lateral force microscopy

    International Nuclear Information System (INIS)

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-01-01

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  15. Estimating productivity costs using the friction cost approach in practice: a systematic review.

    Science.gov (United States)

    Kigozi, Jesse; Jowett, Sue; Lewis, Martyn; Barton, Pelham; Coast, Joanna

    2016-01-01

    The choice of the most appropriate approach to valuing productivity loss has received much debate in the literature. The friction cost approach has been proposed as a more appropriate alternative to the human capital approach when valuing productivity loss, although its application remains limited. This study reviews application of the friction cost approach in health economic studies and examines how its use varies in practice across different country settings. A systematic review was performed to identify economic evaluation studies that have estimated productivity costs using the friction cost approach and published in English from 1996 to 2013. A standard template was developed and used to extract information from studies meeting the inclusion criteria. The search yielded 46 studies from 12 countries. Of these, 28 were from the Netherlands. Thirty-five studies reported the length of friction period used, with only 16 stating explicitly the source of the friction period. Nine studies reported the elasticity correction factor used. The reported friction cost approach methods used to derive productivity costs varied in quality across studies from different countries. Few health economic studies have estimated productivity costs using the friction cost approach. The estimation and reporting of productivity costs using this method appears to differ in quality by country. The review reveals gaps and lack of clarity in reporting of methods for friction cost evaluation. Generating reporting guidelines and country-specific parameters for the friction cost approach is recommended if increased application and accuracy of the method is to be realized.

  16. Friction characteristics for density of micro dimples using photolithography

    International Nuclear Information System (INIS)

    Chae, Young Jun; Kim, Seock Sam

    2005-01-01

    Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple

  17. Friction tensor concept for textured surfaces

    Indian Academy of Sciences (India)

    Directionality of grinding marks influences the coefficient of friction ... Menezes et al (2006a,b) studied the effect of roughness parameters and grinding angle on ... as coefficient of friction, sliding velocity, normal load, hardness and thermal.

  18. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.

    Science.gov (United States)

    Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Lee, Mi Jung; Park, Bae Ho; Lee, Changgu; Yoon, Duhee; Cheong, Hyeonsik; Lee, Ki Ho; Son, Young-Woo; Park, Jeong Young; Salmeron, Miquel

    2011-07-29

    Graphene produced by exfoliation has not been able to provide an ideal graphene with performance comparable to that predicted by theory, and structural and/or electronic defects have been proposed as one cause of reduced performance. We report the observation of domains on exfoliated monolayer graphene that differ by their friction characteristics, as measured by friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity of 180° on each friction domain. The friction anisotropy decreased as the applied load increased. We propose that the domains arise from ripple distortions that give rise to anisotropic friction in each domain as a result of the anisotropic puckering of the graphene.

  19. A molecular dynamics (MD simulation on tire-aggregate friction

    Directory of Open Access Journals (Sweden)

    Fengyan Sun

    2017-07-01

    Full Text Available The friction between tire and road surface is fundamentally depending on the molecular forces. In this paper, the nanoscale 3D contact model is employed to investigate the tire-aggregate friction mechanism. The tire and aggregate micro-structure are both constructed to evaluate the microscopic performance of tire-aggregate friction influence. Simulation results show for a high velocity, the energy dissipation of sliding on crystal structure is small, which results in a small friction coefficient; temperature will have influences on the friction coefficient, and with the increasing of velocity, the effect will gradually reduce. Keywords: Tire, Aggregate, Friction coefficient, Microscopic mechanism, MD simulation

  20. Investigation of scale effects and directionality dependence on friction and adhesion of human hair using AFM and macroscale friction test apparatus

    International Nuclear Information System (INIS)

    LaTorre, Carmen; Bhushan, Bharat

    2006-01-01

    Macroscale testing of human hair tribological properties has been widely used to aid in the development of better shampoos and conditioners. Recently, literature has focused on using the atomic force microscope (AFM) to study surface roughness, coefficient of friction, adhesive force, and wear (tribological properties) on the nanoscale in order to increase understanding about how shampoos and conditioners interact with the hair cuticle. Since there are both similarities and differences when comparing the tribological trends at both scales, it is thus recognized that scale effects are an important aspect of studying the tribology of hair. However, no microscale tribological data for hair exists in literature. This is unfortunate because many interactions between hair-skin, hair-comb, and hair-hair contact takes place at microasperities ranging from a few μm to hundreds of μm. Thus, to bridge the gap between the macro- and nanoscale data, as well as to gain a full understanding of the mechanisms behind the trends, it is now worthwhile to look at hair tribology on the microscale. Presented in this paper are coefficient of friction and adhesive force data on various scales for virgin and chemically damaged hair, both with and without conditioner treatment. Macroscale coefficient of friction was determined using a traditional friction test apparatus. Microscale and nanoscale tribological characterization was performed with AFM tips of various radii. The nano-, micro-, and macroscale trends are compared and the mechanisms behind the scale effects are discussed. Since the coefficient of friction changes drastically (on any scale) depending on whether the direction of motion is along or against the cuticle scales, the directionality dependence and responsible mechanisms are discussed

  1. Sliding friction: From microscopic contacts to Amontons’ law

    OpenAIRE

    Weber, B.A.

    2017-01-01

    Most engineers describe sliding friction using the friction coefficient, the ratio of frictional force to normal force. While this proportionality is very simple, its origin is not trivial at all and has been subject of investigation for more than a century. The current consensus is that both frictional and normal force are proportional to the 'real contact area'. Surface roughness prevents surfaces from coming into full contact; the real contact area is simply the fraction of the apparent co...

  2. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  3. Cationic agent contrast-enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction.

    Science.gov (United States)

    Lakin, B A; Grasso, D J; Shah, S S; Stewart, R C; Bansal, P N; Freedman, J D; Grinstaff, M W; Snyder, B D

    2013-01-01

    The aim of this study is to evaluate whether contrast-enhanced computed tomography (CECT) attenuation, using a cationic contrast agent (CA4+), correlates with the equilibrium compressive modulus (E) and coefficient of friction (μ) of ex vivo bovine articular cartilage. Correlations between CECT attenuation and E (Group 1, n = 12) and μ (Group 2, n = 10) were determined using 7 mm diameter bovine osteochondral plugs from the stifle joints of six freshly slaughtered, skeletally mature cows. The equilibrium compressive modulus was measured using a four-step, unconfined, compressive stress-relaxation test, and the coefficients of friction were determined from a torsional friction test. Following mechanical testing, samples were immersed in CA4+, imaged using μCT, rinsed, and analyzed for glycosaminoglycan (GAG) content using the 1,9-dimethylmethylene blue (DMMB) assay. The CECT attenuation was positively correlated with the GAG content of bovine cartilage (R(2) = 0.87, P coefficients of friction: CECT vs μ(static) (R(2) = 0.71, P = 0.002), CECT vs μ(static_equilibrium) (R(2) = 0.79, P coefficient of friction. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Experimental studies of the magnetized friction force

    International Nuclear Information System (INIS)

    Fedotov, A. V.; Litvinenko, V. N.; Gaalnander, B.; Lofnes, T.; Ziemann, V.; Sidorin, A.; Smirnov, A.

    2006-01-01

    High-energy electron cooling, presently considered as an essential tool for several applications in high-energy and nuclear physics, requires an accurate description of the friction force which ions experience by passing through an electron beam. Present low-energy electron coolers can be used for a detailed study of the friction force. In addition, parameters of a low-energy cooler can be chosen in a manner to reproduce regimes expected in future high-energy operation. Here, we report a set of dedicated experiments in CELSIUS aimed at a detailed study of the magnetized friction force. Some results of the accurate comparison of experimental data with the friction force formulas are presented

  5. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  6. Geotribology - Friction, wear, and lubrication of faults

    Science.gov (United States)

    Boneh, Yuval; Reches, Ze'ev

    2018-05-01

    We introduce here the concept of Geotribology as an approach to study friction, wear, and lubrication of geological systems. Methods of geotribology are applied here to characterize the friction and wear associated with slip along experimental faults composed of brittle rocks. The wear in these faults is dominated by brittle fracturing, plucking, scratching and fragmentation at asperities of all scales, including 'effective asperities' that develop and evolve during the slip. We derived a theoretical model for the rate of wear based on the observation that the dynamic strength of brittle materials is proportional to the product of load stress and loading period. In a slipping fault, the loading period of an asperity is inversely proportional to the slip velocity, and our derivations indicate that the wear-rate is proportional to the ratio of [shear-stress/slip-velocity]. By incorporating the rock hardness data into the model, we demonstrate that a single, universal function fits wear data of hundreds of experiments with granitic, carbonate and sandstone faults. In the next step, we demonstrate that the dynamic frictional strength of experimental faults is well explained in terms of the tribological parameter PV factor (= normal-stress · slip-velocity). This factor successfully delineates weakening and strengthening regimes of carbonate and granitic faults. Finally, our analysis revealed a puzzling observation that wear-rate and frictional strength have strikingly different dependencies on the loading conditions of normal-stress and slip-velocity; we discuss sources for this difference. We found that utilization of tribological tools in fault slip analyses leads to effective and insightful results.

  7. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    Science.gov (United States)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  8. A study of kinetic friction: The Timoshenko oscillator

    Science.gov (United States)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  9. Understanding and Observing Subglacial Friction Using Seismology

    Science.gov (United States)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction

  10. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with...

  11. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  12. Friction reduction using discrete surface textures: principle and design

    International Nuclear Information System (INIS)

    Hsu, Stephen M; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-01-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed. (paper)

  13. Current status of Joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.

    1989-01-01

    Tests with specially instrumented NASA B-737 and FAA B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft Ground Vehicle Runway Friction Program aimed at obaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions. The current status of the runway friction program is summarized and future test plans are identified.

  14. Prediction of friction coefficients for gases

    Science.gov (United States)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  15. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    Science.gov (United States)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0

  16. A study of the static to kinetic friction transition of polymers

    OpenAIRE

    Lee, Edward Chungjen

    1995-01-01

    This study investigates the transition from static to kinetic friction for structural polymers and continues previous research conducted by Dr. N. S. Eiss, B. McCann, and R. Molique. A new test apparatus which simultaneously measures friction, normal load, and relative velocity was developed to study this transition. The polymers used in this study were nylon, ABS, polycarbonate, and fiberglass filled and unfilled polypropylene. Creep effects of polymers on the static coefficie...

  17. New Materials Design Through Friction Stir Processing Techniques

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.; Shivpuri, R.

    2007-01-01

    Friction Stir Welding (FSW) has reached a large interest in the scientific community and in the last years also in the industrial environment, due to the advantages of such solid state welding process with respect to the classic ones. The complex material flow occurring during the process plays a fundamental role in such solid state welding process, since it determines dramatic changes in the material microstructure of the so called weld nugget, which affects the effectiveness of the joints. What is more, Friction Stir Processing (FSP) is mainly being considered for producing high-strain-rate-superplastic (HSRS) microstructure in commercial aluminum alloys. The aim of the present research is the development of a locally composite material through the Friction Stir Processing (FSP) of two AA7075-T6 blanks and a different material insert. The results of a preliminary experimental campaign, carried out at the varying of the additional material placed at the sheets interface under different conditions, are presented. Micro and macro observation of the such obtained joints permitted to investigate the effects of such process on the overall joint performance

  18. Tuning the Friction of Silicon Surfaces Using Nanopatterns at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Jing Han

    2017-12-01

    Full Text Available Friction and wear become significant at small scale lengths, particularly in MEMS/NEMS. Nanopatterns are regarded as a potential approach to solve these problems. In this paper, we investigated the friction behavior of nanopatterned silicon surfaces with a periodical rectangular groove array in dry and wear-less single-asperity contact at the nanoscale using molecular dynamics simulations. The synchronous and periodic oscillations of the normal load and friction force with the sliding distance were determined at frequencies defined by the nanopattern period. The linear load dependence of the friction force is always observed for the nanopatterned surface and is independent of the nanopattern geometry. We show that the linear friction law is a formal Amontons’ friction law, while the significant linear dependence of the friction force-versus-real contact area and real contact area-versus-normal load captures the general features of the nanoscale friction for the nanopatterned surface. Interestingly, the nanopattern increases the friction force at the nanoscale, and the desired friction reduction is also observed. The enlargement and reduction of the friction critically depended on the nanopattern period rather than the area ratio. Our simulation results reveal that the nanopattern can modulate the friction behavior at the nanoscale from the friction signal to the friction law and to the value of the friction force. Thus, elaborate nanopatterning is an effective strategy for tuning the friction behavior at the nanoscale.

  19. Friction between Archwire of Different Sizes, Cross Section, Alloy and Brackets Ligated with Different Brands of Low Friction Elastic Ligatures- An Invitro Study.

    Science.gov (United States)

    Patil, Bhushan; Patil, Neeraj Suresh; Kerudi, Veerendra Virupaxappa; Chitko, Shrikant Shrinivas; Maheshwari, Amit Ratanlal; Patil, Harshal Ashok; Pekhale, Nikhita Popatrao; Tekale, Pawankumar Dnyandeo

    2016-04-01

    Friction in orthodontic treatment does exist and is thought to reduce the efficiency of orthodontic appliances during sliding mechanics. During sliding mechanics, a friction force is produced at the bracket archwire-ligature unit which tends to counteract the applied force and in turn resists the desired movement. The aim of this invitro study was to determine the friction between archwire of different sizes, cross section, alloy and brackets ligated with different brands of low friction elastic ligatures. An 0.022-in slot, 10 stainless steel brackets and various orthodontic archwires which were ligated with low-friction ligatures and subjected to evaluate frictional resistance i.e. static friction and dynamic friction. The archwires of 0.014″ and 0.016″ nickel titanium (NiTi), 0.016 × 0.022″ stainless steel (SS), 0.017 × 0.025″ NiTi, 0.017 × 0.025″ SS, 0.017 × 0.025″ titanium molybdenum alloy (TMA), 0.019 × 0.025″ SS were used. Each bracket/archwire combination was evaluated 10 times at room temperature of 27 ± 2°C. The study groups included Group I of conventional round shape module with reduced friction coating i.e. super slick and synergy and Group II contained figure of "8" shape module i.e. Octavia ties and Slide ligature. The mean static friction force and dynamic friction force for all 7 types of wires was lower in Group II (C, D) combined compared to Group I (A, B) and the difference was statistically very highly significant (pfriction mechanics.

  20. Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings

    Science.gov (United States)

    Matějka, V.; Lu, Y.; Matějková, P.; Smetana, B.; Kukutschová, J.; Vaculík, M.; Tomášek, V.; Zlá, S.; Fan, Y.

    2011-12-01

    After a friction process several changes in phase composition of friction composites are often registered. High temperature, accompanied by high pressure induced during braking can cause initiation of chemical reactions which do not run at room or elevated temperatures under the atmospheric pressure. Most of the studies in the field of tribochemistry at friction surfaces of automotive semi-metallic brake linings deal with phenolic resin degradation and corrosion of metallic components. The paper addresses the formation of elemental antimony as well as the alloying process of iron with antimony observed on the surface of laboratory prepared semi-metallic friction composites containing stibnite. The role of alumina abrasives in the process of stibnite transformation is also discussed and mechanism of stibnite transformation was outlined.