WorldWideScience

Sample records for internal duct flows

  1. Vibrational response of a rectangular duct of finite length excited by a turbulent internal flow

    Science.gov (United States)

    David, Antoine; Hugues, Florian; Dauchez, Nicolas; Perrey-Debain, Emmanuel

    2018-05-01

    Gas transport ductwork in industrial plants or air conditioning networks can be subject to vibrations induced by the internal flow. Most studies in this matter have been carried out on circular ducts. This paper focuses specifically on the vibratory response of a rectangular duct of finite length excited by an internal turbulent flow. A semi-analytical model taking into account the modal response of the structure due to both aerodynamic and acoustic contributions is derived. The aerodynamic component of the excitation is applied on the basis of Corcos model where the power spectral density of the wall pressure is determined experimentally. The acoustic component is based on the propagating modes in the duct where the acoustic modal contribution are extracted via cross-spectral densities. The vibrational response is given for a 0.2 × 0.1 × 0.5 m3 duct made of 3 mm steel plates excited by 20 m/s or 30 m/s flows. Comparisons between experimental results and numerical predictions show a good agreement. The competition between acoustic and aerodynamic components is highlighted.

  2. Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent

    Science.gov (United States)

    Cummings, A.; Chang, I.-J.

    1988-11-01

    Internal mean flow within the pores of a bulk-reacting porous acoustic absorbent, driven by mean static pressure gradients, is shown here to be an important feature of the acoustics of dissipative silencers in flow ducts, particularly in the case of internal combustion engine exhaust silencers. Theoretical treatments are presented here, both to describe the effect of internal flow on the bulk acoustic perties of the porous medium and to find the effect of the absorbent in situ, in the form of the sound transmission loss of the silencer. The measured transmission loss of an experimental silencer is compared to predicted data and good agreement between the two is obtained. The effects of mean fluid flow in the central passage and internal flow in the absorbent are separately demonstrated.

  3. Linear Stability Analysis of Flow in an Internally Heated Rectangular Duct

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, M.

    2004-07-01

    The linear stability of flow in a vertical rectangular duct subject to homogeneous internal heating, constant-temperature no-slip walls and a driving pressure gradient is investigated numerically. A full Chebyshevbased Galerkin method is found to be more reliable than a collocation method, both including the elimination of the pressure and the stream wise velocity from the system of equations and making use of the full symmetry properties. A classification of the mean flow-obtained as a function of Grashof and Reynolds numbers and the geometrical aspect ratio in terms of its inflectional properties is proposed. It is found that the flow loses stability at all aspects rations for a combination of finite thermal buoyancy and pressure forces with opposed sings. In the square duct, the unstable region coincides with the range where additional inflection lines are observed the mean velocity profile. Unstable eigenfunctions are obtained for all basic symmetry modes and their structure can be described as slightly elongated pockets of cross-stream-vertical motion, training each other along the stream wise direction. (Author) 22 refs.

  4. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    Science.gov (United States)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  5. By-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1979-01-01

    A mathematical model has been developed to calculate by-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone rings. The equations of conservation of mass and momentum are solved for a piping system to obtain axial and radial by-pass velocities. The energy equation is solved next by a marching method to obtain the radial temperature distribution along the duct. The results, although qualitative due to simplifications in the model, are useful to study the effects of duct geometry on its performance. (Author) [pt

  6. Developing flow in S-shaped ducts. 2: Circular cross-section duct

    Science.gov (United States)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1984-01-01

    Laser-Doppler velocimetry measured the laminar and turbulent streamwise flow in a S-duct. The wall pressure distribution and one component of cross-stream velocity were also obtained for the turbulent flow case. Boundary layers near the duct inlet were about 25 percent of the hydraulic diameter in the laminar flow and varied around the periphery of the pipe between 10 percent and 20 percent in turbulent flow. Pressure-driven secondary flows develop in the first half of the S-duct and are attenuated and reversed in the second half. For both Reynolds numbers there is a region near the outer wall of the second half of the duct where the sign of the radial vorticity results in an enforcement of the secondary flow which was established in the first half of the S-duct. The core flow migrates, for both Reynolds numbers, to the outside wall of the first half and lies towards the inside wall of the second half of the S-duct at the outlet. The thinner inlet boundary layers in the turbulent flow give rise to weaker secondary motion.

  7. Characterization of flow in a scroll duct

    Science.gov (United States)

    Begg, E. K.; Bennett, J. C.

    1985-01-01

    A quantitative, flow visualization study was made of a partially elliptic cross section, inward curving duct (scroll duct), with an axial outflow through a vaneless annular cutlet. The working fluid was water, with a Re(d) of 40,000 at the inlet to the scroll duct, this Reynolds number being representative of the conditions in an actual gas turbine scroll. Both still and high speed moving pictures of fluorescein dye injected into the flow and illuminated by an argon ion laser were used to document the flow. Strong secondary flow, similar to the secondary flow in a pipe bend, was found in the bottom half of the scroll within the first 180 degs of turning. The pressure field set up by the turning duct was strong enough to affect the inlet flow condition. At 90 degs downstream, the large scale secondary flow was found to be oscillatory in nature. The exit flow was nonuniform in the annular exit. By 270 degs downstream, the flow appeared unorganized with no distinctive secondary flow pattern. Large scale structures from the upstream core region appeared by 90 degs and continued through the duct to reenter at the inlet section.

  8. Effects of rotation on flow in an asymmetric rib-roughened duct: LES study

    International Nuclear Information System (INIS)

    Borello, D.; Salvagni, A.; Hanjalić, K.

    2015-01-01

    Highlights: • Ribbed duct reproduces most of the phenomena occurring in internal cooling channels of blade turbines (rotor and stator). • LES analysis of the flow in a ribbed duct was carried out aiming at detecting the influence of rotation on the turbulence. • In destabilizing conditions, rotation enhances turbulence close to the ribbed duct thus enhancing removal of fluid from the wall and improving mixing. • In stabilizing conditions, turbulence is suppressed by rotation close to the ribbed wall. - Abstract: We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter D_h and bulk flow velocity U_0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩD_h/U_0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.

  9. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  10. Fluid flow in a spiral microfluidic duct

    Science.gov (United States)

    Harding, Brendan; Stokes, Yvonne

    2018-04-01

    We consider the steady, pressure driven flow of a viscous fluid through a microfluidic device having the geometry of a planar spiral duct with a slowly varying curvature and height smaller than width. For this problem, it is convenient to express the Navier-Stokes equations in terms of a non-orthogonal coordinate system. Then, after applying appropriate scalings, the leading order equations admit a relatively simple solution in the central region of the duct cross section. First-order corrections with respect to the duct curvature and aspect ratio parameters are also obtained for this region. Additional correction terms are needed to ensure that no slip and no penetration conditions are satisfied on the side walls. Our solutions allow for a top wall shape that varies with respect to the radial coordinate which allows us to study the flow in a variety of cross-sectional shapes, including trapezoidal-shaped ducts that have been studied experimentally. At leading order, the flow is found to depend on the local height and slope of the top wall within the central region. The solutions are compared with numerical approximations of a classical Dean flow and are found to be in good agreement for a small duct aspect ratio and a slowly varying and small curvature. We conclude that the slowly varying curvature typical of spiral microfluidic devices has a negligible impact on the flow in the sense that locally the flow does not differ significantly from the classical Dean flow through a duct having the same curvature.

  11. Flow characteristics of developing laminar steady flows in a straight duct connected to a square curved duct

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hyun Chull [Chosun Univ., Gwangju (Korea, Republic of)

    2005-05-01

    In the present study, the characteristics of developing steady laminar flows of a straight duct connected to a 180 .deg. curved duct were examined in the entrance region through experimental measurement. Flow characteristics such as shear stress distributions, pressure distributions and friction coefficient experimentally in a square cross-sectional straight duct by using the PIV system. For the PIV measurement by particles produced from mosquito coils particles. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental results can be summarized as follows. Critical Reynolds number, Re{sub cr} which indicates transition from laminar steady flow to transition steady flow was 2,150. Shear stress per unit length on the wall was stronger than that in the fully developed flow region. This was attributed to the fact that shear stress and pressure loss in the curvature of a duct were increased. Pressure distributions were gradually decreased irrespective of Reynolds number in the whole test section. This trends were in a good agreement with the reference results. Pipe friction coefficient in the steady state flow region was calculate from method of least squares. The co-relationship between fiction coefficient and Reynolds number was established as follow; {lambda}=56/Re.

  12. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    Science.gov (United States)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  13. Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner

    Directory of Open Access Journals (Sweden)

    Xiao-bo Lai

    2011-11-01

    Full Text Available The duct of a robot vacuum cleaner is the length of the flow channel between the inlet of the rolling brush blower and the outlet of the vacuum blower. To cope with the pressure drop problem of the duct flow field in a robot vacuum cleaner, a method based on Pressure Implicit with Splitting of Operators (PRISO algorithm is introduced and the optimisation design of the duct flow field is implemented. Firstly, the duct structure in a robot vacuum cleaner is taken as a research object, with the computational fluid dynamics (CFD theories adopted; a three-dimensional fluid model of the duct is established by means of the FLUENT solver of the CFD software. Secondly, with the k-∊ turbulence model of three-dimensional incompressible fluid considered and the PRISO pressure modification algorithm employed, the flow field numerical simulations inside the duct of the robot vacuum cleaner are carried out. Then, the velocity vector plots on the arbitrary plane of the duct flow field are obtained. Finally, an investigation of the dynamic characteristics of the duct flow field is done and defects of the original duct flow field are analysed, the optimisation of the original flow field has then been conducted. Experimental results show that the duct flow field after optimisation can effectively reduce pressure drop, the feasibility as well as the correctness of the theoretical modelling and optimisation approaches are validated.

  14. Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner

    Directory of Open Access Journals (Sweden)

    Xiao-bo Lai

    2011-11-01

    Full Text Available The duct of a robot vacuum cleaner is the length of the flow channel between the inlet of the rolling brush blower and the outlet of the vacuum blower. To cope with the pressure drop problem of the duct flow field in a robot vacuum cleaner, a method based on Pressure Implicit with Splitting of Operators (PRISO algorithm is introduced and the optimisation design of the duct flow field is implemented. Firstly, the duct structure in a robot vacuum cleaner is taken as a research object, with the computational fluid dynamics (CFD theories adopted; a three‐dimensional fluid model of the duct is established by means of the FLUENT solver of the CFD software. Secondly, with the k‐ε turbulence model of three‐ dimensional incompressible fluid considered and the PRISO pressure modification algorithm employed, the flow field numerical simulations inside the duct of the robot vacuum cleaner are carried out. Then, the velocity vector plots on the arbitrary plane of the duct flow field are obtained. Finally, an investigation of the dynamic characteristics of the duct flow field is done and defects of the original duct flow field are analysed, the optimisation of the original flow field has then been conducted. Experimental results show that the duct flow field after optimisation can effectively reduce pressure drop, the feasibility as well as the correctness of the theoretical modelling and optimisation approaches are validated.

  15. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    NARCIS (Netherlands)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-01-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular

  16. Flow in curved ducts of varying cross-section

    Science.gov (United States)

    Sotiropoulos, F.; Patel, V. C.

    1992-07-01

    Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.

  17. Characterization of the secondary flow in hexagonal ducts

    Science.gov (United States)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  18. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    Science.gov (United States)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  19. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    Science.gov (United States)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models

  20. The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.

  1. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    International Nuclear Information System (INIS)

    Weyna, S

    2014-01-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above 'cut-off' frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  2. An analytical solution for Dean flow in curved ducts with rectangular cross section

    Science.gov (United States)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  3. Sound transmission in slowly varying circular and annular ducts with flow

    NARCIS (Netherlands)

    Rienstra, S.W.

    1999-01-01

    Sound transmission through straight circular ducts with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion. A natural extension for ducts with axially slowly varying properties (diameter and mean flow, wall impedance) is a

  4. Secondary flow in turbulent ducts with increasing aspect ratio

    Science.gov (United States)

    Vinuesa, R.; Schlatter, P.; Nagib, H. M.

    2018-05-01

    Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and 14.4 at a center-plane friction Reynolds number Reτ,c≃180 , and aspect ratios 1 and 3 at Reτ,c≃360 , were carried out with the spectral-element code nek5000. The aim of these simulations is to gain insight into the kinematics and dynamics of Prandtl's secondary flow of the second kind and its impact on the flow physics of wall-bounded turbulence. The secondary flow is characterized in terms of the cross-plane component of the mean kinetic energy, and its variation in the spanwise direction of the flow. Our results show that averaging times of around 3000 convective time units (based on duct half-height h ) are required to reach a converged state of the secondary flow, which extends up to a spanwise distance of around ≃5 h measured from the side walls. We also show that if the duct is not wide enough to accommodate the whole extent of the secondary flow, then its structure is modified as reflected through a different spanwise distribution of energy. Another confirmation of the extent of the secondary flow is the decay rate of kinetic energy of any remnant secondary motions for zc/h >5 (where zc is the spanwise distance from the corner) in aspect ratios 7, 10, and 14.4, which exhibits a decreasing level of energy with increasing averaging time ta, and in its rapid rate of decay given by ˜ta-1 . This is the same rate of decay observed in a spanwise-periodic channel simulation, which suggests that at the core, the kinetic energy of the secondary flow integrated over the cross-sectional area, , behaves as a random variable with zero mean, with rate of decay consistent with central limit theorem. Long-time averages of statistics in a region of rectangular ducts extending about the width of a well-designed channel simulation (i.e., extending about ≃3 h on each side of the center plane) indicate that ducts or experimental facilities with aspect ratios larger than 10 may

  5. Turbulence and secondary motions in square duct flow

    Science.gov (United States)

    Pirozzoli, Sergio; Modesti, Davide; Orlandi, Paolo; Grasso, Francesco

    2017-11-01

    We study turbulent flows in pressure-driven ducts with square cross-section through DNS up to Reτ 1050 . Numerical simulations are carried out over extremely long integration times to get adequate convergence of the flow statistics, and specifically high-fidelity representation of the secondary motions which arise. The intensity of the latter is found to be in the order of 1-2% of the bulk velocity, and unaffected by Reynolds number variations. The smallness of the mean convection terms in the streamwise vorticity equation points to a simple characterization of the secondary flows, which in the asymptotic high-Re regime are found to be approximated with good accuracy by eigenfunctions of the Laplace operator. Despite their effect of redistributing the wall shear stress along the duct perimeter, we find that secondary motions do not have large influence on the mean velocity field, which can be characterized with good accuracy as that resulting from the concurrent effect of four independent flat walls, each controlling a quarter of the flow domain. As a consequence, we find that parametrizations based on the hydraulic diameter concept, and modifications thereof, are successful in predicting the duct friction coefficient. This research was carried out using resources from PRACE EU Grants.

  6. Study on particle deposition in vertical square ventilation duct flows by different models

    International Nuclear Information System (INIS)

    Zhang Jinping; Li Angui

    2008-01-01

    A proper representation of the air flow in a ventilation duct is crucial for adequate prediction of the deposition velocity of particles. In this paper, the mean turbulent air flow fields are predicted by two different numerical models (the Reynolds stress transport model (RSM) and the realizable k-εmodel). Contours of mean streamwise velocity deduced from the k-ε model are compared with those obtained from the Reynolds stress transport model. Dimensionless deposition velocities of particles in downward and upward ventilation duct flows are also compared based on the flow fields presented by the two different numerical models. Trajectories of the particles are tracked using a one way coupling Lagrangian eddy-particle interaction model. Thousands of individual particles are released in the represented flow, and dimensionless deposition velocities are evaluated for the vertical walls in fully developed smooth vertical downward and upward square duct flows generated by the RSM and realizable k-ε model. The effects of particle diameter, dimensionless relaxation time, flow direction and air speed in vertical upward and downward square duct flows on the particle deposition velocities are discussed. The effects of lift and gravity on the particle deposition velocities are evaluated in vertical flows presented by the RSM. It is shown that the particle deposition velocities based on the RSM and realizable k-εmodel have subtle differences. The flow direction and the lift force significantly affect the particle deposition velocities in vertical duct flows. The simulation results are compared with earlier experimental data and the numerical results for fully developed duct flows. It is shown that the deposition velocities predicted are in agreement with the experimental data and the numerical results

  7. Characterization of turbulent coherent structures in square duct flow

    Science.gov (United States)

    Atzori, Marco; Vinuesa, Ricardo; Lozano-Durán, Adrián; Schlatter, Philipp

    2018-04-01

    This work is aimed at a first characterization of coherent structures in turbulent square duct flows. Coherent structures are defined as connected components in the domain identified as places where a quantity of interest (such as Reynolds stress or vorticity) is larger than a prescribed non-uniform threshold. Firstly, we qualitatively discuss how a percolation analysis can be used to assess the effectiveness of the threshold function, and how it can be affected by statistical uncertainty. Secondly, various physical quantities that are expected to play an important role in the dynamics of the secondary flow of Prandtl’s second kind are studied. Furthermore, a characterization of intense Reynolds-stress events in square duct flow, together with a comparison of their shape for analogous events in channel flow at the same Reynolds number, is presented.

  8. A simple method to calculate the neutron flow through full ducts

    International Nuclear Information System (INIS)

    Faik Ouahab, Z.; Jehouani, A.; Ghassoun, J.; Senhou, N.; Groetz, J.E.

    2010-01-01

    Summary of a study of assessment of the probability for neutrons to be guided in a full duct with a square cross section and doubly bent. Two software have been developed, based on the Monte Carlo simulation, to compute the neutron transmission probability at the end of the duct. Results are in good agreement with that obtained with the MCNP-5 code. The neutron flow and probability at the duct end have been determined for different materials and different duct dimensions

  9. Fully developed magnetohydrodynamic flows in rectangular ducts with insulating walls

    International Nuclear Information System (INIS)

    Molokov, S.; Kernforschungszentrum Karlsruhe GmbH; Shishko, A.

    1993-10-01

    In the first part the effect of magnetic field inclination on the flow structure and the pressure drop is considered. The duct walls are insulating. An asymptotic solution to the problem at high Hartmann numbers is obtained. The results show that for a square duct the increase of the pressure gradient due to the field inclination is negligible (less than 10% for any angle). For blanket relevant values of inclination of up to 10 the deviation of the velocity profile from the slug profile is insignificant. The second part studies the flow in a duct with insulating walls parallel to the magnetic field, while the Hartmann walls are covered by an insulating coating. A new type of the boundary condition is derived, which takes into account finite coating resistance. The effect of the latter on the flow characteristics is studied. An exact solution to the problem is obtained and several approximate formulas for the pressure drop at high Hartmann numbers are presented. (orig./HP) [de

  10. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  11. Forced convection and subcooled flow boiling heat transfer in asymmetrically heated ducts of T-section

    International Nuclear Information System (INIS)

    Abou-Ziyan, Hosny Z.

    2004-01-01

    This paper presents the results of an experimental investigation of heat transfer from the heated bottom side of tee cross-section ducts to an internally flowing fluid. The idea of this work is derived from the cooling of critical areas in the cylinder heads of internal combustion engines. Fully developed single phase forced convection and subcooled flow boiling heat transfer data are reported. Six T-ducts of different width and height aspect ratios are tested with distilled water at velocities of 1, 2 and 3 m/s for bulk temperatures of 60 and 80 deg. C, while the heat flux was varied from about 80 to 700 kW/m 2 . The achieved data cover Reynolds numbers in the range of 5.22 x 10 4 to 2.36 x 10 5 , Prandtl numbers in the range from 2.2 to 3.0, duct width aspect ratio between 2.19 and 3.13 and duct height aspect ratio from 0.69 to 2.0. The results revealed that the increase in either the width or height aspect ratio of the T-ducts enhances the convection heat transfer coefficients and the boiling heat fluxes considerably. The following comparisons are provided for coolant velocity of 2 m/s, bulk temperature of 60 deg. C, wall superheat of 20 K and wall to bulk temperature difference of 20 K. As the width aspect ratio increases by 43%, the convection heat transfer coefficient and the boiling heat flux increase by 27% and 39%, respectively. An increase in the height aspect ratio by 290% enhances the convection heat transfer coefficient and the boiling heat fluxes by 82% and 103%, respectively. When the coolant velocity changes from 1 to 2 m/s, the heat transfer coefficient increases by 60% and the boiling heat flux rises by 62-98% for the various tested ducts. The convection heat transfer coefficient increases by 12% and the boiling heat flux decreases by 31% as the bulk fluid temperature rises from 60 to 80 deg. C. A correlation was developed for Nusselt number as a function of Reynolds number, Prandtl number, viscosity ratio and some aspect ratios of the T-duct

  12. Liquid-metal flow in a rectangular duct with a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper treats liquid-metal flow in rectangular ducts with thin conducting walls. A transverse magnetic field changes from a uniform strength upstream to a weaker uniform strength downstream. The Hartmann number and the interaction parameter are assumed to be large, while the magnetic Reynolds number is assumed to be small. If the magnetic field changes gradually over a long duct length, the velocity and pressure are nearly uniform in each cross section and the flow differs slightly from locally fully developed flow. If the magnetic field changes more abruptly over a shorter duct length, the velocity and pressure are much larger near the walls parallel to the magnetic field than in the central part of duct. Solutions for the pressure drops due to the magnetic field change are presented

  13. Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanz@umich.edu; Zikanov, Oleg

    2017-03-15

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • The flow is strongly modified by the buoyancy force associated with growing T{sub m}. • Thermal convection is suppressed at high Gr. • High temperature difference between top and bottom walls is expected at high Gr. - Abstract: The work continues the exploration of the effect of thermal convection on flows in toroidal ducts of a liquid metal blanket. This time we consider the effect of the mean flow along the duct and of the associated heat transfer diverting the heat deposited by captured neutrons. Numerical simulations are conducted for a model system with two-dimensional (streamwise-uniform) fully developed flow, purely toroidal magnetic field, and perfectly electrically and thermally insulating walls. Realistically high Grashof (up to 10{sup 11}) and Reynolds (up to 10{sup 6}) numbers are used. It is found that the flow develops thermal convection in the transverse plane at moderate Grashof numbers. At large Grashof numbers, the flow is dominated by the top-bottom asymmetry of the streamwise velocity and stable stratification of temperature, which are caused by the buoyancy force due to the mean temperature growing along the duct. This leads to suppression of thermal convection, weak mixing, and substantial gradients of wall temperature. Further analysis based on more realistic models is suggested.

  14. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  15. Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct

    Science.gov (United States)

    Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.

    1997-01-01

    Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.

  16. Pancreatic-duct-lavage cytology in candidates for surgical resection of branch-duct intraductal papillary mucinous neoplasm of the pancreas: should the International Consensus Guidelines be revised?

    Science.gov (United States)

    Sai, Jin Kan; Suyama, Masafumi; Kubokawa, Yoshihiro; Watanabe, Sumio; Maehara, Tadayuki

    2009-03-01

    The International Consensus Guidelines are helpful for the management of branch-duct intraductal papillary mucinous neoplasms (IPMNs), because they allow us to exclude malignancy. However, it is not possible to predict malignancy with certainty, and further preoperative differentiation between benign and malignant IPMNs is required to avoid the false-positive results. To examine the usefulness of pancreatic-duct-lavage cytology by using an originally designed double-lumen catheter for discriminating benign and malignant IPMNs of the branch-duct type in candidates for surgical resection based on the International Consensus Guidelines. Pancreatic-duct-lavage cytology was investigated in 24 patients with branch-duct IPMNs who underwent surgical resection based on the International Consensus Guidelines, namely, they either had intramural nodules or the ectatic branch duct was >30 mm in diameter. Single-center retrospective study. Academic medical center. The sensitivity and specificity of pancreatic-duct-lavage cytology for discriminating benign from malignant IPMNs. More than 30 mL of pancreatic-duct-lavage fluid was obtained from each patient, and there were no patients with noninformative results. The sensitivity, specificity, positive predictive value, and negative predictive value of the cytologic diagnosis were 78%, 93%, 88%, and 88%, respectively. Single-center and small number of patients. Pancreatic-duct-lavage cytology can improve differentiation between benign and malignant IPMNs of the branch-duct type in candidates for surgical resection based on the International Consensus Guidelines.

  17. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    Science.gov (United States)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  18. CFD Validation and Flow Control of RAE-M2129 S-Duct Diffuser Using CREATETM-AV Kestrel Simulation Tools

    Directory of Open Access Journals (Sweden)

    Pooneh Aref

    2018-03-01

    Full Text Available The flow physics modeling and validation of the Royal Aircraft Establishment (RAE subsonic intake Model 2129 (M2129 are presented. This intake has an 18 inches long S duct with a 5.4 inches offset, an external and an internal lip, forward and rear extended ducts, and a center-positioned bullet before the outlet. Steady-state and unsteady experimental data are available for this duct. The measurements include engine face conditions (pressure recovery, static pressure to free-stream total pressure ratio, and distortion coefficient at the worst 60 ∘ sector or DC60, as well as wall static pressure data along the duct. The intake has been modeled with HPCMP CREATE TM -AV Kestrel simulation tools. The validation results are presented including the effects of turbulence models on predictions. In general, very good agreement (difference errors are less than 6% was found between predictions and measurements. Secondary flow at the first bend and a region of flow separation are predicted at the starboard wall with an averaged DC60 coefficient of 0.2945 at the engine face. Next, a passive and an active flow control method are computationally investigated. The passive one uses vane-type vortex generators and the active one has synthetic jet actuators. The results show that considered passive and active flow control methods reduce the distortion coefficient at the engine face and the worst 60 ∘ sector to 0.1361 and 0.0881, respectively. The flow control performance trends agree with those obtained in experiments as well. These results give confidence to apply the Kestrel simulation tools for the intake design studies of new and unconventional vehicles and hence to reduce the uncertainties during their flight testing.

  19. Analysis of liquid metal MHD flow in multiple adjacent ducts using an iterative method to solve the core flow equations

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Abdou, M.A.

    1991-01-01

    A computationally fast and efficient method for analyzing MHD flow at high Hartmann number and interaction parameter is presented and used to analyze a multiple duct geometry. This type of geometry is of practical interest in fusion applications. Because the Hartmann number and interaction parameter are generally large in fusion applications, the inertial and viscous terms in the Navier-Stokes equation can often be neglected in the core flow region, making this equation linear. In addition, because the magnetic fields in a fusion reactor vary slowly and the magnetic Reynolds number is small, the induced magnetic field can be neglected. The resulting equations representing core flow have certain characteristics which make it possible to reduce them to two dimensional without losing the three dimensional characteristics. The method which has been developed is an 'iterative' method. A velocity profile is assumed, then Ohm's law and the current conservation equation are combined and used to solve for the potential distribution in a plane in the fluid, and in a surface in the duct wall. The potential variation along magnetic field lines is checked, and if necessary, the velocities are adjusted. This procedure is repeated until the potentials along field lines vary to within a specified error. The analysis of the multiple duct geometry shows the importance of global effects. The results of two basic cases are presented. In the first, the average velocity in each duct is the same, but the wall conductance ratios of the walls perpendicular to the magnetic field vary from duct to duct. The total pressure drop in the electrically connected ducts was greater than or equal to the total pressure drop in the same ducts electrically isolated. In addition, the velocity profile in the ducts can be significantly affected by the presence of neighboring ducts. (orig./AH)

  20. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    Science.gov (United States)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-03-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.

  1. Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field

    International Nuclear Information System (INIS)

    Molokov, S.

    1993-01-01

    Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M -1/2 . In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab

  2. Curved-Duct

    Directory of Open Access Journals (Sweden)

    Je Hyun Baekt

    2000-01-01

    Full Text Available A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a 90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a 90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.

  3. Magnetohydrodynamic duct and channel flows at finite magnetic Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Vinodh Kumar

    2015-11-27

    Magnetohydrodynamic duct flows have so far been studied only in the limit of negligible magnetic Reynolds numbers (R{sub m}). When R{sub m} is finite, the secondary magnetic field becomes significant, leading to a fully coupled evolution of the magnetic field and the conducting flow. Characterization of such flows is essential in understanding wall-bounded magnetohydrodynamic turbulence at finite R{sub m} as well as in industrial applications like the design of electromagnetic pumps and measurement of transient flows using techniques such as Lorentz force velocimetry. This thesis presents the development of a numerical framework for direct numerical simulations (DNS) of magnetohydrodynamic flows in straight rectangular ducts at finite R{sub m}, which is subsequently used to study three specific problems. The thesis opens with a brief overview of MHD and a review of the existing state of art in duct and channel MHD flows. This is followed by a description of the physical model governing the problem of MHD duct flow with insulating walls and streamwise periodicity. In the main part of the thesis, a hybrid finite difference-boundary element computational procedure is developed that is used to solve the magnetic induction equation with boundary conditions that satisfy interior-exterior matching of the magnetic field at the domain wall boundaries. The numerical procedure is implemented into a code and a detailed verification of the same is performed in the limit of low R{sub m} by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. Following this, the effect of R{sub m} on the transient response of Lorentz force is studied using the problem of a strongly accelerated solid conducting bar in the presence of an imposed localized magnetic field. The response time of Lorentz force depends linearly on R{sub m} and shows a good agreement with the existing experiments. For sufficiently large values of R{sub m}, the peak

  4. Computational study of duct and pipe flows using the method of pseudocompressibility

    Science.gov (United States)

    Williams, Robert W.

    1991-01-01

    A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.

  5. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  6. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  7. Two phase flow combustion modelling of a ducted rocket

    NARCIS (Netherlands)

    Stowe, R.A.; Dubois, C.; Harris, P.G.; Mayer, A.E.H.J.; Champlain, A. de; Ringuette, S.

    2001-01-01

    Under a co-operative program, the Defence Research Establishment Valcartier and Université Laval in Canada and the TNO Prins Maurits Laboratory in the Netherlands have studied the use of a ducted rocket for missile propulsion. Hot-flow direct-connect combustion experiments using both simulated and

  8. Flow Simulation of Modified Duct System Wind Turbines Installed on Vehicle

    Science.gov (United States)

    Rosly, N.; Mohd, S.; Zulkafli, M. F.; Ghafir, M. F. Abdul; Shamsudin, S. S.; Muhammad, W. N. A. Wan

    2017-10-01

    This study investigates the characteristics of airflow with a flow guide installed and output power generated by wind turbine system being installed on a pickup truck. The wind turbine models were modelled by using SolidWorks 2015 software. In order to investigate the characteristic of air flow inside the wind turbine system, a computer simulation (by using ANSYS Fluent software) is used. There were few models being designed and simulated, one without the rotor installed and another two with rotor installed in the wind turbine system. Three velocities being used for the simulation which are 16.7 m/s (60 km/h), 25 m/s (90 km/h) and 33.33 m/s (120 km/h). The study proved that the flow guide did give an impact to the output power produced by the wind turbine system. The predicted result from this study is the velocity of the air inside the ducting system of the present model is better that reference model. Besides, the flow guide implemented in the ducting system gives a big impact on the characteristics of the air flow.

  9. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  10. Pressure drop and heat transfer in viscoelastic duct flow - A new look

    International Nuclear Information System (INIS)

    Kostic, M.; Hartnett, J.P.

    1987-01-01

    Asymptotic friction factors and heat transfer j-factors for turbulent duct flow of viscoelastic fluids are viewed from a new reference - the extended laminar flow results which exhibit the lowest possible friction and heat transfer. This analysis suggests that the presence of elasticity laminarizes the flow. A simple model which takes account of the reinforced fluid structure resulting from the presence of macromolecular polymer chains is introduced to explain the decrease in the turbulence level associated with viscoelastic fluids. A major feature of the proposed model is that a viscoelastic fluid has a nonuniform and nonisotropic viscosity, which in a duct flow produced non-homogeneous turbulent fluctuations. The observed decrease in friction factor and heat transfer, as well as the large increases in critical Reynolds number and hydrodynamic and thermal entrance lengths are consistent with the model

  11. Numerical investigation of turbulent fluid flow and heat transfer in complex ducts

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.

    1998-01-01

    The need for a reliable and reasonable accurate turbulence model without specific convergence problem for calculating duct flows in industrial applications has become more evident. In this study a general computational method has been developed for calculating turbulent quantities in any arbitrary three dimensional duct. Four different turbulence models for predicting the turbulent Reynolds stresses namely; standard k-{epsilon} model, the non-linear-k-{epsilon} model of Speziale, an Explicit Algebraic Stress Model (EASM) and a full Reynolds Stress Model (RSM) are compared with each other. The advantages, disadvantages and accuracy of these models are discussed. The turbulent heat fluxes are modeled by the SED concept, the GGDH and the WET methods. The advantages of GGDH and WET compared to SED are discussed and the limitations of these models are clarified. The two-equation model of temperature invariance and its dissipation rate for calculating turbulent heat fluxes are also discussed. The low Reynolds number version of all the models are considered except for the RSM. At high Reynolds numbers the wall functions for both the temperature field and the flow field are applied. It has been shown that the standard k-{epsilon} model with the curvilinear transformation provides false secondary motions in general non-orthogonal ducts and can not be used for predicting the turbulent secondary motions in ducts. The numerical method is based on the finite volume technique with non-staggered grid arrangement. The SIMPLEC algorithm is used for pressure-velocity coupling. A modified SIP and TDMA solving methods are implemented for solving the equations. The van Leer, QUICK and hybrid schemes are applied for treating the convective terms. However, in order to achieve stability in the k and {epsilon} equations, the hybrid scheme is used for the convective terms in these equations. Periodic boundary conditions are imposed in the main flow direction for decreasing the number of

  12. Separation of Hepatic parenchymal and Intrahepatic bile duct isotope activity: Studies of parenchymal function and bile duct flow using dynamic Tc-99m HIDA SPECT

    International Nuclear Information System (INIS)

    Jonas, E.; Naslund, E.; Freedman, J.; Hultcrantz, R.; Slezak, P.; Jacobsson, H.

    2003-01-01

    Currently used liver function tests have several shortcomings. Most of them are either insensitive or non-specific. The ultimate liver function test is probably a dynamic study, using a test substance with exclusive hepatic elimination and bile excretion, detected by means of a non?invasive method enabling sampling from all relevant compartments. In this paper we describe a method which enables measurements of parenchymal function and bile flow in different liver segments. The study was performed on 20 healthy volunteers. Tc-99m HIDA was used as test substrate and repeated Single Photon Emission Computed Tomography (SPECT) registrations as sampling method. Following injection of 120 MBq of Tc-99m HIDA, twelve liver SPECT examinations were performed at 6-minute intervals. Duct-representing peaks on images were detected by cranio-caudal activity scanning. Sampling from parenchyma and bile ducts in liver segments 2 to 8 was performed on consecutive examinations, creating time-activity graphs for parenchyma and ducts. Quantitative analysis of parenchymal and duct curves was performed and the results obtained from the left and right-sided liver segments were compared. Maximum counts/voxel (C max ) of left-sided segments (mean=33.2) were significantly lower than the values from right-sided segments (mean=24.7) and flow of isotope from parenchyma to bile ducts was significantly slower on the left. Furthermore, bile flow in ducts draining left-sided segments was slower than flow on the right side as reflected in significantly longer excretion t 1/2 (28.9 compared to 25.2 minutes) and delayed t max . (21.7 compared to 17.0 minutes). It has been concluded that the new method could provide a differential analysis of tracer flow in the hepatic parenchyma and the bile ducts. This pilot study on normal subjects has revealed interesting differences in both parenchymal accumulation as well as biliary excretion between left and right-sided segments. However, the value of the method

  13. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    Science.gov (United States)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  14. Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct

    International Nuclear Information System (INIS)

    Trabold, T.A.; Moore, W.E.; Morris, W.O.

    1997-06-01

    A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 ≤ bar Z ≤ 0.80, where bar Z is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets

  15. Study of surface and bulk instabilities in MHD duct flow with imitation of insulator coating imperfections

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zengyu [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China)]. E-mail: xuzy@swip.ac.cn; Pan Chuanjie [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China); Wei Wenhao [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China); Kang Weishan [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China)

    2006-02-15

    MHD phenomena in a duct flow were studied experimentally by using copper electrodes inserted into the wall of a perfectly insulated duct. The electrodes were connected using a copper wire to imitate different insulator coating imperfection conditions. The experimental results show instabilities of electric potential at the wall (surface instabilities) as well as instabilities in the pressure and velocity (bulk instabilities). The instabilities are strongly dependent on the scale of the copper wire. Three different cases were studied (at the same flow regimes, but with different electrode connections), where the potential at the duct wall is smaller, equal to or higher than the product of duct diameter 2a and transverse magnetic field B and average velocity V . MHD pressure drop {delta}P also exhibits significant changes.

  16. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  17. Numerical investigation of fully-developed magneto-hydro-dynamic flows in ducts

    International Nuclear Information System (INIS)

    Dajeh, D. A.

    1996-01-01

    In this paper a numerical study is presented for fuly developed magnetic-hydrodynamic flows in ducts under a uniform transverse implied magnetic field. Afinite different scheme comprising of modified ADI 'Alternating Direction Implicit' method and a SOUR 'Sucessive-Over and under relaxation' method are used to solve the set of governing equations. Computations are carried out for a different shape of ducts over a wide range of Hartman number, up to five thousands, which is an important parameter in the nuclear fusion reactor design. (author).16 refs., 7 figs., 3 tabs

  18. Specific aspects of turbulent flow in rectangular ducts

    Directory of Open Access Journals (Sweden)

    Stanković Branislav D.

    2017-01-01

    Full Text Available The essential ideas of investigations of turbulent flow in a straight rectangular duct are chronologically presented. Fundamentally significant experimental and theoretical studies for mathematical modeling and numerical computations of this flow configuration are analyzed. An important physical aspect of this type of flow is presence of secondary motion in the plane perpendicular to the streamwise direction, which is of interest from both the engineering and the scientific viewpoints. The key facts for a task of turbulence modeling and optimal choice of the turbulence model are obtained through careful examination of physical mechanisms that generate secondary flows. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.TR-33018: Increase in Energy and Ecology Efficiency of Processes in Pulverized Coal-Fired Furnace and Optimization of Utility Steam Boiler Air Pre-heater by Using In-House Developed Software Tools

  19. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  20. Nusselt number for turbulent flow of liquid metal in circular ducts

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-07-01

    The forced convection heat transfer in turbulent flow of liquid metals in ducts, is analyzed. An analogy between moment and heat at wall surface, is developed for determining one heat transfer coeficient in friction of friction coeficient. (E.G.) [pt

  1. Axial velocity profiles and secondary flows of developing laminar flows in a straight connected exit region of a 180 .deg. square curved duct

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hyun Chull; Lee, Heang Nam; Park, Gil Moon [Chosun Univ., Gwangju (Korea, Republic of)

    2005-10-01

    In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180 .deg. curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code (STARCD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D{sub h}=50.

  2. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  3. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  4. Correlations for heat transfer coefficient and friction factor for turbulent flow of air through square and hexagonal ducts with twisted tape insert

    Science.gov (United States)

    Yadav, Rupesh J.; Kore, Sandeep S.; Joshi, Prathamesh S.

    2018-05-01

    The experimental and numerical Nusselt number and friction factor investigation for turbulent flow through a non-circular duct with twisted-tape inserts have been presented. The non-circular ducts include square, hexagonal duct. The results of non-circular ducts are compared with circular duct. All the ducts have same equivalent diameter. The twist ratios used for the experiment are Y = 3.5, 4.5, 5.5 and 6.5. Experiments were carried out on square duct, hexagonal duct and circular duct. The Reynolds number lied between 10,000 and 1, 05,000. The present study is restricted to the flow of air at Pr = 0.7 only and within a narrow temperature range of 40 to 75 ΟC, within which the compressible nature of air can be neglected. The results reveal that, both Nusselt number and friction factor increases as the side of non-circular duct increases. Maximum Nusselt number and friction factor is obtained in case of circular duct with twisted tape. Further the correlations of Nu and f are given for different non circular duct with twisted tape insert for engineering applications for the turbulent regime. Since the thermal performance factor (η) is observed to be within the range of 0.8 to 1.13 for both circular and noncircular ducts, the overall benefit of using twisted tape in the flow field shall nevertheless be marginal.

  5. Analysis of secondary motions in square duct flow

    Science.gov (United States)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  6. Online dynamic flight optimisation applied to guidance of a variable-flow ducted rocket

    NARCIS (Netherlands)

    Halswijk, W.H.C.

    2009-01-01

    The Variable-Flow Ducted Rocket (VFDR) is a type of ramjet that can control the fuel mass flow to the combustion chamber. It combines the high efficiency at high-speed of ramjets with the throttlability of turbofans, and this makes VFDR propulsion an excellent choice for high speed, long range

  7. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  8. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    Science.gov (United States)

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  9. Magnetohydrodynamic flow in a rectangular duct under a uniform transverse magnetic field at high Hartmann number

    International Nuclear Information System (INIS)

    Temperley, D.J.

    1976-01-01

    In this paper we consider fully developed, laminar, unidirectional flow of uniformly conducting, incompressible fluid through a rectangular duct of uniform cross-section. An externally applied magnetic field acts parallel to one pair of opposite walls and induced velocity and magnetic fields are generated in a direction parallel to the axis of the duct. The governing equations and boundary conditions for the latter fields are introduced and study is then concentrated on the special case of a duct having all walls non-conducting. For values of the Hartmann number M>>1, classical asymptotic analysis reveals the leading terms in the expansions of the induced fields in all key regions, with the exception of certain boundary layers near the corners of the duct. The order of magnitude of the affect of the latter layers on the flow-rate is discussed and closed-form solutions are obtained for the induced fields near the corners of the duct. Attempts were made to formulate a concise Principle of Minimum Singularity to enable the correct choice of eigen functions for the various field components in the boundary layers on the walls parallel to the applied field. It was found, however, that these components are best found by taking the outer expansion of the closed-form solution in those boundary-layers near the corners of the duct where classical asymptotic analysis is not applicable. (author)

  10. Unsteady motion and transition to turbulence in developing curved duct flow

    International Nuclear Information System (INIS)

    Arnal, M.; Firmino, F.; Humphrey, J.A.C.

    1987-01-01

    An experiment was performed to further the understanding of developing flows in curved ducts of square cross-section. Unlike most earlier works, attention was paid to investigating the time-dependent character of the motion. Mean and unsteady flow characteristics were determined using flow visualization and a laser-Doppler velocimeter. Only one velocity component, that aligned in the longitudinal (streamwise) coordinate direction, was measured. Notwithstanding, the time histories, autocorrelations and spectra derived reveal a time-periodic motion that becomes turbulent with increasing Reynolds number. The results are of intrinsic fundamental value and also illustrate the danger of imposing symmetry of the conservation equations on numerical solutions of this flow. 24 references

  11. Transient flows in rectangular MHD ducts under the influence of suddenly changing applied magnetic fields

    International Nuclear Information System (INIS)

    Kobayashi, Junichi

    1979-01-01

    The study on the transient flow characteristics in MHD ducts under orthogonal magnetic field is divided into handling two problems: the problem of changing pressure gradient in a uniform orthogonal magnetic field and the problem in which the orthogonal magnetic field itself changes with time. The former has been investigated by many persons, but the latter has not been investigated so often as the former because of its difficulty of handling. In addition, if it is intended to grasp properly the transient flow characteristics in actual MHD ducts, it will be also important that the effects of the electric conductivity of side walls and aspect ratio are clarified. In other words, this paper deals with the problem in which a uniform orthogonal magnetic field is suddenly applied in such manner as Heaviside's step function to or removed from the conductive fluids flowing in sufficiently long rectangular MHD ducts. First, the MHD fundamental equations are described, then they are normalized to give boundary conditions and initial conditions. Next, the transient flow and the derived magnetic field characteristics are numerically analyzed by the difference calculus, and thus the effects of conductor, insulated wall, aspect ratio, Hartmann number, magnetic Prandtl number and others on the above characteristics are clarified. (Wakatsuki, Y.)

  12. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    Science.gov (United States)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  13. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Science.gov (United States)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  14. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    International Nuclear Information System (INIS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz

    2014-01-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity

  15. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Khairunizam, Wan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Shahriman, A. B., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Yaacob, S., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my [Centre of Excellence for Unmanned Aerial Systems, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  16. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  17. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    Science.gov (United States)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  18. Numerical Study for Turbulent Heat Transfer in Helical Wired Sub-channel Flow Regime of Duct-less Assembly in SFR

    International Nuclear Information System (INIS)

    You, Byunghyun; Jeong, Yong Hoon

    2014-01-01

    A fuel assembly had hexagonal structure adjacent to 6 fuel assemblies, which influence to the target fuel assembly due to elimination of duct. For calculating the influence, 6 additional channels were generated between the adjacent fuel assemblies and cross flow model was applied to the channels. The adjacent fuel assemblies were analyzed and the results were used in the additional channel as boundary condition of the target fuel assembly. To design the specifications of duct-less assembly, modified or brand-new thermal-hydraulic methodology is needed which is using MATRA-LMR and CFD codes in this study. The MATRA-LMR is a sub-channel analysis code for LMR that has been developed in Korea Atomic Energy Research Institute. It is designed to analyze a fuel assembly with wire-wrap and duct structure. However, the duct-less core is not able to be analyzed by the MATRA-LMR which doesn't consider cross flow between the fuel assemblies and effect of grid spacer. The code need improvement by editing source code to eliminate effect of duct and analyze pressure drop and mixing between the sub-channels caused by grid spacer and cross flow between the fuel assemblies. To validate reformed pressure drop model and cross flow model in MATRA-LMR, CFD analysis is performed. For verifying the results of CFD, LMR subchannel experimental data is benchmarked which is done by ORNL. The verified CFD for thermalhydraulic analysis calculated pressure drop and mixing caused by grid spacer and cross flow between fuel assemblies

  19. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten

    2015-01-01

    We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...

  20. Liquid-metal MHD flow in a duct whose cross section changes from a rectangle to a trapezoid, with applications in fusion blanket designs

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper treats the liquid-metal MHD flow in a semi-infinite rectangular duct and a semi-infinite trapezoidal duct, which are connected by a finite-length transition duct. There is a strong, transverse, uniform magnetic field. The walls parallel to the magnetic field (sides) remain parallel, while the walls intersecting the magnetic field are twisted in the transition duct to provide the change in cross sectional shape. The left side has a constant height, while the height of the right side increases or decreases in the transition duct. This geometry gives a skewed velocity profile with a high velocity near the left side, provided the right side is relatively thick. All walls are thin and electrically conducting, but the sides are considerably thicker than the other walls. The application is to fusion-reactor blankets in which a high velocity near the first wall (separating the plasma chamber from the coolant) improves the thermal performance. Junctions of different ducts with walls parallel to the magnetic field are treated for the first time. In expansions, contractions and other geometric transition ducts, as well as in straight ducts with axially varying magnetic fields, the fluid flow and electric currents are concentrated in boundary layers adjacent to the sides and in the side. At a junction with a straight duct with a uniform magnetic field, the flow and current must transfer from the boundary layers adn sides to the core regions. These transfers at junctions play a key role in any three-dimensional flow

  1. Liquid-metal MHD flow in a duct whose cross section changes from a rectangle to a trapezoid, with applications in fusion blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.S.

    1986-04-01

    This paper treats the liquid-metal MHD flow in a semi-infinite rectangular duct and a semi-infinite trapezoidal duct, which are connected by a finite-length transition duct. There is a strong, transverse, uniform magnetic field. The walls parallel to the magnetic field (sides) remain parallel, while the walls intersecting the magnetic field are twisted in the transition duct to provide the change in cross sectional shape. The left side has a constant height, while the height of the right side increases or decreases in the transition duct. This geometry gives a skewed velocity profile with a high velocity near the left side, provided the right side is relatively thick. All walls are thin and electrically conducting, but the sides are considerably thicker than the other walls. The application is to fusion-reactor blankets in which a high velocity near the first wall (separating the plasma chamber from the coolant) improves the thermal performance. Junctions of different ducts with walls parallel to the magnetic field are treated for the first time. In expansions, contractions and other geometric transition ducts, as well as in straight ducts with axially varying magnetic fields, the fluid flow and electric currents are concentrated in boundary layers adjacent to the sides and in the side. At a junction with a straight duct with a uniform magnetic field, the flow and current must transfer from the boundary layers adn sides to the core regions. These transfers at junctions play a key role in any three-dimensional flow.

  2. Adjoint shape optimization for fluid-structure interaction of ducted flows

    Science.gov (United States)

    Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.

    2018-03-01

    Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.

  3. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    Science.gov (United States)

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  4. Local study of flow and low Reynolds thermal-hydraulic performance of a corrugated plane duct: application to plate heat exchangers

    International Nuclear Information System (INIS)

    Hugonnot, Patrick

    1989-01-01

    This research thesis addresses the local study of a flow in a corrugated plane duct by using experimental and numerical approaches on the one hand, and the experimental determination of thermal-hydraulic performance at low Reynolds number of different plate heat exchanger ducts on the other hand. Experimental visualisations of the local flow allowed regime transitions in 2D and 3D geometries to be determined. As far as the 2D duct is concerned, a wave profile optimisation is proposed, and the numerical study performed by using the TRIO software is in good agreement with experimental results. The optimised duct configuration can thus be envisaged for an industrial development. The determination of the friction coefficient and of the global heat exchange coefficient of different corrugated ducts allows plate exchangers to be sized on a wide range of Reynolds numbers. The respective influences of natural convection and of fluid thermal dependency on heat exchange have been studied [fr

  5. Validation Plan of Turbulence Models for Internal Gas Flow Analysis in a Heated Rectangular Riser Duct

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Yeob; Shin, Dong-Ho; Park, Goon-Cherl; Cho, Hyoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Kim, Chan-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    VHTR being developed at Korea Atomic Energy Research Institute adopts an air-cooled Reactor Cavity Cooling System (RCCS) incorporating rectangular riser channels to remove the afterheat emitted from the reactor vessel. Because the performance of RCCS is determined by heat removal rate through the RCCS riser, it is important to understand the heat transfer phenomena in the RCCS riser to ensure the safety of the reactor. In the mixed convection, due to the buoyance force induced by temperature and density differences, local flow structure and heat transfer mode near the heated wall have significantly dissimilar characteristics from both forced convection and free convection. In this study, benchmark calculation was conducted to reproduce the previous statements that V2F turbulence model can capture the mixed convection phenomena with the Shehata's experimental data. Then, the necessity of the model validation for the mixed convection phenomena was confirmed with the CFD analyses for the geometry of the prototype RCCS riser. For the purpose of validating the turbulence models for mixed convection phenomena in the heated rectangular riser duct, validation plan with three experimental tests was introduced. Among them, the flow visualization test facility with preserved cross-section geometry was introduced and a preliminary test result was shown.

  6. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: yanase@okayama-u.ac.jp [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)

    2016-07-12

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  7. Optimum design of the injection duct system of a stenter machine

    Energy Technology Data Exchange (ETDEWEB)

    Juraeva, Makhsuda; Song, Dong Joo [Yeungnam University, Geyongsan (Korea, Republic of); Ryu, Kyung Jin [Ajou Motor College, Boryeong (Korea, Republic of)

    2017-05-15

    Stenter machines are used for drying fabrics in the textile industry and have a heater, injection duct system, and fans inside a chamber. The injection duct system has ducts and air-injecting holes. Plane-type injection duct systems were investigated to obtain uniform airflow at the air-injecting holes. The flow field of the injection duct systems was computed using ANSYS CFX with different heights of the duct end and different shapes for the air-injecting holes. There was a high mass flow rate at the air-injecting holes and high airflow circulation inside both plane-type and mountain-type ducts at the ends. The height of the duct end was varied between 40 mm and 160 mm. The injection duct systems were analyzed with four different shapes of air-injecting holes. The circular and elliptical holes had lower standard deviations of the mass flow rate than other shapes. Relatively uniform mass flow rates were obtained in the plane-type and mountain-type duct systems when the height of the duct end was 40 mm and the shape of the air-injecting holes was circular or elliptical. The developed injection duct systems were improved by obtaining a uniform mass flow rate at the air-injecting holes. A stenter prototype was fabricated with the developed injection duct system to confirm the numerical results. The developed injection duct system had better performance than the original system.

  8. Internal radiotherapy for hilar bile duct cancer

    International Nuclear Information System (INIS)

    Ryu, Munemasa; Ogino, Takashi; Konishi, Hiroshi

    1999-01-01

    By December 1998, 24 patients with non-resected hilar bile duct cancer (mean age of 74) had received bile duct intracavitary irradiation and 13 patients with residual cancer after resection of hilar bile duct cancer had received postoperative intracavitary irradiation. After they were externally irradiated 30 Gy in total by 15 fractions (2 Gy/time, 5 times in a week), intracavitary irradiation using 192-Ir was given 5 times in total (2 times in a week) from 3 weeks after external irradiation under the condition which dose became 8 Gy in depth of 10 mm from radiation source. The cases of postoperative irradiation had 3 times in total. As for 20 patients of non-resected hilar bile duct cancer without metastasis, 50% survival time was 265 days and there was no 5 year survivor. Fifty percents survival time of 4 patients with metastasis was 113 days. The effect of local control was recognized in 20 patients (83.3%). In 13 patients of postoperative irradiation, 50% survival time was 554 days, and survival rate of 3 years was 28%. (K.H.)

  9. A short remark on Stewart 1962 variational principle for laminar flow in a uniform duct

    Directory of Open Access Journals (Sweden)

    Liu Hong-Yan

    2016-01-01

    Full Text Available This paper concludes that Stewart 1962 variational principle for laminar flow in a uniform duct is for a differential-difference. Some generalized variational principles are elucidated with or without Stewart’s discrete treatment.

  10. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  11. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  12. The NASA Lewis Research Center Internal Fluid Mechanics Facility

    Science.gov (United States)

    Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

    1991-01-01

    An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

  13. Effect of duct geometry on Wells turbine performance

    International Nuclear Information System (INIS)

    Shaaban, S.; Abdel Hafiz, A.

    2012-01-01

    Highlights: ► A Wells turbine duct design in the form of venturi duct is proposed and investigated. ► Optimum duct geometry is identified. ► Up to 14% increase of the turbine power can be achieved using the optimized duct geometry. ► Up to 9% improve of the turbine efficiency is attained by optimizing the turbine duct geometry. ► The optimized duct geometry results in tangible delay of the turbine stalling point. - Abstract: Wells turbines can represent important source of renewable energy for many countries. An essential disadvantage of Wells turbines is their low aerodynamic efficiency and consequently low power produced. In order to enhance the Wells turbine performance, the present research work proposes the use of a symmetrical duct in the form of a venturi tube with turbine rotor located at throat. The effects of duct area ratio and duct angle are investigated in order to optimize Wells turbine performance. The turbine performance is numerically investigated by solving the steady 3D incompressible Reynolds Averaged Navier–Stocks equation (RANS). A substantial improve of the turbine performance is achieved by optimizing the duct geometry. Increasing both the duct area ratio and duct angle increase the acceleration and deceleration upstream and downstream the rotor respectively. The accelerating flow with thinner boundary layer thickness upstream the rotor reduces the flow separation on the rotor suction side. The downstream diffuser reduces the interaction between tip leakage flow and blade suction side. Up to 14% increase in turbine power and 9% increase in turbine efficiency are achieved by optimizing the duct geometry. On other hand, a tangible delay of the turbine stall point is also detected.

  14. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions

    International Nuclear Information System (INIS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Jin, Guangyuan; Tan, Sichao

    2013-01-01

    Highlights: ► Two-phase flow frictional resistance in narrow duct in rolling is studied. ► Frictional resistance behaviors in rolling are divided into three regions. ► Transient frictional pressure drop fluctuates synchronously with rolling motion. ► Conventional correlations are evaluated against experimental data in rolling motion. ► New correlation for transient frictional resistance in rolling motion is developed. - Abstract: Frictional resistance of air-water two-phase flow in a narrow rectangular duct subjected to rolling motion was investigated experimentally. Time-averaged and transient frictional pressure drop under rolling condition were compared with conventional correlation in laminar flow region (Re l l ⩽ 1400) and turbulent flow region (Re l > 1400) respectively. The result shows that, despite no influence on time-averaged frictional resistance, rolling motion does induce periodical fluctuation of the pressure drop in laminar and transition flow regions. Transient frictional pressure drop fluctuates synchronously with the rolling motion both in laminar and in transition flow region, while it is nearly invariable in turbulent flow region. The fluctuation amplitude of the Relative frictional pressure gradient decreases with the increasing of the superficial velocities. Lee and Lee (2002) correlation and Chisholm (1967) correlation could satisfactorily predict time-averaged frictional pressure drop under rolling conditions, whereas poorly predict the transient frictional pressure drop when it fluctuates periodically. A new correlation with better accuracy for predicting the transient frictional pressure drop in rolling motion is achieved by modifying the Chisholm (1967) correlation on the basis of analyzing the present experimental results with a great number of data points

  15. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred; Eriksson, O

    1965-07-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters.

  16. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred; Eriksson, O.

    1965-01-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters

  17. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    Science.gov (United States)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  18. Numerical investigation of the LM MHD flows in a curved duct with an FCI with varying slot locations

    International Nuclear Information System (INIS)

    Yang, Jong Hoon; Yan, Yue; Kim, Chang Nyung

    2016-01-01

    Highlights: • This study numerically investigates the liquid-metal magnetohydrodynamic flows in a curved duct with an FCI. • The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. • The influence of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. - Abstract: This study numerically investigates the liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with an FCI having three different slot locations and having no slot under a uniform magnetic field perpendicular to the duct. The flow velocity, current density, electric potential, Lorentz force, and pressure in different flow situations are presented in detail. The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. The flow field is examined with an introduction of the electric-field component and electro-motive component of the current, allowing us to analyze the interdependency of the flow variables. The effect of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. The result shows that and the case with an FCI slot located in the neutral position yields the smallest pressure gradient in the main flow direction among the cases with an FCI slot, resulting in the smallest pressure drop. Also, in a flow situation with smaller radius of curvature with the FCI slot in the neutral position, the axial velocity near the inner (in terms of the curvature) part of a cross-section is higher than that near the outer part.

  19. Essential Development of Streamwise Vortical/Secondary Flows in All Ducts with Corners or Slope Discontinuities in Perimeter

    Science.gov (United States)

    Nagib, Hassan; Vidal, Alvaro; Vinuesa, Ricardo; Schlatter, Philipp

    2017-11-01

    Direct numerical simulations of fully-developed turbulent flow through various straight ducts with sharp or rounded corners of various radii were performed to study influence of corner geometry on secondary flows. Unexpectedly, increased rounding of corners in rectangular ducts does not lead to monotonic trend towards pipe case. Instead, secondary vortices relocate close to regions of wall-curvature change. This behavior is connected to inhomogeneous interaction between near-wall bursting events, which are further characterized in this work with definition of their local preferential direction, and vorticity fluxes. Although these motions are relatively weak compared to streamwise velocity their effect on turbulence statistics and shear-stress distribution is very important and has not been sufficiently documented or fully understood. Flow through spanwise-periodic channels, with sinusoidal function to define the geometry of wall, yw = +/- h + A cos(ωz) , was also studied as model flow that is parametrically changed using A and ω, while taking advantage of many resulting symmetries. Consequences on experimental facilities and comparisons between experiments and various numerical and theoretical models are discussed revealing the uniqueness of pipe flow.

  20. Measurements of time-dependent liquid-metal magnetohydrodynamic flows in a flat rectangular duct

    International Nuclear Information System (INIS)

    Buehler, L.; Horanyi, S.

    2009-01-01

    In the helium-cooled lead lithium (HCLL) blanket, which has been chosen as a reference concept for a liquid-metal breeding blanket to be tested in ITER, the heat is removed by helium cooled plates aligned with the strong toroidal magnetic field that confines the fusion plasma. The liquid breeder lead lithium circulates through gaps of rectangular cross-section between the cooling plates to transport the generated tritium towards external extraction facilities. Under the action of the strong magnetic field, liquid metal flows in conducting rectangular ducts exhibit jet-like velocity profiles in the thin boundary layers near the side walls, which are parallel to the magnetic field like the cooling plates in HCLL blankets. The velocity in these side layers may exceed several times the mean velocity in the duct and it is known that these layers become unstable for sufficiently high Reynolds numbers. The present paper summarizes experimental results for such unstable time-dependent flows in strong magnetic fields, which have been obtained in the MEKKA liquid metal laboratory of the Forschungszentrum Karlsruhe. In particular, spatial and temporal scales of perturbation patterns are identified. The results suggest that the flow between cooling plates in a HCLL blanket is laminar and stable. The observed time-dependent flow behavior appears at larger velocities so that the present results are more relevant for applications in dual coolant concepts where high-velocity jets have been predicted along side walls.

  1. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    International Nuclear Information System (INIS)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang

    2014-01-01

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  2. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  3. Comparison of MHD pressure losses of liquid-lithium flows in coaxial and parallel ducts, passing through strong transverse magnetic fields

    International Nuclear Information System (INIS)

    Trommer, G.

    1979-08-01

    This report deals with theoretical calculations of MHD pressure losses of liquid-lithium flows in tubes of circular cross-section exposed to strong magnetic fields. Some simplifying assumptions were introduced, yielding an analytical solution which allows the pressure drop and losses in double tubes of coaxial geometry to be compared with those in normal flow pipes. The investigations show that coaxial ducts require much more pumping power than normal ones under similar conditions. This great difference of the properties of the two duct types will decrease if the pipes are embedded in materials of good electrical conductivity. In this case the normal duct will afford a drastic increase in the pressure drop, while the coaxial one will be nearly unaffected. But even under these conditions the losses of the latter will dominate. (orig.)

  4. Prediction of fan assisted flow in a duct/pipe network

    International Nuclear Information System (INIS)

    Quraishi, M.S.

    1996-01-01

    The commonly used fan+duct model is usually based on a table generated by matching the fan and system characteristic curves with the applied pressure drop across the fan+duct/pipe network and using linear or polynomial interpolation for intermediate values. However, this empirical approach can only handle a single system configuration for each table. If this approach is replaced by an algebraic formulation a general and flexible model can be developed. The algebraic model will be able to account for failure of resistances in the duct/pipe system as well as the failure of duct/pipe at an intermediate location. This paper presents the development of an algebraic model for fan+duct/pipe systems. (author)

  5. A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts

    NARCIS (Netherlands)

    Rienstra, S.W.; Eversman, W.

    2001-01-01

    An explicit, analytical, multiple-scales solution for modal sound transmission through slowly varying ducts with mean flow and acoustic lining is tested against a numerical finite-element solution solving the same potential flow equations. The test geometry taken is representative of a high-bypass

  6. Laminar flow in porous pipes and ducts with variable suction or injection at the wall

    International Nuclear Information System (INIS)

    Souza Araujo, P.M. de; Stuckenbruck, S.

    1977-01-01

    The laminar flow of an incompressible fluid is analysed along a porous-walled straight circular tube and a flat duct formed by parallel porous plates. The non-similarity of velocity profiles is verified and the analytical solution is obtained by expanding the axial velocity component in a power series. The mass flow through the walls is taken into consideration as an application of Darcy's Law. Adverse axial pressure gradients and occasional reverse flow near the wall are pointed out in the work. (Author) [pt

  7. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Rudro, Sajal Kanti [Department of Mathematics, Notredame Colleage, Motijheel, Dhaka (Bangladesh)

    2016-07-12

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.

  8. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    International Nuclear Information System (INIS)

    Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath; Rudro, Sajal Kanti

    2016-01-01

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.

  9. Effects of preferential concentration on direct radiation transmission in a turbulent duct flow

    Science.gov (United States)

    Villafane, Laura; Banko, Andrew; Kim, Ji Hoon; Elkins, Chris; Eaton, John

    2017-11-01

    Inertial particles in turbulent flows preferentially concentrate, giving rise to spatial and temporal fluctuations of particle number density that affect radiation transmission through the medium. Positive particle correlations enhance direct transmission when compared to the exponential attenuation predicted by the Beer's Law for randomly distributed particles. In the context of a particle based solar receiver, this work studies the effects of preferential concentration and optical depth on direct transmission through a particle laden turbulent duct flow. Time resolved measurements of transmission through the mixture were performed for various particle loadings and Reynolds numbers, thus varying particle correlation lengths, optical depth and concentration fluctuations. These measurements were made using a photodiode to record the transmission of a collimated laser beam along the wall bisector of the duct. A synchronized high-speed camera provided particle positions along most of the beam path. Average and fluctuating radiation transmission results are compared to predictions derived from the imaged number density fields and to simplified analytical models. Simplified models are able to capture the correct trends with varying loading and preferential concentration. This work is funded by the Department of Energy's National Nuclear Security Administration, Grant #DE-NA0002373-1.

  10. Point dipole as a magnetic obstacle in liquid metal duct flow

    Science.gov (United States)

    Tympel, Saskia; Boeck, Thomas; Krasnov, Dmitry; Schumacher, Jörg

    2011-11-01

    Lorentz force velocimetry is a new contactless technique to measure the velocities of hot and agressive conductiong liquids. The measurement of the Lorentz force on the magnet is highly sensitive to the velocity profile that is influenced by the magnetic field. Thus the knowlegde of the flow transformation and the influence of an inhomogeneous local magnetic field on liquid metal flow is essential for obtaining velocity information from the measured forces. We consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three-dimensional direct numerical simulations with a finite-difference method. The dipole acts as a magnetic obstacle. A wide range of parameters affects the created wake. In this canonical setting, we study the modification of the flow for different Hartmann and Reynolds numbers. We observe a strong dependence of the magnetic obstacle effect and the corresponding Lorentz force on the orientation of the dipole as well as on its position. The authors acknowledge the support of the Deutsche Forschungsgemeinschaft.

  11. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    Science.gov (United States)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  12. Experiments and calculations on neutron streaming through bent ducts

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.); Zsolnay, E.M.

    1993-07-01

    Neutron spectra in a cylindrical straight duct and in bent ducts with angles of 30deg, 60deg and 90deg have been measured by the multiple foil activation and thermoluminescence dosimetry methods. Two-dimensional discrete ordinates and three-dimensional Monte Carlo calculations are executed, and the results are compared with the measurements. The flow rate at the duct entrance calculated by the DOT3.5 code is underestimated by approximately 30 %, due to a conversion of the core and reflector geometry from XY to RZ geometry. The fast neutron flux in the ducts is underestimated by 20 % by the MORSE-SGC/S code due to a too coarse angular mesh of the source, which does not properly represent the actual angular distribution of the fast flux, which is highly peaked forwardly into the ducts. The thermal neutron flux was over-estimated by the Monte Carlo calculation. A method is proposed to calculate the angular distribution of the flow rate at the duct entrance and to calculate the source strength and the angular distribution of the flow rate at the entrance of the second leg of the duct. The results are compared with those of the transport calculations. Generally, the agreement is quite satisfactory. (author).

  13. Heat transfer in an asymmetrically heated duct, 2

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1986-01-01

    The objective of this article is to study theoretically and experimentally the effects of nonuniform heating on turbulent heat transfer characteristics for flow in a horizontal rectangular duct ; a vertical side wall was uniformly heated, and the other wall were insulated. In our theoretical approach, the zero-equation model for turbulent eddy viscosity was employed. The effects of mesh size of finite difference on the calculation results were examined, and some refined compensation for wall temperatures and wall shear stresses by no use of fine mesh were proposed to reduce the calculation time. The heat transfer coefficients in thermally developing region for a nonuniformly heated duct obtained from numerical solutions are larger than the one for uniformly heated case. The buoyancy effects on heat transfer were evaluated. However, it was seen that the secondary flow due to buoyancy force was hardly expected to enhance heat transfer in a turbulent duct flow. Experiments were performed to measure the velocity and temperature profiles in a turbulent duct flow with a nonuniform heated wall. The experimental results were in good agreement with the theoretical ones. (author)

  14. Numerical simulations of MHD flow transition in ducts with conducting Hartmann walls. Limtech project A3 D4 (TUI)

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, D.; Boeck, T. [Technische Univ. Ilmenau (Germany). Inst. of Thermodynamics and Fluid Mechanics; Braiden, L.; Molokov, S. [Conventry Univ. (United Kingdom). Dept. of Mathematics and Physics; Buehler, L. [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Kern- und Energietechnik, Programm Kernfusion

    2016-07-01

    Pressure-driven magnetohydrodynamic duct flows in a transverse, wall-parallel and uniform field have been studied by direct numerical. The conducting Hartmann walls give rise to a laminar velocity distribution with strong jets at the side walls, which are susceptible to flow instability. The onset of time-dependent flow as well as fully developed turbulent flow have been explored in a wide range of parameters.

  15. Coupling Numerical Methods and Analytical Models for Ducted Turbines to Evaluate Designs

    Directory of Open Access Journals (Sweden)

    Bradford Knight

    2018-04-01

    Full Text Available Hydrokinetic turbines extract energy from currents in oceans, rivers, and streams. Ducts can be used to accelerate the flow across the turbine to improve performance. The objective of this work is to couple an analytical model with a Reynolds averaged Navier–Stokes (RANS computational fluid dynamics (CFD solver to evaluate designs. An analytical model is derived for ducted turbines. A steady-state moving reference frame solver is used to analyze both the freestream and ducted turbine. A sliding mesh solver is examined for the freestream turbine. An efficient duct is introduced to accelerate the flow at the turbine. Since the turbine is optimized for operation in the freestream and not within the duct, there is a decrease in efficiency due to duct-turbine interaction. Despite the decrease in efficiency, the power extracted by the turbine is increased. The analytical model under-predicts the flow rejection from the duct that is predicted by CFD since the CFD predicts separation but the analytical model does not. Once the mass flow rate is corrected, the model can be used as a design tool to evaluate how the turbine-duct pair reduces mass flow efficiency. To better understand this phenomenon, the turbine is also analyzed within a tube with the analytical model and CFD. The analytical model shows that the duct’s mass flow efficiency reduces as a function of loading, showing that the system will be more efficient when lightly loaded. Using the conclusions of the analytical model, a more efficient ducted turbine system is designed. The turbine is pitched more heavily and the twist profile is adapted to the radial throat velocity profile.

  16. Depressurization test on hot gas duct

    International Nuclear Information System (INIS)

    Tanihira, Masanori; Kunitomi; Kazuhiko; Inagaki, Yoshiyuki; Miyamoto, Yoshiaki; Sato, Yutaka.

    1989-05-01

    To study the integrity of internal structures and the characteristics in a hot gas duct under the rapid depressurization accident, depressurization tests have been carried out using a test apparatus installed the hot gas duct with the same size and the same structures as that of the High Temperature Engineering Test Reactor (HTTR). The tests have been performed with three parameters: depressurization rate (0.14-3.08 MPa/s) determined by orifice diameter, area of the open space at the slide joint (11.9-2036 mm 2 ), and initial pressure (1.0-4.0 MPa) filled up in a pressure vessel, by using nitrogen gas and helium gas. The maximum pressure difference applied on the internal structures of the hot gas duct was 2.69 MPa on the liner tube and 0.45 MPa on the separating plate. After all tests were completed, the hot gas duct which was used in the tests was disassembled. Inspection revealed that there were no failure and no deformation on the internal structures such as separating plates, insulation layers, a liner tube and a pressure tube. (author)

  17. Liquid metal flows in manifolds and expansions of insulating rectangular ducts in the plane perpendicular to a strong magnetic field

    International Nuclear Information System (INIS)

    Molokov, S.

    1994-01-01

    It is demonstrated the flow pattern in basic insulating 3-D geometries for the actual and for more advanced liquid-metal blanket concepts and discussed the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp elbows, sharp and linear expansions with and without manifolds, T-junction, etc., have been calculated. They demonstrate high reliability of poloidal concepts of liquid-metal blankets, since they guarantee uniform conditions for heat transfer. If changes of the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should flow always in the radial-poloidal plane) the disturbances are local and the slug velocity profile is reached roughly at the distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and mean velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig./HP) [de

  18. Patent arterial duct

    Directory of Open Access Journals (Sweden)

    Martin Robin P

    2009-07-01

    Full Text Available Abstract Patent arterial duct (PAD is a congenital heart abnormality defined as persistent patency in term infants older than three months. Isolated PAD is found in around 1 in 2000 full term infants. A higher prevalence is found in preterm infants, especially those with low birth weight. The female to male ratio is 2:1. Most patients are asymptomatic when the duct is small. With a moderate-to-large duct, a characteristic continuous heart murmur (loudest in the left upper chest or infraclavicular area is typical. The precordium may be hyperactive and peripheral pulses are bounding with a wide pulse pressure. Tachycardia, exertional dyspnoea, laboured breathing, fatigue or poor growth are common. Large shunts may lead to failure to thrive, recurrent infection of the upper respiratory tract and congestive heart failure. In the majority of cases of PAD there is no identifiable cause. Persistence of the duct is associated with chromosomal aberrations, asphyxia at birth, birth at high altitude and congenital rubella. Occasional cases are associated with specific genetic defects (trisomy 21 and 18, and the Rubinstein-Taybi and CHARGE syndromes. Familial occurrence of PAD is uncommon and the usual mechanism of inheritance is considered to be polygenic with a recurrence risk of 3%. Rare families with isolated PAD have been described in which the mode of inheritance appears to be dominant or recessive. Familial incidence of PAD has also been linked to Char syndrome, familial thoracic aortic aneurysm/dissection associated with patent arterial duct, and familial patent arterial duct and bicuspid aortic valve associated with hand abnormalities. Diagnosis is based on clinical examination and confirmed with transthoracic echocardiography. Assessment of ductal blood flow can be made using colour flow mapping and pulsed wave Doppler. Antenatal diagnosis is not possible, as PAD is a normal structure during antenatal life. Conditions with signs and symptoms of

  19. Hemodynamic characterization of chronic bile duct-ligated rats: effect of pentobarbital sodium

    International Nuclear Information System (INIS)

    Lee, S.S.; Girod, C.; Braillon, A.; Hadengue, A.; Lebrec, D.

    1986-01-01

    Systemic and splanchnic hemodynamics of the chronic bile duct-ligated rat were characterized by radioactive microspheres. Conscious and pentobarbital sodium-anesthetized, bile duct-ligated and sham-operated rats had cardiac output and regional organ blood flows determined. The conscious bile duct-ligated rat compared with the sham-operated showed a hyperdynamic circulation with an increased cardiac output and portal tributary blood flow. Pentobarbital sodium anesthesia induced marked hemodynamic changes in both sham-operated and bile duct-ligated rats. The latter group was especially sensitive to its effects; thus, comparison of cardiac output and portal tributary blood flow between anesthetized bile duct-ligated and sham-operated rats showed no significant differences. The authors conclude that the rat with cirrhosis due to chronic bile duct ligation is an excellent model for hemodynamic investigations but should be studied in the conscious state, since pentobarbital sodium anesthesia eliminated the hyperdynamic circulation

  20. Effects of explosion-generated shock waves in ducts

    International Nuclear Information System (INIS)

    Busby, M.R.; Kahn, J.E.; Belk, J.P.

    1976-01-01

    An explosion in a space causes an increase in temperature and pressure. To quantify the challenge that will be presented to essential components in a ventilation system, it is necessary to analyze the dynamics of a shock wave generated by an explosion, with attention directed to the propagation of such a wave in a duct. Using the equations of unsteady flow and shock tube theory, a theoretical model has been formulated to provide flow properties behind moving shock waves that have interacted with various changes in duct geometry. Empirical equations have been derived to calculate air pressure, temperature, Mach number, and velocity in a duct following an explosion

  1. Three-dimensional MHD [magnetohydrodynamic] flows in rectangular ducts of liquid-metal-cooled blankets

    International Nuclear Information System (INIS)

    Hua, T.Q.; Walker, J.S.; Picologlou, B.F.; Reed, C.B.

    1988-07-01

    Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions for flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs

  2. Magnetohydrodynamics in rectangular ducts

    International Nuclear Information System (INIS)

    Lenhart, L.

    1994-04-01

    Magnetohydrodynamic flow in straight ducts or bends is a key issue, which has to be investigated for developing self-cooled liquid metal blankets of fusion reactors. The code presented solves the full set of governing equations and simulates all phenomena of such flows, including inertial effects. The range of application is limited by computer storage only. (orig./WL)

  3. Behavior of instantaneous lateral velocity and flow pulsation in duct flow with cylindrical rod

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    pulsation in single rod-inserted duct flow is reported and discussed, using various W/D (wall distance between wall and rod to rod diameter ratio) cases

  4. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  5. Forced convection heat transfer correlation for finned plates in a duct

    International Nuclear Information System (INIS)

    Chae, Myeong-Seon; Moon, Je-Young; Chung, Bum-Jin

    2014-01-01

    Forced convection heat transfer experiments were conducted for plate-fin in a duct using various fin spacing, fin height, duct width, Reynolds number for Prandtl numbers 2,014. Based upon analogy concept, mass transfer rate were measured instead of heat transfer rates. The heat transfer rates were enhanced with the increase of fin height and decrease of fin spacing as they increase the heat transfer area. Meanwhile, heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region. Forced convection heat transfer correlations were developed for laminar and turbulent flow conditions and for narrow and wide ducts. The work draws attention to the tip clearance on the heat transfer of the finned plate in a duct. (author)

  6. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    Science.gov (United States)

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  7. X-ray endoscopic techniques for external and internal drainage of bile ducts in mechanical jaundice

    International Nuclear Information System (INIS)

    Kharchenko, V.P.; Sinev, Yu.V.; Solomatin, A.D.

    2000-01-01

    Generalized information is considered on the application of external-internal X-ray endoscopic drainage of stomach, gallbladder, bile ducts in case of mechanical jaundice caused by both neoplasms and other diseases of pancreatobiliary zone. Indications for drainage are presented as well as contraindications, necessary equipment and instruments, recommendations on procedure realization [ru

  8. Experimental and Numerical Study on Performance of Ducted Hydrokinetic Turbines with Pre-Swirl Stator Blades.

    Science.gov (United States)

    Gish, Andrew

    2015-11-01

    Ducts (also called shrouds) have been shown to improve performance of hydrokinetic turbines in some situations, bringing the power coefficient (Cp) closer to the Betz limit. Here we investigate optimization of the duct design as well as the addition of stator blades upstream of the turbine rotor to introduce pre-swirl in the flow. A small scale three-bladed turbine was tested in a towing tank. Three cases (bare turbine, with duct, and with duct and stators) were tested over a range of flow speeds. Important parameters include duct cross-sectional shape, blade-duct gap, stator cross-sectional shape, and stator angle. For each test, Cp was evaluated as a function of tip speed ratio (TSR). Experimental results were compared with numerical simulations. Results indicate that ducts and stators can improve performance at slower flow speeds and lower the stall speed compared to a bare turbine, but may degrade performance at higher speeds. Ongoing efforts to optimize duct and stator configurations will be discussed.

  9. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the results of the third phase of an experimental investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 3.94 mm inner diameter. Data were obtained for pressures between 8 and 41 ata, steam qualities between 0 and 58 %, flow rates between 0.0075 and 0.048 kg/sec and surface heat flux between 20 and 83 W/cm. The results are in excellent agreement with our earlier data for flow in 9.93 and 7.76 mm inner diameter ducts which were presented in reports AE-69 and AE-70. The present measurements substantiate our earlier conclusion that the non dimensional pressure gradient ratio, {psi}{sup 2} , is, in the range investigated, independent of mass flow rate, inlet subcooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use: {psi}{sup 2} = 1 + 2400(x/p){sup 0.96} This equation correlates our data (about 800 points) with a discrepancy less than {+-} 15 per cent and is identical with the corresponding equation obtained from measurements with the 7.76 mm duct.

  10. Percutaneous treatment of benign bile duct strictures

    Energy Technology Data Exchange (ETDEWEB)

    Koecher, Martin [Department of Radiology, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic)]. E-mail: martin.kocher@seznam.cz; Cerna, Marie [Department of Radiology, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Havlik, Roman [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Kral, Vladimir [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Gryga, Adolf [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Duda, Miloslav [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic)

    2007-05-15

    Purpose: To evaluate long-term results of treatment of benign bile duct strictures. Materials and methods: From February 1994 to November 2005, 21 patients (9 men, 12 women) with median age of 50.6 years (range 27-77 years) were indicated to percutaneous treatment of benign bile duct stricture. Stricture of hepatic ducts junction resulting from thermic injury during laparoscopic cholecystectomy was indication for treatment in one patient, stricture of hepaticojejunostomy was indication for treatment in all other patients. Clinical symptoms (obstructive jaundice, anicteric cholestasis, cholangitis or biliary cirrhosis) have appeared from 3 months to 12 years after surgery. Results: Initial internal/external biliary drainage was successful in 20 patients out of 21. These 20 patients after successful initial drainage were treated by balloon dilatation and long-term internal/external drainage. Sixteen patients were symptoms free during the follow-up. The relapse of clinical symptoms has appeared in four patients 9, 12, 14 and 24 months after treatment. One year primary clinical success rate of treatment for benign bile duct stricture was 94%. Additional two patients are symptoms free after redilatation (15 and 45 months). One patient is still in treatment, one patient died during secondary treatment period without interrelation with biliary intervention. The secondary clinical success rate is 100%. Conclusion: Benign bile duct strictures of hepatic ducts junction or biliary-enteric anastomosis are difficult to treat surgically and endoscopically inaccessible. Percutaneous treatment by balloon dilatation and long-term internal/external drainage is feasible in the majority of these patients. It is minimally invasive, safe and effective.

  11. Internal Temperature Control For Vibration Testers

    Science.gov (United States)

    Dean, Richard J.

    1996-01-01

    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  12. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    International Nuclear Information System (INIS)

    Jayaraju, S.T.; Sathiah, P.; Roelofs, F.; Dehbi, A.

    2015-01-01

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions

  13. Premixed CH4-Air Flame Structure Characteristic and Flow Behavior Induced by Obstacle in an Open Duct

    Directory of Open Access Journals (Sweden)

    DengKe Li

    2015-01-01

    Full Text Available To study the fuel gas combustion hazards, the methane/air flame structure and flow characteristic in an open duct influenced by a rectangular obstacle were explored by experiment and realizable k-∊ model (RKE. In the test, the high-speed schlieren photography technology and dynamic detection technology were applied to record the flame propagation behavior. Meanwhile, the interaction between flame front and flame flow field induced by the obstacle was disclosed. In addition, the laminar-turbulence transition was also taken into consideration. The RKE and eddy dissipation concept (EDC premixed combustion model were applied to obtain an insight into the phenomenon of flow change and wrinkle appearing, which potently explained the experimental observations. As a result, the obstacle blocked the laminar flame propagation velocity and increased pressure a little in an open duct. Some small-scale vortices began to appear near the obstacle, mainly due to Kelvin-Helmholtz instability (KHI, and gradually grew into large-scale vortices, which led to laminar-turbulent transition directly. The vortices thickened the reaction area and hastened the reaction rate; reversely, the higher reaction rate induced larger vortices. The RKE model result fitted the test data well and explained the wrinkle forming mechanism of two special vortices in the case.

  14. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    Science.gov (United States)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  15. Analysis of the velocity distribution in different types of ventilation system ducts

    Science.gov (United States)

    Peszyński, Kazimierz; Olszewski, Lukasz; Smyk, Emil; Perczyński, Daniel

    2018-06-01

    The paper presents the results obtained during the preliminary studies of circular and rectangular ducts before testing the properties elements (elbows, tees, etc.)of rectangular with rounded corners ducts. The fundamental problem of the studies was to determine the flow rate in the ventilation duct. Due to the size of the channel it was decided to determine the flow rate based on the integration of flow velocity over the considered cross-section. This method requires knowledge of the velocity distribution in the cross section. Approximation of the measured actual profile by the classic and modified Prandtl power-law velocity profile was analysed.

  16. The Effect of Turbulences Flow on a Gas-Liquid Mixing Process Downstream of a Curved Duct

    Directory of Open Access Journals (Sweden)

    Abdul Satar Jawad Mohammed

    2018-02-01

    Full Text Available An experimental investigation is carried out on the use of water injection on the humidification process of air with a steady flow that travels during the curved part of a duct with a constant cross section. The naturally generated turbulences will surely aid the mixing process between the injected water droplets and the air to enhance both the mass and heat transfer. The current investigation is regarded as a simulation of the inlet air cooling of the gas turbine which aims to specify the optimum atomizer position on the air cooling by the fogging technique. The experiments were carried out on a (50×50 cm wind tunnel with an average air velocity of (10 m/s. Experiments were conducted in a range of air to water flow ratio between 1000 and 2000, and an ambient temperature in a range of 30° to 50°C. At higher ambient temperature of 45.2oC (DBT, a temperature reduction of 26% and an increase in the relative humidity ratio of 2.13 were recorded at the flow ratio of 1000. Injecting water upward through the range of angles -25° to 75° showed less sensitivity to atomizer location regardless the radial position of the atomizer. This situation is most suitable for using atomizing array across the duct. The central location with tangential spray introduces the critical position for a single-point spray. Such position is promising the optimum atomizer place specified by a radii ratio of (r/rin=3 and tangential orientation to the direction of flow.

  17. The experimental study of radiation injury on bile duct and liver tissue

    International Nuclear Information System (INIS)

    Cao Guiwen; Wang Bin; Sun Yequan; Shao Xueye; Ning Houfa; Sui Shouguang; Wang Xiuchun; Bai Xuming

    2007-01-01

    Objective: To investigate the safety, acceptance and the effective extent of 192 Ir-internal irradiation, providing theoretical guidelines for HC. Methods: Sixteen male healthy hybrid dogs enrolled in the experiment were divided into 4 groups of 4 each. The brachytherapy applicator was introduced from gall bladder into the convergence of cystic duct with common hepatic duct during the operation and a small chip of 1 cm 3 liver tissue was cut off and taken for control later on. The animals in group A-D were irradiated by 192 Ir-internal irradiation with 30 Gy, 40 Gy, 50 Gy arid 60 Gy at the correlative dose points respectively. Animals were put to death after 10 days subsequently, with sampling specimens obtained from radiation cystic duct and the in between liver tissue with the distant cystic duct. The radiation injury of the cystic duct and liver tissue near bile ducts were observed and studied by light microscope and transmission election microscope. Results: By the limit of the safest endurance dose(50 Gy) of Bile duct, unreversed injury of the nuclei of liver cells occurred at 0 to 15 mm from bile duct revealed by transmission electron microscope and light microscope. The whole biliary duct wall would be undergone necrosis with irradiation dose over 60 Gy. Conclusions: Normal bile duct possesses good endurance to 192 Ir-internal irradiation. Within the safest endurance limit of 50 Gy the effective irradiation field could reach 15 mm from the involved bile duct. (authors)

  18. The Canadian residential duct and chimney survey

    Energy Technology Data Exchange (ETDEWEB)

    Fugler, D.

    2003-12-01

    A study was conducted in 1989 to better understand the thermal performance of ducts and chimneys in houses. The objective was to address the problems associated with insufficient airflow and backdrafting of combustion gases resulting from malfunctioning fans, furnaces and fireplaces. The Duct Test Rig was used to measure and recorded airflows and heat losses in a variety of ducts and chimneys in a representative mix of houses in Vancouver, Kelowna, Winnipeg, Calgary, Toronto, London, Montreal, Quebec City, Halifax, Fredericton and Ottawa. Bath, kitchen, clothes dryer and central vacuum exhaust fans were tested to determine how performance is affected by fan age, accumulations of dust, grease, bugs and installation methods. Results indicate that there is no statistical difference between axial or centrifugal fans. The greatest problem appeared to be with low flows, high leakage rates, and poor conditions of bathroom fans. Many kitchen fans were found to be blocked at the inlet by cooking grease. The exhaust flows depended greatly on the condition of the backdraft damper. Dryer exhaust airflow was typically less than the 75 L/s specified by manufacturers, but even old dryers performed relatively well. All types of chimneys were tested for different positive hood pressures, airflow lost through leakage, and thermal characteristics. Airflow was found to vary depending on the type and area of the flue and the presence of a cap. For heating systems, the low duct efficiency was due mostly to duct leakage, radiation losses and restrictive ducts and registers. The findings of this testing program are still valid today. 3 tabs.

  19. Contribution to research on the isotopic exploration of the lacrimal ducts

    International Nuclear Information System (INIS)

    Vauthier, Michel.

    1976-01-01

    With the help of radioactive tracers the physiological exploration of tear flow is now possible without instrumental manipulation. The use of sodium pertechnetate (sup(99m)TcO 4 -Na + ) in physiological serum solution gives a good account of the natural role of tears in the drainage system and the dynamics of this latter. A solution of radioactive sodium pertechnetate in artificial tears (9/000 solution of sodium chloride) contains very little dissolved element compared with the amount of sodium chloride present. The specific activity of the pertechnetate in saline solution varies according to the examinations between 7 and 10mCi/cm 3 , which means that each calibrated 15 μl drop has an activity of 105 to 150 μCi. The radiation dose delivered to the crystalline lens of both eyes (4mrad) is less than 2% that of an anteroposterior skull X-ray. The aim of this study is actually threefold: - in vivo demonstration of the normal internal configuration of tear ducts; - determination of the physiological lacrimal function of exccretion by qualitative and quantitative lacrimal scintigraphy, and of drainage dynamics norms; - study of tear absorption by the mucous membranes of the drainage ducts. The results show that the scintigraphic examination, while giving a mere approach to the internal morphology of the tear ducts, provides important information on their drainage dynamics [fr

  20. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct.

    Science.gov (United States)

    Woda, Craig B; Leite, Maurilo; Rohatgi, Rajeev; Satlin, Lisa M

    2002-09-01

    Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is

  1. Analysis of the velocity distribution in different types of ventilation system ducts

    Directory of Open Access Journals (Sweden)

    Peszyński Kazimierz

    2018-01-01

    Full Text Available The paper presents the results obtained during the preliminary studies of circular and rectangular ducts before testing the properties elements (elbows, tees, etc.of rectangular with rounded corners ducts. The fundamental problem of the studies was to determine the flow rate in the ventilation duct. Due to the size of the channel it was decided to determine the flow rate based on the integration of flow velocity over the considered cross-section. This method requires knowledge of the velocity distribution in the cross section. Approximation of the measured actual profile by the classic and modified Prandtl power-law velocity profile was analysed.

  2. An Experimental Study of Pressure Gradients for Flow of Boiling Water in Vertical Round Ducts (Part 4)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the experimental results from the fourth and last phase of an investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 12.99 mm inner diameter. Data were obtained for pressures between 6 and 10 ata, steam qualities between 0 and 0.70, mass flow rates between 0.04 and 0.164 kg/sec. Only one value of 65 W/cm{sup 2} were used for the surface heat flux. The results are in excellent agreement with our earlier data for flow in 9. 93, 7. 76 and 3. 94 mm inner diameter ducts previously presented, and our conclusions given in those reports have been verified. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use. {chi}{sup 2} = 1 + 2600*(x/p){sup 0.96} This equation correlates our data within an accuracy of {+-} 15 per cent. Considering the data from all four ducts investigated, we have found that the following equation correlates the data with a discrepancy less than {+-} 20 per cent: {chi}{sup 2} = 1 + 2500*(x/p){sup 0.96} and we conclude that for engineering purposes, the effect of diameter is of no significance.

  3. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  4. The impact of duct-to-duct interaction on the hex duct dilation

    International Nuclear Information System (INIS)

    Lee, M.J.; Chang, L.K.; Lahm, C.E.; Porter, D.L.

    1992-01-01

    Dilation of the hex duct is an important factor in the operational lifetime of fuel subassemblies in liquid metal fast reactors. It is caused primarily by the irradiation-enhanced creep and void swelling of the hex duct material. Excessive dilation may jeopardize subassembly removal from the core or cause a subassembly storage problem where the grid size of the storage basket is limited. Dilation of the hex duct in Experimental Breeder Reactor II (EBR-II) limits useful lifetime because of these storage basket limitations. It is, therefore, important to understand the hex duct dilation behavior to guide the design and in-core management of fuel subassemblies in a way that excessive duct deformation can be avoided. To investigate the dilation phenomena, finite-element models of the hex duct have been developed. The inelastic analyses were performed using the structural analysis code, ANSYS. Both Type 316 and D9 austenitic stainless steel ducts are considered. The calculated dilations are in good agreement with profilometry measurements made after irradiation. The analysis indicates that subassembly interaction is an important parameter in addition to neutron fluence and temperature in determining hex duct dilation. 5 refs

  5. Effects of bending-torsional duct-induced swirl distortion on aerodynamic performance of a centrifugal compressor

    Science.gov (United States)

    Hou, Hongjuan; Wang, Leilei; Wang, Rui; Yang, Yanzhao

    2017-04-01

    A turbocharger compressor working in commercial vehicles, especially in some passenger cars, often works together with some pipes with complicated geometry as an air intake system, due to limit of available space in internal combustion engine compartments. These pipes may generate various distortions of physical parameters of the air at the inlet of the compressor and therefore the compressor aerodynamic performance deteriorates. Sometimes, the turbocharging engine fails to work at some operation points. This paper investigates the effects of various swirl distortions induced by different bending-torsional intake ducts on the aerodynamic performance of a turbocharger compressor by both 3D numerical simulations and experimental measurements. It was found that at the outlet of the pipes the different inlet ducts can generate different swirl distortions, twin vortices and bulk-like vortices with different rotating directions. Among them, the bulk-like vortices not only affect seriously the pressure distribution in the impeller domain, but also significantly deteriorate the compressor performance, especially at high flow rate region. And the rotating direction of the bulk-like vortices is also closely associated with the efficiency penalty. Besides the efficiency, the transient flow rate through a single impeller channel, or the asymmetric mass flow crossing the whole impeller, can be influenced by two disturbances. One is from the upstream bending-torsional ducts; other one is from the downstream volute.

  6. Thermal performance test of the hot gas ducts of HENDEL

    International Nuclear Information System (INIS)

    Hishida, M.; Kunitomi, K.; Ioka, I.; Umenishi, K.; Tanaka, T.; Shimomura, H.; Sanokawa, K.

    1984-01-01

    A hot gas duct provided with internal thermal insulation is to be used for high-temperature gas-cooled reactors (HTGR). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of a hot gas duct have been conducted. The present report deals with the results of the thermal performance of the single tube type hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL). Uniform temperature and heat flux distribution at the surface of the duct were observed, the experimental correlations being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of the co-axial hot gas duct was evaluated and no hot spot was detected. These results would be very valuable for the design and development of HTGR. (orig.)

  7. Numerical analysis of turbulent flow and heat transfer in a square sectioned U-bend duct by elliptic-blending second moment closure

    International Nuclear Information System (INIS)

    Shin, Jong Keun; Choi, Young Don; An, Jeong Soo

    2007-01-01

    A second moment turbulence closure using the elliptic-blending equation is introduced to analyze the turbulence and heat transfer in a square sectioned U-bend duct flow. The turbulent heat flux model based on the elliptic concept satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also, the traditional GGDH heat flux model is compared with the present elliptic concept-based heat flux model. The turbulent heat flux models are closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. The predicted results show their reasonable agreement with experimental data for a square sectioned U-bend duct flow field adopted in the present study

  8. Elevator convection modes in vertical ducts with strong transverse magnetic fields

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2014-11-01

    Instability modes in the form of axially uniform vertical jets, also called ``elevator modes,'' are known to be solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to an actual flow state is limited, since they quickly break down to secondary instabilities. We consider a downward flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are likely to be not just relevant, but a dominant feature of the flow. Recent experiments indicate that counterparts of such modes may develop in vertically finite ducts leading to high-amplitude fluctuations of temperature. Potential implications for designs of liquid metal blankets for fusion reactors with poloidal ducts are discussed. Financial support was provided by the US NSF (Grant CBET 1232851).

  9. Comparison of secondary flows predicted by a viscous code and an inviscid code with experimental data for a turning duct

    Science.gov (United States)

    Schwab, J. R.; Povinelli, L. A.

    1984-01-01

    A comparison of the secondary flows computed by the viscous Kreskovsky-Briley-McDonald code and the inviscid Denton code with benchmark experimental data for turning duct is presented. The viscous code is a fully parabolized space-marching Navier-Stokes solver while the inviscid code is a time-marching Euler solver. The experimental data were collected by Taylor, Whitelaw, and Yianneskis with a laser Doppler velocimeter system in a 90 deg turning duct of square cross-section. The agreement between the viscous and inviscid computations was generally very good for the streamwise primary velocity and the radial secondary velocity, except at the walls, where slip conditions were specified for the inviscid code. The agreement between both the computations and the experimental data was not as close, especially at the 60.0 deg and 77.5 deg angular positions within the duct. This disagreement was attributed to incomplete modelling of the vortex development near the suction surface.

  10. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  11. WAVE PROPAGATION in the HOT DUCT of VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz; Jim C. P. Liou

    2013-07-01

    In VHTR, helium from the reactor vessel is conveyed to a power conversion unit through a hot duct. In a hypothesized Depressurized Conduction Cooldown event where a rupture of the hot duct occurs, pressure waves will be initiated and reverberate in the hot duct. A numerical model is developed to quantify the transients and the helium mass flux through the rupture for such events. The flow path of the helium forms a closed loop but only the hot duct is modeled in this study. The lower plum of the reactor vessel and the steam generator are treated as specified pressure and/or temperature boundary to the hot duct. The model is based on the conservation principles of mass, momentum and energy, and on the equations of state for helium. The numerical solution is based on the method of characteristics with specified time intervals with a predictor and corrector algorithm. The rupture sub-model gives reasonable results. Transients induced by ruptures with break area equaling 20%, 10%, and 5% of the duct cross-sectional area are described.

  12. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Persson, P

    1963-06-15

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources.

  13. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Persson, P.

    1963-06-01

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources

  14. Sand transport in a two pass internal cooling duct with rib turbulators

    International Nuclear Information System (INIS)

    Singh, Sukhjinder; Tafti, Danesh; Reagle, Colin; Delimont, Jacob; Ng, Wing; Ekkad, Srinath

    2014-01-01

    Highlights: • Highest particle impingement observed in the bend and first quarter of 2nd pass. • Average particle impingement per pitch is 28% higher in the second pass. • Rib faces are by far the most susceptible to particle impingement. • Particle impingement is sensitive to particle size. • Particle impingement is sensitive to wall collision model used. - Abstract: Jet engines often operate under dirty conditions where large amounts of particulate matter can be ingested, especially, sand, ash and dirt. Particulate matter in different engine components can lead to degradation in performance. The focus of this study is to investigate the sand transport and deposition in the internal cooling passages of turbine blades. A two pass stationary square duct with rib turbulators subjected to sand ingestion is studied using Large Eddy Simulations (LES). Each pass has ribs on two opposite walls and aligned normal to the main flow direction. The rib pitch to rib height (P/e) is 9.28, the rib height to channel hydraulic diameter (e/D h ) is 0.0625 and calculations have been carried out for a bulk Reynolds number of 25,000. Particle sizes in the range 0.5–25 μm are considered, with the same size distribution as found in Arizona Road Dust (medium). Large Eddy Simulation (LES) with a wall-model is used to model the flow and sand particles are modeled using a discrete Lagrangian framework. Results quantify the distribution of particle impingement density on all surfaces. Highest particle impingement density is found in the first quarter section of the second pass after the 180° turn, where the recorded impingement is more than twice that of any other region. It is also found that the average particle impingement per pitch is 28% higher in the second pass than the first pass. Results show lower particle tendency to impact the region immediately behind the rib in the first pass compared to the second pass where particle impingement is more uniform in the region

  15. A non-local computational boundary condition for duct acoustics

    Science.gov (United States)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.

    1994-01-01

    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  16. Dynamic response of a system with internal heat sources cooled by a flowing incompressible fluid

    International Nuclear Information System (INIS)

    Georgescu, R.; Dobrescu, C.

    1975-01-01

    The paper investigates the dynamic temperature response of an incompressible fluid which cools a duct with internal heat sources sinusoidally oscillated. The analytical results utilise the Laplace transformation technique. The experimental and calculated results are obtained by transfer function approach. Comparison of the calculated with the experimental data indicates agreement from 6 to 24 percent for the amplitude and up to 30 degree for the phase-shift. All the calculated data are below the experimental ones. The analytical method of transfer function approach presents interest and may be utilized for the initial calculations giving good results for flow rates above 1000 kg per hour

  17. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  18. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  19. Acoustic power balance in lined ducts

    Science.gov (United States)

    Eversman, W.

    1979-01-01

    It is shown that the two common definitions of acoustic energy density and intensity in uniform unlined ducts carrying uniform flow are compatible to the extent that both energy densities can be used in an appropriate variational principle to derive the convected wave equation. When the duct walls are lined both energy densities must be modified to account for the wall energy density. This results in a new energy conservation equation which utilizes a modified definition of axial power and accounts for wall dissipation. Computations in specific cases demonstrate the validity of the modified acoustic energy relation.

  20. Direct numerical simulation of turbulence and heat transfer in a hexagonal shaped duct

    Science.gov (United States)

    Marin, Oana; Obabko, Aleks; Schlatter, Philipp

    2014-11-01

    Flows in hexagonal shapes frequently occur in nuclear reactor applications, and are also present in honeycomb-shaped settling chambers for e.g. wind tunnels. Whereas wall-bounded turbulence has been studied comprehensively in two-dimensional channels, and to a lesser degree also in square and rectangular ducts and triangles, only very limited data for hexagonal ducts is available, including resistance correlations and mean profiles. Here, we use resolved spectral-element simulations to compute velocity and temperature in fully-developed (periodic) hexagonal duct flow. The Reynolds number, based on the fixed flow rate and the hydraulic diameter, ranges between 2000 and 20000. The temperature assumes constant wall flux or constant wall temperature. First DNS results are focused on the mean characteristics such a head loss, Nusselt number, and critical Reynolds number for sustained turbulence. Profiles, both for mean and fluctuating quantities, are extracted and discussed in the context of square ducts and pipes. Comparisons to existing experiments, RANS and empirical correlations are supplied as well. The results show a complicated and fine-scale pattern of the in-plane secondary flow, which clearly affects the momentum and temperature distribution throughout the cross section.

  1. Study of natural convection heat transfer characteristics. (1) Influence of ventilation duct height

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo; Iwaki, Chikako; Ikeda, Tatsumi; Morooka, Shinichi; Ikeda, Hiroshi; Nakada, Kotaro; Masaki, Yoshikazu

    2008-01-01

    Natural cooling system has been investigated in waste storage. It is important to evaluate the flow by natural draft enough to removal the decay heat from the waste. In this study, we carried out the fundamental experiment of ventilation duct height effect for natural convection on vertical cylindrical heater in atmospheric air. The scale of test facility is about 4m height with single heater. The heating value is varied in the range of 33-110W, where Rayleigh number is over 10 10 . Natural convection flow rate were calculated by measured velocity with thermo anemometer in the inlet duct. The temperature of the cylindrical heater wall and fluid were measured with thermocouples. It was found that the heat transfer coefficient difference between long duct and short duct is small in this experiment. (author)

  2. Experimental and numerical studies of pressure drop in PbLi flows in a circular duct under non-uniform transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.-C., E-mail: lifch@hit.edu.cn; Sutevski, D.; Smolentsev, S.; Abdou, M.

    2013-11-15

    Highlights: • An indirect DP measurement approach for high-temperature LM MHD flow is developed. • Experiments and numerical simulations of PbLi MHD flow are performed. • Characteristics of DP in LM MHD flow under fringing magnetic field are studied. • Pressure distributions in LM MHD flow at entry and exit of magnet are different. -- Abstract: Experiments and three-dimensional (3D) numerical simulations are performed to investigate the magnetohydrodynamic (MHD) characteristics of liquid metal (LM) flows of molten lead-lithium (PbLi) eutectic alloy in an electrically conducting circular duct subjected to a transverse non-uniform (fringing) magnetic field. An indirect measurement approach for differential pressure in high temperature LM PbLi is first developed, and then detailed data on pressure drop in this PbLi MHD flow are measured. The obtained experimental results for the pressure distribution are in good agreement with numerical simulations. Using the numerical simulation results, the 3D effects caused by fringing magnetic field on the LM flow are illustrated via distributions for the axial pressure gradients and transverse pressure differences. It has been verified that a simple approach for estimation of pressure drop in LM MHD flow in a fringing magnetic field proposed by Miyazaki et al. [22] i.e., a simple integral of pressure gradient along the fringing field zone using a quasi-fully-developed flow assumption, is also applicable to the conditions of the present experiment providing the magnetic interaction parameter is large enough. Furthermore, for two different sections of the LM flow at the entry to and at the exit from the magnet, it is found that the pressure distributions in the duct cross sections in these two regions are different.

  3. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    Integer programming, network flow optimisation, passive optical network, ... This paper uses concepts from network flow optimisation to incorporate fibre duct shar ... [4] studied the survivable constrained ConFL problem and solved a number of.

  4. A Review of Double Common Bile Duct and Its Sequelae.

    Science.gov (United States)

    Kolli, Sindhura; Etienne, Denzil; Reddy, Madhavi; Shahzad, Ghulamullah

    2018-02-01

    A double or accessory common bile duct (ACBD) is a rare congenital anomaly. We report the case of a 60-year-old American Asian male, who was found to have a double or duplicated common bile duct after being admitted for evaluation of a pancreatic mass. A duplicated bile duct has the same mucosa histologically as a single bile duct. However, the opening of a duplicated bile duct lacks a sphincter allowing retrograde flow of gut contents which results in a higher probability of intraductal calculus formation. On rare occasions, it can predispose to liver abscesses, pancreatitis, pancreatic cancer, gallbladder cancer, gastric cancer, and ampullary cancer depending on the location of the opening of the ACBD. We present an integrative review of the limited cases of ACBD with correlation to the current case and discussion regarding the aspects of diagnosis and management.

  5. Experimental study on the particles deposition in the sampling duct

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Charuau, J. [Institut de Protection et de Surete Nucleaire, Yvette (France)

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  6. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  7. 3-D numerical study of the effect of Reynolds number and baffle angle on heat transfer and pressure drop of turbulent flow of air through rectangular duct of very small height

    Directory of Open Access Journals (Sweden)

    Abhijit Paul

    2016-09-01

    Full Text Available Present article illustrates a computational study of three-dimensional steady state heat transfer and high turbulent flow characteristics through a rectangular duct with constant heat fluxed upper wall and single rectangular cross-sectioned baffle insertion at different angles. RNG k–ɛ model along with standard wall function based computations has been accomplished applying the finite volume method, and SIMPLE algorithm has been executed for solving the governing equations. For a Reynolds number, Re of 10,000 to 50,000, Prandtl Number, Pr of 0.707 and baffle angle, α of 30°, 60°, 90°, 120°, 150°, computational studies are executed, centred onto the hydraulic diameter, Dh, test section and hydrodynamic entry length of the duct. Flow field has been solved using Ansys Fluent 14.0 software. Study exposes that baffled rectangular duct has a higher average Nusselt number, Nu and Darcy friction factor, f compared to a smooth rectangular duct. Nu as well as f are found to be maximum at 90° baffle angle. Results illustrate that both α and Re play a significant role in heat transfer as well as flow characteristics and also effects TEF. The correctness of the results attained in this study is corroborated by comparing the results with those existing in the literature for smooth rectangular duct within a precision of ±2% for f and ±4% for Nu.

  8. Transmission of wave energy in curved ducts

    Science.gov (United States)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  9. Numerical modeling of first experiments on PbLi MHD flows in a rectangular duct with foam-based SiC flow channel insert

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)

    2016-10-15

    Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical

  10. Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

    Science.gov (United States)

    Silverstein, Abe

    1939-01-01

    Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.

  11. Bile Duct Exploration

    Science.gov (United States)

    ... Home / Health Library / Diagnostics & Testing / Bile Duct Exploration Bile Duct Exploration Common bile duct exploration is a ... Test Details Results and Follow-Up What is bile, and what is bile duct exploration? Bile is ...

  12. Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field

    International Nuclear Information System (INIS)

    Zhang, Xuan; Zikanov, Oleg

    2017-01-01

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • Poloidal magnetic field suppresses turbulence at high Hartmann number. • Flow structure is dominated by large-scale counter-rotation vortices. • Effective heat transfer is maintained by surviving convection structures. - Abstract: We explore the effect of poloidal magnetic field on the thermal convection flow in a toroidal duct of a generic liquid metal blanket. Non-uniform strong heating (the Grashof number up to 10 11 ) arising from the interaction of high-speed neutrons with the liquid breeder, and strong magnetic field (the Hartmann number up to 10 4 ) corresponding to the realistic reactor conditions are considered. The study continues our earlier work , where the problem was solved for a purely toroidal magnetic field and the convection was found to result in two-dimensional turbulence and strong mixing within the duct. Here, we find that the poloidal component of the magnetic field suppresses turbulence, reduces the flow's kinetic energy and high-amplitude temperature fluctuations, and, at high values of Hartmann number, leads to a steady-state flow. At the same time, the intense mixing by the surviving convection structures remains able to maintain effective heat transfer between the liquid metal and the walls.

  13. Flow structure and heat transfer in a square duct fitted with dual/quadruple twisted-tapes: Influence of tape configuration

    International Nuclear Information System (INIS)

    Eiamsa-ard, S.; Changcharoen, W.

    2015-01-01

    Numerical predictions reported of thermohydraulic characteristics of square ducts equipped with dual and quadruple twisted tapes (DTs and QTs) with different configurations. The studied cases include (1) dual co-tapes (Co-DTs), (2) dual counter-tapes (C-DTs), (3) diagonal dual counter-tapes (C-DDTs), (4) diagonal dual co-tapes (Co-DDTs), (5) quadruple co-tapes (Co-QTs), (6) quadruple counter tapes (CC-QTs) and (7) quadruple counter-tapes (PC-QTs). The results of these cases are compared with those of a smooth duct (a duct without tape insert) and also the one with a single tape (ST). The prediction involves using the RNG k-ε turbulent model under constant wall heat flux condition in the turbulent flow regime for the Reynolds number ranging from 6000 to 14000. The prediction indicates that thermohydraulic characteristics in ducts with twisted tape are strongly dependent on number and configuration of tapes. However, the influence of tape number is more significant than that of tape configuration. Heat transfer and friction increase as tape number increases. QTs offer superior heat transfer to DTs but their thermal performance factors are lower. For the tape inserts determined, DTs with diagonal configuration (Co-DDTs and C-DDTs) is the best design as the tapes offer the best thermal performance. The highest thermal performance factors given by Co-DTs, Co-DDTs, C-DTs, C-DDTs, Co-QTs, PC-QTs and CC-QTs, are around 1.21, 1.35, 1.25, 1.38, 1.08, 1.18, and 1.22, respectively

  14. The influence of streamwise vortices on turbulent heat transfer in rectangular ducts with various aspect ratios

    International Nuclear Information System (INIS)

    Choi, Hang Seok; Park, Tae Seon

    2013-01-01

    Highlights: ► With changing aspect ratio, the effect of secondary flows on the turbulent heat transfer is scrutinized by a LES. ► The conditional sampling technique of instantaneous near-wall streamwise vortices is developed. ► Clockwise and counter-clockwise rotating streamwise vortices are sampled and discussed with the wall heat transfer. ► The hot-sweep motions of CW and CCW vortices clearly appear with increasing aspect ratio. -- Abstract: The effect of aspect ratio of rectangular duct on the turbulent flow and heat transfer is very important for its engineering applications. But the turbulent thermal fields have not been fundamentally scrutinized in spite of its engineering significance especially for cooling device. Hence, in the present study, large eddy simulation is applied to the turbulent flow and heat transfer in rectangular ducts with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of wall Nusselt number are investigated for each rectangular duct. Especially, to scrutinize near-wall streamwise vortices, a conditional sampling technique is developed and adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated. From the results, the time-averaged secondary flow caused by instantaneous vortical motions has a great effect on the heat and momentum transport of the flow in the rectangular ducts. Hence, the wall Nusselt number is enhanced near the downwash flow region of the secondary flow. However, with increasing the aspect ratio, the effects of the hot-sweep flow of the clockwise and counter-clockwise rotating vortices become equally dominant near the wall normal bisector of the ducts. During time averaging process, these two counter-rotating vortices are canceled out each other diminishing a secondary flow but they still enhance the

  15. Propagation of the initial value perturbation in a cylindrical lined duct carrying a gas flow

    Directory of Open Access Journals (Sweden)

    Agneta M. BALINT

    2013-03-01

    Full Text Available For the homogeneous Euler equation linearized around a non-slipping mean flow andboundary conditions corresponding to the mass-spring-damper impedance, smooth initial dataperturbations with compact support are considered. The propagation of this type of initial dataperturbations in a straight cylindrical lined duct is investigated. Such kind of investigations is missingin the existing literature. The mathematical tools are the Fourier transform with respect to the axialspatial variable and the Laplace transform with respect to the time variable. The functionalframework and sufficient conditions are researched that the so problem be well-posed in the sense ofHadamard and the Briggs-Bers stability criteria can be applied.

  16. Bundle duct interaction studies for fuel assemblies

    International Nuclear Information System (INIS)

    Hsia, H.T.S.; Kaplan, S.

    1981-06-01

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant

  17. Numerical Simulation of Turbulent Fluid Flow and Heat Transfer in a Ribbed Rotating Two-Pass Square Duct

    Directory of Open Access Journals (Sweden)

    Liou Tong-Miin

    2005-01-01

    Full Text Available The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line 90 ∘ ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS with a two-layer k − ϵ turbulence model was solved. The in-line 90 ∘ ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0 × 10 4 whereas the rotational number varied from 0 to 0.2 . Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.

  18. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Persson, P; Nilsson, L; Eriksson, O

    1963-06-15

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 < p < 37. 3 kg/cm{sup 2}; Inlet subcooling 56 < {delta}t{sub sub} < 212 deg C; Steam quality 0. 20 < x{sub BO} < 0.95; Heat Flux 50 < q/A < 515 W/cm{sup 2}; Mass velocity 100 < m'/F < 1890 kg/m{sup 2}s; Heated length 600 < L < 2500 mm; Duct diameter d = 10 mm. The results are presented in diagrams, where for a certain geometry, the burnout steam qualities, x{sub BO} , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than {+-} 5 per cent. In the ranges investigated, the observed steam quality at burnout, X{sub BO} generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm{sup 2}.

  19. Experimental and Numerical Investigation of Impinging Jet Flow in Square Ducts Intersecting at 90 Degrees

    International Nuclear Information System (INIS)

    David Corson; Peter Vassallo

    2003-01-01

    An experimental and numerical investigation has been conducted on flow through two square ducts with a 2:1 hydraulic diameter ratio joined at a right angle. Measurements of the velocity field were acquired using a laser Doppler velocimeter at various planar locations throughout the ducts at a nominal Reynolds number of 68,000. Pressure drop measurements were taken for 3 Reynolds numbers between 46,000 and 93,000. Computational fluid dynamics (CFD) analyses were performed using STAR-CD to determine how well the experimental data could be predicted using the k-(var e psilon), k-(var e psilon) RNG, k-(var e psilon)Chen, k-(var e psilon) quadratic, k-ω, and Spalart-Allmaras models. The results show that there are distinct differences in the CDF results. The standard k-(var e psilon) model overpredicted the loss coefficient by 4% and underpredicted the exit swirl magnitude by 43%. The best predictor of the swirl decay was found to be the k-ω model, which adequately followed the data throughout the entire geometry and underpredicted the exit swirl by 16%. The best overall model was found to be Spalart-Allmaras, which overpredicted the loss coefficient by 2% and underpredicted the exit swirl magnitude by 40%

  20. Ventilation and internal structure effects on naturally induced flows in a static aircraft wing

    International Nuclear Information System (INIS)

    Moore, Daithi; Newport, David; Egan, Vanessa; Lacarac, Vesna

    2012-01-01

    The ventilation performance within an aircraft wing leading edge is investigated for a number of enclosure and ventilation configurations. The natural convection regime present is found to be highly sensitive to enclosure conditions, particularly the introduction of a partition. The presence of a partition reduced the overall heat exhausted from the cavity by up to 60%. The optimum ventilation strategy is also changed from a forward biased vent orientation (found for the unpartitioned case), to one where both the rear and front vents within the enclosure had the same open area. Cylinder plume effects dominate within the enclosure and were the main driver of the convective regime, with steady-state enclosure conditions highly dependent upon cylinder placement and plume orientation. An externally heated enclosure with internal heat source, combined with ventilation and an internal structure produced a complex natural convection regime which is sensitive to enclosure conditions. Hence an adequate knowledge of such conditions is necessary in order to fully appreciate the convective regime. - Highlights: → Optimum ventilation strategy changed between unpartitioned and partitioned cases. → Flow path and plume orientation are important to consider when analysing ventilation. → Bleed duct placement significantly alters flow path and temperature distribution. → Enclosure partitioning reduced heat exhaustion by 60%.

  1. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    Science.gov (United States)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  2. Numerical simulation of internal flow in mixed-flow waterjet propulsion

    International Nuclear Information System (INIS)

    Wu, T T; Pan, Z Y; Zhang, D Q; Jia, Y Y

    2012-01-01

    In order to reveal the internal flow characteristic of a mixed-flow waterjet propulsion, a mixed-flow waterjet propulsion under different conditions was simulated based on multi-reference frame(MRF), the standard k − ε turbulent model and SIMPLEC algorithm. The relationship between pump performance instability and internal flow was obtained. The numerical results showed that characteristic instability occurred at 0.65-0.67Q BEP , the reason is that the backflow on the vaned diffuser hub-side blocks the downstream flow from the impeller. Therefore, the flow separates on the pressure surface of the impeller outlet and a strong vortex is generated, then the characteristic instability appeared due to the instability of internal flow. Backflow was found in diffuser passage at 0.65 Q BEP and 0.85 Q BEP , as flow rate decreases, the backflow region and velocity increases. Pressure fluctuation at diffuser inlet and diffuser passages was severe at at 0.65 Q BEP . According to the numerical simulation, the mixed-flow waterjet propulsion has characteristic instability at partial flow rate condition.

  3. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 2: Condenser duct and valve modelling.

    Science.gov (United States)

    Marchisio, Daniele L; Galan, Miquel; Barresi, Antonello A

    2018-05-05

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular in this part the duct connecting the chamber with the condenser, with its valves, is considered, while the chamber design and its effect on drying kinetics have been investigated in Part 1. Such an approach allows a much deeper process understanding and assessment of the critical aspects of lyophilisation. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating influence of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions. The role of the inlet and boundary conditions considered has been assessed, also by modelling the whole apparatus including chamber and condenser, and the influence of the duct diameter has been discussed; the results show a little dependence of the relationship between critical mass flux and chamber pressure on the duct size. Results concerning the fluid dynamics of a simple disk valve, a profiled butterfly valve and a mushroom valve installed in a medium size horizontal condenser are presented. Also in these cases the maximum allowable flow when sonic flow conditions are reached can be described by a correlation similar to that found valid for empty ducts; for the mushroom valve the parameters are dependent on the valve opening length. The possibility to use the equivalent length concept, and to extend the validity of the results obtained for empty ducts will be also discussed. Finally the presence of the inert gas modifies the conductance of the duct, reducing the maximum flow rate of water that can be removed through it before the flow is choked; this also requires a proper over-sizing of the duct (or duct-butterfly valve system). Copyright © 2018. Published by Elsevier B.V.

  4. MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts

    International Nuclear Information System (INIS)

    Sidorenkov, S.I.; Hua, T.Q.; Araseki, H.

    1994-01-01

    Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. Argonne National Laboratory and The Efremov Institute have jointly defined several benchmark problems for code validation. The problems, described in this paper, are based on two series of rectangular duct experiments conducted at ANL; one of the series is a joint ANL/Efremov experiment. The geometries consist of variation of aspect ratio and wall thickness (thus wall conductance ratio). The transverse magnetic fields are uniform and nonuniform in the axial direction

  5. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction systems ducts and air duct systems. 29.1103 Section 29.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct...

  6. Percutaneous rendezvous technique for the management of a bile duct injury.

    Science.gov (United States)

    Meek, James; Fletcher, Savannah; Crumley, Kristen; Culp, W C; Meek, Mary

    2018-02-01

    The rendezvous technique typically involves combined efforts of interventional radiology, endoscopy, and surgery. It can be done solely percutaneously, whereby the interventionalist gains desired access to one point in the body by approaching it from two different access sites. We present the case of a woman who underwent cholecystectomy complicated by a bile duct injury. A percutaneous rendezvous procedure enabled placement of an internal-external drain from the intrahepatic ducts through the biloma and distal common bile duct and into the duodenum. Thus, a percutaneous rendezvous technique is feasible for managing a bile duct injury when endoscopic retrograde cholangio-pancreatography or percutaneous transhepatic cholangiogram alone has been unsuccessful.

  7. Percutaneous rendezvous technique for the management of a bile duct injury

    Directory of Open Access Journals (Sweden)

    James Meek, DO

    2018-02-01

    Full Text Available The rendezvous technique typically involves combined efforts of interventional radiology, endoscopy, and surgery. It can be done solely percutaneously, whereby the interventionalist gains desired access to one point in the body by approaching it from two different access sites. We present the case of a woman who underwent cholecystectomy complicated by a bile duct injury. A percutaneous rendezvous procedure enabled placement of an internal-external drain from the intrahepatic ducts through the biloma and distal common bile duct and into the duodenum. Thus, a percutaneous rendezvous technique is feasible for managing a bile duct injury when endoscopic retrograde cholangio-pancreatography or percutaneous transhepatic cholangiogram alone has been unsuccessful.

  8. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Mathisen, R P; Eklind, O; Norman, B

    1964-01-15

    The hydrodynamic stability and the burnout conditions for flow of boiling water have been studied in a natural circulation loop in the pressure range from 10 to 70 atg. The test section was a round, duct of 20 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested the stability of the flow increases with increasing pressure, increasing throttling before the test section, but decreases with increasing inlet sub-cooling and increasing throttling after the test section. The measured thresholds of instability compared well with the analytical results by Jahnberg. For an inlet sub-cooling temperature of about 2 deg C the measured burnout steam qualities were low by a factor of about 1.3 compared to forced circulation data obtained with the same test section. At higher sub-cooling temperatures the discrepancy between forced and natural circulation data increased, so that at {delta}t{sub sub} = 16 deg C, the natural circulation data were low by a factor of about 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data.

  9. Thermal performance test of hot gas ducts of helium engineering demonstration loop (HENDEL)

    International Nuclear Information System (INIS)

    Hishida, Makoto; Kunitomi, Kazuhiko; Ioka, Ikuo; Umenishi, Koji; Kondo, Yasuo; Tanaka, Toshiyuki; Shimomura, Hiroaki

    1984-01-01

    A hot gas duct provided with internal thermal insulation is supposed to be used for an experimental very high-temperature gas-cooled reactor (VHTR) which has been developed by the Japan Atomic Energy Research Institute (JAERI). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of hot gas duct have been conducted. The present test was to investigate the thermal performance of the hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL) of JAERI. Uniform temperature and heat flux distributions at the surface of the duct were observed, the experimental correlation being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of VHTR hot gas duct was evaluated, and no hot spot was detected. These results would be very valuable for the design and development of VHTR. (author)

  10. The effects of imperfect insulator coatings on MHD and heat transfer in rectangular duct

    International Nuclear Information System (INIS)

    Ying, A.Y.; Gaizer, A.A.

    1994-01-01

    In self cooled liquid metal blankets, the use of an insulator coating to reduce the flow of the eddy current to the structure leads to a significant reduction in MHD pressure drop. Furthermore, this insulating layer alters the velocity structure by reducing the potential difference between the side wall and boundary layer. The questions which arise are: (1) How the imperfections in the insulator coating affect the velocity profiles and their consequent impacts on heat transfer performance?; and, (2) How much crack can lead to an unacceptable MHD pressure drop? The dynamics of the crack healing in an insulator coating duct is one of the important subjects requiring study. The purpose of this work is to present numerical simulations of fully developed MHD flow and developing heat transfer characteristics in imperfectly insulated ducts, and to quantify the influences of crack locations, sizes and resistivities on 2-D MHD pressure drops. Comparisons of finite element solutions of pressure drops in partially insulated ducts with analytical solutions obtained from a circuit analogy show excellent agreement. In addition, the remarkable side layer velocity profile observed in a laminar MHD flow of a conducting duct gradually diminishes as the resistance of the insulating layer increases. The average side wall Nusselt number drops by a factor of 2 as the duct becomes fully insulated

  11. Various Transport Phenomena and Modeling in a Methane Reformer Duct for PEMFCs

    International Nuclear Information System (INIS)

    Jinliang Yuan; Fuan Ren; Jinliang Yuan; Bengt Sunden

    2006-01-01

    There are various physical processes (such as mass, heat and momentum transport) integrated with catalytic chemical reactions in a methane steam reforming duct. It is often found that endothermic and exothermic reactions in the ducts are strongly coupled by heat transfer from adjacent catalytic combustion ducts. In this paper, a three-dimensional calculation method is developed to simulate and analyze steam reforming of methane, and the effects on various transport processes in a steam reforming duct. The reformer conditions such as mass balances associated with the reforming reactions and gas permeation to/from the porous catalyst layer are applied in the analysis. The predicted results are presented and discussed for a composite duct consisting of a porous catalyst reaction area, the gas flow duct and solid layers. Parametric studies are conducted and the results show that the variables, such as fuel reformer temperatures and catalyst loadings, have significant effects on the transport processes and reformer performance. (authors)

  12. Thermohydraulic analysis of smooth and finned annular ducts

    International Nuclear Information System (INIS)

    Braga, C.V.M.

    1987-01-01

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author) [pt

  13. Management of hilar bile duct carcinoma with high-dose radiotherapy and expandable metallic stent placement

    International Nuclear Information System (INIS)

    Saito, Hiroya; Takamura, Akio

    2000-01-01

    This article describes our experience with high-dose radiotherapy in combination with the placement of expandable metallic stents (EMS) in the management of hilar bile duct carcinoma. Between 1988 and 1999, 107 consecutive patients with hilar bile duct carcinoma were treated with EMS placement either alone or in combination with high-dose radiotherapy. External beam radiotherapy (EBRT) was indicated in 101 patients, and in 86 this was combined with intraluminal 192 Ir irradiation (ILRT, 59-98 Gy) EMS were placed after the completion of radiotherapy. The 1-, 2-, 3-, and 5-year actuarial survival rates for the radiotherapy group were 66.4%, 23.4%, 15.6%, 7.8%, respectively, and the 1- and 2-year actuarial survival rates for the nonradiotherapy group were 66.4% and 0%, respectively. The placement of EMS was useful for the early establishment of an internal bile passage in radically irradiated patients and the 1-, 2-, 3-, and 5-year actuarial patency rates for the radiotherapy group were 56.3%, 45.3%, 35.2%, and 23.4%, respectively, and the 1- and 2-year actuarial patency rates for the non radiotherapy group were 50.0% and 0% respectively. High-dose radiotherapy, consisting of ILRT and EBRT, appears to be feasible in the management of hilar bile duct carcinoma, and it offers a survival advantage for patients no suited for surgical resection. The placement of EMS assists the internal bile flow and lengthens survival after high-dose radiotherapy. (author)

  14. A numerical investigation of laminar forced convection in a solar collector with non-circular duct

    Directory of Open Access Journals (Sweden)

    Teleszewski Tomasz Janusz

    2017-01-01

    Full Text Available This paper presents a two-dimensional numerical study to investigate laminar flow in a flat plate solar collector with non-circular duct (regular polygonal, elliptical, and Cassini oval shape featuring forced convection with constant axial wall heat flux and constant peripheral wall temperature (H1 condition. Applying the velocity profile obtained for the duct laminar flow, the energy equation was solved exactly for the constant wall heat flux using the Boundary Element Method (BEM. Poiseuille and Nusselt numbers were obtained for flows having a different number of geometrical factors. The results are presented and discussed in the form of tables and graphs. The area goodness factor and volume goodness factor are calculated. The predicted correlations for Poiseuille and Nusselt numbers may be a very useful resource for the design and optimization of solar collectors with non-circular ducts.

  15. A numerical investigation of laminar forced convection in a solar collector with non-circular duct

    Science.gov (United States)

    Janusz Teleszewski, Tomasz

    2017-11-01

    This paper presents a two-dimensional numerical study to investigate laminar flow in a flat plate solar collector with non-circular duct (regular polygonal, elliptical, and Cassini oval shape) featuring forced convection with constant axial wall heat flux and constant peripheral wall temperature (H1 condition). Applying the velocity profile obtained for the duct laminar flow, the energy equation was solved exactly for the constant wall heat flux using the Boundary Element Method (BEM). Poiseuille and Nusselt numbers were obtained for flows having a different number of geometrical factors. The results are presented and discussed in the form of tables and graphs. The area goodness factor and volume goodness factor are calculated. The predicted correlations for Poiseuille and Nusselt numbers may be a very useful resource for the design and optimization of solar collectors with non-circular ducts.

  16. Status of the development of hot gas ducts for HTRs

    International Nuclear Information System (INIS)

    Stehle, H.; Klas, E.

    1984-01-01

    In the PNP nuclear process heat system the heat generated in the helium cooled core is transferred to the steam reformer and to the successive steam generator or to the intermediate heat exchanger by the primary helium via suitable hot gas ducts. The heat is carried over to the steam gasifier by the intermediate heat exchanger and a secondary helium loop. In both the primary and the secondary loop, the hot gas ducts are internally insulated by a ceramic fibre insulation to protect the support tube and the pressure housing from the high helium temperatures. A graphite hot gas liner will be used for the coaxial primary duct with an annular gap between support tube and pressure shell for the cold gas counterflow. A metallic hot gas liner will be installed in the secondary duct

  17. Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Yunpeng Ma

    2017-01-01

    Full Text Available A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method.

  18. Numerical eduction of active multi-port data for in-duct obstructions

    Science.gov (United States)

    Sack, Stefan; Shur, Michael; Åbom, Mats; Strelets, Michael; Travin, Andrey

    2017-12-01

    A numerical method for aeroacoustic source characterization of in-duct components at frequencies beyond the cut-on frequencies of several acoustic modes is presented. Assuming linearity and time invariance, any ducted component can be fully characterized using a network (multi-port) model including source strength and scattering. A two-step multi-source approach is applied to numerical data in order to educe the multi-port characteristics. First, a scale resolving compressible flow simulation, here the Improved Delayed Detached Eddy Simulation (IDDES), is run to compute the channel flow that also contains the acoustic sources. Second, a linear acoustic computation, here the Linearized Navier Stokes Equations (LNSE), around a mean flow is solved for different acoustic loads to determine the component's scattering. The work uncovers the high potential of two-step numerical multi-port eduction methods. Particularly, it is shown that the acoustic source power spectra can be accurately extracted from IDDES data and the total acoustic power prediction is very good. Furthermore, a good result in the scattering data obtained from a second computationally inexpensive LNSE computation is achieved. The approach is interesting when describing mid-size duct systems, for example ventilation systems in aircraft and buildings, with a moderate number of higher order modes propagating in the considered frequency range. Therefore, the increasing availability of compressible flow data opens a wide field of applications.

  19. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    Science.gov (United States)

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  20. Numerical simulation of forced convection in a duct subjected to microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Kuznetsov, A.V. [North Carolina State University, Department of Mechanical and Aerospace Engineering, Campus Box 7910, Raleigh, NC (United States); Sandeep, K.P. [North Carolina State University, Department of Food Science, Raleigh, NC (United States)

    2007-01-15

    In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell's equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell's equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system. (orig.)

  1. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  2. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

    2012-01-01

    Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

  3. Transcystic duct treatment of common bile duct stones

    International Nuclear Information System (INIS)

    Amberg, J.R.; Chun, G.

    1981-01-01

    Successful removal of 2 retained common bile duct stones following cholecystostomy is described. With the use of the steerable catheter and the wire basket, one stone was crushed and the second was extracted in retrograde fashion through the cystic duct and gallbladder. (orig.)

  4. Sound Radiation from a Supersonic Jet Passing Through a Partially Open Exhaust Duct

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    The radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet of 25.4 mm exit diameter flowing through a partially open rigid-walled duct with an upstream i-deflector has been studied experimentally. In the experiments, the nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane (NEP), the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 54 jet diameters above ground with the aid of acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters from the jet axis. Data on the jet acoustic field for the partially open duct were obtained and compared with those with a free jet and with a closed duct. The results suggest that for the partially open duct the overall sound pressure level (OASPL) decreases as the distance between the NEP and the duct inlet plane decreases, while the opposite trend is observed for the closed duct. It is also concluded that the observed peak frequency in the partially open duct increases above the free jet value as the angle from the duct axis is increased, and as the duct inlet plane becomes closer to the NEP.

  5. On the prediction of turbulent secondary flows

    Science.gov (United States)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  6. Internal and external axial corner flows

    Science.gov (United States)

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  7. Rare bile duct anomaly: B3 duct draining to gallbladder

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2016-01-01

    Full Text Available A 10-year-old girl presented with recurrent right upper abdominal pain and dyspepsia. Magnetic resonance cholangiopancreatography revealed a dilated common channel of intrahepatic bile duct of segment 3 (B3 and segment 4 (B4 drained into the gallbladder directly. The patient underwent laparoscopic cholecystectomy and Roux-en Y hepaticojejunostomy (B3-jejunostomy. Among the anatomical variability of the biliary system, the cholecystohepatic ducts are controversial in existence and incidence. We report a very rare variant of a cholecystohepatic duct in which the B3 duct drained into gallbladder directly and to the best of our knowledge this is the first report.

  8. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  9. Bile Duct Cancer (Cholangiocarcinoma)

    Science.gov (United States)

    ... Home > Types of Cancer > Bile Duct Cancer (Cholangiocarcinoma) Bile Duct Cancer (Cholangiocarcinoma) This is Cancer.Net’s Guide to Bile Duct Cancer (Cholangiocarcinoma). Use the menu below to ...

  10. Experimental and theoretical investigations on the dynamic response of EBR-II ducts under pressure pulse loading

    International Nuclear Information System (INIS)

    Chopra, P.S.; Srinivas, S.

    1975-01-01

    In order to assess the potential damage to hexagonal subassembly ducts (cans) that may result from rapid gas release from a failed element the EBR-II project has conducted experiments and analyses. Additional experimental and analytical investigations are now being conducted to assure fail-safety of the ducts. Fail-safety is defined as the ability of a duct to withstand pressure pulses from failed elements during all reactor conditions without damage to adjacent ducts or any other problems in fuel handling. The results of 93 EBR-II duct tests conducted primarily by Koenig have been reported previously. The results of empirical correlations of some of these tests to determine the influence of several variables on the pressure pulse experienced by a duct and on the duct deformation are presented. The variables include the type of gas contained in the simulated element (tube), the element and duct materials, the presence or absence of flow restrictors in the element, and the way gas was released. 8 references. (auth)

  11. Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system

    Science.gov (United States)

    Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.

    2017-11-01

    Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.

  12. Effect of discharge duct geometry on centrifugal fan performance and noise emission

    Science.gov (United States)

    Nelson, David A.; Butrymowicz, William; Thomas, Christopher

    2005-09-01

    Non-ideal inlet and discharge duct geometries can cause significant changes to both the aerodynamic performance (``fan curve'') and specific sound power emission of a fan. A proper understanding of actual installed performance, as well as a good estimate of the system backpressure curve, is critical to achieving flow and acoustic goals as well as other criteria such as power consumption, mass and volume. To this end a battery of ISO 10302 tests was performed on a blower assembly which supports the Advanced Animal Habitat, being developed by ORBITEC for deployment on the International Space Station. The blower assembly consists of (4) identical centrifugal fans that, amongst themselves and across two prototypes, incorporated several discharge geometries. The inlet geometries were identical in all cases. Thus by comparing the dimensionless pressure-flow and noise emission characteristics across the cases, significant insight into the nature and potential magnitude of these effects is gained.

  13. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between

  14. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-03-15

    The present report contains the results of the second phase of an experimental investigation concerning frictional pressure gradients for the flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 7.76 mm inner diameter. Data were obtained for pressures between 6 and 41 ata, steam qualities between 0 and 70 per cent, flow rates between 0.025 and 0.210 Kg/sec and surface heat flux between 30 and 91 W/cm. The results are in excellent agreement with our earlier data for flow in a 9.93 mm inner diameter ducts which were presented in report AE-69. From the measurements we conclude that in the range investigated the non dimensional pressure gradient ratio, {phi}{sup 2} is independent of mass flow rate, inlet sub-cooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use, {phi}{sup 2} = 1 + 2400 (x/p){sup 0.96} This equation correlates our data (more than 1000 points) with a discrepancy of less than {+-} 15 per cent.

  15. Modeling the flow in a 90 deg. rectangular duct using one Reynolds-stress and two eddy-viscosity models

    International Nuclear Information System (INIS)

    Yakinthos, K.; Vlahostergios, Z.; Goulas, A.

    2008-01-01

    A new effort to model the flow in a 90 deg. rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Reynolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Reynolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions. The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfactory results for the velocity distributions

  16. Numerical simulation of turbulent flow through a straight square duct using a near wall linear k – ε model.

    Directory of Open Access Journals (Sweden)

    Ahmed Rechia

    2007-09-01

    Full Text Available The aim of this work is to predict numerically the turbulent flow through a straight square duct using Reynolds Average Navier-Stokes equations (RANS by the widely used k – ε and a near wall turbulence k – ε − fμ models. To handle wall proximity and no-equilibrium effects, the first model is modified by incorporating damping functions fμ via the eddy viscosity relation. The predicted results for the streamwise, spanwise velocities and the Reynolds stress components are compared to those given by the k – ε model and by the direct numerical simulation (DNS data of Gavrilakis (J. Fluid Mech., 1992. In light of these results, the proposed k – ε − fμ model is found to be generally satisfactory for predicting the considered flow.

  17. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    Science.gov (United States)

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  18. Sodium steam generator within which are inlet and outlet ducts with pipe bundles in vessel

    International Nuclear Information System (INIS)

    1980-01-01

    The sodium steam generator with internal flow ducts for inlet and outlet to a vessel are provided as pipe bundles in the form of helically wound concentric layers terminating in inlet and outlet connections with chambers, characterised in that within the vessel, the pipe pieces which are connected to the pipe windings with the said vessel are arranged in substantially radially aligned rows so that each row measured in the circumferential direction at least on one side is at a spacing from the following row sufficiently large that between the rows or groups of rows an open sector is provided. (G.C.)

  19. Flow characteristics of curved ducts

    Directory of Open Access Journals (Sweden)

    Rudolf P.

    2007-10-01

    Full Text Available Curved channels are very often present in real hydraulic systems, e.g. curved diffusers of hydraulic turbines, S-shaped bulb turbines, fittings, etc. Curvature brings change of velocity profile, generation of vortices and production of hydraulic losses. Flow simulation using CFD techniques were performed to understand these phenomena. Cases ranging from single elbow to coupled elbows in shapes of U, S and spatial right angle position with circular cross-section were modeled for Re = 60000. Spatial development of the flow was studied and consequently it was deduced that minor losses are connected with the transformation of pressure energy into kinetic energy and vice versa. This transformation is a dissipative process and is reflected in the amount of the energy irreversibly lost. Least loss coefficient is connected with flow in U-shape elbows, biggest one with flow in Sshape elbows. Finally, the extent of the flow domain influenced by presence of curvature was examined. This isimportant for proper placement of mano- and flowmeters during experimental tests. Simulations were verified with experimental results presented in literature.

  20. RISKS AND CONTRADICTORY OF INTERNATIONAL CAPITAL FLOWS IN BANKING

    Directory of Open Access Journals (Sweden)

    V. Shevchenko

    2014-03-01

    Full Text Available The content of the international capital flows are studied, its contradictor influence on global and national processes. Some theoretical approaches on contradictory impact of capital flows. The major risks of international capital flows in banking sector are determined including financial, currency, assets value decrease, credit rating etc. The capital flows reversal flows are explained. The modern changes of international capital flows to banking sector of Ukraine are discovered.

  1. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  2. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Persson, P.; Nilsson, L.; Eriksson, O.

    1963-06-01

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 2 ; Inlet subcooling 56 sub BO 2 ; Mass velocity 100 2 s; Heated length 600 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than ± 5 per cent. In the ranges investigated, the observed steam quality at burnout, X BO generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm 2

  3. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  4. Dynamic response of cracked hexagonal subassembly ducts

    International Nuclear Information System (INIS)

    Glazik, J.L.; Petroski, H.J.

    1979-01-01

    The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals

  5. Experimental study of the self-evaporation of an adiabatic upward flow of water in a duct of uniform cross section

    International Nuclear Information System (INIS)

    Barois, Guy

    1969-01-01

    This research thesis aims at being a contribution to a better knowledge of the expansion process in a flow, by studying the formation of vapour in an upward adiabatic vertical flow. This self-evaporation occurs in a duct with a large cross section (10 x 10 cm) in order to make neglectable pressure losses due to friction on the wall with respect to other pressure losses. After a presentation of the characteristics of the experimental installation, the author describes the flow, outlines the influence of dissolved air on vapour bubble nucleation. He describes the method used to measure the difference between the liquid temperature and that it would have had in thermal equilibrium under a vapour pressure equal to the cross section static pressure. Different theoretical analytical studies proposed by other authors are presented, and the author proposes a model for the calculation of pressure loss associated with this self-evaporation [fr

  6. An investigation of heat transfer augmentation and friction characteristics in solar air heater duct with V-shaped wire as artificial roughness on absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2013-07-01

    An experimental investigation of heat transfer augmentation and friction characteristics of fully developed turbulent flow in a rectangular duct of solar air heater with absorber plate having V-shaped wire ribs as artificial roughness on its underside is carried out. The investigation covers wide range of different parameters of wire ribbed roughness: relative roughness pitch (p/e) from 10 to 40, relative roughness height (e/Dh) from 0.01 to 0.04 and angle of attack of flow from 20° to 90°. Duct aspect ratio (W/B) is kept 5 and Reynolds number (Re) is varied from 2,500 to 8,500. The heat transfer and friction factor values obtained are compared with those of smooth duct under similar flow conditions. Expressions are developed for Nusselt number and friction factor for the roughness geometry. Enhancement of Nusselt number and friction factor for roughened duct are 1.5 and 2.7 times of smooth duct respectively.

  7. Propagation of sound waves in ducts

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  8. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    Science.gov (United States)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  9. Duct-to-duct biliary reconstruction after radical resection of Bismuth IIIa hilar cholangiocarcinoma.

    Science.gov (United States)

    Wu, Wen-Guang; Gu, Jun; Dong, Ping; Lu, Jian-Hua; Li, Mao-Lan; Wu, Xiang-Song; Yang, Jia-Hua; Zhang, Lin; Ding, Qi-Chen; Weng, Hao; Ding, Qian; Liu, Ying-Bin

    2013-04-21

    At present, radical resection remains the only effective treatment for patients with hilar cholangiocarcinoma. The surgical approach for R0 resection of hilar cholangiocarcinoma is complex and diverse, but for the biliary reconstruction after resection, almost all surgeons use Roux-en-Y hepaticojejunostomy. A viable alternative to Roux-en-Y reconstruction after radical resection of hilar cholangiocarcinoma has not yet been proposed. We report a case of performing duct-to-duct biliary reconstruction after radical resection of Bismuth IIIa hilar cholangiocarcinoma. End-to-end anastomosis between the left hepatic duct and the distal common bile duct was used for the biliary reconstruction, and a single-layer continuous suture was performed along the bile duct using 5-0 prolene. The patient was discharged favorably without biliary fistula 2 wk later. Evidence for tumor recurrence was not found after an 18 mo follow-up. Performing bile duct end-to-end anastomosis in hilar cholangiocarcinoma can simplify the complex digestive tract reconstruction process.

  10. Squaring the Circle: Geometric Skewness and Symmetry Breaking for Passive Scalar Transport in Ducts and Pipes.

    Science.gov (United States)

    Aminian, Manuchehr; Bernardi, Francesca; Camassa, Roberto; McLaughlin, Richard M

    2015-10-09

    We study the role geometry plays in the emergence of asymmetries in diffusing passive scalars advected by pressure-driven flows in ducts and pipes of different aspect ratios. We uncover nonintuitive, multi-time-scale behavior gauged by a new statistic, which we term "geometric skewness" S^{G}, which measures instantaneously forming asymmetries at short times due to flow geometry. This signature distinguishes elliptical pipes of any aspect ratio, for which S^{G}=0, from rectangular ducts whose S^{G} is generically nonzero, and, interestingly, shows that a special duct of aspect ratio ≈0.53335 behaves like a circular pipe as its geometric skewness vanishes. Using a combination of exact solutions, novel short-time asymptotics, and Monte Carlo simulations, we establish the relevant time scales for plateaus and extrema in the evolution of the skewness and kurtosis for our class of geometries. For ducts limiting to channel geometries, we present new exact, single-series formulas for the first four moments on slices used to benchmark Monte Carlo simulations.

  11. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects.

    Science.gov (United States)

    Woda, Craig B; Miyawaki, Nobuyuki; Ramalakshmi, Santhanam; Ramkumar, Mohan; Rojas, Raul; Zavilowitz, Beth; Kleyman, Thomas R; Satlin, Lisa M

    2003-10-01

    High urinary flow rates stimulate K secretion in the fully differentiated but not neonatal or weanling rabbit cortical collecting duct (CCD). Both small-conductance secretory K and high-conductance Ca2+/stretch-activated maxi-K channels have been identified in the apical membrane of the mature CCD by patch-clamp analysis. We reported that flow-stimulated net K secretion in the adult rabbit CCD is 1) blocked by TEA and charybdotoxin, inhibitors of intermediate- and high-conductance (maxi-K) Ca2+-activated K channels, and 2) associated with increases in net Na absorption and intracellular Ca2+ concentration ([Ca2+]i). The present study examined whether the absence of flow-stimulated K secretion early in life is due to a 1) limited flow-induced rise in net Na absorption and/or [Ca2+]i and/or 2) paucity of apical maxi-K channels. An approximately sixfold increase in tubular fluid flow rate in CCDs isolated from 4-wk-old rabbits and microperfused in vitro led to an increase in net Na absorption and [Ca2+]i, similar in magnitude to the response observed in 6-wk-old tubules, but it failed to generate an increase in net K secretion. By 5 wk of age, there was a small, but significant, flow-stimulated rise in net K secretion that increased further by 6 wk of life. Luminal perfusion with iberiotoxin blocked the flow stimulation of net K secretion in the adult CCD, confirming the identity of the maxi-K channel in this response. Maxi-K channel alpha-subunit message was consistently detected in single CCDs from animals >/=4 wk of age by RT-PCR. Indirect immunofluorescence microscopy using antibodies directed against the alpha-subunit revealed apical labeling of intercalated cells in cryosections from animals >/=5 wk of age; principal cell labeling was generally intracellular and punctate. We speculate that the postnatal appearance of flow-dependent K secretion is determined by the transcriptional/translational regulation of expression of maxi-K channels. Furthermore, our studies

  12. Gas flow environmental and heat transfer nonrotating 3D program

    Science.gov (United States)

    Geil, T.; Steinhoff, J.

    1983-01-01

    A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.

  13. Reciprocity principle in duct acoustics

    Science.gov (United States)

    Cho, Y.-C.

    1979-01-01

    Various reciprocity relations in duct acoustics have been derived on the basis of the spatial reciprocity principle implied in Green's functions for linear waves. The derivation includes the reciprocity relations between mode conversion coefficients for reflection and transmission in nonuniform ducts, and the relation between the radiation of a mode from an arbitrarily terminated duct and the absorption of an externally incident plane wave by the duct. Such relations are well defined as long as the systems remain linear, regardless of acoustic properties of duct nonuniformities which cause the mode conversions.

  14. Endotherapy for bile leaks from isolated ducts after hepatic resection: A long awaited challenge.

    Science.gov (United States)

    Mutignani, Massimiliano; Forti, Edoardo; Dokas, Stefanos; Pugliese, Francesco; Fontana, Paola; Tringali, Alberto; Dioscoridi, Lorenzo

    2017-08-01

    Bile leakage is a common complication after hepatic resection [1-4] (Donadon et al., 2016; Dechene et al., 2014; Zimmitti et al., 2013; Yabe et al., 2016). Endotherapy is the treatment of choice for this complication except for bile leaks originating from isolated ducts; a condition resembling the post laparoscopic cholecystectomy Strasberg type C lesions [5-9] (Lillemo et al., 2000; Gupta and Chandra, 2011; Park et al., 2005; Colovic, 2009; Mutignani et al., 2002). In such cases, surgical repair is complex, often of uncertain result and with a high morbidity and mortality [1] (Donadon et al., 2016). On the other hand, percutaneous interventions (i.e. plugging the isolated duct with glue) are technically difficult and risky [7,8] (Park et al., 2005; Colovic, 2009). Endoscopy, thus far, was not considered amongst treatment options. That is because the isolated duct cannot be opacified during cholangiography and is not accessible with the usual endoscopic methods [5,6] (Lillemo et al., 2000; Gupta and Chandra, 2011). Considering the pathophysiology of this type of bile leaks, it is possible to change the pressure gradient endoscopically in order to direct bile flow from the isolated duct towards the duodenal lumen, thus creating an internal biliary fistula to restore bile flow. In order to achieve this goal, we have to perforate the biliary tree into the abdomen. The key element of endoscopic treatment is to create a direct connection between the abdominal cavity and the duodenal lumen by-passing the residual biliary tree with a new technique fully explained in the paper. Our case series (from 2011 to 2016) consists of 13 patients (eight male, five female, mean age 58 years) with fistulas from isolated ducts after various types of hepatic resection. We performed sphincterotomy and placed a biliary stent with the proximal edge inside the intra-abdominal bile collection in 11 patients (eight biliary fully-covered self-expandable metal stents; three plastic stents). In

  15. Percutaneously introduced bile duct prostheses as primary mease in obstructive jaundice

    International Nuclear Information System (INIS)

    Rupp, N.; Weiss, H.D.

    1980-01-01

    The simplest measure for overcoming obstructive jaundice, and the one with the least complications, is percutaneous transhepatic bile duct drainage, which we have carried out on 38 patients. We have abandoned the catheter technique with combined external and internal drainage and instead use primary implantation of a bile duct prosthesis by the transhepatic route in cases of obstructive jaundice. The results are better, and the procedure is easier for the patient. Our experience with twelve implants in nine patients is described. (orig.) [de

  16. Reference values of MRI measurements of the common bile duct and pancreatic duct in children

    Energy Technology Data Exchange (ETDEWEB)

    Gwal, Kriti; Bedoya, Maria A.; Patel, Neal; Darge, Kassa; Anupindi, Sudha A. [University of Pennsylvania Perelman School of Medicine, Department of Radiology, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Rambhatla, Siri J. [Beth Israel Medical Center, Department of Pediatrics, Newark, NJ (United States); Sreedharan, Ram R. [University of Pennsylvania, Departments of Gastroenterology, Hepatology and Nutrition, The Children' s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA (United States)

    2015-08-15

    Magnetic resonance imaging/cholangiopancreatography (MRI/MRCP) is now an essential imaging modality for the evaluation of biliary and pancreatic pathology in children, but there are no data depicting the normal diameters of the common bile duct (CBD) and pancreatic duct. Recognition of abnormal duct size is important and the increasing use of MRCP necessitates normal MRI measurements. To present normal MRI measurements for the common bile duct and pancreatic duct in children. In this retrospective study we searched all children ages birth to 10 years in our MR urography (MRU) database from 2006 until 2013. We excluded children with a history of hepatobiliary or pancreatic surgery. We stratified 204 children into five age groups and retrospectively measured the CBD and the pancreatic duct on 2-D axial and 3-D coronal T2-weighted sequences. We performed statistical analysis, using logistic and linear regressions to detect the age association of the visibility and size of the duct measurements. We used non-parametric tests to detect gender and imaging plane differences. Our study included 204 children, 106 (52%) boys and 98 (48%) girls, with a median age of 33 months (range 0-119 months). The children were distributed into five age groups. The common bile duct was visible in all children in all age groups. The pancreatic duct was significantly less visible in the youngest children, group 1 (54/67, 80.5%; P = 0.003) than in the oldest children, group 5 (22/22, 100%). In group 2 the pancreatic duct was seen in 19/21 (90.4%), in group 3 52/55 (94.5%), and in group 4 39/39 (100%). All duct measurements increased with age (P < 0.001; r-value > 0.423), and the incremental differences between ages were significant. The measurement variations between the axial and coronal planes were statistically significant (P < 0.001); however these differences were fractions of millimeters. For example, in group 1 the mean coronal measurement of the CBD was 2.1 mm and the axial

  17. Reference values of MRI measurements of the common bile duct and pancreatic duct in children

    International Nuclear Information System (INIS)

    Gwal, Kriti; Bedoya, Maria A.; Patel, Neal; Darge, Kassa; Anupindi, Sudha A.; Rambhatla, Siri J.; Sreedharan, Ram R.

    2015-01-01

    Magnetic resonance imaging/cholangiopancreatography (MRI/MRCP) is now an essential imaging modality for the evaluation of biliary and pancreatic pathology in children, but there are no data depicting the normal diameters of the common bile duct (CBD) and pancreatic duct. Recognition of abnormal duct size is important and the increasing use of MRCP necessitates normal MRI measurements. To present normal MRI measurements for the common bile duct and pancreatic duct in children. In this retrospective study we searched all children ages birth to 10 years in our MR urography (MRU) database from 2006 until 2013. We excluded children with a history of hepatobiliary or pancreatic surgery. We stratified 204 children into five age groups and retrospectively measured the CBD and the pancreatic duct on 2-D axial and 3-D coronal T2-weighted sequences. We performed statistical analysis, using logistic and linear regressions to detect the age association of the visibility and size of the duct measurements. We used non-parametric tests to detect gender and imaging plane differences. Our study included 204 children, 106 (52%) boys and 98 (48%) girls, with a median age of 33 months (range 0-119 months). The children were distributed into five age groups. The common bile duct was visible in all children in all age groups. The pancreatic duct was significantly less visible in the youngest children, group 1 (54/67, 80.5%; P = 0.003) than in the oldest children, group 5 (22/22, 100%). In group 2 the pancreatic duct was seen in 19/21 (90.4%), in group 3 52/55 (94.5%), and in group 4 39/39 (100%). All duct measurements increased with age (P < 0.001; r-value > 0.423), and the incremental differences between ages were significant. The measurement variations between the axial and coronal planes were statistically significant (P < 0.001); however these differences were fractions of millimeters. For example, in group 1 the mean coronal measurement of the CBD was 2.1 mm and the axial

  18. Pressure drop in T's in concentric ducts

    International Nuclear Information System (INIS)

    Shock, R.A.W.

    1983-02-01

    A set of experiments has been carried out to measure the pressure drop characteristics of single-phase flow in dividing and joining right-angled T's in a concentric ducting system. These have been compared with measured pressure drops in a simple round tube system. In most tests with the concentric system the number of velocity heads lost is either similar to, or more than, the value for the round tubes. (author)

  19. Bile duct stricture

    Science.gov (United States)

    ... duct, the tube that moves bile from the liver to the small intestine. Bile is a substance that helps with digestion. ... causes of this condition include: Cancer of the bile duct, liver or pancreas Damage and scarring due to a ...

  20. Blocked Tear Duct

    Science.gov (United States)

    ... of the nose (lacrimal sac). From there tears travel down a duct (the nasolacrimal duct) draining into your nose. Once in the nose, tears are reabsorbed. A blockage can occur at any point in the tear drainage system, from the puncta ...

  1. Slug-annular transition with particular reference to narrow rectangular ducts

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1978-01-01

    The transition from slug-flow to annular-flow in two-phase, gas-liquid mixtures is analyzed. A transition equation is derived which agrees well when compared with objective data determined from the disappearance of the low-void peak in the void fluctuation probability density in a rectangular duct. Application to other geometries is suggested and tabular recommendations given for determination of the drift flux coefficient, K, based on results in the literature

  2. The Determinants of International News Flow: A Network Analysis.

    Science.gov (United States)

    Kim, Kyungmo; Barnett, George A.

    1996-01-01

    Examines the structure of international news flow and its determinants. Reveals inequality of international news flow between core and periphery, with Western industrialized countries at the center. Finds that the news flow network is structured into eight geographic-linguistic groups. Indicates flow is influenced by a country's economic…

  3. Bifurcation and stability of forced convection in tightly coiled ducts: multiplicity

    International Nuclear Information System (INIS)

    Wang Liqiu; Pang, Ophelia; Cheng Lin

    2005-01-01

    A numerical study is made on the fully developed bifurcation structure of the forced convection in tightly coiled ducts of square cross-section. In addition to the examination of structural changes of three known solution branches found in loosely coiled ducts, three new solution branches are found. These new branches are isolated from the three known branches. The flows on these new branches are in a symmetric 4-cell state, a symmetric 8-cell state, an asymmetric 2-cell state, an asymmetric 5-cell state, an asymmetric 7-cell state, or an asymmetric 8-cell structure

  4. Measurements of Void Fractions for Flow of Boiling Heavy Water in a Vertical Round Duct

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Becker, K M

    1963-09-15

    The present report deals with measurements of void fractions for flow of boiling heavy water in a vertical round duct with 6.10 mm inner diameter and a heated length of 2500 mm. The following ranges of variables were studied and 149 void fraction measurements were obtained. Pressure 7 < p < 60 bars; Steam quality 0 < x < 0.38; Surface heat flux 38 < q/A < 120 W/cm{sup 2}; Mass velocity 650 < m'/F < 2050 kg/m/s; Void fraction 0. 24 < {alpha} < 0.88. The measurements were performed by means of a method, which is based on the ({gamma}, n) reaction, occurring when heavy water is irradiated by gamma rays. The results are presented in diagrams, where the void fractions and the slip ratios are plotted against the steam quality with the pressure as a parameter. The data have been correlated by curves, and the scatter of the data around the curves is less than {+-} 5 per cent.

  5. Ducted fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles J.

    2018-03-06

    Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas with low peak fuel to charge-gas ratios to enable minimal, or no, generation of soot and other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The duct can comprise of one or more holes along its length to enable charge-gas to be drawn into the bore, and further, the duct can cool the fuel and/or charge-gas prior to combustion.

  6. Performance Analysis of a Shallow Duct Flat Plate Solar Air Heater with and without Porous Media

    Directory of Open Access Journals (Sweden)

    Haroun A.K. Shahad

    2016-12-01

    Full Text Available In this study a flat plate solar air heater with a shallow duct is analyzed experimentally. The collector consists of a 4.5m long air duct with a (20×5cm cross-sectional area. The air duct consists of four channels so that the collector becomes more compact. The collector is studied under the weather conditions of Hilla city – Iraq with latitude and longitude equal 32.3° N and 44.25° E respectively and it is tilted by 45° with the horizontal plane. The effect of the air mass flow rate on the collector performance is also studied.The performance of the collector is analyzed with and without porous media stuffing. The measured parameters are the air and absorber temperatures, air speed and pressure drop. The temperatures are measured by means of type (K thermocouples as this type covers the temperature range of the studied system. The values of the temperature are displayed by temperature data logger devices. The air speed and pressure drop are measured by digital anemometer and manometer devices respectively. The results of the studied system show that as the air mass flow rate increases, the temperature of both the flowing air and the absorber decrease, whilst the efficiency of the collector increases. The results also show that the addition of the steel wool porous material inside the air duct increases the temperature of both the flowing air and the absorber, and by that increases the efficiency of the collector. The porous media also caused an increase in the pressure drop between the outlet air and the atmosphere. This pressure drop increased with the increase in the air mass flow rate

  7. Boundary element method for internal axisymmetric flow

    Directory of Open Access Journals (Sweden)

    Gokhman Alexander

    1999-01-01

    Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.

  8. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  9. Performance and internal flow characteristics of a cross-flow turbine by guide vane angle

    International Nuclear Information System (INIS)

    Chen, Z M; Choi, Y D

    2013-01-01

    This study attempts to investigate the performance and internal flow characteristics of a cross-flow turbine by guide vane angle. In order to improve the performance of a cross flow turbine, the paper presents a numerical investigation of the turbine with air supply and discusses the influence of variable guide vane angle on the internal flow. A newly developed air supply from air suction Hole is adopted. To investigate the performance and internal flow of the cross-flow turbine, the CFD software based on the two-phase flow model is utilized. The numerical grids are made in two-dimensional geometry in order to shorten the time of two-phase calculations. Then a series of CFD analysis has been conducted in the range of different guide vane angle. Moreover, local output power is divided at different stages and the effect of air layer in each stage is examined

  10. Thermal neutrons streaming in straight duct

    International Nuclear Information System (INIS)

    Jehouani, A.; Boulkheir, M.; Ichaoui, R.

    2000-01-01

    The neutron streaming in duct is due to two phenomena: a) direct propagation and b) reflection on duct wall. We have used the Monte Carlo method to evaluate the ratio of the reflected neutrons flux by the duct wall to the total flux at the exit of the duct for iron and aluminium. Ten neutrons energy groups are considered between 10 -5 eV and 10 eV. A Fortran program is developed to evaluate the neutron double differential albedo. It is shown that the two following approximations are largely justified: i) Three collisions in the duct wall are sufficient to attain the asymptotic limit of the multiscattered neutron double differential albedo ii) The points of entry and exit of the neutron in the duct wall may be considered the same for the multiscattered neutrons. For a punctual source at the mouth of the duct, we have determined the direct and the reflected part of the total thermal neutron flux at the exit of the duct for different lengths and different radius of the duct. For a punctual source, we have found that the major contribution to the total flux of neutrons at the exit is due to the neutron reflection by walls and the reflection contribution decreases when the neutron energy decreases. For a constant length of the duct, the reflected part decreases when the duct radius increases while for the disk shaped source we have found the opposite phenomena. The transmitted neutron flux distribution at the exit of the duct are determined for disk shaped source for different neutron energy and for different distance from the exit center. (author)

  11. Vitellointestinal Duct Anomalies in Infancy

    OpenAIRE

    Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep

    2016-01-01

    Background: Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5–9 of intrauterine life. Methods: This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Results: Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: paten...

  12. On modeling the sound propagation through a lined duct with a modified Ingard-Myers boundary condition

    Science.gov (United States)

    Yang, Cheng; Fang, Yi; Zhao, Chao; Zhang, Xin

    2018-06-01

    A duct acoustics model is an essential component of an impedance eduction technique and its computation cost determines the impedance measurement efficiency. In this paper, a model is developed for the sound propagation through a lined duct carrying a uniform mean flow. In contrast to many existing models, the interface between the liner and the duct field is defined with a modified Ingard-Myers boundary condition that takes account of the effect of the boundary layer above the liner. A mode-matching method is used to couple the unlined and lined duct segments for the model development. For the lined duct segment, the eigenvalue problem resulted from the modified boundary condition is solved by an integration scheme which, on the one hand, allows the lined duct modes to be computed in an efficient manner, and on the other hand, orders the modes automatically. The duct acoustics model developed from the solved lined duct modes is shown to converge more rapidly than the one developed from the rigid-walled duct modes. Validation against the experiment data in the literature shows that the proposed model is able to predict more accurately the liner performance measured by the two-source method. This, however, cannot be made by a duct acoustics model associated with the conventional Ingard-Myers boundary condition. The proposed model has the potential to be integrated into an impedance eduction technique for more reliable liner measurement.

  13. Are international fund flows pro- or counter-cyclical?

    NARCIS (Netherlands)

    Li, Suxiao; de Haan, Jakob; Scholtens, Bert; Yang, Haizhen

    2015-01-01

    We investigate whether international fund flows are pro-or counter-cyclical by employing a concordance index. International fund flows are investments in bond and equity markets by institutional investors, such as mutual funds, exchange traded funds, closed-end funds and hedge funds. We find that

  14. Extrahepatic bile duct carcinoma treated by intraluminal irradiation with iridium-192 wire

    International Nuclear Information System (INIS)

    Ikeda, Hiro; Kuroda, Tomosumi; Uchida, Hideo

    1980-01-01

    A 57-year-old male with obstructive jaundice was diagnosed extrahepatic bile duct carcinoma at bifurcation by percutaneous transhepatic cholangiography (PTC). He was treated 3,300 rad of external irradiation and then intraluminal irradiation using the Iridium-192 wire by two times with the aid of PTC internal drainage, each was given by the dose of 1,600 rad at 5 mm inside the tumor from the PTC-tube. He had been well for about 1 year and then died because of ascites and cachexia. Autopsy revealed only microscopic tumor cells remaining around the common duct below the cystic junction. It was confirmed that intraluminal irradiation using the Iridium-192 wire was potentially curable and easily applicable to the bile duct carcinoma. (author)

  15. Thermodilution-determined Internal Jugular Venous Flow

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Widmer, Mario; Hilty, Matthias P

    2017-01-01

    PURPOSE: Cerebral blood flow (CBF) increases ~20% during whole body exercise although a Kety-Schmidt-determined CBF is reported to remain stable; a discrepancy that could reflect evaluation of arterial vs. internal jugular venous (IJV) flow and/or that CBF is influenced by posture. Here we test...

  16. 2007 Estimated International Energy Flows

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  17. Eversion Bile Duct Anastomosis: A Safe Alternative for Bile Duct Size Discrepancy in Deceased Donor Liver Transplantation.

    Science.gov (United States)

    Leal-Leyte, Pilar; McKenna, Greg J; Ruiz, Richard M; Anthony, Tiffany L; Saracino, Giovanna; Giuliano, Testa; Klintmalm, Goran B; Kim, Peter Tw

    2018-04-10

    Introduction Bile duct size discrepancy in liver transplantation may increase the risk of biliary complications. The aim of this study was to evaluate the safety and outcomes of the eversion bile duct anastomosis technique in deceased donor liver transplantation (DDLT) with duct to duct anastomosis. Methods A total of 210 patients who received a DDLT with duct to duct anastomosis from 2012 to 2017 were divided into two groups: those who had eversion bile duct anastomosis (N=70) and standard bile duct anastomosis (N=140). Biliary complications rates were compared between the two groups. Results There was no difference in the cumulative incidence of biliary strictures (P=0.20) and leaks (P=0.17) between the two groups. The biliary complication rate in the eversion group was 14.3% and 11.4% in the standard anastomosis group. All the biliary complications in the eversion group were managed with endoscopic stenting. A severe size mismatch (≥3:1 ratio) was associated with a significantly higher incidence of biliary strictures (44.4%) compared to 2:1 ratio (8.2%), (P=0.002). Conclusion The use of the eversion technique is a safe alternative for bile duct discrepancy in deceased donor liver transplantation; however, severe bile duct size mismatch may be a risk factor for biliary strictures with such technique. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  18. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    Science.gov (United States)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  19. Should you get your heating ducts cleaned?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Canada Mortgage and Housing Corporation conducted research into duct cleaning during which time several houses were tested for hot air furnace duct performance before and after cleaning. Duct cleaning is a major industry which claims that cleaning of ducts will provide you with better indoor air quality, reduce household molds and allergens, get rid of house dust, result in more airflow and better delivery of warm air and reduce energy costs. This report does not substantiate those claims. Researchers found little or no discernible differences in the concentrations of house airborne particles or in duct airflows due to duct cleaning. This is because ducts are metal passages that cannot create dust. Most household dusts come from outdoors that has been tracked in or blows through windows and other openings. While duct cleaning may be justifiable personally, it does not change the quality of the air you breathe, nor will it significantly affect airflow or heating costs. Some filters effectively clean the air in the ducts but they do not create a dust-free environment because of the above-mentioned dust sources. The only time that duct cleaning may make sense is if you have water in your ducts that can result in mold growth, if you are moving into a newly constructed house to remove drywall dust, if your are having trouble with furnace airflow, or if you see an accumulation of debris in the return air ducts. It was emphasized that broadcast spraying of biocides within the duct system should not be performed.

  20. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

    Directory of Open Access Journals (Sweden)

    Zeinali Heris Saeed

    2011-01-01

    Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

  1. Internal flow measurement in transonic compressor by PIV technique

    Science.gov (United States)

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  2. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  3. Bile Duct Adenoma with Oncocytic Features

    Directory of Open Access Journals (Sweden)

    E. J. Johannesen

    2014-01-01

    Full Text Available Bile duct adenomas are benign bile duct proliferations usually encountered as an incidental finding. Oncocytic bile duct neoplasms are rare and the majority are malignant. A 61-year-old male with a diagnosis of colorectal adenocarcinoma was undergoing surgery when a small white nodule was discovered on the surface of the right lobe of his liver. This lesion was composed of cytologically bland cells arranged in tightly packed glands. These cells were immunopositive for cytokeratin 7, negative for Hep Par 1, contained mucin, and had a Ki67 proliferation index of 8%. The morphology, immunophenotype, presence of mucin, and normal appearing bile ducts, as well as the increased Ki67 proliferation rate, were consistent with a bile duct adenoma with oxyphilic (oncocytic change. Oncocytic tumors in the liver are rare; the first described in 1992. Only two bile duct adenomas with oncocytic change have been reported and neither of them had reported mucin production or the presence of normal appearing bile ducts within the lesion.

  4. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  5. Vacuum exhaust duct used for thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo; Kondo, Mitsuaki; Honda, Tsutomu.

    1990-01-01

    The present invention concerns a vacuum exhaust duct used for a thermonuclear device. A cylindrical metal liners is lined with a gap to the inside of a vacuum exhaust duct main body. Bellows are connected to both ends of the metal liners and the end of the bellows is welded to the vacuum exhaust duct main body. Futher, a heater is mounted to the metal liner on the side of the vacuum exhaust duct main body, and the metal liner is heated by the heater to conduct baking for the vacuum exhaust duct main body. Accordingly, since there is no requirement for elevating the temperature of the vacuum exhaust duct upon conducting baking, the vacuum exhaust duct scarcely suffers substantial deformation due to heat expansion. Further, there is also no substantial deformation for the bellows disposed between the outer circumference of the vacuum vessel and a portion of a vacuum exhaust duct, so that the durability of the bellows is greatly improved. (I.S.)

  6. Globalisation of water resources: International virtual water flows in relation to international crop trade

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Hung, P.Q.

    2005-01-01

    The water that is used in the production process of a commodity is called the ‘virtual water’ contained in the commodity. International trade of commodities brings along international flows of virtual water. The objective of this paper is to quantify the volumes of virtual water flows between

  7. Quadcopter thrust optimization with ducted-propeller

    Directory of Open Access Journals (Sweden)

    Kuantama Endrowednes

    2017-01-01

    Full Text Available In relation to quadcopter body frame model, propeller can be categorized into propeller with ducted and without ducted. This study present differences between those two using CFD (Computational Fluid Dynamics method. Both categories utilize two blade-propeller with diameter of 406 (mm. Propeller rotation generates acceleration per time unit on the volume of air. Based on the behavior of generated air velocity, ducted propeller can be modeled into three versions. The generated thrust and performance on each model were calculated to determine the best model. The use of ducted propeller increases the total weight of quadcopter and also total thrust. The influence of this modeling were analyzed in detail with variation of angular velocity propeller from 1000 (rpm to 9000 (rpm. Besides the distance between propeller tip and ducted barrier, the size of ducted is also an important part in thrust optimization and total weight minimization of quadcopter.

  8. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  9. Measuring Gravity in International Trade Flows

    Directory of Open Access Journals (Sweden)

    E. Young Song

    2004-12-01

    Full Text Available The purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of income levels of countries, and in trade of most manThe purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of

  10. The effect of wall geometry in particle-laden turbulent flow

    Science.gov (United States)

    Abdehkakha, Hoora; Iaccarino, Gianluca

    2016-11-01

    Particle-laden turbulent flow plays a significant role in various industrial applications, as turbulence alters the exchange of momentum and energy between particles and fluid flow. In wall-bounded flows, inhomogeneity in turbulent properties is the primary cause of turbophoresis that leads the particles toward the walls. Conversely, shear-induced lift force on the particles can become important if large scale vortical structures are present. The objective of this study is to understand the effects of geometry on fluid flows and consequently on particles transport and concentration. Direct numerical simulations combined with point particle Lagrangian tracking are performed for several geometries such as a pipe, channel, square duct, and squircle (rounded-corners duct). In non-circular ducts, anisotropic and inhomogeneous Reynolds stresses are the most influential phenomena that produce the secondary flows. It has been shown that these motions can have a significant impact on transporting momentum, vorticity, and energy from the core of the duct to the corners. The main focus of the present study is to explore the effects of near the wall structures and secondary flows on turbophoresis, lift, and particle concentration.

  11. Critical analysis of the condensation of water vapor at external surface of the duct

    Science.gov (United States)

    Kumar, Dileep; Memon, Rizwan Ahmed; Memon, Abdul Ghafoor; Ali, Intizar; Junejo, Awais

    2018-01-01

    In this paper, the effects of contraction of the insulation of the air duct of heating, ventilation, and air conditioning (HVAC) system is investigated. The compression of the insulation contracts it at joint, turn and other points of the duct. The energy loss and the condensation resulted from this contraction are also estimated. A mathematical model is developed to simulate the effects of this contraction on the heat gain, supply air temperature and external surface temperature of the duct. The simulation uses preliminary data obtained from an HVAC system installed in a pharmaceutical company while varying the operating conditions. The results reveal that insulation thickness should be kept greater than 30 mm and the volume flow rate of the selected air distribution system should be lower than 1.4m3/s to subside condensation on the external surface of the duct. Additionally, the optimum insulation thickness was determined by considering natural gas as an energy source and fiberglass as an insulation material. The optimum insulation thickness determined for different duct sizes varies from 28 to 45 mm, which is greater than the critical insulation thickness. Therefore, the chances of condensation on the external surface of the duct could be avoided at an optimum insulation thickness. Moreover, the effect of pressure loss coefficient of the duct fitting of air distribution system is estimated. The electricity consumption in air handling unit (AHU) decreases from 2.1 to 1.5 kW by decreasing the pressure loss coefficient from 1.5 to 0.5.

  12. Modified nasolacrimal duct stenting

    International Nuclear Information System (INIS)

    Tian Min; Jin Mei; Chen Huanjun; Li Yi

    2008-01-01

    Objective: Traditional nasolacrimal duct stenting possesses some shortcoming including difficulty of pulling ball head guide wire from the nasal cavity with turbinate hypertrophy and nasal septal deviation. The new method of nose-oral tube track establishment can overcome the forementioned and increase the successful rate. Methods: 5 F catheter and arterial sheath were modified to be nasolacrimal duct stent delivery device respectively. Antegrade dacryocystography was taken firstly to display the obstructed site and followed by the modified protocol of inserting the guide wire through nasolacrimal duct and nasal cavity, and establishing the stent delivery track for retrograde stent placement. Results: 5 epiphora patients with failure implantation by traditional method were all succeeded through the modified stenting (100%). During 6-mouth follow-up, no serious complications and reocclusion occurred. Conclusion: The establishment of eye-nose-mouth-nose of external nasal guide wire track can improve the successful rate of nasolacrimal duct stenting. (authors)

  13. The "flying" bile duct: avulsion of the common bile duct in a plane crash survivor.

    LENUS (Irish Health Repository)

    Mohan, H

    2012-02-01

    Blunt trauma is an unusual cause of extrahepatic bile duct injury. This is a case of a 51-year-old gentleman who sustained a significant seatbelt injury in a plane crash. Laparotomy, performed due to persistent abdominal pain, revealed that the common bile duct (CBD) was completely avulsed from the duodenum. Following insertion of drains and transfer to a hepatobiliary centre, the devascularised CBD was excised and replaced with a roux-en-y hepaticojejunostomy. Necrotic tissue was debrided from the pancreatic head. A persistent bile leak developed from the sub-hepatic drain. Repeat laparotomy revealed a bile leak from small ducts on the liver surface. Ligation of the ducts and bioglue sealing of the area were successfully performed. Subsequent to this a pancreatic fistula developed from the main pancreatic duct, which has since resolved. This unusual case illustrates the need for prompt recognition and early repair to optimise outcomes in traumatic CBD injury.

  14. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    Science.gov (United States)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  15. Duct having oscillatory side wall

    Science.gov (United States)

    Sprouse, Kenneth M.

    2018-04-03

    A pump system includes a particulate consolidator pump that has a pump outlet. A duct is coupled to the pump outlet. The duct has a wall that is coupled with an oscillator. The oscillator is operable to oscillate the wall at a controlled frequency. The controlled frequency is selected with respect to breaking static bridging of particulate in the duct due, at least in part, to consolidation of the particulate from a downstream check valve.

  16. The correlation between the dilated extent of bile duct and gallbladder and low bile duct obstructive jaundice diseases

    International Nuclear Information System (INIS)

    Wang Zhongqiu; Lu Guangming; Li Jieshou; Li Weiqin

    2005-01-01

    Objective: To evaluate the diagnostic value about the dilated extent of bile duct and gallbladder in low biliary obstructive diseases. Methods: CT and ERCP findings of 105 patients with low biliary obstructive disease were retrospectively analyzed. The dilated extent of intrahepatic and extra- hepatic bile duct and gallbladder were classified into seven types: Type I: severe dilatation of intrahepatic and extrahepatic bile duct and gallbladder; Type II: severe dilatation of extrahepatic bile duct and gallbladder and slight dilated intrahapetic bile duct; Type III: severe dilatation of intrahepatic and extrahepatic bile duct without or slight dilatation of gallbladder; Type IV: severe extrahepatic bile duct dilatation without or slight dilatation of intrahepatic bile duct and gallbladder; Type V: severe intrahepatic bile duct dilatation without or with slight dilatation of extrahepatic bile duct and gallbladder; Type VI: severe gallbladder dilatation without or with slight intrahepatic and extra- hepatic bile duct dilatation; Type VII: without or with slight dilatation of intrahepatic and extrahepatic bile duct and gallbladder. The biliary system dilated extent of low biliary obstructive disease on CT and ERCP were compared with results of clinical, operation, and pathology. Results: Thirty-three cases of tumor and 72 cases of non-tumor were proved by clinical and operation in 105 patients with low biliary obstructive disease. In 33 tumor patients, 16 patients were identified as Type I, 10 patients Type II, 4 patients Type III, 1 patient Type IV, 2 patients Type VII. In 72 non-tumor patients, 4 patients were identified as Type I, 4 patients Type II, 9 patients Type III, 33 patients Type IV, 2 patients Type V, 11 patients Type VI, 19 patients Type VII. A large difference between I, II type and III-VII type biliary dilatation existed in tumor and non-tumor group (χ 2 =47.33, P<0.01). Conclusion:Low obstructive biliary diseases are closely correlated with the dilated

  17. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    Science.gov (United States)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  18. Long-term follow-up after choledochojejunostomy for bile duct stones with complex clearance of the bile duct

    NARCIS (Netherlands)

    Gouma, D. J.; Konsten, J.; Soeters, P. B.; Von Meyenfeldt, M.; Obertop, H.

    1989-01-01

    In this retrospective study, the long-term follow-up of patients undergoing choledochojejunostomy (Roux-en-Y) for bile duct stones with complex clearance of the bile duct is evaluated. Bile duct exploration and subsequent choledochojejunostomy (Roux-en-Y) was performed in 43 patients (median age 67

  19. A Plug-and-Play Duct System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States); Dickson, B. [IBACOS, Inc., Pittsburgh, PA (United States); Grisolia, A. [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Rapport, A. [IBACOS, Inc., Pittsburgh, PA (United States)

    2017-07-01

    This report describes an air distribution system composed of a series of uniformly-sized ducts that terminate in rooms throughout the home and return to a central manifold, similar in fashion to a “home-run” cross-linked polyethylene plumbing system. With a well-designed manifold, each duct receives an equal static pressure potential for airflow from the air handling unit, and the number of needed ducts for each room are simply attached to fittings located on the manifold; in this sense, the system is plug-and-play (PnP). As indicated, all ducts in the PnP system are identical in size and small enough to fit in the ceiling and wall cavities of a house (i.e., less than 3.5-in. outer diameter). These ducts are also more appropriately sized for the lower airflow requirements of modern, energy-efficient homes; therefore, the velocity of the air moving through the duct is between that of conventional duct systems (approximately 700 ft/min) and high-velocity systems (more than 1,500 ft/min) on the market today. The PnP duct system uses semi-rigid plastic pipes, which have a smooth inner wall and are straightforward to install correctly, resulting in a system that has minimal air leakage. However, plastic ducts are currently not accepted by code for use in residential buildings; therefore, the project team considered other duct materials for the system that are currently accepted by code, such as small-diameter, wirehelix, flexible ductwork.

  20. A Plug-and-Play Duct System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert [IBACOS, Inc., Pittsburgh, PA (United States); Dickson, Bruce [IBACOS, Inc., Pittsburgh, PA (United States); Grisolia, Anthony [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States); Rapport, Ari [IBACOS, Inc., Pittsburgh, PA (United States)

    2017-07-10

    This report describes an air distribution system composed of a series of uniformly-sized ducts that terminate in rooms throughout the home and return to a central manifold, similar in fashion to a “home-run” cross-linked polyethylene plumbing system. With a well-designed manifold, each duct receives an equal static pressure potential for airflow from the air handling unit, and the number of needed ducts for each room are simply attached to fittings located on the manifold; in this sense, the system is plug-and-play (PnP). As indicated, all ducts in the PnP system are identical in size and small enough to fit in the ceiling and wall cavities of a house (i.e., less than 3.5-in. outer diameter). These ducts are also more appropriately sized for the lower airflow requirements of modern, energy-efficient homes; therefore, the velocity of the air moving through the duct is between that of conventional duct systems (approximately 700 ft/min) and high-velocity systems (more than 1,500 ft/min) on the market today. The PnP duct system uses semi-rigid plastic pipes, which have a smooth inner wall and are straightforward to install correctly, resulting in a system that has minimal air leakage. However, plastic ducts are currently not accepted by code for use in residential buildings; therefore, the project team considered other duct materials for the system that are currently accepted by code, such as small-diameter, wirehelix, flexible ductwork.

  1. SNM holdup assessment of Los Alamos exhaust ducts

    International Nuclear Information System (INIS)

    Marshall, R.S.

    1994-02-01

    Fissile material holdup in glovebox and fume hood exhaust ducting has been quantified for all Los Alamos duct systems. Gamma-based, nondestructive measurements were used to quantify holdup. The measurements were performed during three measurement campaigns. The first campaign, Phase I, provided foot-by-foot, semiquantitative measurement data on all ducting. These data were used to identify ducting that required more accurate (quantitative) measurement. Of the 280 duct systems receiving Phase I measurements, 262 indicated less than 50 g of fissile holdup and 19 indicated fissile holdup of 50 or more grams. Seven duct systems were measured in a second campaign, called Series 1, Phase II. Holdup estimates on these ducts ranged from 421 g of 235 U in a duct servicing a shut-down uranium-machining facility to 39 g of 239 Pu in a duct servicing an active plutonium-processing facility. Measurements performed in the second campaign proved excessively laborious, so a third campaign was initiated that used more efficient instrumentation at some sacrifice in measurement quality. Holdup estimates for the 12 duct systems measured during this third campaign ranged from 70 g of 235 U in a duct servicing analytical laboratories to 1 g of 235 U and 1 g of 239 Pu in a duct carrying exhaust air to a remote filter building. These quantitative holdup estimates support the conclusion made at the completion of the Phase I measurements that only ducts servicing shut-down uranium operations contain about 400 g of fissile holdup. No ventilation ducts at Los Alamos contain sufficient fissile material holdup to present a criticality safety concern

  2. Fatigue life prediction of oil ducts under service loads

    Energy Technology Data Exchange (ETDEWEB)

    Meggiolaro, Marco A.; Castro, Jaime T.P. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2003-07-01

    A methodology to calculate the residual initiation and propagation lives of fatigue cracks in oil pipelines with corrosion-like defects is proposed and applied to predict the residual life of an old duct made of API 5L Gr. B steel, in service for more than 40 years. Since its inauguration, this pipeline has carried several heated products under variable temperatures and pressures. The calculated (nominal) service stresses are very high, due to thermal loads that induce significant bending in curved parts of the duct, with peaks close to the yield strength of the steel. The elastic- plastic fatigue damage at a notch or a corrosion pit root is calculated using the {epsilon}N method, and the effects of surface semi-elliptical cracks in its internal (or external) wall is studied considering appropriate stress intensity factor expressions and the actual service loads. In the presence of surface flaws associated to stress concentration factors of the order of three, a fatigue crack likely will initiate in the pipeline. However, if these surface cracks are small compared to the duct wall thickness, their predicted propagation rates are very low. (author)

  3. Nasopalatine duct cyst: A case report

    Directory of Open Access Journals (Sweden)

    Saikrishna Pasupuleti

    2015-01-01

    Full Text Available Nasopalatine duct cyst (NPDC is the most common non-odontogenic cyst of oral cavity. Clinically, Nasopalatine duct cyst manifests as an asymptomatic swelling of the palate or the upper lip. Radiographically, it is seen as a heart-shaped radiolucency and can be confused with periapical pathology. The aim of this article is to report a case of a nasopalatine duct cyst in a 36-year-old patient which was misinterpreted for a periapical cyst. Diagnosis of a Nasopalatine duct cyst can be given through clinical, radiographical, and histopathological examination.

  4. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2017-05-16

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  5. Radiologic imaging of bile duct changes by clonorchiasis

    International Nuclear Information System (INIS)

    Kim, Myung Joon; Yoo, Hyung Sik; Lee, Jong Tae; Jung, Soon Hee

    1988-01-01

    The changes of the bile ducts were reviewed retrospectively in 38 patients of clonorchiasis by ultrasonography and/or CT. Diagnosis was made in 13 patients by cholecystectomy and exploration of the common bile duct, another 2 patients by segmentectomy and wedge resection of the liver, and 23 patients by stool examination. 14 of 36 cases done ultrasonography showed the parallel channel sign, and small nodular echoes around the dilated bile ducts. And 3 cases showed the echoes of worm of clonorchis sinensis in the common bile duct. 22 of 36 cases showed the parallel channel signs only. All cases (11) done CT showed diffuse dilatation of the peripheral bile ducts. 5 of 11 cases showed ring or tubular contrast enhancement around the dilated bile ducts. In 2 cases of liver resection, the bile ducts showed adenomatous hyperplasia and severe periductal fibrosis. Proliferation of blood vessels and infiltration of inflammatory cells were also seen. So we consider that the increased echoes of the bile duct wall, small nodular echoes around the bile ducts were attributed to the bile duct dilatation, severe adenomatous hyperplasia and periductal fibrosis. The ring or tubular contrast enhancement of the dilated bile ducts seems to be caused by the marked periductal inflammation resulting in capillary proliferation and the periductal fibrosis.

  6. Radiologic imaging of bile duct changes by clonorchiasis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Joon; Yoo, Hyung Sik; Lee, Jong Tae; Jung, Soon Hee [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1988-10-15

    The changes of the bile ducts were reviewed retrospectively in 38 patients of clonorchiasis by ultrasonography and/or CT. Diagnosis was made in 13 patients by cholecystectomy and exploration of the common bile duct, another 2 patients by segmentectomy and wedge resection of the liver, and 23 patients by stool examination. 14 of 36 cases done ultrasonography showed the parallel channel sign, and small nodular echoes around the dilated bile ducts. And 3 cases showed the echoes of worm of clonorchis sinensis in the common bile duct. 22 of 36 cases showed the parallel channel signs only. All cases (11) done CT showed diffuse dilatation of the peripheral bile ducts. 5 of 11 cases showed ring or tubular contrast enhancement around the dilated bile ducts. In 2 cases of liver resection, the bile ducts showed adenomatous hyperplasia and severe periductal fibrosis. Proliferation of blood vessels and infiltration of inflammatory cells were also seen. So we consider that the increased echoes of the bile duct wall, small nodular echoes around the bile ducts were attributed to the bile duct dilatation, severe adenomatous hyperplasia and periductal fibrosis. The ring or tubular contrast enhancement of the dilated bile ducts seems to be caused by the marked periductal inflammation resulting in capillary proliferation and the periductal fibrosis.

  7. [Lung perfusion studies after percutaneous closure of patent ductus arteriosus using the Amplatzer Duct Occluder in children].

    Science.gov (United States)

    Parra-Bravo, José Rafael; Apolonio-Martínez, Adriana; Estrada-Loza, María de Jesús; Beirana-Palencia, Luisa Gracia; Ramírez-Portillo, César Iván

    2015-01-01

    The closure of patent ductus arteriosus with multiple devices has been associated with a reduction in lung perfusion. We evaluated the pulmonary perfusion after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder device using perfusion lung scan. Thirty patients underwent successful percutaneous patent ductus arteriosus occlusions using the Amplatzer Duct Occluder device were included in this study. Lung perfusion scans were preformed 6 months after the procedure. Peak flow velocities and protrusion of the device were analyzed by Doppler echocardiography. A left lung perfusionductus arteriosus and the minimum and maximum diameter/length of the ductus arteriosus ratio were statistically significant in patients with abnormalities of lung perfusion. It was observed protrusion the device in 6 patients with a higher maximum flow rate in the left pulmonary artery. The left lung perfusion may be compromised after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder. The increased flow velocity in the origin of the left pulmonary artery can be a poor indicator of reduction in pulmonary perfusion and can occur in the absence of protrusion of the device. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  8. Computation of high Reynolds number internal/external flows

    International Nuclear Information System (INIS)

    Cline, M.C.; Wilmoth, R.G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented

  9. Computation of high Reynolds number internal/external flows

    Science.gov (United States)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  10. A case of branch duct type intraductal papillary neoplasm of the bile duct treated by open surgery after 11 years of follow-up.

    Science.gov (United States)

    Fujita, Mitsuru; Wakui, Noritaka; Yamauchi, Yoshiya; Takeda, Yuki; Sato, Takemasa; Ueki, Nobuo; Otsuka, Takafumi; Oba, Nobuyuki; Nishinakagawa, Shuta; Minagawa, Masami; Takeda, Yasushi; Shiono, Saori; Kojima, Tatsuya

    2013-11-01

    The intraductal papillary neoplasm of the bile duct (IPNB) is a novel disease concept that was recently classified as a biliary cystic tumor by the revised World Health Organization classification. This is the case report of a 70-year-old female patient who experienced repeated episodes of obstructive jaundice and cholangitis since 2000, attributed to a mucus-producing hepatic tumor. Surgery was advised due to the repeated episodes; however, the patient refused. In May, 2011, the patient developed jaundice and fever and was treated with antibiotics. Since there was no improvement, the patient was admitted to the Tokyo Rosai Hospital. Abdominal computed tomography (CT) revealed a 50-mm cystic mass with an internal septum in the left hepatic lobe. Although the tumor size had remained almost unchanged compared to the initial CT scan performed in 2000, intra- and extra-hepatic bile duct dilation was more prominent on the second CT scan. Following admission, endoscopic retrograde cholangiopancreatography was performed and revealed an expanded papilla of Vater due to a mucous plug. A balloon catheter was inserted into the bile duct to remove the mucous plug, resulting in the drainage of copious amounts of mucus and infected bile. The patient finally consented to surgery and left hepatic lobectomy was performed. Consequently, the diagnosis of low-grade IPNB was made. Branch duct type IPNB, which is characterized by imaging appearance of a cystic mass and slow progression, is attracting increasing attention. In the present case, a cystic mass was identified in the left hepatic lobe, with no significant change in size after 11 years of follow-up, leading to the diagnosis of branch duct type IPNB. Considering the fact that IPNB is usually treated surgically at the time of diagnosis, the present case, due to the long-term follow-up, provides valuable insight into the natural history of the tumor.

  11. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert [IBACOS Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS Inc., Pittsburgh, PA (United States); Lange, Rich [IBACOS Inc., Pittsburgh, PA (United States)

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  12. Targeted transgastric drainage of isolated pancreatic duct segments to cure persistent pancreaticocutaneous fistulas from pancreatitis.

    Science.gov (United States)

    Boas, F Edward; Kadivar, Fatemeh; Kelly, Peter D; Drebin, Jeffrey A; Vollmer, Charles M; Shlansky-Goldberg, Richard D

    2015-02-01

    Chronic pancreaticocutaneous fistulas can be difficult to treat. This article presents a snare-target technique for draining a nondilated pancreatic duct into the stomach, diverting pancreatic fluid away from the pancreaticocutaneous fistula to allow it to heal. Internal or internal/external transgastric pancreatic duct or fistula drains were placed in six patients. After an average of 4 months of drainage, all six patients experienced resolution of the cutaneous fistula. Two patients developed a pseudocyst but no recurrent fistula after drain removal, and the other four patients had no pseudocyst or fistula after an average 27-month follow-up (range, 6-74 mo). Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  13. Comparison of the Standard of Air Leakage in Current Metal Duct Systems in the World

    Science.gov (United States)

    Di, Yuhui; Wang, Jiqian; Feng, Lu; Li, Xingwu; Hu, Chunlin; Shi, Junshe; Xu, Qingsong; Qiao, Leilei

    2018-01-01

    Based on the requirements of air leakage of metal ducts in Chinese design standards, technical measures and construction standards, this paper compares the development history, the classification of air pressure levels and the air tightness levels of air leakage standards of current Chinese and international metal ducts, sums up the differences, finds shortage by investigating the design and construction status and access to information, and makes recommendations, hoping to help the majority of engineering and technical personnel.

  14. Experimental study and modelling of the well-mixing length. Application to the representativeness of sampling points in duct

    International Nuclear Information System (INIS)

    Alengry, Jonathan

    2014-01-01

    Monitoring of gaseous releases from nuclear installations in the environment and air cleaning efficiency measurement are based on regular measurements of concentrations of contaminants in outlet chimneys and ventilation systems. The concentration distribution may be heterogeneous at the measuring point if the distance setting of the mixing is not sufficient. The question is about the set up of the measuring point in duct and the error compared to the homogeneous concentration in case of non-compliance with this distance. This study defines the so-called 'well mixing length' from laboratory experiments. The bench designed for these tests allowed to reproduce flows in long circular and rectangular ducts, each including a bend. An optical measurement technique has been developed, calibrated and used to measure the concentration distribution of a tracer injected in the flow. The experimental results in cylindrical duct have validated an analytical model based on the convection-diffusion equation of a tracer, and allowed to propose models of good mixing length and representativeness of sampling points. In rectangular duct, the acquired measures constitute a first database on the evolution of the homogenization of a tracer, in the perspective of numerical simulations exploring more realistic conditions for measurements in situ. (author) [fr

  15. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).

    Science.gov (United States)

    Ahmmed, K M Tanvir; Patience, Christian; Kietzig, Anne-Marie

    2016-10-12

    In this work, internal and external flows over superhydrophobic (SH) polytetrafluoroethylene (PTFE) were studied. The SH surface was fabricated by a one-step femtosecond laser micromachining process. The drag reduction ability of the textured surface was studied experimentally both in microscale and macroscale internal flows. The slip length, which indicates drag reduction in fluid flow, was determined in microscale fluid flow with a cone-and-plate rheometer, whereas a pressure channel setup was used for macroscale flow experiments. The textured PTFE surface reduced drag in both experiments yielding comparable slip lengths. Moreover, the experimentally obtained slip lengths correspond well to the result obtained applying a semianalytical model, which considers the solid fraction of the textured surface. In addition to the internal flow studies, we fabricated SH PTFE spheres to test their drag reduction abilities in an external flow experiment, where the terminal velocities of the falling spheres were measured. These experiments were conducted at three different Reynolds numbers in both viscous and inertial flow regimes with pure glycerol, a 30% glycerol solution, and water. Surprisingly, the drag on the SH spheres was higher than the measured drag on the non-SH spheres. We hypothesize that the increase in form drag outweighs the decrease in friction drag on the SH sphere. Thus, the overall drag increased. These experiments demonstrate that a superhydrophobic surface that reduces drag in internal flow might not reduce drag in external flow.

  16. ITER L 6 equatorial maintenance duct remote handling study

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The status and conclusions of a preliminary study of equatorial maintenance duct remote handling is reported. Due to issues with the original duct design a significant portion of the study had to be refocused on equatorial duct layout studies. The study gives an overview of some of the options for design of these ducts and the impact of the design on the equipment to work in the duct. To develop a remote handling concept for creating access through the ducts the following design tasks should be performed: define the operations sequences for equatorial maintenance duct opening and closing; review the remote handling requirements for equatorial maintenance duct opening and closing; design concept for door and pipe handling equipment and to propose preliminary procedures for material handling outsides the duct. 35 figs

  17. Spectral measurements of gamma radiation streaming through ducts

    International Nuclear Information System (INIS)

    Meenakshisundaram, P.K.; Bhatnagar, V.M.; Raghunath, V.M.; Gopinath, D.V.

    1979-01-01

    The paper presents the spectral measurements of gamma radiation streaming through multi-legged rectangular concrete ducts for cesium-137 and cobald-60 sources. Effect of lead lining the inner surface of the duct on the streaming radiation spectrum and optimization of liner thickness for minimum streaming radiation dose have been studied. For three-legged ducts, a comparative analysis of lead lining the entire duct as against lining any one or both the corners of the duct is reported. It is seen that lead lining any one of the corners would reduce the streaming radiation dose by a factor of 5 to 12. Lining both the corners which is nearly as effective as lining the entire duct reduces the dose by a factor of 16 to 60 depending on the soruce energy and duct dimensions. (orig.)

  18. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D.; McIlvaine , J.; Fonorow, K.; Martin, E.

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. This document illustrates guidelines for the efficient installation of interior duct systems in new housing. Interior ducts result from bringing the duct work inside a home's thermal and air barrier. Architects, designers, builders, and new home buyers should thoroughly investigate any opportunity for energy savings that is as easy to implement during construction, such as the opportunity to construct interior duct work. In addition to enhanced energy efficiency, interior ductwork results in other important advantages, such as improved indoor air quality, increased system durability and increased homeowner comfort. While the advantages of well-designed and constructed interior duct systems are recognized, the implementation of this approach has not gained a significant market acceptance. This guideline describes a variety of methods to create interior ducts including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. As communication of the intent of an interior duct system, and collaboration on its construction are paramount to success, this guideline details the critical design, planning, construction, inspection, and verification steps that must be taken. Involved in this process are individuals from the design team; sales/marketing team; and mechanical, insulation, plumbing, electrical, framing, drywall and solar contractors.

  19. A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach

    Directory of Open Access Journals (Sweden)

    Antonio J. Torregrosa

    2017-05-01

    Full Text Available Duct junctions play a major role in the operation and design of most piping systems. The objective of this paper is to establish the potential of a staggered mesh finite volume model as a way to improve the description of the effect of simple duct junctions on an otherwise one-dimensional flow system, such as the intake or exhaust of an internal combustion engine. Specific experiments have been performed in which different junctions have been characterized as a multi-port, and that have provided precise and reliable results on the propagation of pressure pulses across junctions. The results obtained have been compared to simulations performed with a staggered mesh finite volume method with different flux limiters and different meshes and, as a reference, have also been compared with the results of a more conventional pressure loss-based model. The results indicate that the staggered mesh finite volume model provides a closer description of wave dynamics, even if further work is needed to establish the optimal calculation settings.

  20. Financial Aspects of Bile Duct Injuries.

    Science.gov (United States)

    Palaz Alı, Ozgkıour; Ibis, Abdil Cem; Gurtekin, Basak

    2017-11-04

    BACKGROUND Major bile duct injury is the most worrisome complication of cholecystectomy. There is no detailed data about the incidence or treatment-related costs of bile duct injuries in Turkey. We aimed to determine prevalence and therapeutic costs of patients with major biliary duct injuries managed in our department, and further estimate a projection of these parameters at the national level. MATERIAL AND METHODS All patients admitted due to bile duct injury during cholecystectomy from 2011 to 2014 were included. Healthcare costs were calculated by summing of their all treatment-related costs in Istanbul Medical Faculty. We collected 2014-2015 data on number of patients diagnosed with cholecystitis in Turkey, the number of cholecystectomies, and the number of the interventions performed following these initial surgeries, which were obtained from the Turkish Social Security Institution. RESULTS Forty-nine patients were enrolled and bilioenteric diversion was performed in 39 patients: 20.4% of patients had Bismuth II, 38.8% had Bismuth III, and 40.8% had Bismuth IV biliary stricture. Comparison of stricture types with total costs, days of hospitalization, and outpatient clinic costs revealed significant differences. Mean total cost of corrective surgeries was 9199 TRY. We estimated that 1.5% to 2.4% of patients who underwent cholecystectomy in Turkey have bile duct injury (including 0.3% with major bile duct injury). CONCLUSIONS New preventive strategies should be used to avoid bile duct injuries, which have a huge financial impact on the national economy.

  1. Mathematics of flexible risers including pressure and internal flow affects

    Energy Technology Data Exchange (ETDEWEB)

    Seyed, F.B. (John Brown Engineers and Constructors Ltd., London (GB)); Patel, M.H. (University Coll., London (GB). Dept. of Mechanical Engineering)

    1992-01-01

    Derivations are presented for calculation of pressure and internal flow induced forces on flexible risers and other curved pipes using a mathematically rigorous approach. Approximate and exact methods are presented for calculation of pressure forces on straight and curved pipes in two dimensions. The mathematical identity of these equations with those for effective tension is illustrated. The force arising from the flow of an internal fluid of constant density is then calculated and combined with those for pressure forces in derivation of the catenary equations including pressure and internal flow terms. It is shown that internal flow contributes a new term to the expression for effective tension. These governing equations are then reduced for the specific cases of simple catenary, steep-S, lazy-S, steep-wave and lazy-wave risers. In each case, the solution method has been presented and the governing equilibrium and geometric compatability conditions cited. (author).

  2. Transcatheter interruption of large residual flow after device closure of "Type A" patent ductus arteriosus

    Directory of Open Access Journals (Sweden)

    Anuradha Sridhar

    2012-01-01

    Full Text Available We report a case of 3-year-old girl who had persistence of large residual flow following transcatheter closure of a 6 mm ′Type A′ patent ductus arteriosus using a 12 × 10 mm duct occluder. Angiography revealed a large left-to-right shunt coursing through and exiting around the implanted device. Near total abolition of the residual shunt was achieved by initial implantation of an embolization coil within the duct occluder and subsequently an Amplatzer duct occluder (ADO II adjacent to the duct occluder. This challenging case describes an additional technique of abolishing a large residual flow in and around a Nitinol duct occluder device.

  3. UNDERGROUND AIR DUCT TO CONTROL RISING MOISTURE IN HISTORIC BUILDINGS: IMPROVED DESIGN AND ITS DRYING EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Jiří Pazderka

    2017-10-01

    Full Text Available The underground air ducts along peripheral walls of a building are a remediation method, which principle is to enable an air flow along the moist building structure’s surface to allow a sufficient evaporation of moisture from the structure. This measure reduces the water transport (rising moisture into the higher parts of the wall where the high water content in masonry is undesirable. Presently, underground air ducts are designed as masonry structures, which durability in contact with ground moisture is limited. The article describes a new design of an underground air duct, which is based on specially shaped concrete blocks (without wet processes, because the blocks are completely precast. The air duct from concrete blocks is situated completely below the ground surface (exterior or below the floor (interior. Thanks to this, the system is invisible and does not disturb the authentic look of rehabilitated historic buildings. The efficiency of the air duct technical solution was verified by the results of tests (based on the measured moisture values conducted on a laboratory model. The experimental study showed that the moisture in the masonry equipped with the presented underground air duct had decreased considerably compared to the reference sample, namely by 43 % on average. The experimental study was numerically validated through numerical simulations performed with the program WUFI 2D.

  4. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    Science.gov (United States)

    Wiebe, David J.; Carlson, Andrew; Stoker, Kyle C.

    2017-10-31

    A transition duct system for routing a gas flow in a combustion turbine engine is provided. The transition duct system includes one or more converging flow joint inserts forming a trailing edge at an intersection between adjacent transition ducts. The converging flow joint insert may be contained within a converging flow joint insert receiver and may be disconnected from the transition duct bodies by which the converging flow joint insert is positioned. Being disconnected eliminates stress formation within the converging flow joint insert, thereby enhancing the life of the insert. The converging flow joint insert may be removable such that the insert can be replaced once worn beyond design limits.

  5. Vitellointestinal Duct Anomalies in Infancy.

    Science.gov (United States)

    Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep

    2016-01-01

    Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5-9 of intrauterine life. This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality.

  6. Cholangiographic evaluation of bile duct carcinoma

    International Nuclear Information System (INIS)

    Nichols, D.A.; MacCarty, R.L.; Gaffey, T.A.

    1983-01-01

    Cholangiograms and clinical histories of 82 patients with biopsy-proved bile duct carcinoma were reviewed. The carcinomas were classified according to morphologic findings and clinical outcome. Ulcerative colitis and antecedent inflammatory disease of the biliary tree, particularly primary sclerosing cholangitis, seem to predispose to the development of bile duct carcinoma. Focal stenotic lesions were the most common morphologic type (62/82). Polypoid carcinomas and diffuse sclerosing carcinomas were less common and of about equal frequency. Prognosis was best for patients with polypoid carcinomas and worst for those with diffuse sclerosing carcinomas. In 69 cases (84%), the tumors involved the intrahepatic or proximal extrahepatic ducts, makin curative resection difficult or impossible. Patients with carcinomas limited to the more distal extrahepatic bile ducts had a longer average survival and a higher probability of surgical cure. Proper management of patients with bile duct carcinoma requires a complete and accurate cholangiographic evaluation of the morphology, location, and extent of the disease

  7. Increased secretion of insulin and proliferation of islet β-cells in rats with mesenteric lymph duct ligation

    International Nuclear Information System (INIS)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki; Kawata, Sumio

    2012-01-01

    Highlights: ► Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. ► Proliferation of islet β-cells was upregulated in lymph duct-ligated rats. ► Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats. Methods: Male Sprague–Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of

  8. New concept of the buildup factor in bent ducts

    International Nuclear Information System (INIS)

    Faik Ouahab, Z.; Jehouani, A.; Groetz, J.-E.

    2011-01-01

    A major problem confronting the radiation shielding designer is the accurate determination of neutron streaming through various penetrations in walls, ducts and mazes. The previous studies on neutron transmission were performed through empty ducts. The aim of this work is to evaluate the neutron transmission probability through a filled bent duct and the proposition of a new concept of the buildup factor for neutrons in multilegged ducts. An angular biaising technique is used in the Monte Carlo simulations to accelerate the calculation convergence. Results are first compared with those obtained by the MCNPX code. For an empty bent duct, the neutron transmission is only due to the neutron reflection on the duct wall. For a filled duct, the major contribution is due to the scattering on the atoms filling the duct.

  9. Molecular Mechanisms of Bile Duct Development

    OpenAIRE

    Zong, Yiwei; Stanger, Ben Z.

    2010-01-01

    The mammalian biliary system, consisting of the intrahepatic and extrahepatic bile ducts, is responsible for transporting bile from the liver to the intestine. Bile duct dysfunction, as is seen in some congenital biliary diseases such as Alagille syndrome and biliary atresia, can lead to the accumulation of bile in the liver, preventing the excretion of detoxification products and ultimately leading to liver damage. Bile duct formation requires coordinated cell-cell interactions, resulting in...

  10. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  11. Unilateral Duplication Of Parotid Duct. A Rare Anatomical Variation

    Directory of Open Access Journals (Sweden)

    Humberto Ferreira Arquez

    2017-11-01

    Full Text Available Background: The paired parotid glands are the largest of the major salivary glands and produces mainly serous secretions. The secretion of this gland reaches the oral cavity through single parotid duct (Stensen’s duct. The parotid duct begins at the anterior border of the gland, crosses the masseter muscle, and then pierces the buccinator muscle to reach the mucosa lining the mouth at the level of the cheek. The purpose of this study is determine the morphologic features of the parotid duct and describe an anatomical variation until now unreported. Methods and Findings: A total of 17 cadavers were used for this study in the Morphology Laboratory at the University of Pamplona. In a cadaver were findings: The main parotid duct originated two conducts: Left superior parotid duct and Left inferior parotid duct, is observed the criss-cross of the ducts, and then perforated the buccinator muscle and entered the oral cavity at a double parotid papilla containing a double opening, separated from each other in 0,98 mm. In the remaining  33 parotid regions (97.06% the parotid duct is conformed to the classical descriptions given in anatomical textbooks. Conclusions: The parotid duct anatomy is important for duct endoscopy, lithotripsy, sialography and trans-ductal facial nerve stimulation in the early stage of facial palsy in some cases. The anatomical variations also has clinical importance for parotid gland surgery and facial cosmetic surgery. To keep in mind the parotid duct variation will reduce iatrogenic injury risks and improve diagnosis of parotid duct injury.

  12. Thoracic duct lymphography by subcutaneous contrast agent ...

    African Journals Online (AJOL)

    A second lymphography revealed a collateral thoracic duct that was not detected during the first lymphography. The collateral duct was ligated and chylothorax was resolved after the second surgery. The lymphography applied in this study was minimally-invasive and easily provided images of the thoracic duct in a dog with ...

  13. 6th International Workshop on Model Reduction in Reactive Flow

    Science.gov (United States)

    2018-01-01

    reduction in reacting flow . Registration DateRegistration TypeFirst Name Middle NameLast Name Affiliation US State /Canadian ProvinceState/Province/R gion...Report: 6th International Workshop on Model Reduction in Reactive Flow The views, opinions and/or findings contained in this report are those of the...Agreement Number: W911NF-17-1-0121 Organization: Princeton University Title: 6th International Workshop on Model Reduction in Reactive Flow Report Term

  14. Changes in cholangiocyte bile salt transporter expression and bile duct injury after orthotopic liver transplantation

    NARCIS (Netherlands)

    Hoekstra, H.; Op Den Dries, S.; Buis, C.I.; Khan, A.A.; Gouw, A.S.H.; Groothuis, G.M.M.; Lisman, T.; Porte, R.J.

    2010-01-01

    Background: Bile salts have been shown to contribute to bile duct injury after orthotopic liver transplantation (OLT). Cholangiocytes modify bile composition by reabsorption of bile salts (cholehepatic shunt) and contribute to bile flow by active secretion of sodium and water via cystic fibrosis

  15. Cystic Duct Closure by Sealing With Bipolar Electrocoagulation

    Science.gov (United States)

    Damgaard, B.; Jorgensen, L. N.; Larsen, S. S.; Kristiansen, V. B.

    2010-01-01

    Background: Cystic duct leakage after cholecystectomy is not uncommon and is a potentially serious complication. The aim of this study was to assess a bipolar sealing system (LigaSure®) for closure of the cystic duct. Methods: The records from consecutive laparoscopic cholecystectomies performed in 2 hospitals with closure of the cystic duct with LigaSure after informed consent were recorded and complications and morbidity registered. The records were compared with those of patients undergoing laparoscopic cholecystectomy with closure of the cystic duct with clips during the same period. Results: During the study period, 218 laparoscopic cholecystectomies were performed; 102 of these were performed with the LigaSure. One patient was excluded due to violation of the protocol. We experienced no cases of cystic duct leakage, but in one patient, bile leakage from the gallbladder bed was observed probably due to a small aberrant duct. Conclusion: The LigaSure system was safe and effective for closure and division of the cystic duct in laparoscopic cholecystectomy. PMID:20412641

  16. Self-retaining small-looped catheter for narrow bile ducts in high common bile duct obstruction

    International Nuclear Information System (INIS)

    Guenther, R.W.; Daehnert, W.

    1985-01-01

    A new self-retaining catheter was devised for percutaneous drainage of small bile ducts. The device allows safe external drainage without the risk of catheter dislocation even in high bile duct obstruction. The catheter is also suitable for percutaneous nephrostomy in non-dilated pyelocaliceal system. (orig.)

  17. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Energy Technology Data Exchange (ETDEWEB)

    Avital, E J; Salvatore, E [School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd London E1 4NS (United Kingdom); Munjiza, A [Civil Engineering, University of Split, Livanjska 2100 Split (Croatia); Suponitsky, V; Plant, D; Laberge, M, E-mail: e.avital@qmul.ac.uk [General Fusion Inc.,108-3680 Bonneville Place, Burnaby, BC V3N 4T5 (Canada)

    2017-08-15

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots. (paper)

  18. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Science.gov (United States)

    Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.

    2017-08-01

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.

  19. MHD considerations for poloidal-toroidal coolant ducts of self-cooled blankets

    International Nuclear Information System (INIS)

    Hua, T.Q.; Walker, J.S.

    1990-01-01

    Magnetohydrodynamic flows of liquid metals through sharp elbow ducts with rectangular cross sections and with thin conducting walls in the presence of strong uniform magnetic fields are examined. The geometries simulate the poloidaltoroidal coolant channels in fusion tokamak blankets. Analysis for obtaining the three-dimensional numerical solutions are described. Results for pressure drop, velocity profiles and flow distribution are predicted for the upcoming joint ANL/KfK sharp elbow experiment. Results from a parametric study using fusion relevant parameters to investigate the three-dimensional pressure drop are presented for possible applications to blanket designs. 10 refs., 9 refs

  20. Internal-external flow integration for a thin ejector-flapped wing section

    Science.gov (United States)

    Woolard, H. W.

    1979-01-01

    Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.

  1. Extrahepatic bile duct carcinoma treated by intraluminal irradiation with iridium-192 wire. Report of a case

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, H; Kuroda, T; Uchida, H [Osaka Univ. (Japan). Faculty of Medicine

    1980-08-01

    A 57-year-old male with obstructive jaundice was diagnosed extrahepatic bile duct carcinoma at bifurcation by percutaneous transhepatic cholangiography (PTC). He was treated 3,300 rad of external irradiation and then intraluminal irradiation using the Iridium-192 wire by two times with the aid of PTC internal drainage, each was given by the dose of 1,600 rad at 5 mm inside the tumor from the PTC-tube. He had been well for about 1 year and then died because of ascites and cachexia. Autopsy revealed only microscopic tumor cells remaining around the common duct below the cystic junction. It was confirmed that intraluminal irradiation using the Iridium-192 wire was potentially curable and easily applicable to the bile duct carcinoma.

  2. Persistent Mullerian Duct Syndrome with Transverse Testicular ...

    African Journals Online (AJOL)

    Eastham JA, McEvoy K, Sullivan R, Chandrasoma P. A case of simultaneous bilateral nonseminomatous testicular tumors in persistent müllerian duct syndrome. J Urol 1992;148:407-8. 8. Shinmura Y, Yokoi T, Tsutsui Y. A case of clear cell adenocarcinoma of the müllerian duct in persistent müllerian duct syndrome: The first ...

  3. Effects of no stiffness inside unbonded tendon ducts on the behavior of prestressd concrete containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hoon; Kwak, Hyo Gyong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jung, Rae Young; Noh, Sang Hoon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-06-15

    The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading.

  4. Effects of no stiffness inside unbonded tendon ducts on the behavior of prestressd concrete containment vessels

    International Nuclear Information System (INIS)

    Noh, Sang Hoon; Kwak, Hyo Gyong; Jung, Rae Young; Noh, Sang Hoon

    2016-01-01

    The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading

  5. A study of aerosol deposition by thermophoresis in cylindrical ducts

    International Nuclear Information System (INIS)

    Montassier, N.

    1990-01-01

    The scope of the study was aerosol deposition in cylindrical ducts, and the deposition due to thermophoresis particularly. The theoretical knowledge on this force and the basis of fluid mechanics are first recalled. An experimental study of thermophoretic deposition of particles in laminar flow was carried out in the particular case of uniform particle concentration and gas temperature at the inlet of the cooled tube. When the gas temperature was equilibrated with the wall temperature and thermophoretic particle deposition along the walls had ceased, the deposition efficiency approached a limit. Our experimental results showed that this limiting efficiency was independent on flow. Finally, for the laminar flow regime, a set of simple equations was developed in order to forecast the thermophoretic deposition of particles of any size along a cylindrical tube [fr

  6. Evaluation analysis of correlations for predicting the void fraction and slug velocity of slug flow in an inclined narrow rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoxing, E-mail: yanchaoxing0808@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Yan, Changqi, E-mail: Changqi_yan@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Shen, Yunhai [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041 (China); Sun, Licheng; Wang, Yang [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China)

    2014-07-01

    Highlights: • 46 void fraction correlations are evaluated on void fraction. • Evaluation of void fraction correlations on slug velocity is studied. • Effect of void fraction correlations on separated frictional pressure drop is studied. • Drift-flux type correlation shows best agreement with experimental data. • Evaluation is investigated in different flow regions. - Abstract: A visualized investigation was conducted on inclined upward air–water slug flow in a narrow rectangular duct with the cross section of 43 mm × 3.25 mm. The slug velocity and void fraction were obtained through image processing. 46 correlations for predicting void fraction, covering the types of slip ratio, Kβ, Lockhart and Martinelli, drift-flux and general were evaluated against the experimental data. In the experiment, four inclined conditions including 0°, 10°, 20° and 30° were investigated and the ranges of gas and liquid superficial velocity were 0.16–2.63 m/s and 0.12–3.59 m/s, respectively. The results indicate that the inclination has no significant influence on prediction error for a given correlation and the drift-flux type correlations are more competitive than the others in the prediction of slug velocity and void fraction. In addition, most of drift-flux type correlations are quite accurate in turbulent flow region, while they provide relative poor predictions in laminar flow region. As for the frictional pressure drop separated from the measured total pressure drop, the deviation arising from the calculation of the void fraction by different correlations is significant in laminar flow region, whereas is negligible in turbulent flow region.

  7. Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding

    International Nuclear Information System (INIS)

    Urban, W.T.; Seed, T.J.; Dudziak, D.J.

    1980-01-01

    A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results

  8. Idiopathic chylopericardium treated by percutaneous thoracic duct embolization after failed surgical thoracic duct ligation

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Malachi; Ayyagari, Raj R. [Yale School of Medicine, Yale New Haven Hospital, New Haven, CT (United States); Division of Interventional Radiology, Department of Radiology, 789 Howard Avenue, P.O. Box 208042, New Haven, CT (United States)

    2015-06-15

    Chylopericardium rarely occurs in pediatric patients, but when it does it is most often a result of lymphatic injury during cardiothoracic surgery. Primary idiopathic chylopericardium is especially rare, with few cases in the pediatric literature. We report a 10-year-old boy who presented with primary idiopathic chylopericardium after unsuccessful initial treatment with surgical lymphatic ligation and creation of a pericardial window. Following readmission to the hospital for a right-side chylothorax resulting from the effluent from the pericardial window, he had successful treatment by interventional radiology with percutaneous thoracic duct embolization. This case illustrates the utility of thoracic duct embolization as a less-invasive alternative to surgical thoracic duct ligation, or as a salvage procedure when surgical ligation fails. (orig.)

  9. Idiopathic chylopericardium treated by percutaneous thoracic duct embolization after failed surgical thoracic duct ligation

    International Nuclear Information System (INIS)

    Courtney, Malachi; Ayyagari, Raj R.

    2015-01-01

    Chylopericardium rarely occurs in pediatric patients, but when it does it is most often a result of lymphatic injury during cardiothoracic surgery. Primary idiopathic chylopericardium is especially rare, with few cases in the pediatric literature. We report a 10-year-old boy who presented with primary idiopathic chylopericardium after unsuccessful initial treatment with surgical lymphatic ligation and creation of a pericardial window. Following readmission to the hospital for a right-side chylothorax resulting from the effluent from the pericardial window, he had successful treatment by interventional radiology with percutaneous thoracic duct embolization. This case illustrates the utility of thoracic duct embolization as a less-invasive alternative to surgical thoracic duct ligation, or as a salvage procedure when surgical ligation fails. (orig.)

  10. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  11. An analytical solution to the heat transfer problem in thick-walled hunt flow

    International Nuclear Information System (INIS)

    Bluck, Michael J; Wolfendale, Michael J

    2017-01-01

    Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.

  12. Biological shield around the neutral beam injector ducts in the ITER conceptual design

    International Nuclear Information System (INIS)

    Maki, Koichi; Takatsu, Hideyuki; Satoh, Satoshi; Seki, Yasushi

    1994-01-01

    There are gaps between the toroidal field coils and neutral beam injector (NBI) duct wall for the thermal insulator in tokamak reactors such as ITER (International Thermonuclear Experimental Reactor). Neutrons stream through the duct, and some of them penetrate the wall and stream through the gaps. These neutrons activate the materials composing the duct wall, toroidal field coil (TFC) case and cryostat wall surfaces. The dose rate is enhanced just outside the cryostat around the ducts in the reactor room after reactor operation by activation. We investigated the gamma-ray dose rate just outside the cryostat after shutdown due to gamma-rays from activity induced by the neutrons streaming through the gaps. By evaluating the difference between the dose rate in models with and without gaps, we decided whether the thickness of the cryostat as biological shielding is sufficient or not. From these investigations, we recommend a cryostat design suitable for radiation shielding. Dose rates after shutdown at a point just outside the cryostat around the NBI ducts in the model with gaps are two orders larger than those without gaps. The value at this point is approximately 400 mrem h -1 (4 mSv h -1 ), which is two orders larger than the design value for workers to enter the reactor room. In order to reduce the dose rate after shutdown, a method of providing the shielding function of the cryostat is suggested. ((orig.))

  13. Aeroacoustics of rectangular T-junctions subject to combined grazing and bias flows - An experimental investigation

    Science.gov (United States)

    Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2015-03-01

    Scattering matrices are determined experimentally and used to study the low-amplitude interaction, between the acoustic and the hydrodynamic fields in a T-junction of rectangular ducts. In particular, combinations of grazing and bias flows are investigated in the study. It is observed that for all flow combinations, waves incident on the junction at the downstream side only are attenuated, while waves incident at the other branches may be amplified or attenuated, depending on the Strouhal number. When bias in-flow is introduced to a grazing flow, there is first an increase and then a decrease in both amplification and attenuation, as the bias in-flow Mach number is increased. Comparing with T-junctions of circular ducts, the interaction is stronger for rectangular duct junctions.

  14. Parotid Duct Repair with Intubation Tube: Technical Note

    Science.gov (United States)

    Öztürk, Muhammed Beşir; Barutca, Seda Asrufoğlu; Keskin, Elif Seda; Atik, Bekir

    2017-01-01

    The parotid duct can be damaged in traumatic injuries and surgical interventions. Early diagnosis and treatment of a duct injury is of great importance because complications such as sialocele and salivary gland fistula may develop if the duct is not surgically repaired. We think the cuff of an intubation tube is an ideal material in parotid duct repair, because of its technical characteristics, easiness of availability, and low-cost. In this paper, we described the use of the cuff cannula of an intubation tube for the diagnosis and treatment of parotid duct laceration, as a low-cost and easy to access material readily available in every operating room. PMID:28713751

  15. Dispersion properties of ducted whistlers, generated by lightning discharge

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2005-06-01

    Full Text Available Whistler-mode wave propagation in magnetospheric ducts of enhanced cold plasma density is studied. The case of the arbitrary ratio of the duct radius to the whistler wavelength is considered, where the ray-tracing method is not applicable. The set of duct eigenmodes and their spatial structure are analysed and dependencies of eigenmode propagation properties on the duct characteristics are studied. Special attention is paid to the analysis of the group delay time of one-hop propagation of the whistler wave packet along the duct. We found that, in contrast to the case of a wide duct, the group delay time in a rather narrow duct decreases as the eigenmode number increases. The results obtained are suggested for an explanation of some types of multi-component whistler signals.

  16. Internal wave structures in abyssal cataract flows

    Science.gov (United States)

    Makarenko, Nikolay; Liapidevskii, Valery; Morozov, Eugene; Tarakanov, Roman

    2014-05-01

    We discuss some theoretical approaches, experimental results and field data concerning wave phenomena in ocean near-bottom stratified flows. Such strong flows of cold water form everywhere in the Atlantic abyssal channels, and these currents play significant role in the global water exchange. Most interesting wave structures arise in a powerful cataract flows near orographic obstacles which disturb gravity currents by forced lee waves, attached hydraulic jumps, mixing layers etc. All these effects were observed by the authors in the Romanche and Chain fracture zones of Atlantic Ocean during recent cruises of the R/V Akademik Ioffe and R/V Akademik Sergei Vavilov (Morozov et al., Dokl. Earth Sci., 2012, 446(2)). In a general way, deep-water cataract flows down the slope are similar to the stratified flows examined in laboratory experiments. Strong mixing in the sill region leads to the splitting of the gravity current into the layers having the fluids with different densities. Another peculiarity is the presence of critical layers in shear flows sustained over the sill. In the case under consideration, this critical level separates the flow of near-bottom cold water from opposite overflow. In accordance with known theoretical models and laboratory measurements, the critical layer can absorb and reflect internal waves generated by the topography, so the upward propagation of these perturbations is blocked from above. High velocity gradients were registered downstream in the vicinity of cataract and it indicates the existence of developed wave structures beyond the sill formed by intense internal waves. This work was supported by RFBR (grants No 12-01-00671-a, 12-08-10001-k and 13-08-10001-k).

  17. Fluorescent Method for Observing Intravascular Bonghan Duct

    Directory of Open Access Journals (Sweden)

    Byung-Cheon Lee

    2005-12-01

    Full Text Available Observation of intra-vascular threadlike structures in the blood vessels of rats is reported with the images by differential interference contrast microscope, and fluorescence inverted microscope of the acridine-orange stained samples. The confocal microscope image and the hematoxylin-eosin staining revealed the distinctive pattern of nuclei distribution that clearly discerned the threadlike structure from fibrin, capillary, small venule, arteriole, or lymph vessel. Physiological function of the intra-vascular thread in connection with acupuncture is discussed. Especially, this threadlike duct can be a circulation path for herb-liquid flow, which may provide the scientific mechanism for therapeutic effect of herbal acupuncture.

  18. Solitary intrahepatic bile-duct cyst presenting with Jaundice

    International Nuclear Information System (INIS)

    Park, Jeong Mi; Chun, Ki Sung; Ha, Hyun Kwon; Shinn, Kyung Sub; Bahk, Yong Whee; Kim, Jun Gi

    1989-01-01

    Caroli's disease is an uncommon condition, and characterized by congenital segmental saccular dilatation of intrahepatic bile ducts. A case of Caroli's disease, manifested by only a large communicating cystic dilatation of left intrahepatic bile duct and causing extrinsic pressure over the extrahepatic bile duct, is presented. The patient was 43-year-old housewife, hospitalized because of abdominal distension and severe jaundice. To relieve jaundice and alleviate surgical intervention, percutaneous drainage of the bile-duct cyst preceded surgery

  19. Cavitation and multiphase flow forum - 1985

    International Nuclear Information System (INIS)

    Hoyt, J.W.; Furuya, O.

    1985-01-01

    This book presents the papers given at a conference on fluid flow. Topics considered at the conference included cavitation inception, bubble growth, cavitation noise, holography, axial flow pumps, vortices, cavitation erosion, two-phase flow in nozzles, coal slurry valves, hopper flows of granular materials, helium bubble transport in a closed vertical duct, and a numerical model for flow in a venturi scrubber

  20. Bile Duct Anastomosis Supplied With Biodegradable Stent in Liver Transplantation: The Initial Experience.

    Science.gov (United States)

    Janousek, L; Maly, S; Oliverius, M; Kocik, M; Kucera, M; Fronek, J

    2016-12-01

    The most common biliary complications after orthotopic liver transplantation are bile leaks, anastomotic and intrahepatic strictures, stones, and ampullary dysfunction. These complications can occur in up to 10% to 30% of liver transplant recipients. Leaks occur early in the posttransplant period; the stricture formation typically graduates over time. Ten patients underwent transplantation in our preliminary study: 5 were randomized to the group with stent placement and 5 to the control group. We investigated the role of an absorbable biliary stent with the goal of proving patency of duct-to-duct biliary anastomosis. The stents are made of machine-knitted polydioxanone monofilaments. Our initial results show that duct-to-duct biliary reconstruction using an absorbable internal stent had good patency in all 5 patients. There were no signs of biliary leakage accompanying the anastomoses in any of the cases, and there was no stone formation observed after liver transplantation. The biliary stent was completely absorbed, with no adverse effects. Based on our initial experience and data, we concluded that biodegradable stents can be successfully and safely used in clinical practice. Further large prospective randomized studies are needed to estimate the efficacy of the bioabsorbable stents. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. MRI ductography of contrast agent distribution and leakage in normal mouse mammary ducts and ducts with in situ cancer.

    Science.gov (United States)

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Conzen, Suzanne D; Karczmar, Gregory S

    2017-07-01

    High resolution 3D MRI was used to study contrast agent distribution and leakage in normal mouse mammary glands and glands containing in situ cancer after intra-ductal injection. Five female FVB/N mice (~19weeks old) with no detectable mammary cancer and eight C3(1) SV40 Tag virgin female mice (~15weeks old) with extensive in situ cancer were studied. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple and approximately 15μL of a Gadodiamide was injected slowly over 1min into the nipple and throughout the duct on one side of the inguinal gland. Following injection, the mouse was placed in a 9.4T MRI scanner, and a series of high resolution 3D T1-weighted images was acquired with a temporal resolution of 9.1min to follow contrast agent leakage from the ducts. The first image was acquired at about 12min after injection. Ductal enhancement regions detected in images acquired between 12 and 21min after contrast agent injection was five times smaller in SV40 mouse mammary ducts (pcontrast agent from the SV40 ducts. The contrast agent washout rate measured between 12min and 90min after injection was ~20% faster (p<0.004) in SV40 mammary ducts than in FVB/N mammary ducts. These results may be due to higher permeability of the SV40 ducts, likely due to the presence of in situ cancers. Therefore, increased permeability of ducts may indicate early stage breast cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Numerical investigation of thermal-hydraulic performance of channel with protrusions by turbulent cross flow jet

    Science.gov (United States)

    Sahu, M. K.; Pandey, K. M.; Chatterjee, S.

    2018-05-01

    In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.

  3. Beam Flutter and Energy Harvesting in Internal Flow

    Science.gov (United States)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2017-11-01

    Aeroelastic flutter, largely studied for causing engineering failures, has more recently been used as a means of extracting energy from the flow. Particularly, flutter of a cantilever or an elastically mounted plate in a converging-diverging flow passage has shown promise as an energy harvesting concept for internal flow applications. The instability onset is observed as a function of throat velocity, internal wall geometry, fluid and structure material properties. To enable these devices, our work explores features of the fluid-structure coupled dynamics as a function of relevant nondimensional parameters. The flutter boundary is examined through stability analysis of a reduced order model, and corroborated with numerical simulations at low Reynolds number. Experiments for an energy harvester design are qualitatively compared to results from analytical and numerical work, suggesting a robust limit cycle ensues due to a subcritical Hopf bifurcation. Bosch Corporation.

  4. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    Energy Technology Data Exchange (ETDEWEB)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Kawata, Sumio, E-mail: Sumio_Kawata@pref.hyogo.lg.jp [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya 662-0918 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2

  5. Experimental and Numerical Investigation of Conjugate Heat Transfer in Rib-roughened Duct

    Science.gov (United States)

    2011-10-01

    187 Figure 16.17 Mean longitudinal component of the velocity; negative values are whitened out. Top: active orifice; bottom: close orifice...duct increase the friction (pressure drop). The presence of these ribs develops a complicated flow structure characterized by the presence of repeated...maps the longitudinal component of the mean velocity. Figure 16.17 Mean longitudinal component of the velocity; negative values are whitened out

  6. ß-adrenergic regulation of ion transport in pancreatic ducts: Patch-clamp study of isolated rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I

    1998-01-01

    BACKGROUND & AIMS: In the intact pancreas, bicarbonate secretion is thought to be controlled by a number of regulators, including adrenergic agonists. The aim of this study was to investigate the effects of adrenergic agonists on pancreatic ducts, which are the site of bicarbonate secretion....... METHODS: Small intralobular ducts were isolated from rat pancreas and studied in vitro by the whole-cell patch clamp technique. Cell membrane voltages and currents were indicators of cellular ion transport. In some ducts, intracellular Ca2+ activity was measured by fluorescence optical methods. RESULTS...

  7. Development of Test Protocols for International Space Station Particulate Filters

    Science.gov (United States)

    Vijayakumar, R.; Green, Robert D.; Agui, Juan H.

    2015-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing

  8. Pressure analysis in ventilation ducts at bituminization facility

    International Nuclear Information System (INIS)

    Kikuchi, Naoki; Iimura, Masato; Takahashi, Yuki; Omori, Eiichi; Yamanouchi, Takamichi

    1997-09-01

    Pressure analysis in cell ventilation ducts at bituminization facility where the fire and explosion accident occured was carried out. This report also describes the results of bench mark calculations for computer code EVENT84 which was used for the accident analysis. The bench mark calculations were performed by comparing the analytical results by EVENT84 code with the experimental data of safety demonstration tests of ventilation system which were carried out by JAERI. We confirmed the applicability of EVENT84 code with the conservative results. The pressure analysis in cell ventilation ducts at bituminization facility were performed by comparing the analytical results of duct pressure by EVENT84 code with the yield stress of destroyed ducts by explosion, in order to estimate the scale of explosion. As a result, we could not explain the damage of ducts quantitatively, but we found the local pressure peaks analytically in downstream ducts where the serious damages were observed. (author)

  9. Numerical Investigation of the Internal Flow in a Banki Turbine

    Directory of Open Access Journals (Sweden)

    Jesús De Andrade

    2011-01-01

    Full Text Available The paper refers to the numerical analysis of the internal flow in a hydraulic cross-flow turbine type Banki. A 3D-CFD steady state flow simulation has been performed using ANSYS CFX codes. The simulation includes nozzle, runner, shaft, and casing. The turbine has a specific speed of 63 (metric units, an outside runner diameter of 294 mm. Simulations were carried out using a water-air free surface model and k-ε turbulence model. The objectives of this study were to analyze the velocity and pressure fields of the cross-flow within the runner and to characterize its performance for different runner speeds. Absolute flow velocity angles are obtained at runner entrance for simulations with and without the runner. Flow recirculation in the runner interblade passages and shocks of the internal cross-flow cause considerable hydraulic losses by which the efficiency of the turbine decreases significantly. The CFD simulations results were compared with experimental data and were consistent with global performance parameters.

  10. Testing and analyses of a high temperature duct for gas-cooled reactors

    International Nuclear Information System (INIS)

    Black, W.E.; Roberge, A.; Felten, P.; Bastien, D.

    1979-01-01

    A 0.6 scale model of a steam cycle gas-cooled reactor high temperature duct was tested in a closed loop helium facility. The object of the test series was to determine: 1) the thermal effects of gas permeation within the thermal barrier, 2) the plastic deformation of the metallic components, and 3) the thermal performance of the fibrous insulation. A series of tests was performed with thermal cyclings from 100 0 C to 760 0 C at 50 atmospheres until the system thermal performance had stabilized hence enabling predictions for the reactor life. Additional tests were made to assess permeation by deliberately simulating sealing weld failures thereby allowing gas flow by-pass within the primary thermal barrier. After 100 cycles the entire primary structure was found to have performed without structural failure. Due to high pressures exerted by the insulation on the cover plates and a design oversight, the thin seal sheets were unable to expand in an anticipated manner. Local buckling resulted. The insulation retained an acceptable degree of resiliency. However, some fiber damage was observed within both the high and low temperature insulation blankets. A thermal analysis was conducted to correlate the hot duct heat transfer results with those obtained from the analytical techniques used for the HTGR design using a computer thermal model representative of the duct and test setup. The thermal performance of the insulation, the temperature gradient through the structural components, the heating load to the cooling system and the permeation flow effect on heat transfer were verified. Exellent correlation between the experimental data and the analytical techniques were obtained

  11. Duct Remediation Program: Engineered access research and construction

    International Nuclear Information System (INIS)

    Beckman, T.D.; Davis, M.M.; Karas, T.M.

    1992-01-01

    The Rocky Flats Plant, Duct Remediation mission concentrated on removing Plutonium Oxide from the process ductwork in the primary Plutonium processing facility. When possible, remediation took place from existing process gloveboxes. Fifteen locations were identified, however, that required accessing duct runs where no process gloveboxes existed. The building's second floor utility areas had many locations where long, inaccessible duct runs were prevalent. Consequently, an extensive program for design, procurement and construction was initiated to contain and isolate ducts for penetration when existing glovebox sites were not present

  12. The experimental distention of dissected bile duct for the restoration of its continuity in dogs using a device of own construction.

    Science.gov (United States)

    Kakabadze, Z; Berishvili, E; Długosz, J W

    2003-01-01

    The segmental resection of constricted bile duct and end-to-end biliary anastomosis could be an attractive alternative in the treatment of benign biliary tract stricture. The aim of this study was to restore the anatomical integrity of the hepatic-common bile duct after an artificially produced defect while maintaining the large duodenal papilla, using microsurgical technique. The experiments were carried out on 25 mongrel dogs. The common bile duct was ligated in all of the animals during laparotomy, as a model of bile duct obstruction in humans. Relaparotomy was performed 3 days after the initial operation. The segment of bile duct, 4 cm in length was resected together with the ligature. The continuous bile flow into the duodenum was assured by a polyvinyl catheter introduced into both ends of dissected bile duct. The proximal end of the hepatic-common bile duct was fixed to a device constructed by us for the distention of the bile duct (DDBD). The anterior part of the device was exteriorized through a separate fistula and fixed to the abdominal wall. The hepatic-common bile duct distention was gradually continued during 18 days, by pulling out the mobile part of the device. After 18 days the device was removed and the distended proximal end of the hepatic-common bile duct was anastomosed end-to-end with its distal end. The sequels of this procedure were observed for up to 6 months. The hepatic-common bile duct was distended 4 cm within 18 days. The histopathological examination has shown partial damage of the duct framework due to the distention and tension. However the patency of the duct was preserved and the recovery of normal structures were observed after the device was removed and anastomosis fashioned. This method, developed by us, offers the possibility of restoring the integrity of injured extrahepatic bile ducts, allowing effective treatment of benign biliary strictures.

  13. Consistent approach to air-cleaning system duct design

    International Nuclear Information System (INIS)

    Miller, W.H.; Ornberg, S.C.; Rooney, K.L.

    1981-01-01

    Nuclear power plant air-cleaning system effectiveness is dependent on the capability of a duct system to safely convey contaminated gas to a filtration unit and subsequently to a point of discharge. This paper presents a logical and consistent design approach for selecting sheet metal ductwork construction to meet applicable criteria. The differences in design engineers' duct construction specifications are acknowledged. Typical duct construction details and suggestions for their effective use are presented. Improvements in duct design sections of ANSI/ASME N509-80 are highlighted. A detailed leakage analysis of a control room HVAC system is undertaken to illustrate the effects of conceptual design variations on duct construction requirements. Shortcomings of previously published analyses and interpretations of a current standard are included

  14. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A. [ABT Systems, LLC, Annville, PA (United States); Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  15. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  16. Contactless flowrate sensors for Na, PbBi and Pb flows

    International Nuclear Information System (INIS)

    Buchenau, D.; Gerbeth, G.; Priede, J.

    2011-01-01

    Accurate and reliable flow rate measurements are required for various liquid metal systems such as the Na or Lead-flows in fast reactors, the PbBi-flows in transmutation systems, or the flows in liquid metal targets. For liquid metal flows, a contactless measurement is preferable. In this paper we report on the recent development of two types of such flow meters. The former operates by detecting the flow-induced disturbance in the phase distribution of an externally applied AC magnetic field. Such a phase-shift flow meter was developed with an emitting coil at one side of the duct and two sensing coils at the opposite side. The second approach uses a rotatable single cylindrical permanent magnet, which is placed close to the liquid metal duct. The rotation rate of this magnet is proportional to the flow rate. (author)

  17. Analysis of magnetohydrodynamic flow in annular duct

    International Nuclear Information System (INIS)

    Yoo, G.J.; Choi, H.K.; Eun, J.J.

    2004-01-01

    In various types of reactors, fluid is required to be circulated inside the vessel to be an efficient coolant. For flowing metal coolant the electromagnetic pump can be an efficient device for providing the driving force. Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in an electromagnetic pump. A finite volume method is applied to solve governing equations of magnetic field and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be affected by the phase of applied electric current and the magnitude of the Reynolds number. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The axial velocity distributions are represented with S-type profiles for the case of the r-direction of Lorentz force dominated flows. (authors)

  18. Parotid salivary duct stenosis following caudal maxillectomy.

    Science.gov (United States)

    Mestrinho, Lisa A; Faísca, Pedro B; Niza, Maria M R E

    2014-01-01

    Parotid salivary duct dilation was diagnosed in a 9-year-old male dog. The dog had undergone caudal maxillectomy on the ipsilateral side 2-years prior to presentation. Treatment consisted of parotid salivary duct excision and superficial parotidectomy that lead to the resolution of clinical signs. Transient facial neuropraxia was observed immediately after surgery and resolved spontaneously after 2-weeks. Parotid salivary duct dilation should be considered as a chronic postoperative complication following caudal maxillectomy.

  19. Magnetic resonance imaging of Muellerian duct anomalies in children

    International Nuclear Information System (INIS)

    Li, Yi; Phelps, Andrew; Zapala, Matthew A.; MacKenzie, John D.; MacKenzie, Tippi C.; Courtier, Jesse

    2016-01-01

    Muellerian duct anomalies encompass a wide variety of disorders resulting from abnormalities in the embryological development of the Muellerian ducts. In the prepubertal pediatric population, Muellerian duct anomalies are often incidental findings on studies obtained for other reasons. The onset of menses can prompt more clinical symptoms. Proper characterization of Muellerian duct anomalies is important because these anomalies can affect the development of gynecological disorders as well as fertility. Muellerian duct anomalies also carry a high association with other congenital anomalies, particularly renal abnormalities. MRI is widely considered the best modality for assessing Muellerian duct anomalies; it provides multiplanar capability, clear anatomical detail and tissue characterization without ionizing radiation. MRI allows for careful description of Muellerian duct anomalies, often leading to classification into the most widely accepted classification system for Muellerian duct anomalies. This system, developed by the American Society of Reproductive Medicine, includes seven subtypes: uterine agenesis/hypoplasia, unicornuate, didelphys, bicornuate, septate, arcuate, and diethylstilbestrol (DES) drug-related uterus. In cases of complex anomalies that defy classification, MRI allows detailed depiction of all components of the anatomical abnormality, allowing for proper management and surgical planning. (orig.)

  20. Ischemic Cholangitis Caused by Transcatheter Hepatic Arterial Chemoembolization 10 Months After Resection of the Extrahepatic Bile Duct

    International Nuclear Information System (INIS)

    Hasegawa, Kiyoshi; Kubota, Keiichi; Aoki, Taku; Hirai, Ichiro; Miyazawa, Masashi; Ohtomo, Kuni; Makuuchi, Masatoshi

    2000-01-01

    We report a case of ischemic cholangitis that occurred after transcatheter hepatic arterial chemoembolization (TAE). Ten months prior to TAE the patient had undergone central bisegmentectomy for hepatocellular carcinoma with resection of the extrahepatic bile duct. Eleven days after TAE, he developed suppurative cholangitis and multiple organ failure. Prior surgical ligation of the peribiliary arteries around the extrahepatic bile duct followed by TAE was considered to have played a crucial role in the development of ischemic cholangitis. This case demonstrates the importance of blood flow from the peribiliary arteries for the survival of the biliary epithelium

  1. Delayed rearterialization unlikely leads to nonanastomotic stricture but causes temporary injury on bile duct after liver transplantation.

    Science.gov (United States)

    Liu, Yang; Wang, Jiazhong; Yang, Peng; Lu, Hongwei; Lu, Le; Wang, Jinlong; Li, Hua; Duan, Yanxia; Wang, Jun; Li, Yiming

    2015-03-01

    Nonanastomotic strictures (NAS) are common biliary complications after liver transplantation (LT). Delayed rearterialization induces biliary injury in several hours. However, whether this injury can be prolonged remains unknown. The correlation of this injury with NAS occurrence remains obscure. Different delayed rearterialization times were compared using a porcine LT model. Morphological and functional changes in bile canaliculus were evaluated by transmission electron microscopy and real-time PCR. Immunohistochemistry and TUNEL were performed to validate intrahepatic bile duct injury. Three months after LT was performed, biliary duct stricture was determined by cholangiography; the tissue of common bile duct was detected by real-time PCR. Bile canaliculi were impaired in early postoperative stage and then exacerbated as delayed rearterialization time was prolonged. Nevertheless, damaged bile canaliculi could fully recover in subsequent months. TNF-α and TGF-β expressions and apoptosis cell ratio increased in the intrahepatic bile duct only during early postoperative period in a time-dependent manner. No abnormality was observed by cholangiography and common bile duct examination after 3 months. Delayed rearterialization caused temporary injury to bile canaliculi and intrahepatic bile duct in a time-dependent manner. Injury could be fully treated in succeeding months. Solo delayed rearterialization cannot induce NAS after LT. © 2014 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  2. Water condensation promotes fungal growth in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Pasanen, P.; Pasanen, A.-L. (University of Kupopio, Department of Environmental Sciences, Kuopio (Finland)); Jantunen, M. (National Public Health Institute, Kuopio (Finland))

    1993-01-01

    In a subarctic climate the diurnal variation in temperature may cause water condensation in ducts placed in the unheated spaces of a building. In this study, germination time and sporulation of a fungus, Penicillium verrucosum, were studied on dusty, galvanized steel sheet under different moisture conditions at room temperature. The effect of condensed water in a supply air duct on spore amplification was studied in an experimental ventilation set-up. In the field, air temperatures and the dew point temperature of air in the duct were monitored continuously for a week. P. verrucosum germinated on steel surfaces during five-hour incubation of the surface under humid conditions, when the surface has been moist for half an hour, germ tubes appeared within 17 hours. During 24-hour incubation under moist conditions, P. verrucosum produced hyphae and spores. In the experimental set-up the airborne spore counts increased when the air passed through a water-condensing section of the duct. Penicillium was the most abundant fungus sporulated on the moist duct surface. In the field, during humid weather, the surface temperature on the air stream surface decreased to the dew point temperature of the air in the duct. thus water condensation in air ducts may promote fungal growth. (au)

  3. Transfer coefficients in a four-cusp duct simulating a typical nuclear reactor channel degraded by accident

    International Nuclear Information System (INIS)

    Souza Dutra, A. de.

    1985-01-01

    An experimental study on forced convection in a four-cusp duct simulating a typical nuclear reactor channel degraded by accident is presented. Transfer coefficients were obtained by using the analogy between heat and mass tranfer, with the naphtalene sublimation technique. The experiment consisted in forcing air past a four-cusp naphthalene moulded duct. Mass transfer coefficients were determined in nondimensional form as Sherwood number. Experimental curves correlating the Sherwood number with a nondimensional length, x + , were obtained for Reynolds number varying from 891 to 30.374. This range covers typical flow rates that are expected to exist in a degraded nuclear reactor core. (Author) [pt

  4. Risk factors for central bile duct injury complicating partial liver resection

    NARCIS (Netherlands)

    Boonstra, E. A.; de Boer, M. T.; Sieders, E.; Peeters, P. M. J. G.; de Jong, K. P.; Slooff, M. J. H.; Porte, R. J.

    Background: Bile duct injury is a serious complication following liver resection. Few studies have differentiated between leakage from small peripheral bile ducts and central bile duct injury (CBDI), defined as an injury leading to leakage or stenosis of the common bile duct, common hepatic duct,

  5. Imaging manifestation of hepatocellular carcinoma with bile duct tumor thrombi

    International Nuclear Information System (INIS)

    Liu Qingyu; Chen Jianyu; Liang Biling; Hu Tao

    2008-01-01

    Objective: To analyze the imaging features of hepatocellular carcinoma(HCC) with bile duct tumor thrombi. Methods: Thirteen patients with bile duct tumor thrombi proved pathologically underwent imaging examination. MR and CT were performed in 3 cases, and 2 cases had CT only and 8 cases had MRI only. Ultrasonography(US) was performed in all 13 patients. The accuracy of bile duct tumor thrombi detection was compared between US, CT and MRI with Fisher test. Results: Liver tumors and bile duct tumor thrombi were demonstrated in all patients on CT or MRI. Presence of intraluminal soft tissue mass was found in four of five cases on CT, and mild enhancement of the intraluminal mass in the arterial phase was noted, dilated bile duct distal to tumor thrombi was detected in all five patients. Eleven Tumor thrombi showed slight low signal intensity on T 1 WI, slight high signal intensity on T 2 WI, and mild to moderate contrast enhancement on the contrast-enhanced MR images. The MRCP findings of tumor thrombi were as follows: interruption, stricture of the bile ducts or irregular filling defect in the bile ducts with dilated intrahepatic ducts, bile duet was abruptly interrupted or showed a 'rat-tail' stricture (n=5); the common bile duct was filled with tumor thrombi, intrahepatic bile duct dilatation and missing common bile duct was noted on MRCP (n=2). Bile duct tumor thrombi were correctly diagnosed in 7 cases on US, and 12 cases on CT or MRI. Six cases were misdiagnosed or miss-diagnosed on US, and 4 cases were misdiagnosed on CT or MRI. There was no significant difference between US and CT/MRI in diagnosis of bile duct tumor thrombi (P=0.270). Conclusion: CT or MR imaging is useful for the diagnosis of HCC with biliary tumor thrombi and for evaluating the extension of thrombi. (authors)

  6. [Diagnosis and treatment of congenital biliary duct cyst: twenty-year experience].

    Science.gov (United States)

    Peng, S; Shi, L; Peng, C; Yang, D; Ji, Z; Wu, Y; Liu, Y; Gao, N; Chen, H

    2001-12-01

    To summarize the experience in diagnosis and treatment of congenital biliary duct cyst. Clinical data from 108 patients treated from 1980 to 2000 were analyzed retrospectively. Abdominal pain, jaundice and abdominal mass were presented in most pediatric patients. Clinical symptoms in adult patients were non-specific, resulting in delayed diagnosis frequently. Fifty-seven patients (52.7%) had coexistent pancreatic biliary disease. Carcinoma of the biliary duct occurred in 18 patients (16.6%). Ultrasonic examination was performed in 94 patients, ERCP in 46, and CT in 71. All of the patients were correctly diagnosed before operation. Abnormal pancreatobiliary duct junction was found in 39 patients. Before 1985, the diagnosis and classification of congenital biliary duct cyst were established by ultrasonography preoperatively and confirmed during operation. The main procedure was internal drainage by cyst-enterostomy. After 1985, the diagnosis was decided with ERCP and CT, the procedure was cyst excision with Roux-en-Y hepaticojejunostomy. In 1994, we used a new and simplified operative procedure to reduce the risk of malignancy of choledochal cyst. Retrograde infection of the biliary tract the major postoperative complication, could be controlled by the administration of antibiotics. The concept in diagnosis and treatment of congenital choledochal cyst has been changed greatly. CT and ERCP are of great help in the classification of the disease. Currently, cyst excision with Roux-en-Y hepaticojejunostomy is strongly recommended as the treatment of choice for patients with type I and IV cysts. Piggyback orthotopic liver transplantation is indicated for type V cysts (Caroli's disease) with frequently recurrent cholangitis, resulting in biliary cirrhosis.

  7. Bile duct anastomotic stricture after pediatric living donor liver transplantation.

    Science.gov (United States)

    Chok, Kenneth S H; Chan, See Ching; Chan, Kwong Leung; Sharr, William W; Tam, Paul K H; Fan, Sheung Tat; Lo, Chung Mau

    2012-07-01

    Hepaticojejunostomy is a well-accepted method, whereas duct-to-duct anastomosis is gaining popularity for bile duct reconstruction in pediatric living donor liver transplantation (LDLT). Biliary complications, especially biliary anastomotic stricture (BAS), are not clearly defined. The aim of the present study is to determine the rate of BAS and its associated risk factors. The study included 78 pediatric patients (duct-to-duct anastomosis during LDLT. The median follow-up period for the BAS group and the non-BAS group was 57.8 and 79.5 months, respectively (P = .683). Ten of the patients with BAS required percutaneous transhepatic biliary drainage with or without dilatation for treating the stricture. Multivariable analysis showed that hepatic artery thrombosis and duct-to-duct anastomosis were 2 risk factors associated with BAS. In pediatric LDLT, hepaticojejunostomy is the preferred method for bile duct reconstruction, but more large-scale research needs to be done to reconfirm this result. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A study on CT features of intrahepatic bile duct abscess

    International Nuclear Information System (INIS)

    Min Pengqiu; Li Peng; He Zhiyan; Chen Weixia; Liu Yan

    2001-01-01

    Objective: To evaluate CT features of intrahepatic bile duct abscess (IBDA) and its pathologic basis. Methods: The CT imaging data of 31 consecutive cases of intrahepatic bile duct abscess proved by surgery or clinical treatments from October 1989 to February 1999 were retrospectively studied. The causes included acute obstructive suppurative cholangitis and retrograde infection due to different etiologies. For all the cases, the CT manifestations of liver abscess, bile duct abnormalities, and their relationship were observed respectively. Results: Manifestations of liver abscess were revealed in all cases (31/31, 100%). The CT manifestations of bile duct abnormalities included signs of etiologies caused bile duct obstruction and other signs including cholangiectasis (29/31, 93.5%), the dilated bile ducts communicated with (5/31, 16.1%) or abut on (8/31, 25.8%) the abscesses, and gas collection in bile ducts (10/31, 32.2%). The signs showing the relationship between liver abscess and bile duct abnormalities were that the abscesses complied with the obstructive site and the dilated bile ducts (15/31, 48.4%), and the liver abscesses located in different (7/31, 22.6%) or same (4/31, 12.9%) liver lobes or segments with gas collection in the dilated bile ducts. Conclusion: The CT manifestations of IBDA included signs of liver abscess, abnormalities of bile ducts, and signs showing their relationship. CT scanning was helpful in making comprehensive and accurate diagnosis of IBDA

  9. Interchangeable opening and closing clapper device notably for ventilation ducts utilizing an aggressive or polluting fluid

    International Nuclear Information System (INIS)

    1980-01-01

    This opening and closing device is of the type which employs a casing inside the duct along the fluid path. It is provided with an opening through which the fluid flows and a joint with a closing clapper controlled from the outside enabling the fluid flow to be regulated. It is characterized by the fact that the casing is provided with a lateral opening with respect to the fluid flow direction, the size of this opening being sufficiently large to allow the assembly with its closing clapper to be introduced and withdrawn [fr

  10. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    Science.gov (United States)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  11. A Comparison of Simulation Capabilities for Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Smith, Matt K [ORNL; Gu, Lixing [Florida Solar Energy Center (FSEC); New, Joshua Ryan [ORNL

    2014-11-01

    Typically, the cheapest way to install a central air conditioning system in residential buildings is to place the ductwork in the attic. Energy losses due to duct-attic interactions can be great, but current whole-house models are unable to capture the dynamic multi-mode physics of the interactions. The building industry is notoriously fragmented and unable to devote adequate research resources to solve this problem. Builders are going to continue to put ducts in the attic because floor space is too expensive to closet them within living space, and there are both construction and aesthetic issues with other approaches such as dropped ceilings. Thus, there is a substantial need to publicly document duct losses and the cost of energy used by ducts in attics so that practitioners, builders, homeowners and state and federal code officials can make informed decisions leading to changes in new construction and additional retrofit actions. Thus, the goal of this study is to conduct a comparison of AtticSim and EnergyPlus simulation algorithms to identify specific features for potential inclusion in EnergyPlus that would allow higher-fidelity modeling of HVAC operation and duct transport of conditioned air. It is anticipated that the resulting analysis from these simulation tools will inform energy decisions relating to the role of ducts in future building energy codes and standards.

  12. Parametric study of electromagnetic waves propagating in absorbing curved S ducts

    Science.gov (United States)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.

  13. Bile Duct Cancer (Cholangiocarcinoma) Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Bile duct cancer (also called cholangiocarcinoma) can occur in the bile ducts in the liver (intrahepatic) or outside the liver (perihilar or distal extrahepatic). Learn about the types of bile duct cancer, risk factors, clinical features, staging, and treatment for bile duct cancer in this expert-reviewed summary.

  14. A radiographic study of nasopalatine duct cysts

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Chan Duck; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1993-02-15

    The purpose of this study was to evaluate the clinical and radiographic features of 35 cases of nasopalatine duct cyst by means of the analysis of periapical and/or occlusal radiograms in 35 persons visited the Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University and Chonbuk National University. The obtained results were as follows: 1. The incidence of nasopalatine duct cysts was higher in males (74.3%) than in females (25.7%). 2. The nasopalatine duct cysts were the most frequently occurred in the 4th decades (34.3%). The 6th and 7th decades (17.1%, 17.1%) were next in order to frequency followed by the 5th decades (14.3%), the 3rd decades (8.6%), the 2nd decades (5.7%), and 8th decades (2.9%). 3. In the signs and symptoms of nasopalatine duct cysts, 25.7% were swelling, 17.1% were swelling and tenderness, 20.0% were swelling and pain, and 37.2% were a symptom. 4. In the shape of nasopalatine duct cysts, 40.0% were round type, 48.6% 11.8% were heart type. 5. In symmetry of the nasopalatine duct cysts, 11.4% were 6-10 mm, 48.6% were 11-20 mm, 25.7% were 21-30 mm, and 14.3% were 31-40 mm. 6. In the periphery of nasopalatine duct cysts, 82.9% were distinct, 17.1% were relatively distinct. 7. In the change of root, 51.5% were intact, 17.1% were root divergence, 20.0% were root resorption, and 11.4% were root divergence and resorption.

  15. A radiographic study of nasopalatine duct cysts

    International Nuclear Information System (INIS)

    Jun, Chan Duck; Hwang, Eui Hwan; Lee, Sang Rae

    1993-01-01

    The purpose of this study was to evaluate the clinical and radiographic features of 35 cases of nasopalatine duct cyst by means of the analysis of periapical and/or occlusal radiograms in 35 persons visited the Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University and Chonbuk National University. The obtained results were as follows: 1. The incidence of nasopalatine duct cysts was higher in males (74.3%) than in females (25.7%). 2. The nasopalatine duct cysts were the most frequently occurred in the 4th decades (34.3%). The 6th and 7th decades (17.1%, 17.1%) were next in order to frequency followed by the 5th decades (14.3%), the 3rd decades (8.6%), the 2nd decades (5.7%), and 8th decades (2.9%). 3. In the signs and symptoms of nasopalatine duct cysts, 25.7% were swelling, 17.1% were swelling and tenderness, 20.0% were swelling and pain, and 37.2% were a symptom. 4. In the shape of nasopalatine duct cysts, 40.0% were round type, 48.6% 11.8% were heart type. 5. In symmetry of the nasopalatine duct cysts, 11.4% were 6-10 mm, 48.6% were 11-20 mm, 25.7% were 21-30 mm, and 14.3% were 31-40 mm. 6. In the periphery of nasopalatine duct cysts, 82.9% were distinct, 17.1% were relatively distinct. 7. In the change of root, 51.5% were intact, 17.1% were root divergence, 20.0% were root resorption, and 11.4% were root divergence and resorption.

  16. Measure Guideline. Sealing and Insulating Ducts in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  17. A case of fascioliasis in common bile duct

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Soo Youn; Park, Cheol Min; Chung, Kyu Byung; Lee, Chang Hong; Park, Seung Chul; Choi, Sang Yong; Lim, Han Jong [Korea University College of Medicine, Seoul (Korea, Republic of)

    1989-10-15

    A case of Fascioliasis of common bile duct is confirmed by visualization of adult fluke. Fascioliasis caused by Fasciola hepatica, is common parasitic disease in cattle and sheep. Human is an accidental host. ERCP demonstrated irregular linear conglomerated filling defects in common bile duct. Through surgical intervention, we found adult flukes of F. hepatica and adenomatous hyperplasia of common bile duct.

  18. A case of fascioliasis in common bile duct

    International Nuclear Information System (INIS)

    Ham, Soo Youn; Park, Cheol Min; Chung, Kyu Byung; Lee, Chang Hong; Park, Seung Chul; Choi, Sang Yong; Lim, Han Jong

    1989-01-01

    A case of Fascioliasis of common bile duct is confirmed by visualization of adult fluke. Fascioliasis caused by Fasciola hepatica, is common parasitic disease in cattle and sheep. Human is an accidental host. ERCP demonstrated irregular linear conglomerated filling defects in common bile duct. Through surgical intervention, we found adult flukes of F. hepatica and adenomatous hyperplasia of common bile duct

  19. Treatment Options for Extrahepatic Bile Duct Cancer

    Science.gov (United States)

    ... Treatment Liver Cancer Prevention Liver Cancer Screening Research Bile Duct Cancer (Cholangiocarcinoma) Treatment (PDQ®)–Patient Version Treatment ... are different types of treatment for patients with bile duct cancer. Different types of treatments are available ...

  20. Treatment Option Overview (Extrahepatic Bile Duct Cancer)

    Science.gov (United States)

    ... Treatment Liver Cancer Prevention Liver Cancer Screening Research Bile Duct Cancer (Cholangiocarcinoma) Treatment (PDQ®)–Patient Version Treatment ... are different types of treatment for patients with bile duct cancer. Different types of treatments are available ...

  1. General Information about Extrahepatic Bile Duct Cancer

    Science.gov (United States)

    ... Treatment Liver Cancer Prevention Liver Cancer Screening Research Bile Duct Cancer (Cholangiocarcinoma) Treatment (PDQ®)–Patient Version Treatment ... are different types of treatment for patients with bile duct cancer. Different types of treatments are available ...

  2. Liquid metal flows in insulating elements of self-cooled blankets

    International Nuclear Information System (INIS)

    Molokov, S.

    1995-01-01

    Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with reference to poloidal concepts of self-cooled blankets. Although the major part of the flow in poloidal blanket concepts is close to being fully developed, manifolds, expansions, contractions, elbows, etc., which are necessary elements in blanket designs, cause three-dimensional effects. The present investigation demonstrates the flow pattern in basic insulating geometries for actual and more advanced liquid metal blanket concepts and discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp and linear expansions with and without manifolds, etc., have been considered. They demonstrate the attractiveness of poloidal concepts of liquid metal blankets, since they guarantee uniform conditions for heat transfer. If changes in the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should always flow in the radial-poloidal plane), the disturbances are local and the slug velocity profile is reached roughly at a distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig.)

  3. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  4. A Case of Adenomyomatous Hyperplasia of the Extrahepatic Bile Duct

    Directory of Open Access Journals (Sweden)

    Masakatsu Numata

    2011-08-01

    Full Text Available Adenomyomatous hyperplasia is rarely found in the extrahepatic bile duct. A 54-year-old man was referred to our center with a diagnosis of extrahepatic bile duct stenosis which had been detected by endoscopic retrograde choloangiopancreatography. Abdominal computed tomography revealed thickening of the wall of the middle extrahepatic bile duct, however no malignant cells were detected by cytology. Since bile duct carcinoma could not be ruled out, we performed resection of the extrahepatic duct accompanied by lymph node dissection. Histopathologically, the lesion was diagnosed as adenomyomatous hyperplasia of the extrahepatic bile duct. Present and previously reported cases showed the difficulty of making a diagnosis of adenomyomatous hyperplasia of the extrahepatic bile duct preoperatively or intraoperatively. Therefore, when adenomyomatous hyperplasia is suspected, a radical surgical procedure according to malignant disease may be necessary for definitive diagnosis.

  5. Ultrasound imaging of the mouse pancreatic duct using lipid microbubbles

    Science.gov (United States)

    Banerjee, B.; McKeown, K. R.; Skovan, B.; Ogram, E.; Ingram, P.; Ignatenko, N.; Paine-Murrieta, G.; Witte, R.; Matsunaga, T. O.

    2012-03-01

    Research requiring the murine pancreatic duct to be imaged is often challenging due to the difficulty in selectively cannulating the pancreatic duct. We have successfully catheterized the pancreatic duct through the common bile duct in severe combined immune deficient (SCID) mice and imaged the pancreatic duct with gas filled lipid microbubbles that increase ultrasound imaging sensitivity due to exquisite scattering at the gas/liquid interface. A SCID mouse was euthanized by CO2, a midline abdominal incision made, the common bile duct cut at its midpoint, a 2 cm, 32 gauge tip catheter was inserted about 1 mm into the duct and tied with suture. The duodenum and pancreas were excised, removed in toto, embedded in agar and an infusion pump was used to instill normal saline or lipid-coated microbubbles (10 million / ml) into the duct. B-mode images before and after infusion of the duct with microbubbles imaged the entire pancreatic duct (~ 1 cm) with high contrast. The microbubbles were cavitated by high mechanical index (HMI) ultrasound for imaging to be repeated. Our technique of catheterization and using lipid microbubbles as a contrast agent may provide an effective, affordable technique of imaging the murine pancreatic duct; cavitation with HMI ultrasound would enable repeated imaging to be performed and clustering of targeted microbubbles to receptors on ductal cells would allow pathology to be localized accurately. This research was supported by the Experimental Mouse Shared Service of the AZ Cancer Center (Grant Number P30CA023074, NIH/NCI and the GI SPORE (NIH/NCI P50 CA95060).

  6. Are international fund flows related to exchange rate dynamics?

    NARCIS (Netherlands)

    Li, Suxiao; de Haan, Jakob; Scholtens, Bert

    2018-01-01

    Employing monthly data for 53 countries between 1996 and 2015, we investigate the relationship between international fund flows and exchange rate dynamics. We find strong co-movement between funds flows (as measured with the EPFR Global data base) and bilateral real exchange rates vis-à-vis the USD.

  7. Hepatocellular carcinoma with bile duct involvement : computed Tomographic (CT) findings

    International Nuclear Information System (INIS)

    Lee, Joon Woo; Han, Joon Koo; Kim, Tae Kyoung; And others

    2000-01-01

    To describe the radiologic features of computed tomography (CT) in hepatocellular carcinoma (HCC) with bile duct involvement. We retrospectively analyzed the two phase spiral CT findings of 31 patients in whom HCC with bile duct invasion (n=3D28) or compression (n=3D3), was diagnosed. Eight of these underwent follow up CT after transarterial chemoembolization. We analyzed the size, type, location, enhancement pattern, and lipiodol retention of parenchymal and intraductal masses, as well as their lymphadenopathy. In all patients with bile duct invasion, single or multiple masses were demonstrated in the bile ducts. Intraductal masses showed the same enhancement characteristics as the parenchymal mass (kappa 0.550, p less than 0.001), and were contiguous to this mass. In 14 of 28 patients, intraductal masses filled the peripheral intrahepatic bile ducts and extended to the common bile ducts. In the other 14, the parenchymal mass extended to the area of the porta hepatis and then directly invaded the large ducts. In nine of the 28 patients, there was a hypoattenuated cleft between the intraductal mass and ductal wall. In six, a parenchymal mass was not apparent (n=3D2), or was smaller than 2cm (n=3D4). In five of eight patients (62.5%), follow-up CT after transarterial chemoembolization showed compact or partial lipiodol retention within the intraductal mass. In patients with bile duct compression, perihilar lymph nodes were noted along with the dilated intrahepatic duct but no intra ductal mass was demonstrated in the duct. Hepatocellular carcinomas cause bile duct dilatation either by direct invasion or by extrinsic compression of the bile duct with surrounding enlarged nodes. For the diagnosis of this condition, CT is helpful. (author)

  8. Self-made metal stent in treatment of nasolacrimal duct obstruction

    International Nuclear Information System (INIS)

    Du Wei; Pang Ruilin; Luo Gang; Gu Jingchuan; Gong Yongxiang

    2003-01-01

    Objective: To evaluate application of self-made metal stent in treatment of nasolacrimal duct obstruction. Methods: In total 15 cases, self-made metal stents made of stainless steel wire were implanted in 18 obstructed nasolacrimal ducts. The lacrimal passages were rinsed and re-canalized followed by antegrade inserting the guide wire from upper dacryon. A dilator was inserted over the guide wire, and then a stent was released from a sheath into the impaired section of nasolacrimal duct. Dacryocystography was performed before and after the interventional procedure. Results: Dacryocystography showed patent nasolacrimal duct after treatment. Epiphora disappeared completely in 11 cases (13 ducts), improved in 4 cases (5 ducts). These cases had been followed up for 61-219 days (167 days in average). Relapse was found in 2 cases (2 ducts) in three months. Those 2 stents were removed by surgical procedure and found occluded by granulation. Conclusion: Interventional placement of the self-made metal stent is a simple, safe, low-cost and effective treatment of the nasolacrimal duct obstruction

  9. Cystic duct remnant mucocele in a liver transplant recipient

    International Nuclear Information System (INIS)

    Ahlawat, Sushil K.; Fishbien, Thomas M.; Haddad, Nadim G.

    2008-01-01

    Cystic duct remnant mucocele is an extremely rare complication of liver transplantation in children. Surgical correction is usually required for cystic duct remnant mucocele when it causes biliary obstruction. We describe a 14-month-old liver transplant recipient who presented with biliary obstruction 1 month after orthotopic liver transplantation with an end-to-end choledochocholedocal biliary anastomosis for hepatoblastoma. US, CT and cholangiography findings were consistent with mucocele of the allograft cystic duct remnant. Surgery was not needed in our patient because the mucocele and biliary obstruction had resolved on repeat imaging most likely due to guidewire manipulation during cholangiography, resulting in opening of the cystic duct remnant orifice and drainage into the common duct. (orig.)

  10. Cystic duct remnant mucocele in a liver transplant recipient

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Sushil K. [Georgetown University Hospital, Department of Medicine, Division of Gastroenterology, Washington, DC (United States); University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ (United States); Fishbien, Thomas M. [Georgetown University Hospital, Department of Medicine, Division of Gastroenterology, Washington, DC (United States); Haddad, Nadim G. [Georgetown University Hospital, Department of Surgery, Division of Transplant Surgery, Washington, DC (United States)

    2008-08-15

    Cystic duct remnant mucocele is an extremely rare complication of liver transplantation in children. Surgical correction is usually required for cystic duct remnant mucocele when it causes biliary obstruction. We describe a 14-month-old liver transplant recipient who presented with biliary obstruction 1 month after orthotopic liver transplantation with an end-to-end choledochocholedocal biliary anastomosis for hepatoblastoma. US, CT and cholangiography findings were consistent with mucocele of the allograft cystic duct remnant. Surgery was not needed in our patient because the mucocele and biliary obstruction had resolved on repeat imaging most likely due to guidewire manipulation during cholangiography, resulting in opening of the cystic duct remnant orifice and drainage into the common duct. (orig.)

  11. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  12. [Bile duct lesions in laparoscopic cholecystectomy].

    Science.gov (United States)

    Siewert, J R; Ungeheuer, A; Feussner, H

    1994-09-01

    Laparoscopic cholecystectomy is both resulting in a slightly higher incidence of biliary lesions and a change of prevalence of the type of lesions. Damage to the biliary system occurs in 4 different types: The most severe case is the lesion with a structural defect of the hepatic or common bile duct with (IVa) or without (IVb) vascular injury. Tangential lesions without structural loss of the duct should be denominated as type III (IIIa with additional lesion to the vessels, type IIIb without). Type II comprehends late strictures without obvious intraoperative trauma to the duct. Type I includes immediate biliary fistulae of usually good prognosis. The increasing prevalence of structural defects of the bile ducts appears to be a peculiarity of laparoscopic cholecystectomy necessitating highly demanding operative repair. In the majority of cases, hepatico-jejunostomy or even intraparenchymatous anastomoses are required. Adaptation of well proven principles of open surgery is the best prevention of biliary lesions in laparoscopic cholecystectomy as well as the readiness to convert early to the open procedure.

  13. Ultrasound appearance of chronic mammary duct ectasia

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, N. [Ottawa Hospital, Dept. of Radiology, Ottawa, Ontario (Canada)]. E-mail: nathalie_duchesne_22@yahoo.ca; Skolnik, S. [Univ. of Toronto, Dept. of Family Medicine, Toronto, Ontario (Canada); Bilmer, S. [Ottawa Hospital, Dept. of Radiology, Ottawa, Ontario (Canada)

    2005-12-15

    Mammary duct ectasia (MDE), also called periductal mastitis, mammary dysplasia, or plasma cell mastitis, is a benign condition of the mammary gland first described by Haagensen in 1951. The etiology of MDE is unknown and its pathogenesis still controversial; the periductal inflammation could be either the cause or the result of dilated damaged ducts. The process is usually bilateral and asymptomatic, with only a small percentage of patients presenting with symptoms that may include long course of tumour formation, usually subareolar breast lumps, nipple discharge, nipple retraction, mastalgia, and mammary abscess or fistulas. Mammographic presentation of MDE is well known; its features include periductal calcification, benign intraductal calcification, and retroareolar duct dilatation. The periductal calcification results from dystrophic calcification and forms calcified rings or very dense, oval, elongated calcifications, each with a central lucency representing the dilated duct. Intraductal calcifications of duct ectasia represent inspissated intraductal material and are typically of uniform high density, often needle-like, and occasionally branching. Occasionally, there are no mammographic findings, and the diagnosis must rely on sonographic features. Appearance of MDE on ultrasonography (US) depends on the stage of the disease and the contents of the dilated ducts. The acute presentation has been demonstrated in the literature more often than has its chronic counterpart. In the former, duct content can vary from anechoic to isoechoic with surrounding fatty tissue. In chronic MDE, episodes of inflammation are longer. This tends to result in secretions that have a more solid, cheesy texture, partly due to cholesterol crystals, foam cells, and inflammatory cells. For both types of MDE, the appearance can mimic high-grade ductal carcinoma in situ (DCIS) on US. In this essay, 2 chronic MDE cases are presented and their US appearance discussed. Our goal is to explore

  14. Ultrasound appearance of chronic mammary duct ectasia

    International Nuclear Information System (INIS)

    Duchesne, N.; Skolnik, S.; Bilmer, S.

    2005-01-01

    Mammary duct ectasia (MDE), also called periductal mastitis, mammary dysplasia, or plasma cell mastitis, is a benign condition of the mammary gland first described by Haagensen in 1951. The etiology of MDE is unknown and its pathogenesis still controversial; the periductal inflammation could be either the cause or the result of dilated damaged ducts. The process is usually bilateral and asymptomatic, with only a small percentage of patients presenting with symptoms that may include long course of tumour formation, usually subareolar breast lumps, nipple discharge, nipple retraction, mastalgia, and mammary abscess or fistulas. Mammographic presentation of MDE is well known; its features include periductal calcification, benign intraductal calcification, and retroareolar duct dilatation. The periductal calcification results from dystrophic calcification and forms calcified rings or very dense, oval, elongated calcifications, each with a central lucency representing the dilated duct. Intraductal calcifications of duct ectasia represent inspissated intraductal material and are typically of uniform high density, often needle-like, and occasionally branching. Occasionally, there are no mammographic findings, and the diagnosis must rely on sonographic features. Appearance of MDE on ultrasonography (US) depends on the stage of the disease and the contents of the dilated ducts. The acute presentation has been demonstrated in the literature more often than has its chronic counterpart. In the former, duct content can vary from anechoic to isoechoic with surrounding fatty tissue. In chronic MDE, episodes of inflammation are longer. This tends to result in secretions that have a more solid, cheesy texture, partly due to cholesterol crystals, foam cells, and inflammatory cells. For both types of MDE, the appearance can mimic high-grade ductal carcinoma in situ (DCIS) on US. In this essay, 2 chronic MDE cases are presented and their US appearance discussed. Our goal is to explore

  15. HVAC; Heating, Ventilation, Air Conditioning - Aerosol Duct Sealant

    Science.gov (United States)

    2016-09-01

    material was applied. Annual energy and cost savings were predicted based on a typical weather year for each site. The installation of the duct...Balance reports; Visible dust streaks on duct work, ceilings near supply diffusers, or electrical boxes; Comfort complaints Specific Leakage...energy consumption , depending on the HVAC system type and the location of the ducts that were sealed. The cost effectiveness of the technology is

  16. High-Performance Ducts in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chitwood, Rick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weitzel, Elizabeth [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-30

    Duct thermal losses and air leakage have long been recognized as prime culprits in the degradation of heating, ventilating, and air-conditioning (HVAC) system efficiency. Both the U.S. Department of Energy’s Zero Energy Ready Home program and California’s proposed 2016 Title 24 Residential Energy Efficiency Standards require that ducts be installed within conditioned space or that other measures be taken to provide similar improvements in delivery effectiveness (DE). Pacific Gas & Electric Company commissioned a study to evaluate ducts in conditioned space and high-performance attics (HPAs) in support of the proposed codes and standards enhancements included in California’s 2016 Title 24 Residential Energy Efficiency Standards. The goal was to work with a select group of builders to design and install high-performance duct (HPD) systems, such as ducts in conditioned space (DCS), in one or more of their homes and to obtain test data to verify the improvement in DE compared to standard practice. Davis Energy Group (DEG) helped select the builders and led a team that provided information about HPD strategies to them. DEG also observed the construction process, completed testing, and collected cost data.

  17. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  18. On Computations of Duct Acoustics with Near Cut-Off Frequency

    Science.gov (United States)

    Dong, Thomas Z.; Povinelli, Louis A.

    1997-01-01

    The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.

  19. Prediction of strongly-heated internal gas flows

    International Nuclear Information System (INIS)

    McEligot, D.M.; Shehata, A.M.; Kunugi, Tomoaki

    1997-01-01

    The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions

  20. A steady state thermal duct model derived by fin-theory approach and applied on an unglazed solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, B.; Hallberg, D.; Akander, J. [Building Materials Technology, KTH Research School, Centre for Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden)

    2010-10-15

    course of events adopts a 1D heat flow that reassembles the conditions of the 1D simple model (for the assessed USC duct geometry); 1D heat flow through the top and bottom fins/sheets as the duct wall reassembles a state of adiabatic condition. (author)

  1. Theoretical modelling of nuclear waste flows - 16377

    International Nuclear Information System (INIS)

    Adams, J.F.; Biggs, S.R.; Fairweather, M.; Njobuenwu, D.; Yao, J.

    2009-01-01

    A large amount of nuclear waste is stored in tailings ponds as a solid-liquid slurry, and liquid flows containing suspensions of solid particles are encountered in the treatment and disposal of this waste. In processing this waste, it is important to understand the behaviour of particles within the flow in terms of their settling characteristics, their propensity to form solid beds, and the re-suspension characteristics of particles from a bed. A clearer understanding of such behaviour would allow the refinement of current approaches to waste management, potentially leading to reduced uncertainties in radiological impact assessments, smaller waste volumes and lower costs, accelerated clean-up, reduced worker doses, enhanced public confidence and diminished grounds for objection to waste disposal. Mathematical models are of significant value in nuclear waste processing since the extent of characterisation of wastes is in general low. Additionally, waste processing involves a diverse range of flows, within vessels, ponds and pipes. To investigate experimentally all waste form characteristics and potential flows of interest would be prohibitively expensive, whereas the use of mathematical models can help to focus experimental studies through the more efficient use of existing data, the identification of data requirements, and a reduction in the need for process optimisation in full-scale experimental trials. Validated models can also be used to predict waste transport behaviour to enable cost effective process design and continued operation, to provide input to process selection, and to allow the prediction of operational boundaries that account for the different types and compositions of particulate wastes. In this paper two mathematical modelling techniques, namely Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), have been used to investigate particle-laden flows in a straight square duct and a duct with a bend. The flow solutions provided by

  2. Experimental characterization of MHD pressure drop of liquid sodium flow under uniform magnetic field

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Park, Jon Ho; Kim, Jong Man; Nam, Ho Yoon; Choi, Jong Hyun

    2001-01-01

    Magnetic field has many effects on the hydraulic pressure drop of fluids with high electrical conductivity. The theoretical solution about MHD pressure drop is sought for the uniform current density model with simplified physical geometry. Using the MHD equation in the rectangular duct of the sodium liquid flow under a transverse magnetic field, the electrical potential is sought in terms of the duct geometry and the electrical parameters of the liquid metal and duct material. By the product of the induced current inside the liquid metal and transverse magnetic field, the pressure gradients is found as a function of the duct size and the electrical conductivity of the liquid metal. The theoretically predicted pressure drop is compared with experimental results on the change of flow velocity and magnetic flux density

  3. Key enabling design features of the ITER HNB Duct Liner

    Energy Technology Data Exchange (ETDEWEB)

    Chuilon, Ben, E-mail: ben.chuilon@ccfe.ac.uk; Mistry, Sanjay; Andrews, Rodney; Verhoeven, Roel; Xue, Yongkuan

    2015-10-15

    Highlights: • Key engineering design details of the ITER HND Duct Liner are presented. • A standardised CuCrZr water cooled panel that can be remotely handled is detailed. • Bolts are protected from beam power by means of a tungsten cap to radiate heat away. • Water connections placed coaxially are protected from beam power by a tungsten ring. • Explosion-bonded CuCrZr-316L panels result in a tenfold disruption torque reduction. - Abstract: The Duct Liner (DL) for the ITER Heating Neutral Beam (HNB) is a key component in the beam transport system. Duct Liners installed into equatorial ports 4 and 5 of the Vacuum Vessel (VV) will protect the port extension from power deposition due to re-ionisation and direct interception of the HNB. Furthermore, the DL contributes towards the shielding of the VV and superconducting coils from plasma photons and neutrons. The DL incorporates a 316L(N)-IG, deep-drilled and water cooled Neutron Shield (NS) whose internal walls are lined with actively cooled CuCrZr Duct Liner Modules (DLMs). These Remote Handling Class 2 and 3 panels provide protection from neutral beam power. This paper provides an overview of the preliminary design for the ITER HNB DL and focusses on critical features that ensure compatibility with: high heat flux requirements, remote maintenance procedures, and transient magnetic fields arising from major plasma disruptions. The power deposited on a single DLM can reach 300 kW with a peak power density of 2.4 MW/m{sup 2}. Feeding coolant to the DLMs is accomplished via welded connections to the internal coolant network of the NS. These are placed coaxially to allow for thermal expansion of the DLMs without the use of deformable connections. Critically, the remote maintenance of individual DLMs necessitates access to water connections and bolts from the beam facing surface, thus subjecting them to high heat flux loads. This design challenge will become more prevalent as fusion devices become more powerful

  4. Identification and treatment of variation of extrahepatic bile duct in laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    PENG Lei

    2015-10-01

    Full Text Available ObjectiveTo investigate the identification and treatment of variation of extrahepatic bile duct in laparoscopic cholecystectomy (LC, and to reduce the occurrence of bile duct injury. MethodsThis study included 60 patients who received LC in the People′s Hospital of Caidian District in Wuhan and had structural variation of extrahepatic bile duct found during the operation from January 2012 to January 2014. The clinical data were retrospectively analyzed, and the intraoperative and postoperative conditions were summarized. ResultsDuring operation, cystic duct variation was found in 32 cases, abnormal position of the point where the cystic duct joins the extrahepatic bile duct in 20 cases, the cystic duct and the common hepatic duct having the common wall before joining the common bile duct in 2 cases, aberrant bile duct in the gallbladder bed in 2 cases, and accessory hepatic duct in 4 cases. Fifty-one patients (85% successfully underwent LC; 9 patients (15% were converted to open surgery. All patients finished surgery successfully. There were 2 cases of postoperative complications; one patient developed residual stones in the bile duct, and bile leakage occurred in the other patient at one week after LC, who recovered after reoperation. All patients were cured and discharged, without severe complications such as intraperitoneal hemorrhage, infection, and intestinal injury. ConclusionIdentifying the structural variation of extrahepatic bile duct, dissecting the Calot′s triangle meticulously, and determining the type of variation of extrahepatic bile duct play important roles in LC and significantly reduce the incidence of bile duct injury.

  5. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Science.gov (United States)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  6. Experimental study on two-phase flow in horizontal duct using a visualization technique

    International Nuclear Information System (INIS)

    Oliveira, Livia A.; Tomas, Bruno T.; Cunha Filho, Jurandyr S.; Su, Jian

    2009-01-01

    In this paper an experimental study is performed for visualization of water-air two phase flow, stratified and intermittent, in a 51 mm internal diameter circular section horizontal tube. The study consists in filming a water-air mixture passin by a transparent interval of the tube, using a high speed camera. After that, the obtained images are analysed frame after frame and then, data are extracted of weight of gas-liquid interfaces, length and gas bubbles speeds. Then, these data are verified with experimental and theoretical correlations available in the literature

  7. Bile duct obstruction

    Science.gov (United States)

    ... Tumors that have spread to the biliary system Liver and bile duct worms (flukes) The risk factors include: History of ... Increased bilirubin level Increased alkaline phosphatase level Increased liver enzymes The ... CT scan Endoscopic retrograde cholangiopancreatography ( ...

  8. Laparoscopic common bile duct exploration and antegrade biliary stenting: Leaving behind the Kehr tube

    Directory of Open Access Journals (Sweden)

    Darío Martínez-Baena

    2013-03-01

    Full Text Available Introduction: single-stage laparoscopic surgery of cholelithiasis and associated common bile duct stones (CL-CBDS has shown similar results when compared to laparoscopic cholecystectomy combined with ERCP. Classically, choledochorrhaphy has been protected by a T-tube drain to allow external bypass of bile flow. However, its removal is associated with a significant complication rate. Use of antegrade biliary stents avoids T-tube removal associated morbidity. The aim of this study is to compare the results of choledochorrhaphy plus T-tube drainage versus antegrade biliary stenting in our series of laparoscopic common bile duct explorations (LCBDE. Material and methods: between 2004 and 2011, 75 patients underwent a LCBDE. Choledochorrhaphy was performed following Kehr tube placements in 47 cases and transpapillary biliary stenting was conducted in the remaining 28 patients. Results: postoperative hospital stay was shorter in the stent group (5 ± 10.26 days than in the Kehr group (12 ± 10.6 days, with a statistically significant difference. There was a greater trend to grade B complications in the stent group (10.7 vs. 4.3 % and to grade C complications in the Kehr group (6.4 vs. 3.6 %. There were 3 cases of residual common bile duct stones in the Kehr group (6.4 % and none in the stent group. Conclusions: antegrade biliary stenting following laparoscopic common bile duct exploration for CL-CBDS is an effective and safe technique that prevents T-tube related morbidity.

  9. Structural Pre-sizing of a Coaxial Double-tube Type Hot Gas Duct

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, Y-W [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The nuclear hydrogen system being researched at KAERI is planning to produce hydrogen in the order of 950 .deg. C by using nuclear energy and a thermo-chemical process, and helium gas is tentatively considered as the choice for the coolant. A hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the nuclear hydrogen system. The HGD is a unique component exclusively found in an HTR-module concept where a nuclear core and IHX are placed separately into two pressure vessels, which require a connecting duct between them. A coaxial double-tube type cross vessel is considered for the HGD structure of the nuclear hydrogen system because of its successive extensive experience. In this study, a structural pre-sizing for the primary HGD was carried out. These activities include a predecision on the geometric dimensions, a pre-evaluation on the strength, and a pre-selection on the material of the coaxial double-tube type cross vessel components. A predecision on the geometric dimensions was undertaken based on various engineering concepts, such as a constant flow velocity (CFV) model, a constant flow rate (CFR) model, a constant hydraulic head (CHH) model, and finally a heat balanced (HB) model. For the CFV model, CFR model, and CHH model, the HGD structure might be insensitive to a flow induced vibration (FIV) in the case where there are no pressure differences between the hot and cold helium regions. Also we compared the geometric dimensions from the various models.

  10. Hybrid continuum–molecular modelling of multiscale internal gas flows

    International Nuclear Information System (INIS)

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-01-01

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case

  11. Modeling the compliance of polyurethane nanofiber tubes for artificial common bile duct

    Science.gov (United States)

    Moazeni, Najmeh; Vadood, Morteza; Semnani, Dariush; Hasani, Hossein

    2018-02-01

    The common bile duct is one of the body’s most sensitive organs and a polyurethane nanofiber tube can be used as a prosthetic of the common bile duct. The compliance is one of the most important properties of prosthetic which should be adequately compliant as long as possible to keep the behavioral integrity of prosthetic. In the present paper, the prosthetic compliance was measured and modeled using regression method and artificial neural network (ANN) based on the electrospinning process parameters such as polymer concentration, voltage, tip-to-collector distance and flow rate. Whereas, the ANN model contains different parameters affecting on the prediction accuracy directly, the genetic algorithm (GA) was used to optimize the ANN parameters. Finally, it was observed that the optimized ANN model by GA can predict the compliance with high accuracy (mean absolute percentage error = 8.57%). Moreover, the contribution of variables on the compliance was investigated through relative importance analysis and the optimum values of parameters for ideal compliance were determined.

  12. Pancreaticobiliary duct changes of periampullary carcinomas: Quantitative analysis at MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong Sheng, E-mail: victoryhope@163.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Department of Radiology, No.4 West China Teaching Hospital of Sichuan University, Chengdu 610041 (China); Chen, Wei Xia, E-mail: wxchen25@126.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Wang, Xiao Dong, E-mail: tyfs03yz@163.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Acharya, Riwaz, E-mail: riwaz007@hotmail.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Jiang, Xing Hua, E-mail: 13881865517@163.com [Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China)

    2012-09-15

    Purpose: To quantitatively analyse the pancreaticobiliary duct changes of periampullary carcinomas with volumetric interpolated breath-hold examination (VIBE) and true fast imaging with steady-state precession (true FISP) sequence, and investigate the value of these findings in differentiation and preoperative evaluation. Materials and methods: Magnetic resonance (MR) images of 71 cases of periampullary carcinomas (34 cases of pancreatic head carcinoma, 16 cases of intrapancreatic bile duct carcinoma and 21 cases of ampullary carcinoma) confirmed histopathologically were analysed. The maximum diameter of the common bile duct (CBD) and main pancreatic duct (MPD), dilated pancreaticobiliary duct angle and the distance from the end of the proximal dilated pancreaticobiliary duct to the major papilla were measured. Analysis of variance and the Chi-squared test were performed. Results: These findings showed significant differences among the three subtypes: the distance from the end of proximal dilated pancreaticobiliary duct to the major papilla and pancreaticobiliary duct angle. The distance and the pancreaticobiliary duct angle were least for ampullary carcinoma among the three subtypes. The percentage of dilated CBD was 94.1%, 93.8%, and 100% for pancreatic head carcinoma, intrapancreatic bile duct carcinoma and ampullary carcinoma, respectively. And that for the dilated MPD was 58.8%, 43.8%, and 42.9%, respectively. Conclusion: Quantitative analysis of the pancreaticobiliary ductal system can provide accurate and objective assessment of the pancreaticobiliary duct changes. Although benefit in differential diagnosis is limited, these findings are valuable in preoperative evaluation for both radical resection and palliative surgery.

  13. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    Science.gov (United States)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  14. 5th International Conference on Jets, Wakes and Separated Flows

    CERN Document Server

    2016-01-01

    This volume collects various contributions from the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015) that took place in Stockholm during June 2015. Researchers from all around the world presented their latest results concerning fundamental and applied aspects of fluid dynamics. With its general character, the conference embraced many aspects of fluid dynamics, such as shear flows, multiphase flows and vortex flows, for instance. The structure of the present book reflects the variety of topics treated within the conference i.e. Jets, Wakes, Separated flows, Vehicle aerodynamics, Wall-bounded and confined flows, Noise, Turbomachinery flows, Multiphase and reacting flows, Vortex dynamics, Energy-related flows and a section dedicated to Numerical analyses.

  15. Persistent Mullerian Duct Syndrome (PMDS With Large Intraabdominal Seminoma

    Directory of Open Access Journals (Sweden)

    Della Harigovind

    2017-07-01

    Full Text Available Persistent Mullerian Duct Syndrome, a form of male pseudohermaphroditism is characterized by the presence of the Mullerian duct derivatives in an otherwise phenotypically as well as genotypically normal male. We report a case of large intra abdominal seminoma in a male patient with cryptorchidism, along with persistence of Mullerian duct derivatives (uterus.

  16. Experimental investigation of cooling oil flow in disk-type transformer windings with zigzag flow passages. Paper no. IGEC-1-134

    International Nuclear Information System (INIS)

    Zhang, J.; Li, X.

    2005-01-01

    An experimental study has been conducted to investigate cooling dielectric oil flow in oil naturally cooled (ON) transformer windings. Static pressure in winding ducts has been measured at various strategic locations. Experimental results have been used for the validation of an existing hydraulic network simulation model developed earlier by the authors. It is found that minor losses in ON transformer windings are on the same order of magnitude as frictional loss. Since empirical correlations in literature overestimate the minor losses in low Reynolds number laminar flow regime, an implicit nonlinear optimization approach has been used to calibrate the existing hydraulic model. Consequently, an accurate correlation for minor loss coefficients has been developed, and is valid for Reynolds numbers ranging from 1.1 to 20.9 in horizontal cooling ducts and up to 102.0 in vertical ducts. It is shown that the improved hydraulic network model is in good agreement with the present experimental results and previous results in the literature. (author)

  17. Parotid duct laceration repair in two horses : case report

    Directory of Open Access Journals (Sweden)

    A. Olivier

    1998-07-01

    Full Text Available Repair of parotid duct lacerations in 2 horses is described using intraluminal silastic tubing as a stent. The duct was lacerated traumatically at the facial vessel notch (incisura vasorum facialium in the 1st horse, and iatrogenically after removal of an intraluminal sialolith after development of infection within the duct in the 2nd horse. In both cases, a silastic tube was passed retrograde into the duct via the salivary papilla, past the wound until the end lay rostroventral to the parotid salivary gland. The severed salivary ducts and the wounds were sutured. The external portion of the silastic tube was sutured to the skin and the tube left in place. Recovery in the 1st case was uneventful. In the 2nd case a salivary duct/cutaneous fistula formed at a wound distant from the sutured wound, which healed spontaneously. This technique differs from a similar described technique in that the stent tube exits the oral cavity and is attached to the outer skin surface.

  18. Influence of Reynolds Number on the Unsteady Aerodynamics of Integrated Aggressive Intermediate Turbine Duct

    Science.gov (United States)

    Liu, Hongrui; Liu, Jun; Ji, Lucheng; Du, Qiang; Liu, Guang; Wang, Pei

    2018-06-01

    The ultra-high bypass ratio turbofan engine attracts more and more attention in modern commercial engine due to advantages of high efficiency and low Specific Fuel Consumption (SFC). One of the characteristics of ultra-high bypass ratio turbofan is the intermediate turbine duct which guides the flow leaving high pressure turbine (HPT) to low pressure turbine (LPT) at a larger diameter, and this kind of design will lead to aggressive intermediate turbine duct (AITD) design concept. Thus, it is important to design the AITD without any severe loss. From the unsteady flow's point of view, in actual operating conditions, the incoming wake generated by HPT is unsteady which will take influence on boundary layer's transition within the ITD and LPT. In this paper, the three-dimensional unsteady aerodynamics of an AITD taken from a real engine is studied. The results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX (RANS simulation with transitional model), are critically evaluated against experimental data. After validation of the numerical model, the physical mechanisms inside the flow channel are analyzed, with an aim to quantify the sensitivities of different Reynolds number effect on both the ITD and LPT nozzle. Some general physical mechanisms can be recognized in the unsteady environment. It is recognized that wake characteristics plays a crucial role on the loss within both the ITD and LPT nozzle section, determining both time-averaged and time-resolved characteristics of the flow field. Meanwhile, particular attention needs to be paid to the unsteady effect on the boundary layer of LPT nozzle's suction side surface.

  19. Liver and Bile Duct Cancer—Patient Version

    Science.gov (United States)

    Liver cancer includes hepatocellular carcinoma and bile duct cancer (cholangiocarcinoma). Risk factors for HCC include chronic infection with hepatitis B or C and cirrhosis of the liver. Start here to find information on liver and bile duct cancer treatment, causes and prevention, screening, research, and statistics.

  20. [Percutaneous closure of the patent ductus arteriosus in children with the Amplatzer Duct Occluder II].

    Science.gov (United States)

    Parra-Bravo, José Rafael; Osuna-Izaguirre, Manuel Alfredo; Beirana-Palencia, Luisa; Gálvez-Cancino, Franco; Martínez-Monterrosas, Christian; Lazo-Cárdenas, César; Reyes-Vargas, César

    2014-01-01

    In the last decades, several devices have been used for the percutaneous closure of patent ductus arteriosus, with its own limitations and risks. The Amplatzer Duct Occluder II has been designed to overcome those limitations and reduce risks. We described our initial series of patients who underwent percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder II, emphasis on the technical aspects of the procedure. We reviewed the clinical records of 9 patients with patent ductus arteriosus who underwent percutaneous closure with the Amplatzer Duct Occluder II. Median age was 24 months (range 8-51 months) and the median weight was 10.7kg (range 6-16.3kg). The minimal ductus arteriosus diameter was 2.7mm (1-5mm). Implantation was successful in all cases. The devices most commonly used (33.3%) were the dimensions 4-4mm (3 patients), in 2 patients were used 3-4mm and in the rest of the patients were employed occluder other sizes. Four cases showed slight residual flow immediately after implantation. Total closure was achieved in 24h in 8 of 9 patients (89%). There was no embolization of the occluder or deaths during the procedure and we only observed one minor complication. The Amplatzer Duct Occluder II in this series was effective in 89% of the patients at 24hs after the procedure and 100% follow-up. The implantation was safe and no major complications were observed. The occlusion rate is comparable to those reported for the Amplatzer Duct Occluder I. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  1. Low-frequency noise reduction of fans using the acoustically treated duct; Kyuon duct ni yoru fan soon no teishuhaiki teigen

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K; Fujii, S [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering; Shirasaya, H [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1994-12-25

    Reducing noise in a low frequency region of 1 kHz or less has become an important problem as a result of emergence of an ultra-high bypass engine in aircraft engines. Therefore, an attempt was made of experimenting and analyzing noise absorption characteristics in low-frequency noises. In the experiment, a low-frequency flow with an air volume of about 3 m{sup 3}/minute was made at a stable operating point of a fan device consisting of moving blades and static blades, with a sound absorbing duct disposed in the forward section. The duct is a 500-mm long steel box with an oblong cross section, in which the top and the bottom parts can move vertically, and a variable air layer was formed between a sound absorbing material (a sheet material made of microfine spherical resin powders solidified to a thickness of 6 mm) and a rigid wall made of iron plate. Noise waves and sound absorption amount were measured on different air layer thicknesses, and analyzed theoretically. As a result, such findings were obtained as: the sound absorption amount is affected by the main stream direction mode of sound pressures in cavity; valleys are formed where the sound absorption amount decreases remarkably in a specific cycle; and peaks are built where the sound absorption amount increases in other regions. 7 refs., 12 figs.

  2. Submandibular duct sialolithiasis an unusual presentation

    International Nuclear Information System (INIS)

    Shafi, M.; Jafferi, S.; Jafferi, S.

    2006-01-01

    Multiple calculi in a submandibular gland duct is an uncommon occurrence. One such case occurring in a young boy of 25 years is reported here where thirteen very small stones of 1-3 mm of maximum diameter were lined up in the Wharton's duct in such a way that they were difficult to appreciate on inspection and palpation. Successful exploration was done in two steps. (author)

  3. Percutaneous diagnosis and treatment in disease conditions of the bile ducts and the gallbladder

    International Nuclear Information System (INIS)

    Hauenstein, K.H.; Wimmer, B.; Salm, R.; Farthmann, E.H.

    1991-01-01

    Percutaneous transhepatic access to the bile duct has opened up new possibilities not only for diagnosis by means of cholangiography and cholangioscopy with endoscopically guided biopsy by small-bore equipment, but also for the treatment of benign and malignant obstructive jaundice. In malignant disease recanalization of the obstruction is possible by means of laser, intracavitary irritation, internal bile drainage in Klatskin tumors, large-diameter endoprostheses (e.g., a Y-shaped prosthesis) or metal stents. In benign disease, balloon dilatation of inflammatory stenoses, stone extractions from the bile duct or gallbladder by means of Dormia baskets, ultrasound or pezo electric shockwave-contact lithotripsy and chemical litholysis are possible very often percutaneous access is a real alternative to surgical intervention. (orig.) [de

  4. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D. [BA-PIRC, Cocoa, FL (United States); McIlvaine, J. [BA-PIRC, Cocoa, FL (United States); Fonorow, K. [BA-PIRC, Cocoa, FL (United States); Martin, E. [BA-PIRC, Cocoa, FL (United States)

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces.

  5. Evaluation of PEGIT duct connection system

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Brenner, Douglas E.; Sherman, Max H.; Dickerhoff, Darryl J.

    2003-08-01

    Most air duct system components are assembled in the field and are mechanically fastened by sheet metal screws (for sheet metal-to-sheet metal) or by drawbands (for flex duct-to-sheet metal). Air sealing is separate from this mechanical fastening and is usually achieved using tape or mastic products after mechanical fastening. Field observations have shown that mechanical fastening rarely meets code or manufacturers requirements and that sealing procedures are similarly inconsistent. To address these problems, Proctor Engineering Group (PEG) is developing a system of joining ducts (called PEGIT) that combines the mechanical fastening and sealing into a single self-contained procedure. The PEGIT system uses a shaped flexible seal between specially designed sheet metal duct fittings to both seal and fasten duct sections together. Figure 1 shows the inner duct fitting complete with rubber seal. This seal provides the air seal for the completed fitting and is shaped to allow the inner and outer fittings to slide together, and then to lock the fittings in place. The illustration in Figure 2 shows the approximate cross section of the rubber seal that shows how the seal has a lip that is angled backwards. This angled lip allows the joint to be pushed together by folding flat but then its long axis makes it stiff in the pulling apart direction. This study was undertaken to assist PEG in some of the design aspects of this system and to test the performance of the PEGIT system. This study was carried out in three phases. The initial phase evaluated the performance of a preliminary seal design for the PEGIT system. After the first phase, the seal was redesigned and this new seal was evaluated in the second phase of testing. The third phase performed more detailed testing of the second seal design to optimize the production tolerances of the sheet metal fittings. This report summarizes our findings from the first two phases and provides details about the third phase of testing.

  6. Measure Guideline: Sealing and Insulating of Ducts in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  7. International Workshop on Traffic and Granular Flow

    CERN Document Server

    Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics

    2000-01-01

    "Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.

  8. Turning Vanes in Exhaust Duct Flow: Study for Energy Efficiency, Optimization and Pressure Drop Mitigation

    Science.gov (United States)

    2014-09-01

    engine cycle. However, much is to be gained by researching and studying the effects of reducing backpressure on the engine by the exhaust gases. In many...in maintenance on the exhaust duct, and the effectiveness of WHR devices downstream of the 90o bend. To evaluate the problem of backpressure in...the front-end of the engine (air intake and the actual combustion cycle itself), the amount of resources for

  9. Squamous metaplasia of lactiferous ducts (SMOLD)

    International Nuclear Information System (INIS)

    Lo, G.; Dessauvagie, B.; Sterrett, G.; Bourke, A.G.

    2012-01-01

    The aim of this review is to illustrate the mammographic and sonographic appearances of squamous metaplasia of the lactiferous ducts (SMOLD) and to discuss the disease processes of this uncommon breast disease, which shows a strong correlation with smoking. The most common mammographic appearance is of a retro-areolar asymmetrical density. Ultrasonography of the symptomatic breast typically shows a retro-areolar, predominately medial, ill-defined, hypoechoic lesion with either abscess or sinus/fistula formation. Duct dilatation and continuity with lactiferous ducts is commonly seen. Increased vascularity is occasionally seen on colour Doppler ultrasound. Pathology tissue confirmation is always required and this can be by histology of a core biopsy or excision specimen, or fine-needle aspiration (FNA) cytology. Occasionally smears of an associated abundant nipple or sinus discharge may be of value.

  10. Ducted wind turbine optimization : A numerical approach

    NARCIS (Netherlands)

    Dighe, V.V.; De Oliveira Andrade, G.L.; van Bussel, G.J.W.

    2017-01-01

    The practice of ducting wind turbines has shown a beneficial effect on the overall performance, when compared to an open turbine of the same rotor diameter1. However, an optimization study specifically for ducted wind turbines (DWT’s) is missing or incomplete. This work focuses on a numerical

  11. Turbulent flow and heat transfer in channels with combined rough and smooth surfaces

    International Nuclear Information System (INIS)

    Aytekin, A.

    1978-01-01

    A two-part experimental investigation is reported on the effects of transverse square rib roughening on fluid flow and heat transfer in channels with uniform and non-uniform boundary conditions. The first part of the experimental programme consisted of providing detailed measurements of mean and basic turbulent characteristics of fully developed flow in two rectangular ducts of aspect ratios 1.63 and 3.0. In each duct only one wall was roughened. In channels having low aspect ratios secondary flows play an important part in momentum transfer, and an interpretation of their effect on the measured Reynolds shear stress distribution has been attempted. In the second part of the experimental programme mean velocity and temperature profiles, friction factors and Stanton numbers were measured in an internally roughened pipe and annuli composed of a rough inner rod and either a smooth or a rough outer pipe. Heating was always applied on the outer surface. In all the geometries the mean velocities near the rough walls were found to be represented by logarithmic straight lines. The gradients of these lines were independent of Reynolds number but differed for various geometries. The mean temperature profiles, measured in the rough pipe and the fully rough annulus, showed that these could also be represented by logarithmic straight lines, but the slopes of these profiles were markedly different from those of the velocity profiles. (author)

  12. Common bile duct cancer with massive necrosis mimicking choledochal dilatation on CT

    International Nuclear Information System (INIS)

    Miyake, H.; Matsumoto, S.; Ueda, S.; Maeda, T.; Aikawa, H.; Mori, H.

    1991-01-01

    Carcinomas of the common bile duct are usually seen as dilatation of the bile duct proximal to a solid mass on CT. In the case reported here, the common bile duct cancer itself mimicked dilated common bile duct on CT because of massive necrosis. In a case of simulating dilated common bile duct on CT, and discrepancy between CT and ultrasonography or endoscopic retrograde cholangiopancreatography, a common bile duct cancer with massive necrosis should be included in the differential diagnosis. (orig.)

  13. Breaking down the silos to decrease internal diversions and patient flow delays.

    Science.gov (United States)

    Driscoll, Molly; Tobis, Kristen; Gurka, David; Serafin, Frederick; Carlson, Elizabeth

    2015-01-01

    Hospitals strive to admit patients to the units where caregiver competencies align with the patient's condition. When the hospital's census peaks, internal diversions and the associated risks increase, which are intensified when silos exist, as segregated care negatively impacts collaboration and patient safety. In this study, a 600+-bed academic, tertiary care specialty hospital experienced an increase in internal diversions. Within the neuroscience service line, emergent neuroscience transfers from outside hospitals had been declined or internally diverted because of capacity limitations. Formalized processes for improving collaboration between health care providers related to capacity issues were required to decrease internal diversions and improve patient flow and patient safety. A pilot project was conducted on neuroscience units during a process improvement initiative. A hospital-wide internal diversion plan was developed, identifying primary and secondary placement options for all patients requiring hospitalization to support patient flow and patient safety. Forecasting tools were developed to provide units' leadership with current information on expected admissions. Daily capacity huddles were instituted to increase collaboration between patient care units. The interventions trialed during the pilot decreased internal diversions and improved patient flow. The improved collaboration resulted in an 80% decrease in declinations of emergent intensive care unit transfers from outside hospitals due to capacity limitations and a 50% decrease in the number of these patients being internally diverted to alternate intensive care units. The interventions implemented minimized internal diversions and improved patient flow. The transparency of the patient placement process led to an increased collaboration between all participants.

  14. Experimental Investigation of Thermohydraulic Performance of a Rectangular Solar Air Heater Duct Equipped with V-Shaped Perforated Blocks

    Directory of Open Access Journals (Sweden)

    Tabish Alam

    2014-01-01

    Full Text Available This paper presents the thermohydraulic performance of rectangular solar air heater duct equipped with V-shaped rectangular perforated blocks attached to the heated surface. The V-shaped perforated blocks are tested for downstream (V-down to the air flow at Reynolds number from 2000 to 20000. The perforated blocks have relative pitch ratio (P/e from 4 to 12, relative blockage height ratio (e/H from 0.4 to 1.0, and open area ration from 5% to 25% at a fixed value of angle of attack of 60∘ in a rectangular duct having duct aspect ratio (W/H of 12. Thermohydraulic performance is compared at different geometrical parameters of V-shaped perforated blocks for equal pumping power which shows that maximum performance is observed at a relative pitch of 8, relative rib height of 0.8, and open area ration of 20%. It is also observed that the performance of V-shaped perforated blocks was better than transverse-perforated blocks.

  15. Forced convection heat transfer with slurry of phase change material in circular ducts: A phenomenological approach

    International Nuclear Information System (INIS)

    Royon, Laurent; Guiffant, Gerard

    2008-01-01

    A model describing the thermal behaviour of a slurry of phase change material flow in a circular duct is presented. Reactors connected in series are considered for the representation of the circular duct with constant wall temperature. A phenomenological equation is formulated to take account of the heat generation due to phase change in the particles. Results of the simulation present a plateau of temperature along the longitudinal direction, characteristic of the phase change. The effect of different parameters such as the Reynolds number, the weight fraction and the temperature of the cold spring on the length of the plateau is analysed. A correlation resulting from numerical results is proposed for use in the determination of the characteristics of the exchanger for a phase change material slurry

  16. Design requirement on KALIMER control rod assembly duct

    International Nuclear Information System (INIS)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J.

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs

  17. Design requirement on KALIMER control rod assembly duct

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs.

  18. Hollow-duct radiation delivery system investigation

    Directory of Open Access Journals (Sweden)

    Kramer D.

    2013-05-01

    Full Text Available Investigation of hollow-duct structure for high-power laser-diode-array radiation delivery into the end-pumped large-aperture gain media is reported. A ray tracing method has been used to evaluate the performance of the structure designed for maximum transmission efficiency and output beam profile homogeneity. Variable hollow-duct lengths as well as emanating angles of laser-diode-array have been taken into account.

  19. Subchannel friction factors for rod bundles: laminar flow predictions and their application to turbulent flows

    International Nuclear Information System (INIS)

    Robinson, D.P.

    1979-02-01

    For the calculation of friction factors the use of correlations validated for smooth circular tubes along with the duct hydraulic diameter is known to be inappropriate for certain non-circular geometries. In order to test the validity and range of application of such correlations to the subchannels of rod bundles a computer programme has been written for the prediction of subchannel laminar velocity distributions and friction coefficients for fully developed flow. The theoretical basis and development of the programme is described along with comparisons between predictions and existing solutions for some simple geometries. Using the computer programme a wide range of calculations have been carried out for flow sections representing edge, corner and internal subchannels of rod bundles with particular emphasis on those of in-line pin bundle geometries. Where comparison can be made the predicted laminar coefficients are in excellent agreement with existing solutions. Although the approach adopted here could be used as the basis of a model for the subchannel axial friction factor, careful account should be taken of enhanced turbulent momentum transfer in situations where the flow is not unidirectional. (UK)

  20. Aeroacoustics of T-junction merging flow.

    Science.gov (United States)

    Lam, G C Y; Leung, R C K; Tang, S K

    2013-02-01

    This paper reports a numerical study of the aeroacoustics of merging flow at T-junction. The primary focus is to elucidate the acoustic generation by the flow unsteadiness. The study is conducted by performing direct aeroacoustic simulation approach, which solves the unsteady compressible Navier-Stokes equations and the perfect gas equation of state simultaneously using the conservation element and solution element method. For practical flows, the Reynolds number based on duct width is usually quite high (>10(5)). In order to properly account for the effects of flow turbulence, a large eddy simulation methodology together with a wall modeling derived from the classical logarithm wall law is adopted. The numerical simulations are performed in two dimensions and the acoustic generation physics at different ratios of side-branch to main duct flow velocities VR (=0.5,0.67,1.0,2.0) are studied. Both the levels of unsteady interactions of merging flow structures and the efficiency of acoustic generation are observed to increase with VR. Based on Curle's analogy, the major acoustic source is found to be the fluctuating wall pressure induced by the flow unsteadiness occurred in the downstream branch. A scaling between the wall fluctuating force and the efficiency of the acoustic generation is also derived.

  1. An incidence study on thyroglossal duct cysts in adults

    International Nuclear Information System (INIS)

    Kurt, A.; Ortug, C.; Aydar, Y.; Ortug, G.

    2007-01-01

    To investigate the incidence of the asymptomatic thyroglossal duct anomalies and to review the literature and make comments on the significance of this condition. A total of 80 cadavers were dissected in the present study. This study was carried out during 2005, where the cadavers were randomly included from the criminal laboratories of the Ministry of Justice, Republic of Turkey in Istanbul. None of the cadavers had laryngeal and cervical injuries resulting from a trauma or the cause of their death. The examined cadavers included 59 men and 21 females, and their ages were ranged from 35-80 years old. The larynges were removed and fixed in 10% formalin and then dissected. The sections were examined using surgical SMZ 10 Nikon stereomicroscope. We evaluated the presence, localization and diameter of the cysts with regard to age and sex of the cadavers. We observed a total of 12 different localization of thyroglossal ducts and cysts among the 80 dissected cadavers. Ten of these ducts cysts were found in males with an age range of 35-68 years and 2 female cadavers aged 45-65 years. In 6 cases, the thyroglossal ducts and cysts were located in the left of the midline of the neck, while 3 cases were from the right of the midline, and the remaining was located on the midline of the neck. In all cases, thryoglossal ducts and cysts were complete and restricted to the infrahyoid region: all of them had connection with the hyoid bone, but not with the perichondrium of the cartilage. In addition, the thyroglossal ducts have connection with the left lobe of the thyroid glands in 3 cases, one case in the right lobe, and 2 cases with the isthmus of the thyroid gland. Finally in 5 cases thyroglossal ducts were complete and had well developed cysts. Thyroglossal duct remnants are one of the most often seen congenital asymptomatic masses of the neck region (7%). The presence of these duct remnants may lead to abnormal phonation and epithelial carcinomas. Therefore, correlation of

  2. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Annuli (Part I)

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1962-12-01

    The present report deals with measurements of burnout conditions for flow of boiling water in an annulus with an inner diameter of 9.92 mm, an outer diameter of 17 - 42 mm and a heated length of 608 mm. Data were obtained in respect of external heating only, internal heating only and dual uniform and non-uniform heating. The following ranges of variables were studied and 978 burnout measurements were obtained. Pressure 8.5 2 ; Inlet subcooling 60 sub i 2 ; Outer surface heat flux 0 o 2 ; Mass velocity 71 2 /sec; The results are presented in diagrams where the burnout steam qualities, x BO , were plotted against the pressure with the surface heat fluxes as parameters. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the case of equal heat fluxes on both walls of the annulus, burnout always occurred on the inner wall, and the data compared rather well with round duct data. When the annulus was heated internally only, the data showed very low burnout values in comparison with the results for dual heating and round ducts. This disagreement was explained by considering the climbing film flow model and by the fact that only a fraction of the channel perimeter was heated. For external heating the data are somewhat lower than corresponding round duct data, but rather high in comparison with internal heating. The climbing film flow model was also used to interpret this observation. For dual non-uniform heating it was found that the outer surface may be overloaded from 30 to 70 per cent compared with the inner surface without reducing the margin of safety in respect of burnout for the annulus. It was further observed that when the heat flux fox the wall on which burnout occurs is increased, the burnout steam quality for the channel decreases. If, however, the heat flux for the opposite wall is increased, the burnout steam quality also increases. It was also observed that the highest burnout values are obtained

  3. Endoscopic stenting in bile duct cancer increases liver volume.

    Science.gov (United States)

    Lee, Chang Hun; Kim, Seong Hun; Kim, In Hee; Kim, Sang Wook; Lee, Soo Teik; Kim, Dae Ghon; Yang, Jae Do; Yu, Hee Chul; Cho, Baik Hwan; Lee, Seung Ok

    2014-09-01

    Objective evaluation tools for assessing the effectiveness of stenting in palliative treatment of malignant biliary obstruction are not satisfactory. Effects of biliary stenting on liver volume change have never been studied. We aimed to use volumetry to analyze liver volume changes after endoscopic stenting in bile duct cancer according to the location and number of stents. Retrospective review. University hospital. Patients with a diagnosis of hilar or distal bile duct cancer and who underwent biliary metal stenting. ERCP with self-expandable metal stent placement. Liver volume change after biliary stenting and its comparison according to the location (hilar vs distal common bile duct) and number (hilar bilateral vs hilar unilateral). There were 60 patients; 31 were treated for hilar bile duct cancer (13 for bilateral stent and 18 for unilateral stent) and 29 for distal bile duct cancer. Overall mean follow-up duration was 11.7 ± 4.9 weeks. Liver volume increased 17.4 ± 24.1%. The rate of liver growth was rapid during the early period from 4 to 8 weeks. Stenting in hilar bile duct cancer tended to increase liver volume more than distal biliary stents (22.5% vs 11.9%, P = .091). In hilar bile duct cancer, unilateral and bilateral stents showed similar liver volume increases (20.1% and 25.8%, respectively; P = .512). Single center, retrospective. Biliary stenting markedly increased liver volume in both hilar and distal bile duct cancer. Our data suggest that liver volume assessment could be a useful tool for evaluating stent efficacy. Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  4. Reconstruction of Bile Duct Injury and Defect with the Round Ligament.

    Science.gov (United States)

    Dokmak, Safi; Aussilhou, Béatrice; Ragot, Emilia; Tantardini, Camille; Cauchy, François; Ponsot, Philippe; Belghiti, Jacques; Sauvanet, Alain; Soubrane, Olivier

    2017-09-01

    Lateral injury of the bile duct can occur after cholecystectomy, bile duct dissection, or exploration. If direct repair is not possible, conversion to bilioenteric anastomosis can be needed with the risk of long-term bile duct infections and associated complications. We developed a new surgical technique which consist of reconstructing the bile duct with the round ligament. The vascularized round ligament is completely mobilized until its origin and used for lateral reconstruction of the bile duct to cover the defect. T tube was inserted and removed after few months. Patency of the bile duct was assessed by cholangiography, the liver function test and magnetic resonance imaging (MRI). Two patients aged 33 and 59 years old underwent lateral reconstruction of the bile duct for defects secondary to choledocotomy for stone extraction or during dissection for Mirizzi syndrome. The defects measured 2 and 3 cm and occupied half of the bile duct circumference. The postoperative course was marked by low output biliary fistula resolved spontaneously. In one patient, the T tube was removed at 3 months after surgery and MRI at 9 months showed strictly normal aspect of the bile duct with normal liver function test. The second patient is going very well 2 months after surgery and the T tube is closed. Lateral reconstruction of the bile duct can be safely achieved with the vascularized round ligament. We will extend our indications to tubular reconstruction.

  5. Anatomic variations in intrahepatic bile ducts in a north Indian population.

    Science.gov (United States)

    Sharma, Vijay; Saraswat, Vivek Anand; Baijal, Sanjay Saran; Choudhuri, Gourdas

    2008-07-01

    In the present study, we described the anatomical variations in the branching patterns of intrahepatic bile ducts (IHD) and determined the frequency of each variation in north Indian patients. There are no data from India. The study group consisted of 253 consecutive patients (131 women) undergoing endoscopic retrograde cholangiograms for different indications. Anatomical variations in IHD were classified according to the branching pattern of the right anterior segmental duct (RASD) and the right posterior segmental duct (RPSD), presence or absence of first-order branch of left hepatic duct (LHD) and of an accessory hepatic duct. Anatomy of the IHD was typical in 52.9% of cases (n = 134), showing triple confluence in 11.46% (n = 29), anomalous drainage of the RPSD into the LHD in 18.2% (n = 46), anomalous drainage of the RPSD into the common hepatic duct (CHD) in 7.1% (n = 18), drainage of the right hepatic duct (RHD) into the cystic duct 0.4% (n = 1), presence of an accessory duct leading to the CHD or RHD in 4.7% (n = 12), individual drainage of the LHD into the RHD or CHD in 2.4% (n = 6), and unclassified or complex variations in 2.7% (n = 7). None had anomalous drainage of RPSD into the cystic duct. The branching pattern of IHD was atypical in 47% patients. The two most common variations were drainage of the RPSD into the LHD (18.2%) and triple confluence of the RASD, RPSD, and LHD (11.5%).

  6. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  7. Piezoelectric Energy Harvesting in Internal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2015-10-01

    Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  8. Piezoelectric energy harvesting in internal fluid flow.

    Science.gov (United States)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-10-14

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  9. Congenital double bile duct presenting as recurrent cholangitis in a child

    Directory of Open Access Journals (Sweden)

    K.D. Chakravarty

    2015-12-01

    Full Text Available Double common bile duct (DCBD is a rare congenital anomaly. Most of these bile duct anomalies are associated with bile duct stones, anomalous pancreaticobiliary junction (APBJ, pancreatitis and bile duct or gastric cancers. Early detection and treatment is important to avoid long term complications. Surgical resection of the anomalous bile duct and reconstruction of the biliary enteric anastomosis is the treatment of choice. We report a rare case of DCBD anomaly in a girl, who presented with recurrent cholangitis. She had type Va DCBD anomaly. She underwent successful resection of the bile duct and reconstruction of the biliary enteric anastomosis. Preoperative imaging and diagnosis of the congenital biliary anomaly is very important to avoid intraoperative bile duct injury. Review of the literature shows very few cases of type Va DCBD, presenting with either bile duct stones or APBJ.

  10. Anatomic relationship of intrahepatic bile ducts to portal veins revisited

    International Nuclear Information System (INIS)

    Bret, P.M.; Stempel, J.; Atri, M.; Lough, J.O.; Illescas, F.F.

    1987-01-01

    It is well accepted that intrahepatic bile ducts lie in front of corresponding portal vein branches. Since the authors' clinical experience with US was different, they studied 18 normal necropsy cadaver livers. The common bile duct, main portal vein, and hepatic artery were cannulated and injected respectively with air, dilute contrast medium, and mineral oil. The livers were then examined in anatomic position with CT. In the left lobe of the liver, the bile ducts were anterior to the portal vein in seven cases, posterior in seven cases, and were tortuous both anterior and posterior in three cases. In the right lobe, the bile ducts were anterior in nine cases, posterior in five cases, tortuous in one case, and not seen in two cases. In the porta hepatis, the bile ducts were anterior in eight cases, posterior in one case, tortuous in five cases, and not seen in three cases. Histologic specimens confirmed the anterior and posterior location of the bile ducts relative to the portal veins. In conclusion, intrahepatic bile ducts can be either anterior or posterior to the corresponding portal vein branches

  11. Internal flow of acoustically levitated drops undergoing sectorial oscillations

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Yan, Z.L.; Wei, B.

    2010-01-01

    We present the experimental observation and theoretical analysis of fluid flow in acoustically levitated water drop undergoing sectorial oscillations. The fluid always flows between the extended sections and the compressed sections. The magnitude of fluid velocity decreases from the equatorial fringe to the centre of levitated drop. The maximum fluid velocity is 60-160 mm/s and the Reynolds number of the oscillations is estimated to be 137-367. The internal flow of the drop is analyzed as potential flow, and the fluid velocity is found to be horizontal. In the equatorial plane, the calculated stream lines and velocity profiles agree well with the experimental observations.

  12. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  13. CT findings of thyroglossal duct cyst

    International Nuclear Information System (INIS)

    Kim, Dong Oh; Kim, Hong Soo; So, Hyun Soon; Nam, Mee Young; Choi, Jae Ho; Rhee, Hak Song

    1995-01-01

    The purpose of this study was to evaluate the CT findings of thyroglossal duct cysts. Sixteen patients with pathologically proved thyroglossal duct cysts were included in the study. CT scans were assessed retrospectively for shape, size, location, density of the central portions, septations, rim enhancement, changes in the adjacent fascial planes and investment within the strap muscles in the infrahyoid cysts. Thirteen cases of thyroglossal duct cysts were seen as round or oval cystic masses, two cases of them were seen as irregular-shaped lobulated cystic masses, and one case was seen as ovoid soft tissue mass. The cysts were from 1.4 to 5.7 cm in diameter (mean, 2.6 cm). The cyst was infrahyoid in 15 cases and suprahyoid in one case. The cyst was located in midline in eight cases, off midline in four cases, and both midline and off midline in four cases. The density of the central portions ranged from 15 to 82HU (mean, 32HU). Septations were noted in four cases. Rim enhancement was seen in 14 cases (93%), and heterogeneously enhancing soft tissue mass was seen in one case. In four cases, abnormal fascial planes were observed. All but one of the infrahyoid cysts (14/15) were embedded within the strap muscles, and one case of them was located anteriorly to strap muscles. CT permits one to make the diagnosis a thyroglossal duct cyst with a high degree of accuracy, as it can differentiate thyroglossal duct cysts from the other anterior neck masses by their typical location, characteristic morphology, and investment within the strap muscles

  14. Liver and Bile Duct Cancer—Health Professional Version

    Science.gov (United States)

    Liver cancer includes two major types: hepatocellular carcinoma (HCC) and intrahepatic bile duct cancer, also known as cholangiocarcinoma. Find evidence-based information on liver and bile duct cancer treatment, causes and prevention, screening, research, genomics and statistics.

  15. Forced convection heat transfer in rectangular ducts: general case of wall resistances and peripheral conduction

    Energy Technology Data Exchange (ETDEWEB)

    Lyczkowski, R. W. [Institute of Gas Technology, Chicago, IL (United States); Solbrig, C. W. [Commonwealth Edison Co., Chicago, IL (United States); Gidaspow, D. [Illinois Inst. of Technology, Chicago, IL (United States)

    1980-01-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition.

  16. Results of duct-occlud or nit-occlud device occlusion of patent ductus arteriousus

    International Nuclear Information System (INIS)

    Zhou Aiqing; Gao Wei; Yu Zhiqing; Li Feng; Wang Rongfa

    2003-01-01

    Objective: To evaluate the safety and efficacy of transcatheter patent ductus arteriosus (PDA) occlusion with the Duct-Occlud or Nit-Occlud device. Methods: All 68 patients with PDA (less than 4 mm minimum diameter) underwent percutaneous Duct-Occlud or Nit-Occlud coil occlusion in the Department of Cardiology, Shanghai Children's Medical Center between April 1997 and December 2001. The mean age was 5.5 ± 2.8 years (range, 1.5 to 12 years); mean weight was 13.9 ± 9.8 kg (range, 11.0 to 59.0 kg). The mean minimum diameter of the PDA was 1.63 ± 0.62 mm (range, 0.5-3.8 mm). Standard right and left retrograde heart catheterization were performed and followed by coil occlusion. A 4Fr or 5Fr catheter was used for coil deployment. Results: All patients had successful implantation of Duct-Occlud or Nit-Occlud devices. Patients follow-up evaluations were conducted at hospital discharge and after 3, 6 months and 1 year. At the discharge day and 1 year later, all patients showed complete PDA closure by color flow echo Doppler imaging. The hospitalization were only 5 days. At a median follow-up interval of 3.5 years (1 month to 4.6 years), there were no hemolysis, coil migration, delayed recanalization, thromboembolic episodes, or bacterial endocarditis. Conclusions: Because of the specifically designed coil with coincidental geometry of the ductus arteriosus, so transcatheter closure of PDA with the Duct-Occlud device is safe and effective for the closure of small-to-moderate-size patient ductus arteriosus. Utilization of Nit-Occlud is limited, but somewhat useful for large PDAs which is needed to be further investigated

  17. Results of duct-occlud or nit-occlud device occlusion of patent ductus arteriousus

    Energy Technology Data Exchange (ETDEWEB)

    Aiqing, Zhou; Wei, Gao; Zhiqing, Yu; Feng, Li; Rongfa, Wang [Shanghai Second Medical Univ., Shanghai (China). Shanghai Xinhua Hospital

    2003-10-01

    Objective: To evaluate the safety and efficacy of transcatheter patent ductus arteriosus (PDA) occlusion with the Duct-Occlud or Nit-Occlud device. Methods: All 68 patients with PDA (less than 4 mm minimum diameter) underwent percutaneous Duct-Occlud or Nit-Occlud coil occlusion in the Department of Cardiology, Shanghai Children's Medical Center between April 1997 and December 2001. The mean age was 5.5 {+-} 2.8 years (range, 1.5 to 12 years); mean weight was 13.9 {+-} 9.8 kg (range, 11.0 to 59.0 kg). The mean minimum diameter of the PDA was 1.63 {+-} 0.62 mm (range, 0.5-3.8 mm). Standard right and left retrograde heart catheterization were performed and followed by coil occlusion. A 4Fr or 5Fr catheter was used for coil deployment. Results: All patients had successful implantation of Duct-Occlud or Nit-Occlud devices. Patients follow-up evaluations were conducted at hospital discharge and after 3, 6 months and 1 year. At the discharge day and 1 year later, all patients showed complete PDA closure by color flow echo Doppler imaging. The hospitalization were only 5 days. At a median follow-up interval of 3.5 years (1 month to 4.6 years), there were no hemolysis, coil migration, delayed recanalization, thromboembolic episodes, or bacterial endocarditis. Conclusions: Because of the specifically designed coil with coincidental geometry of the ductus arteriosus, so transcatheter closure of PDA with the Duct-Occlud device is safe and effective for the closure of small-to-moderate-size patient ductus arteriosus. Utilization of Nit-Occlud is limited, but somewhat useful for large PDAs which is needed to be further investigated.

  18. The CNEN Helium-Caesium Blow-Down MPD Facility and Experiments with a Prototype Duct

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, E.; Toschi, R. [CNEN, Frascati (Italy); Lindley, B. C. [C.A. Parsons and Co. Ltd (United Kingdom); Brown, R.; McNab, I. R. [International Research and Development Co. Ltd., Newcastle Upon Tyne (United Kingdom)

    1966-11-15

    The CNEN blow-down loop has been designed to study a helium-caesium MPD generator with particular regard to non-equilibrium ionization effects. An operating condition of the loop is: gas mass flow 0.2 kg/sec, seed fraction 1 at, wt.%, useful pulse duration 20 sec, stagnation temperature 2000 Degree-Sign K, stagnation pressure 5 atm abs, thermal power 1.6 MW, Mach number 0.6, magnetic field 4 Wb/m2, total impurity level less than 100 ppm. A sufficiently wide range of the stagnation conditions can be obtained with the present arrangement of the loop (temperature up to 2000*K, pressure from slightly sub-atmospheric to 6atmabs, gas mass flow from 50 g/sec to 400 g/sec, seed fraction from 0.1 to 2 at. wt.%. The storage heater is an alumina pebble bed electrically heated with tungsten elements and thermally insulated with zirconia fibre; the thermal capacity at 2000 Degree-Sign K is about 1000 MJ. Pure helium is obtained by evaporation of liquid helium at between 4.5 and 5 Degree-Sign K; liquid caesium is injected into a limited section of the pebble bed to provide a mixture of the two gases uniform in density and temperature. The duct is made of boron nitride (5 cm x 3 cm x 22 cm) with 25 pairs of tantalum electrodes whose geometry (electrode width 3 mm, segmentation pitch 9 mm) should prevent current leakage between adjacent electrodes; the duct walls and transfer can be pre-heated up to 1700 Degree-Sign K. A magnetic field of 4 Wb/m{sup 2} is obtained with a pulsed cryogenic magnet with pulse duration of 6 sec. Two series of experiments have been completed to assess the feasibility of the helium-caesium heating system and the generator duct. Heating system experiments, (a) Compatibility of alumina with tungsten, tantalum and caesium, with thermal cycling at 2000 Degree-Sign K; (b) Purification of zirconia fibre and its behaviour at high temperature, with thermal cycling at 2000 Degree-Sign K; (c) Capability of an alumina pebble bed of evaporating, heating and mixing

  19. Time course of collagen peak in bile duct-ligated rats

    OpenAIRE

    Tarcin, Orhan; Basaranoglu, Metin; Tahan, Veysel; Tahan, Gülgün; Sücüllü, Ilker; Yilmaz, Nevin; Sood, Gagan; Snyder, Ned; Hilman, Gilbert; Celikel, Cigdem; Tözün, Nurdan

    2011-01-01

    Abstract Background One of the most useful experimental fibrogenesis models is the "bile duct-ligated rats". Our aim was to investigate the quantitative hepatic collagen content by two different methods during the different stages of hepatic fibrosis in bile duct-ligated rats on a weekly basis. We questioned whether the 1-wk or 4-wk bile duct-ligated model is suitable in animal fibrogenesis trials. Methods Of the 53 male Wistar rats, 8 (Group 0) were used as a healthy control group. Bile duct...

  20. A remote joint system for large vacuum ducts

    International Nuclear Information System (INIS)

    Hagmann, D.B.; Coughlan, J.B.

    1983-01-01

    A large remote vacuum duct joining system has been developed for fusion machines that uses several two-jaw screwdriven clamps. The preferred location for clamp installation is inside the vacuum duct where access space is available for the actuating device. It also decreases space needed for handling operations exterior to the duct. The clamp system is unique in that it is low cost, applies force directly over the seal, permits leak testing to the seal annulus, is highly reliable, can be remotely replaced, and is usable on a variety of other applications

  1. [Salivary gland drainage into the thyroglossal duct].

    Science.gov (United States)

    Siem, G; Natvig, K; Kolbenstvedt, A; Lømo, J

    2001-01-20

    Failure in regression of the thyroglossal duct is one of the most common reasons for midline swellings in the neck. Several authors have described recurrent thyroglossal duct remnants with persisting draining sinuses. However, few have described accessory salivary glands that drain into the thyroglossal duct. In this article we report two such cases with midline salivary glands in the floor of the mouth. These two patients were subsequently successfully treated with radical tissue resection in the area between the hyoid bone and foramen cecum. Preoperative fistulography or sinography was useful to demonstrate the ductal ramification of the salivary glands, and use of methylene blue during surgery proved of significant value for the result.

  2. Vibrational characterization of hexagonal duct core assemblies under various support conditions

    International Nuclear Information System (INIS)

    Bartholf, L.W.; Julyk, L.J.; Ryan, J.A.

    1989-03-01

    Analysis of the dynamic response of advanced Liquid Metal Reactor (LMR) core internals to seismic excitation requires a significant number of simplifying assumptions and idealizations to economically meet the constraints of present-day computer limitations. Fluid coupling and nonlinearities associated with inter-assembly lateral support stiffness and clearances of a large cluster of core internal assemblies are some of the factors that complicate the analytical procedure (Moran, 1976). Well defined test data were needed to quantify these and other uncertainties associated with the use of analytical or numerical computer codes used in the seismic design and analysis of reactor cores. The purpose of the present experimental program was to supplement existing data, such as reported in (Sasaki and Muto, 1983), by developing vibrational characteristics of core assemblies over a range of parameters relative to LMR conceptual designs. The parameters selected for this program were variations in number and location of restraints, restraint-pad to duct-load-pad clearances, and input forcing frequency and g-level. Feature tests were conducted to characterize load pad stiffness and coefficient of restitution, and to calibrate load pads to measure inter-assembly across-flat impact loads. Simulated full-size LMR hexagonal duct core assemblies were used in vibration tests. A single assembly and a row of five assemblies were tested in air to establish modal characteristics and forced response behavior. 2 refs., 7 figs., 1 tab

  3. Visualization of the thoracic duct by lymphoscintigraphy

    International Nuclear Information System (INIS)

    Baulieu, F.; Baulieu, J.L.; Itti, R.; Tours Univ., 37

    1987-01-01

    Imaging of the thoracic duct is usually performed by radiological lymphography. However, this procedure, which uses an oil based dye injected directly into the lymph channels, has some adverse effects. In this paper we note that lymphoscintigraphy, a physiological and non invasive method, may visualize thoracic duct abnormalities, and might be particularly usefull when radiological lymphography is contraindicated. (orig.)

  4. In-duct countermeasures for reducing fire-generated-smoke-aerosol exposure to HEPA filters

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Ford, H.W.

    1978-01-01

    An experimental program was conducted to assess the endurance and lifetime of HEPA filters exposed to fire-generated aerosols, and to reduce the aerosol exposure by installing engineering countermeasures in the duct between the fire source and HEPA filters. Large cribs of wood and other potential fuels of interest were ''forcefully burned'' in a partially ventilated enclosure. In a ''forceful burn'' the crib of fuel is continuously exposed to an energetic premixed methane flame during the entire experimental period. This tactic serves two purposes: it optimizes the production of smoke rich in unburned pyrolyzates which provides severe exposure to the filters, and it facilitates the ignition and enhances the combustion of cribs formed with synthetic polymers. The experiments were conducted in an enclosure specifically designed and instrumented for fire tests. The test cell has a volume of 100 m 3 and includes instrumentation to measure the internal temperature distribution, pressure, thermal radiation field, flow fields, gas concentration, particulate size distribution and mass, fuel weight loss, inlet and exit air velocities, and smoke optical density. The countermeasure techniques include the use of passively operated sprinkler systems in the fire test cell, of fine and dense water scrubbing sprays, and of rolling prefiltration systems in the exit duct of the fire test cell. Of the countermeasures surveyed, the rolling prefilter system showed the most promise. This paper concentrates on the effect of control variables; i.e., enclosure air supply, fuel composition and crib porosity on the combustion response; i.e., crib burning rate, enclosure temperature rise, oxygen consumption, and CO, CO 2 and total hydrocarbon production. A discussion of the attempts to rationalize smoke aerosol properties will be included along with results from the effect of countermeasure application on HEPA filter lifetimes

  5. Iatrogenic injury of an aberrant right posterior sectoral bile duct

    African Journals Online (AJOL)

    (Figs 1 and 2). A week later, an endoscopic retrograde cholangiopancreatography. (ERCP) examination was performed. This showed no filling of the right posterior sectoral ducts but normal opacification of the other ducts. (Figs 3a and b). These findings led to the diagnosis of an aberrant right posterior sectoral bile duct that ...

  6. Imaging features of intraductal papillary neoplasm of the bile duct

    International Nuclear Information System (INIS)

    Liu Yubao; Li Meng; Zhong Xiaomei; Liu Zaiyi; Liang Changhong

    2014-01-01

    Objective: To investigate the CT and MRI features of intraductal papillary neoplasm of the bile duct (IPNB). Methods: Thirty eight patients with IPNB finally diagnosed by puncture biopsy or surgery were enrolled in this study. All the CT or MRI data were investigated retrospectively. Twenty one patients underwent CT examinations, 17 patients underwent MRI examinations. The features of IPNB including the distribution features of the nodules or masses, CT and MRI features of cholangiectasis, mucus were analyzed. The accuracy differences of CT and MRI for the preoperatively diagnosing mucus and tumor growing along mucous were compared by nonparametric test. Results: The lesions (including 5 patients with solitary lesions and 19 patients with multiple lesions) were located in intrahepatic bile duct in 24 patients, 3 patients occurred simultaneously in intrahepatic and portal bile duct, 2 lesions occurred in portal bile duct, 8 lesions occurred in common bile duct, the lesions of 1 patient occurred simultaneously in common bile duct, cystic duct and gallbladder. Seventeen and 11 patients appeared nodules locating in dilated bile duct on CT and MRI, respectively. Four and 5 patients appeared cystic lesions with multiple nodules of the liver on CT and MRI, respectively. Higher contrast enhancement on CT and MRI in arterial phase than that in portal vein and equilibrium phase were observed in 18 and 12 patients, respectively. Excluding the patients undergoing puncture, CT was better than MRI in evaluating whether the mucus was present, with the accuracies of 30.0% (6/20) and 6.3% (1/16) for CT and MRI, respectively (Z=2.58, P<0.05). CT was worse than MRI in preoperatively evaluating the features of tumor growing along mucous, with the accuracies of 77.8% (14/18) and 92.6% (13/14) for CT and MRI, respectively (Z=4.23, P<0.01). Conclusion: IPNB had the features of growing along mucous of the bile duct, nodule or mass in dilated bile duct and other features, CT and MRI are

  7. Body-force-driven multiplicity and stability of combined free and forced convection in rotating curved ducts: Coriolis force

    Science.gov (United States)

    Yang, T.; Wang, L.

    A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.

  8. Ursodeoxycholic acid treatment of vanishing bile duct syndromes

    NARCIS (Netherlands)

    Pusl, Thomas; Beuers, Ulrich

    2006-01-01

    Vanishing bile duct syndromes (VBDS) are characterized by progressive loss of small intrahepatic ducts caused by a variety of different diseases leading to chronic cholestasis, cirrhosis, and premature death from liver failure. The majority of adult patients with VBDS suffer from primary biliary

  9. Positive predictive value of cholescintigraphy in common bile duct obstruction

    International Nuclear Information System (INIS)

    Lecklitner, M.L.; Austin, A.R.; Benedetto, A.R.; Growcock, G.W.

    1986-01-01

    Technetium-99m DISIDA imaging was employed in 400 patients to differentiate obstruction of the common bile duct from medical and other surgical causes of hyperbilirubinemia. Sequential anterior images demonstrated variable degrees of liver uptake, yet there was no evidence of intrabiliary or extrabiliary radioactivity for at least 4 hr after injection in 25 patients. Twenty-three patients were surgically documented to have complete obstruction of the common bile duct. One patient had hepatitis, and another had sickle cell crisis without bile duct obstruction. The remaining patients had either partial or no obstruction of the common bile duct. We conclude that the presence of liver uptake without evident biliary excretion by 4 hr on cholescintigraphy is highly sensitive and predictive of total obstruction of the common bile duct

  10. Common Bile Duct Perforation Due to Tuberculosis: A Case Report

    OpenAIRE

    Razman Jarmin; Shaharin Shaharuddin

    2004-01-01

    A young man with HIV presented with biliary peritonitis secondary to spontaneous common bile duct perforation. Investigation revealed that the perforation was due to Mycobacterium tuberculosis. Tuberculosis of the bile duct is uncommon and usually presents with obstructive jaundice due to stricture. Bile duct perforation due to tuberculosis is extremely rare. Its management is discussed.

  11. Trypsin level in gallbladder bile and ductitis and width of the cystic duct.

    Science.gov (United States)

    Vracko, J; Wiechel, K L

    2000-01-01

    The change from laparotomy to laparoscopy for cholecystectomy has raised the question of how to manage concomitant bile duct stones. The present-day interest--and controversy--has focused on a transcystic approach reported to be feasible in 66-96% of cases, but without explaining the necessary prerequisite: the widening of the cystic duct. The cystic duct, wide mainly in patients with bile duct stones, has been reported to be highly variable: from strictured to very wide. The present study aims at comparing the trypsin level in the gallbladder bile and the cystic duct morphology and width in patients with and without bile duct stones. A prospective series of 63 gallstone patients, 30 with and 33 without bile duct stones (controls), underwent cholecystectomy and bile duct clearance. The study includes the trypsin level in the gallbladder bile, the width and morphology of the cystic duct, and the size of the gallstones. The patients with bile duct stones had, in contrast to the controls, higher trypsin levels in the gallbladder bile (P extraction feasible.

  12. Agenesis of the gallbladder with hypoplastic cystic duct diagnosed at laparoscopy.

    Science.gov (United States)

    Kwon, A-Hon; Yanagimoto, Hiroaki; Matsui, Yoichi; Imamura, Atsushi

    2006-08-01

    An 86-year-old man was admitted to our department with complaints of intermittent upper abdominal pain. Ultrasonography of the abdomen showed dilated extrahepatic bile ducts containing stones; however, the gallbladder was not clearly identified. Magnetic resonance cholangiopancreatography showed dilated extrahepatic ducts and choledocholithiasis without gallbladder visualization. The stone extraction was performed with endoscopic sphincterotomy. Three-dimensional images using spiral-computed tomography after intravenous-infusion cholangiography clearly demonstrated an obstruction of the cystic duct. The patient was scheduled for laparoscopic cholecystectomy. At laparoscopy, the gallbladder fossa was not identified on the undersurface of the liver. Despite a thorough examination of the intrahepatic (left-sided within the lesser omentum), retroperitoneal, retrohepatic (within the falciform ligament), retroduodenal, and retropancreatic areas using laparoscopic ultrasonography, the gallbladder was not found. After careful dissection of the hepatoduodenal ligament, the dilated extrahepatic bile duct and a 1-cm length of hypoplastic cystic duct were found. Gallbladder agenesis is usually accompanied by the lack of the cystic duct. The present case is the third report of gallbladder agenesis with a patent or hypoplastic cystic duct.

  13. Aspects of magnetohydrodynamic duct flow at high magnetic Reynolds number

    International Nuclear Information System (INIS)

    Turner, R.B.

    1973-07-01

    The thesis is concerned with the performance of a flow coupler, which consists of an MHD generator coupled to an MHD pump so that one stream of fluid is induced to move by the motion of another. The flow coupler investigations include: the effects caused by eddy currents on the applied magnetic field and electric potential distribution, the velocity perturbation which occurs as a liquid flows through a magnetic field, devices in which large currents flow through a moving conductor and through an external circuit, and the movement of two conductors through the gap of a magnet. The expected performance of a flow coupler is calculated. (U.K.)

  14. Cystic duct closure by sealing with bipolar electrocoagulation

    DEFF Research Database (Denmark)

    Schulze, S; Damgaard, B; Jørgensen, Lars Nannestad

    2010-01-01

    BACKGROUND: Cystic duct leakage after cholecystectomy is not uncommon and is a potentially serious complication. The aim of this study was to assess a bipolar sealing system (LigaSure) for closure of the cystic duct. METHODS: The records from consecutive laparoscopic cholecystectomies performed i...

  15. Tail dependence and information flow: Evidence from international equity markets

    Science.gov (United States)

    Al Rahahleh, Naseem; Bhatti, M. Ishaq; Adeinat, Iman

    2017-05-01

    Bhatti and Nguyen (2012) used the copula approach to measure the tail dependence between a number of international markets. They observed that some country pairs exhibit only left-tail dependence whereas others show only right-tail. However, the flow of information from uni-dimensional (one-tail) to bi-dimensional (two-tails) between various markets was not accounted for. In this study, we address the flow of information of this nature by using the dynamic conditional correlation (DCC-GARCH) model. More specifically, we use various versions of the DCC models to explain the nexus between the information flow of international equity and to explain the stochastic forward vs. backward dynamics of financial markets based on data for a 15-year period comprising 3,782 observations. We observed that the information flow between the US and Hong Kong markets and between the US and Australian markets are bi-directional. We also observed that the DCC model captures a wider co-movement structure and inter-connectedness compared to the symmetric Joe-Clayton copula.

  16. CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor

    NARCIS (Netherlands)

    Schmehl, R.; Maier, G.; Wittig, S.

    2000-01-01

    The two phase flow in the premix duct of a LPP combustor is computed using a Lagrangian droplet tracking method. To reproduce the characteristic spray structure of an air-assisted pressure-swirl atomizer, a sheet spray model is de-rived from measured sheet parameters and combined with an advanced

  17. Common Bile Duct Perforation Due to Tuberculosis: A Case Report

    Directory of Open Access Journals (Sweden)

    Razman Jarmin

    2004-10-01

    Full Text Available A young man with HIV presented with biliary peritonitis secondary to spontaneous common bile duct perforation. Investigation revealed that the perforation was due to Mycobacterium tuberculosis. Tuberculosis of the bile duct is uncommon and usually presents with obstructive jaundice due to stricture. Bile duct perforation due to tuberculosis is extremely rare. Its management is discussed.

  18. Measured Performance of a Varied Airflow Small-Diameter Duct System

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2017-03-01

    This study tests the performance of a variable airflow small-diameter duct heating, ventilation, and air conditioning (HVAC) system in a new construction unoccupied low-load test house in Pittsburgh, Pennsylvania. The duct system was installed entirely in conditioned space and was operated from the winter through summer seasons. Measurements were collected on the in-room temperatures and energy consumed by the air handler and heat pump unit. Operation modes with three different volumes of airflow were compared to determine the ideal airflow scenario that maximizes room-to-room thermal uniformity while minimizing fan energy consumption. Black felt infrared imagery was used as a measure of diffuser throw and in-room air mixing. Measured results indicate the small-diameter, high velocity airflow system can provide comfort under some conditions. Solar heat gains resulted in southern rooms drifting beyond acceptable temperature limits. Insufficient airflow to some bedrooms also resulted in periods of potential discomfort. Homebuilders or HVAC contractors can use these results to assess whether this space conditioning strategy is an attractive alternative to a traditional duct system. The team performed a cost analysis of two duct system configurations: (1) a conventional diameter and velocity duct system, and (2) the small-diameter duct system. This work applies to both new and retrofit homes that have achieved a low heating and cooling density either by energy conservation or by operation in a mild climate with few heating or cooling degree days. Guidance is provided on cost trade-offs between the conventional duct system and the small-diameter duct system.

  19. Measured Performance of a Varied Airflow Small-Diameter Duct System

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2017-03-16

    This study tests the performance of a variable airflow small-diameter duct heating, ventilation, and air conditioning (HVAC) system in a new construction unoccupied low-load test house in Pittsburgh, Pennsylvania. The duct system was installed entirely in conditioned space and was operated from the winter through summer seasons. Measurements were collected on the in-room temperatures and energy consumed by the air handler and heat pump unit. Operation modes with three different volumes of airflow were compared to determine the ideal airflow scenario that maximizes room-to-room thermal uniformity while minimizing fan energy consumption. Black felt infrared imagery was used as a measure of diffuser throw and in-room air mixing. Measured results indicate the small-diameter, high velocity airflow system can provide comfort under some conditions. Solar heat gains resulted in southern rooms drifting beyond acceptable temperature limits. Insufficient airflow to some bedrooms also resulted in periods of potential discomfort. Homebuilders or HVAC contractors can use these results to assess whether this space conditioning strategy is an attractive alternative to a traditional duct system. The team performed a cost analysis of two duct system configurations: (1) a conventional diameter and velocity duct system, and (2) the small-diameter duct system. This work applies to both new and retrofit homes that have achieved a low heating and cooling density either by energy conservation or by operation in a mild climate with few heating or cooling degree days. Guidance is provided on cost trade-offs between the conventional duct system and the small-diameter duct system.

  20. 2nd International Conference on Multiphase Flow - ICMF '95

    CERN Document Server

    Fukano, T; Bataille, Jean

    1995-01-01

    There is increasing world-wide interest in obtaining an understanding of various multiphase flow phenomena and problems in terms of a common language of multiphase flow. This volume contains state-of-the-art papers which have been contributed from all over the world by experts working on all aspects of multiphase flows. The volume also highlights international technology-sharing in the fields of energy, environment and public health, in order to create a brighter and sustainable future for man and for all life in the next century. It is intended that this volume will serve as a major source of

  1. Extracorporeal shock-wave lithotripsy of bile duct stones

    International Nuclear Information System (INIS)

    Lee, Jong Tae; Kim, Myung Joon; Yoo, Hyung Sik; Suh, Jung Ho; Lee, Moo Sang; Jo, Jang Hwan; Kim, Byung Ro

    1989-01-01

    During the past one and half year, we performed ESWL therapy in 13 patients with common bile duct and intrahepatic duct stones, applying Lithostar-R (Siemens co. West Germany) and analyzed their results. In 13 patients, 9 residual common bile duct stones and 7 intrahepatic duct stones were selected postoperatively. The size of stones were ranged from 0.7 cm to 3.5 cm in diameter. 2 stones were multiple and the remained 14 were single in number. The visualization of stones were done with fluoroscopy after the injection of contrast media via cholangiographic T-tube or ERCP. ESWL were applied continuously until stone disintegration was visible, or upto maximum number of 3500 discharge of shock wave. If not disintegrated upto 3500, patients were underwent second or third lithotripsy session with interval of one week. Our results showed that among 9 common bile duct stones, 4 were completely disintegrated and passed out spontaneously, but 3 partially fragmented and removed by the additional procedure. 2 were failed. Among 7 intrahepatic stones, 3 completely and 2 partially were succeeded. One stone partially fragmented were retained without removal and other one were failed. Skin petechia in all patients were revealed on the entry port of shock wave, but no serous complication was not occurred

  2. Extracorporeal shock-wave lithotripsy of bile duct stones

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tae; Kim, Myung Joon; Yoo, Hyung Sik; Suh, Jung Ho; Lee, Moo Sang; Jo, Jang Hwan; Kim, Byung Ro [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    During the past one and half year, we performed ESWL therapy in 13 patients with common bile duct and intrahepatic duct stones, applying Lithostar-R (Siemens co. West Germany) and analyzed their results. In 13 patients, 9 residual common bile duct stones and 7 intrahepatic duct stones were selected postoperatively. The size of stones were ranged from 0.7 cm to 3.5 cm in diameter. 2 stones were multiple and the remained 14 were single in number. The visualization of stones were done with fluoroscopy after the injection of contrast media via cholangiographic T-tube or ERCP. ESWL were applied continuously until stone disintegration was visible, or upto maximum number of 3500 discharge of shock wave. If not disintegrated upto 3500, patients were underwent second or third lithotripsy session with interval of one week. Our results showed that among 9 common bile duct stones, 4 were completely disintegrated and passed out spontaneously, but 3 partially fragmented and removed by the additional procedure. 2 were failed. Among 7 intrahepatic stones, 3 completely and 2 partially were succeeded. One stone partially fragmented were retained without removal and other one were failed. Skin petechia in all patients were revealed on the entry port of shock wave, but no serous complication was not occurred.

  3. Cultural Factors in the Flow of International News: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sakurai Takuya

    2017-01-01

    Full Text Available This paper offers a review of the literature of international news flow, and surveys how the previous studies have attempted to capture “cultural factors” influencing the flow. The factors are grouped into four types of variables: language, former colonial tie, ethnicity, and geographical proximity. This paper argues that cultural factors cannot be significant without economic interests in the era of post-Cold War, that the structure of international news is imbalanced because a few powerful countries dominate the international news market, and that international news reduces cultural varieties to the singular international realities disseminated by the media of such countries.

  4. International fund flows: surges, sudden stops, and cyclicality

    NARCIS (Netherlands)

    Li, Suxiao

    2017-01-01

    International fund flows are cross-border investments in domestic equity and bond markets by global investment funds. They have increased dramatically since the 1990s and played an increasingly important role in the transmission of shocks. In this thesis, we examine the drivers of large changes in

  5. In-duct removal of mercury from coal-fired power plant flue gas by activated carbon: assessment of entrained flow versus wall surface contributions

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R.; Lancia, A. [CNR, Naples (Italy). Institute for Research on Combustion

    2008-12-15

    In-duct mercury capture efficiency by activated carbon from coal-combustion flue gas was investigated. To this end, elemental mercury capture experiments were conducted at 100 C in a purposely designed 65-mm ID labscale pyrex apparatus operated as an entrained flow reactor. Gas residence times were varied between 0.7 and 2.0 s. Commercial-powdered activated carbon was continuously injected in the reactor and both mercury concentration and carbon elutriation rate were followed at the outlet. Transient mercury concentration profiles at the outlet showed that steady-state conditions were reached in a time interval of 15-20 min, much longer than the gas residence time in the reactor. Results indicate that the influence of the walls is non-negligible in determining the residence time of fine carbon particles in the adsorption zone, because of surface deposition and/or the establishment of a fluid-dynamic boundary layer near the walls. Total mercury capture efficiencies of 20-50% were obtained with carbon injection rates in the range 0.07-0.25 g/min. However, only a fraction of this capture was attributable to free-flowing carbon particles, a significant contribution coming from activated carbon staying near the reactor walls. Entrained bed experiments at lab-scale conditions are probably not properly representative of full-scale conditions, where the influence of wall interactions is lower. Moreover, previously reported entrained flow lab-scale mercury capture data should be reconsidered by taking into account the influence of particle-wall interactions.

  6. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer is control......Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...

  7. Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)

    Science.gov (United States)

    Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.

  8. Scale-model characterization of flow-induced vibrational response of FFTF reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Mahoney, J.J.

    1980-10-01

    Fast Test Reactor core internal and peripheral components were assessed for flow-induced vibrational characteristics under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup as an integral part of the Fast Test Reactor Vibration Program. The Hydraulic Core Mockup was an 0.285 geometric scale model of the Fast Test Reactor internals designed to simulate prototype vibrational and hydraulic characteristics. Using water to simulate sodium coolant, vibrational characteristics were measured and determined for selected model components over the scaled flow range of 36 to 110%. Additionally, in-situ shaker tests were conducted on selected Hydraulic Core Mockup outlet plenum components to establish modal characteristics. Most components exhibited resonant response at all test flow rates; however, the measured dynamic response was neither abnormal nor anomalously flow-rate dependent, and the predicted prototype components' response were deemed acceptable

  9. The inaccuracy of heat transfer characteristics of insulated and non-insulated circular duct while neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Hsien, T.-L.; Wong, K.-L.; Yu, S.-J.

    2009-01-01

    The non-insulated and insulated ducts are commonly applied in the industries and various buildings, because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations. Most heat transfer experts recognized from their own experiences that the heat radiation effect can be ignored due to the small temperature difference between insulated and non-insulated surface and surroundings. This paper studies in detail to check the inaccuracies of heat transfer characteristics non-insulated and insulated duct by comparing the results between considering and neglecting heat radiation effect. It is found that neglecting the heat radiation effect is likely to produce large errors of non-insulated and thin-insulated ducts in situations of ambient air with low external convection heat coefficients and larger surface emissivity, especially while the ambient air temperature is different from that of surroundings and greater internal fluid convection coefficients. It is also found in this paper that using greater duct surface emissivity can greatly improve the heat exchanger effect and using smaller insulated surface emissivity can obtain better insulation.

  10. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, ou...... may be important in pancreas physiology and potentially in pancreas pathophysiology....... aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan...

  11. Computed tomography of hepatocellular carcinoma. Dilatation of intrahepatic bile duct

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soomi; Nakamura, Hitonobu; Tanaka, Ken; Hori, Shinichi; Tokunaga, Kou [Osaka Univ. (Japan). Faculty of Medicine

    1983-10-01

    Based on a series of CT of the liver in 125 patients with hepatoma and 45 patients with metastatic hepatic tumors, the mode of dilatation of the intrahepatic bile duct was examined. In patients with hepatoma, partia dilatations of intrahepatic bile duct were more commonly seen than general dilatations. On the other hand, there was no case of partial dilatation of the intrahepatic bile duct in patients with metastatic hepatic tumors. It could be concluded that partial dilatation of the intrahepatic bile duct is an useful CT finding to make a diagnosis of hepatoma, particularly to differentiate hepatoma from metastatic hepatic tumor.

  12. Intraluminal occlusion of the seminal duct by laser and Histoacryl: Two non-invasive alternatives for vasectomy

    Science.gov (United States)

    Freitag, B.; Sroka, R.; Koelle, S.; Becker, A. J.; Khoder, W.; Pongratz, T.; Stief, C. G.; Trottmann, M.

    2014-03-01

    Introduction and objective: Vasectomy is a well-established method in family control. Even though it is a safe and low risk operation, this surgery is invasive and difficult to reverse. Therefore the aim of this study was to investigate new non-invasive methods for occlusion of the seminal duct. Material and Methods: Seminal duct tissue was obtained from patients (n=30) suffering from prostate cancer and therefore undergoing prostatectomy. In a first set of experiments, the seminal duct was occluded by intraluminal application of Histoacryl® (Braun Aesculap AG, Tuttlingen, Germany). In a 2nd set of experiments, endoluminal laser induced occlusion was performed. Four different laser wavelengths (1940nm, 1470nm, 1064nm, 940nm) and different sets of laser parameters (e.g. power, exposure duration, fibre diameter, energy applied) were compared. Effectiveness of occlusion of the seminal duct was proven by post-treatment irrigation flow measurement, as well as by morphological analyses. To evaluate a potential damage of the surrounding tissue, external temperature was measured using a thermometer during laser application. Results: Intraluminal application of Histoacryl® induced an immediate and complete occlusion of the seminal duct. The underlying connective tissue maintained its functional integrity after this treatment. By laser light application to a Histoacryl® block, a hole could be created into the block thus indicating the possibility of recanalization. Treatment with laser energy resulted in shrinkage of the ductal lumen. The laser application generally caused necrosis in the epithelium and induced formation of vacuoles in the underlying connective tissue. As described for endoluminal varicose treatment, this distinct local reaction might result in an intense inflammation leading to a functional occlusion of the vas deferens. Conclusions: Both laser-induced occlusion and application of Histoacryl® are fast and simple techniques which may be able to achieve a

  13. FFTF scale-model characterization of flow-induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36 percent to 111 percent of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable

  14. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J A; Julyk, L J [Hanford Engineering Development Laboratory, Richland, WA (United States)

    1977-12-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  15. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  16. International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    International Nuclear Information System (INIS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  17. Hepatocellular carcinoma localized in the bile duct lumen: two case report

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyeung Kug; Chang, Jay Chun [Yeungnam Univ. School of Medicine, Seoul (Korea, Republic of)

    1998-10-01

    Intrabile duct tumor growth of hepatocellular carcinoma is an uncommon manifestation, but intraluminal bile duct hepatocellular carcinoma without primary hepatic parenchymal lesions is extremely rare. To our knowledge, only a few case reports have been published. We encountered two cases of primary hepatocellular carcinoma arising in the bile duct;serum alpha-fetoprotein levels were within the normal limits. Both showed the following characteristic radiologic features: (1) Cholangiography revealed filling defects within the dilated bile duct; (2) two-phase abdominal CT showed enhancement during the arterial-dominant phase and washout during the tissue equilibrium phase, as in typical HCC; and (3) hepateic arteriography revealed hypervascular tumor staining. Surgery was performed and the resected specimen showed no detectable primary hepatic parenchymal mass;on the basis of the pathologic finding, intraluminal bile duct hepatocellular carcinoma was confirmed. We cautiously assume that this peculiar type of HCC may arise primarily from bile duct mucosa.=20.

  18. Clinical and cholangiographic evaluation of bile duct carcinoma

    International Nuclear Information System (INIS)

    Park, Yeon Won; Kim, So Seon; Kim, Ho Joon; Joh, Young Duk; Chun, Byung Hee

    1986-01-01

    40 cases of bile duct carcinoma gathered over a 6-year period at Kosin Medical College were reviewed and their clinical and cholangiographic findings were as follows: 1. There were 29 males and 11 females (the ratio of men to women, 2.6:1) ranging from 37 to 74 years of age. The majority (70% of cases) were in 4th and 5th decades. 2. Clinical symptoms and signs: jaundice in 95%, RUQ or epigastric pain in 75%, pruritus in 52.5%, dark urine in 35%, weight loss in 32.5%, fever and chills in 22.5%, clay colored stool in 12.5%, and palpable mass in 12.5%. 3. Lab. findings: elevated serum total bilirubin (above 20.0mg% in 45%, 10.0-19.9mg% in 22.5%, 5.0-9.9mg% in 20%, 1.3-4.9mg% in 5%), elevated alkaline phosphatase in 95%. Clonorchiasis were noted in 17.5%. 4. Histologic findings were adenocarcinoma in most cases. 5. The location of bile duct carcinoma were common hepatic duct in 35%, common bile duct in 32.5%, porta hepatic in 12.5%, junction with cystic duct in 10% and diffuse form in 10%. 6. In 33 cases, PTC or post-operative cholangiographic examination were done. And the most frequent findings were dilatation of the proximal bile duct and abrupt narrowing or complete obstruction of distal lumen. In 27 cases (82%), complete obstruction of bile duct were noted. Attempts were made to analyze the type of obstruction: Constricted type in 39%, Nipple type in 18%, round or flat type (smooth or slightly irregular) in 15%, and serrated type in 9%. Incomplete obstruction were noted in 6 cases (18%). Among them, abrupt narrowing of lumen was noted in 9% and diffuse narrowing in 9%. 7. ERCP was done in 7 cases. Findings were: constricted type in 42.6%, constricted and slightly irregular type in 14.3%, downward convexity in 14.3%, diffuse irregular narrowing in 14.3% and intraluminal filing defect in 14.3%.

  19. Conservative Treatment for Cystic Duct Stenosis in a Child

    Directory of Open Access Journals (Sweden)

    Marco Gasparetto

    2013-01-01

    Full Text Available Introduction. Few cases of common bile duct stenosis have been reported in the literature, and observations of strictures in the cystic duct are even more rare. Surgical cholecystectomy is the treatment needed in most cases of gallbladder hydrops. This paper describes the diagnosis and successful medical treatment of a rare pediatric case of cystic duct stenosis and gallbladder hydrops. Case Report. A formerly healthy one-year-old girl was admitted with colicky abdominal pain. Blood tests were normal, except for an increase in transaminases. Abdominal ultrasound excluded intestinal intussusception and identified a distended gallbladder with biliary sludge. MR cholangiography revealed a dilated gallbladder containing bile sediment and no detectable cystic duct, while the rest of the intra- and extrahepatic biliary tree and hepatic parenchyma were normal. This evidence was consistent with gallbladder hydrops associated with cystic duct stenosis. The baby was treated with i.v. hydration, corticosteroids, antibiotics, and ursodeoxycholic acid. Her general condition rapidly improved, with no further episodes of abdominal pain and normalization of liver enzymes. This allowed to avoid cholecystectomy, and the child is well 1.5 years after diagnosis. Conclusions. Although cholecystectomy is usually necessary in case of gallbladder hydrops, our experience suggests that surgical procedures can be avoided when the distension is caused by a cystic duct stenosis.

  20. Relationship Between Bile Duct Reconstruction and Complications in Living Donor Liver Transplantation.

    Science.gov (United States)

    Miyagi, S; Kawagishi, N; Kashiwadate, T; Fujio, A; Tokodai, K; Hara, Y; Nakanishi, C; Kamei, T; Ohuchi, N; Satomi, S

    2016-05-01

    In living donor liver transplantation (LDLT), the recipient bile duct is thin and short. Bile duct complications often occur in LDLT, with persistent long-term adverse effects. Recently, we began to perform microsurgical reconstruction of the bile duct. The purpose of this study was to investigate the relationship between bile duct reconstruction methods and complications in LDLT. From 1991 to 2014, we performed 161 LDLTs (pediatric:adult = 90:71; left lobe:right lobe = 95:66). In this study, we retrospectively investigated the initial bile duct complications in LDLT and performed univariate and multivariate analyses to identify the independent risk factors for complications. The most frequent complication was biliary stricture (9.9%), followed by biliary leakage (6.8%). On univariate and multiple logistic regression analysis, the independent risk factors for biliary stricture were bile leakage (P = .0103) and recurrent cholangitis (P = .0077). However, there were no risk factors for biliary leakage on univariate analysis in our study. The reconstruction methods (hepaticojejunostomy or duct-to-duct anastomosis) and reconstruction technique (with or without microsurgery) were not risk factors for biliary stricture and leakage. In this study, the most frequent complication of LDLT was biliary stricture. The independent risk factors for biliary stricture were biliary leakage and recurrent cholangitis. Duct-to-duct anastomosis and microsurgical reconstruction of the bile duct were not risk factors for biliary stricture and leakage. Copyright © 2016 Elsevier Inc. All rights reserved.