WorldWideScience

Sample records for internal dosimetry program

  1. Hanford internal dosimetry program manual

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  2. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  3. Internal Dosimetry for Nuclear Power Program

    International Nuclear Information System (INIS)

    Wo, Y.M.

    2011-01-01

    Internal dosimetry which refers to dosage estimation from internal part of an individual body is an important and compulsory component in order to ensure the safety of the personnel involved in operational of a Nuclear Power Program. Radionuclides particle may deposit in the human being through several pathways and release wave and/or particle radiation to irradiate that person and give dose to body until it been excreted or completely decayed from the body. Type of radionuclides of concerning, monitoring program, equipment's and technique used to measure the concentration level of such radionuclides and dose calculation will be discussed in this article along with the role and capability of Malaysian Nuclear Agency. (author)

  4. GENMOD - A program for internal dosimetry calculations

    International Nuclear Information System (INIS)

    Dunford, D.W.; Johnson, J.R.

    1987-12-01

    The computer code GENMOD was created to calculate the retention and excretion, and the integrated retention for selected radionuclides under a variety of exposure conditions. Since the creation of GENMOD new models have been developed and interfaced to GENMOD. This report describes the models now included in GENMOD, the dosimetry factors database, and gives a brief description of the GENMOD program

  5. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  6. Good practices in Taipower's internal dosimetry program

    International Nuclear Information System (INIS)

    Sun, C.L.; Yeh, W.W.

    1994-01-01

    This paper describes the framework and technical justifications for internal monitoring at Taipower. A 30% relative efficiency HPGe system with superior counting capabilities has been established for in-vivo bioassay applications. The interference from other photopeaks in spectrum can be eliminated and the system stability can be ensured. In order to solve the bottleneck of whole body counting during the peak period of outage, a fast in-vivo system was designed the stand up linear geometry counter with control analysis software, to ascertain whether the subject was contaminated or not and finished the identification within one minute. It was also derived a quick methodology, to separate respirable from non-respirable particulates and obtain the reasonable committed effective dose equivalent, by assuming each counting variance be proportional to its expected value. 6 refs., 1 fig

  7. The program of international intercomparison of accident dosimetry

    International Nuclear Information System (INIS)

    2002-06-01

    The French institute of radioprotection and nuclear safety (IRSN) has carried out in June 2002 an international intercomparison program for the testing of the physical and biological accident dosimetry techniques. The intercomparison is jointly organized by the IRSN and the OECD-NEA with the sustain of the European commission and the collaboration of the CEA centre of Valduc (France). About 30 countries have participated to this program. Each country has supplied its own dosimeters and biological samples which have been irradiated using the Silene reactor of CEA-Valduc or a 60 Co source. These experiments allow to test the new dosimetric techniques that have been developed since the previous intercomparison program (1993) and to confirm or improve the performances of older techniques. Aside from the intercomparison exercise, this report makes a status of the known radiological accidents and of the effects of high doses of ionizing radiations on human health (symptoms, therapeutics). It explains the phenomenology of criticality accidents, the prevention means, and the history of such accidents up to the Tokai-Mura one in 1999. Finally, the dosimetry of criticality is presented with its physical and biological techniques. (J.S.)

  8. International beta-dosimetry symposium. Program and abstracts

    International Nuclear Information System (INIS)

    1983-02-01

    Abstracts of the presentations at the symposium are contained in this volume. Problems associated with beta dosimetry, beta detectors and dosemeters, and current development programs are described. Each abstract has been indexed separately for inclusion in the Energy Data Base

  9. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  10. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    1990-01-01

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  11. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.; Antonio, Cheryl L.; Hill, Robin L.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and for assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.

  12. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  13. Experimental verification of internal dosimetry calculations. Annual progress report

    International Nuclear Information System (INIS)

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee

  14. The program of international intercomparison of accident dosimetry; Le programme d'intercomparaison internationale de dosimetrie d'accident 10-12 juin 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The French institute of radioprotection and nuclear safety (IRSN) has carried out in June 2002 an international intercomparison program for the testing of the physical and biological accident dosimetry techniques. The intercomparison is jointly organized by the IRSN and the OECD-NEA with the sustain of the European commission and the collaboration of the CEA centre of Valduc (France). About 30 countries have participated to this program. Each country has supplied its own dosimeters and biological samples which have been irradiated using the Silene reactor of CEA-Valduc or a {sup 60}Co source. These experiments allow to test the new dosimetric techniques that have been developed since the previous intercomparison program (1993) and to confirm or improve the performances of older techniques. Aside from the intercomparison exercise, this report makes a status of the known radiological accidents and of the effects of high doses of ionizing radiations on human health (symptoms, therapeutics). It explains the phenomenology of criticality accidents, the prevention means, and the history of such accidents up to the Tokai-Mura one in 1999. Finally, the dosimetry of criticality is presented with its physical and biological techniques. (J.S.)

  15. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  16. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs

  17. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  18. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  19. Summary remarks and recommended reactions for an international data file for dosimetry applications for LWR, FBR, and MFR reactor research, development and testing programs

    International Nuclear Information System (INIS)

    McElroy, W.N.; Lippincott, E.P.; Grundl, J.A.; Fabry, A.; Dierckx, R.; Farinelli, U.

    1979-01-01

    The need for the use of an internationally accepted data file for dosimetry applications for light water reactor (LWR), fast breeder reactor (FBR), and magnetic fusion reactor (MFR) research, development, and testing programs continues to exist for the Nuclear Industry. The work of this IAEA meeting, therefore, will be another important step in achieving consensus agreement on an internationally recommended file and its purpose, content, structure, selected reactions, and associated uncertainy files. Summary remarks and a listing of recommended reactions for consideration in the formulation of an ''International Data File for Dosimetry Applications'' are presented in subsequent sections of this report

  20. Technical basis document for internal dosimetry

    CERN Document Server

    Hickman, D P

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosi...

  1. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  2. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  3. Fourth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose

  4. Internal radiation dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Lim, Sang Moo

    2006-01-01

    Radionuclide therapy has been continued for treatment of incurable diseases for past decades. Relevant evaluation of absorbed dose in radionuclide therapy in important to predict treatment output and essential for making treatment planning to prevent unexpected radiation toxicity. Many scientists in the field related with nuclear medicine have made effort to evolve concept and technique for internal radiation dosimetry. In this review, basic concept of internal radiation dosimetry if described and recent progress in method for dosimetry is introduced

  5. The International Reactor Dosimetry File (IRDF-85)

    International Nuclear Information System (INIS)

    Cullen, D.E.; McLaughlin, P.K.

    1985-04-01

    This document describes the contents of the second version of the International Reactor Dosimetry File (IRDF-85), distributed by the Nuclear Data Section of the International Atomic Energy Agency. This library superseded IRDF-82. (author)

  6. Radiation Litigation and Internal Dosimetry

    International Nuclear Information System (INIS)

    Jose, D.E.

    1987-01-01

    Radiation Litigation refers to those lawsuits filed by individuals who claim to have been injured by some past exposure to ionizing radiation. Law classifies these cases as personal injury or tort cases. However, they are a new breed of such cases and the law is presently struggling with whether these cases can be resolved using the traditional methods of legal analysis or whether new forms of analysis, such as probability of causation, need to be applied. There are no absolutely certain rules concerning how these particular lawsuits will be tried and analyzed. The United States presently is defending cases filed by approximately 7000 plaintiffs. The private nuclear industry is defending cases filed by over 2000 plaintiffs. While not all of these cases will actually be tried on their merits, at least some will and internal dosimetry will play a very important part in many of these trials

  7. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms.

    Science.gov (United States)

    Andersson, Martin; Johansson, Lennart; Eckerman, Keith; Mattsson, Sören

    2017-11-03

    To date, the estimated radiation-absorbed dose to organs and tissues in patients undergoing diagnostic examinations in nuclear medicine is derived via calculations based on models of the human body and the biokinetic behaviour of the radiopharmaceutical. An internal dosimetry computer program, IDAC-Dose2.1, was developed based on the International Commission on Radiological Protection (ICRP)-specific absorbed fractions and computational framework of internal dose assessment given for reference adults in ICRP Publication 133. The program uses the radionuclide decay database of ICRP Publication 107 and considers 83 different source regions irradiating 47 target tissues, defining the effective dose as presented in ICRP Publications 60 and 103. The computer program was validated against another ICRP dosimetry program, Dose and Risk Calculation (DCAL), that employs the same computational framework in evaluation of occupational and environmental intakes of radionuclides. IDAC-Dose2.1 has a sub-module for absorbed dose calculations in spherical structures of different volumes and composition; this sub-module is intended for absorbed dose estimates in radiopharmaceutical therapy. For nine specific alpha emitters, the absorbed dose contribution from their decay products is also included in the committed absorbed dose calculations. The absorbed doses and effective dose of 131 I-iodide determined by IDAC-Dose2.1 were validated against the dosimetry program DCAL, showing identical results. IDAC-Dose2.1 was used to calculate absorbed doses for intravenously administered 18 F-FDG and orally administered 99m Tc-pertechnetate and 131 I-iodide, three frequently used radiopharmaceuticals. Using the tissue weighting factors from ICRP Publication 103, the effective dose per administered activity was estimated to be 0.016 mSv/MBq for 18 F-FDG, 0.014 mSv/MBq for 99m Tc-pertechnetate, and 16 mSv/MBq for 131 I-iodide. The internal dosimetry program IDAC-Dose2.1 was developed and

  8. Fifth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  9. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  10. Third conference on radiation protection and dosimetry. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  11. Long term nuclear data needs for internal radiation dosimetry

    International Nuclear Information System (INIS)

    Burrows, T.W.

    2001-01-01

    The Evaluated Nuclear Structure Data File (ENSDF) is the principle source of nuclear data for internal radiation dosimetry and is, therefore, described briefly. Nuclear data needs and accuracy requirements for internal radiation dosimetry are summarized. Currently available sources of internal radiation dosimetry data are outlined and the need for traceability and documentation of these data is discussed. (author)

  12. Updating the INDAC computer application of internal dosimetry

    International Nuclear Information System (INIS)

    Bravo Perez-Tinao, B.; Marchena Gonzalez, P.; Sollet Sanudo, E.; Serrano Calvo, E.

    2013-01-01

    The initial objective of this project is to expand the application INDAC currently used in internal dosimetry services of the Spanish nuclear power plants and Tecnatom for estimating the effective doses of internal dosimetry of workers in direct action. or in-vivo dosimetry. (Author)

  13. Radiation dosimetry in radiotherapy with internal emitters

    International Nuclear Information System (INIS)

    Stabin, Michael G.

    1997-01-01

    Full text. Radiation dosimetry radionuclides are currently being labeled to various biological agents used in internal emitter radiotherapy. This talk will review the various technologies and types of radiolabel in current use, with focus on the characterization of the radiation dose to the various important tissues of the body. Methods for obtaining data, developing kinetic models, and calculating radiation doses will be reviewed. Monoclonal antibodies are currently being labeled with both alpha and beta emitting radionuclides in attempts to find effective agents against cancer. Several radionuclides are also being used as bone pain palliation agents. These agents must be studied in clinical trials to determine the biokinetics and radiation dosimetry prior to approval for general use. In such studies, it is important to ensure the collection of the appropriate kinds of data and to collect the data at appropriate time intervals. The uptake and retention of activity in all significant source organs and in excreta be measured periodically (with at least 2 data points phase of uptake or clearance). Then, correct dosimetry methods must be applied - the best available methods for characterizing the radionuclide kinetic and for estimating the dosimetry in the various organs of the body especially the marrow, should be used. Attempts are also under way to develop methods for estimating true patient-specific dosimetry. Cellular and animal studies are also. Valuable in evaluating the efficacy of the agents in shrinking or eliminating tumors; some results from such studies will also be discussed. The estimation of radiation doses to patients in therapy with internal emitters involves several complex phases of analysis. Careful attention to detail and the use of the best available methods are essential to the protection of the patient and a successful outcome

  14. Internal dosimetry hazard and risk assessments: methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.A. [RWE NUKEM Limited, Didcot (United Kingdom)

    2006-07-01

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  15. Internal dosimetry hazard and risk assessments: methods and applications

    International Nuclear Information System (INIS)

    Roberts, G.A.

    2006-01-01

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  16. Dosimetry of internal emitters - quo vadis?

    International Nuclear Information System (INIS)

    Reddy, A.R.; Nagaratnam, A.; Jain, S.C.; Gupta, M.M.; Mehta, S.C.

    1999-01-01

    The dosimetry of internally administered radiopharmaceuticals in nuclear medicine procedures using MIRD formalisms and dosimetry in the case of intakes of radionuclides and ICRP methodology for the purpose of radiological protection are well established working practices. It should, however, be remembered that dose or dose coefficients calculated refer to a reference individual, defined in terms of a mathematical phantom established on the basis of certain biokinetic reference parameters. The reference individual represents a typical caucasian adult of West Europe or North American origin. Recently, some attempts have been made to define a Reference Asian and a Reference Indian individual and to assess the effects of anatomical differences and changes in the biokinetics of radiopharmaceuticals and other radionuclides in these different reference individuals on the estimation of dose and dose coefficients in relation to the intake of internal radionuclides. The assessment of doses to the embryo/fetus due to intake of radionuclides by pregnant women, local dose estimates, microdosimetry, radiobiology and radiation protection aspects relating to Auger electron emitters represent other areas of active research in the area of dosimetry of internal emitters. The present review summarises these different aspects of work. (orig.) [de

  17. Personnel radiation dosimetry symposium: program and abstracts

    International Nuclear Information System (INIS)

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry

  18. Internal dosimetry for epidemiologic studies

    International Nuclear Information System (INIS)

    Groer, P.G.

    1987-01-01

    In traditional epidemiologic analyses, a single valued summary index, the standardized mortality ratio (SMR), is quite popular. The SMR is simply the ratio of the number of deaths observed in the study population to the number of deaths expected if the study population were subject to the age-specific rates of a standard population. SMRs for all causes or specific causes can be calculated. For such a simple analysis an exposed cohort is often characterized by an average organ or whole body dose or dose interval, and the necessary dose estimation effort is relatively minor. Modern statistical methods focus on the estimation of the cause-specific mortality rate λ for study populations exposed to ionizing radiations or toxic chemicals. The dependence of λ on factors other than demographic characteristics, such as race and sex, is usually described through a parametric model. Such factors, often called covariates or covariables, are incorporated in the mathematical expression for the hazard rate. The external gamma dose or the internal lung dose from inhaled uranium are good examples for covariates. This type of analysis permits the use of individual doses and gives a detailed and quantitative description of the mortality rate as a function of the covariables, but at the cost of a major dosimetric effort. The generation of the necessary dose information and also the calculational efforts become especially taxing for time-dependent covariates such as an internal, cumulative organ dose. 4 refs

  19. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  20. Internal dosimetry of polonium-210

    International Nuclear Information System (INIS)

    Pucelj, B.

    2007-01-01

    On November 1, 2006, former Russian agent Alexander Litvinenko suddenly fell ill and was hospitalised. He died three weeks later, becoming the first known victim of lethal polonium-210 induced acute radiation syndrome. Po-210 is an alpha emitter and is not a radiological hazard as long as it remains outside the body. If taken into the body, much of Po-210 is subsequently excreted, mostly through faeces and some through urine and other pathways. After uptake by the blood, Po-210 is widely distributed through soft body tissues including bone marrow. The internal dose from polonium in the body gives rise to an increase in lifetime cancer risk. Very high radiation doses can cause severe damage to body tissues and organs and in the extreme can be fatal. The hazard function model was used to estimate the lethal levels of intake of Po-210. In case of Litvinenko the destruction of bone marrow and resulting failure of the immune system was most probably the main cause of death, likely to be compounded by damage caused by higher doses to other organs, including kidneys and liver. It was estimated that the ingestion of several hundreds MBq or just about a microgram of Po-210 can be lethal. (author)

  1. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    International Nuclear Information System (INIS)

    COOPER, J.R.

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual

  2. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  3. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  4. Organization of the internal dosimetry in the Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Manchena, P.; Soliet, E.

    1998-01-01

    From the beginning of the exploitation of the nuclear energy of Espanna, the nuclear facilities have had Services of Personal Dosimetry with the appropriate means to determine the dose. so much internal as external, of the personnel that mentioned facilities works. All the nuclear power stations use advanced systems of teams with object of detecting the radionuclides incorporation in the organism and calculation programs based on the recent recommendations of the International Commission of Radiological Protection (ICRP) for the determination of the derived doses

  5. The Mayak Worker Dosimetry System (MWDS-2013): Internal Dosimetry Results

    Energy Technology Data Exchange (ETDEWEB)

    Vostrotin, Vadim; Birchall, Alan; Zhdanov, Alexey; Puncher, Matthew; Efimov, Alexander; Napier, Bruce; Sokolova, Alexandra; Miller, Scott; Suslova, Klara

    2016-09-24

    The distribution of calculated internal doses was determined for 8043 Mayak Production Associate (Mayak PA) workers according to the epidemiological cohorts and groups of raw data used as well as the type of industrial compounds of inhaled aerosols. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185585 mGy, with a median value of 31 mGy and a maximum of 8980 mGy maximum. The ranges of relative standard uncertainty were: from 40 to 2200% for accumulated lung dose, from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-18% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to lognormal. The accumulated internal plutonium dose to systemic organs was close to a log-triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow, calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.8 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.

  6. Current internal-dosimetry practices at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Traub, R.J.; Murphy, B.L.; Selby, J.M.; Vallario, E.J.

    1985-04-01

    The internal dosimetry practice at DOE facilities were characterized. The purpose was to determine the size of the facilities' internal dosimetry programs, the uniformity of the programs among the facilities, and the areas of greatest concern to health physicists in providing and reporting accurate estimates of internal radiation dose and in meeting proposed changes in internal dosimetry. The differences among the internal-dosimetry programs are related to the radioelements in use at each facility and, to some extent, the number of workers at each facility. The differences include different frequencies in the use of quality control samples, different minimum detection levels, different methods of recording radionuclides, different amounts of data recorded in the permanent record, and apparent differences in modeling the metabolism of radionuclides within the body. Recommendations for improving internal-dosimetry practices include studying the relationship between air-monitoring/survey readings and bioassay data, establishing uniform methods for recording bioassay results, developing more sensitive direct-bioassay procedures, establishing a mechanism for sharing information on internal-dosimetry procedures among DOE facilities, and developing mathematical models and interactive computer codes that can help quantify the uptake of radioactive materials and predict their distribution in the body. 19 refs., 8 tabs

  7. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  8. Course of training in Specific internal dosimetry for the patient

    International Nuclear Information System (INIS)

    Rojo, A.M.; Michelin, S.C.; Gomez P, I.M.

    2006-01-01

    In this work the experience obtained in a course organized in Argentina to qualify professionals in the radiopharmaceutical dosimetry using the methodology MIRD and the patient's images is presented. The motivation to carry out it was based on the continuous development of new radiopharmaceuticals with therapeutic purposes that makes necessary the knowledge of the distribution of the absorbed dose to be able to establish the dose-response relationship. The main objective was the study of the biokinetic model and those techniques available that starting from images can contribute information of specific parameters of the patient to calculate with more accuracy the doses in the tumor and in different organs. In the design of the program of this course it was considered to approach the different focuses for the calculation of specific dose of the patient and includes the following topics: the patient's radiological protection, new concepts in damages by radiations (bystander effect), methodology for the internal dosimetry by radiopharmaceuticals, dosimetric systems (MIRD/ICRP), revision of the physical phantoms, design of kinetic studies, compartmental models, calculation tools and the demonstration of the programs SAAM and OLINDA; calculation of activity starting from the patient's images (planar and SPECT). Principles of the gamma camera: the dispersed radiation, calculation of the activity with planar images, the attenuation, correction of the dispersed radiation, collimation problems. SPECT: the common method of reconstruction, basic principles, method of filtered over head projection and iterative methods (MLEM/OSEM), measurement of the attenuation maps, problems of the penetration in the collimator (I-131, I-123), effects of partial volume, incorporation of corrections in an iterative reconstruction. Dosimetry in bone marrow, discussion of study cases of new radiopharmaceuticals. Internal dosimetry in small scale for electrons and photons. Perspectives of the

  9. Development of Probabilistic Internal Dosimetry Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Siwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Tae-Eun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Jai-Ki [Korean Association for Radiation Protection, Seoul (Korea, Republic of)

    2017-02-15

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values (e.g. the 2.5{sup th}, 5{sup th}, median, 95{sup th}, and 97.5{sup th} percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various

  10. Development of probabilistic internal dosimetry computer code

    Science.gov (United States)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  11. Workshop on internal dosimetry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gómez Parada, I.; Gossio, S.; Puerta Yepes, N.; Saavedra, A.D.; Segato, A.D.

    2011-01-01

    Dose assessment in case of internal exposure involves the estimation of committed effective dose based on the interpretation of bioassay measurement, and the assumptions of hypotheses on the characteristics of the radioactive material and the time pattern and the pathway of intake. In the case of workers exposed in nuclear fuel facilities, the normal uranium excretion from the diet is an additional difficulty in the process of assessing internal exposure. The aim of this paper is to present the main topics discussion and the conclusions of the workshop, held in the frame of the missions of the Autoridad Regulatoria Nuclear. All the personnel involved in the control of internal exposure in nuclear fuel cycle was invited to participate in the workshop to discuss about individual monitoring criteria and the available tools for assessing committed effective dose in the workers of their facilities. The lectures were presented jointly by the Nuclear Fuel Cycle Facilities Control and the Dosimetric and Radiobiological Assessment departments. It was hold at the Ezeiza Atomic Center from 23th to 24th November 2010 based on the Advanced Course on Internal Dosimetry organized on 2009 and focusing specific uranium compound internal dosimetry. A representative of each facility was invited to present the monitoring program implemented for controlling the internal exposure. It was an opportunity to discuss criteria and to share experiences on this field in the frame of the ICRP, HPA and ISO publications. The different monitoring program criteria could be analyzed and so contributing to the improvement of radiological protection. Finally, it was agreed to hold periodical meetings to assure the update on uranium measurement techniques and the handling of monitoring data for committed effective dose assessment. (authors) [es

  12. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    Energy Technology Data Exchange (ETDEWEB)

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  13. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-07-01

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  14. Internal dosimetry - its evolution and new trends

    International Nuclear Information System (INIS)

    Bertelli, Luiz

    1997-01-01

    This paper presents some discussions on the developments and trends of metabolic models and dosimetry and their associated parameters, which have been adopted by ICRP to evaluate intakes of radionuclides

  15. Validation criteria of an internal dosimetry laboratory in vivo

    International Nuclear Information System (INIS)

    Alfaro L, M. de las M.

    2014-10-01

    People working with radioactive materials, under certain circumstances (e.g. not using the proper protective equipment, an incident not covered, etc.) could be incorporated into the body. The radiation protection programs include direct measurement methods -in vivo- or indirect -in vitro- or both, to know that radioactive material is incorporated into the body. The monitoring measurements of internal contamination or (Radio-bioassay) are carried out with the purpose of determining the amount of radioactive material incorporated in the body; estimate the effective dose and committed dose; management administration of radiation protection; appropriate medical management; and to provide the data necessary for the legal requirements and the preservation of records. The measurement methods used in the monitoring of internal contamination must be validated by the combination of the following processes: calibration, using standards reference materials and/or simulators; execute systematic research, using control samples; and intercomparison between laboratories and performance tests. In this paper the validation criteria of an internal dosimetry laboratory in vivo are presented following the information provided by the standard ANSI N13-30-1996 and ISO/TEC 17025-2005 as are the criteria of facilities, staff training, interpretation of measurements, performance criteria for monitoring of internal contamination in vivo, results reporting and records retention. Thereby we achieve standardized quantitative performance criteria of truthfulness, accuracy and detection limit and a consensus on statistical definitions to establish the validation plan of a monitoring laboratory of internal contamination in vivo. (Author)

  16. The U.S. food and drug administration's dosimetry program

    International Nuclear Information System (INIS)

    Baratta, E.

    2005-01-01

    Full text: The U. S. Public Health Service's (PHS) Food and Drug Administration (FDA) (part of the PHS) has had a Dosimetry Program at the Winchester Engineering and Analytical Center (WEAC) (formerly the Northeastern Radiological Health Laboratory). This Dosimetry Program has been in place since 1961. In 1967 it was augmented by the construction of a Whole Body Counter at WEAC for measuring internal dose. The FDA's Center for Medical Devices and Radiological Health had been handling these dosimeters since 1961 and in 2000 the WEAC took over total responsibility for this program for the FDA's Office of Regulatory affairs. This program was originally setup for the radiation workers (analysts and support personnel) and later included investigators personnel working in the medical and dental x-ray field. The field laboratories began using radionuclides in 1972 and were also issued radiation dosimeters. Investigators station at border import station alter 2003 were issued as well as radiation pages as a precaution when checking imported food and other FDA regulated products. This paper will discuss the results of radiation exposure received by analyst (including whole body measurements) at WEAC and field laboratories. Also discussed will be exposures to investigators in the medical and dental field. The exposure to the investigators at the import border stations will be included even though they have not been carrying dosimeters for slightly more than a year. In general, the exposures have been well below the Nuclear Regulatory Commission regulations for radiation workers. (author)

  17. Internal dosimetry monitoring equipment: Present and future

    International Nuclear Information System (INIS)

    Selby, J.; Carbaugh, E.H.; Lynch, T.P.; Strom, D.J.; Lardy, M.M.

    1993-09-01

    We have attempted to characterize the current and future status of in vivo and in vitro measurement programs coupled with the associated radioanalytical methods and workplace monitoring. Developments in these areas must be carefully integrated by internal dosimetrists, radiochemists and field health physicists. Their goal should be uniform improvement rather than to focus on one specific area (e.g., dose modeling) to the neglect of other areas where the measurement capabilities are substantially less sophisticated and, therefore, the potential source of error is greatest

  18. Student perceptions of an online medical dosimetry program.

    Science.gov (United States)

    Lenards, Nishele

    2011-01-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  19. Student Perceptions of an Online Medical Dosimetry Program

    International Nuclear Information System (INIS)

    Lenards, Nishele

    2011-01-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  20. Internal dosimetry for occupationally exposed personnel in nuclear medicine

    International Nuclear Information System (INIS)

    Garcia, M.T.; Alfaro, L.M.M.; Angeles, C.A.

    2013-01-01

    Internal dosimetry plays an important role in nuclear medicine dosimetry control of personnel occupationally exposed, and that in recent years there has been a large increase in the use of radionuclides both in medical diagnosis as radiotherapy. But currently, in Mexico and in many parts of the world, this internal dosimetry control is not performed. The Instituto Nacional de lnvestigaciones Nucleares de Mexico (ININ) together with the Centro Oncologico de Toluca (ISEMMYM) have developed a simple and feasible methodology for monitoring of personnel working in these facilities. It was aimed to carry out the dosimetry of the personnel, due to the incorporation of I-131, using the spectrometric devices that the hospital has, a gamma camera. The first step in this methodology was to make a thyroid phantom to meet the specifications of the ninth ANSI. This phantom is compared under controlled conditions with RMC- II phantom used for system calibration of the ININ internal dosimetry (ACCUSCAN - Ll), and with another phantom developed in Brazil with ANSI specifications, in order to determine the variations in measurements due to the density of the material of each of the phantoms and adjust to the system ACCUSCAN, already certificate. Furthermore, necessary counts were performed with the gamma camera of the phantom developed at ININ, with a standard source of 133 Ba which simulates the energy of 131 I. With these data, were determined the counting efficiencies for a distance of 15 to 20 cm between the surface of the phantom and the the plate of the detectors. Another important aspect was to determine the lower limit of detection (LLD). In this paper we present the results obtained from the detectors calibration of the gamma camera of the hospital.

  1. A molding technique for use in internal dosimetry studies

    International Nuclear Information System (INIS)

    Aissi, A.; Tsakeres, F.S.; Poston, J.W.

    1982-01-01

    A method is described for producing molds which can be used in the construction of volumetric organ dosimeters. These negative organ molds are formed by wrapping quick-setting plaster bandages around a silicon-treated hardwood organ mold. The cast is cut in two and after further setting time is ready to contain the tissue equivalent materials and thermoluminescent powders. Such volumetric dosimeters will be useful for comparing experimental and calculated internal dosimetry results. (U.K.)

  2. Development of operation individual dosimetry programs in a developing country

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1993-01-01

    Development of Operational Individual Dosimetry (OID) Programs is the principle rationale for any national radiation protection regulatory program in both developed and developing countries. Individual dosimetry for external radiation means making exposure measurements by equipment carried out on the persons or workers. An operational individual dosimetry (OID) program is defined as development of a program in an operational state to provide national or institutional dosimetry services; i.e. to cover routine, operational and special monitoring as defined by ICRP 35. The development of an OID program depends on many legal, administrative, psychological and technical factors such as number of institutions and radiation workers or persons to be monitored, radiation types and conditions of the workplaces, the state of related sciences and technologies, radiation protection infrastructure as regard to laws and regulations, the existence of qualified leader and manpower, desire to develop such a program, degree of self-dependency required, etc. Although development of such a program is fairly easy with a proper arrangement, some problems still exist in particular in a developing country. In this paper, the stated points and recommendations for development of OID programs in developing countries based on the experiences of the Islamic Republic of Iran and some other countries are presented and discussed. (author). 32 refs

  3. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  4. Answer to request on the ININ internal dosimetry

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    1999-05-01

    In this report it is presented the reply to CNSNS asking for information about the methodology for the evaluation of the occupational dose due to internal contamination. The characteristics of the installation, type and dimensions of the shield room, construction materials, type of detecting, calibration geometries, type of used phantom, intervals of energy of the calibration, type of routine measurements, detection limit for Cs-137 and Co-60, code to carry out the analysis of the spectra, evaluation of the measurement data, whole body system type armchair with anthropomorphic phantom, whole body system of vertical scanning, distribution and location diagram of the internal dosimetry laboratory there are among the treated aspects. (Author

  5. The use of Monte Carlo codes in internal dosimetry; Utilisation des codes de Monte Carlo en dosimetrie interne

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, M.; Coulot, J. [Institut Gustave-Roussy, Service de Physique, 94 - Villejuif (France)

    2003-07-01

    Internal dosimetry concerns the radiation sources inside human body. It contributes to determine the energy depositions in a living organism following the accidental or medical irradiation. In the case of an accidental irradiation, the aim is to evaluate the risk estimation; in the case of a medical use the dosimetry data are used in a radiation protection purpose. In any case, it is necessary to have references methods in order to know the dose absorbed bound to the radioactive product incorporation. Three levels have to be considered: the organ level in radiation protection, the cellular and tissue levels for application in radiotherapy. The analytical methods become rapidly difficult to use so the Monte Carlo methods give now a correct statistical precision. The advantages of this way of doing are developed in this article. (N.C.)

  6. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  7. Calculations in cytogenetic dosimetry by means of the dosgen program

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Zerquera, J.T.

    1996-01-01

    The DOSGEN program sums up the different calculations routing that are more often used in cytogenetic dosimetry. It can be implemented in a compatible IBM PC by cytogenetic experts having a basic knowledge of computing. The programs has been successfully applied using experimental data and its advantages have been acknowledge by Latin American and Asian Laboratories dealing with this medical branch. The program is written in Pascal Language and requires 42 K bytes

  8. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    Science.gov (United States)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  9. Validation of internal dosimetry protocols based on stochastic method

    International Nuclear Information System (INIS)

    Mendes, Bruno M.; Fonseca, Telma C.F.; Almeida, Iassudara G.; Trindade, Bruno M.; Campos, Tarcisio P.R.

    2015-01-01

    Computational phantoms adapted to Monte Carlo codes have been applied successfully in radiation dosimetry fields. NRI research group has been developing Internal Dosimetry Protocols - IDPs, addressing distinct methodologies, software and computational human-simulators, to perform internal dosimetry, especially for new radiopharmaceuticals. Validation of the IDPs is critical to ensure the reliability of the simulations results. Inter comparisons of data from literature with those produced by our IDPs is a suitable method for validation. The aim of this study was to validate the IDPs following such inter comparison procedure. The Golem phantom has been reconfigured to run on MCNP5. The specific absorbed fractions (SAF) for photon at 30, 100 and 1000 keV energies were simulated based on the IDPs and compared with reference values (RV) published by Zankl and Petoussi-Henss, 1998. The SAF average differences from RV and those obtained in IDP simulations was 2.3 %. The SAF largest differences were found in situations involving low energy photons at 30 keV. The Adrenals and thyroid, i.e. the lowest mass organs, had the highest SAF discrepancies towards RV as 7.2 % and 3.8 %, respectively. The statistic differences of SAF applying our IDPs from reference values were considered acceptable at the 30, 100 and 1000 keV spectra. We believe that the main reason for the discrepancies in IDPs run, found in lower masses organs, was due to our source definition methodology. Improvements of source spatial distribution in the voxels may provide outputs more consistent with reference values for lower masses organs. (author)

  10. Validation of internal dosimetry protocols based on stochastic method

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Bruno M.; Fonseca, Telma C.F., E-mail: bmm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Almeida, Iassudara G.; Trindade, Bruno M.; Campos, Tarcisio P.R., E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    Computational phantoms adapted to Monte Carlo codes have been applied successfully in radiation dosimetry fields. NRI research group has been developing Internal Dosimetry Protocols - IDPs, addressing distinct methodologies, software and computational human-simulators, to perform internal dosimetry, especially for new radiopharmaceuticals. Validation of the IDPs is critical to ensure the reliability of the simulations results. Inter comparisons of data from literature with those produced by our IDPs is a suitable method for validation. The aim of this study was to validate the IDPs following such inter comparison procedure. The Golem phantom has been reconfigured to run on MCNP5. The specific absorbed fractions (SAF) for photon at 30, 100 and 1000 keV energies were simulated based on the IDPs and compared with reference values (RV) published by Zankl and Petoussi-Henss, 1998. The SAF average differences from RV and those obtained in IDP simulations was 2.3 %. The SAF largest differences were found in situations involving low energy photons at 30 keV. The Adrenals and thyroid, i.e. the lowest mass organs, had the highest SAF discrepancies towards RV as 7.2 % and 3.8 %, respectively. The statistic differences of SAF applying our IDPs from reference values were considered acceptable at the 30, 100 and 1000 keV spectra. We believe that the main reason for the discrepancies in IDPs run, found in lower masses organs, was due to our source definition methodology. Improvements of source spatial distribution in the voxels may provide outputs more consistent with reference values for lower masses organs. (author)

  11. Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    S.-Stelson, A.T. [ed.] [comp.; Stabin, M.G.; Sparks, R.B. [eds.; Smith, F.B. [comp.

    1999-01-01

    This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.

  12. The work of committee 2 of ICRP on internal dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.

    2005-01-01

    Full text: Over the last few years the Task Group of Committee 2 of ICRP on Internal Dosimetry (INDOS), in conjunction with the Task Group on Dose Calculations (DOCAL), has prepared a series of publications that have given dose coefficients for intakes of radionuclides by infants, children and adults. The most recent publications have been Publication 88 that gives doses to the embryo, fetus and newborn child from intakes of radionuclides by the mother and Publication 94 that will give doses to the newborn child from intakes of radionuclides in mothers' milk. These documents have completed the programme of work of Committee 2 on dose coefficients for members of the public. The emphasis of work on internal dosimetry by Committee 2 is now concerned with occupational exposure. This is will take into account recent advice from ICRP, including the new 2005 Recommendations of ICRP which are expected to provide revised tissue weighting factors for the calculation of effective dose. In addition ICRP has issued Publication 89 on Basic Anatomical and Physiological Data for use in Radiological Protection and in addition will have published a new Human Alimentary Tract Model (HATM). It will have implemented a human phantom for dose calculations based upon medical imaging data and updated radionuclide decay data; superseding Publication 38. In addition, the systemic models for a number of elements are being revised to take account of more recent data, and the lung clearance characteristics of a wide range of compounds relevant to occupational exposure are being reviewed. It is intended to replace Publications 30 and 68 that give biokinetic data and dose coefficients for intakes of radionuclides and Publications 54 and 78 that give information for bioassay interpretation, with a single series of publications. This series will cover both dosimetry and data for bioassay interpretation. The first report will cover radionuclides of the 31 elements covered in the series of

  13. Personalized dosimetry in internal radiotherapy with the help of voxelised phantoms; Dosimetrie personnalisee en radiotherapie interne a l'aide de fantomes voxelises

    Energy Technology Data Exchange (ETDEWEB)

    Chiavassa, S.; Bardies, M.; Martin, S.; Aubineau-Laniece, I. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DPHD/SDOS/LEMDI), 92 - Fontenay-aux-Roses (France)

    2003-07-01

    The aim of this communication is to present a evaluation tool of the personalised internal dose that associated a Monte Carlo code to a voxelised representation of the patient for a personalised dosimetry evaluation in vectorized radiotherapy. the developments realised to reach a whole body dosimetry at tissue scale in a reasonable calculation time ( about a day) and some functionalities of the software are exposed. (N.C.)

  14. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force

    Directory of Open Access Journals (Sweden)

    Caroline Stokke

    2017-11-01

    Full Text Available Abstract Background The European directive on basic safety standards (Council directive 2013/59 Euratom mandates dosimetry-based treatment planning for radiopharmaceutical therapies. The directive comes into operation February 2018, and the aim of a report produced by the Internal Dosimetry Task Force of the European Association of Nuclear Medicine is to address this aspect of the directive. A summary of the report is presented. Results A brief review of five of the most common therapy procedures is included in the current text, focused on the potential to perform patient-specific dosimetry. In the full report, 11 different therapeutic procedures are included, allowing additional considerations of effectiveness, references to specific literature on quantitative imaging and dosimetry, and existing evidence for absorbed dose-effect correlations for each treatment. Individualized treatment planning with tracer diagnostics and verification of the absorbed doses delivered following therapy is found to be scientifically feasible for almost all procedures investigated, using quantitative imaging and/or external monitoring. Translation of this directive into clinical practice will have significant implications for resource requirements. Conclusions Molecular radiotherapy is undergoing a significant expansion, and the groundwork for dosimetry-based treatment planning is already in place. The mandated individualization is likely to improve the effectiveness of the treatments, although must be adequately resourced.

  15. Cuban experience in dosimetry quality audit program in radiotherapy

    International Nuclear Information System (INIS)

    Alonso-Samper, J.L.; Dominguez, L.; Yip, F.G.; Laguardia, R.A.; Morales, J.L.; Larrinaga, E.

    2002-01-01

    Full text: Five years ago we started a National Program of Quality Assurance in Radiotherapy. This program was possible thanks to the cooperation between the Cuban Ministry of Health and the International Atomic Energy Agency (IAEA) in the Projects ARCAL XXX and CUB/6/011. In the framework of these projects a total of ten complete dosimetry set were acquired and a large number of medical physicists were trained. At the same time, the Cuban side signed a contract for nine cobalt units, which have been gradually installed and all of them are running at the moment. During more than 20 years Cuba has taken part in the IAEA/WHO TLD postal dose audit programs and our results have been inside the (+/-)5 % acceptance limit. Cuba also joined the IAEA Coordinated Research Program E2 40 07, to extend at a national level the experience of the TLD based audits, using the capability of our SSDL to measure TLD. At the same time the work of the already existing External Audit Group was consolidated. The National Program of Quality Assurance in Radiotherapy works on base of external on-site visits. The main objective is to avoid any accident and to improve the quality of the RT treatments. Every year each Radiotherapy service is visited by a qualified team of physicists with the objective to check the physical aspects of the quality of the RT treatment, it includes: Documents and Records, safety, mechanical and dosimetric aspects, treatment planning, also we use the fixed depth phantom to simulate and verify several techniques. Although the TLD postal audit results are acceptable, in our QA audits we have detected some problems that may deviate the dose delivery to patients in more than 5%, examples of which are: Not all the clinical plans are redundantly checked by an independent person; Not all the controls (daily, monthly and annual) are performed according to the protocols approved by the National QA Committee. In some cases the controls are not well recorded; Clinical

  16. The Martin Marietta Energy Systems personnel neutron dosimetry program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1991-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages five sites for the US Department of Energy. Personnel dosimetry for four of the five sites is coordinated through a Centralized External Dosimetry System (CEDS). These four sites are the Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant (Y-12), the Oak Ridge K-25 Site (K-25), and the Paducah Gaseous Diffusion Plant (PGDP). The fifth Energy Systems site, Portsmouth Gaseous Diffusion Plant, has an independent personnel dosimetry program. The current CEDS personnel neutron dosimeter was first issued in January 1989, after an evaluation and characterization of the dosimeters' response in the workplaces was performed. For the workplace characterization, Energy Systems contracted with Pacific Northwest Laboratory (PNL) to perform neutron measurements at selected locations at ORNL and Y-12. K-25 and PGDP were not included because their neutron radiation fields were similar to others already planned for characterization at ORNL and Y-12. Since the initial characterization, PNL has returned to Oak Ridge twice to perform follow up measurements, and another visit is planned in the near future

  17. Quality assurance program in the External dosimetry laboratory of the CPHR

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez H, E.; Cardenas H, J.

    2006-01-01

    From 1999 the Laboratory of External Dosimetry of the Radiation Protection and Hygiene Center comes applying in its service of personal dosimetry a Program of Quality Assurance. This program was designed according to the recommendations of national and international organizations as the National Assuring Office of the Republic of Cuba (ONARC), the International Standards Organization (ISO), the International Electro technique Commission (IEC) and the International Atomic Energy Agency (IAEA). In this work it is presented in a summarized way the operation of this Program of Quality Assurance which includes the administration and conservation of the results and the documentation of the service, the controls that are carried out to the equipment, the acceptance tests that are applied to the equipment and new dosemeters, the shipment and prosecution of the dosemeters, the evaluation, storage and conservation of the doses, the report of the results, the traceability and reproducibility of the measurements, the attention to the reclamations and the clients complaints and the internal and external audits to those that it undergoes periodically the laboratory. (Author)

  18. International cooperation within the IRCP using the example of internal dosimetry; Internationale Zusammenarbeit innerhalb der ICRP am Beispiel der internen Dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Nosske, Dietmar

    2017-10-01

    IRCP is working since decades in the field of internal dosimetry and defines limiting values for occupational exposed persons, individuals in the population and patients in the diagnostic nuclear medicine that are worldwide included in the national and international radiation protection regulations. The effort to be as realistic as possible is producing continuously more complex models. This fact is delaying the respective values and aggravates the application of the models. In order to facilitate the application other institutions like EURADOS (European radiation dosimetry group) generate appropriate guidelines. Cooperation is taking place between ISRP and the respective institutions.

  19. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  20. Proceedings of the V. international symposium 'Actual problems of dosimetry'

    International Nuclear Information System (INIS)

    Kundas, S.P.; Okeanov, A.E.; Shevchuk, V.E.

    2005-10-01

    The main topics of the workshop were: monitoring and reconstruction of radiation doses at radiation accidents, biological dosimetry and markers of radiation effects as well as normative, metrological and technical aspects of dosimetric and radiometric monitoring

  1. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  2. LWR-PV Surveillance Dosimetry Improvement Program review graphics

    International Nuclear Information System (INIS)

    McElroy, W.N.; Gold, R.; Gutherie, G.L.

    1979-10-01

    A primary objective of the multilaboratory program is to prepare an updated and improved set of dosimetry, damage correlation, and the associated reactor analysis ASTM standards for LWR-PV irradiation surveillance programs. Supporting this objective are a series of analytical and experimental validation and calibration studies in Benchmark Neutron Fields, reactor Test Regions, and operating power reactor Surveillance Positions. These studies will establish and certify the precision and accuracy of the measurement and predictive methods which are recommended for use in these standards. Consistent and accurate measurement and data analysis techniques and methods, therefore, will have been developed and validated along with guidelines for required neutron field calculations that are used to (1) correlate changes in material properties with the characteristics of the neutron radiation field and (2) predict pressure vessel steel toughness and embrittlement from power reactor surveillance data

  3. Personalized dosimetry in internal radiotherapy with the help of voxelised phantoms

    International Nuclear Information System (INIS)

    Chiavassa, S.; Bardies, M.; Martin, S.; Aubineau-Laniece, I.

    2003-01-01

    The aim of this communication is to present a evaluation tool of the personalised internal dose that associated a Monte Carlo code to a voxelised representation of the patient for a personalised dosimetry evaluation in vectorized radiotherapy. the developments realised to reach a whole body dosimetry at tissue scale in a reasonable calculation time ( about a day) and some functionalities of the software are exposed. (N.C.)

  4. Harmonization of internal dosimetry procedures in Latin America - ARCAL/IAEA project

    Energy Technology Data Exchange (ETDEWEB)

    Melo, D.; Dantas, B.M.; Juliao, L. [Instituto de Radioprotecao e Dosimetria - Av. Salvador Allende S/N, Recreio dos Bandeirantes, RJ 22780-160 (Brazil); Cruz Suarez, R. [International Atomic Energy Agency, Vienna (Austria); Rojo, A.; Serdero, N. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Videla, R. [Comision Chilena de Energia Nuclear, Santiago (Chile); Puerta, J.A. [Universidad Nacional de Colombia, Medellin (Colombia); Lopez, G. [Centro de Proteccion e Higiene de las Radiaciones, Ciudad de la Habana (Cuba); Alfaro, M.M. [Instituto nacional de Investigaciones Nucleares (Mexico); Gonzales, S. [Instituto Peruano de Energia Nuclear, Lima (Peru); Hermida, J.C. [Hospital de Clinicas, Montevideo (Uruguay); Navarro, T. [Centro de Investigaciones Energeticas, Mediciones Ambientales y Tecnologicas - CIEMAT, Madrid (Spain)

    2007-07-01

    Under the auspices of the Regional Coordination Agreement for Latin America, representatives of the eight member states have participated in a project to improve radiological protection for workers exposed to unsealed sources of radiation. The design of the project was based on information obtained from a questionnaire circulated among the participants, from which the initial status of internal dosimetry services in each country was characterised. The objective of the project is to harmonize internal dosimetry procedures, with reference to International Atomic Energy Agency recommendations. After the implementation of new procedures and personnel training, four intercomparison exercises were carried out: measurement of iodine in thyroid phantoms, measurement of gamma emitters in urine samples, measurement of beta emitters in urine samples and internal dose assessments. This project has resulted in important improvements in internal dosimetry services in the region. (authors)

  5. What is New in Internal Dosimetry and Monitoring?

    Energy Technology Data Exchange (ETDEWEB)

    Henrichs, K. [Siemens AG, Corporate Radiation Safety and Dangerous Goods Transport, Munich (Germany); Nosske, D. [Federal Office for Radiation Protection, Neuherberg (Germany)

    2006-07-01

    This file is divided in two parts:the first one concerns the progress in internal dosimetry. This part gives an overview on new model developments by ICRP, the series of age dependent doses for members of the public was continued by biokinetic and dosimetric models for the embryo and foetus due to activity intake by the mother (ICRP,2001) and for the infant via consumption of mother's milk after activity intake by the mother (ICRP, 2004). In both publications dose coefficients for the embryo and foetus as well the infant were given for various intake scenarios by mother. The present model development work of ICRP is a revision of Publications 30, 54, 68, and 78 based on the new human Alimentary tract model (H.A.T.M.) of ICRP (ICRP, 2006), a revision of absorption parameters for the human respiratory tract model (ICRP, 1994a), new systemic models as well as new dosimetric parameters derived with new Voxel models for the reference male and female adult. The second part concerns the progress in workers monitoring for radionuclide intake. The initiatives to improve the situation are the guidelines published by the International Atomic Energy Agency (2004), giving guidance for the assessment of occupational exposures due to intakes of radionuclides, research project funded by the European Commission: the objective of O.M.I.N.E.X. was the improvement of monitoring programmes, taking into account the uncertainties of biokinetic models and data, the programme I.D.E.A. tried to improve measuring techniques and I.D.E.A.S derives rules for the evaluation of measured activity values in terms of exposure. Standardization projects by the International Standardization Organization I.S.O.: I.S.O. (2001) published a standard defining the requirements for bioassay laboratories, which will soon followed by a second part giving the rationale behind these rules., presently the final version (I.S.O. 2005) of a standard is circulating among the I.S.O. member states which guidance on

  6. What is New in Internal Dosimetry and Monitoring?

    International Nuclear Information System (INIS)

    Henrichs, K.; Nosske, D.

    2006-01-01

    This file is divided in two parts:the first one concerns the progress in internal dosimetry. This part gives an overview on new model developments by ICRP, the series of age dependent doses for members of the public was continued by biokinetic and dosimetric models for the embryo and foetus due to activity intake by the mother (ICRP,2001) and for the infant via consumption of mother's milk after activity intake by the mother (ICRP, 2004). In both publications dose coefficients for the embryo and foetus as well the infant were given for various intake scenarios by mother. The present model development work of ICRP is a revision of Publications 30, 54, 68, and 78 based on the new human Alimentary tract model (H.A.T.M.) of ICRP (ICRP, 2006), a revision of absorption parameters for the human respiratory tract model (ICRP, 1994a), new systemic models as well as new dosimetric parameters derived with new Voxel models for the reference male and female adult. The second part concerns the progress in workers monitoring for radionuclide intake. The initiatives to improve the situation are the guidelines published by the International Atomic Energy Agency (2004), giving guidance for the assessment of occupational exposures due to intakes of radionuclides, research project funded by the European Commission: the objective of O.M.I.N.E.X. was the improvement of monitoring programmes, taking into account the uncertainties of biokinetic models and data, the programme I.D.E.A. tried to improve measuring techniques and I.D.E.A.S derives rules for the evaluation of measured activity values in terms of exposure. Standardization projects by the International Standardization Organization I.S.O.: I.S.O. (2001) published a standard defining the requirements for bioassay laboratories, which will soon followed by a second part giving the rationale behind these rules., presently the final version (I.S.O. 2005) of a standard is circulating among the I.S.O. member states which guidance on the

  7. International symposium on standards and codes of practice in medical radiation dosimetry. Book of extended synopses

    International Nuclear Information System (INIS)

    2002-01-01

    The development of radiation measurement standards by National Metrology Institutes (NMIs) and their dissemination to Secondary Standard Dosimetry Laboratories (SSDLs), cancer therapy centres and hospitals represent essential aspects of the radiation dosimetry measurement chain. Although the demands for accuracy in radiotherapy initiated the establishment of such measurement chains, similar traceable dosimetry procedures have been implemented, or are being developed, in other areas of radiation medicine (e.g. diagnostic radiology and nuclear medicine), in radiation protection and in industrial applications of radiation. In the past few years the development of primary standards of absorbed dose to water in 60 Co for radiotherapy dosimetry has made direct calibrations in terms of absorbed dose to water available in many countries for the first time. Some laboratories have extended the development of these standards to high energy photon and electron beams and to low and medium energy x-ray beams. Other countries, however, still base their dosimetry for radiotherapy on air kerma standards. Dosimetry for conventional external beam radiotherapy was probably the field where standardized procedures adopted by medical physicists at hospitals were developed first. Those were related to exposure and air kerma standards. The recent development of Codes of Practice (or protocols) based on the concept of absorbed dose to water has led to changes in calibration procedures at hospitals. The International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water (TRS 398) was sponsored by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), Pan-American Health Organization (PAHO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) and is expected to be adopted in many countries worldwide. It provides recommendations for the dosimetry of all types of beams (except neutrons) used in external radiotherapy and satisfies

  8. Cosmic radiation dosimetry in international flights argentine airlines

    International Nuclear Information System (INIS)

    Ciancio, Vicente R.; Oliveri, Pedro V.; Di Giovan B, Gustavo; Ciancio, Vanina L.; Lewis, Brent J.; Green, Anna R.; Bennet, L.

    2008-01-01

    Full text: Introduction: In commercial aviation the most important determinants of radiation exposure in humans are the altitude, latitude, flight duration and the solar cycle's period. This study was conducted to address this type of exposure trough radiation dosimetry. Method: The study was performed in the business-class cabin of an Airbus 340-200 aircraft, provided by Argentine Airlines, during 2 flights routes: New York-Miami-Buenos Aires (trans equatorial) and Buenos Aires-Auckland (circumpolar). Measurements addressed the electromagnetic spectrum or low Linear Energy Transfer (LET) and corpuscular radiation (High LET). The instruments used were an Ion Chamber (IC), to measure the ionizing component of radiation (i.e., gamma radiation), the SWENDI, to measure only the neutron component, and the Tissue Equivalent Proportional Counter (TEPC) for measuring all radiation types. Results: The routes' dose rates are presented in the table. TEPC rates agreed with the LET findings. The total dose rates of high latitude flights were higher than those of low latitude flights. The SWENDI (High LET) results for the flights over the equator, at low latitude, represented only 1/3 of the total radiation. The New York-Miami and Buenos Aires-Auckland flights, at high latitude, represented just under 1/2 of the Total radiation (-45%). Conclusion: Based on the results of this study, the annual dose rates of radiation exposure of air crew personnel serving on international flights offered by Argentine Airlines is between 3 and 7 mSv. This rate is higher than the maximum recommended for the general population by the International Commission on Radiological Protection (ICRP), which is 1 milli Sv./y. Therefore, these personnel must be officially considered 'Occupationally Exposed to Radiation' in way to provide the appropriate measures that must be implemented for their protection in accordance to ICRP guidelines. Dose(uSv): Route N Y-Miami, IC 6.07, SWENDI 5.07, TEPC 11.04; Route

  9. Individualized adjustments to reference phantom internal organ dosimetry - scaling factors given knowledge of patient internal anatomy.

    Science.gov (United States)

    Wayson, Michael B; Bolch, Wesley E

    2018-03-16

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions (SAFs) were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry. © 2018 Institute of Physics and Engineering in

  10. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    International Nuclear Information System (INIS)

    Cummings, F.M.; Carlson, R.D.; Gesell, T.F.; Loesch, R.M.

    1992-01-01

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  11. Results of the argentinian intercomparison on internal dosimetry 2014. Measurement of thyroid burden

    International Nuclear Information System (INIS)

    Rojo, A.M.; Puerta, N.; Gossio, S.; Gómez Parada, I.

    2015-01-01

    Internal dosimetry intercomparisons are essential for the verification of the capability to perform direct measurements of “1”3”1I thyroid burden and the expertise in the interpretation of these data for dose assessment. To that aim, in 2014 the National Intercomparison Exercise was organized and coordinated by the Internal Dosimetry Laboratory of the Autoridad Regulatoria Nuclear (ARN) of Argentina. The exercise counted with the participation of six internal dosimetry services: nuclear power plants (NA-SA CNA and NA-SA CNE), CNEA Atomic Centres: Bariloche (CAB) and Ezeiza (CAE), Roffo Institute (UBA – CNEA) and ARN. This report shows a complete analysis of the participant’s results in this exercise. (authors) [es

  12. Research needs related to internal dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-1)

    International Nuclear Information System (INIS)

    Duport, P.; Pomroy, C.; Brown, D.

    1989-01-01

    There are several important techniques of internal dosimetry for use with uranium mine and mill workers: personal radon daughter dosimetry, uranium content of urine, whole body counter to evaluate the uranium in lung burden, and assay of uranium in biopsy or autopsy tissue samples. There are problems with each of these techniques and further research is required in internal dosimetry (as well as the alternative of monitoring exposure levels). This research should be aimed at improved or supplementary dosimetry techniques, enhanced theoretical interpretation of dosimetry results and fundamental research not directly related to the techniques mentioned above. Proposals for research as presented by the working group in this report should be considered by funding organizations concerned with internal dosimetry as it relates to the uranium mining industry, and, since this report was first presented. AECB has proceeded with related projects. (author)

  13. International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard

    Science.gov (United States)

    Soares, Christopher

    2006-03-01

    In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

  14. Annual course of retraining for the occupational exposure personnel of the laboratory of internal dosimetry

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-09-01

    The general objective of this report is to instruct the personnel in the basic concepts of radiological protection and in the Manual of Procedures of Radiological Safety of the Laboratory of Internal Dosimetry. Also, to exchange experiences during the activities that are carried out in the laboratory and in the knowledge of abnormal situations. The referred Manual consists of 14 procedures and 5 instructions which are listed in annex of this document. The content of this course consists of three topics: 1. Basic principles of radiological protection to reduce the received dose equivalent. 2. Use of radiation measurer equipment. 3. Emergency procedures of the laboratory of internal dosimetry. (Author)

  15. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, Harry IV

    1990-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms and applications of radiation processing. To date, the group has completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment. This set will be available for adoption by national regulatory agencies or other standards-setting organizations for their procedures and protocols. (author)

  16. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV.

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab

  17. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  18. Course of training in Specific internal dosimetry for the patient; Curso de capacitacion en dosimetria interna especifica para el paciente

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, A.M.; Michelin, S.C. [Dosimetria Interna, Autoridad Regulatoria Nuclear, Av. Del Libertador 8250 CP (429BNP), Buenos Aires (Argentina); Gomez P, I.M. [Sociedad Argentina de Radioproteccion, Av. del Libertador 8250, Buenos Aires (Argentina)]. e-mail: arojo@cae.arn.gov.ar

    2006-07-01

    In this work the experience obtained in a course organized in Argentina to qualify professionals in the radiopharmaceutical dosimetry using the methodology MIRD and the patient's images is presented. The motivation to carry out it was based on the continuous development of new radiopharmaceuticals with therapeutic purposes that makes necessary the knowledge of the distribution of the absorbed dose to be able to establish the dose-response relationship. The main objective was the study of the biokinetic model and those techniques available that starting from images can contribute information of specific parameters of the patient to calculate with more accuracy the doses in the tumor and in different organs. In the design of the program of this course it was considered to approach the different focuses for the calculation of specific dose of the patient and includes the following topics: the patient's radiological protection, new concepts in damages by radiations (bystander effect), methodology for the internal dosimetry by radiopharmaceuticals, dosimetric systems (MIRD/ICRP), revision of the physical phantoms, design of kinetic studies, compartmental models, calculation tools and the demonstration of the programs SAAM and OLINDA; calculation of activity starting from the patient's images (planar and SPECT). Principles of the gamma camera: the dispersed radiation, calculation of the activity with planar images, the attenuation, correction of the dispersed radiation, collimation problems. SPECT: the common method of reconstruction, basic principles, method of filtered over head projection and iterative methods (MLEM/OSEM), measurement of the attenuation maps, problems of the penetration in the collimator (I-131, I-123), effects of partial volume, incorporation of corrections in an iterative reconstruction. Dosimetry in bone marrow, discussion of study cases of new radiopharmaceuticals. Internal dosimetry in small scale for electrons and photons

  19. Neutron dosimetry program at Mound - problems and solutions

    International Nuclear Information System (INIS)

    Winegardner, M.K.

    1991-01-01

    The Mound personnel neutron dosimetry program utilizes TLD albedo technology. The neutron dosimeter design incorporates a two-element spectrometer for site-specific neutron quality determination and empirical application of field neutron calibration factors. Design elements feature two Li(6)F (TLD- 600) chips for neutron detection and one Li(7)F (TLD-700) chip for gamma compensation of the TLD- 600 chips. One TLD-600 chip is Cadmium shielded on the front side of the dosimeter, the other is Cadmium shielded from the back side. Tin filters are placed opposite of the Cadmium shield on each of the TLD-600 chips and on both sides of the TLD-700 chip for symmetrically equivalent gamma absorption characteristics. Neutron quality determination is accomplished by the albedo neutron-to- incident thermal neutron response ratio above the Cadmium cutoff. This front Cadmium shielded-to-back Cadmium shielded response ratio, compensated for the presence of gamma radiation, provides the basis for neutron energy calibration via the albedo response curve

  20. True dose from incorporated activities. Models for internal dosimetry

    International Nuclear Information System (INIS)

    Breustedt, B.; Eschner, W.; Nosske, D.

    2012-01-01

    The assessment of doses after incorporation of radionuclides cannot use direct measurements of the doses, as for example dosimetry in external radiation fields. The only observables are activities in the body or in excretions. Models are used to calculate the doses based on the measured activities. The incorporated activities and the resulting doses can vary by more than seven orders of magnitude between occupational and medical exposures. Nevertheless the models and calculations applied in both cases are similar. Since the models for the different applications have been developed independently by ICRP and MIRD different terminologies have been used. A unified terminology is being developed. (orig.)

  1. Standardization of dosimetry and damage analysis work for U.S. LWR, FBR, and MFR development program

    International Nuclear Information System (INIS)

    McElroy, W.N.; Doran, D.G.; Gold, R.; Morgan, W.C.; Grundl, J.A.; McGarry, E.D.; Kam, F.B.K.; Swank, J.H.; Odette, G.R.

    1978-01-01

    The accuracy requirements for various measured/calculated exposure and correlation parameters associated with current dosimetry and damage analysis procedures and practices depend on the accuracy needs of reactor development efforts in testing, design, safety, operations, and surveillance programs. Present state-of-the-art accuracies are estimated to be in the range of +-2 to 30 percent (1 sigma), depending on the particular parameter. There now appears to be international agreement, at least for the long term, that most reactor fuels and materials programs will not be able to accept an uncertainty greater than about +5 percent (1 sigma). The current status of dosimetry and damage analysis standardization work within the U.S. for LWR, FBR and MFR is reviewed in this paper

  2. The Third International Intercomparison on EPR Tooth Dosimetry: Part 2, final analysis

    International Nuclear Information System (INIS)

    Wieser, A.; Debuyst, R.; Fattibene, P.; Meghzifene, A.; Onori, S.; Bayankin, S. N.; Brik, A.; Bugay, A.; Chumak, V.; Ciesielski, B.; Hoshi, M.; Imata, H.; Ivannikov, A.; Ivanov, D.; Junczewska, M.; Miyazawa, C.; Penkowski, M.; Pivovarov, S.; Romanyukha, A.; Romanyukha, L.; Schauer, D.; Scherbina, O.; Schultka, K.; Sholom, S.; Skvortsov, V.; Stepanenko, V.; Thomas, J. A.; Tielewuhan, E.; Toyoda, S.; Trompier, F.

    2006-01-01

    The objective of the Third International Intercomparison on EPR Tooth Dosimetry was to evaluate laboratories performing tooth enamel dosimetry <300 mGy. Final analysis of results included a correlation analysis between features of laboratory dose reconstruction protocols and dosimetry performance. Applicability of electron paramagnetic resonance (EPR) tooth dosimetry at low dose was shown at two applied dose levels of 79 and 176 mGy. Most (9 of 12) laboratories reported the dose to be within 50 mGy of the delivered dose of 79 mGy, and 10 of 12 laboratories reported the dose to be within 100 mGy of the delivered dose of 176 mGy. At the high-dose tested (704 mGy) agreement within 25% of the delivered dose was found in 10 laboratories. Features of EPR dose reconstruction protocols that affect dosimetry performance were found to be magnetic field modulation amplitude in EPR spectrum recording, EPR signal model in spectrum deconvolution and duration of latency period for tooth enamel samples after preparation. (authors)

  3. Computational dosimetry and risk assessment of radioinduced cancer: studies in mammary glands radiotherapy, radiopharmaceuticals and internal contamination

    International Nuclear Information System (INIS)

    Mendes, Bruno Melo

    2017-01-01

    were created and validated. C++ programs were designed to calculate the mean absorbed dose in interest organs and the effective dose and to allow the visualization of the absorbed dose and relative error per voxel. The incidence risk of conventional breast RT cancer induced was estimated considering the Brazilian population. The protocols developed and the case studies allowed the generation of data that support risk/benefit evaluations for radiopharmaceuticals uses and for radiotherapy treatments. The combination of computational dosimetry techniques and cancer induction risk assessment applied to breast RT case assessment allowed the identification of organs at risk that normally do not receive enough attention in the therapy planning or in the development of new RT techniques. The methodologies created and validated for simulations of in vivo monitoring systems allowed studies of uncertainty sources, counting geometry optimization and calibration factors estimation for these systems; as well as absorbed dose and effective dose calculation in internal contamination situations. (author)

  4. Requirements for the approval of dosimetry services under the Ionising Radiations Regulations 1985: Pt. 2: Internal radiations

    International Nuclear Information System (INIS)

    1991-01-01

    Guidance for dosimetry services on the requirements for approval by the Health and Safety Executive (HSE) is provided in three parts. This part sets out the procedures and criteria that will be used by HSE in the assessment of dosimetry services seeking approval in relation to internal radiations (including radon decay products). (author)

  5. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, Becka [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-15

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) that included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.

  6. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  7. EDISTR: a computer program to obtain a nuclear decay data base for radiation dosimetry

    International Nuclear Information System (INIS)

    Dillman, L.T.

    1980-01-01

    This report provides documentation for the computer program EDISTR. EDISTR uses basic radioactive decay data from the Evaluated Nuclear Structure Data File developed and maintained by the Nuclear Data Project at the Oak Ridge National Laboratory as input, and calculates the mean energies and absolute intensities of all principal radiations associated with the radioactive decay of a nuclide. The program is intended to provide a physical data base for internal dosimetry calculations. The principal calculations performed by EDISTR are the determination of (1) the average energy of beta particles in a beta transition, (2) the beta spectrum as function of energy, (3) the energies and intensities of x-rays and Auger electrons generated by radioactive decay processes, (4) the bremsstrahlung spectra accompanying beta decay and monoenergetic Auger and internal conversion electrons, and (5) the radiations accompanying spontaneous fission. This report discusses the theoretical and empirical methods used in EDISTR and also practical aspects of the computer implementation of the theory. Detailed instructions for preparing input data for the computer program are included, along with examples and discussion of the output data generated by EDISTR

  8. EDISTR: a computer program to obtain a nuclear decay data base for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, L.T.

    1980-01-01

    This report provides documentation for the computer program EDISTR. EDISTR uses basic radioactive decay data from the Evaluated Nuclear Structure Data File developed and maintained by the Nuclear Data Project at the Oak Ridge National Laboratory as input, and calculates the mean energies and absolute intensities of all principal radiations associated with the radioactive decay of a nuclide. The program is intended to provide a physical data base for internal dosimetry calculations. The principal calculations performed by EDISTR are the determination of (1) the average energy of beta particles in a beta transition, (2) the beta spectrum as function of energy, (3) the energies and intensities of x-rays and Auger electrons generated by radioactive decay processes, (4) the bremsstrahlung spectra accompanying beta decay and monoenergetic Auger and internal conversion electrons, and (5) the radiations accompanying spontaneous fission. This report discusses the theoretical and empirical methods used in EDISTR and also practical aspects of the computer implementation of the theory. Detailed instructions for preparing input data for the computer program are included, along with examples and discussion of the output data generated by EDISTR.

  9. IMBA expert(r): Internal dosimetry made simple

    International Nuclear Information System (INIS)

    Birchall, A.; Puncher, M.; James, A.C.; Marsh, J.W.; Jarvis, N.S.; Peace, M.S.; Davis, K.; King, D.J.

    2003-01-01

    In 1997, a collaboration between British Nuclear Fuels plc (BNFL), Westlakes Research Institute and NRPB started, with the aim of producing IMBA (Integrated Modules for Bioassay Analysis), a suite of software modules that implement the new ICRP models for estimation of intakes and doses. This was partly in response to new UK regulations, and partly due to the requirement for a unified approach in estimating intakes and doses from bioassay measurements within the UK. Over the past 5 years, the IMBA modules have been developed further, have gone through extensive quality assurance, and are now used for routine dose assessment by approved dosimetry services throughout the UK. More recently, interest in the IMBA methodology has been shown by the United States Department of Energy (USDOE), and in 2001 an ambitious project to develop a software package (IMBA Expert TM USDOE Edition) which would meet the requirements of all of the major USDOE sites began. Interest in IMBA Expert is now being expressed in many other countries. The aim of this paper is to outline the origin and evolution of the IMBA modules (the past); to describe the full capabilities of the current IMBA Expert system (the present) and to indicate possible future directions in terms of capabilities and availability (the future). (author)

  10. Internal dosimetry for radioembolization therapy with Yttrium-90 microspheres.

    Science.gov (United States)

    Fallahpoor, Maryam; Abbasi, Mehrshad; Parach, Ali Asghar; Kalantari, Faraz

    2017-03-01

    The absorbed doses in the liver and adjacent viscera in Yttrium-90 radioembolization therapy for metastatic liver lesions are not well-documented. We sought for a clinically practical way to determine the dosimetry of this advent treatment. Six different female XCAT BMIs and seven different male XCAT BMIs were generated. Using Monte Carlo GATE code simulation, the total of 100MBq 90 Y was deposited uniformly in the source organ, liver. Self-irradiation and absorbed doses in lung, kidney and bone marrow were calculated. The mean energy of Yittrium-90 (i.e., 0.937 MeV) was used. The S-values and equivalent doses in target organs were estimated. The dose absorbed in the liver was between 84 and 53 Gy and below the target of 80 to 150 Gy. The absorbed dose in the bone marrow, lungs, and kidneys are very low and below 0.1 , 0.4, and 0.5 Gy respectively. Our study indicates that larger activities than the conventional dose of 3 GBq may be both required and safe. Further confirmations in clinical settings are needed. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Effect of respiratory motion on internal radiation dosimetry

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib

    2014-01-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences

  12. Application of the new International Code of Practice for dosimetry in diagnostic radiology to conventional exams

    International Nuclear Information System (INIS)

    Martinez Gonzalez, A.; Cardenas Herrera, J.; Walwyn Salas, G.; Machado, A.; Mora Machado, R. de la

    2008-01-01

    Full text: During the recent years, a policy for updating and installation of the X-ray equipment, specialized as well as conventional, have been carrying out, in Cuba. Conventional equipment has reached almost the whole primary level. Considering this situation, the quality control programs and clinical dosimetry have become even more important. Regarding the last one, an International Code of Practice for Dosimetry in Diagnostic Radiology had been published by the International Atomic Energy Agency in order to been used as a guide and to standardize the methodologies used to evaluate the patient exposure in radiodiagnostic. Taken into consideration the above reasons, an assessment of the aforementioned code of practice was done in order to choose the most feasible methodology to implement in the country. The evaluation was performed considering the lack of dosimetric equipment and medical physicists in this practice, in the interests of increasing the measurements scope to a large number of services as well as to standardize the methodology on a national scale. The present work shows the results obtained from the application of the new code of practice to conventional radiology exams in some medical institutions. Out of 3 on patients measurements methodologies described in the code of practice, the one of measurement of the incident air kerma was chosen. This methodology allow to the physicist to focus on the diagnostic equipment tests and to delegate the collection of the patient and exposure parameters data to the technicians, which make the increased of the patient and diagnostic departments sample, possible. The measurements were carried out in 2 hospital of the capital. The exams involved in the assessments were thorax PA, lumbar spine AP and lumbar spine LAT. In every diagnostic service, 25 patients were chosen on each projection. The weight and height average of the patient sample were 68 kg and 167 cm respectively. In the assessment were considered only

  13. Internal in vitro dosimetry for fish using hydroxyapatite-based EPR detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.V. [Urals Division of Russian Academy of Sciences, Institute of Metal Physics, Yekaterinburg (Russian Federation); Ural Federal University, Yekaterinburg (Russian Federation); Shishkina, E.A.; Osipov, D.I.; Pryakhin, E.A. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Razumeev, R.A. [Ural Federal University, Yekaterinburg (Russian Federation)

    2015-08-15

    A number of aquatic ecosystems were exposed to ionizing radiation as a result of the activities of the Mayak Production Association in the Southern Urals, former Soviet Union, in the 1950s. Currently, fishes inhabiting contaminated lakes are being actively studied. These investigations need dosimetric support. In the present paper the results of a pilot study for elaborating an EPR dosimeter which can be used for internal dosimetry in vitro are described. Biological hydroxyapatite is proposed here to be used as a detecting substance. More specifically, small hydroxyapatite grains are proposed for use as point detectors fixed in a solid matrix. After having been pelletized, the detectors were covered by Mylar and placed in the body of a fish to be stored in the fridge for several months. Application of the detectors for internal fish dosimetry demonstrated that the enamel sensitivity is sufficient for passive detection of ionizing radiation in fishes inhabiting contaminated lakes in the Southern Urals. (orig.)

  14. Update of computer applications associated to measuring equipment of the services of internal dosimetry of NPPS and Tecnatom

    International Nuclear Information System (INIS)

    Bravo, B.; Sollet, E.; Serrano, E.

    2014-01-01

    Within the continuous improvement processes that take place in all the activities taking place in the Spanish nuclear power plants, and as a result of implementation of ISO Standards for Internal Dosimetry, has undertaken a review, improvement and updating INDAC ALEDIN and applications associated with measuring equipment and DIYs Quicky kind Personal Internal Dosimetry Services of the Spanish nuclear power plants and Tecnatom This paper presents updates capacities both tools. (Author)

  15. Super Phenix. Monitoring of structures subject to irradiation. Neutron dosimetry measurement and calculation program

    International Nuclear Information System (INIS)

    Cabrillat, J.C.; Arnaud, G.; Calamand, D.; Manent, G.; Tavassoli, A.A.

    1984-09-01

    For the Super Phenix reactor, the evolution, versus the irradiation of the mechanical properties of the core diagrid steel is the object of studies and is particularly monitored. The specimens irradiated, now in PHENIX and will be later irradiated in SUPER PHENIX as soon as the first operating cycles. An important dosimetry program coupling calculation and measurement, is parallely carried out. This paper presents the reasons, the definition of the structure, of the development and of materials used in this program of dosimetry, as also the first results of a calculation-measurement comparison [fr

  16. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA; Intercalibracion de mediciones radiologicas para fines de vigilancia del laboratorio de dosimetria interna coordinada por el OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-07-15

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  17. LWR pressure vessel surveillance dosimetry improvement program: LWR power reactor surveillance physics-dosimetry data base compendium

    International Nuclear Information System (INIS)

    McElroy, W.N.

    1985-08-01

    This NRC physics-dosimetry compendium is a collation of information and data developed from available research and commercial light water reactor vessel surveillance program (RVSP) documents and related surveillance capsule reports. The data represents the results of the HEDL least-squares FERRET-SAND II Code re-evaluation of exposure units and values for 47 PWR and BWR surveillance capsules for W, B and W, CE, and GE power plants. Using a consistent set of auxiliary data and dosimetry-adjusted reactor physics results, the revised fluence values for E > 1 MeV averaged 25% higher than the originally reported values. The range of fluence values (new/old) was from a low of 0.80 to a high of 2.38. These HEDL-derived FERRET-SAND II exposure parameter values are being used for NRC-supported HEDL and other PWR and BWR trend curve data development and testing studies. These studies are providing results to support Revision 2 of Regulatory Guide 1.99. As stated by Randall (Ra84), the Guide is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence

  18. Worldwide bioassay data resources for plutonium/americium internal dosimetry studies

    International Nuclear Information System (INIS)

    Miller, G.; Bertelli, L.; Little, T.; Guilmette, R.; Riddell, T.; Filipy, R.

    2005-01-01

    Full text: Biokinetic models are the scientific underpinning of internal dosimetry. These models describe how materials of interest taken into the body by various routes (for example inhalation) are transported through the body, allowing the modelling of bioassay measurements and the estimation of radiation dose. The International Commission on Radiation Protection (ICRP) publishes biokinetic models for use in internal dosimetry. These models represent the consensus judgement of a committee of experts, based on human and animal data. Nonetheless, it is important to validate biokinetic models using directly applicable data, in a scientifically transparent manner, especially for internal dosimetry research purposes (as opposed to radiation protection), as in epidemiology studies. Two major goals would be to determine individual variations of model parameters for the purpose of assessing this source of uncertainty in internal dose calculations, and to determine values of workplace specific parameters (such as particle solubility in lung fluids) for different representative workplaces. Furthermore, data on the observed frequency of intakes under various conditions can be used in the interpretation of bioassay data. All of the above may be couched in the terminology of Bayesian statistical analysis and amount to the determination of the Bayesian prior probability distributions needed in a Bayesian interpretation of bioassay data. The authors have direct knowledge of several significant databases of plutonium/americium bioassay data (including autopsy data). The purpose of this paper is to acquaint the worldwide community with these resources and to invite others who may know of other such databases to participate with us in a publication that would document the content, form, and the procedures for seeking access to these databases. These databases represent a tremendous scientific resource in this field. Examples of databases known to the authors include: the

  19. Historical review of personnel dosimetry development and its use in radiation protection programs at Hanford 1944 to the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1987-02-01

    This document is an account of the personnel dosimetry programs as they were developed and practiced at Hanford from their inception in 1943 to 1944 to the 1980s. This history is divided into sections covering the general categories of external and internal measurement methods, in vivo counting, radiation exposure recordkeeping, and calibration of personnel dosimeters. The reasons and circumstances surrounding the inception of these programs at Hanford are discussed. Information about these programs was obtained from documents, letters, and memos that are available in our historical records; the personnel files of many people who participated in these programs; and from the recollections of many long-time, current, and past Hanford employees. For the most part, the history of these programs is presented chronologically to relate their development and use in routine Hanford operations. 131 refs., 38 figs., 23 tabs.

  20. Mayak Worker Dosimetry System (MWDS-2013): Phase I-Quality Assurance of Organ Doses and Excretion Rates From Internal Exposures of Plutonium-239 for the Mayak Worker Cohort.

    Science.gov (United States)

    Dorrian, M-D; Birchall, A; Vostrotin, V

    2016-06-20

    The calculation of reliable and realistic doses for use in epidemiological studies for the quantification of risk from internal exposure to radioactive material is fundamental to the development of advice, guidance and regulations for the control and use of radioactive material. Thus, any programme of work carried out which requires the calculation of doses for use by epidemiologists ideally should contain a rigorous program of quality assurance (QA). This paper describes the initial QA (Phase I) implemented by Public Health England (PHE) and the Southern Urals Biophysics Institute (SUBI) as part of the work programme on internal dosimetry in the Joint Coordinating Committee for Radiation Effects Research Project 2.4 for the 2013 Mayak Worker Dosimetry System. SUBI designed and implemented new software (PANDORA) to include the latest Mayak Worker Dosimetry System and to calculate organ burdens, urinary excretion rates, intakes and absorbed doses, while PHE modified their commercially available IMBA Professional Plus software package. Comparisons of output from the two codes for the Mayak Worker Dosimetry System 2013 showed calculated values of absorbed doses, intakes, organ burdens and urinary excretion agreed to within 1%. The 1% discrepancy can be explained by the approximation used in IMBA to speed up dose calculations. © Crown copyright 2016.

  1. Direct internal dosimetry. A new way for routine incorporation monitoring of γ-emitting radionuclides

    International Nuclear Information System (INIS)

    Doerfel, H.

    1996-01-01

    The INDOS detector system offers the following advantages with respect to routine incorporation monitoring: The measurement is performed automatically and there is no need for trained staff. The measuring time is short and thus a relative large number of persons may be monitored with a relative high measuring frequency. First estimates of the individual effective dose equivalent rate are available immediately after the measurement. 1) The direct determination of the dose equivalent in principle is more precise than the conventional procedures for internal dosimetry, because (i) the retention of radionuclides in the body may be measured explicitly and (ii) the dependence of the dose equivalent on the body proportions is corrected implicitly. 2) The measuring procedure is comparable to the external dosimetry with respect to accuracy and lower limit of detection. Thus, the results of internal and external dosimetry can be summed up in an easy and reasonable manner. 3) The detector system can be installed in any building; it also can be installed as a mobile unit in a car or a container for long distance transportation by aircraft or train. 4) Last but not least, the cost for monitoring with INDOS is much lower than for the conventional monitoring procedures using whole body counters. (author)

  2. Monte Carlo and experimental internal radionuclide dosimetry in RANDO head phantom

    International Nuclear Information System (INIS)

    Ghahraman Asl, Ruhollah; Nasseri, Shahrokh; Parach, Ali Asghar; Zakavi, Seyed Rasoul; Momennezhad Mehdi; Davenport, David

    2015-01-01

    Monte Carlo techniques are widely employed in internal dosimetry to obtain better estimates of absorbed dose distributions from irradiation sources in medicine. Accurate 3D absorbed dosimetry would be useful for risk assessment of inducing deterministic and stochastic biological effects for both therapeutic and diagnostic radiopharmaceuticals in nuclear medicine. The goal of this study was to experimentally evaluate the use of Geant4 application for tomographic emission (GATE) Monte Carlo package for 3D internal dosimetry using the head portion of the RANDO phantom. GATE package (version 6.1) was used to create a voxel model of a human head phantom from computed tomography (CT) images. Matrix dimensions consisted of 319 × 216 × 30 voxels (0.7871 × 0.7871 × 5 mm 3 ). Measurements were made using thermoluminescent dosimeters (TLD-100). One rod-shaped source with 94 MBq activity of 99m Tc was positioned in the brain tissue of the posterior part of the human head phantom in slice number 2. The results of the simulation were compared with measured mean absorbed dose per cumulative activity (S value). Absorbed dose was also calculated for each slice of the digital model of the head phantom and dose volume histograms (DVHs) were computed to analyze the absolute and relative doses in each slice from the simulation data. The S-values calculated by GATE and TLD methods showed a significant correlation (correlation coefficient, r 2 ≥ 0.99, p < 0.05) with each other. The maximum relative percentage differences were ≤14 % for most cases. DVHs demonstrated dose decrease along the direction of movement toward the lower slices of the head phantom. Based on the results obtained from GATE Monte Carlopackage it can be deduced that a complete dosimetry simulation study, from imaging to absorbed dose map calculation, is possible to execute in a single framework.

  3. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety.

    Science.gov (United States)

    Reilly, J Patrick; Hirata, Akimasa

    2016-06-21

    This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically  IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.

  4. Answer to request on the ININ internal dosimetry; Respuesta a encuesta sobre dosimetria interna del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1999-05-15

    In this report it is presented the reply to CNSNS asking for information about the methodology for the evaluation of the occupational dose due to internal contamination. The characteristics of the installation, type and dimensions of the shield room, construction materials, type of detecting, calibration geometries, type of used phantom, intervals of energy of the calibration, type of routine measurements, detection limit for Cs-137 and Co-60, code to carry out the analysis of the spectra, evaluation of the measurement data, whole body system type armchair with anthropomorphic phantom, whole body system of vertical scanning, distribution and location diagram of the internal dosimetry laboratory there are among the treated aspects. (Author.

  5. The establishment of Chinese pregnant woman model and application on internal dosimetry

    International Nuclear Information System (INIS)

    Geng Changran; Tang Xiaobin; Chen Feida; Liu Yunpeng; Ding Ding; Xie Qin

    2012-01-01

    This paper present the construction of a radiation stylized pregnant phantom with Chinese physiological feature. Also the calculation of specific absorbed fractions (SAFs) were performed with the dosimetry schema developed by the Society of Nuclear Medicine's Medical Internal Radiation Dose (MIRD) Committee. A Monte Carlo user code was used to simulate internal photon emitters ranging from 10 keV to 4 MeV. SAF values of kidney to kidney and kidney to fetus were calculated and compared with previous data derived from ORNL phantoms. (authors)

  6. Monte Carlo modelling of Germanium detectors for the measurement of low energy photons in internal dosimetry: Results of an international comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ros, J.M. [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain)], E-mail: jm.gomezros@ciemat.es; Carlan, L. de [CEA DRT/LIST/DETECS/LNHB/LMD, Bat 534, F-91191 Gif sur Yvette, Cedex (France); IRSN DRPH/SDI/LEDI, BP6, F-92262, Fontenay-aux-Roses, Cedex (France); Franck, D. [IRSN DRPH/SDI/LEDI, BP6, F-92262, Fontenay-aux-Roses, Cedex (France); Gualdrini, G. [ENEA ION-IRP, Via dei Colli 16, I-40136 Bologna (Italy); Lis, M.; Lopez, M.A.; Moraleda, M. [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain); Zankl, M. [GSF - National Research Center for Environment and Health, D-85764 Neuherberg (Germany); Badal, A. [Institut de Tecniques Energetiques, UPC, Diagonal 647, 08028 Barcelona (Spain); Capello, K. [Human Monitoring Laboratory (Canada); Cowan, P. [Serco Assurance, Bld. A32, Winfrith Tech. Centre Winfrith, Dorchester, Dorset DT2 8DH (United Kingdom); Ferrari, P. [ENEA ION-IRP, Via dei Colli 16, I-40136 Bologna (Italy); Heide, B. [Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Henniger, J. [Technical University of Dresden, 01062 Dresden (Germany); Hooley, V. [Serco Assurance, Bld. A32, Winfrith Tech. Centre Winfrith, Dorchester, Dorset DT2 8DH (United Kingdom); Hunt, J. [IRD, Av. Salvador Allende, s/n, Recreio, Rio de Janeiro (Brazil); Kinase, S. [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kramer, G.H. [Human Monitoring Laboratory (Canada); Loehnert, D. [Technical University of Dresden, 01062 Dresden (Germany); Lucas, S. [LARN Laboratory, University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)] (and others)

    2008-02-15

    This communication summarizes the results concerning the Monte Carlo (MC) modelling of Germanium detectors for the measurement of low energy photons arising from the 'International comparison on MC modelling for in vivo measurement of Americium in a knee phantom' organized within the EU Coordination Action CONRAD (Coordinated Network for Radiation Dosimetry) as a joint initiative of EURADOS working groups 6 (computational dosimetry) and 7 (internal dosimetry). MC simulations proved to be an applicable way to obtain the calibration factor that needs to be used for in vivo measurements.

  7. High energy neutron dosimetry for the fusion program

    International Nuclear Information System (INIS)

    Barr, D.W.; Norris, A.E.

    1977-01-01

    Neutron dosimetry by the foil activation method offers a flexible technique for characterizing neutron spectra ranging from thermal energies to 30 MeV with the potential for extension to higher neutron energies as investigated by the Los Alamos Radiochemistry Group at the Los Alamos Meson Physics Facility and in the Apollo-Soyuz Test Project. The use of this method for the neutron flux description in thermal, resonance, and fission spectrum assemblies has been demonstrated. An extension of the method to environments involving thermonuclear processes was developed at Los Alamos in the early 1950's to characterize mixed fission-thermonuclear systems

  8. Internal dosimetry data and methods of ICRP. Part 1

    International Nuclear Information System (INIS)

    Ford, M.R.; Bernard, S.R.; Dillman, L.T.; Watson, S.B.

    1978-01-01

    The methodology being used to update the International Commission on Radiological Protection (ICRP) report of Committee 2, ICRP Publication 2 on Permissible Dose for Internal Radiation, is described. The system of differential equations, which is used to calculate the cumulated activity in the lungs, gastrointestinal tract, other body organs, and the transfer compartment of reference man, is presented. These equations describe the physical decay and metabolism of a radionuclide as governed by the lung and gastrointestinal tract models adopted by Committee 2 from models developed for the ICRP. The equations also take into account organ uptake and retention following intake into blood and the contribution of activity from radioactive daughter nuclides. Additionally, the scheme for estimating the dose from immersion in a radioactive cloud and the scheme for computing the nuclear decay data needed for all of the dose computations are presented. In computing the immersion dose, estimates for both the infinite and the finite cloud are considered

  9. Estimations of internal dosimetry: practical calculations of incorporated activity

    International Nuclear Information System (INIS)

    Cortes C, A.

    2003-01-01

    The National Commission of Nuclear Security and Safeguards (CNSNS) carries out periodically measurements of corporal activity to Occupationally Exposed Personnel (POE) to determine that the received doses are in according to that settled down in the General Regulation of Radiological Security. In this work the results of the incorporated activity estimates starting from the results of the measurements that were carried out in the one CNSNS laboratory are presented, with which it should be determine lastly the internal dose. Its were used different methodologies to estimate the incorporated activity: estimate with isolated data, estimate with global data and method of the best estimate, demonstrating this last to be the more appropriate to determine the internal dose. (Author)

  10. Calliope: a new educational tool in internal dosimetry

    International Nuclear Information System (INIS)

    Le Guen, B.; Berard, Ph.; Perrin, M.L.; Malarbet, J.L.; Roy, M.; Metivier, H.; Lirsac, P.N.; Gibert, B.

    1999-01-01

    The surveillance face to the internal contamination risk obliges to control several evaluation means as per understanding of models of dose calculation recommended by the ICRP. This educational tool CALLIOPE presented under compact disc (CD ROM) informs the professionals and the future actors of radiation protection. This information source allows the application of the new European Directive in the respect of new limits. Then, this tool must help to validate approaches employed by dose calculation computer code for estimation. (N.C.)

  11. Current trends on internal dosimetry for patient protection in nuclear medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gisone, P.A.; Kunst, J.J.

    2001-01-01

    The associated risk-benefit analyses in nuclear medicine implicitly performed by the clinician have been straightforward. Relatively low administered activity activities yield important diagnostic information, the benefit of which far outweigh any potential risk associated with the attendant normal tissue radiation doses. Such small risk to benefit ratios have been very forgiving of possible inaccuracies in dose estimates. With the ongoing development of new radiopharmaceutical and the increasing therapeutic application of internal radionuclides, radiation dosimetry in nuclear medicine continues to evolve from population- and organ-average to patient-specific dose estimation. Patient-specific dosimetry refers to the estimation of radiation dose to tissues of a specific-patients based on their individual body and measured biokinetics rather than an average anthropomorphic model and hypothetic kinetic. The importance of dosimetry specific-patient considers to avoid the risk of an unsuitable treatment and/or with probability of damage to the patient. This is illustrated by the dosimetric approaches to radioiodine treatment of hyperthyroidism. The most common prescription algorithm to fix the activity administered to a hyperthyroid patient does not consider individual parameters that are highly variable (thyroid uptake, biological half-life, thyroid mass). Its arbitrary approach doesn't permit individually optimized therapy and it may be inappropriate and even hazardous. (author)

  12. IDEAS international contamination database: a compilation of published internal contamination cases. A tool for the internal dosimetry community

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2007-01-01

    The aim of the IDEAS project was to develop General Guidelines for the Assessment of Internal Dose from Monitoring Data. The project was divided into 5 Work Packages for the major tasks. Work Package 1 entitled Collection of incorporation cases was devoted to the collection of data by means of bibliographic research (survey of the open literature), contacting and collecting data from specific organisations and using information from existing databases on incorporation cases. To ensure that the guidelines would be applicable to a wide range of practical situations, a database of cases of internal contamination including monitoring data suitable for dose assessment was compiled. The IDEAS Bibliography database and the IDEAS Internal Contamination database were prepared and some reference cases were selected for use in Work Package 3. The other Work packages of the IDEAS Project (WP-2 Preparation of evaluation software, WP-3 Evaluation of incorporation cases, WP-4 Development of the general guidelines and WP-5 Practical testing of general guidelines) have been described in detail elsewhere and can be found on the IDEAS website. A search for reference from the open literature, which contained information on cases of internal contamination from which intake and committed doses could be assessed, has been compiled into a database. The IDEAS Bibliography Database includes references to papers which might (but were not certain to) contain such information, or which included references to papers which contained such information. This database contains the usual bibliographical information: authors' name(s), year of publication, title of publication and the journal or report number. Up to now, a comprehensive Bibliography Database containing 563 references has been compiled. Not surprisingly more than half of the references are from Health Physics and Radiation Protection Dosimetry Journals.The next step was for the partners of the IDEAS project to obtain the references

  13. The need for international standardization in clinical beta dosimetry for brachytherapy

    International Nuclear Information System (INIS)

    Quast, U.; Boehm, J.; Kaulich, T.W.

    2002-01-01

    Beta radiation has found increasing interest in radiotherapy. Besides the curative treatment of small and medium-sized intraocular tumors by means of ophthalmic beta radiation plaques, intravascular brachytherapy has proven to successfully overcome the severe problem of restenosis after interventional treatment of arterial stenosis in coronaries and peripheral vessels in many clinical trials with a large number of patients. Prior to initiating procedures applying beta radiation in radiotherapy, however, there is a common need to specify methods for the determination and specification of the absorbed dose to water or tissue and their spatial distributions. The IAEA-TECDOC-1274 Calibration of photon and beta ray sources used in brachytherapy (2002) is a help for photon brachytherapy calibration. But, for beta seed and line sources, IAEA recommends well type ionization chambers as working standards which are far from measuring absorbed dose to water of the radiation clinically used. Although the application of such working standards seems to be more precise, large errors can occur when the medical physicist has to convert the calibration data to absorbed dose to water of the beta radiation emitted. The user must believe that the source is equally activated and that the manufacturer did not change the design and construction of the source encapsulation. With the DGMP Report 16 (2001) Guidelines for medical physical aspects of intravascular brachytherapy a very detailed code of practice is given, especially for the calibration and clinical dosimetry of intravascular beta radiation sources. As there is a global need for standardization in clinical dosimetry for intravascular brachytherapy utilizing beta radiation, the DIN-NAR, the German committee on standardization in radiology, task group dosimetry, has initiated an international adhoc working group for a new ISO work item proposal on the standardization of procedures in clinical dosimetry to guarantee reliable

  14. Internal radiation dosimetry of F-18-5 fluorouracil

    International Nuclear Information System (INIS)

    Shani, J.; Schlesinger, T.

    1980-01-01

    18 F-5-fluorouracil is currently used in a few nuclear centers as a diagnostic aid in predicting response to 5-fluorouracil chemotherapy. The advantage of this radiopharmaceutical, which has a radionuclide with a short physical half-life (tsub(1/2) = 110 minutes), in addition to its permitting a non-invasive diagnostic technique is balanced by the fact that high doses of the drug must be administered in order to obtain a good scan 12 hours after its administration. This is the optimal time for obtaining a high tumor:blood ratio and involves doses of up to 20 mCi of the drug injected intravenously as a bolus. Assuming the same distribution of the label in humans as in the investigated rat models, we calculated the radiation-dose to the various organs in millirad per mCi injected, according to the MIRD system. This was estimated to 12 main target organs of a reference-man, as if injected with 18 F-5-fluorouracil. The organs are: liver, muscle, kidneys, blood, bone, lungs, pancreas, spleen, heart, genitals, thyroid and adrenals. The calculated values suggest that diagnostic doses of up to 20 mCi 18 F-5-fluorouracil emit internal absorbed radiation which is within the doses experienced in similar procedures of Nuclear Medicine. (author)

  15. Minutes of the 13th light water reactor pressure vessel surveillance dosimetry improvement program (LWR-PV-SDIP) meeting

    International Nuclear Information System (INIS)

    1984-04-01

    Information is presented concerning ASTM LWR standards and program documentation; trend curves, PSF, and other test reactor metallurgical programs; PSF dosimetry and metallurgical capsule neutron and gamma environment characterization and metallurgical studies; PVS characterization program; other neutron fields; surveillance dosimetry measurement facility (SDMF) and perturbation studies; transport theory calculations; gamma field benchmarks and photo-reaction studies; and fission and non-fission sensor inventories and quality assurance

  16. The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry

    International Nuclear Information System (INIS)

    Followill, D S; Molineu, H A; Lafratta, R; Ibbott, G S

    2017-01-01

    The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H and N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program. (paper)

  17. Update Dosimetry Service internal staff Tecnatom; Actualizacion del servicio de dosimetria personal interna de TECNATOM

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Marchena, P.; Alonso, A.; Navarro, E.; Serrano, E.

    2010-07-01

    The beginning of decommissioning of nuclear facilities and other industrial national context conditions have been a very significant increase in the need for such services, which have been almost overwhelmed by the demand. To provide a solution to this situation, Tecnatom decided to run as a new internal dosimetry service indirect measures to complement its renowned capabilities of direct measures. To perform this task, Tecnatom has signed a collaboration agreement with the Laboratory of Radiochemistry of Geocisa, all with the objective of characterizing contamination by alpha emitters or beta different analytical techniques.

  18. Pilot program on patient dosimetry in pediatric interventional cardiology in Chile

    International Nuclear Information System (INIS)

    Ubeda, Carlos; Vano, Eliseo; Miranda, Patricia; Leyton, Fernando

    2012-01-01

    Purpose: The aim of this study was to present the results of a pilot program on patient dosimetry carried out in Chile during the last 5 yr, using a biplane x-ray angiography system settled for pediatrics. This research was conducted in Latin America under the auspices of the International Atomic Energy Agency (IAEA) supporting programs on radiological protection (RP) of patients. Methods: Patient age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time, and two dosimetric quantities [air kerma-area product (P ka ) and cumulative dose (CD) at the patient entrance reference point] were recorded for each procedure. Results: The study includes 544 patients grouped into four age groups. The distributions by age group were 150 for ka and CD for the four age groups were 0.94, 1.46, 2.13, and 5.03 Gy cm 2 and 23.9, 26.8, 33.5, and 51.6 mGy, respectively. No significant statistical differences were found between diagnostic and therapeutic procedures. A moderate correlation (r = 0.64) was seen between P ka and patient weight. Conclusions: The dose values reported in this paper were lower than those published in the previous work for the same age groups as a result of the optimization actions carried out by cardiologists and medical physicists with the support of the IAEA. Methodology and results will be used as a starting point for a wider survey in Chile and Latin America with the goal to obtain regional diagnostic reference levels as recently recommended by the International Commission on Radiological Protection for interventional procedures.

  19. Pilot program on patient dosimetry in pediatric interventional cardiology in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ubeda, Carlos; Vano, Eliseo; Miranda, Patricia; Leyton, Fernando [Clinical Sciences Department, Radiological Sciences Center, Health Sciences Faculty and CHIDE, Tarapaca University, Arica (Chile); Radiology Department, Complutense University and San Carlos Hospital, 28040 Madrid (Spain); Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Santiago (Chile); Institute of Public Health of Chile, Marathon 1000, Nunoa, Santiago, Chile and Faculty of Medicine, Diego Portales University, Santiago (Chile)

    2012-05-15

    Purpose: The aim of this study was to present the results of a pilot program on patient dosimetry carried out in Chile during the last 5 yr, using a biplane x-ray angiography system settled for pediatrics. This research was conducted in Latin America under the auspices of the International Atomic Energy Agency (IAEA) supporting programs on radiological protection (RP) of patients. Methods: Patient age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time, and two dosimetric quantities [air kerma-area product (P{sub ka}) and cumulative dose (CD) at the patient entrance reference point] were recorded for each procedure. Results: The study includes 544 patients grouped into four age groups. The distributions by age group were 150 for <1 yr; 203 for 1 to <5 yr; 97 for 5 to <10 yr; and 94 for 10 to <16 yr. Median values of P{sub ka} and CD for the four age groups were 0.94, 1.46, 2.13, and 5.03 Gy cm{sup 2} and 23.9, 26.8, 33.5, and 51.6 mGy, respectively. No significant statistical differences were found between diagnostic and therapeutic procedures. A moderate correlation (r = 0.64) was seen between P{sub ka} and patient weight. Conclusions: The dose values reported in this paper were lower than those published in the previous work for the same age groups as a result of the optimization actions carried out by cardiologists and medical physicists with the support of the IAEA. Methodology and results will be used as a starting point for a wider survey in Chile and Latin America with the goal to obtain regional diagnostic reference levels as recently recommended by the International Commission on Radiological Protection for interventional procedures.

  20. WE-H-207A-07: Image-Based Versus Atlas-Based Internal Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Vali-Asr Hospital, School of Medicine, Tehran University of Medical Science, Tehran, Tehran (Iran, Islamic Republic of); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Monte Carlo (MC) simulation is known as the gold standard method for internal dosimetry. It requires radionuclide distribution from PET or SPECT and body structure from CT for accurate dose calculation. The manual or semi-automatic segmentation of organs from CT images is a major obstacle. The aim of this study is to compare the dosimetry results based on patient’s own CT and a digital humanoid phantom as an atlas with pre-specified organs. Methods: SPECT-CT images of a 50 year old woman who underwent bone pain palliation with Samarium-153 EDTMP for osseous metastases from breast cancer were used. The anatomical date and attenuation map were extracted from SPECT/CT and three XCAT digital phantoms with different BMIs (i.e. matched (38.8) and unmatched (35.5 and 36.7) with patient’s BMI that was 38.3). Segmentation of patient’s organs in CT image was performed using itk-SNAP software. GATE MC Simulator was used for dose calculation. Specific absorbed fractions (SAFs) and S-values were calculated for the segmented organs. Results: The differences between SAFs and S-values are high using different anatomical data and range from −13% to 39% for SAF values and −109% to 79% for S-values in different organs. In the spine, the clinically important target organ for Samarium Therapy, the differences in the S-values and SAF values are higher between XCAT phantom and CT when the phantom with identical BMI is employed (53.8% relative difference in S-value and 26.8% difference in SAF). However, the whole body dose values were the same between the calculations based on the CT and XCAT with different BMIs. Conclusion: The results indicated that atlas-based dosimetry using XCAT phantom even with matched BMI for patient leads to considerable errors as compared to image-based dosimetry that uses the patient’s own CT Patient-specific dosimetry using CT image is essential for accurate results.

  1. Business and International Education Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    This paper presents an overview of the Business and International Education Program of the International Education Programs Service (IEPS). This program provides funds to institutions of higher education that enter into an agreement with a trade association, a business, or both for the purpose of improving business curriculum and as a means of…

  2. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  3. The 3rd international intercomparison on EPR tooth dosimetry: Part 1, general analysis

    International Nuclear Information System (INIS)

    Wieser, A.; Debuyst, R.; Fattibene, P.

    2005-01-01

    The objective of the 3rd International Intercomparison on Electron Paramagnetic Resonance (EPR) Tooth Dosimetry was the evaluation of laboratories performing tooth enamel dosimetry below 300 mGy. Participants had to reconstruct the absorbed dose in tooth enamel from 11 molars, which were cut into two halves. One half of each tooth was irradiated in a 60 Co beam to doses in the ranges of 30-100 mGy (5 samples), 100-300 mGy (5 samples), and 300-900 mGy (1 sample). Fourteen international laboratories participated in this intercomparison programme. A first analysis of the results and an overview of the essential features of methods applied in different laboratories are presented. The relative standard deviation of results of all methods was better than 27% for applied doses in the range of 79-704 mGy. In the analysis of the unirradiated tooth halves 8% of the samples were identified as outliers with additional absorbed dose above background dose

  4. LWR surveillance dosimetry improvement program: PSF metallurgical blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Maerker, R.E.; Stallmann, F.W.

    1984-01-01

    The metallurgical irradiation experiment at the Oak Ridge Research Reactor Poolside Facility (ORR-PSF) was designed as a benchmark to test the accuracy of radiation embrittlement predictions in the pressure vessel wall of light water reactors on the basis of results from surveillance capsules. The PSF metallurgical Blind Test is concerned with the simulated surveillance capsule (SSC) and the simulated pressure vessel capsule (SPVC). The data from the ORR-PSF benchmark experiment are the basis for comparison with the predictions made by participants of the metallurgical ''Blind Test''. The Blind Test required the participants to predict the embrittlement of the irradiated specimen based only on dosimetry and metallurgical data from the SSC1 capsule. This exercise included both the prediction of damage fluence and the prediction of embrittlement based on the predicted fluence. A variety of prediction methodologies was used by the participants. No glaring biases or other deficiencies were found, but neither were any of the methods clearly superior to the others. Closer analysis shows a rather complex and poorly understood relation between fluence and material damage. Many prediction formulas can give an adequate approximation, but further improvement of the prediction methodology is unlikely at this time given the many unknown factors. Instead, attention should be focused on determining realistic uncertainties for the predicted material changes. The Blind Test comparisons provide some clues for the size of these uncertainties. In particular, higher uncertainties must be assigned to materials whose chemical composition lies outside the data set for which the prediction formula was obtained. 16 references, 14 figures, 5 tables

  5. Assessment of breathing rate of adult Korean for use in internal dosimetry

    International Nuclear Information System (INIS)

    Kim, J.I.; Lee, Y.J.; Jin, Y.W.; Kim, C.S.; Lee, J.K.

    2003-01-01

    Breathing rate is one of the key factors in evaluating doses due to inhalation of airborne radionuclides. Since the reference values of breathing rate provided by the International Commission on Radiological Protection (ICRP) are based on the physiology of Caucasian, they are not necessarily appropriate for internal dosimetry for Korean. In this study, we assessed breathing rate of Korean by measuring the forced vital capacity (FVC), the forced expiratory volume in second (FEV1) and the minute ventilation(MV). Measurements were made using SP-1 spirometry unit (Schiller AG. 1998) for 1474 adult Koreans whose heights and weights are in the range of one standard deviation from the mean values. The total liters of air breathed for working and resting were evaluated after the ICRP approach. We also considered smoking and ailment in the lungs. The resulting breathing rate appears to be 2.3x10 4 L/day which well agrees with the value given in ICRP 23

  6. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy.

    Science.gov (United States)

    Dewaraja, Yuni K; Frey, Eric C; Sgouros, George; Brill, A Bertrand; Roberson, Peter; Zanzonico, Pat B; Ljungberg, Michael

    2012-08-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification-based guidance for radionuclide dosimetry.

  7. Patient-Specific Internal Dosimetry Protocol for 131 treatment of differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Deluca, G.M.; Rojo, Ana M.; Llina Fuentes, C.S.; Cabrejas, Mariana L.; Cabrejas, R.; Fadel, A.M.

    2008-01-01

    Full text: The most effective treatment against Differentiated Thyroid Cancer (DTC), in its most frequently types: papillar and follicular, is the administration of radioiodine. As a result of a multidisciplinary work, a dosimetrical protocol for radiological protection purpose has been developed that suggests the standards and formalisms for the determination of absorbed doses due to the administration of 131 I activity to DTC patients. This dosimetrical protocol takes into account individual data of each patient (age, gender, the presence or absence of metastases, physiology, physiopathology, biochemical parameters) and involves clinical aspects, the equipment that should be used and the dose assessment procedure of each treatment. Based on the Medical Internal radiation Dose (MIRD) scheme and considering the major critical organs for this therapy, the dosimetrical protocol states the 'how-to' of the following procedures, in adults and paediatric cases: 1) estimation of the red marrow dose (with/without bone metastases) to avoid mielotoxicity (200 cGy); 2) Estimation of the retention / dose rate / dose in lungs after 48 hours from the administration of radioiodine to avoid lung fibrosis; 3) Estimation of the testes dose in young male patients to avoid oligospermia; 4) Estimation of the maximum activity which can be safely administered without damaging the most critical organ for each patient; and 5) Acquisition of images and retention data from patients. This dosimetrical protocol also specifies the requirements and basic steps that should be followed, the essential information, the complementary studies and the basic equipment required to perform an appropriate internal dosimetry evaluation. To be fully implemented, the dosimetrical protocol needs the constitution of a multidisciplinary team including physicians, medical physicists and technicians. Clear instructions should be provided to the patient as his full collaboration is essential. Even though empirical

  8. The 4th international comparison on EPR dosimetry with tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Fattibene, P., E-mail: paola.fattibene@iss.it [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00162 Rome (Italy); Wieser, A. [Helmholtz Zentrum Muenchen, Neuherberg D-85764 (Germany); Adolfsson, E. [Linkoeping University, SE-58185 Linkoeping (Sweden); Benevides, L.A. [Naval Dosimetry Center, Bethesda MD 20889-5600 (United States); Brai, M. [University of Palermo, I-90128 Palermo (Italy); Callens, F. [Ghent University, B-9000 Gent (Belgium); Chumak, V. [Research Center for Radiation Medicine AMS, 04050 Kiev (Ukraine); Ciesielski, B. [Medical University of Gdansk, 80-211 Gdansk (Poland); Della Monaca, S. [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00162 Rome (Italy); Regina Elena Institute, I-00144 Rome (Italy); Emerich, K. [Medical University of Gdansk, 80-211 Gdansk (Poland); Department of Paediatric Dentistry, 80-208 Gdansk (Poland); Gustafsson, H. [Linkoeping University, SE-58185 Linkoeping (Sweden); Hirai, Y. [Radiation Effects Research Foundation, Minami-ku, Hiroshima 732-0815 (Japan); Hoshi, M. [Hiroshima University, Minami-ku, Hiroshima 734-8553 (Japan); Israelsson, A. [Linkoeping University, SE-58185 Linkoeping (Sweden); Ivannikov, A. [Medical Radiological Research Center, Obninsk, Kaluga region (Russian Federation); Ivanov, D. [Institute of Metal Physics, Yekaterinburg 620041 (Russian Federation); Kaminska, J. [Medical University of Gdansk, 80-211 Gdansk (Poland); Ke, Wu [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Lund, E. [Linkoeping University, SE-58185 Linkoeping (Sweden); Marrale, M. [University of Palermo, I-90128 Palermo (Italy)

    2011-09-15

    This paper presents the results of the 4th International Comparison of in vitro electron paramagnetic resonance dosimetry with tooth enamel, where the performance parameters of tooth enamel dosimetry methods were compared among sixteen laboratories from all over the world. The participating laboratories were asked to determine a calibration curve with a set of tooth enamel powder samples provided by the organizers. Nine molar teeth extracted following medical indication from German donors and collected between 1997 and 2007 were prepared and irradiated at the Helmholtz Zentrum Muenchen. Five out of six samples were irradiated at 0.1, 0.2, 0.5, 1.0 and 1.5 Gy air kerma; and one unirradiated sample was kept as control. The doses delivered to the individual samples were unknown to the participants, who were asked to measure each sample nine times, and to report the EPR signal response, the mass of aliquots measured, and the parameters of EPR signal acquisition and signal evaluation. Critical dose and detection limit were calculated by the organizers on the basis of the calibration-curve parameters obtained at every laboratory. For calibration curves obtained by measuring every calibration sample three times, the mean value of the detection limit was 205 mGy, ranging from 56 to 649 mGy. The participants were also invited to provide the signal response and the nominal dose of their current dose calibration curve (wherever available), the critical dose and detection limit of which were also calculated by the organizers.

  9. International Research and Studies Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Research and Studies Program supports surveys, studies, and instructional materials development to improve and strengthen instruction in modern foreign languages, area studies, and other international fields. The purpose of the program is to improve and strengthen instruction in modern foreign languages, area studies and other…

  10. Results of the Argentinian intercomparison on internal dosimetry – 2014. Interpretation of monitoring data for effective dose assessment due to internal exposure

    International Nuclear Information System (INIS)

    Rojo, A.M.; Puerta, N.; Gossio, S.; Gómez Parada, I.

    2015-01-01

    Internal dosimetry intercomparisons are essential for the verification of the models applied and the results consistency. To that aim, in 2014 the National Intercomparison Exercise was organized and coordinated by the Internal Dosimetry Laboratory of the Nuclear Regulatory Authority (ARN) of Argentina. Four simulated cases covering intakes of “1”3”1I, “1”3”7Cs and tritium were proposed. The exercise counted with the participation of four internal dosimetry services from the nuclear power plants (NA-SA CNA and NA-SA CNE) and the CNEA Atomic Centres: Bariloche (CAB) and Ezeiza (CAE). This report shows a complete analysis of the participant’s results in this exercise. (authors) [es

  11. Guidelines for dynamic international programs

    International Nuclear Information System (INIS)

    Gold, M.A.

    1993-01-01

    Matters of global concern-deforestation, global warming, biodiversity loss, sustainable development, fuelwood crises, watershed destruction, and large-scale flooding-frequently involve forests and natural resources. In the future, university students will enter a global setting that more than ever depends on a strong knowledge of international issues. USA land-grant universities are attempting to prepare students for this challenge by improving their international programs including forestry. To improve university programs, several factors will need to be addressed and are discussed, with examples, in this article: commitment of the faculty; program specialization; geographic specialization; reward systems for international contributions; international collaboration; recycled dollars within the university; active teaching programs; research; extention and outreach; language training; international faculty; travel grants; twinning relationships with sister institutions; selective in pursuit of international development assistance; and study centers. 6 refs

  12. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    International Nuclear Information System (INIS)

    Leal Neto, Viriato; Vieira, Jose Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  13. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, Viriato, E-mail: viriatoleal@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose Wilson [Universidade Federal de Pernambuco (UPE), Recife, PE (Brazil); Lima, Fernando Roberto de Andrade [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-09-15

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  14. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images.

    Science.gov (United States)

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.

  15. A New International Program

    Science.gov (United States)

    Abelson, Philip H.

    1973-01-01

    Comments on the cooperative spirit of geophysicists which resulted in the largest scientific cooperative project ever conducted: the International Geophysical Year. Describes a new international venture (called Geodynamics Project) that is designed to exploit the many opportunities for new insights resulting from recent advances in earth science.…

  16. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    Science.gov (United States)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  17. {sup 131}I-SPGP internal dosimetry: animal model and human extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br; Figueiredo, Suely Gomes de [Universidade Federal do Espirito Santo, (UFES), Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas. Lab. de Quimica de Proteinas

    2009-07-01

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's {sup 125}ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the {sup 131}I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I were considered. (author)

  18. 131I-SPGP internal dosimetry: animal model and human extrapolation

    International Nuclear Information System (INIS)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos; Figueiredo, Suely Gomes de

    2009-01-01

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's 125 ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the 131 I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I were considered. (author)

  19. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models.

  20. Our experience in the novel, safe delivery and Internal dosimetry aspects of radionuclide therapy

    International Nuclear Information System (INIS)

    Somanesan, S.

    2007-01-01

    Full text: Nuclear Medicine radionuclide therapy is rapidly developing as an additional treatment modality in oncology. Its unique characteristics are the systemic, yet selective delivery of radiation doses in target tissues, its non-invasiveness, the relative lack of immediate and late side effects, and the advantage that uptake and retention in the tumor can be pre-assessed by tracer studies. Many different tumor-seeking radiopharmaceuticals are being used for therapy by different routes and a variety of targeting mechanisms. Our current, safe method of delivery of radio nuclide therapy is presented, as well as more general aspects and considerations, such as mechanisms for transport, storage and the choice of shielding and radiation protection to staff in general are covered. The method of internal dosimetry for Nuclear Medicine radionuclide therapy will be presented as well. (author)

  1. {sup 131}I-CRTX internal dosimetry: animal model and human extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br

    2009-07-01

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. {sup 125}I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, {sup 125}I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for {sup 131}I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I in the tissue were considered in dose calculations. (author)

  2. 131I-CRTX internal dosimetry: animal model and human extrapolation

    International Nuclear Information System (INIS)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos

    2009-01-01

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. 125 I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, 125 I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for 131 I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I in the tissue were considered in dose calculations. (author)

  3. Quality assurance program in the External dosimetry laboratory of the CPHR; Programa de aseguramiento de la calidad en el laboratorio de dosimetria externa del CPHR

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Pernas S, R.; Martinez H, E.; Cardenas H, J. [Centro de Proteccion e Higiene de las Radiaciones, Calle 20 No. 4113 e/41 y 47. Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba)

    2006-07-01

    From 1999 the Laboratory of External Dosimetry of the Radiation Protection and Hygiene Center comes applying in its service of personal dosimetry a Program of Quality Assurance. This program was designed according to the recommendations of national and international organizations as the National Assuring Office of the Republic of Cuba (ONARC), the International Standards Organization (ISO), the International Electro technique Commission (IEC) and the International Atomic Energy Agency (IAEA). In this work it is presented in a summarized way the operation of this Program of Quality Assurance which includes the administration and conservation of the results and the documentation of the service, the controls that are carried out to the equipment, the acceptance tests that are applied to the equipment and new dosemeters, the shipment and prosecution of the dosemeters, the evaluation, storage and conservation of the doses, the report of the results, the traceability and reproducibility of the measurements, the attention to the reclamations and the clients complaints and the internal and external audits to those that it undergoes periodically the laboratory. (Author)

  4. Internal Dosimetry and the pharmacokinetic of the Cuban Kit of Methoxy-Isobutyl-Isonitrile (MIBI) marked with 99mTc

    International Nuclear Information System (INIS)

    Torres, L.A.; Pereztol, O.; Rodriguez, J.L.; Alvarez, I.; Fraxedas, R.; Mesa, G.; Rodriguez, R.

    1998-01-01

    The objective of the present work consisted on evaluating the Internal Dosimetry and the pharmacokinetic of the Cuban Kit of Methoxy-Isobutyl-Isonitrile (MIBI) marked with 99mTc. In the dosimetry studies and biodistribution five healthy volunteers were included and in the pharmacokinetic studies five patients were included with less than 5% of probability of suffering illness of artery coronary

  5. DOE personnel neutron dosimetry evaluation and upgrade program

    International Nuclear Information System (INIS)

    Faust, L.G.; Stroud, C.M.; Vallario, E.J.

    1988-01-01

    The US Department of Energy (DOE) sponsors an extensive research program to improve the methods, dosimeters, and instruments available to DOE facilities for measuring neutron dose and assessing its effects on the work force. The Total Dose Meter was recently developed for measuring in real time the absorbed dose of mixed neutron and gamma radiation and for calculating the dose equivalent. The Field Neutron Spectrometer was developed to provide a portable instrument for determining neutron spectra in the workplace for flux-to-dose equivalent conversion and quality factor calculation. The Combination Thermoluminescence/Track Etch Dosimeter (TLD/TED) was developed to extend the effective neutron energy range of the conventional TLDs to improve detection of fast-energy neutrons. An Optically Stimulated Luminescence Dosimeter is presently being developed for application to gamma, neutron, and beta radiation. An Effective Dose Equivalent System is being developed to provide guidance in implementing the January 1987 Presidential Directive to determine effective dose equivalent. Superheated Drop Detectors are being investigated for their potential as real time neutron dosimeters. This paper includes discussions of these improvements brought about by the DOE research program

  6. Oak Ridge National Laboratory Embrittlement Data Base (EDB) and Dosimetry Evaluation (DE) program

    International Nuclear Information System (INIS)

    Pace, J.V. III; Remec, I.; Wang, J.A.; White, J.E.

    1996-01-01

    The objective of this program is to develop, maintain, and upgrade computerized data bases, calculational procedures, and standards relating to reactor pressure vessel fluence spectra determinations and embrittlement assessments. As part of this program, the information from radiation embrittlement research on nuclear reactor pressure vessel steels and from power reactor surveillance reports is maintained in a data base published on a periodic basis. The Embrittlement Data Base (EDB) effort consists of verifying the quality of the EDB, providing user-friendly software to access and process the data, and exploring and assessing embrittlement prediction models. The Dosimetry Evaluation effort consists of maintaining and upgrading validated neutron and gamma radiation transport procedures, maintaining cross-section libraries with the latest evaluated nuclear data, and maintaining and updating validated dosimetry procedures and data bases. The information available from this program provides data for assisting the Office of Nuclear Reactor Regulation, with support from the Office of Nuclear Regulatory Research, to effectively monitor current procedures and data bases used by vendors, utilities, and service laboratories in the pressure vessel irradiation surveillance program

  7. Image-based dosimetry for selective internal radiation therapy (SIRT) using yttrium-90 microspheres

    Science.gov (United States)

    Selwyn, Reed G.

    present a new PET-labeled microsphere for pre- and post-treatment assessment, two new beta dosimetry protocols along with validation studies, a new positron branching ratio for 90Y that led to formation of an accurate non-destructive assay, and the first successful experimental validation of a computer generated internal dose distribution using dose kernel convolution.

  8. Security Assistance and International Programs

    National Research Council Canada - National Science Library

    1997-01-01

    The Department of the Treasury established the Security Assistance and International Programs deposit account on September 26, 1996, in response to a request from the Defense Finance and Accounting...

  9. Statistical construction of a Japanese male liver phantom for internal radionuclide dosimetry.

    Science.gov (United States)

    Mofrad, Farshid Babapour; Zoroofi, Reza Aghaeizadeh; Tehrani-Fard, Ali Abbaspour; Akhlaghpoor, Shahram; Hori, Masatoshi; Chen, Yen-Wei; Sato, Yoshinobu

    2010-09-01

    A computational framework is presented, based on statistical shape modelling, for construction of race-specific organ models for internal radionuclide dosimetry and other nuclear-medicine applications. This approach was applied to the construction of a Japanese liver phantom, using the liver of the digital Zubal phantom as the template and 35 liver computed tomography (CT) scans of male Japanese individuals as a training set. The first step was the automated object-space registration (to align all the liver surfaces in one orientation), using a coherent-point-drift maximum-likelihood alignment algorithm, of each CT scan-derived manually contoured liver surface and the template Zubal liver phantom. Six landmark points, corresponding to the intersection of the contours of the maximum-area sagittal, transaxial and coronal liver sections were employed to perform the above task. To find correspondence points in livers (i.e. 2000 points for each liver), each liver surface was transformed into a mesh, was mapped for the parameter space of a sphere (parameterisation), yielding spherical harmonics (SPHARMs) shape descriptors. The resulting spherical transforms were then registered by minimising the root-mean-square distance among the SPHARMs coefficients. A mean shape (i.e. liver) and its dispersion (i.e. covariance matrix) were next calculated and analysed by principal components. Leave-one-out-tests using 5-35 principal components (or modes) demonstrated the fidelity of the foregoing statistical analysis. Finally, a voxelisation algorithm and a point-based registration is utilised to convert the SPHARM surfaces into its corresponding voxelised and adjusted the Zubal phantom data, respectively. The proposed technique used to create the race-specific statistical phantom maintains anatomic realism and provides the statistical parameters for application to radionuclide dosimetry.

  10. Biological dosimetry by the triage dicentric chromosome assay - Further validation of international networking

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Ruth C., E-mail: Ruth.Wilkins@hc-sc.gc.ca [Health Canada, Ottawa, ON K1A 0K9 (Canada); Romm, Horst; Oestreicher, Ursula [Bundesamt fur Strahlenschutz, 38226 Salzgitter (Germany); Marro, Leonora [Health Canada, Ottawa, ON K1A 0K9 (Canada); Yoshida, Mitsuaki A. [Biological Dosimetry Section, Dept. of Dose Assessment, Research Center for Radiation Emergency Medicine, NIRS, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Suto, Y. [Biological Dosimetry Section, Dept. of Dose Assessment, Research Center for Radiation Emergency Medicine, NIRS, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Prasanna, Pataje G.S. [National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, 6130 Executive Blvd., MSC 7440, Bethesda, MD 20892-7440 (United States)

    2011-09-15

    Biological dosimetry is an essential tool for estimating radiation doses received to personnel when physical dosimetry is not available or inadequate. The current preferred biodosimetry method is based on the measurement of radiation-specific dicentric chromosomes in exposed individuals' peripheral blood lymphocytes. However, this method is labor-, time- and expertise-demanding. Consequently, for mass casualty applications, strategies have been developed to increase its throughput. One such strategy is to develop validated cytogenetic biodosimetry laboratory networks, both national and international. In a previous study, the dicentric chromosome assay (DCA) was validated in our cytogenetic biodosimetry network involving five geographically dispersed laboratories. A complementary strategy to further enhance the throughput of the DCA among inter-laboratory networks is to use a triage DCA where dose assessments are made by truncating the labor-demanding and time-consuming metaphase spread analysis to 20 - 50 metaphase spreads instead of routine 500 - 1000 metaphase spread analysis. Our laboratory network also validated this triage DCA, however, these dose estimates were made using calibration curves generated in each laboratory from the blood samples irradiated in a single laboratory. In an emergency situation, dose estimates made using pre-existing calibration curves which may vary according to radiation type and dose rate and therefore influence the assessed dose. Here, we analyze the effect of using a pre-existing calibration curve on assessed dose among our network laboratories. The dose estimates were made by analyzing 1000 metaphase spreads as well as triage quality scoring and compared to actual physical doses applied to the samples for validation. The dose estimates in the laboratory partners were in good agreement with the applied physical doses and determined to be adequate for guidance in the treatment of acute radiation syndrome.

  11. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  12. Space dosimetry

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1988-01-01

    Japan will take part in the LML-1 (International Microgravity Laboratory 1) program that is scheduled to be carried out with space shuttles to be launched in 1991. The program will be followed by the LS-J (Space Laboratory-Japan) and IML-2 programs. A reliable dosimetry system is currently required to be established to evaluate the radiations in space. The present article reviews major features of different types of space radiations and requirements of dosimeters for these radiations. The radiations in the space environment consist of: 1) electrons and protons that have been trapped by the terrestrial magnetism, 2) corpuscular, gamma-and X-rays released from the sun, and 3) galactic cosmic rays (corpuscular, gamma-and X-rays). The effects of the trapped radiations will be low if a spacecraft can get through the zone of such radiations in a short period of time. The effects of galactic cosmic rays are much smaller than those of the trapped radiations. A solar flare can give significant contributions to the total radiations received by a spacecraft. An extremely large flare can release a fatal amount of radiations to the crew of a spacecraft. Prediction of such a large flare is of great important for a long trip through the space. Significant improvements should be made on existing dosimeters. (Nogami, K.)

  13. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  14. INDOSE V2.1.1, Internal Dosimetry Code Using Biokinetics Models

    International Nuclear Information System (INIS)

    Silverman, Ido

    2002-01-01

    A - Description of program or function: InDose is an internal dosimetry code developed to enable dose estimations using the new biokinetic models (presented in ICRP-56 to ICRP71) as well as the old ones. The code is written in FORTRAN90 and uses the ICRP-66 respiratory tract model and the ICRP-30 gastrointestinal tract model as well as the new and old biokinetic models. The code has been written in such a way that the user is able to change any of the parameters of any one of the models without recompiling the code. All the parameters are given in well annotated parameters files that the user may change and the code reads during invocation. As default, these files contains the values listed in ICRP publications. The full InDose code is planed to have three parts: 1) the main part includes the uptake and systemic models and is used to calculate the activities in the body tissues and excretion as a function of time for a given intake. 2) An optimization module for automatic estimation of the intake for a specific exposure case. 3) A module to calculate the dose due to the estimated intake. Currently, the code is able to perform only its main task (part 1) while the other two have to be done externally using other tools. In the future we would like to add these modules in order to provide a complete solution for the people in the laboratory. The code has been tested extensively to verify the accuracy of its results. The verification procedure was divided into three parts: 1) verification of the implementation of each model, 2) verification of the integrity of the whole code, and 3) usability test. The first two parts consisted of comparing results obtained with InDose to published results for the same cases. For example ICRP-78 monitoring data. The last part consisted of participating in the 3. EIE-IDA and assessing some of the scenarios provided in this exercise. These tests where presented in a few publications. It has been found that there is very good agreement

  15. Development of the mathematical phantom of the brazilian man for internal dosimetry calculations

    International Nuclear Information System (INIS)

    Guimaraes, Maria Ines Calil Cury.

    1995-01-01

    This work covers the theory and construction of a Mathematical Phantom of the Brazilian, to be used in internal dosimetry. To obtain this it was necessary to develop antropometric data of mass and height for Brazilian man between 20 and 40 years old. Through Monte Carlo Method, and applying the Specific Absorbed Fraction (SAF) formalism, it was possible determine the fraction internal organs such as bones, skin and total body. The results obtained from SAF are primordial in nuclear medicine and great value in the calculation of the dose received by workers exposed and in accidental cases, to a rapid evaluation of the received by a simple person. Through SAF, the references obtained for the Brazilian man, can be noted when compared to the phantom calculated by Snyder, which proposed to represent the international reference man, showed by ICRP-23 publication, that the determined SAF of the whole body does not exceed 15% between the two phantoms, agreeing with the allowed international norms error margin permitted. The differences between the two models appear, when the numbers are presented for individual organs, where the emission origin are the lungs and taken as target, the red and yellow marrows, for an energy of 10 KeV. The result obtained is that these two marrows receive 64% more absorbed fractions in the Brazilian model than in the international model. These numbers are considered trustfully because the coefficient of variation does not exceed 7%, value that in under 50%, which makes the coefficient of variation not trustfully, this is considered out of the normal distribution. Facts like these and may others, showed in this work, determine the necessity to calculate a specific mathematical model for the Brazilian man. (author). 51 refs., 40 figs., 9 tabs

  16. Dosimetry of proton therapy beam

    International Nuclear Information System (INIS)

    Andric, S.

    1996-01-01

    Review of basic dosimetry of proton therapy treatment are presented with a goal to further development of the center for proton therapy planed in the frame of accelerator installation TESLA, which construction has been going on in the Vinca Institute. The basic of existing international recommendation for proton dosimetry, related both to dosimeter choice and calibration, as well as to absorbed dose determination methods, are presented. Recommendation statement and supposition in the future proton therapy practice belongs to the basic elements of developed conceptual program for proton therapy usage

  17. Minutes of the 14th Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program (LWR-PV-SDIP) meeting, October 1-5, 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Topics discussed include: ASTM LWR standards; trend curves, PSF, and other test reactor metallurgical programs; PSF dosimetry and metallurgical capsule neutron and gamma characterization and metallurgical studies; PVS characterization program; other neutron fields; Surveillance Dosimetry Measurement Facility (SDMF) and perturbation studies; transport theory calculations; gamma field benchmarks and photo-reaction studies; and fission and non-fission sensor inventories and quality assurance

  18. An international co-ordinated research programme on nuclear accident dosimetry

    International Nuclear Information System (INIS)

    Flakus, F.N.

    1977-01-01

    Where fissile materials are being processed in quantities exceeding the minimum critical amounts, a radiation risk to workers arises from the possibility of criticality excursions. Despite the fact that techniques for preventing the occurende of such accidental excursions have reached very high standards it is generally agreed that the availability of suitable nuclear accident dosimetry (NAD) systems is very important. Following the recommendations of an Advisory Group meeting on NAD, the IAEA had established in 1969 an international coordinated research programme on NAD systems and elaborating standarized systems. A large number of research groups from 14 Member States throughout the world participated in this co-ordinated work. Since 1970 four international multilaboratory intercomparison experiments on NAD have been organized and the response of a variety of dosimeters examined in different neutron spectra under simulated accident conditions at Valduc (France), Oak Ridge (USA), Vinca (Yugoslavia) and Harwell (UK). The results achieved in these intercomparison studies show that NAD systems have been substantially improved and that several systems are available now in a number of laboratories throughout the world that perform within the criteria laid down by the initiating advisory group in 1969. A compendium of neutron leakage spectra has also been elaborated for facilitating the determination of dose from readings of detectors exposed to various neutron fields in criticality accidents

  19. CABAS: A freely available PC program for fitting calibration curves in chromosome aberration dosimetry

    International Nuclear Information System (INIS)

    Deperas, J.; Szluiska, M.; Deperas-Kaminska, M.; Edwards, A.; Lloyd, D.; Lindholm, C.; Romm, H.; Roy, L.; Moss, R.; Morand, J.; Wojcik, A.

    2007-01-01

    The aim of biological dosimetry is to estimate the dose and the associated uncertainty to which an accident victim was exposed. This process requires the use of the maximum-likelihood method for fitting a calibration curve, a procedure that is not implemented in most statistical computer programs. Several laboratories have produced their own programs, but these are frequently not user-friendly and not available to outside users. We developed a software for fitting a linear-quadratic dose-response relationship by the method of maximum-likelihood and for estimating a dose from the number of aberrations observed. The program called as CABAS consists of the main curve-fitting and dose estimating module and modules for calculating the dose in cases of partial body exposure, for estimating the minimum number of cells necessary to detect a given dose of radiation and for calculating the dose in the case of a protracted exposure. (authors)

  20. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  1. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Heeren de O, A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear, Programa de Pos Graduacao / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling {sup 18}F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by {sup 40}K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  2. Summary Report of the 1. Research Coordination Meeting on Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF)

    International Nuclear Information System (INIS)

    Trkov, A.; Greenwood, L.R.; Simakov, S.P.

    2013-09-01

    In accordance with the recommendations of the International Nuclear Data Committee in May 2012, the Nuclear Data Section of IAEA has initiated a new Coordinated Research Project (CRP number F41031) with the main goal to test, validate and improve the international dosimetry library for fission and fusion (IRDFF). The output of this CRP will be a reference dosimetry database of cross sections and decay data with corresponding documentation. It will serve to the needs of fission, fusion and accelerator applications. The first Research Coordination Meeting (RCM) was held 1 to 5 July 2013 in IAEA. At this meeting, the attendees discussed the objectives of the whole CRP, presented their contributions and elaborated on consolidated recommendations and actions for implementation over the next 1.5 year period. This Summary Report documents the individual contributions and joint decisions made during this meeting. (author)

  3. Radiation defects in solid matrix as a physical base of EPR-dosimetry. The results of international experiment 'Intercomparison'

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Rukhin, A.B.; Seredavina, T.A.

    2004-01-01

    Full text: The very high sensitivity of EPR method at radiation defects in solid matrixes registration caused for last decade an intensive development of a new field - EPR-dosimetry. The suitable work substances had been found in a result of prolonged wide investigations, that allowed successful development both an operative dosimetry, and, that is especially important, the retrospective one. Nowadays the retrospective dosimetry on tooth enamel is adopted by IAEA and WHO as the main method of the radiation accidents consequences analysis for suffered population. In the report the methodical peculiarities of EPR-dosimetry are reviewed, the possible sources of the dose characteristics nonlinearity occurrence are analyzed as well other sources of errors and the ways of their elimination are considered. The review of the results of the international experiments 'Intercomparison' on EPR-dosimetry on tooth enamel series, held for last years under IAEA aegis is given. Practically all leading worldwide labs, including NMR laboratory of the INP NNC RK, took part in these experiments. The main goal was estimation of accuracy, sensitivity and reproducibility of summary dose values, having been reconstructed on base of EPR-signal of radiation defects in tooth enamel. The last experiment 'Intercomparison 3' has shown a considerable progress achieved lately in this area. Now the Japanese scientists from Hiroshima are preparing a further continuation of these Intercomparisons. Researches of radiation-induced EPR signals, stabilized in solid matrix, have been found out also rather useful and productive for the purposes of geological and archaeological dating, in criminalistics, in radiation chemistry and so on. Probably, this method will be rather perspective and at identification of radiation-sterilized food-stuffs, which come up now on world markets more and more often, however, studies in this direction are still on an incipient stage only

  4. Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study

    Science.gov (United States)

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2012-03-01

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for

  5. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.

    Science.gov (United States)

    Tran-Gia, Johannes; Schlögl, Susanne; Lassmann, Michael

    2016-12-01

    Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and manufactured with a fused-deposition-modeling 3D printer. Nuclide-dependent SPECT/CT calibration factors were determined to assess the accuracy of quantitative imaging for internal renal dosimetry. A set of 4 single-compartment kidney phantoms with filling volumes between 8 and 123 mL was designed on the basis of the outer kidney dimensions provided by MIRD pamphlet 19. After the phantoms had been printed, SPECT/CT acquisitions of 3 radionuclides ( 99m Tc, 177 Lu, and 131 I) were obtained and calibration constants determined for each radionuclide-volume combination. A set of additionally manufactured spheres matching the kidney volumes was also examined to assess the influence of phantom shape and size on the calibration constants. A set of refillable, waterproof, and chemically stable kidneys and spheres was successfully manufactured. Average calibration factors for 99m Tc, 177 Lu, and 131 I were obtained in a large source measured in air. For the largest phantom (122.9 mL), the volumes of interest had to be enlarged by 1.2 mm for 99m Tc, 2.5 mm for 177 Lu, and 4.9 mm for 131 I in all directions to obtain calibration factors comparable to the reference. Although partial-volume effects were observed for decreasing phantom volumes (percentage difference of up to 9.8% for the smallest volume [8.6 mL]), the difference between corresponding sphere-kidney pairs was small (3D printing is a promising prototyping technique for geometry-specific calibration of SPECT/CT systems. Although the underlying radionuclide and the related collimator have a major influence on the calibration

  6. Standardized physics-dosimetry for US pressure vessel cavity surveillance programs

    International Nuclear Information System (INIS)

    Ruddy, F.H.; McElroy, W.N.; Lippincott, E.P.

    1984-01-01

    Standardized Physics-Dosimetry procedures and data are being developed and tested for monitoring the neutron doses accumulated by reactor pressure vessels (PV) and their support structures. These procedures and data are governed by a set of 21 ASTM standard practices, guides, and methods for the prediction of neutron-induced changes in light water reactor (LWR) PVs and support structure steels throughout the service life of the PV. This paper summarizes the applications of these standards to define the selection and deployment of recommended dosimetry sets, the selection of dosimetry capsules and thermal neutron shields, the placement of dosimetry, the methods of measurement of dosimetry sensor reaction products, data analysis procedures, and uncertainty evaluation procedures. It also describes the validation of these standards both by in-reactor testing of advanced PV cavity surveillance physics-dosimetry and by data development. The use of these standards to guide selection and deployment of advanced dosimetry sets for commercial reactors is also summarized

  7. Proceedings of the III international workshop 'Actual problems of dosimetry (15 years after the Chernobyl accident)'

    International Nuclear Information System (INIS)

    Milyutin, A.A.; Chudakov, V.A.; Berezhnoj, A.V.

    2001-10-01

    Materials grouped to three main issues: normative, metrological and technical support of dosimetric and radiometric control; biological dosimetry and markers of radiation effects; monitoring and reconstruction of radiation doses at radiation accidents

  8. Dosimetry of internal emitting: principles and perspectives of the MIRD technology

    International Nuclear Information System (INIS)

    Ferro F, G.

    1999-01-01

    The development of the radiopharmaceutical technology have multiplied the number of radioisotopes with applications in therapeutical nuclear medicine so known as Directed radiotherapy. Assuming the radiation is capable to produce noxious effects in the biological systems, it is important to evaluate appropriately the risks and benefits of the administration of radioactive agents in the patient. The outstanding parameter in this evaluation is the absorbed dose, which is product of the radiation emitted by a radionuclide that is localized or distributed to the interior of the human body in study and whose its estimation helps to predict the efficacy of the treatment. The scheme generalized of MIRD, it was formulated from thirty years ago for evaluating the interior dosimetry at level of organs.The finality of this work is to show the basic principles of the MIRD methodology and its perspectives using innovator tools as the dosimetry for dynamic masses, in particular the personnel dosimetry for the organs of each patient, the dosimetry for the small structures inside the organs (sub organic dosimetry), the distributions of doses in three dimensions (S voxel), the dosimetry at cellular level and the quantitative acquisition of pharmaceutical data. (Author)

  9. A Computerized QC Analysis of TLD Glow Curves for Personal Dosimetry Measurements Using Tag QC Program

    International Nuclear Information System (INIS)

    Primo, S.; Datz, H.; Dar, A.

    2014-01-01

    The External Dosimetry Lab (EDL) at the Radiation Safety Division at Soreq Nuclear Research Center (SNRC) is ISO 17025 certified and provides its services to approximately 13,000 users throughout the country from various sectors such as medical, industrial and academic. About 95% of the users are monitored monthly for X-rays, radiation using Thermoluminescence Dosimeter (TLD) cards that contain three LiF:Mg,Ti elements and the other users, who work also with thermal neutrons, use TLD cards that contain four LiF:Mg,Ti elements. All TLD cards are measured with the Thermo 8800pc reader. Suspicious TLD glow curve (GC) can cause wrong dose estimation so the EDL makes great efforts to ensure that each GC undergoes a careful QC procedure. The current QC procedure is performed manually and through a few steps using different softwares and databases in a long and complicated procedure: EDL staff needs to export all the results/GCs to be checked to an Excel file, followed by finding the suspicious GCs, which is done in a different program (WinREMS), According to the GC shapes (Figure 1 illustrates suitable and suspicious GC shapes) and the ratio between the elements result values, the inspecting technician corrects the data. The motivation for developing the new program is the complicated and time consuming process of our the manual procedure to the large amount of TLDs each month (13,000), similarly to other Dosimetry services that use computerized QC GC analysis. it is important to note that only ~25% of the results are above the EDL recorded level (0.10 mSv) and need to be inspected. Thus, the purpose of this paper is to describe a new program, TagQC, which allows a computerized QC GC analysis that identifies automatically, swiftly, and accurately suspicious TLD GC

  10. First intercomparison exercise in the frame of the coordinated investigation program of the IAEA on regional intercomparison of personal dosimetry

    International Nuclear Information System (INIS)

    Massera, G.; Papadopulos, S.B.; Gregori, B.N.; DaSilva, T.; Griffith, R.; )

    1998-01-01

    During the days 7 and 11 of October of 1996 took place in Buenos Aires, Argentina, the first Meeting of the Coordinated Investigation program of the IAEA on Regional Intercomparison of Personal Dosimetry for Latin American. In this meeting participated nine representatives of reference laboratories and of personal dosimetry of the region. Fundamental aspect of personal dosimetry relates with the quantity personal dose equivalent Hp application and the implementation of intercomparison exercise in order to improve the quality of the dose estimation have been discussed. Also lectures carried out by the specialist on Hp and practical aspects of it implementation; answer and calibration according to the ISO 4037; intercomparison methods: procedures and organizations. It was carried out the first intercomparison exercise where the participants collaborated in the preparations and irradiations of personal dosemeters they have brought. (author)

  11. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  12. Physical and biological organ dosimetry analysis for international space station astronauts.

    Science.gov (United States)

    Cucinotta, Francis A; Kim, Myung-Hee Y; Willingham, Veronica; George, Kerry A

    2008-07-01

    In this study, we analyzed the biological and physical organ dose equivalents for International Space Station (ISS) astronauts. Individual physical dosimetry is difficult in space due to the complexity of the space radiation environment, which consists of protons, heavy ions and secondary neutrons, and the modification of these radiation types in tissue as well as limitations in dosimeter devices that can be worn for several months in outer space. Astronauts returning from missions to the ISS undergo biodosimetry assessment of chromosomal damage in lymphocyte cells using the multicolor fluorescence in situ hybridization (FISH) technique. Individual-based pre-flight dose responses for lymphocyte exposure in vitro to gamma rays were compared to those exposed to space radiation in vivo to determine an equivalent biological dose. We compared the ISS biodosimetry results, NASA's space radiation transport models of organ dose equivalents, and results from ISS and space shuttle phantom torso experiments. Physical and biological doses for 19 ISS astronauts yielded average effective doses and individual or population-based biological doses for the approximately 6-month missions of 72 mSv and 85 or 81 mGy-Eq, respectively. Analyses showed that 80% or more of organ dose equivalents on the ISS are from galactic cosmic rays and only a small contribution is from trapped protons and that GCR doses were decreased by the high level of solar activity in recent years. Comparisons of models to data showed that space radiation effective doses can be predicted to within about a +/-10% accuracy by space radiation transport models. Finally, effective dose estimates for all previous NASA missions are summarized.

  13. Report of the results of the second phase of Research Coordinated Program of IAEA ''Regional Intercomparison of Personnel Dosimetry''

    International Nuclear Information System (INIS)

    Morales, J.; Diaz, E.; Hernandez, E.; Capote, E.

    1998-01-01

    In this report the results of an intercomparison program within a research coordinated program are presented. This is a second phase of the study that consisted in to evaluate the implementation of the new ICRU quantities for individual monitoring by the dosimetry laboratories. In this report the organization aspects, quality control of the irradiations performed by the reference laboratory (SSDL of the Centro de Proteccion e Higiene de las radiaciones) as well the results of the participant laboratories are included

  14. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    Science.gov (United States)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  15. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons.

    Science.gov (United States)

    Xie, Tianwu; Han, Dao; Liu, Yang; Sun, Wenjuan; Liu, Qian

    2010-05-01

    The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, "Voxel-based mouse and rat models for internal dose calculations," J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides 169Er, 143Pr, 89Sr, 32P, and 90Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the mineral bone as photon energy increases. The SAF values calculated in

  16. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Xie Tianwu; Han Dao; Liu Yang; Sun Wenjuan; Liu Qian [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary

  17. Development of a hybrid multi-scale phantom for Monte-Carlo based internal dosimetry

    International Nuclear Information System (INIS)

    Marcatili, S.; Villoing, D.; Bardies, M.

    2015-01-01

    Full text of publication follows. Aim: in recent years several phantoms were developed for radiopharmaceutical dosimetry in clinical and preclinical settings. Voxel-based models (Zubal, Max/Fax, ICRP110) were developed to reach a level of realism that could not be achieved by mathematical models. In turn, 'hybrid' models (XCAT, MOBY/ROBY, Mash/Fash) allow a further degree of versatility by offering the possibility to finely tune each model according to various parameters. However, even 'hybrid' models require the generation of a voxel version for Monte-Carlo modeling of radiation transport. Since absorbed dose simulation time is strictly related to geometry spatial sampling, a compromise should be made between phantom realism and simulation speed. This trade-off leads on one side in an overestimation of the size of small radiosensitive structures such as the skin or hollow organs' walls, and on the other hand to unnecessarily detailed voxellization of large, homogeneous structures. The Aim of this work is to develop a hybrid multi-resolution phantom model for Geant4 and Gate, to better characterize energy deposition in small structures while preserving reasonable computation times. Materials and Methods: we have developed a pipeline for the conversion of preexisting phantoms into a multi-scale Geant4 model. Meshes of each organ are created from raw binary images of a phantom and then voxellized to the smallest spatial sampling required by the user. The user can then decide to re-sample the internal part of each organ, while leaving a layer of smallest voxels at the edge of the organ. In this way, the realistic shape of the organ is maintained while reducing the voxel number in the inner part. For hollow organs, the wall is always modeled using the smallest voxel sampling. This approach allows choosing different voxel resolutions for each organ according to a specific application. Results: preliminary results show that it is possible to

  18. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  19. The group version of the International Reactor Dosimetry File IRDF-90 for use in the Neutron Metrology File NMF-90 (IRDF-90/NMF-G)

    International Nuclear Information System (INIS)

    Szondi, E.J.

    1999-10-01

    The International Reactor Dosimetry File IRDF-90 of the Nuclear Data Section of the IAEA has been developed for neutron metrology purposes. Its second version was distributed in October 1993. In frame of the evaluation of the Neutron Metrology File NMF-90 a systematic revision of IRDF-90 has been performed. The format of this cross section library has been adjusted to the ENDF-6 format rules, and the integrity of covariance information of several reactions has been improved. The library includes data on 53 reactions of 37 detector materials, furthermore 9 cross section sets without covariance information (cover materials, dpa calculation). The cross sections are available in a 640 groups (extended SAND II) histogram format. This version of the library noted IRDF-90/NMF-G is distributed in PC DOS format. Programs for installation and integrity test are also supplied. (author)

  20. An international dosimetry exchange for boron neutron capture therapy, Part I: Absorbed dose measurements

    Czech Academy of Sciences Publication Activity Database

    Binns, P. J.; Riley, K. J.; Harling, O. K.; Kiger III, W. S.; Munck af Rosenschöld, P. M.; Giusti, V.; Capala, J.; Sköld, K.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Uusi-Simola, J.; Marek, M.; Viererbl, L.; Spurný, František

    2005-01-01

    Roč. 32, č. 12 (2005), s. 3729-3736 ISSN 0094-2405 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : BNCT * thermal neutrons * dosimetry intercomparison Subject RIV: BO - Biophysics Impact factor: 3.192, year: 2005

  1. Validation criteria of an internal dosimetry laboratory in vivo; Criterios para la validacion de un laboratorio de dosimetria interna in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M. de las M., E-mail: mercedes.alfaro@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    People working with radioactive materials, under certain circumstances (e.g. not using the proper protective equipment, an incident not covered, etc.) could be incorporated into the body. The radiation protection programs include direct measurement methods -in vivo- or indirect -in vitro- or both, to know that radioactive material is incorporated into the body. The monitoring measurements of internal contamination or (Radio-bioassay) are carried out with the purpose of determining the amount of radioactive material incorporated in the body; estimate the effective dose and committed dose; management administration of radiation protection; appropriate medical management; and to provide the data necessary for the legal requirements and the preservation of records. The measurement methods used in the monitoring of internal contamination must be validated by the combination of the following processes: calibration, using standards reference materials and/or simulators; execute systematic research, using control samples; and intercomparison between laboratories and performance tests. In this paper the validation criteria of an internal dosimetry laboratory in vivo are presented following the information provided by the standard ANSI N13-30-1996 and ISO/TEC 17025-2005 as are the criteria of facilities, staff training, interpretation of measurements, performance criteria for monitoring of internal contamination in vivo, results reporting and records retention. Thereby we achieve standardized quantitative performance criteria of truthfulness, accuracy and detection limit and a consensus on statistical definitions to establish the validation plan of a monitoring laboratory of internal contamination in vivo. (Author)

  2. Status of radiation processing dosimetry

    DEFF Research Database (Denmark)

    Miller, A.

    1993-01-01

    Several milestones have marked the field of radiation processing dosimetry since IMRP 7. Among them are the IAEA symposium on High Dose Dosimetry for Radiation Processing and the international Workshops on Dosimetry for Radiation Processing organized by the ASTM. Several standards have been...... or are being published by the ASTM in this field, both on dosimetry procedures and on the proper use of specific dosimeter systems. Several individuals are involved in this international cooperation which contribute significantly to the broader understanding of the role of dosimetry in radiation processing....... The importance of dosimetry is emphasized in the standards on radiation sterilization which are currently drafted by the European standards organization CEN and by the international standards organization ISO. In both standards, dosimetry plays key roles in characterization of the facility, in qualification...

  3. Annual course of retraining for the occupational exposure personnel of the laboratory of internal dosimetry; Curso anual de reentrenamiento para el POE del laboratorio de dosimetria interna

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-09-15

    The general objective of this report is to instruct the personnel in the basic concepts of radiological protection and in the Manual of Procedures of Radiological Safety of the Laboratory of Internal Dosimetry. Also, to exchange experiences during the activities that are carried out in the laboratory and in the knowledge of abnormal situations. The referred Manual consists of 14 procedures and 5 instructions which are listed in annex of this document. The content of this course consists of three topics: 1. Basic principles of radiological protection to reduce the received dose equivalent. 2. Use of radiation measurer equipment. 3. Emergency procedures of the laboratory of internal dosimetry. (Author)

  4. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  5. Proceedings of the third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  6. Proceedings of the third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database

  7. The clinical safety, biodistribution and internal radiation dosimetry of [{sup 18}F]fluciclovine in healthy adult volunteers

    Energy Technology Data Exchange (ETDEWEB)

    McParland, Brian J. [Imaging Technology Group, GE Healthcare Medical Diagnostics, Amersham, Buckinghamshire (United Kingdom); Wall, Anders; Soerensen, Jens [Uppsala University, Section of Nuclear Medicine and PET, Department of Radiology, Oncology and Radiation Sciences, Uppsala (Sweden); Johansson, Silvia [Uppsala University, Section of Oncology, Department of Radiology, Oncology and Radiation Sciences, Uppsala (Sweden)

    2013-08-15

    We report on the biodistribution and internal radiation dosimetry in humans of [{sup 18}F]fluciclovine, a synthetic L-leucine analogue being investigated as a potential diagnostic biomarker for neoplasia. Whole-body positron emission tomography (PET) scans of 6 healthy volunteers were acquired at up to 16 time points up to about 5 h after a bolus administration of [{sup 18}F]fluciclovine (153.8 {+-} 2.2 MBq). Venous blood samples were taken up to about 4 h post-injection from which {sup 18}F activity concentrations in whole blood and plasma were measured. Urine was collected as voided up to 4 h post-injection, from which the excreted {sup 18}F activity was measured. Absolute values of the {sup 18}F activity contained in up to 11 source regions (brain, salivary glands, lung, heart, pancreas, spleen, liver, red bone marrow, kidneys, uterus and urinary bladder contents) were determined directly from quantitative analysis of the images. For each source region, the {sup 18}F activity decay-corrected and normalised to that injected, as a function of time, was fit by an analytical function which was subsequently integrated to yield the cumulated activity normalised to the injected activity. These normalised cumulated activities were then used as input to the Organ Level INternal Dose Assessment/EXponential Modelling (OLINDA/EXM) package to calculate the internal radiation dosimetry of each subject following the Medical Internal Radiation Dose (MIRD) schema. An effective dose was then estimated for each subject. [{sup 18}F]Fluciclovine was clinically well tolerated in this study. Very little {sup 18}F was excreted with only a mean value of 3.3 % present in the urine at about 4 h post-injection; no activity within the intestinal contents was noted. The highest mean initial uptakes were measured in the liver (13.8 %), red bone marrow (11.1 %) and lung (7.1 %). The highest mean radiation absorbed doses per unit administered activity were received by the pancreas (102.2 {mu

  8. EPR dosimetry - present and future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)

  9. EPR Dosimetry - Present and Future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  10. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  11. Biological (DB) and internal dosimetry (DI) in patients with differentiated thyroid carcinoma (CaDT) treated with iodine 131

    International Nuclear Information System (INIS)

    Fadel, Ana M.; Chebel, G.; Oneto, A.; Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Radl, A.; Rojo, Ana M.; Deluca, G.; Levi de Cabrejas, Mariana; Cabrejas, Raul C.

    2009-01-01

    The internal 131 I radiotherapy in patients with CaDT is used within the therapeutic scheme as a step post-thyroidectomy. The success of therapy is to achieve a lethal dose in the tumor tissue without exceeding the dose of tolerance in healthy tissues (doses greater than 2 Gy in bone marrow could lead to myelotoxicity). In this work, the treatment protocol applied incorporates assessment by biological (DB) and internal dosimetry (DI) for estimating doses to the whole body and bone marrow to administer a therapeutic personalized for each patient. The estimate biological dose is based in the quantification of chromosomal aberrations, which is referred to a dose-response curve. Objectives: 1) To estimate the absorbed dose to the whole body and bone marrow due to the administration of 131 I therapy in patients with CaDT, by applying three different cytogenetic tests: conventional cytogenetics, micronuclei (MN) and fluorescence in situ hybridization (FISH); 2) Assess the correlation of the results obtained by DB and DI for personalization of treatment. Materials and methods: We evaluated 24 patients with CaDiT by applying the cytogenetic tests mentioned and internal dosimetry (methodology Mird-Olinda). Internal dosimetry: We administered a tracer dose 74 to 111 MBq. Measurements were made of activity in whole body and blood. By adjusting the scheme was estimated MIRD dose in bone marrow and the maximum therapeutic activity to manage and secure. Through software Olinda was determined absorbed dose to the whole body for each patient. We considered patient-specific data (physical frame size, weight, hematocrit) to adjust the methodology in each particular case. It is assumed that the tracer activity administered has a kinetic in the body similar to the 131 I to be administered in therapeutic amounts. Biology Dosimetry : We performed for each patient taking 2 sequential venous blood samples to estimate the dose due to therapeutic activity in review: the first shows, pre

  12. A computational tool for patient specific dosimetry and radiobiological modeling of selective internal radiation therapy with (90)Y microspheres.

    Science.gov (United States)

    Kalantzis, Georgios; Leventouri, Theodora; Apte, Aditiya; Shang, Charles

    2015-11-01

    In recent years we have witnessed tremendous progress in selective internal radiation therapy. In clinical practice, quite often, radionuclide therapy is planned using simple models based on standard activity values or activity administered per unit body weight or surface area in spite of the admission that radiation-dose methods provide more accurate dosimetric results. To address that issue, the authors developed a Matlab-based computational software, named Patient Specific Yttrium-90 Dosimetry Toolkit (PSYDT). PSYDT was designed for patient specific voxel-based dosimetric calculations and radiobiological modeling of selective internal radiation therapy with (90)Y microspheres. The developed toolkit is composed of three dimensional dose calculations for both bremsstrahlung and beta emissions. Subsequently, radiobiological modeling is performed on a per-voxel basis and cumulative dose volume histograms (DVHs) are generated. In this report we describe the functionality and visualization features of PSYDT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. International dosimetry experiment on the zero power pile of the Boris Kidric Institute at Vinca (Yugoslavia) (1961)

    International Nuclear Information System (INIS)

    Weill, J.; Furet, J.; Baillet, J.; Donvez, G.; Duchene, J.; Gras, R.; Mercier, R.; Chenouard, J.; Lecomte, J.

    1961-01-01

    On the occasion of the international dosimetry experiment on the zero power pile of the Yugoslavian Atomic Energy Centre at Vinca, the Commissariat a l'energie Atomique had agreed to prepare the measurement and security equipment and see to the manipulation of the heavy water, and in addition was responsible for the operation and the starting up of the pile during the experiment. The measurement and security apparatus, developed at Saclay and installed on the pile for low and high pressure runs, is listed, together with the safety equipment added near the control room. The various operations and manipulations carried out on the pile are described: filling with heavy water, starting up, determination of the critical level, testing the efficiency of the rods, operating the pile during the experiments. By operating to a carefully planned schedule, the experiments were, finished before the date fixed by the International Atomic Agency. (authors) [fr

  14. A topaz international program overview

    Science.gov (United States)

    Thome, Frank V.; Wyant, Francis J.; Mulder, Daniel; McCarson, T. D.; Ponomarev-Stepnoi, Nikolai Nikolaevich

    1995-01-01

    Five years ago, during the 8th Symposium on Space Nuclear Power Systems, in Albuquerque, NM, Academician Nikolai Nikolaevich Ponomarev-Stepnoi, First Deputy Director of the Russian Research Center, Kurchatov Institute, proposed the sale of the Soviety Union's TOPAZ II technology to the United States. This proposal, made at great personal risk, was initially viewed with much skepticism by most Americans attending that conference since the Cold War was still in full swing. There were, however, a few visionaries, some would say fanatics, that set about to make this sale possible. Even these visionaries did not anticipate the collapse of the Soviet Union or the subsequent efforts by the U.S. and other Western powers to help the Newly Independent States transition to a market economy. Little did these visionaries know that the formation of the ``TOPAZ II Program,'' using former military space power technology of the Soviet Union, would become the preeminent example of technology cooperation between two former adversaries. A unique teaming arrangement formed in New Mexico, called the New Mexico Strategic Alliance and consisting of the Air Force Phillips Laboratory, Sandia National Laboratories, the University of New Mexico, and Los Alamos Nationalo Laboratory, was a key ingredient in making this program a success. A brief summary of some of the highlights of this technology partnership is given to explain how international patnerships of this type can enable commercialization and technology transfer.

  15. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model

    Science.gov (United States)

    Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel

    2017-03-01

    The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.

  16. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, Lidia [Regina Elena National Cancer Institute, Laboratory of Medical Physics and Expert Systems, Rome (Italy); Konijnenberg, Mark [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Chiesa, Carlo [Instituto Nazionale Tumori, Department of Nuclear Medicine, Milan (Italy); Bardies, Manuel [UMR 1037 INSERM / Universite Paul Sabatier, Centre de Recherche en Cancerologie de Toulouse, Toulouse (France); Du, Yong [Royal Marsden NHS Foundation Trust, Department of Nuclear Medicine and PET/CT, Sutton, London (United Kingdom); Gleisner, Katarina Sjoegreen [Medical Radiation Physics, Clinical Sciences, Lund (Sweden); Lassmann, Michael [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Flux, Glenn [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Joint Department of Physics, Sutton (United Kingdom)

    2014-10-15

    Molecular radiotherapy (MRT) has demonstrated unique therapeutic advantages in the treatment of an increasing number of cancers. As with other treatment modalities, there is related toxicity to a number of organs at risk. Despite the large number of clinical trials over the past several decades, considerable uncertainties still remain regarding the optimization of this therapeutic approach and one of the vital issues to be answered is whether an absorbed radiation dose-response exists that could be used to guide personalized treatment. There are only limited and sporadic data investigating MRT dosimetry. The determination of dose-effect relationships for MRT has yet to be the explicit aim of a clinical trial. The aim of this article was to collate and discuss the available evidence for an absorbed radiation dose-effect relationships in MRT through a review of published data. Based on a PubMed search, 92 papers were found. Out of 79 studies investigating dosimetry, an absorbed dose-effect correlation was found in 48. The application of radiobiological modelling to clinical data is of increasing importance and the limited published data on absorbed dose-effect relationships based on these models are also reviewed. Based on National Cancer Institute guideline definition, the studies had a moderate or low rate of clinical relevance due to the limited number of studies investigating overall survival and absorbed dose. Nevertheless, the evidence strongly implies a correlation between the absorbed doses delivered and the response and toxicity, indicating that dosimetry-based personalized treatments would improve outcome and increase survival. (orig.)

  17. Experience of the new service of dosimetry internal by Bio elimination of Tecnatom; Experiencia del nuevo servicio de dosimetria interna por bioeliminacion de Tecnatom

    Energy Technology Data Exchange (ETDEWEB)

    Duran, T.; Navas Menchen, C.; Campos Mendia, J.

    2012-07-01

    Internal dosimetry is of particular relevance for occupationally exposed workers in the field of nuclear decommissioning and radioactive facilities. The tasks to be performed at these facilities involve an increase in the risk of incorporation of radioactive material into the body, the radioactive waste generated diverse in nature and involve work that may lead to a greater dispersion of radioactive material.

  18. Final Design for an International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV: IER-148 CED-2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Heinrichs, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beller, Tim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burch, Jennifer [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cummings, Rick [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Duluc, Matthieu [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Gadd, Milan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McAvoy, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rathbone, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Randy [Savannah River Site (SRS), Aiken, SC (United States); Trompier, Francois [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Veinot, Ken [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, Dann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Will, Rashelle [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Wilson, Chris [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Zieziulewicz, Thomas [Knolls Atomic Power Lab. (KAPL), Niskayuna, NY (United States)

    2014-09-30

    This document is the Final Design (CED-2) Report for IER-148, “International Inter-comparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV.” The report describes the structure of the exercise consisting of three irradiations; identifies the participating laboratories and their points of contact; provides the details of all dosimetry elements and their placement in proximity to Godiva-IV on support stands or phantoms ; and lists the counting and spectroscopy equipment each laboratory will utilize in the Mercury NAD Lab. The exercise is tentatively scheduled for one week in August 2015.

  19. Internal dosimetry for blood vessels radiotherapy; Dosimetria interna para terapia com radiacao em vasos sanguineos

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia Pumilla Botelho [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear] E-mail: lpbcampos@uol.com.br; Stabin, Michael Gregory [Vanderbilt Univ., Nashville, TN (United States). Dept. of Radiology and Radiological Sciences] E-mail: Michael.Stabin@mcmail.vanderbilt.edu

    2001-07-01

    Among the cardiovascular diseases, the most common is acute myocardial infarction, which occurs because of the occlusion of one or more coronary arteries. Balloon angioplasty has been a popular treatment which is less invasive than surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment). Known as Intravascular Brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis. In order to study the radiation dosimetry in the patient and radiological protection for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, 0.30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several radionuclides. Advantages and disadvantages of the radionuclides and source geometries are discussed and the dosimetry developed here will aid in the realization of the benefits obtained in patients. (author)

  20. Internal exposure to neutron-activated {sup 56}Mn dioxide powder in Wistar rats. Pt. 1. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Valeriy; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria [Medical Radiological Research Center (MRRC) named after A.F. Tsyb - National Medical Research Radiological Center of the Health Ministry of the Russian Federation, Obninsk, Kaluga Region (Russian Federation); Rakhypbekov, Tolebay; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Kairkhanova, Yankar [Semey State Medical University, Semey (Kazakhstan); Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Fujimoto, Nariaki; Hoshi, Masaharu [Hiroshima University, Hiroshima (Japan); Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro [Nagasaki University, Nagasaki (Japan); Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi [University of Tsukuba, Ibaraki (Japan); Toyoda, Shin [Okayama University of Science, Okayama (Japan); Sato, Hitoshi [Ibaraki Prefectural University of Health Science, Ibaraki (Japan); Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander [National Nuclear Center of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Zhumadilov, Kasym [Eurasian National University named after L.N. Gumilyov, Astana (Kazakhstan)

    2017-03-15

    There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were {sup 24}Na, {sup 28}Al, {sup 31}Si, {sup 32}P, {sup 38}Cl, {sup 42}K, {sup 45}Ca, {sup 46}Sc, {sup 56}Mn, {sup 59}Fe, {sup 60}Co, and {sup 134}Cs. The radionuclide {sup 56}Mn (T{sub 1/2} = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to {sup 56}Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated {sup 56}Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured {sup 56}Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of

  1. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  2. The ICRU (International Commission on Radiation Units and Measurements): Its contribution to dosimetry in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Wambersie, A.; Zoetelief, J.; Menzel, H. G.; Paretzke, H.

    2005-01-01

    The ICRU (International Commission on Radiation Units and Measurements was created to develop a coherent system of quantities and units, universally accepted in all fields where ionizing radiation is used. Although the accuracy of dose or kerma may be low for most radiological applications, the quantity which is measured must be clearly specified. Radiological dosimetry instruments are generally calibrated free-in-air in terms of air kerma. However, to estimate the probability of harm at low dose, the mean absorbed dose for organs is used. In contrast, at high doses, the likelihood of harm is related to the absorbed dose at the site receiving the highest dose. Therefore, to assess the risk of deterministic and stochastic effects, a detailed knowledge of absorbed dose distribution, organ doses, patient age and gender is required. For interventional radiology, where the avoidance of deterministic effects becomes important, dose conversion coefficients are generally not yet developed. (authors)

  3. SU-E-I-10: Putting Teeth into Your CT Dosimetry Program: Approaches to Cone- Beam Dental/Maxillofacial CT Dosimetry.

    Science.gov (United States)

    Blackburn, T; Gallet, J; Guild, J; Arbique, G; Anderson, J A

    2012-06-01

    To review and compare different approaches to the problem of dosimetry for limited field-of-view (FOV) cone beam CT devices for dental and maxillofacial applications. The determination of patient doses from specialized, cone-beam CT devices for dental and maxillofacial work requires medical physicists to re-evaluate their dosimetry methods. These devices work in cone-beam geometry, with an axial field dimension on the order of the lengths of the standard head CTDI phantom and pencil ionization chamber. They may also utilize less than 360 degree scans, resulting in asymmetrical radiation distributions. This operating regime is far from that for which conventional CT dosimetry was designed, and alternative approaches must be considered. The alternatives include extensions of conventional CT dosimetry currently used for large axial FOV scanners (e.g. the extended CTDI parameter (CTDIe) for the Toshiba Aquillion One with 160 mm axial FOV) and the new method based on point dosimetry measurements recently formalized in AAPM Report TG-111. Conventional, modified-conventional, and TG-111 dosimetry measurements are used in two CT dose phantoms (adult head and pediatric head) to obtain dose indices for the Planmeca ProMax 3D Max dental CT scanner. Surface dose maps are generated using radiochromic film for correlation with the chamber dosimetry. Results for the three dosimetry approaches are compared for the specific case of the ProMax 3D Max scanner. Strengths and weaknesses of the three measurement paradigms for this type of application are compared. The increasing availability of specialized scanners operating in full cone-beam mode will require the clinical medical physicist to be conversant with extensions to the CT dose index methodology suitable for this equipment. © 2012 American Association of Physicists in Medicine.

  4. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  5. REVIEW: Nuclear medicine dosimetry

    Science.gov (United States)

    Stabin, Michael

    2006-07-01

    A brief overview is provided of the history of the development of internal dose methods for use in nuclear medicine. Basic methods of internal dosimetry and the systems that have been developed for use in nuclear medicine are described. The development of the MIRD system and the International Radiopharmaceutical Dosimetry Symposium series is outlined. The evolution of models and tools for calculating dose estimates is reviewed. Current efforts in developing more patient-specific methods, particularly for use in therapy calculations, development of small scale and microdosimetry techniques, and of relating internal radiation doses to observed biological effects are described and evaluated.

  6. Research for International Tobacco Control (RITC) : Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Department for International Development (DFID), United Kingdom, is making a grant of up to £1 100 000 to IDRC to cover three years of Research for International Tobacco Control (RITC) programming between April 2005 and March 2008. The funding is intended to support activities outlined in RITC's program ...

  7. A Model Program for International Commerce Education.

    Science.gov (United States)

    Funston, Richard

    To address the economy's growing reliance on international business, San Diego State University has recently introduced a program in international commerce. The program was developed by packaging coursework in three existing areas: business administration, language training, and area studies. Although still in its infancy, the international…

  8. Selective Internal Radiation Therapy With Yttrium-90 Glass Microspheres: Biases and Uncertainties in Absorbed Dose Calculations Between Clinical Dosimetry Models.

    Science.gov (United States)

    Mikell, Justin K; Mahvash, Armeen; Siman, Wendy; Baladandayuthapani, Veera; Mourtada, Firas; Kappadath, S Cheenu

    2016-11-15

    To quantify differences that exist between dosimetry models used for 90 Y selective internal radiation therapy (SIRT). Retrospectively, 37 tumors were delineated on 19 post-therapy quantitative 90 Y single photon emission computed tomography/computed tomography scans. Using matched volumes of interest (VOIs), absorbed doses were reported using 3 dosimetry models: glass microsphere package insert standard model (SM), partition model (PM), and Monte Carlo (MC). Univariate linear regressions were performed to predict mean MC from SM and PM. Analysis was performed for 2 subsets: cases with a single tumor delineated (best case for PM), and cases with multiple tumors delineated (typical clinical scenario). Variability in PM from the ad hoc placement of a single spherical VOI to estimate the entire normal liver activity concentration for tumor (T) to nontumoral liver (NL) ratios (TNR) was investigated. We interpreted the slope of the resulting regression as bias and the 95% prediction interval (95%PI) as uncertainty. MC NL single represents MC absorbed doses to the NL for the single tumor patient subset; other combinations of calculations follow a similar naming convention. SM was unable to predict MC T single or MC T multiple (p>.12, 95%PI >±177 Gy). However, SM single was able to predict (p<.012) MC NL single , albeit with large uncertainties; SM single and SM multiple yielded biases of 0.62 and 0.71, and 95%PI of ±40 and ± 32 Gy, respectively. PM T single and PM T multiple predicted (p<2E-6) MC T single and MC T multiple with biases of 0.52 and 0.54, and 95%PI of ±38 and ± 111 Gy, respectively. The TNR variability in PM T single increased the 95%PI for predicting MC T single (bias = 0.46 and 95%PI = ±103 Gy). The TNR variability in PM T multiple modified the bias when predicting MC T multiple (bias = 0.32 and 95%PI = ±110 Gy). The SM is unable to predict mean MC tumor absorbed dose. The PM is statistically correlated with mean MC, but the

  9. International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). Book of Extended Synopses

    International Nuclear Information System (INIS)

    2010-01-01

    The major goal of the symposium is to provide a forum where advances in radiation dosimetry during the last decade, in radiation medicine and radiation protection can be disseminated and scientific knowledge exchanged. It will include all specialties in radiation medicine and radiation protection dosimetry with a specific focus on those areas where the standardization of dosimetry has improved in the recent years (brachytherapy, diagnostic radiology and nuclear medicine). It will also summarize the present status and outline future trends in medical radiation dosimetry and identify possible areas for improvement. Its conclusions and summaries should lead to the formulation of recommendations for the scientific community

  10. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    Science.gov (United States)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  11. Prototype international quality assurance program

    International Nuclear Information System (INIS)

    Broadway, J.A.; Chambless, D.A.; Sapozhnikov, Yu.A.; Kalmykov, S.N.

    1998-01-01

    The international community presently lacks the ability to determine the quality and credibility of environmental measurements that is required to make sound decisions in matters related to international security, public health, and investment-related considerations. The ultimate goal of the work described in this article is to develop a credible information base including measurement capability for determination of environmental contamination and the potential for proliferation of material components of chemical or nuclear weapons. This study compared the accuracy obtained by six Russian and six U.S. laboratories for samples representative of classes of trace metals, dioxing-furans, and radioactive substances. The results obtained in this work indicate that current estimates for laboratory accuracy are likely overly optimistic. The weaknesses discovered by this prototype U.S. - Russia study also exist within the broader international community of laboratories. Further work is proposed to address the urgent need for the international community to improve performance evaluations for analytical measurements. (author)

  12. A computational code for resolution of general compartment models applied to internal dosimetry

    International Nuclear Information System (INIS)

    Claro, Thiago R.; Todo, Alberto S.

    2011-01-01

    The dose resulting from internal contamination can be estimated with the use of biokinetic models combined with experimental results obtained from bio analysis and the knowledge of the incorporation time. The biokinetics models can be represented by a set of compartments expressing the transportation, retention and elimination of radionuclides from the body. The ICRP publications, number 66, 78 and 100, present compartmental models for the respiratory tract, gastrointestinal tract and for systemic distribution for an array of radionuclides of interest for the radiological protection. The objective of this work is to develop a computational code for designing, visualization and resolution of compartmental models of any nature. There are available four different techniques for the resolution of system of differential equations, including semi-analytical and numerical methods. The software was developed in C≠ programming, using a Microsoft Access database and XML standards for file exchange with other applications. Compartmental models for uranium, thorium and iodine radionuclides were generated for the validation of the CBT software. The models were subsequently solved by SSID software and the results compared with the values published in the issue 78 of ICRP. In all cases the system is in accordance with the values published by ICRP. (author)

  13. A computational code for resolution of general compartment models applied to internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Thiago R.; Todo, Alberto S., E-mail: claro@usp.br, E-mail: astodo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The dose resulting from internal contamination can be estimated with the use of biokinetic models combined with experimental results obtained from bio analysis and the knowledge of the incorporation time. The biokinetics models can be represented by a set of compartments expressing the transportation, retention and elimination of radionuclides from the body. The ICRP publications, number 66, 78 and 100, present compartmental models for the respiratory tract, gastrointestinal tract and for systemic distribution for an array of radionuclides of interest for the radiological protection. The objective of this work is to develop a computational code for designing, visualization and resolution of compartmental models of any nature. There are available four different techniques for the resolution of system of differential equations, including semi-analytical and numerical methods. The software was developed in C{ne} programming, using a Microsoft Access database and XML standards for file exchange with other applications. Compartmental models for uranium, thorium and iodine radionuclides were generated for the validation of the CBT software. The models were subsequently solved by SSID software and the results compared with the values published in the issue 78 of ICRP. In all cases the system is in accordance with the values published by ICRP. (author)

  14. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    Science.gov (United States)

    Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.

    2014-05-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  15. Results of the regional intercomparison on internal dosimetry – 2013: Interpretation of monitoring data for effective dose assessment due to internal exposure

    International Nuclear Information System (INIS)

    Rojo, A.M.; Puerta, N.; Gossio, S.; Gómez Parada, I.

    2015-01-01

    Internal dosimetry intercomparisons are essential for the verification of the models applied and the results consistency. To that aim, the 1. Regional Intercomparison Exercise was organized in 2005 in the frame of the RLA 9/049. The results of this exercise led to the 2. Regional Intercomparison Exercise in 2013, which was organized in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear (ARN) of Argentina. Four simulated cases covering intakes of “1”3”1I, “1”3”7Cs and Tritium were proposed. The exercise counted with the participation of 19 centres from 13 countries. This report shows a complete analysis of the participant’s results in this 2nd. exercise, useful to test their skills and acquired knowledge, particularly in applying the IDEAS guidelines. It is important to highlight the improvement in the general performance of the participants. (authors) [es

  16. International Photovoltaic Program Plan. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    This second volume of a two-part report on the International Photovoltaic Program Plan contains appendices summarizing the results of analyses conducted in preparation of the plan. These analyses include compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about how US government actions could affect this market; international financing issues; and information on issues affecting foreign policy and developing countries.

  17. Relationship between student selection criteria and learner success for medical dosimetry students

    International Nuclear Information System (INIS)

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  18. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    Science.gov (United States)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  19. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    International Nuclear Information System (INIS)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley; Rajon, Didier; Jokisch, Derek

    2010-01-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  20. Murine-specific Internal Dosimetry for Preclinical Investigations of Imaging and Therapeutic Agents.

    Science.gov (United States)

    Bednarz, Bryan; Grudzinski, Joseph; Marsh, Ian; Besemer, Abby; Baiu, Dana; Weichert, Jamey; Otto, Mario

    2018-04-01

    There is a growing need to estimate the absorbed dose to small animals from preclinical investigations involving diagnostic and therapeutic radiopharmaceuticals. This paper introduces a Monte Carlo-based dosimetry platform called RAPID, which is capable of calculating murine-specific three-dimensional (3D) dose distributions. A comparison is performed between absorbed doses calculated with RAPID and absorbed doses calculated in a commonly used reference mouse phantom called MOBY. Four test mice containing different xenografts underwent serial PET/CT imaging using a novel diagnostic therapy (theranostic) agent NM404, which can be labeled with I for imaging or I for therapy. Using the PET/CT data, 3D dose distributions from I-NM404 were calculated in the mice using RAPID. Mean organ doses in these four test mice were compared to mean organ doses derived by using two previously published I S-values datasets in MOBY. In addition, mean tumor doses calculated in RAPID were compared to mean organ doses derived from unit density spheres. Large differences were identified between mean organ doses calculated in the test mice using RAPID and those derived in the MOBY phantom. Mean absorbed dose percent errors in organs ranged between 0.3% and 333%. Overall, mass scaling improved agreement between MOBY phantom calculations and RAPID, where percent errors were all less than 26%, with the exception of the lung in which percent errors reached values of 48%. Percent errors in mean tumor doses in the test mice and unit density spheres were less pronounced but still ranged between 8% and 23%. This work demonstrates the limitations of using pre-computed S-values in computational phantoms to predict organ doses in small animals from theranostic procedures. RAPID can generate accurate 3D dose distributions in small animals and in turn offer much greater insight on the ability of a given theranostic agent to image and treat diseases.

  1. Global pest management program wins international award

    OpenAIRE

    Rich, Miriam Sommers

    2009-01-01

    An agricultural research program managed at Virginia Tech has won an international award for its work with pest-management practices that show economic benefits with minimal impact on health and the environment.

  2. Canadian Nuclear Safety Commission's intern program

    International Nuclear Information System (INIS)

    Gilmour, P.E.

    2002-01-01

    The Intern Program was introduced at the Canadian Nuclear Safety Commission, Canada's Nuclear Regulator in response to the current competitive market for engineers and scientists and the CNSC's aging workforce. It is an entry level staff development program designed to recruit and train new engineering and science graduates to eventually regulate Canada's nuclear industry. The program provides meaningful work experience and exposes the interns to the general work activities of the Commission. It also provides them with a broad awareness of the regulatory issues in which the CNSC is involved. The intern program is a two-year program focusing on the operational areas and, more specifically, on the generalist functions of project officers. (author)

  3. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  4. Personalized Monte Carlo dosimetry for the planning and evaluation of internal radiotherapy treatments: development and application to selective internal radiotherapy (SIRT)

    International Nuclear Information System (INIS)

    Petitguillaume, Alice

    2014-01-01

    Medical techniques in full expansion arousing high therapeutic expectations, targeted radionuclide therapies (TRT) consist of administering a radiopharmaceutical to selectively treat tumors. Nowadays, the activity injected to the patient is generally standardized. However, in order to establish robust dose-effect relationships and to optimize treatments while sparing healthy tissues at best, a personalized dosimetry must be performed, just like actual clinical practice in external beam radiotherapy. In that context, this PhD main objective was to develop, using the OEDIPE software, a methodology for personalized dosimetry based on direct Monte Carlo calculations. The developed method enables to calculate the tridimensional distribution of absorbed doses depending on the patient anatomy, defined from CT or MRI data, and on the patient-specific activity biodistribution, defined from SPECT or PET data. Radiobiological aspects, such as differences in radiosensitivities and repair time constants between tumoral and healthy tissues, have also been integrated through the linear-quadratic model. This methodology has been applied to the selective internal radiation therapy (SIRT) which consists in the injection of 90 Y-microspheres to selectively treat unresectable hepatic cancers. Distributions of absorbed doses and biologically effective doses (BED) along with the equivalent uniform biologically effective doses (EUD) to hepatic lesions have been calculated from 99m Tc-MAA activity distributions obtained during the evaluation step for 18 patients treated at Hopital Europeen Georges Pompidou. Those results have been compared to classical methods used in clinics and the interest of accurate and personalized dosimetry for treatment planning has been investigated. On the one hand, the possibility to increase the activity in a personalized way has been highlighted with the calculation of the maximal activity that could be injected to the patient while meeting tolerance criteria

  5. A Comprehensive Wellness Program for International Students.

    Science.gov (United States)

    Fisher, Millard J.; Ozaki, Roger H.

    This document presents a model wellness program for international college students in the United States and strategies to aid them in staying healthy during their stay. It notes that, without parents or other support groups, international students run the risk of developing serious health problems because of inadequate diet and sleep, substandard…

  6. Organizational Structures that Support Internal Program Evaluation

    Science.gov (United States)

    Lambur, Michael T.

    2008-01-01

    This chapter explores how the structure of large complex organizations such as Cooperative Extension affects their ability to support internal evaluation of their programs and activities. Following a literature review of organizational structure and its relation to internal evaluation capacity, the chapter presents the results of interviews with…

  7. International Program for Undergraduate Business Majors.

    Science.gov (United States)

    Milton, Tom

    This report describes a project to create an interdisciplinary specialization in international business for undergraduate business majors and to internationalize the existing business program at Mercy College (New York). Objectives were to help students acquire a working knowledge of the international dimension of business, appreciate…

  8. Senior Program Specialist | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Primary Duties or Responsibilities 1. ... North, and with the international donor community; and; Keeps up to date with, and contributes to, research and current developments in the disciplines/areas covered by the CRVS Initiative/MCH Program and in the regions where the work is conducted and at the international level.

  9. Senior Program Specialist | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Projects (RSPs) values up to $5-7 million;; Liaises with program colleagues in Ottawa and the regional offices on issues of program and project development and management;; Plays a leading role in the identifying, developing and managing IDRC's contacts with other international agencies and Canadian institutions; ...

  10. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  11. Programs and Research Advisor | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Analysis of trends and policy developments in the Sub-Saharan African Region in order to support IDRC's strategic plan and programming by: collating various information and data relevant to IDRC programs in the region through consultation of print and electronic sources and internal and external network of contacts; ...

  12. NASA and the Federal Management Intern Program.

    Science.gov (United States)

    Pound, Jack K.; Slack, Vivian M.

    A review of NASA Federal Management Intern (MI) programs indicates potential for identification, attraction, and early development of successful administrative management employees, but suggests that successful development of managers is a function of the long-term care with which an agency pursues MI programs. A recent study of separations in…

  13. Undergraduate International Studies and Foreign Language Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The Undergraduate International Studies and Foreign Language Program provides funds to institutions of higher education, a consortia of such institutions, or partnerships between nonprofit organizations and institutions of higher education to plan, develop, and implement programs that strengthen and improve undergraduate instruction in…

  14. Internal Dosimetry Monitoring- Detection Limits for a Selected Set of Radionuclides and Their Translation Into Committed Effective Dose

    International Nuclear Information System (INIS)

    Brandl, A.; Hrnecek, E.; Steger, F.

    2004-01-01

    To harmonize the practice of internal dosimetry monitoring across the country, the Austrian Standards Institute is currently drafting a new set of standards which are concerned with occupational incorporation monitoring of individuals handling non-sealed radioactive material. This set of standards is expected to consist of three parts discussing the general necessity and frequency, the requirements for monitoring institutions, and the determination and rigorous calculation of committed effective dose after incorporation of radioactive material, respectively. Considerations of the requirements for routine monitoring laboratories have led to an evaluation of the detection limits for routine monitoring equipment. For a selected set of radionuclides, these detection limits are investigated in detail. The main emphasis is placed on the decay chains of naturally occurring radionuclides showing some significant potential for being out of equilibrium due to chemical processes in certain mining industries. The radionuclides considered in this paper are 226Ra, 228Ra, 228Th, 232Th, 234U, 235U, and 238U. Given the routine monitoring intervals of the Austrian Standard, these detection limits are translated into information on committed effective dose. This paper investigates whether routine monitoring equipment is sufficient to ensure compliance with EC directive 96/29/Euratom for this selected set of radionuclides. (Author) 9 refs

  15. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    International Nuclear Information System (INIS)

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurny, F.; Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.

    2006-01-01

    The laboratory of Microbiology at SCK.CEN, in collaboration with different universities, participates in several ESA programmes with bacterial experiments that are carried out in the International Space Station (ISS). The main objective of these programmes is to study the effects of space flight conditions such as microgravity and cosmic radiation on the general behaviour of model bacteria. To measure the radiation doses received by the bacteria, different detectors accompanied the microbiological experiments. The results obtained during two space flight missions are discussed. This dosimetry experiment was a collaboration between different institutes so that the doses could be estimated by different techniques. For measurement of the high linear energy transfer (LET) doses (>10 keV μm -1 ), two types of etched track detectors were used. The low LET part of the spectrum was measured by three types of thermoluminescent detectors ( 7 LiF:Mg,Ti; 7 LiF:Mg,Cu,P; Al 2 O 3 :C) and by the optically stimulated luminescence technique using Al 2 O 3 :C detectors. (authors)

  16. SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculated for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.

  17. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources

    Science.gov (United States)

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-01

    -averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.

  18. An image-based skeletal dosimetry model for the ICRP reference adult male-internal electron sources

    International Nuclear Information System (INIS)

    Hough, Matthew; Johnson, Perry; Bolch, Wesley; Rajon, Didier; Jokisch, Derek; Lee, Choonsik

    2011-01-01

    -averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.

  19. Internal dosimetry from IPEN workers involved in the medical radioisotopes production

    International Nuclear Information System (INIS)

    Cesar, R.B.P.; Mesquita, C.H. de

    1988-01-01

    The internal dose from IPEN workers involved in the medical radioisotopes products is related. In the workers population, six groups were classified: development and research, routine production, quality control, package, radioprotection supervision and maintenance. The internal doses were calculated according to the methodology described by the ICRP-30, using resuls from a whole-body counter. The results described were obtained from 970 whole-body radioactivity measurements during the last three years (1985 a 1987). (author) [pt

  20. International photovoltaic program. Volume 2: Appendices

    Science.gov (United States)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-01-01

    The results of analyses conducted in preparation of an international photovoltaic marketing plan are summarized. Included are compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about the how US government actions could affect this market;international financing issues; and information on issues affecting foreign policy and developing countries.

  1. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  2. CAMIRD III: Computer Assisted Medical Internal Radiation Dosimetry. FORTRAN IV version

    Energy Technology Data Exchange (ETDEWEB)

    Bellina, C. R.; Guzzardi, R.

    1980-01-01

    This paper desribes the FORTRAN IV version of the P.A. Feller's CAMIRD/II Package (1) revised. In addition another FORTRAN IV program named TILDY (2), which determines the cumulated activity, has been revised and modified to be used as a subroutine of CAMIRD's main program. With such an organization all the calculation involved in dose computation becomes easier and quicker.

  3. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    Directory of Open Access Journals (Sweden)

    Gruel A.

    2016-01-01

    Full Text Available Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm, and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the “hafnium” configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations. Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  4. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by intern......During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  5. The programme of work on committee 2 of ICRP on internal dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.

    1997-01-01

    Committee 2 of ICRP has the responsibility for establishing secondary standards based on the Commission's recommended dose limits. The Committee has an extensive programme of work related to internally incorporated radionuclides which was reviewed at its September, 1997 meeting in Oxford, England. It is summarized below. (author)

  6. Revue of some dosimetry and dose assessment European projects

    International Nuclear Information System (INIS)

    Bolognese-Milsztajn, T.; Frank, D.; Lacoste, V.; Pihet, P.

    2006-01-01

    internal exposure monitoring programmes. Current monitoring programmes were critically reviewed, the major sources of uncertainty in assessed internal dose investigated, and guidance formulated on factors such as programme design, choice of method/techniques, monitoring intervals, and monitoring frequency. OMINEX promoted a common and harmonized approach to the design and implementation of internal dose monitoring programmes throughout the EU. The Coordination Action 'CONRAD' of the 6. Framework Programme will continue the work initiated within the 5. Framework Program in specific areas of dosimetry requiring coordination of research activities: computational dosimetry, internal dosimetry, complex mixed radiation fields at workplaces and radiation protection dosimetry of medical staff. (authors)

  7. Modernization of Cross Section Library for VVER-1000 Type Reactors Internals and Pressure Vessel Dosimetry

    Directory of Open Access Journals (Sweden)

    Voloschenko Andrey

    2016-01-01

    Full Text Available The broad-group library BGL1000_B7 for neutron and gamma transport calculations in VVER-1000 internals, RPV and shielding was carried out on a base of fine-group library v7-200n47g from SCALE-6 system. The comparison of the library BGL1000_B7 with the library v7-200n47g and the library BGL1000 (the latter is using for VVER-1000 calculations is demonstrated on several calculation and experimental tests.

  8. Internal dosimetry for [4-{sup 14}C]-cholesterol in humans

    Energy Technology Data Exchange (ETDEWEB)

    Marcato, Larissa A.; Mesquita, Carlos H. de, E-mail: chmesqui@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cesar, Thais B., E-mail: tcesar@fcfar.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FCF/UNESP), Araraquara, SP (Brazil). Fac. de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao; Vinagre, Carmen G.C. [Universidade de Sao Paulo (InCor/HCFMUSP), SP (Brazil). Hospital das Clinicas. Instituto do Coracao

    2011-07-01

    This study proposes a biokinetic model for use in the assessment of the internal dose received by human subjects administered orally with [4-{sup 14}C]-cholesterol. The proposed model includes three systemic pools representing the short-term (T1/2 = 1 d), intermediate-term (T1/2 = 16 d) and long-term (T1/2 = 78 d) physiological exchanges and two excretion pathways: urine and feces. This model used the ANACOMP software to estimate radiometric doses with MIRD techniques (Medical Internal Radiation Dose). To validate the model, the profile curve of excretion prediction by the model in the range of seven days was compared with those curves described in literature. No statistical difference was detected (P = 0.416). The estimated effective dose coefficient calculated for the reference man described on ICRP publication 23 was 3.39x10{sup -10} SvBq{sup -1}. The organs that received the highest equivalent dose were the lower large intestine (2.459x10{sup -9} GyBq{sup -1}), upper large intestine (9.023x10{sup -10} GyBq{sup -1}) and small intestine (3.717x10{sup -10} GyBq{sup -1}). (author)

  9. Internal dosimetry for [4-14C]-cholesterol in humans

    International Nuclear Information System (INIS)

    Marcato, Larissa A.; Mesquita, Carlos H. de; Cesar, Thais B.; Vinagre, Carmen G.C.

    2011-01-01

    This study proposes a biokinetic model for use in the assessment of the internal dose received by human subjects administered orally with [4- 14 C]-cholesterol. The proposed model includes three systemic pools representing the short-term (T1/2 = 1 d), intermediate-term (T1/2 = 16 d) and long-term (T1/2 = 78 d) physiological exchanges and two excretion pathways: urine and feces. This model used the ANACOMP software to estimate radiometric doses with MIRD techniques (Medical Internal Radiation Dose). To validate the model, the profile curve of excretion prediction by the model in the range of seven days was compared with those curves described in literature. No statistical difference was detected (P = 0.416). The estimated effective dose coefficient calculated for the reference man described on ICRP publication 23 was 3.39x10 -10 SvBq -1 . The organs that received the highest equivalent dose were the lower large intestine (2.459x10 -9 GyBq -1 ), upper large intestine (9.023x10 -10 GyBq -1 ) and small intestine (3.717x10 -10 GyBq -1 ). (author)

  10. Application of voxel phantoms and Monte Carlo methods to internal and external dosimetry

    International Nuclear Information System (INIS)

    Hunt, J.G.; Santos, D. de S.; Silva, F.C. da; Dantas, B.M.; Azeredo, A.; Malatova, I.; Foltanova, S.

    2000-01-01

    Voxel phantoms and the Monte Carlo technique are applied to the areas of calibration of in vivo measurement systems, Specific Effective Energy calculations, and dose calculations due to external sources of radiation. The main advantages of the use of voxel phantoms is their high level of detail of body structures, and the ease with which their physical dimensions can be changed. For the simulation of in vivo measurement systems for calibration purposes, a voxel phantom with a format of 871 'slices' each of 277 x 148 picture elements was used. The Monte Carlo technique is used to simulate the tissue contamination, to transport the photons through the tissues and to simulate the detection of the radiation. For benchmarking, the program was applied to obtain calibration factors for the in vivo measurement of 241 Am, U nat and 137 Cs deposited in various tissues or in the whole body, as measured with a NaI or Gernlanium detector. The calculated and real activities in all cases were found to be in good agreement. For the calculation of Specific Effective Energies (SEEs) and the calculation of dose received from external sources, the Yale voxel phantom with a format of 493 slices' each of 87 x 147 picture elements was used. The Monte Carlo program was developed to calculate external doses due to environmental, occupational or accidental exposures. The program calculates tissue and effective dose for the following geometries: cloud immersion, ground contamination, X-ray irradiation, point source irradiation or others. The benchmarking results for the external source are in good agreement with the measured values. The results obtained for the SEEs are compatible with the ICRP values. (author)

  11. Internal dosimetry for the radiological protection of the patient in the therapy with I-131

    International Nuclear Information System (INIS)

    Deluca, G.M.; Rojo, A.M.

    2006-01-01

    In the patients with differentiated thyroid cancer (CADIT) subjected to therapy with radiopharmaceuticals should be considered the possible risk of sharp depression of the bone marrow like consequence of the intolerance to the quantity of administered activity. The manifestation of the myelotoxicity can limit in a substantial way the future treatments and to deteriorate the predict of resolution of the illness. In this work it shows the physical-mathematical mark of a methodology for the estimated absorbed dose in bone marrow based in the MIRD scheme whose objective is to protect the one patient of the noxious and undesirable effects of the internal radiotherapy in organs that are not target of the same one. The formalism incorporates specific information of the patient and also peculiar characteristics of the internal therapy in patient with CADIT. The considerations are the following ones: (1) the main organ to protect is the bone marrow: (2) the accumulated activity, in bone marrow, it is obtained starting from measurements in blood: (3) the used isotope almost exclusively in this type of therapies is the 131 I; (4) it is used as radiopharmaceutical at the 131 INa that it is characterized to be a simple, inorganic and small molecule: (5) the statistical incidence of the CADIT is bigger in women than in men. It is explained for that it was selected the formalism that is presented, the principles on which it is sustained which are their reaches and their limitations. They are also presented future innovations that can be implemented to effects of improving the estimates. The work is framed inside the thematic of the medical applications of open radioactive sources and it constitutes a contribution to the invigoration of the internal therapy with radiopharmaceuticals. This is due to that the methodology of dose estimation presented supplements with a theoretical biophysics base the protocols of empiric prescription broadly used in this practice. For these reasons

  12. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    Science.gov (United States)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  13. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR

    International Nuclear Information System (INIS)

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.P.; RORER, D.C.

    2002-01-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex(trademark) polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup

  14. Mathematical development of a 10 years old child phantom for use in internal dosimetry

    International Nuclear Information System (INIS)

    Deus, S.F.; Poston, J.W.; Watanabe, S.

    1989-08-01

    The main objectives of this work are: 1) to develop a project of a mathematical phantom representing as far as possible a child of 10 years old and 2)to use this phantom as a base for the specific absorbed fractions (SAF) calculations in the internal organs and skeleton due to the radioisotopes most used in nuclear medicine. This phantom was similar in shape to the Fisher and Snyder one, but several changes were introduced to make the phantom more realistic. Those changes included the addition of a neck region, puting the arms outside the trunk region, changes in the trunk, head and genitalia regions shapes. Several modifications were also done in the skeleton. For instance, the head bones, rib cage, pelvis, vertebral column, scapula, clavicles and the arms and legs bones were made very close to the real anatomic shapes. Some internal organs as the brain, lungs, liver, small and large intestines were also changed as a consenquence of the above modifications. In all those cases, the changes were made not only in the shapes but also in the organs and bones position in such a way to be more representative of the 10 years old anatomic age. Estimates of the SAF obtained by the use of this phantom, resulted, as expected, significantly different from those obtained by the use of a simpler model. In other words, the ratio between the SAF in the organs of the phantom developed in this project and the SAF in the organs of the phantom similar to the adult (obtained by reducing each region of the adult phantom by the use of appropriate factor) vary from 0.37 to 5. Those differences and their meaning are also discussed. (author) [pt

  15. Individualized adjustments to reference phantom internal organ dosimetry - scaling factors given knowledge of patient external anatomy.

    Science.gov (United States)

    Wayson, Michael B; Bolch, Wesley E

    2018-03-16

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10-year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting

  16. Program Leader | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... range from 30 to 100 activities with a value of $10 to 20 million;; Liaises with the DPA and Regional Directors (RDs) (i.e. senior management) on issues of program and project development and management;; Is responsible for the PI team's and IDRC's contacts with other international agencies and Canadian institutions; ...

  17. International Community-University Research Alliance Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The International Community-University Research Alliance program (ICURA) is a joint initiative of the Social Sciences and Humanities Research Council (SSHRC) and IDRC. ICURA seeks to foster innovative research, training and the creation of new knowledge in areas of importance to the social, cultural and economic ...

  18. Nuclear analytical techniques applied to the research on biokinetics of incorporated radionuclides for internal dosimetry

    International Nuclear Information System (INIS)

    Cantone, M.C.

    2005-01-01

    Full text: The presentation intends to discuss the contribution that techniques of analysis, based on activation analysis or mass spectrometry, can give to a very selected item of the protection against ionizing radiation: the biokinetics of relevant elements. The assessment of radiation dose to body tissues, following intakes of radionuclides in occupational, accidental exposures and environmental exposure in case of dispersion in the environment of radio contaminants of potential concerns, is essential to evaluate and manage the the related radiological risk, including the decisions and actions to be undertake. Internal dose is not directly measurable and the International Commission on Radiological Protection ICRP has developed models which describes the behavior of the substances in the human body, following their entry ways by inhalation or ingestion. Generally, all the available sources of information contribute in the modeling process, including studies on animals, use of chemical analogues and, obviously direct information on humans, which is definitely the preferred source on which a biokinetic model can be based. Biokinetic data on human are available for most of the biological essential elements (Fe, Zn, Cu, Se) and for some elements the metabolic behavior is well know due to their use in clinical application (I, Sr, Tc), moreover research is in progress for non-essential alpha emitters. However, for a number of element, including elements with radionuclide of radiological significance in case of environmental contamination (Ru, Zr, Ce, Te and Mo), human data are poor or missing and biokinetic parameters are essentially extrapolated from data on animals. The use of stable isotopes is a publicly well acceptable and ethically justifiable method, compared to the use of radioisotopes, when volunteer subjects are considered in the investigations. The design of the investigation is based on the double tracer approach: one isotope is given orally and a second

  19. Internal dosimetry of nuclear medicine workers through the analysis of {sup 131}I in aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Gomes C, L.; Lucena, E. A.; Da Silva S, C.; Almeida D, A. L.; Oliveira S, W.; Souza S, M.; Maranhao D, B., E-mail: carneiro@ird.gov.br [Instituto de Radioprotecao e Dosimetria - CNEN, Av. Salvador Allende s/n, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    {sup 131}I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of {sup 131}I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of {sup 131}I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of {sup 131}I are handled. Samples were collected over one hour using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, {sup 131}I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4 Bq /m{sup 3}. This value is about three orders of magnitude below the Derived Air Concentration (Dac) of 8.4 kBq/m{sup 3}. Assuming that the worker is exposed by inhalation of iodine vapor during one hour, {sup 131}I concentration detected corresponds to an intake of 3.6 Bq which results in a committed effective dose of 7.13 x 10{sup -5} mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of {sup 131}I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific

  20. Summary Report of Consultants' Meeting on Improvements and Extensions to IRDF (International Reactor Dosimetry File (IRDF-2002))

    International Nuclear Information System (INIS)

    Kellett, M.A.; Greenwood, L.R.

    2010-12-01

    The main aim of this Consultants' Meeting was to discuss the appropriate manner for implementing improvements and extensions to the current IRDF-2002 reactor dosimetry library. It was important to assess the applications requiring a dosimetry library, to discuss if a library that would meet the requirements of these varied applications could be produced and, if so, to define an approach for producing such an updated version. This report summarises the presentations and discussions undertaken in order to achieve these goals, followed by the recommendations and conclusions resulting from the meeting. (author)

  1. Internal dosimetry contamination: update of revision of the dose coefficients for intakes of radionuclides by workers

    International Nuclear Information System (INIS)

    Gomez Parada, I.; Rojo, A.M.; Sanguineti, R.

    1995-01-01

    ICRP publication 60 introduces new biological information related to the detriment associated with radiation exposures. The International Commission on Radiological Protection has also issued, in publications 57, 67 y 69, new biokinetic models for selected radionuclides since the issue of publication 30. In publication 66 the new human respiratory tract model for radiological protection is described. The aim of the present paper is to compare values of dose coefficients for workers calculated using the new tissue weighting factors, biokinetic models and lung model with those given in publication 30.The software package LUPED 1.1 was used to calculate dose coefficients for inhalation and ingestion. When possible, some changes in the biokinetic models were made trying to incorporate new parameters. The following radionuclides were analysed: 60 Co, 90 Sr, 99m Tc, 131 I, 137 Cs, 239 Pu y 241 Am. Most of the inhalation dose coefficients calculated with the new assumptions are within a factor of three of those calculated using the ICRP 30 lung and biokinetic models. Generally, the inhalation dose coefficients calculated with the new respiratory tract model and assuming a 5μm AMAD are lower than those calculated using the ICRP 30 model and parameters. The inhalation dose coefficients are generally within 10-90 % of the corresponding Publication 61 values, the difference tending to increase for relative insoluble compounds. (author). 10 refs., 4 tabs

  2. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  3. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  4. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  5. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  6. An introduction to radiation dosimetry

    International Nuclear Information System (INIS)

    Lovell, S.

    1979-01-01

    This book provides an elementary introduction to radiation dosimetry. Dosimetry is treated from first principles dealing with the following aspects:- basic concepts of nuclear physics; ionizing radiations including charged particles, photons, and neutrons and their interaction with matter at the atomic level; the transitory and permanent effects of ionizing radiation on matter in bulk; dosimetric quantities and units; the measurement of exposure by a variety of techniques including thermoluminescent and photographic dosimetry; and finally radiation protection including the biological effects of ionizing radiations, the ethics of radiation protection, dose limitation, protective measures from external and internal irradiation, and monitoring. (U.K.)

  7. Overview of international fusion technology programs

    International Nuclear Information System (INIS)

    Coffman, F.E.; Baublitz, J.E.; Beard, D.S.; Cohen, M.M.; Dalder, E.N.C.; Finfgeld, C.R.; Haas, G.M.; Head, C.R.; Murphy, M.R.; Nardella, G.R.

    1979-01-01

    World fusion technology programs, as well as current progress and future plans for the U.S., are discussed. Regarding conceptual design, the international INTOR tokamak study, the Garching Ignition Test Reactor Study, the U.S. Engineering Test Facility conceptual design, the Argonne National Laboratory Commercial Tokamak Study, mirror conceptual designs, and alternate concepts and applications studies are summarized. With regard to magnetics, progress to date in the large coil program and pulsed coil program is summarized. In the area of plasma heating and fueling and exhaust, work on a new positive ion source research and development program at Lawrence Berkeley Laboratory and Oak Ridge National Laboratory is described, as is negative ion work. Tradeoff considerations for radio-frequency heating alternatives are made, and a new 60-100 GHz electron cyclotron heating research and development program is discussed. Progress and plans for solid hydrogen pellet injector development are analyzed, as are plans for a divertor technology initiative. A brief review of the U.S. alternate applications and environment and safety program is included

  8. A Computerized QC Analysis of TLD Glow Curves for Personal Dosimetry Measurements Using TagQC Program

    International Nuclear Information System (INIS)

    Primo, S.; Datz, H.; Dar, A.

    2014-01-01

    The External Dosimetry Lab (EDL) at the Radiation Safety Division at Soreq Nuclear Research Center (SNRC) is ISO 17025 certified and provides its services to approximately 13,000 users throughout the country from various sectors such as medical, industrial and academic. About 95% of the users are monitored monthly for X-rays, and radiation using Thermoluminescence Dosimeter (TLD) cards that contain three LiF:Mg,Ti elements and the other users, who work also with thermal neutrons, use TLD cards that contain four LiF:Mg,Ti elements. All TLD cards are measured with the Thermo 8800pc reader.Suspicious TLD glow curve (GC) can cause wrong dose estimation so the EDL makes great efforts to ensure that each GC undergoes a careful QC procedure. The current QC procedure is performed manually and through a few steps using different softwares and databases in a long and complicated procedure: EDL staff needs to export all the results/GCs to be checked to an Excel file, followed by finding the suspicious GCs, which is done in a different program (WinREMS), According to the GC shapes (Figure 1 illustrates suitable and suspicious GC shapes) and the ratio between the elements result values, the inspecting technician corrects the data

  9. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  10. Characterization of the materials used in the construction of a physical phantom for calibration of {sup 18}F-FDG internal dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Katia D.; Mendes, Bruno M.; Fonseca, Telma C.F.; Silva, Teógenes A. da, E-mail: katiadvitall@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte - MG (Brazil)

    2017-07-01

    The Internal Dosimetry Laboratory (LDI) of the Nuclear Technology Development Center (CDTN) in Minas Gerais, Brazil, is responsible for the routine monitoring of Occupationally Exposed Individuals (OEIs) to {sup 18}F-FDG and other radiopharmaceuticals produced at CDTN. The monitoring system is usually calibrated using a physical head simulator, since {sup 18}F is usually incorporated into the brain at the time of contamination. However, the geometry of the brain is not adequately represented by the latex pocket, which does not fill the entire volume of the volume skull. In this study, the characterization of the materials regarding the composition, density and attenuation coefficient of the materials used in the production of the new physical head simulator was carried out. An equivalent tissue material containing 97% water, 2.5% agar, 0.5% urea and 8 MBq of {sup 18}F-FDG was produced, the interior of the skull was filled with the material. After solidification, experimental measurements were performed on the NaI(Tl) 3 {sup x}3{sup s}cintillation detector, the density of the simulant material was determined by the flotation method and the attenuation coefficient of the XCOM database software provided by NIST. It was concluded that the PVC skull has acceptable characteristics to simulate a human skull in {sup 18}F-FDG internal dosimetry. The agar gel was shown to be a stable material capable of modeling different geometries and simulating the incorporation of {sup 18}F-FDG into the brain. (author)

  11. Characterization of the materials used in the construction of a physical phantom for calibration of 18F-FDG internal dosimetry system

    International Nuclear Information System (INIS)

    Vital, Katia D.; Mendes, Bruno M.; Fonseca, Telma C.F.; Silva, Teógenes A. da

    2017-01-01

    The Internal Dosimetry Laboratory (LDI) of the Nuclear Technology Development Center (CDTN) in Minas Gerais, Brazil, is responsible for the routine monitoring of Occupationally Exposed Individuals (OEIs) to 18 F-FDG and other radiopharmaceuticals produced at CDTN. The monitoring system is usually calibrated using a physical head simulator, since 18 F is usually incorporated into the brain at the time of contamination. However, the geometry of the brain is not adequately represented by the latex pocket, which does not fill the entire volume of the volume skull. In this study, the characterization of the materials regarding the composition, density and attenuation coefficient of the materials used in the production of the new physical head simulator was carried out. An equivalent tissue material containing 97% water, 2.5% agar, 0.5% urea and 8 MBq of 18 F-FDG was produced, the interior of the skull was filled with the material. After solidification, experimental measurements were performed on the NaI(Tl) 3 x 3 s cintillation detector, the density of the simulant material was determined by the flotation method and the attenuation coefficient of the XCOM database software provided by NIST. It was concluded that the PVC skull has acceptable characteristics to simulate a human skull in 18 F-FDG internal dosimetry. The agar gel was shown to be a stable material capable of modeling different geometries and simulating the incorporation of 18 F-FDG into the brain. (author)

  12. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    International Nuclear Information System (INIS)

    Lamart, Stephanie; Simon, Steven L; Lee, Choonsik; Bouville, Andre; Eckerman, Keith F; Melo, Dunstana

    2011-01-01

    source region for selected target organs—small intestine wall, lungs, pancreas and breast—as well as illustrate differences in energy deposition across the energy range (12 photon energies from 0.01 to 4 MeV). Differences were found in the SAFs between phantoms in a similar manner as the differences observed in S values but with larger differences at lower photon energies. To investigate the differences observed in the S and SAF values, the chord length distributions (CLDs) were computed for the selected source–target pairs and compared across the phantoms. As demonstrated by the CLDs, we found that the differences between phantoms in those factors used in internal dosimetry were governed to a significant degree by inter-organ distances which are a function of organ shape as well as organ location.

  13. Internal dosimetry of radiopharmaceuticals derived of antitumor polypeptide isolated from venoms: Crotalus durissus terrifucus and Scorpaena plumieri

    International Nuclear Information System (INIS)

    Andrade, Henrique Martins de

    2009-01-01

    The identification of new diagnostic and therapeutic agents capable of inhibiting tumor growth is essential for improving the prognosis of patients suffering from malignant tumors (glioma, breast and others). In this context, natural products (plants and animals) are a rich source of substances with potential antitumor. Despite knowledge of the etiology and pathology of tumors little progress has been observed in the area of diagnosis. Molecules of snake venoms have been shown to play an important role not only in the survival and proliferation of tumor cells but also in the process of tumor cell adhesion, migration and angiogenesis. Polypeptides isolated from the venom of the snake, Crotalus durissus terrificus, Crtx, and Scorpaena plumieri fish, SPGP, have antitumor activity against malignant tumors. It was shown that similar radio iodines Crtx and SPGP, 125 I-Crtx and 125 I-SPGP, can interact specifically with malignant tumors and induce cell death. Prototype-based radiopharmaceuticals Crtx and SPGP containing radioiodine 1311 were able to produce diagnostic images to accumulate specifically in the tumor site. The present study aimed at evaluating the potential radiological safety and diagnostic/therapeutic efficacy of 131 I-Crtx l31 I-SPGP and (evaluated from the biokinetic data in mice bearing Ehrlich tumor) were treated by the MIRD formalism to carry out internal dosimetry studies. Absorbed doses due to the uptake of 131 I-Crtx and 131 I-SPGP were determined in various organs of mice and implanted into the tumor. The results obtained for the animal model were extrapolated to humans by assuming a similar concentration ratio among the various tissues between mice and humans. In extrapolation, we used the masses of human organs of the phantom of Cristy/Eckerman. Both radiation penetrating and non penetrating of 131 I on the tissue were considered in dose calculations. The absorbed dose in the bone marrow due to the administration of 131 I-Crtx was 0.01 mGy/370

  14. XIV International Conference on Mathematical Programming

    CERN Document Server

    Pardalos, Panos; Rapcsák, Tamás

    2001-01-01

    This volume contains refereed papers based on the lectures presented at the XIV International Conference on Mathematical Programming held at Matrahaza, Hungary, between 27-31 March 1999. This conference was organized by the Laboratory of Operations Research and Deci­ sion Systems at the Computer and Automation Institute, Hungarian Academy of Sciences. The editors hope this volume will contribute to the theory and applications of mathematical programming. As a tradition of these events, the main purpose of the confer­ ence was to review and discuss recent advances and promising research trends concerning theory, algorithms and applications in different fields of Optimization Theory and related areas such as Convex Analysis, Complementarity Systems and Variational Inequalities. The conference is traditionally held in the Matra Mountains, and housed by the resort house of the Hungarian Academy of Sciences. This was the 14th event of the long lasting series of conferences started in 1973. The organizers wish to...

  15. Reassessment of the atomic bomb radiation dosimetry for Hiroshima and Nagasaki. Dosimetry system 2002. DS02. Volume 1

    International Nuclear Information System (INIS)

    Young, Robert W.; Kerr, George D.

    2005-01-01

    The extensive efforts to review the dosimetry of the atomic-bomb survivors and formulate the new dosimetry system DS02 have been greatly welcomed by the Radiation Effects Research Foundation (RERF). This accomplishment is a fine tribute to the importance of the epidemiological studies being conducted at RERF. No other study is so informative of the effects of radiation on human health. The gracious participation in the RERF program by the atomic-bomb survivors allows us to contribute to the well being of these individuals, and the high quality of the data obtained allows the RERF results to feature so prominently in the formulation of international guidelines for radiation protection. Such a great effort to improve and substantiate the dosimetry would not otherwise have been justified. RERF greatly appreciates the independent work of the U.S. and Japanese Working Groups on the atomic-bomb dosimetry and the review by the Joint Senior Review Group of this overall effort. We are assured that unbiased development of the new dosimetry system will reflect well in its application in the RERF epidemiology study. The documentation included in this report will serve as reference for the many deliberations concluded. The title publications are divided into 2 volumes. This is the first volume. The 8 of the reports in each chapter are indexed individually. (J.P.N.)

  16. Reassessment of the atomic bomb radiation dosimetry for Hiroshima and Nagasaki. Dosimetry system 2002. DS02. Volume 2

    International Nuclear Information System (INIS)

    Young, Robert W.; Kerr, George D.

    2005-01-01

    The extensive efforts to review the dosimetry of the atomic-bomb survivors and formulate the new dosimetry system DS02 have been greatly welcomed by the Radiation Effects Research Foundation (RERF). This accomplishment is a fine tribute to the importance of the epidemiological studies being conducted at RERF. No other study is so informative of the effects of radiation on human health. The gracious participation in the RERF program by the atomic-bomb survivors allows us to contribute to the well being of these individuals, and the high quality of the data obtained allows the RERF results to feature so prominently in the formulation of international guidelines for radiation protection. Such a great effort to improve and substantiate the dosimetry would not otherwise have been justified. RERF greatly appreciates the independent work of the U.S. and Japanese Working Groups on the atomic-bomb dosimetry and the review by the Joint Senior Review Group of this overall effort. We are assured that unbiased development of the new dosimetry system will reflect well in its application in the RERF epidemiology study. The documentation included in this report will serve as reference for the many deliberations concluded. The title publications are divided into 2 volumes. This is the second volume. The 29 of the reports in each chapter are indexed individually. (J.P.N.)

  17. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  18. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  19. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  20. 10 CFR 1.29 - Office of International Programs.

    Science.gov (United States)

    2010-01-01

    ... maintains working relationships with individual countries and international nuclear organizations, as well... 10 Energy 1 2010-01-01 2010-01-01 false Office of International Programs. 1.29 Section 1.29 Energy... Staff § 1.29 Office of International Programs. The Office of International Programs— (a) Advises the...

  1. Relationship between internal dosimetry and DNA double strand breaks in lymphocytes after radionuclide therapy; Zusammenhang zwischen physikalischer Dosimetrie und DNA Doppelstrangbruechen in Lymphozyten nach Radionuklidtherapie

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Uta

    2015-09-30

    In radionuclide therapy radiopharmaceuticals are administered mostly systemically. Primarily, beta-emitters are used because of their short range in tissue. As a result the radiopharmaceutical distributes within the human body and accumulates in organs and target structures. Thus, the body is irradiated internally, in contrast to external irradiation in radiotherapy. The pattern of the activity distribution within the human body is determined by the physical and chemical properties of the radiopharmaceutical. Furthermore, the amount of activity and its accumulation in organs or tissues is essential for the calculation of the absorbed dose which defines the energy deposited in the body by ionizing radiation. During internal or external irradiation, patients are exposed to ionizing radiation which does not only destroy the malignant cells but also damages healthy tissue and cells. This is mainly caused by direct and indirect interaction of the radiation with the DNA which damages the DNA structure. Most frequently, there are single strand breaks and base damages. DNA double strand breaks (DSBs) are rare; nevertheless, they are the most critical lesions for cells as repairing the damage is difficult. Unrepaired or misrepaired DNA could cause mutations, chromosomal aberrations or lead to cell death. The formation of a DNA DSB in nuclear chromatin results in the rapid phosphorylation of the histone H2 variant H2AX, then called gamma-H2AX. Furthermore, DSBs also recruit the damage sensor 53BP1 to the chromatin surrounding the DSBs, which leads to 53BP1 and gamma-H2AX co-localization in the chromatin surrounding a DSB. By immunofluorescence staining with gamma-H2AX and 53BP1 antibodies those biomarkers can be addressed by microscopically visible DNA damage protein foci, this is also known as the DNA damage focus assay. With progression of DSB repair, gamma-H2AX and 53BP1 foci disappear. It is assumed that one focus corresponds to one DSB. Therefore, the number of foci per

  2. Personnel radiation dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    The book contains the 21 technical papers presented at the Technical Committee Meeting to Elaborate Procedures and Data for the Intercomparison of Personnel Dosimeters organizaed by the IAEA on 22-26 April 1985. A separate abstract was prepared for each of these papers. A list of areas in which additional research and development work is needed and recommendations for an IAEA-sponsored intercomparison program on personnel dosimetry is also included

  3. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  4. Proton dosimetry intercomparison

    International Nuclear Information System (INIS)

    Vatnitsky, S.; Siebers, J.; Miller, D.; Moyers, M.; Schaefer, M.; Jones, D.; Vynckier, S.; Hayakawa, Y.; Delacroix, S.; Isacsson, U.; Medin, J.; Kacperek, A.; Lomax, A.; Coray, A.; Kluge, H.; Heese, J.; Verhey, L.; Daftari, I.; Gall, K.; Lam, G.; Beck, T.; Hartmann, G.

    1996-01-01

    Background and purpose: Methods for determining absorbed dose in clinical proton beams are based on dosimetry protocols provided by the AAPM and the ECHED. Both groups recommend the use of air-filled ionization chambers calibrated in terms of exposure or air kerma in a 60 Co beam when a calorimeter or Faraday cup dosimeter is not available. The set of input data used in the AAPM and the ECHED protocols, especially proton stopping powers and w-value is different. In order to verify inter-institutional uniformity of proton beam calibration, the AAPM and the ECHED recommend periodic dosimetry intercomparisons. In this paper we report the results of an international proton dosimetry intercomparison which was held at Loma Linda University Medical Center. The goal of the intercomparison was two-fold: first, to estimate the consistency of absorbed dose delivered to patients among the participating facilities, and second, to evaluate the differences in absorbed dose determination due to differences in 60 Co-based ionization chamber calibration protocols. Materials and methods: Thirteen institutions participated in an international proton dosimetry intercomparison. The measurements were performed in a 15-cm square field at a depth of 10 cm in both an unmodulated beam (nominal accelerator energy of 250 MeV) and a 6-cm modulated beam (nominal accelerator energy of 155 MeV), and also in a circular field of diameter 2.6 cm at a depth of 1.14 cm in a beam with 2.4 cm modulation (nominal accelerator energy of 100 MeV). Results: The results of the intercomparison have shown that using ionization chambers with 60 Co calibration factors traceable to standard laboratories, and institution-specific conversion factors and dose protocols, the absorbed dose specified to the patient would fall within 3% of the mean value. A single measurement using an ionization chamber with a proton chamber factor determined with a Faraday cup calibration differed from the mean by 8%. Conclusion: The

  5. Dosimetry for food irradiation

    International Nuclear Information System (INIS)

    2002-01-01

    A Manual of Food Irradiation Dosimetry was published in 1977 under the auspices of the IAEA as Technical Reports Series No. 178. It was the first monograph of its kind and served as a reference in the field of radiation processing and in the development of standards. While the essential information about radiation dosimetry in this publication has not become obsolete, other publications on radiation dosimetry have become available which have provided useful information for incorporation in this updated version. There is already a Codex General Standard for Irradiated Foods and an associated Code of Practice for Operation of Irradiation Facilities used for Treatment of Food, issued in 1984 by the Codex Alimentarius Commission of the FAO/WHO Food Standard Programme. The Codex Standard contains provisions on irradiation facilities and process control which include, among other requirements, that control of the processes within facilities shall include the keeping of adequate records including quantitative dosimetry. Appendix A of the Standard provides an explanation of process control and dosimetric requirements in compliance with the Codex Standard. By 1999, over 40 countries had implemented national regulations or issued specific approval for certain irradiated food items/classes of food based on the principles of the Codex Standard and its Code of Practice. Food irradiation is thus expanding, as over 30 countries are now actually applying this process for the treatment of one or more food products for commercial purposes. Irradiated foods are being marketed at retail level in several countries. With the increasing recognition and application of irradiation as a sanitary and phytosanitary treatment of food based on the provisions of the Agreement on the Application of Sanitary and Phytosanitary Measures of the World Trade Organization, international trade in irradiated food is expected to expand during the next decade. It is therefore essential that proper dosimetry

  6. Computational modeling of the mathematical phantoms of the Brazilian woman to internal dosimetry calculations and for comparison of the absorbed fractions with specific reference women

    International Nuclear Information System (INIS)

    Ximenes, Edmir; Guimaraes, Maria Ines C. C.

    2008-01-01

    The theme of this work is the study of the concept of mathematical dummy - also called phantoms - used in internal dosimetry and radiation protection, from the perspective of computer simulations. In this work he developed the mathematical phantom of the Brazilian woman, to be used as the basis of calculations of Specific Absorbed Fractions (AEDs) in the body's organs and skeleton by virtue of goals with regarding the diagnosis or therapy in nuclear medicine. The phantom now developed is similar, in form, to Snyder phantom making it more realistic for the anthropomorphic conditions of Brazilian women. For so we used the Monte Carlo method of formalism, through computer modeling. As a contribution to the objectives of this study, it was developed and implemented the computer system cFAE - consultation Fraction Specific Absorbed, which makes it versatile for the user's query researcher

  7. Research in radiobiology. Annual report of work in progress in the internal irradiation program

    International Nuclear Information System (INIS)

    Miller, S.C.

    1983-01-01

    Research progress on studies of the effects of internally deposited radionuclides in dogs, mice, and humans is reported. The studies include toxicity of plutonium 239, radium 226, and radium 224, the kinetics of actinides in beagles, and dosimetry of internal emitters

  8. Development of internal dosimetry protocols using the code MCNPx and voxelized phantoms of Reference of ICRP 110; Desenvolvimento de protocolos de dosimetria interna empregando o codigo MCNPx e fantomas voxelizados de referencia da ICRP 110

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, B.M.; Fonseca, T.C.F., E-mail: bmm@cdtn.br [Centro de esenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Trindade, B.M.; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-04-01

    The objective of this work was to perform internal dosimetry calculations for {sup 18}F-FDG employing the MCNPx code and ICRP 110 voxelized reference phantoms (RCP{sub A}F and RCP{sub A}M). The methodologies developed and validated here represent protocols of internal dosimetry holding a better anthropomorphic and anthropometric representation of the human model in which heterogeneous distributions of the emissions can be adopted, useful in the study of new radiopharmaceuticals and internal contamination cases. The reference phantoms were implemented to run on MCNPx. Biodistribution data of {sup 18}F-FDG radiopharmaceutical provided in ICRP 128 were used in the simulations. The organs average absorbed doses and the effective doses were calculated for each model. The values obtained were compared with two reference works available in the literature for validation purposes. The means of the difference of our values and Zankl et al., 2012 reference values were -0.3% for RCP{sub A}M and -0.4% for RCP{sub A}F. Considering Hadid et al., 2013 reference values, the means of the deviation were -2.9% and -2.2% for RCP{sub A}M and RCP{sub A}F respectively. No statistically significant differences were observed (p <0.01) between the reference values and the values calculated by the internal dosimetry protocols developed by our group. Considering the {sup 18}F-FDG validation study performed in this work, the internal dosimetry protocols developed by our group have produced suitable dosimetry data. (author)

  9. 96 International Conference on Nonlinear Programming

    CERN Document Server

    1998-01-01

    About 60 scientists and students attended the 96' International Conference on Nonlinear Programming, which was held September 2-5 at Institute of Compu­ tational Mathematics and Scientific/Engineering Computing (ICMSEC), Chi­ nese Academy of Sciences, Beijing, China. 25 participants were from outside China and 35 from China. The conference was to celebrate the 60's birthday of Professor M.J.D. Powell (Fellow of Royal Society, University of Cambridge) for his many contributions to nonlinear optimization. On behalf of the Chinese Academy of Sciences, vice president Professor Zhi­ hong Xu attended the opening ceremony of the conference to express his warm welcome to all the participants. After the opening ceremony, Professor M.J.D. Powell gave the keynote lecture "The use of band matrices for second derivative approximations in trust region methods". 13 other invited lectures on recent advances of nonlinear programming were given during the four day meeting: "Primal-dual methods for nonconvex optimization" by...

  10. High dose dosimetry for radiation processing

    International Nuclear Information System (INIS)

    1991-01-01

    Radiation processing today offers various advantages in the field of sterilization of medical and pharmaceutical products, food preservation, treatment of chemical materials and a variety of other products widely used in modern society, all of which are of direct relevance to health and welfare. The safety and economic importance of radiation processing is clearly recognized. It is understood that reliable dosimetry is a key parameter for quality assurance of radiation processing and irradiated products. Furthermore, the standardization of dosimetry can provide a justification for the regulatory approval of irradiated products and form the basis of international clearance for free trade. After the initiation of the Agency's high dose standardization programme (1977), the first IAEA Symposium on High Dose Dosimetry was organized in 1984. As a result, concern as to the necessity of reliable dosimetry has greatly escalated not only in the scientific community but also in the radiation processing industry. The second International Symposium on High Dose Dosimetry for Radiation Processing was held in Vienna from 5 to 9 November, 1990, with a view to providing an international forum for the exchange of technical information on up to date developments in this particular field. The scientific programme held promises for an authoritative account of the status of high dose dosimetry throughout the world in 1990. Forty-one papers presented at the meeting discussed the development of new techniques, the improvement of reference and routine dosimetry systems, and the quality control and assurance of dosimetry. Refs, figs and tabs

  11. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  12. 76 FR 19909 - International Terrorism Victim Expense Reimbursement Program

    Science.gov (United States)

    2011-04-11

    ... of Justice Programs 28 CFR Part 94 RIN 1121-AA78 International Terrorism Victim Expense Reimbursement... Victims of Crime (OVC) is promulgating this interim-final rule for its International Terrorism Victim... FURTHER INFORMATION CONTACT: Chandria Slaughter, Grant Program Specialist, International Terrorism Victim...

  13. [{sup 131}I]-TYR3-octreotide: clinical dosimetry and use for internal radiotherapy of metastatic paraganglioma and carcinoid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Baulieu, Jean-Louis E-mail: baulieu@med.univ-tours; Resche, Isabelle; Bardies, Manuel; Chauvet, Alain Faivre; Lecloirec, Joseph; Malhaire, Jean-Pierre; Thomas, Eric; Faurous, Patrick; Sassolas, Genevieve; Pourcelot, Leandre; Chatal, Jean-Francois; Guilloteau, Denis; Besnard, Jean-Claude

    2000-11-01

    Dosimetry and therapeutic application of [{sup 131}I]-Tyr3-octreotide were evaluated in three patients with metastatic paraganglioma and carcinoid tumor. The in vitro stability of [{sup 131}I]-Tyr3-octreotide was verified. Tumor uptake and residence time were between 0.02 and 0.1% and 0.5 to 9.8 h, respectively. The calculated tumor radiation doses were between 0.105 and 0.696 mGy{center_dot}MBq{sup -1}. No intolerance or adverse effects were observed after the therapeutic doses (3.3-6.6 GBq). A partial tumor response was obtained in one patient and no response occurred in two patients.

  14. International Education Programs: Access to the World and Its Languages

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Education Programs Service (IEPS) administers 14 education programs. These programs are complementary in nature and designed to benefit a variety of audiences through training programs, research, start-up or enhancement projects, and fellowships. This paper provides brief descriptions of these programs.

  15. Combined Yttrium-90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: From clinical aspects to dosimetry.

    Directory of Open Access Journals (Sweden)

    Ti-Hao Wang

    Full Text Available Selective internal radiation therapy (SIRT is an effective treatment strategy for unresectable hepatocellular carcinoma (HCC patients. However, the prognoses of patients with portal vein thrombosis, extra-hepatic metastases, or residual tumors remain poor when treated with SIRT alone. In these patients, sequential external beam radiotherapy (EBRT may offer a chance of salvage. Here, we reported the clinical outcomes and the detailed dosimetry analysis of 22 patients treated with combination therapy.Between October 2011 and May 2015, 22 consecutive patients who underwent EBRT after yttrium-90 (90Y SIRT were included in this study. The post-SIRT 90Y bremsstrahlung SPECT/CT of each patient was transferred to dose distribution by adopting the local deposition hypothesis. The patient-specific 3-dimensional biological effective dose distribution of combined SIRT and EBRT was generated. The overall survival and safety were evaluated. The relationship between dosimetric parameters and liver toxicity was analyzed.The mean administered activity of SIRT was 1.50 GBq (range: 0.5-2.8. The mean prescribed dose of EBRT was 42.3 Gy (range: 15-63 in 14 fractions (range: 5-15 and was targeted to the residual liver tumor in 12 patients (55%, portal vein thrombosis in 11 patients (50%, and perihilar lymphadenopathies in 4 patients (18%. The overall 1-, 2-, and 3-year survival rates were 59.8%, 47.9%, and 47.9%, respectively. Overall, 8 patients (36% developed > grade 2 liver toxicities, and the Child-Pugh score prior to EBRT strongly affected the toxicity risk. A dosimetry analysis restricted to 18 Child-Pugh A/B patients showed that the V100 (The fraction of normal liver exposed to more than 100 Gy to V140 significance differed between patients who did or did not experience hepatotoxicity. The V110 was the strongest predictor of hepatotoxicity (18.6±11.6% vs 29.5±5.8%; P = 0.030.Combined therapy is feasible and safe if patients are carefully selected

  16. Combined Yttrium-90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: From clinical aspects to dosimetry.

    Science.gov (United States)

    Wang, Ti-Hao; Huang, Pin-I; Hu, Yu-Wen; Lin, Ko-Han; Liu, Ching-Sheng; Lin, Yi-Yang; Liu, Chien-An; Tseng, Hsiou-Shan; Liu, Yu-Ming; Lee, Rheun-Chuan

    2018-01-01

    Selective internal radiation therapy (SIRT) is an effective treatment strategy for unresectable hepatocellular carcinoma (HCC) patients. However, the prognoses of patients with portal vein thrombosis, extra-hepatic metastases, or residual tumors remain poor when treated with SIRT alone. In these patients, sequential external beam radiotherapy (EBRT) may offer a chance of salvage. Here, we reported the clinical outcomes and the detailed dosimetry analysis of 22 patients treated with combination therapy. Between October 2011 and May 2015, 22 consecutive patients who underwent EBRT after yttrium-90 (90Y) SIRT were included in this study. The post-SIRT 90Y bremsstrahlung SPECT/CT of each patient was transferred to dose distribution by adopting the local deposition hypothesis. The patient-specific 3-dimensional biological effective dose distribution of combined SIRT and EBRT was generated. The overall survival and safety were evaluated. The relationship between dosimetric parameters and liver toxicity was analyzed. The mean administered activity of SIRT was 1.50 GBq (range: 0.5-2.8). The mean prescribed dose of EBRT was 42.3 Gy (range: 15-63) in 14 fractions (range: 5-15) and was targeted to the residual liver tumor in 12 patients (55%), portal vein thrombosis in 11 patients (50%), and perihilar lymphadenopathies in 4 patients (18%). The overall 1-, 2-, and 3-year survival rates were 59.8%, 47.9%, and 47.9%, respectively. Overall, 8 patients (36%) developed > grade 2 liver toxicities, and the Child-Pugh score prior to EBRT strongly affected the toxicity risk. A dosimetry analysis restricted to 18 Child-Pugh A/B patients showed that the V100 (The fraction of normal liver exposed to more than 100 Gy) to V140 significance differed between patients who did or did not experience hepatotoxicity. The V110 was the strongest predictor of hepatotoxicity (18.6±11.6% vs 29.5±5.8%; P = 0.030). Combined therapy is feasible and safe if patients are carefully selected. Specifically

  17. International survey of peritoneal dialysis training programs.

    Science.gov (United States)

    Bernardini, Judith; Price, Valerie; Figueiredo, Ana; Riemann, Aase; Leung, Dora

    2006-01-01

    To survey nurses around the world about current practices for peritoneal dialysis (PD) home training programs. Random sampling of nurses to complete a written survey from the International Society for Peritoneal Dialysis Nursing Liaison Committee. United States, Canada, South America (Brazil, Columbia), The Netherlands, Hong Kong. Surveys and responses were sent by fax whenever possible, or by regular mail, or hand carried, or conducted by telephone. Results were stratified by geographic areas as well as by cumulative responses and were expressed as medians with ranges. Kruskal-Wallis was used to evaluate differences in responses. Associations between variables were tested with Pearson correlation. Univariate regression analysis was used to evaluate the impact of variables on peritonitis rates. Variables with p training from a nurse colleague, 11% were guided by a corporate colleague, and 8% were simply self-taught. Clinics responding had a median of 30 PD patients (range 1-400) and reported they trained a median of 8 patients per year (range 0-86). Reported peritonitis rates were a median 0.46 per year or 1 episode every 26 months. Peritonitis rates, however, were not known by 53% of respondents. Total training time per patient had a very wide range of hours, from 6 to 96. There was no correlation between training time and peritonitis rates among the study respondents (p = 0.38), nor with any other variables. There is wide variation in practices for PD patient training programs within countries and around the world. Training time did not appear to be related to peritonitis rates. Randomized trials of training practices are needed to determine which approaches produce the best outcomes for patients.

  18. Program Assistant | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Under the direction of the Program Leader, the Program Assistant provides operational and administrative assistance to the Program Leader and Program Staff, performs a variety of administrative, coordination and logistical services in support of the operations of the Program, and assists with information management the ...

  19. Program Leader, Think Tank Initiative | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... and workshops;; Represents the Program and its strategic interests in Program Area, Branch and Corporate meetings;; Ensures that a regional perspective is brought to bear on program planning at the Program and Program Area level;; Establishes important contacts and exchanges strategic information with institutions; ...

  20. Program Officer | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Job Summary Working as a member of one or two multi-disciplinary teams and under the guidance of a senior team member, Program Leader (PL) and/or Program Manager (PM) if applicable, the Program Officer (PO):

  1. Venus transit 2004: An international education program

    Science.gov (United States)

    Mayo, L.; Odenwald, S.

    2003-04-01

    December 6th, 1882 was the last transit of the planet Venus across the disk of the sun. It was heralded as an event of immense interest and importance to the astronomical community as well as the public at large. There have been only six such occurrences since Galileo first trained his telescope on the heavens in 1609 and on Venus in 1610 where he concluded that Venus had phases like the moon and appeared to get larger and smaller over time. Many historians consider this the final nail in the coffin of the Ptolemaic, Earth centered solar system. In addition, each transit has provided unique opportunities for discovery such as measurement and refinement of the detection of Venus' atmosphere, calculation of longitudes, and calculation of the astronomical unit (and therefore the scale of the solar system). The NASA Sun Earth Connection Education Forum (SECEF) in partnership with the Solar System Exploration (SSE) and Structure and Evolution of the Universe (SEU) Forums, AAS Division for Planetary Sciences (DPS), and a number of NASA space missions and science centers are developing plans for an international education program centered around the June 8, 2004 Venus transit. The transit will be visible in its entirety from Europe and partially from the East Coast of the United States. We will use a series of robotic observatories including the Telescopes In Education (TIE) network distributed in latitude to provide observations of the transit that will allow middle and high school students to calculate the A.U. through application of parallax. We will compare the terrestrial planets in terms of the evolutionary processes that define their magnetic fields, their widely differing interactions with the solar wind, and the implications this has for life on Earth and elsewhere in the universe. We will also use Venus transit as a probe of episodes in American history (e.g. 1769: revolutionary era, 1882: post civil war era, and 2004: modern era). Museums and planetariums in

  2. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  3. Proceedings of the second conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R. E.; Sims, C. S. [eds.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  4. Proceedings of the second conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base

  5. Program Integration for International Technology Exchange

    International Nuclear Information System (INIS)

    Rea, J.L.

    1993-01-01

    Sandia National Laboratories (SNL), Albuquerque, New Mexico, supports the International Technology Exchange Division (ITED) through the integration of all international activities conducted within the DOE's Office of Environmental Management (EM)

  6. External Program Reviews (2012) | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-24

    Jun 24, 2016 ... These final evaluations are our primary accountability mechanism in terms of the results, effectiveness, and relevance of program spending. External program reviews aim to: account to IDRC's Board of Governors for the implementation of the program prospectus; provide input into programming for learning ...

  7. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E.

    2008-01-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  8. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Khosravi H.

    2015-03-01

    Full Text Available Background: Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective: The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC method for studying the effect of gold nanoparticles (GNPs in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method: A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results: The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion: There was a good agreement between the dose enhancement factors (DEFs estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal

  9. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 to 12.00 and is closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  10. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 - 12.00, and closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  11. Report on external occupational dosimetry in Canada

    International Nuclear Information System (INIS)

    1995-12-01

    In light of the new recommendations of the ICRP in Report 60 on dose quantities and dose limits, this working group was set up to examine the implications for external dosimetry in Canada. The operational quantities proposed by the ICRU are discussed in detail with regard to their applicability in Canada. The current occupational dosimetry services available in Canada are described as well as the several performance intercomparisons that have been carried out within the country as well as internationally. Recommendations are given with respect to standards for dosimetry, including accuracy and precision. More practical advice is given on the choice of dosimeter to use for external dosimetry, frequency of monitoring, and who should be monitored. Specific advice is given on the monitoring of pregnant workers and problem of non-uniform irradiation. Accident and emergency dosimetry are dealt with briefly. Suggestions are given regarding record keeping both for employers and for the national dose registry. 48 refs., 6 tabs., 1 fig

  12. Research and innovation in radiation dosimetry

    International Nuclear Information System (INIS)

    Delgado, A.

    1999-01-01

    In this article some relevant lines of research in radiation dosimetry are presented. In some of them innovative approaches have been recently proposed in recent years. In others innovation is still to come as it is necessary in view of the insufficiency of the actual methods and techniques. mention is made to Thermoluminescence Dosimetry an to the improvement produced by new computational methods for the analysis of the usually complex TL signals. A solid state dosimetric technique recently proposed, Optically Stimulated Luminescence, OSL, is briefly presented. This technique promises advantages over TLD for personal and environmental dosimetry. The necessity of improving the measurement characteristics of neutron personal dosemeters is commented, making reference to some very recent developments. The situation of the dosimetry in connection with radiobiology research is overviewed, commenting the controversy on the adequacy and utility of the quality absorbed dose for these activities. Finally the special problematic of internal dosimetry is discussed. (Author) 25 refs

  13. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Western General Hospital, Edinburgh

    1996-01-01

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  14. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: In June: Every morning from 8:30 to 12:00 In July: Mondays, Wednesdays and Fridays from 8:30 to 11:30 Closed all day on Tuesdays and Thursdays From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  15. A review of NASA international programs

    Science.gov (United States)

    1979-01-01

    A synoptic overview of NASA's international activities to January 1979 is presented. The cooperating countries and international organizations are identified. Topics covered include (1) cooperative arrangements for ground-based, spaceborne, airborne, rocket-borne, and balloon-borne ventures, joint development, and aeronautical R & D; (2) reimbursable launchings; (3) tracking and data acquisition; and (4) personnel exchanges. International participation in NASA's Earth resources investigations is summarized in the appendix. A list of automatic picture transmission stations is included.

  16. Regional Program Assistant | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Job Summary Under the general direction of the assigned Program Officers situated in ROSSA, the Regional Program Assistant provides a variety of administrative, coordination, logistical and information management services in support of the various program operations. The incumbent is responsible for prioritizing and ...

  17. Program Management Officer | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Job Summary Working under the supervision of a manager, the Program Management Officer contributes to the operation of a research program, produces documentation, and coordinates and disseminates information in support of the program management. The principal responsibilities include knowledge management, ...

  18. Director of Program Area | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Job Summary The Director of a Program Area is accountable to the Vice President of the Program and Partnership Branch for providing strategic intelligence, ... Area; and; Contributes to policy development, planning, management and evaluation of program and administrative activities at the corporate and regional levels.

  19. Administrator Perceptions of Transition Programs in International Secondary Schools

    Science.gov (United States)

    Bates, Jessica

    2013-01-01

    This study investigates the extent to which transition programs are offered to students at international secondary schools. Components of professional development, orientation and departure programs, and transition support teams were examined. Participants included school administrators at 11 international schools across five continents. Findings…

  20. The Discursive Framing of International Education Programs in British Columbia

    Science.gov (United States)

    Cover, Dwayne

    2016-01-01

    This study examines how international education programs in British Columbia have been discursively framed by government and media sources. Over the past two decades, international education programs have expanded in number and scale in the province, a phenomenon that has been interpreted by some education researchers and media sources as…

  1. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  2. Protocol for adaptation of internal dosimetry techniques for planning of individualized doses of 131I in pediatric patients

    International Nuclear Information System (INIS)

    Biancardi, Rodrigo

    2011-01-01

    The optimization of radiation doses is emphasized in diseases with good prognosis, as differentiated thyroid carcinomas, especially in pediatric patients, since the radiation risk is conversely proportional to age. Aiming to establish individual treatment planning, it has been studied four dosimetry methodologies (external dose monitoring, image quantification, urine and blood bioassay) for four 13.3 ± 1.5-year-old female patients, who received 107 ± 15 MBq (2,9 ± 0,4 mCi) for tracer dose and 5.5 ± 0.3 GBq (149 ± 8 mCi) for thyroid ablation. Effective half-lives, residence times and cumulated activities were estimated in organs and tissues with iodine uptake, through planar images quantification by conjugate-view and attenuation correction, in order to compare biokinetic behavior in tracer dose and ablative dose phases. For external monitoring, two patients had similar whole-body effective half-lives in both phases. For this methodology, despite the uncertainties associated to measurements, equipment used and procedures performed were adequate. For urine bioassay, there were not similarities among the patients whole-body effective half-lives. Through blood bioassay, it was observed that 0.2 % of the administered activity for ablative dose remained in the blood until 76 hours after administration. The external monitoring allowed estimating effective doses in patients mothers by conversion of the environmental equivalent dose. In the ablative dose phase, the effective doses resulted in 1.3 ± 0.3 mSv in the hospital and 0.3 ± 0.1 mSv in patients houses. (author)

  3. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  4. Update of computer applications associated to measuring equipment of the services of internal dosimetry of NPPS and Tecnatom; Actualizacion de las aplicaciones informaticas asociadas a los equipos de medida de los Servicios de Dosimetria Interna de las CCNN y de Tecnatom

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Sollet, E.; Serrano, E.

    2014-07-01

    Within the continuous improvement processes that take place in all the activities taking place in the Spanish nuclear power plants, and as a result of implementation of ISO Standards for Internal Dosimetry, has undertaken a review, improvement and updating INDAC ALEDIN and applications associated with measuring equipment and DIYs Quicky kind Personal Internal Dosimetry Services of the Spanish nuclear power plants and Tecnatom This paper presents updates capacities both tools. (Author)

  5. A collaborative program for international education.

    Science.gov (United States)

    Nicholas, P K; Leuner, J D; Miller, D F; Kelliher, D; Lynch, B; Fitzmaurice, J B

    1994-01-01

    A collaborative educational program for Japanese nurses was developed, which merged the resources of the practice and education settings at the Massachusetts General Hospital (MGH) and the MGH Institute of Health Professions. Two concurrent programs were developed--Adult Health and Maternal-Child Health. These concurrent programs focused on content reflecting key areas in the realm of nursing practice and education in both Japan and the United States. Complementary clinical tours were an integral part of the program. This dyad of lecture and clinical experiences provided a forum to focus on issues relevant to nursing worldwide.

  6. International technology identification, transfer, and program support

    International Nuclear Information System (INIS)

    Kitchen, B.

    1993-01-01

    Savannah River Site (SRS) activities primarily address vitrification technologies being investigated with Japan and the former Soviet Union (FSU). They also support the overall management of EM's international activities

  7. Program Officer, Knowledge Translation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Primary Duties or Responsibilities Research Uptake and Communication In consultation with the SPS, assists in the development of a strategic plan for the synthesis, spread and uptake of research amongst key stakeholders, both nationally and internationally.

  8. Program Officer, Knowledge Translation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... these make use of and disseminate existing TTI program research outputs, as well as generate new ideas for the program research agenda (including for the second phase of TTI), as appropriate; and; On occasion, makes presentations and/or represents IDRC at selected meetings, conferences, workshops or seminars.

  9. Programs | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    We help bring ideas to life. Our development programs support innovative solutions that improve global access to food, jobs, health, and technologies for growth. At IDRC, we have learned that the greatest benefit comes from focusing our investments to deliver large-scale impact. Our programs seek answers that drive ...

  10. Residency Programs in Veterinary Internal Medicine. Where Are We Going?

    Science.gov (United States)

    Oliver, J. E., Jr.

    1979-01-01

    Data from the 6th Symposium on Veterinary Medical Education, the Arthur D. Little, Inc. report, and the survey of the American College of Veterinary Internal Medicine are reported as they pertain to the need for more residency programs, program quality and accreditation. Program funding is also discussed. (JMD)

  11. Nuclear materials control and accountability internal audit program

    International Nuclear Information System (INIS)

    Barham, M.A.; Abbott, R.R.

    1991-01-01

    This paper reports that the Department of Energy Order (DOE) 5633.3, Control and Accountability for Nuclear Materials, includes several requirements for development and implementation of an internal audit program. Martin Marietta Energy System, Inc., manages five sites in Tennessee, Kentucky, and Ohio for the DOE Field Office, Oak Ridge and has a Central Nuclear Materials Control and Accountability (NMC and A) Manager with matrixed responsibility for the NMC and A program at the five sites. The Energy Systems Central NMC and A Manager has developed an NMC and A Internal Audit Handbook which defines the functional responsibilities, performance criteria, and reporting and documentation requirements for the Energy Systems NMC and A Internal Audit Program. The initial work to develop and implement these standards was tested at the K-25 Site when the site hired an internal auditor to meet the DOE requirements for an NMC and A Internal Audit program

  12. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  13. Dosimetry techniques applied to thermoluminescent age estimation

    International Nuclear Information System (INIS)

    Erramli, H.

    1986-12-01

    The reliability and the ease of the field application of the measuring techniques of natural radioactivity dosimetry are studied. The natural radioactivity in minerals in composed of the internal dose deposited by alpha and beta radiations issued from the sample itself and the external dose deposited by gamma and cosmic radiations issued from the surroundings of the sample. Two technics for external dosimetry are examined in details. TL Dosimetry and field gamma dosimetry. Calibration and experimental conditions are presented. A new integrated dosimetric method for internal and external dose measure is proposed: the TL dosimeter is placed in the soil in exactly the same conditions as the sample ones, during a time long enough for the total dose evaluation [fr

  14. A Comprehensive, High-Quality Orthopedic Intern Surgical Skills Program.

    Science.gov (United States)

    Ford, Samuel E; Patt, Joshua C; Scannell, Brian P

    2016-01-01

    To design and implement a month-long, low-cost, comprehensive surgical skills curriculum built to address the needs of orthopedic surgery interns with high satisfaction among both interns and faculty. The study design was retrospective and descriptive. The study was conducted at tertiary care referral center with a medium sized orthopedic residency surgery program (5 residents/year). Totally 5 orthopedic surgery residents and 16 orthopedic surgery faculty participated. A general mission was established-to orient the resident to the postgraduate year 1 and prepare them for success in residency. The basic tenets of the American Board of Orthopaedic Surgeons surgical skills program framework were built. Curricular additions included anatomic study, surgical approaches, joint-specific physical examination, radiographic interpretation, preoperative planning, reduction techniques, basic emergency and operating room procedures, cadaveric procedure practice, and introduction to arthroplasty. The program was held in August during protected time for intern participants. In total, 16 orthopedic surgeons instructed 85% of the educational sessions. One faculty member did most of the preparation and organization to facilitate the program. The program ran for a cumulative 89 hours, including 14.5 hours working with cadaveric specimens. The program cost a total of $8100. The average module received a 4.15 rating on a 5-point scale, with 4 representing "good" and 5 representing "excellent." The program was appropriately timed and addressed topics relevant to the intern without sacrificing clinical experience or burdening inpatient services with interns' absence. The program received high satisfaction ratings from both the interns as well as the faculty. Additionally, the program fostered early relationships between interns and faculty-an unforeseen benefit. In the future, our program plans to better integrate validated learning metrics and improve instruction pertaining to both

  15. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  16. Program Officer, Knowledge Translation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Prepares and coordinates written, graphic, visual materials, web site content and other social media for public presentation/dissemination. Coordinates conferences and other events in consultation with relevant team members. Engages proactively with local, regional, and international stakeholders, through dissemination ...

  17. Dosimetry of internal emitting: principles and perspectives of the MIRD technology; Dosimetria de emisores internos: principios y perspectivas de la metodologia MIRD

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G. [Gerencia de Aplicaciones Nucleares en la Salud, Instituto Nacional de Investigaciones Nucleares, Salazar, Estado de Mexico C.P. 52045 (Mexico)

    1999-07-01

    The development of the radiopharmaceutical technology have multiplied the number of radioisotopes with applications in therapeutical nuclear medicine so known as Directed radiotherapy. Assuming the radiation is capable to produce noxious effects in the biological systems, it is important to evaluate appropriately the risks and benefits of the administration of radioactive agents in the patient. The outstanding parameter in this evaluation is the absorbed dose, which is product of the radiation emitted by a radionuclide that is localized or distributed to the interior of the human body in study and whose its estimation helps to predict the efficacy of the treatment. The scheme generalized of MIRD, it was formulated from thirty years ago for evaluating the interior dosimetry at level of organs.The finality of this work is to show the basic principles of the MIRD methodology and its perspectives using innovator tools as the dosimetry for dynamic masses, in particular the personnel dosimetry for the organs of each patient, the dosimetry for the small structures inside the organs (sub organic dosimetry), the distributions of doses in three dimensions (S voxel), the dosimetry at cellular level and the quantitative acquisition of pharmaceutical data. (Author)

  18. Assessment of necessary regularity of internal irradiation monitoring on the basis of direct and indirect methods of dosimetry

    International Nuclear Information System (INIS)

    Malykhin, V.M.; Ivanova, N.I.

    1981-01-01

    It is shown that when assessing the necessary periodicity of internal irradiation monitoring, it is required to take account of the nature (rhythm) of radionuclide intake to the organism during the monitoring period, the effective period of radionuclide biological half-life, its activity in the organism, sensitivity of the technique applied and the labour-consumig character of the monitoring method [ru

  19. Ashinaga Group Asia: International Student Programs

    OpenAIRE

    Teresa Eed

    2017-01-01

    Giving orphaned students abroad the chance to study in Japan While Ashinaga originally only supported Japanese students who had lost parents, as time passed it became increasingly clear that we had the experience and means to assist orphaned students outside Japan as well. This first took the shape of fundraising for international humanitarian crises, but eventually grew into various financial aid and scholarship opportunities to benefit orphaned students from around the world. Wh...

  20. Senior Program Specialist, Evaluation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The SPS recommends appropriate methods for and facilitates the design, conduct and use of, evaluation and self-assessment tools, methods and processes by program ... identifies, plans and conducts staff development activities and trainings related to planning, monitoring and evaluation (e.g., evaluation planning, data ...

  1. Senior Program Officer, Evaluation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The SPO facilitates evaluation processes that intentionally influence the focus, content and management of IDRC projects, programs and corporate policies, debates and approaches to improve the Centre's and its partners' performance and ensure accountability for the resources spent. Also, the SPO incorporates them in ...

  2. Devolving Programs (2009) | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-25

    Apr 25, 2016 ... As IDRC is pursuing the devolution of two program initiatives, senior management requested that past experience with devolution be examined to see what lessons could be gleaned. The primary objective of this evaluation is to develop guiding principles that could inform future devolution practice.

  3. Program Officer, Knowledge Translation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Job Summary The Knowledge Translation Program Officer will be responsible for promoting the work of the Centre of Excellence (CoE) for Strengthening Civil ... aims to promote and improve effective, universal, and integrated CRVS in low and middle income countries by providing timely access to evidence, resources, and ...

  4. Senior Program Specialist, Strategic Outreach | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    TTI), and working as a member of the global TTI team, the Senior Program Specialist has a key role in providing strategic direction and support to the outreach capacity of the Initiative at all levels, and thereby strengthening the visibility of TTI.

  5. 2013 Iowa DOT engineering intern development and management program.

    Science.gov (United States)

    2013-11-01

    The Institute for Transportation (InTrans) at Iowa State University (ISU) developed an internship mentoring program in collaboration : with the Iowa Department of Transportation (DOT) to provide additional mentorship to both student interns and Iowa ...

  6. CM Process Improvement and the International Space Station Program (ISSP)

    Science.gov (United States)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  7. International Population Assistance and Family Planning Programs: Issues for Congress

    National Research Council Canada - National Science Library

    Nowels, Larry; Veillette, Connie

    2006-01-01

    .... international family planning programs. In 1984, controversy arose over U.S. population aid policy when the Reagan Administration introduced restrictions, which became known as the "Mexico City policy...

  8. International Population Assistance and Family Planning Programs: Issues for Congress

    National Research Council Canada - National Science Library

    Blanchfield, Luisa

    2008-01-01

    .... international family planning programs. In 1984, controversy arose over U.S. population aid policy when the Reagan Administration introduced restrictions, which became known as the "Mexico City policy...

  9. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  10. Estimations of internal dosimetry: practical calculations of incorporated activity; Estimaciones de dosimetria interna: calculos practicos de actividad incorporada

    Energy Technology Data Exchange (ETDEWEB)

    Cortes C, A. [CNSNS, Dr. Barragan 779, 03020 Mexico D.F. (Mexico)

    2003-07-01

    The National Commission of Nuclear Security and Safeguards (CNSNS) carries out periodically measurements of corporal activity to Occupationally Exposed Personnel (POE) to determine that the received doses are in according to that settled down in the General Regulation of Radiological Security. In this work the results of the incorporated activity estimates starting from the results of the measurements that were carried out in the one CNSNS laboratory are presented, with which it should be determine lastly the internal dose. Its were used different methodologies to estimate the incorporated activity: estimate with isolated data, estimate with global data and method of the best estimate, demonstrating this last to be the more appropriate to determine the internal dose. (Author)

  11. Effect of emaciation and obesity on small-animal internal radiation dosimetry for positron-emitting radionuclides

    OpenAIRE

    Xie Tianwu; Zaidi Habib

    2013-01-01

    Purpose: Rats are widely used in biomedical research involving molecular imaging and therefore the radiation dose to animals has become a concern. The weight of laboratory animals might change through emaciation or obesity as a result of their use in various research experiments including those investigating different diet types. In this work we evaluated the effects of changes in body weight induced by emaciation and obesity on the internal radiation dose from common positron emitting radion...

  12. International Corporate Responsibility and MBA Programs: Using an Integrated Approach.

    Science.gov (United States)

    Herremans, Irene M.; Murch, Ron

    1999-01-01

    Discusses an experiential learning situation that can successfully integrate corporate values and international growth in masters in business administration programs. Focuses on a teaching technique that emphasizes the realistic challenges that corporations face when growing an international company built on a strong ethical foundation. (Author/DB)

  13. What skills should new internal medicine interns have in july? A national survey of internal medicine residency program directors.

    Science.gov (United States)

    Angus, Steven; Vu, T Robert; Halvorsen, Andrew J; Aiyer, Meenakshy; McKown, Kevin; Chmielewski, Amy F; McDonald, Furman S

    2014-03-01

    The transition from medical student to intern may cause stress and burnout in new interns and the delivery of suboptimal patient care. Despite a formal set of subinternship curriculum guidelines, program directors have expressed concern regarding the skill set of new interns and the lack of standardization in that skill set among interns from different medical schools. To address these issues, the Accreditation Council for Graduate Medical Education's Next Accreditation System focuses on the development of a competency-based education continuum spanning undergraduate, graduate, and continuing medical education. In 2010, the Clerkship Directors in Internal Medicine subinternship task force, in collaboration with the Association of Program Directors in Internal Medicine survey committee, surveyed internal medicine residency program directors to determine which competencies or skills they expected from new medical school graduates. The authors summarized the results using categories of interest. In both an item rank list and free-text responses, program directors were nearly uniform in ranking the skills they deemed most important for new interns-organization and time management and prioritization skills; effective communication skills; basic clinical skills; and knowing when to ask for assistance. Stakeholders should use the results of this survey as they develop a milestone-based curriculum for the fourth year of medical school and for the internal medicine subinternship. By doing so, they should develop a standardized set of skills that meet program directors' expectations, reduce the stress of transitions across the educational continuum, and improve the quality of patient care.

  14. Quality control of radiotherapy centres in the Slovak Republic: a dosimetry intercomparison of photon and electron beams under reference conditions

    International Nuclear Information System (INIS)

    Gomola, I.; Kralik, G.; Laginova, V.; Van Dam, J.

    2001-01-01

    The aim of this paper is a dosimetry intercomparison of photon and electron beams under reference conditions as well as quality control of radiotherapy centres in the Slovak Republic. The results obtained in the first check shows that only about 60% of beams are within the acceptance limit. The reasons of discrepancies were traced, in some cases by an on site visit of experts from the NRC, and unacceptable deviations were corrected. The results clearly demonstrate the usefulness of the external dosimetry checks performed with the mailed thermoluminescent dosimeters. Standard deviation of the distribution of the results decreased from SD=4.3% to SD=I.8% for checked photon beams and from SD=8.6% to SD=2.4% for electron beams, respectively, at the end of the project. The dosimetry audits which are performed in regular intervals significantly decreasing a possibility of mistreatment (under-dosage or over-dosage ) of patients due to wrong calibration of radiation therapy beams. In order to keep the reached level of dosimetry precision, it is necessary to establish the external audit in radiotherapy at the national level based on postal TLD dosimetry by transferring the know-how from the international program on quality assurance in radiotherapy dosimetry with the assistance of the IAEA. (authors)

  15. Review of radiation dosimetry research at the University of Wisconsin during 1961-1982

    International Nuclear Information System (INIS)

    Cameron, J.R.; Moran, P.R.; Attix, F.H.

    1982-01-01

    The report provides a comprehensive review of the overall activities in this program since 1961. Research areas have included the development and use of lithium fluoride for thermoluminescent dosimetry, solid state neutron dosimetry, and ionization chamber research

  16. Status of neutron cross sections for reactor dosimetry

    International Nuclear Information System (INIS)

    Vlasov, M.F.; Fabry, A.; McElroy, W.N.

    1977-03-01

    The status of current international efforts to develop standardized sets of evaluated energy-dependent (differential) neutron cross sections for reactor dosimetry is reviewed. The status and availability of differential data are considered, some recent results of the data testing of the ENDF/B-IV dosimetry file using 252 Cf and 235 U benchmark reference neutron fields are presented, and a brief review is given of the current efforts to characterize and identify dosimetry benchmark radiation fields

  17. Campus Support Services, Programs, and Policies for International Students

    Science.gov (United States)

    Bista, Krishna, Ed.; Foster, Charlotte, Ed.

    2016-01-01

    Study abroad programs have proven beneficial for both the international student as well as the domestic community and school population interacting with the student. In an effort to promote cultural awareness, intercultural communications as well as opportunities for future study abroad program success, universities must take care to provide…

  18. Needs and Acculturative Stress of International Students in CACREP Programs

    Science.gov (United States)

    Behl, Malvika; Laux, John M.; Roseman, Christopher P.; Tiamiyu, Mojisola; Spann, Sammy

    2017-01-01

    International students enrolled in programs accredited by the Council for Accreditation of Counseling and Related Educational Programs provided acculturative stress and needs data. Acculturative stress was correlated with academic, social, language, and cultural needs. Furthermore, relationships were found between students' types of needs.…

  19. An Assessment of the Interindividual Variability of Internal Dosimetry during Multi-Route Exposure to Drinking Water Contaminants

    Directory of Open Access Journals (Sweden)

    Mathieu Valcke

    2010-11-01

    Full Text Available The objective of this study was to evaluate inter-individual variability in absorbed and internal doses after multi-route exposure to drinking water contaminants (DWC in addition to the corresponding variability in equivalent volumes of ingested water, expressed as liter-equivalents (LEQ. A multi-route PBPK model described previously was used for computing the internal dose metrics in adults, neonates, children, the elderly and pregnant women following a multi-route exposure scenario to chloroform and to tri- and tetra-chloroethylene (TCE and PERC. This scenario included water ingestion as well as inhalation and dermal contact during a 30-min bathroom exposure. Monte Carlo simulations were performed and distributions of internal dose metrics were obtained. The ratio of each of the dose metrics for inhalation, dermal and multi-route exposures to the corresponding dose metrics for the ingestion of drinking water alone allowed computation of LEQ values. Mean BW-adjusted LEQ values based on absorbed doses were greater in neonates regardless of the contaminant considered (0.129–0.134 L/kg BW, but higher absolute LEQ values were obtained in average adults (3.6–4.1 L, elderly (3.7–4.2 L and PW (4.1–5.6 L. LEQ values based on the parent compound’s AUC were much greater than based on the absorbed dose, while the opposite was true based on metabolite-based dose metrics for chloroform and TCE, but not PERC. The consideration of the 95th percentile values of BW-adjusted LEQ did not significantly change the results suggesting a generally low intra-subpopulation variability during multi-route exposure. Overall, this study pointed out the dependency of the LEQ on the dose metrics, with consideration of both the subpopulation and DWC.

  20. International Mentoring Programs: Leadership Opportunities to Enhance Worldwide Pharmacy Practice.

    Science.gov (United States)

    Ubaka, Chukwuemeka; Brechtelsbauer, Erich; Goff, Debra A

    2017-07-01

    Health-system and community pharmacy practice in the United States is experiencing transformational change; however, this transformation is lagging in the international arena. As a result, efforts are being made to provide support and education to the international pharmacy leaders and practitioners. This article describes one effort, the Mandela Washington Fellows Program, and suggests areas where pharmacy leaders can be involved to help advance the practice of pharmacy on an international level. The Mandela Washington Fellows Program for young Africa leaders consists of a US-Africa pharmacy-mentoring program identified ranging from educational opportunities to collaboration for implementation of patient care programs. The specifics of the mentoring program include daily meetings, clinic and ward rounds, round table discussions with mentors, and visits to various hospital care systems. Lessons were learned and strategies for sustaining the program are discussed. These types of programs represent leadership opportunities that may not be apparent to most pharmacy directors, but expanding their view to helping international pharmacists expand their practice only strengthens the professional goal of providing patient-centered pharmacy services.

  1. 78 FR 22530 - Agency Information Collection Activities; Comment Request; Program for International Student...

    Science.gov (United States)

    2013-04-16

    ... Agency Information Collection Activities; Comment Request; Program for International Student Assessment... of Collection: Program for International Student Assessment (PISA 2015) Recruitment and Field Test.... Total Estimated Number of Annual Burden Hours: 6,313. Abstract: The Program for International Student...

  2. The Vinca dosimetry experiment

    International Nuclear Information System (INIS)

    1962-03-01

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  3. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  4. [Possible actions to guide international cooperation programs].

    Science.gov (United States)

    Beauplet, A

    2006-09-01

    Transfusion is an essential element of health services. French HCO's are thriving to sustain the transfusional system throughout the world, especially to support low income countries. This article evokes several tentative cooperation experiences and proposes to think over conditions which would make it possible for such actions to become more efficient. The author sets out different aspects making the undertaken restructurizing and implemented support successful operations. First is about the definition of responsibilities, supervision and management as dedicated to the public authorities. Second deals with the management of disposable resources, whatever they be of human, equipment or material nature. A third item is devoted to contributions (supports) that may help the implementation of the product itself. The article finally stresses the importance of the action (program) quality assessment and continuous improvement. Further to his reporting on the cooperation methods, the author presents some of the actions undertaken by the Etablissement Français du Sang (National Blood Agency) in the last few years in Afghanistan, Latin America and Africa.

  5. Dosimetry optimization at COGEMA-La Hague

    International Nuclear Information System (INIS)

    Kalimbadjian, J.

    2000-01-01

    At the present time, the la Hague site strives to apply international recommendations together with national regulations concerning radiation protection, and especially the respect of limitation and optimization principles. The application of these principles is based on the implementation of a passive dosimetry and an active dosimetry. The monthly passive dosimetry is monitored by means of a photographic dosimetry film, completed with lithium fluorine thermoluminescent film badges. This personal dosimetry common to X, β, γ and neutron radiations is carried out in close relationship between the Radiation Protection Department, the Occupational Medical Department and the staff running the Plant. The application or ALARA's principle as well as that of radiation protection optimization implies to implement a complementary active dosimetry enabling to gain in real time, the personal dosimetry of each intervening person, either they be COGEMA's workers or external companies'. This active dosimetry provides with following information: This preventive dosimetry is based on the knowledge of doses integration in real time and is fitted with alarm thresholds according to the total amount of doses and dose rates. Thresholds on the dose rate are also set relatively to the radiological environment. This knowledge of doses and dose rates allows a stricter management of the works, while analyzing them according to the nature of the work, to the location and to the skills of the intervening people. This dosimetry allows to analyze and optimize doses integration according to the works nature for the whole intervening staff. The la Hague Site has developed an active personal dosimetry system, common to every intervening person, COGEMA or external companies. The DOSICARD was thus elaborated, shaped as an electronic dosimeter fitted with an alarm and a smart card. The access to controlled areas is conditioned to information given by the DOSICARD concerning medical aptitudes and

  6. Cross sections required for FMIT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  7. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  8. Internal Contamination Program in hospital and biomedical research institutions

    International Nuclear Information System (INIS)

    Tellez de Cepeda, M.; Macias, M.T.; Plaza, R.; Martinez Hidalgo, C.

    1992-01-01

    Program and the criteria for establishing such program to control the internal contamination from a point of view, not yet systematized and standardized in Hospital and Biomedical Research centers. The main purpose of this work is to review our own situation, to establish and systematize an operative program with variable means (instruments) and the use of external means if need. This program will be established taking into account the new recommendations of I.C.R.P. and the new criteria A.L.I. (author)

  9. Development and current state of dosimetry in Cuba

    International Nuclear Information System (INIS)

    Prieto Miranda, E.F.; Cuesta Fuente, G.; Chavez Ardanza, A.

    1999-01-01

    In Cuba, the application of the radiation technologies has been growing in the last years, and at present there are several dosimetry systems with different ranges of absorbed dose. Diverse researches were carried out on high dose dosimetry with the following dosimetry systems: Fricke, ceric-cerous sulfate, ethanol-chlorobenzene, cupric sulfate and Perspex (Red 4034 AE and Clear HX). In this paper the development achieved during the last 15 years in the high dose dosimetry for radiation processing in Cuba is presented, as well as, the current state of different dosimetry systems employed for standardization and for process control. The paper also reports the results of dosimetry intercomparison studies that were performed with the Ezeiza Atomic Center of Argentine and the International Dose Assurance Service (IDAS) of IAEA. (author)

  10. Steps towards an individual treatment planning with the internal dosimetry of 18F-FDG as example for nuclear diagnostics and perspectives for internal radiation therapy

    International Nuclear Information System (INIS)

    Blaickner, M.

    2005-01-01

    Full text: Moving towards a more individual treatment planning, the studies below describe the perspectives and methods both in nuclear diagnostics and in internal radiation therapy. With 18 F-FDG as example in nuclear diagnostics, a more precise estimation of the effective dose to the patient is achieved by the calculation of physiognomy-dependent S-values. This project is a work in progress and the results are expected soon. Additionally the future possibilities of individual treatment planning in internal radiation therapy, such as the use of β-nuclide pairs and the potentials of combining CT and PET, are outlined. (author)

  11. Computational dosimetry and risk assessment of radioinduced cancer: studies in mammary glands radiotherapy, radiopharmaceuticals and internal contamination; Dosimetria computacional e estimativa de risco de câncer radioinduzido: estudos em radioterapia de mama, radiofármacos e contaminação interna

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Bruno Melo

    2017-07-01

    contamination were created and validated. C++ programs were designed to calculate the mean absorbed dose in interest organs and the effective dose and to allow the visualization of the absorbed dose and relative error per voxel. The incidence risk of conventional breast RT cancer induced was estimated considering the Brazilian population. The protocols developed and the case studies allowed the generation of data that support risk/benefit evaluations for radiopharmaceuticals uses and for radiotherapy treatments. The combination of computational dosimetry techniques and cancer induction risk assessment applied to breast RT case assessment allowed the identification of organs at risk that normally do not receive enough attention in the therapy planning or in the development of new RT techniques. The methodologies created and validated for simulations of in vivo monitoring systems allowed studies of uncertainty sources, counting geometry optimization and calibration factors estimation for these systems; as well as absorbed dose and effective dose calculation in internal contamination situations. (author)

  12. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  13. Accreditation of the Personal Dosimetry internal Service Tecnatom by the National Entity (ENAC); Acreditacion del Servicio de Dosimetria Personal Interna de Tecnatom por la Entidad Nacional de Acreditacion (ENAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Marchena, P.

    2014-07-01

    The service of personal Dosimetry internal Tecnatom has made the process of adapting its methodology and quality assurance, requirements technical and management will be required to obtain accreditation from the National Accreditation Entity according to ISO / IEC 170251 standard {sup G}eneral Requirements competence of testing and calibration laboratories. To carry out this process, the laboratory has defined quality criteria set out in their test procedures, based on ISO Standards 27048: 2011; ISO 20553: 2005 and ISO 28218: 2010. This paper describes what has been the methodology used to implement the requirements of different ISO test methods of SDPI Tecnatom. (Author)

  14. International Border Management Systems (IBMS) Program : visions and strategies.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Michael; Mohagheghi, Amir Hossein

    2011-02-01

    Sandia National Laboratories (SNL), International Border Management Systems (IBMS) Program is working to establish a long-term border security strategy with United States Central Command (CENTCOM). Efforts are being made to synthesize border security capabilities and technologies maintained at the Laboratories, and coordinate with subject matter expertise from both the New Mexico and California offices. The vision for SNL is to provide science and technology support for international projects and engagements on border security.

  15. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry : A Monte Carlo Study

    NARCIS (Netherlands)

    Moghadam, Maryam Khazaee; Asl, Alireza Kamali; Geramifar, Parham; Zaidi, Habib

    2016-01-01

    Purpose: The aim of this work is to evaluate the application of tissue-specific dose kernels instead of water dose kernels to improve the accuracy of patient-specific dosimetry by taking tissue heterogeneities into consideration. Materials and Methods: Tissue-specific dose point kernels (DPKs) and

  16. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  17. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  18. Dosimetry in radiotherapy. V.2

    International Nuclear Information System (INIS)

    1988-01-01

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  19. Neutron personal dosimetry: state-of-art

    International Nuclear Information System (INIS)

    Spurný, František

    2005-03-01

    State-of-art of the personal neutron dosimetry is presented, analysed and discussed. Particular attention is devoted to the problems of this type of the dosimetry of external exposure for radiation fields at nuclear power plants. A review of general problems of neutron dosimetry is given and the active individual dosimetry methods available and/or in the stage of development are briefly reviewed. Main attention is devoted to the analysis of the methods available for passive individual neutron dosimetry. The characteristics of these dosemeters were studied and are compared: their energy response functions, detection thresholds and the highest detection limits, the linearity of response, the influence of environmental factors, etc. Particular attention is devoted to their behavior in reactor neutron fields. It is concluded that the choice of the neutron personal dosemeter depends largely on the conditions in which the instrument should be used (neutron spectrum, the level of exposure and the exposure rate, etc.). The results obtained with some of these dosemeters during international intercomparisons are also presented. Particular attention is paid to the personal neutron dosimeter developed and routinely used by National Personal Dosimetry Service Ltd. in the Czech Republic. (author)

  20. Team Work in International Programs: Why is it so difficult?

    DEFF Research Database (Denmark)

    Lauridsen, Karen M.; Madsen, Henning

    Team Work in International Programs: Why is it so difficult? And what can we do about it? It is common knowledge that students often find it difficult to collaborate on assignments, projects, etc., but we require that they do so for a number of reasons, e.g. to learn how to work in teams or take...... is that the international students are more prepared to work in multicultural teams than their Danish peers. Another one tells us that once students have experience with the diversity of these teams, at least some of them become more open towards working in such teams in the future. It is interesting to discuss...... advantage of the diversity represented by team members. In programmes that accept international students, these difficulties seem to increase. Home students are often reluctant to enter into collaboration with their international peers, whereas the international students tend to be much more open towards...

  1. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  2. Complete Biological Evaluation of Therapeutical Radiopharmaceuticals in Rodents, Laboratory Beagles and Veterinary Patients - Preclinical Distribution-, Kinetic-, Excretion-, Internal Dosimetry-, Radiotoxicological-, Radiation Safety- and Efficacy Data

    International Nuclear Information System (INIS)

    Balogh, L.; Domokos, M.; Polyak, A.; Thuroczy, J.; Janoki, G.

    2009-01-01

    The research and development of various novel therapeutical radiopharmaceuticals is a huge demand in many laboratories world-wide. Beside of multiple bone metastases pain-palliation and radiosynovectomy agents a number of specific radiopharmaceutical applicants mainly for oncological applications are in the pipeline. Numerous in vitro methods are available in the first line to test the radiolabelling efficiency, the possible radioactive and non-labelled impurities, the stability of the label at different conditions and mediums, and some specific characteristics of radiopharmaceutical applicants eg.: receptor binding assays, antigen-antibody assays. But, still before human clinical trials there are several questions to be solved in regards of toxicology, radiotoxicology, radiation safety and maybe most importantly the efficacy tasks. All these issues cannot be answered without animal tests. Several decades back animal tests in radiopharmacy meant only standard bioassays in a large number of healthy rodents. Later on pathological models eg.: human tumor xenografts in immunodeficient animals came-out and through them radiopharmaceutical tumor-uptake by the targets were available to evaluate in vivo as well. Xenografts are still popular and widely used models in the field but instead of wide-scaled bioassays nowadays repeated scintiscans or hybrid images (SPECT/CT, PET/CT) are more and more often used to answer kinetic-, excretion-, tumor uptake, internal dosimetry (Minimum Effective Dose, Maximum Tolerable Dose, critical organ doses, tumor doses) questions. Greater animals like laboratory Beagles are more closely in size, clinical and metabolic parameters to the human objects so playing a more perfect role of human medical doctor and especially veterinary patients. Easy to understand that many of the spontaneously occurring companion animal diseases are a good model of human pathological diseases. The need of a better diagnosis and treatment of that animals meets with

  3. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.

  4. Shared dosimetry error in epidemiological dose-response analyses.

    Directory of Open Access Journals (Sweden)

    Daniel O Stram

    Full Text Available Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR model that allows for a linear dose response (risk in relation to radiation and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations as if it was true dose (ignoring both shared and unshared dosimetry errors gives asymptotically unbiased estimates (i.e. the score has expectation zero and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  5. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    Science.gov (United States)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  6. Shared dosimetry error in epidemiological dose-response analyses

    International Nuclear Information System (INIS)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of 'possible' dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed

  7. Operating plan for the Office of International Health Programs

    International Nuclear Information System (INIS)

    1996-01-01

    In this report unified ideas are presented about what the Office of International Health Programs does, what the individual contributions are, and how the organization connects to the Department of Energy. The planning efforts have focused on the office's three areas of responsibility: Europe, Japan, and the Marshall Islands. Common to each technical program area are issues related to the following: health of populations exposed to radiation incidents and the associated medical aspects of exposure; dose reconstruction; training; and public involvement. Each of the program areas, its customers, and primary customer interests are described

  8. R and D programs of the International Energy Agency

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1989-01-01

    This paper provides a description of the collaborative research program of the International Energy Agency. Focusing on the organization of the program, rather than attempting to cover the technical content of the research, the discussion conveys how its operation is facilitated through a framework that takes account of the interests of participating governments as well as technical objectives. Some Canadian activities in the IEA program are briefly described as illustration and a list of current IEA Research Agreements and associated activities is presented in an Appendix

  9. Operating plan for the Office of International Health Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    In this report unified ideas are presented about what the Office of International Health Programs does, what the individual contributions are, and how the organization connects to the Department of Energy. The planning efforts have focused on the office`s three areas of responsibility: Europe, Japan, and the Marshall Islands. Common to each technical program area are issues related to the following: health of populations exposed to radiation incidents and the associated medical aspects of exposure; dose reconstruction; training; and public involvement. Each of the program areas, its customers, and primary customer interests are described.

  10. How to Integrate International Financial Reporting Standards into Accounting Programs

    Science.gov (United States)

    Singer, Robert A.

    2012-01-01

    It is expected the SEC will require U.S. domestic companies to prepare and file their annual 10Ks in accordance with international financial reporting standards (IFRS) by 2016. Given the probability that the FASB-IASB convergence project (i.e., Norwalk Agreement) will continue subsequent to mandatory adoption, US accounting programs will be…

  11. 10th International Workshop on Rule-Based Programming

    CERN Document Server

    Moreira, Anamaria Martins

    2010-01-01

    This volume contains the proceedings of RULE 2009: the tenth International Workshop on Rule-Based Programming. It took place in June 28th 2009, Brasilia, Brazil, as a satellite event of RDP 2009. The first Rule workshop was held in Montreal in 2000, and subsequent editions took place in Firenze, Pittsburgh, Valencia, Aachen, Nara, Seattle, Paris, and Hagenberg.

  12. Exploring Adolescents' Thinking about Globalization in an International Education Program

    Science.gov (United States)

    Myers, John P.

    2010-01-01

    This research examined US high school students' thinking about economic and cultural globalization during their participation in an international education program. The findings mapped the students' categories for the two aspects of globalization and showed that the students' positions were shaped by relatively stable narratives characterizing the…

  13. Barriers to International Student Mobility: Evidence from the Erasmus Program

    Science.gov (United States)

    Souto-Otero, Manuel; Huisman, Jeroen; Beerkens, Maarja; de Wit, Hans; Vujic, Suncica

    2013-01-01

    In this article, we look at the barriers to international student mobility, with particular reference to the European Erasmus program. Much is known about factors that support or limit student mobility, but very few studies have made comparisons between participants and nonparticipants. Making use of a large data set on Erasmus and non-Erasmus…

  14. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  15. Advances on radiation protection dosimetry research, development and services at AEOI

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1993-01-01

    Radiation dosimetry is the main counterpart of an effective national radiation protection program to protect radiation workers, public and the environment against harmful effects of radiation. Research and development on radiation dosimetry are of vital needs to support national dosimetry services. The National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) being a National Authority on radiation protection is also responsible for radiation dosimetry research, development and services. Some highlights of such activities at NRPD are reviewed and discussed

  16. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  17. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  18. International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data

    OpenAIRE

    Muhammad, Andrew; Meade, Birgit Gisela Saager

    2011-01-01

    In a 2003 report, International Evidence on Food Consumption Patterns, ERS economists estimated income and price elasticities of demand for broad consumption categories and food categories across 114 countries using 1996 International Comparison Program (ICP) data. This report updates that analysis with an estimated two-stage demand system across 144 countries using 2005 ICP data. Advances in ICP data collection since 1996 led to better results and more accurate income and price elasticity es...

  19. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  20. International Piping Integrity Research Group (IPIRG) Program. Final report

    International Nuclear Information System (INIS)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program

  1. The International Coal Statistics Data Base program maintenance guide

    International Nuclear Information System (INIS)

    1991-06-01

    The International Coal Statistics Data Base (ICSD) is a microcomputer-based system which contains information related to international coal trade. This includes coal production, consumption, imports and exports information. The ICSD is a secondary data base, meaning that information contained therein is derived entirely from other primary sources. It uses dBase III+ and Lotus 1-2-3 to locate, report and display data. The system is used for analysis in preparing the Annual Prospects for World Coal Trade (DOE/EIA-0363) publication. The ICSD system is menu driven and also permits the user who is familiar with dBase and Lotus operations to leave the menu structure to perform independent queries. Documentation for the ICSD consists of three manuals -- the User's Guide, the Operations Manual, and the Program Maintenance Manual. This Program Maintenance Manual provides the information necessary to maintain and update the ICSD system. Two major types of program maintenance documentation are presented in this manual. The first is the source code for the dBase III+ routines and related non-dBase programs used in operating the ICSD. The second is listings of the major component database field structures. A third important consideration for dBase programming, the structure of index files, is presented in the listing of source code for the index maintenance program. 1 fig

  2. Research in radiobiology. Annual report, Internal Irradiation Program

    International Nuclear Information System (INIS)

    Miller, S.C.; Buster, D.S.

    1985-01-01

    The annual progress report for the Radiobiology Division of the University of Utah College of Medicine is presented. Summaries of twenty-four projects concerning the metabolism, dosimetry and toxicity of a variety of actinide elements in beagles or rats are given. Individual papers within this report have been separately indexed and abstracted for the data base

  3. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  4. The International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M.; Morrow, C.; Thompson, B.

    2006-12-01

    The International Heliophysical Year (IHY) will celebrate the 50th anniversary of the International Geophysical Year (IGY) and will continue its tradition of international research collaboration. The term "heliophysical" is an extension of the term "geophysical", where the Earth, Sun & Solar System are studied not as separate domains but through the universal processes governing the heliosphere. IHY represents a logical next-step, extending the studies into the heliosphere and thus including the drivers of geophysical change. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe the IHY Education and Outreach Program, how to participate and the benefits in doing so. ~

  5. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    be either through direct absorption of ionising radiation or via intermediate water free radicals. Fe 2+ ions are converted to Fe 3+ ions with a corresponding change in paramagnetic properties that may be quantified using NMR relaxation measurements or optical techniques. Due to predominantly diffusion-related limitations (and references therein), alternative polymer gel dosimeters were subsequently suggested. In polymer gels, monomers such as acrylamide and N,N'-methylene-bis-acrylamide are usually dispersed in a gelatin or agarose matrix. Monomers undergo a polymerisation reaction as a function of absorbed dose resulting in a 3D polymer gel matrix. The radiation-induced formation of polymer influences NMR relaxation properties and results in other physical changes that may be used to quantify absorbed radiation dose. As well as MRI, other quantitative techniques for measuring dose distributions include X-ray computer tomography, vibrational spectroscopy and ultrasound. Clinical applications of these radiologically tissue equivalent gel dosimeters have been reported in the literature. For further information of gel dosimetry and specifically clinical applications the proceedings of the 2nd International Conference on Radiotherapy Gel Dosimetry and references therein should be consulted

  6. The International Atomic Energy Agency's program on decontamination and decommissioning

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1989-01-01

    The International Atomic energy Agency (IAEA) is developing an integrated information base that will systematically cover the technical, regulatory, radiation protection, planning, and economic aspects related to the decontamination and decommissioning (D/D) of nuclear facilities. The object of this program is to assist member states in developing the required expertise, equipment, and programs so that they can decommission their nuclear facilities in a safe, timely, and cost-effective manner. In addition to providing information, the IAEA encourages research and provides technical assistance in the form of expert missions, equipment design and procurement, etc., to assist member states in implementing their D/D programs. The technology contained in some recent IAEA reports is reviewed, including the decontamination, segmentation, and demolition of concrete and steel; the recycle/reuse of components from decommissioning; and the reduction of occupational exposures in D/D and the regulatory process in decommissioning. The IAEA's future program is briefly reviewed

  7. CERT tribal internship program. Final intern report: Karen Sandoval, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The purpose of the project was to: create a working relationship between CERT and Colorado State University (CSU); involve and create relationships among individuals and departments at CSU; empower Native communities to run their own affairs; establish programs for the benefit of Tribes; and create Native American Program Development Office at CSU. The intern lists the following as the project results: revised a Native American Program Development document; confirmation from 45 departments across campus for Summit attendance [Tribal Human Resource Development Summit]; created initial invitee list from CSU departments and colleges; and informed CERT and CSU staff of results. Much of the response from the campus community has been positive and enthusiastic. They are ready to develop new Native American programs on campus, but need the awareness of what they can do to be respectful of Tribal needs.

  8. WE-G-BRA-01: Development of a Web-Based Dosimetry Training Tool for Therapy and Dosimetry Education.

    Science.gov (United States)

    Schreiber, E; Hannum, W; Zeman, E; Kostich, M; Tracton, G; Church, J; Dean, R; Adams, R

    2012-06-01

    Training in clinical dosimetry is an important component of radiation therapy, dosimetry, and medical physics training programs. Based on our in-house treatment planning system, PLanUNC, we are developing and assessing a web-based dosimetry teaching tool to augment existing training programs. We surveyed radiation therapy program directors to assess the need for clinical dosimetry training tools. Based on survey results, we are developing a web-based dosimetry-training tool consisting of 10 modules containing didactic content based on the ASRT curriculum, student assessment, and hands-on treatment planning exercises. External content specialists reviewed the self-paced modules for accuracy and content validity. Two external dosimetry students were observed as they completed three sections, and were interviewed in-depth to evaluate the modules. This qualitative analysis combined features of usability testing with formative evaluation of instructional products. We revised the modules based on these data. Our next phase, quantitative evaluation, will assess the effectiveness of the modules, the quality of the interactivity and the degree of student engagement when completing the modules. Sixty-four percent of program directors indicated they had insufficient local resources for dosimetry training, and over 90% indicated interest in web-based training tools as teaching supplements. External evaluators indicated module content was appropriate and accurate. Students indicated the modules were easy to use with clear and understandable content. They were engaged when using the modules and motivated by the interactive components. They placed value on the exercises and the feedback they received. Inter-institutional evaluation improves the quality and generalizability of instructional modules. Carefully designed online learning modules are viewed as effective teaching tools by dosimetry students. The clinical dosimetry teaching tool will be made accessible to therapy and

  9. Age-specific models for evaluating dose and risk from internal exposures to radionuclides: Report of current work of the Metabolism and Dosimetry Research Group, July 1, 1985-June 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Warren, B.P. (eds.)

    1987-09-01

    A projection of the health risk to a population internally exposed to a radionuclide requires explicit or implicit use of demographic, biokinetic, dosimetric, and dose-response models. Exposure guidelines have been based on models for a reference adult with a fixed life span. In this report, we describe recent efforts to develop a comprehensive methodology for estimation of radiogenic risk to individuals and to heterogeneous populations. Emphasis is on age-dependent biokinetics and dosimetry for internal emitters, but consideration also is given to conversion of age-specific doses to estimates of risk using realistic, site-specific demographic models and best available age-specific dose-response functions. We discuss how the methods described here may also improve estimates for the reference adult usually considered in radiation protection. 159 refs.

  10. Age-specific models for evaluating dose and risk from internal exposures to radionuclides: Report of current work of the Metabolism and Dosimetry Research Group, July 1, 1985-June 30, 1987

    International Nuclear Information System (INIS)

    Leggett, R.W.; Warren, B.P.

    1987-09-01

    A projection of the health risk to a population internally exposed to a radionuclide requires explicit or implicit use of demographic, biokinetic, dosimetric, and dose-response models. Exposure guidelines have been based on models for a reference adult with a fixed life span. In this report, we describe recent efforts to develop a comprehensive methodology for estimation of radiogenic risk to individuals and to heterogeneous populations. Emphasis is on age-dependent biokinetics and dosimetry for internal emitters, but consideration also is given to conversion of age-specific doses to estimates of risk using realistic, site-specific demographic models and best available age-specific dose-response functions. We discuss how the methods described here may also improve estimates for the reference adult usually considered in radiation protection. 159 refs

  11. 75 FR 39206 - Proposed Information Collection; Comment Request; International Buyer Program Application and...

    Science.gov (United States)

    2010-07-08

    ... determine which U.S. firms are interested in meeting with international business visitors and the overseas... International Trade Administration Proposed Information Collection; Comment Request; International Buyer Program Application and Exhibitor Data AGENCY: International Trade Administration, Commerce. ACTION: Notice. SUMMARY...

  12. International Code Assessment and Applications Program: Annual report

    International Nuclear Information System (INIS)

    Ting, P.; Hanson, R.; Jenks, R.

    1987-03-01

    This is the first annual report of the International Code Assessment and Applications Program (ICAP). The ICAP was organized by the Office of Nuclear Regulatory Research, United States Nuclear Regulatory Commission (USNRC) in 1985. The ICAP is an international cooperative reactor safety research program planned to continue over a period of approximately five years. To date, eleven European and Asian countries/organizations have joined the program through bilateral agreements with the USNRC. Seven proposed agreements are currently under negotiation. The primary mission of the ICAP is to provide independent assessment of the three major advanced computer codes (RELAP5, TRAC-PWR, and TRAC-BWR) developed by the USNRC. However, program activities can be expected to enhance the assessment process throughout member countries. The codes were developed to calculate the reactor plant response to transients and loss-of-coolant accidents. Accurate prediction of normal and abnormal plant response using the codes enhances procedures and regulations used for the safe operation of the plant and also provides technical basis for assessing the safety margin of future reactor plant designs. The ICAP is providing required assessment data that will contribute to quantification of the code uncertainty for each code. The first annual report is devoted to coverage of program activities and accomplishments during the period between April 1985 and March 1987

  13. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  14. 1997 Operating plan for the Office of International Health Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    One year ago, the Office of International Health Programs provided you with our 1996 Operating Plan, which defined our ideas and ideals for conducting business in 1996. We have again this year undertaken an intensive planning effort, first reviewing our accomplishments and shortcomings during 1996, and then developing plans and priorities for the upcoming year, taking into account input from customers and outside review panels, and ensuring that the demands on the office have been balanced with anticipated human, financial, and material resources.

  15. Why is a high accuracy needed in dosimetry

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of γ and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control

  16. VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4.

    Science.gov (United States)

    Kost, Susan D; Dewaraja, Yuni K; Abramson, Richard G; Stabin, Michael G

    2015-02-01

    We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy ((131)I, (90)Y, (111)In, (177)Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by (131)I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression.

  17. The international framework for safeguarding peaceful nuclear energy programs

    International Nuclear Information System (INIS)

    Mazer, B.M.

    1980-01-01

    International law, in response to the need for safeguard assurances, has provided a framework which can be utilized by supplier and recipient states. Multilateral treaties have created the International Atomic Energy Agency which can serve a vital role in the establishment and supervision of safeguard agreements for nuclear energy programs. The Non-Proliferation Treaty has created definite obligations on nuclear-weapon and non-nuclear weapon states to alleviate some possibilities of proliferation and has rejuvenated the function of the IAEA in providing safeguards, especially to non-nuclear-weapon states which are parties to the Non-Proliferation treaty. States which are not parties to the Non-Proliferation Treaty may receive nuclear energy co-operation subject to IAEA safeguards. States like Canada, have insisted through the bilateral nuclear energy co-operation agreements that either individual or joint agreement be reached with the IAEA for the application of safeguards. Trilateral treaties among Canada, the recipient state and the IAEA have been employed and can provide the necessary assurances against the diversion of peaceful nuclear energy programs to military or non-peaceful uses. The advent of the Nuclear Suppliers Group and its guidlines has definitely advanced the cause of ensuring peaceful uses of nuclear energy. The ultimate objective should be the creation of an international structure incorporating the application of the most comprehensive safeguards which will be applied universally to all nuclear energy programs

  18. [International collaboration to develop a nurse practitioner master's program].

    Science.gov (United States)

    Tang, Woung-Ru

    2007-12-01

    Because of the shortage of resident doctors and in order to raise standards, hospitals and medical centers have trained their own nurse practitioners (NPs). Given the absence of standard training criteria and an unevenness of faculty quality, however, many NPs play the role of medical substitute, which is far from the independent role performed by NPs in foreign countries. It is therefore necessary to include NP training within higher education. The Graduate Institute of Nursing at Chang Gung University established the first NP in-service training program in 2003 through international collaboration, with the purpose of cultivating advanced clinical nursing talents. The program emphasizes the importance of clinical reasoning and practical training, in order to enable students to perform the multiple roles of treatment and caring undertaken by NPs. Experts in advanced nursing and clinical medicine from Taiwan and abroad were invited to serve as lecturers. The students also had the opportunity to take NP courses at Oregon Health and Science University (USA) and participate in clinical visits. The results have been widely praised. International collaboration is built upon the mutual trust of the parties, and its success is determined by the measures that it involves, as well as by the global vision and competence of participants. This paper shares the advantages and disadvantages of the NP master's program through international collaboration.

  19. CERT tribal internship program. Final intern report: Maria Perez, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Historically, American Indian Tribes have lacked sufficient numbers of trained, technical personnel from their communities to serve their communities; tribal expertise in the fields of science, business and engineering being extremely rare and programs to encourage these disciplines almost non-existent. Subsequently, Tribes have made crucial decisions about their land and other facets of Tribal existence based upon outside technical expertise, such as that provided by the United States government and/or private industries. These outside expert opinions rarely took into account the traditional and cultural values of the Tribes being advised. The purpose of this internship was twofold: Create and maintain a working relationship between CERT and Colorado State University (CSU) to plan for the Summit on Tribal human resource development; and Evaluate and engage in current efforts to strengthen the Tribal Resource Institute in Business, Engineering and Science (TRIBES) program. The intern lists the following as the project results: Positive interactions and productive meetings between CERT and CSU; Gathered information from Tribes; CERT database structure modification; Experience as facilitator in participating methods; Preliminary job descriptions for staff of future TRIBES programs; and Additions for the intern`s personal database of professional contacts and resources.

  20. Strategies of Supporting Chinese Students in an International Joint Degree Program

    Science.gov (United States)

    Arshakian, Arakssi; Wang, Vivian

    2017-01-01

    The international joint degree program is one of the recent ways of international collaborations in Higher Education. Those programs involve intensive academic collaborations as well as institutional alliance.?Such programs could provide a supportive environment for international students through international partnerships. The article provides a…

  1. Japan's Lunar Exploration Program and Its Contribution to International Coordination

    Science.gov (United States)

    Kawaguchi, Junichiro; Kato, Manabu; Matsumoto, Kohtaro; Hashimoto, Tatsuaki

    . JAXA built its Lunar and Planetary Exploration Center (JSPEC) last April. JSPEC is doing not only the moon but planetary exploration encompassing from science to so-called exploration. JSPEC elaborates strategies of science and technology, program planning and promotion of Space Exploration activities through domestic and international collaborations. And at the same time, the Specific R&D activities for engineering and science development, operation and other related activities for spacecraft are also performed there, including the research and analysis of scientific and technical aspects for future missions. Simply speaking, the JSPEC of JAXA looks at both Exploration together with Science Missions. The activity includes the Moon, Mars and NEOs plus Primitive Bodies where humans someday may stay or may utilize in future. This January, the Lunar Exploration WG was established under the government, and started the strategic discussion at the government level on how to go about the lunar exploration in Japan. The program strategy made a report this January and made a recommendation that Japan should have a lunar lander until middle of 2010s. JAXA started its 2nd 5-year plan from 2008, and JAXA completed the MDR (Mission Definition Review) for the SELENE-2 last July, and established the Phase-A study team for it. JAXA believes it leads to International Cooperation, Discovery and Innovation and shall consist of two types of missions. The first one is the Robotic Lunar Missions, in which JAXA will make an in-depth scientific measurements and utilization, until the middle of 2010s. The other one is the Human Lunar Missions, in which the missions anyhow shall be autonomous with its own objectives, making use of humans related technologies, while pursuing the Japanese astronaut on the moon as early as possible in international activity to commensurate with its international status. As to its Independent Lunar Surface activity by Japan's own space systems assets still

  2. The American Nuclear Society's international student exchange program

    International Nuclear Information System (INIS)

    Bornstein, I.

    1988-01-01

    The American Nuclear Society's (ANS's) International Student Exchange Program sponsors bilateral exchanges of students form graduate schools in American universities with students from graduate schools in France, the Federal Republic of Germany (FRG), and Japan. The program, now in its 12th year, was initiated in response to an inquiry to Argonne National Laboratory (ANL) from the director of the Centre d'Etudes Nucleaires de Saclay proposing to send French nuclear engineering students to the United States for summer jobs. The laboratory was asked to accept two students to work on some nuclear technology activity and ANS was invited to send American students to France on an exchange basis. To date, 200 students have taken part in the program. It has been a maturing and enriching experience for them, and many strong and enduring friendships have been fostered among the participants, many of whom will become future leaders in their countries

  3. The accelerated internal medicine program at the University of Kentucky.

    Science.gov (United States)

    Thompson, J S; Haist, S A; DeSimone, P A; Engelberg, J; Rich, E C

    1992-06-15

    Concern is growing about the ability of categorical medicine residency programs, structured within academic health centers, to provide balanced, progressive, postgraduate internal medicine education. Detrimental factors, including over-representation of critically ill patients, shortened length of hospitalization, stress, discontinuity between undergraduate and graduate training, rotational assignments driven by hospital service imperatives, and total costs, may all negatively affect internal medicine residency education. Therefore, an experimental accelerated internal medicine (AIM) curriculum combining 3 years of undergraduate with 3 years of graduate internal medicine education has been initiated by the Department of Medicine and the College of Medicine at the University of Kentucky. After completion of the third year and during the first 13 months of the AIM curriculum, selected students are rotated through an integrated series of educational experiences that incorporate all of the requirements for graduation from medical school and progressively advance the students' skills, knowledge, and responsibilities to that of a second-year resident. Thereafter, the curriculum is similar to that of the categorical residents, except that more ambulatory care and off-site rotations are interspersed to better provide the educational experiences representative of the practice of internal medicine. Evaluations of the first groups of AIM residents indicate that their performance has equaled that of the control residents who graduated after 4 years from the College of Medicine. Furthermore, the AIM residents report general acceptance by their fellow residents and attending physicians and report no undue stress in making the transition.

  4. Eight years of the Mayo International Health Program: what an international elective adds to resident education.

    Science.gov (United States)

    Sawatsky, Adam P; Rosenman, David J; Merry, Stephen P; McDonald, Furman S

    2010-08-01

    To examine the educational benefits of international elective rotations during graduate medical education. We studied Mayo International Health Program (MIHP) participants from April 1, 2001, through July 31, 2008. Data from the 162 resident postrotation reports were reviewed and used to quantitatively and qualitatively analyze MIHP elective experiences. Qualitative analysis of the narrative data was performed using NVivo7 (QRS International, Melbourne, Australia), a qualitative research program, and passages were coded and analyzed for trends and themes. During the study period, 162 residents representing 20 different specialties were awarded scholarships through the MIHP. Residents rotated in 43 countries, serving over 40,000 patients worldwide. Their reports indicated multiple educational and personal benefits, including gaining experience with a wide variety of pathology, learning to work with limited resources, developing clinical and surgical skills, participating in resident education, and experiencing new peoples and cultures. The MIHP provides the structure and funding to enable residents from a variety of specialties to participate in international electives and obtain an identifiable set of unique, valuable educational experiences likely to shape them into better physicians. Such international health electives should be encouraged in graduate medical education.

  5. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  6. 76 FR 51943 - Proposed Information Collection; Comment Request; International Dolphin Conservation Program

    Science.gov (United States)

    2011-08-19

    ... Collection; Comment Request; International Dolphin Conservation Program AGENCY: National Oceanic and... and Atmospheric Administration (NOAA) collects information to implement the International Dolphin... specific conditions, from [[Page 51944

  7. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  8. International organisation of ocean programs: Making a virtue of necessity

    Science.gov (United States)

    Mcewan, Angus

    1992-01-01

    When faced with the needs of climate prediction, a sharp contrast is revealed between existing networks for the observation of the atmosphere and for the ocean. Even the largest and longest-serving ocean data networks were created for their value to a specific user (usually with a defence, fishing or other maritime purpose) and the major compilations of historical data have needed extensive scientific input to reconcile the differences and deficiencies of the various sources. Vast amounts of such data remain inaccessible or unusable. Observations for research purposes have been generally short lived and funded on the basis of single initiatives. Even major programs such as FGGE, TOGA and WOCE have been driven by the dedicated interest of a surprisingly small number of individuals, and have been funded from a wide variety of temporary allocations. Recognising the global scale of ocean observations needed for climate research, international cooperation and coordination is an unavoidable necessity, resulting in the creation of such bodies as the Committee for Climatic Changes and the Ocean (CCCO), with the tasks of: (1) defining the scientific elements of research and ocean observation which meet the needs of climate prediction and amelioration; (2) translating these elements into terms of programs, projects or requirements that can be understood and participated in by individual nations and marine agencies; and (3) the sponsorship of specialist groups to facilitate the definition of research programs, the implementation of cooperative international activity and the dissemination of results.

  9. Retrospective dosimetry of Chernobyl liquidators

    International Nuclear Information System (INIS)

    Chumak, V.V.; Bakhanova, E.V.; Sholom, S.V.; Pasalskaya, L.F.; Bouville, A.; Krjuchkov, V.P.

    2000-01-01

    sets and, clearly, may lead to conclusion regarding the adequacy of the data set in general, not on individual basis. Another possibility to verify existing dose records is application of reliable retrospective dosimetric techniques, which may be used as a reference. Dosimetric screening of the study cohort requires a tool, which should meet two basic requirements: to be cheap and practical, and to be applicable to all subjects (desirably even post mortem). Till recent time such tool was missing and none of the known methods of retrospective dosimetry matched these criteria. Therefore in the novel method of Soft Expert Assessment Dosimetry (SEAD) was developed by the International Dosimetric Group operating under auspices of Ukraine-USA-France and CEC-Russia-Byelarus collaboration. This method is based on the analysis of information acquired from interviewing of liquidators and exploits regularities of dose distributions. The main advantage of this method is applicability to all subjects making it good for the screening of the cohort. Case-control study requires closer consideration of fewer subjects and in this regard high precision techniques (like EPR) make use. High cost of analyses is acceptable in this case. Practical implementation of this approach is illustrated by some on-going studies. Pros and contras of selected methods, as well as implementation considerations will be discussed as well. (author)

  10. Argentine intercomparison programme for personal dosimetry

    International Nuclear Information System (INIS)

    Gregori, B.N.; Papadopulos, S.B.; Cruzate, J.; Kunst, J.J.; Saravi, M.

    2005-01-01

    Full text: In 1997 began in Argentine, sponsored by Nuclear Regulatory Authority (ARN) the intercomparison program for personal dosimetry laboratories, on a voluntary basis. Up to know 6 exercises have been done. The program began with a workshop to present the quantities, personal dose equivalent, Hp(10) and extremities dose equivalent, Hs(d). The first aim of this program was to know the true sate of personal dosimetry laboratories in the country, and then introduce the personal dose equivalent, Hp(10) into the dose measurements. The Regional Reference Center for Dosimetry (CCR), belonging to CNEA and the Physical Dosimetry Laboratory of ARN performed the irradiation. Those were done air free and on ICRU phantom, using x-ray, quality ISO: W60, W110 and W200; and 137 Cs and 60 Co gamma rays. The irradiation was made following ISO 4037 (2) recommendations. There are studied the dose, energy and angular response of the different measuring system. The range of the dose analyzed was from 0.2 mSv up to 80 mSv. The beam incidence was normal and also 20 o and 60 o . The dosimeters irradiation's were performed kerma in free in air and in phantom in order to study the availability of the service to evaluate the behavior as a function of kerma free in air or Hp(10). At the same time several items have been asked to each participant referring to the action range, the detectors characteristics, the laboratory procedures, the existence of an algorithm and its use for the dosimeter evaluation and the wish to participate in a quality assurance program. The program worked in writing a standard of personal dosimetry laboratories, that was published in 2001. In this work the results of each laboratory and its performance based on the ICRP-60 and ICRP-35 acceptance criteria are shown. Also the laboratory evolution and inquiry analyses have been included. (author)

  11. Study on the Internship Programs for International Students

    Science.gov (United States)

    Yamamoto, Izumi; Iwatsu, Fumio

    Recently, the number of international students who have an experience of internship as employment experience has been increasing. In general, internship is a system through which students gain a work experience relating to his/her major field and future career, while at university. Many Japanese leading industries are situated in this Chubu area. Therefore, we have tried to facilitate an internship as a part of the curriculum from 2005. Here we report the progress of our internship programs and try to study the possibility of its future. Through this study, we can say that an internship would be a good opportunity for both international students and Japanese companies to understand each other. On the other hand, it is hard to bring the system to match students and companies, form both side of financial base and human resource. Therefore, to bring up good talent becomes to good connection with the industrial world.

  12. International medical graduates - challenges faced in the Australian training program.

    Science.gov (United States)

    McDonnell, Louise; Usherwood, Tim

    2008-06-01

    Few studies have examined the challenges faced by international medical graduate (IMG) registrars and their supervisors in the Australian General Practice Training Program. This study explored registrar and supervisor perspectives on these challenges. Five IMG registrars and 10 experienced supervisors were interviewed between August 2006 and March 2007. Six themes were identified: language and communication, cultural issues, understanding the Australian health care system, clinical knowledge and its application, consulting styles and registrar support. Addressing the issues identified in this study can provide an easier transition for IMG registrars and help them reach their full potential.

  13. The Geosphere - Biosphere international program and the global change

    International Nuclear Information System (INIS)

    Chanin, M.L.

    1991-01-01

    The objective of the Geosphere-Biosphere International Program (GBIP) is to achieve a correct approach of the various biogeochemical interactions between the different components of the environment (oceans, atmosphere, biosphere). The main themes are: study of the chemical regulation in the global atmosphere and influence of natural and anthropogenic processes on trace element cycles; influence of the oceanic biogeochemical processes on climates and their response to climatic changes; influence of soil utilization modification (especially coastal) on climates and ecosystems; interaction between vegetation and the water cycle; interaction between climatic changes, ecosystems and agricultural productivity; approaches to climate modelling. French component of the GBIP is presented [fr

  14. 13th Workshop on Radiation Monitoring for the International Space Station - Final Program

    International Nuclear Information System (INIS)

    2008-01-01

    The Workshop on Radiation Monitoring for the International Space Station (WRMISS) has been held annually since 1996. The major purpose of WRMISS is to provide a forum for discussion of technical issues concerning radiation dosimetry aboard the International Space Station. This includes discussion of new results, improved instrumentation, detector calibration, and radiation environment and transport models. The goal of WRMISS is to enhance international efforts to provide the best information on the space radiation environment in low-Earth orbit and on the exposure of astronauts and cosmonauts in order to optimize the radiation safety of the ISS crew. During the 13 th Annual WRMISS, held in the Institute of Nuclear Physics (Krakow, Poland) on 8-10 September 2008, participants presented 47 lectures

  15. Techniques for high dose dosimetry in industry, agriculture and medicine. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1999-03-01

    In radiation processing, it is important that the irradiated products are reliable and safe. For processes that impact directly on public health, dosimetry provides a formal means of regulation. For other applications, measurements are indispensable for process control to improve quality and the measurements have to be standardized. Thus, dosimetry is an essential part of quality standards for radiation processes. In the developing world, establishment of such quality standards is only in the embryonic stage, and the IAEA should and does play a role in the development and implementation of these standards. The IAEA initiated a programme of high dose dosimetry in 1977 to accomplish dose standardization on an industrial scale, to promote dosimetry as a quality control measure in radiation processing, and to help develop new dosimetry techniques. Since dosimetry has such a key role in these processes, the IAEA organized this international symposium to provide a forum for presentation and discussion of up-to-date developments in this field. Since the International Symposium on High Dose Dosimetry for Radiation Processing held in 1990 the field of dosimetry has deepened and broadened. There is a definite shift towards quality assurance, which calls for dependable dosimetry systems with well established traceability to national or international standards. Also, many new applications of radiation have been developed and for these new and innovative dosimetry methods are needed. This symposium has provided a forum for the discussion of many of these developments and consideration of the outstanding issues in these vital areas

  16. On-Board TL Dosimetry: Possibilities and Limitations

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; PAzmandi, T.

    2001-01-01

    Full text: The paper shortly deals with application of TLDs for dosimetry of ISS, e.g. personal dosimetry, phantom measurements, mapping, monitoring and neutron dosimetry. The main characteristics of the on-board and ground evaluation are compared. The main advantages and disadvantages of the on-board evaluation are summarised. Finally the planned future improvements of the Pille system are discussed like development of an RS485 interface for alternative data transfer, introduction of smaller dosimeters (capsules), use of a more use-friendly display (80 characters), application of internal memory instead of memory card and improvement of the dosimeter evaluation (glow curve fit, background subtraction). (author)

  17. 34 CFR 660.1 - What is the International Research and Studies Program?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the International Research and Studies Program...) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION THE INTERNATIONAL RESEARCH AND STUDIES PROGRAM General § 660.1 What is the International Research and Studies Program? The Secretary may, directly or...

  18. 34 CFR 658.1 - What is the Undergraduate International Studies and Foreign Language Program?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Undergraduate International Studies and... STUDIES AND FOREIGN LANGUAGE PROGRAM General § 658.1 What is the Undergraduate International Studies and Foreign Language Program? The Undergraduate International Studies and Foreign Language Program is designed...

  19. 34 CFR 655.3 - What regulations apply to the International Education Programs?

    Science.gov (United States)

    2010-07-01

    ... Foreign Language and Area Studies or Foreign Language and International Studies); (2) 34 CFR part 657 (Foreign Language and Area Studies Fellowships Program); (3) 34 CFR part 658 (Undergraduate International Studies and Foreign Language Program); (4) 34 CFR part 660 (International Research and Studies Program...

  20. Nuclear Decay Data for the International Reactor Dosimetry Library for Fission and Fusion (IRDFF: Updated Evaluations of the Half-Lives and Gamma Ray Intensities

    Directory of Open Access Journals (Sweden)

    Chechev Valery P.

    2016-01-01

    Full Text Available Updated evaluations of the half-lives and prominent gamma ray intensities have been presented for 20 radionuclides – dosimetry reaction residuals. The new values of these decay characteristics recommended for the IRDFF library were obtained using the approaches and methodology adopted by the working group of the Decay Data Evaluation Project (DDEP cooperation. The experimental data published up to 2014 were taken into account in updated evaluations. The list of radionuclides includes 3H, 18F, 22Na, 24Na, 46Sc, 51Cr, 54Mn, 59Fe, 57Co, 60Co, 57Ni, 64Cu, 88Y, 132Te, 131I, 140Ba, 140La, 141Ce, 182Ta, 198Au.

  1. 75 FR 53640 - Call for Applications for the International Buyer Program Calendar Year 2012

    Science.gov (United States)

    2010-09-01

    ... addition, the applicant should describe in detail the international marketing program to be conducted for... DEPARTMENT OF COMMERCE International Trade Administration [Docket No.: 100806330-0330-01] Call for Applications for the International Buyer Program Calendar Year 2012 AGENCY: International Trade Administration...

  2. 76 FR 54428 - Call for Applications for the International Buyer Program Calendar Year 2013

    Science.gov (United States)

    2011-09-01

    ... in detail the international marketing program to be conducted for the event, and explain how efforts... DEPARTMENT OF COMMERCE International Trade Administration [Docket No. 110729450-1450-01] Call for Applications for the International Buyer Program Calendar Year 2013 AGENCY: International Trade Administration...

  3. International Review of Standards and Labeling Programs for Distribution Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scholand, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carreño, Ana María [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hernandez, Carolina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    Transmission and distribution (T&D) losses in electricity networks represent 8.5% of final energy consumption in the world. In Latin America, T&D losses range between 6% and 20% of final energy consumption, and represent 7% in Chile. Because approximately one-third of T&D losses take place in distribution transformers alone, there is significant potential to save energy and reduce costs and carbon emissions through policy intervention to increase distribution transformer efficiency. A large number of economies around the world have recognized the significant impact of addressing distribution losses and have implemented policies to support market transformation towards more efficient distribution transformers. As a result, there is considerable international experience to be shared and leveraged to inform countries interested in reducing distribution losses through policy intervention. The report builds upon past international studies of standards and labeling (S&L) programs for distribution transformers to present the current energy efficiency programs for distribution transformers around the world.

  4. Quality audit service of the IAEA for radiation processing dosimetry

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1996-01-01

    The mandate of the International Atomic Energy Agency includes assistance to Member States to establish nuclear technologies safely and effectively. In pursuit of this, a quality audit service for dosimetry relevant to radiation processing was initiated as a key element of the High-Dose Standardization Programme of the IAEA. The standardization of dosimetry for radiation processing provides a justification for the regulatory approval of irradiated products and their unrestricted international trade. In recent times, the Agency's Dosimetry Laboratory has placed concentrated effort towards establishing a quality assurance programme based on the ISO 9000 series documents. The need for reliable and accurate dosimetry for radiation processing is increasing in Member States and we can envisage a definite role for the SSDLs in such a programme. (author). 10 refs, 3 figs

  5. ESR/tooth enamel dosimetry application to Chernobyl case: individual retrospective dosimetry of the liquidators and wild animals

    International Nuclear Information System (INIS)

    Bugai, A.; Baryakchtar, V.G.; Baran, N.

    1996-01-01

    ESR/tooth enamel dosimetry technique was used for individual retrospective dosimetry of the servicemen who had worked in 1986-1987 at the liquidation of consequences of the Chernobyl accident. For 18 investigated cases, the values varied from 0,10 (sensitivity limit) to 1,75 Gy. The same technique was used for individual dosimetry of wild animals boars, red deers, elks) hunted at contaminated 30-km area around the Chernobyl Power Plant. Measured values varied from 0,20 to 5,0 Gy/year and were compared with calculated for external and internal irradiation

  6. Undergraduate Program Focuses on International Issues in Water Resources

    Science.gov (United States)

    Tyler, Scott W.; Silliman, Stephen E.; Campana, Michael E.

    2004-03-01

    For the past two summers, faculty from the University of Notre Dame, the University of Nevada, Reno, and the University of New Mexico have directed a National Science Foundation (NSF) Research Experience for Undergraduates (REU) site focusing on issues in international water resources. (See REU Site on Water Resources in Developing Countries, www.nd.edu/~reuwater/). The overarching objective of this project is to engage and educate U.S. students in the issues and problems facing the world's nations in water resource development and potable water supply. The stated goals of NSF's Research Experience for Undergraduates (REU) program are to expand student participation in all areas of research, and specifically, to attract a diverse group of students into the fields of science and engineering, including graduate-level studies. In addition, international REU sites often seek to develop students who can be ``globally competen;'' that is, understand science and engineering in frameworks other than a North American perspective. (More information on international REU sites and site development can be found at www.nsftokyo.org/REU/ and www.nsf.gov/sbe/int/.)

  7. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  8. Characterization and evaluation studies on some JAERI dosimetry systems

    International Nuclear Information System (INIS)

    Kojima, T.; Sunaga, H.; Tachibana, H.; Takizawa, H.; Tanaka, R.

    2000-01-01

    Characterization and evaluation studies were carried out on some JAERI dosimetry systems, mainly alanine-ESR, in terms of the influence on the dose response of parameters such as orientation at ESR analysis, and the temperature during irradiation and analysis. Feasibility study for application of these dosimetry systems to electrons with energies lower than 4 MeV and bremsstrahlung (X rays) was also performed parallel to their reliability check through international dose intercomparison. (author)

  9. ILWS program support by the OBSTANOVKA International Experiment onboard ISS

    Science.gov (United States)

    Klimov, S.; Korepanov, V.; Belyayev, S.; Lizunov, G.; Stanev, G.; Georgieva, K.; Kirov, B.; Gough, P.; Alleyne, H.; Balikhin, M.; Obstanovka Team

    International Living With a Star program is aimed at the creation of a global monitoring system allowing us to observe in a continuous way the Sun's activity and to follow its development and influence on numerous Earth structures - natural, industrial and especially human ones. Such an efficiently operating system has to include regular observations at every stage of the Sun-Earth interaction - from far space to the Earth's surface. The International Space Station (ISS) is well located as a long term ionospheric monitoring site. To this end, an international team headed by Space Research Institute of Russian Academy of Sciences agreed to create a system of space buoys and to install it onboard the Russian segment of ISS with the goal of studying the ISS environment (OBSTANOVKA in Russian). The "OBSTANOVKA-1" stage will be carried out first (launch in 2006) to provide a databank of electromagnetic fields and plasma-wave processes occurring in the ISS near-surface zone in order to study the plasma component features of near-Earth space. To achieve these goals the Plasma-Wave Complex (PWC) of scientific instrumentation will be created this year. The international cooperation (listed by the authors above) allows us not only to decrease the cost of instrumentation for every participating party but also to raise the scientific and technological level of the experiment. The main scientific premises of the OBSTANOVKA-1 experiment, realization schedule and a detailed description of PWC composition and measured parameters are given in this report. This work is partially supported by NSAU Contract No 1-02/03.

  10. Determining Priorities for a New International Ocean Drilling Program

    Science.gov (United States)

    Ravelo, Christina; Bach, Wolfgang

    2010-01-01

    Integrated Ocean Drilling Program New Ventures in Exploring Scientific Targets (INVEST); Bremen, Germany, 23-25 September 2009; A multidisciplinary, international community meeting was held in Germany to define the research goals of the new Integrated Ocean Drilling Program (IODP) New Ventures in Exploring Scientific Targets (INVEST) program. The meeting, attended by 584 participants from 21 countries and more than 200 institutions and agencies, featured 12 keynote lectures and 50 working groups. Participants defined five innovative research directions that are central to the study of the Earth system and that require ocean drilling. First, climate change impacts can be studied through ocean drilling. The study of long-term climate change impacts on the environment is only possible through examination of the geologic record. Meeting attendees agreed that future ocean drilling is essential to the study of cryosphere dynamics and sea level change. Drilled ocean sediments will provide critical high-fidelity records of marine and terrestrial ecosystem responses and feedbacks to climate change. Ocean drilling is vital to studies of long-term changes in the hydrologic cycle as they relate to greenhouse gas and other forcings and to studies of the processes that account for abrupt climate changes and climate extremes.

  11. International Programs in the Education of Residents: Benefits for the Resident and the Home Program.

    Science.gov (United States)

    Rodriguez, Abigail; Ho, Trung; Verheyden, Charles

    2015-11-01

    There is a significant need for basic surgical care worldwide. In recent years, modest improvement in fulfilling this demand has been achieved through international medical mission trips from various organizations. These humanitarian endeavors and global health experiences have generated increasing interest in participating in international missions from surgical residents. However, many academic institutions currently do not have the infrastructure or desire to support surgical residents participating in medical missions. This paper aims to illustrate that careful, planned integration of medical mission trips into the residency curriculum will develop and enhance resident education and experience by fulfilling all six Accreditation Council for Graduate Medical Education (ACGME) core competencies and by benefitting the native program.

  12. National intercomparison on in vivo measurement of Iodine-131 in the thyroid within a Brazilian Internal Dosimetry Laboratory Network - IAEA PROJECT BRA9055; Intercomparacao nacional de medicao in vivo de Iodo-131 na tireoide - Projeto TC IAEA BRA 9055

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A., E-mail: bmdantas@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro (Brazil); Cardoso, J.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ramos, M.A.P.; Sa, M.S. [Eletrobras Eletronuclear, Angra dos Reis, RJ (Brazil); Alonso, T.C.; Silva, T.V.; Oliveira, C.M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Lima, F.F.; Oliveira, M.L.; Lacerda, I.V.B. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fajgelj, A. [International Atomic Energy Agency (IAEA), Vienna (Austria)

    2013-08-15

    In 2011, in Brazil, a National Intercalibration and Intercomparison exercise on in vivo measurement of iodine-131 in the thyroid was carried out in the scope of the Project IAEABRA9055 'Establishing a National Laboratory Network for Internal Individual Monitoring'. The exercise was conducted by the Institute for Radiation Protection and Dosimetry (IRD) and the Institute for Nuclear and Energetic Research (IPEN), from National Nuclear Energy Commission (CNEN). The objectives of the exercise were to (i) update information on current instrumentation resources available in the in vivo monitoring laboratories in operation in Brazil and to (ii) verify the reliability of the results of measurements of iodine-131 in thyroid provided by those laboratories. The procedure consisted on the measurement of a neck-thyroid anthropomorphic phantom provided by the In Vivo Monitoring Laboratory of IRD, containing two barium-133 standard sources certified by the National Laboratory for Metrology of Ionizing Radiation. Each participant should measure the phantom in a period of five days. The five laboratories are located in the States of Rio de Janeiro, Sao Paulo, Minas Gerais and Pernambuco, in the following Institutions: Institute for Radiation Protection and Dosimetry, Nuclear Power Station Almirante Alvaro Alberto, Center for the Development of Nuclear Technology, Institute for Nuclear and Energetic Research, and Regional Center for Nuclear Sciences. The results reported included: activity measured, minimum detectable activity, accuracy and precision. The performance of the laboratories was evaluated according to the criteria suggested by ANSI 13.30 indicating their capacity to provide reliable results of iodine-131 content in the thyroid. (author)

  13. Optimisation of reconstruction, volumetry and dosimetry for 99mTc-SPECT and 90Y-PET images: Towards reliable dose-volume histograms for selective internal radiation therapy with 90Y-microspheres.

    Science.gov (United States)

    Bernardini, M; Thevenet, H; Berthold, C; Desbrée, A; Smadja, C; Desiré, C; Bianciardi, M; Ghazzar, N

    2017-07-01

    In Selective Internal Radiation Therapy (SIRT), 99m Tc-MAA SPECT images are commonly used to predict microspheres distribution but recent works used 90 Y-microspheres PET images. Nevertheless, evaluation of the predictive power of 99m Tc-MAA has been hampered by the lack of reliable comparisons between 99m Tc-SPECT and 90 Y-PET images. Our aim was to determine the "in situ" optimisation procedure in order to reliably compare 99m Tc-SPECT and 90 Y-PET images and achieve optimal personal dosimetry. We acquired 99m Tc-SPECT/CT and 90 Y-PET/CT images of NEMA and Jaszczak phantoms. We found the best reconstruction parameters for quantification and for volume estimations. We determined adaptive threshold curves on the volumetric reconstruction. We copied the optimised volumes on the quantitative reconstruction, named here the "cross volumes" technique. Finally, we compared 99m Tc-SPECT and 90 Y-PET Dose Volume Histograms. Our "in situ" optimisation procedure decreased errors on volumes and quantification (from -44.2% and -15.8% to -3.4% and -3.28%, respectively, for the 26.5mL PET phantom sphere). Moreover, 99m Tc-SPECT and 90 Y-PET DVHs were equivalent only after the optimisation procedure (difference in mean dose PET images and allowed to achieve a reliable comparison between patient treatment planning and post implant dosimetry, notably by the use of the "cross volumes" technique. Methodology developed in this work will enable robust evaluations of the predictive power of 99m Tc-SPECT, as well as dose-response relationship and side effects in SIRT treatments. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  15. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual DosimetryWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MAY/JUNE will be available from their usual dispatchers on Tuesday 2 May.Please have your films changed before the 12 May.The colour of the dosimeter valid in is MAY/JUNE is YELLOW.Individual Dosimetry Service will be closed on Friday 28 April.

  16. Clinical radionuclide therapy dosimetry: the quest for the ''Holy Gray''

    International Nuclear Information System (INIS)

    Brans, B.; Bodei, L.; Giammarile, F.; Linden, O.; Tennvall, J.; Luster, M.; Oyen, W.J.G.

    2007-01-01

    Radionuclide therapy has distinct similarities to, but also profound differences from external radiotherapy. This review discusses techniques and results of previously developed dosimetry methods in thyroid carcinoma, neuro-endocrine tumours, solid tumours and lymphoma. In each case, emphasis is placed on the level of evidence and practical applicability. Although dosimetry has been of enormous value in the preclinical phase of radiopharmaceutical development, its clinical use to optimise administered activity on an individual patient basis has been less evident. In phase I and II trials, dosimetry may be considered an inherent part of therapy to establish the maximum tolerated dose and dose-response relationship. To prove that dosimetry-based radionuclide therapy is of additional benefit over fixed dosing or dosing per kilogram body weight, prospective randomised phase III trials with appropriate end points have to be undertaken. Data in the literature which underscore the potential of dosimetry to avoid under- and overdosing and to standardise radionuclide therapy methods internationally are very scarce. In each section, particular developments and insights into these therapies are related to opportunities for dosimetry. The recent developments in PET and PET/CT imaging, including micro-devices for animal research, and molecular medicine provide major challenges for innovative therapy and dosimetry techniques. Furthermore, the increasing scientific interest in the radiobiological features specific to radionuclide therapy will advance our ability to administer this treatment modality optimally. (orig.)

  17. Evaluating Security Assistance Programs: Performance Evaluation and the Expanded International Military Education and Training (E-IMET) Program

    National Research Council Canada - National Science Library

    Calhoun, Todd

    1998-01-01

    In 1991 the International Military Education and Training (IMET) program was expanded to include training programs focusing on civilian control over the military, respect for human rights, and responsible defense resource management...

  18. Mathematical operations in cytogenetic dosimetry: Dosgen

    International Nuclear Information System (INIS)

    Garcia L, O.; Zequera J, T.

    1996-01-01

    Handling of formulas and mathematical procedures for fitting and using of dose-response relationships in cytogenetic dosimetry is often difficulted by the absence of collaborators specialized in mathematics and computation. DOSGEN program contains the main mathematical operations which are used in cytogenetic dosimetry. It is able to run in IBM compatible Pc's by non-specialized personnel.The program possibilities are: Poisson distribution fitting test for the number of aberration per cell, dose assessment for whole body irradiation, dose assessment for partial irradiation and determination of irradiated fraction. The program allows on screen visualization and printing of results. DOSGEN has been developed in turbo pascal and is 33Kb of size. (authors). 4 refs

  19. North-south cooperation in international atmospheric programs

    Science.gov (United States)

    Roederer, J. G.

    The study of the inner workings of the atmosphere and how it links biosphere, oceans, soil, rocks, human systems and near-earth space into one single whole is one of the most difficult and ambitious endeavors of humankind. The biggest challenge is to identify and separate natural from human-induced changes and provide scientific information to allow governments formulate and implement policies that reconcile regional development with global environmental protection. Developing countries have a crucial role to play: they can offer much- needed human talent, labor and geographic coverage for the daunting task of monitoring and interpreting the complex, non-linear and chaotic system under study. Researchers engaged in the study of the atmosphere are confronted with scientific questions whose answers can have tremendous economic and political implications. This paper will discuss some of the organizational, political and psychological hurdles that must be considered and overcome in the planning of international programs of atmospheric research.

  20. Quantities and concepts used in radiation dosimetry

    International Nuclear Information System (INIS)

    Carlsson, G.A.; Carlsson, C.A.

    1982-01-01

    Radiation dosimetry is a pure physical science, as fostered by the elegant work of the International Commission on Radiation Units and Measurements (ICRU), in defining the basic quantities and units of dosimetry. Nevertheless, questions concerning the interpretation and application of some quantities still remain. The present work focuses on some of these questions and in particular deals with the quantity fluence which is frequently misunderstood. Radiation dosimetry is closely related to radiation transport theory, and the usefulness of the vectorial quantities used extensively in transport theory is pointed out. It is proposed that vectorial quantities be included in the radiometry considerations of the ICRU. This would contribute to clarifying the basic concepts of dosimetry and promoting its establishment as a physical science. Equations are given for calculating the absorbed dose in various conditions of radiation equilibrium, along with discussions of the quantities needed for their evaluations. These equations are relevant to the important field of cavity theory. Refinements of existing cavity theories, in particular those for photon and electron irradiations, can benefit from a deeper understanding of these equations and the various conditions of equilibrium in which they are valid. (author)

  1. International piping integrity research group (IPIRG) program final report

    International Nuclear Information System (INIS)

    Schmidt, R.; Wilkowski, G.; Scott, P.; Olsen, R.; Marschall, C.; Vieth, P.; Paul, D.

    1992-04-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Programme. The IPIRG Programme was an international group programme managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United states. The objective of the programme was to develop data needed to verify engineering methods for assessing the integrity of nuclear power plant piping that contains circumferential defects. The primary focus was an experimental task that investigated the behaviour of circumferentially flawed piping and piping systems to high-rate loading typical of seismic events. To accomplish these objectives a unique pipe loop test facility was designed and constructed. The pipe system was an expansion loop with over 30 m of 406-mm diameter pipe and five long radius elbows. Five experiments on flawed piping were conducted to failure in this facility with dynamic excitation. The report: provides background information on leak-before-break and flaw evaluation procedures in piping; summarizes the technical results of the programme; gives a relatively detailed assessment of the results from the various pipe fracture experiments and complementary analyses; and, summarizes the advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG Program

  2. International Polar Year 2007: An Integrated Heliospheric and Oceanographic Program?

    Science.gov (United States)

    Johnson, G.; Davila, J.

    An international symposium SPerspectives of Modern Polar ResearchT was convened - in Bad Durkeim, Germany 2001 to celebrated the 175the anniversary of the birth of Georg von Neumayer. At that symposium the Nermayer Declaration was adopted to commemorate the 125th anniversary of the IPY in 2007. SA 125th year IPY program be initiated using new and present technologies to determine: 1 . Causes and effects of climatic variability-air/sea/ice interactins, and 2. Lithosphere dynamicsUevolution and history of crust and sedimentary cover. The po lar regions would be the focus.T Polar oceanographic contributions to global climate change are still a matter of conjecture, and to a large extent so are the extraterrestrial contributions. The proposed IPY would focus on these issues. As part of the global heat engine, the polar regions hav a major role in the worldSs transfer of energy, and the ocean/stmosphere system is known to be both an indicator and a componenet of climate change. It is clear that acomplex suite of significant, interrelated, atmospheric, oceanic and terrestrial changes has occurred in the the polsar regions in recent decades. These events are affecting every part of the polar environment and are having repercussions on society. In a similar vein an International Heliophysical Year (IHY) has been proposed to obtain a coordinated set of observations to study at the largest scale the solar genergated events that affect life and climate on Earth as has been documented in the Holocene sedimentary recofd. A modeling capability is the ultimate goal so the physical process can be tracked throughout the entire Sun-Earth system. This program will require an integrated, holistic system approach encompassing a side range of disciplines with new and improved technologies for long term measurements on the seabed, in the water column and in space over all seasons. Coordination, collaboration and documentation of an interated science plan with international scientific

  3. Development of A-bomb survivor dosimetry

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1995-01-01

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring

  4. Glucinium dosimetry in beryl

    International Nuclear Information System (INIS)

    Kremer, M.

    1949-05-01

    The application of the method developed by Kolthoff and Sandell (1928) for the dosimetry of glucinium (beryllium) in beryl gives non-reproducible results with up to 20% discrepancies. This method recommends to separate beryllium and aluminium using 8 hydroxyquinoline and then to directly precipitate glucinium in the filtrate using ammonia. One possible reason of the problems generated by this method should be the formation of a volatile complex between beryllium and the oxine. This work shows that when the oxine is eliminated before the precipitation with ammonia the dosimetry of beryllium becomes accurate. The destruction of the oxine requires the dry evaporation of the filtrate, which is a long process. Thus the search for a reagent allowing the quantitative precipitation of beryllium in its solutions and in presence of oxine has been made. It has been verified also that the quantitative precipitation of the double beryllium and ammonium phosphate is not disturbed by the oxine in acetic buffer. This method, which gives good results, has also the advantage to separate beryllium from the alkaline-earth compounds still present in the filtrate. The report details the operation mode of the method: beryllium dosimetry using ammonium phosphate, aluminium-beryllium separation, application to beryl dosimetry (ore processing, insolubilization of silica, precipitation with ammonia, precipitation with oxine, precipitation of PO 4 NH 4 Gl, preciseness). (J.S.)

  5. Group: radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1990-01-01

    The main activities of the radiation dosimetry group is described, including the calibration of instruments, sources and radioactive solutions and the determination of neutron flux; development, production and market dosimetric materials; development radiation sensor make the control of radiation dose received by IPEN workers; development new techniques for monitoring, etc. (C.G.C.)

  6. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  7. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2002-01-01

    Deadline...Deadline...Deadline...Deadline...Deadline...Deadline...   Individual dosimetry service We inform all staffs and users under regular dosimetric control that the dosimeters for the monitoring period JANUARY/FEBRUARY 2002 are available from their usual dispatchers. Please have your films changed before the 15th of January. The color of the dosimeter valid in JANUARY/FEBRUARY is WHITE.

  8. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  9. Dosimetry of pion beams

    International Nuclear Information System (INIS)

    Dicello, J.F.

    1975-01-01

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  10. Individual dosimetry service

    CERN Document Server

    2004-01-01

    We inform all staff and users under regular dosimetry control that the dosimeters for the monitoring period JULY-AUGUST 2004 are available from their usual dispatchers. Please have your films changed before the 15 JULY 2004. The color of the dosimeter valid in July-August 2004 is PINK.

  11. Energy Metabolism and Human Dosimetry of Tritium

    International Nuclear Information System (INIS)

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A.

    2005-01-01

    In the frame of current revision of human dosimetry of 14 C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic 14 C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings

  12. Research on the experimental verification of dosimetry calculations. Progress report

    International Nuclear Information System (INIS)

    Poston, J.W.

    1983-04-01

    This research has been directed toward the development of experimental techniques for the evaluation of internal-dosimetry calculations. There have been three major objectives. The first was the development and refinement of dosimetric techniques necessary to obtain absorbed doses averaged over the entire volume of particular organs. Other major objectives have included the utilization of these dosimetry systems to measure absorbed doses in anthropomorphic phantoms, and the comparison of these experimental results to absorbed dose estimates obtained from Monte Carlo computer calculations. At the present time, only limited data are available for direct comparison. However, more data should be available soon and comparisons will be made before the end of the present contract period. This proposal outlines the current status of our research toward that end. In addition, it is proposed that this contract be renewed to continue investigations into other aspects of dosimetry, for example, dosimetry for the survivors of the bombings of Hiroshima and Nagasaki

  13. The physics of small megavoltage photon beam dosimetry.

    Science.gov (United States)

    Andreo, Pedro

    2017-11-27

    The increased interest during recent years in the use of small megavoltage photon beams in advanced radiotherapy techniques has led to the development of dosimetry recommendations by different national and international organizations. Their requirement of data suitable for the different clinical options available, regarding treatment units and dosimetry equipment, has generated a considerable amount of research by the scientific community during the last decade. The multiple publications in the field have led not only to the availability of new invaluable data, but have also contributed substantially to an improved understanding of the physics of their dosimetry. This work provides an overview of the most important aspects that govern the physics of small megavoltage photon beam dosimetry. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 34 CFR 655.4 - What definitions apply to the International Education Programs?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply to the International Education... (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION INTERNATIONAL EDUCATION PROGRAMS-GENERAL PROVISIONS General § 655.4 What definitions apply to the International Education Programs? (a...

  15. 34 CFR 661.1 - What is the Business and International Education Program?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Business and International Education... (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION BUSINESS AND INTERNATIONAL EDUCATION PROGRAM General § 661.1 What is the Business and International Education Program? The Business and...

  16. The Latin American Biological Dosimetry Network (LBDNet): Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay

    International Nuclear Information System (INIS)

    Guerrero C, C.; Arceo M, C.; Di Giorgio, M.; Vallerga, M.; Radl, A.; Taja, M.; Seoane, A.; De Luca, J.; Stuck O, M.; Valdivia, P.

    2010-10-01

    Biological dosimetry is a necessary support for national radiation protection programs and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 for mutual assistance in case of radiation emergencies and for providing support to other Latin American countries that do not have bio dosimetry laboratories. In the frame of the IAEA Technical Cooperation Projects RLA/9/54 and RLA/9/61 the following activities have been performed: a) An international intercomparison exercise organized during 2007-2008 included six European countries and LBDNet laboratories. Relevant parameters related with dose assessment were evaluated through triage and conventional scoring criteria. A new approach for statistical data analysis was developed including assessment of inter-laboratory reproducibility and intra-laboratory repeatability. Overall, the laboratory performance was satisfactory for mutual cooperation purposes. b) In 2009, LBDNet and two European countries carried out a digital image intercomparison exercise involving dose assessment from metaphase images distributed electronically through internet. The main objectives were to evaluate scoring feasibility on metaphase images and time response. In addition a re-examination phase was considered in which the most controversial images were discussed jointly, this allowed for the development of a homogeneous scoring criteria within the network. c) A further exercise was performed during 2009 involving the shipment of biological samples for biological dosimetry assessment. The aim of this exercise was to test the timely and properly sending and receiving blood samples under national and international regulations. A total of 14 laboratories participated in this joint IAEA, PAHO and WHO. (Author)

  17. The Latin American Biological Dosimetry Network (LBDNet): Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Di Giorgio, M.; Vallerga, M.; Radl, A. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250, C1429 BNP CABA (Argentina); Taja, M.; Seoane, A.; De Luca, J. [Universidad Nacionald de La Plata, Av. 7 No. 1776, La Plata 1900, Buenos Aires (Argentina); Stuck O, M. [Instituto de Radioproteccion y Dosimetria, Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro (Brazil); Valdivia, P., E-mail: lbdnet@googlegroups.co [Comision Chilena de Energia, Amutanegui 95, Santiago Centro, Santiago (Chile)

    2010-10-15

    Biological dosimetry is a necessary support for national radiation protection programs and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 for mutual assistance in case of radiation emergencies and for providing support to other Latin American countries that do not have bio dosimetry laboratories. In the frame of the IAEA Technical Cooperation Projects RLA/9/54 and RLA/9/61 the following activities have been performed: a) An international intercomparison exercise organized during 2007-2008 included six European countries and LBDNet laboratories. Relevant parameters related with dose assessment were evaluated through triage and conventional scoring criteria. A new approach for statistical data analysis was developed including assessment of inter-laboratory reproducibility and intra-laboratory repeatability. Overall, the laboratory performance was satisfactory for mutual cooperation purposes. b) In 2009, LBDNet and two European countries carried out a digital image intercomparison exercise involving dose assessment from metaphase images distributed electronically through internet. The main objectives were to evaluate scoring feasibility on metaphase images and time response. In addition a re-examination phase was considered in which the most controversial images were discussed jointly, this allowed for the development of a homogeneous scoring criteria within the network. c) A further exercise was performed during 2009 involving the shipment of biological samples for biological dosimetry assessment. The aim of this exercise was to test the timely and properly sending and receiving blood samples under national and international regulations. A total of 14 laboratories participated in this joint IAEA, PAHO and WHO. (Author)

  18. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  19. International Experience in Standards and Labeling Programs for Rice Cookers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Zheng, Nina

    2008-05-01

    China has had an active program on energy efficiency standards for household appliances since the mid-1990s. Rice cooker is among the first to be subject to such mandatory regulation, since it is one of the most prevalent electric appliances in Chinese households. Since first introduced in 1989, the minimum energy efficiency standard for rice cookers has not been revised. Therefore, the potential for energy saving is considerable. Initial analysis from CNIS indicates that potential carbon savings is likely to reach 7.6 million tons of CO2 by the 10th year of the standard implementation. Since September 2007, CNIS has been working with various groups to develop the new standard for rice cookers. With The Energy Foundation's support, LBNL has assisted CNIS in the revision of the minimum energy efficiency standard for rice cookers that is expected to be effective in 2009. Specifically, work has been in the following areas: assistance in developing consumer survey on usage pattern of rice cookers, review of international standards, review of international test procedures, comparison of the international standards and test procedures, and assessment of technical options of reducing energy use. This report particularly summarizes the findings of reviewing international standards and technical options of reducing energy consumption. The report consists of an overview of rice cooker standards and labeling programs and testing procedures in Hong Kong, South Korea, Japan and Thailand, and Japan's case study in developing energy efficiency rice cooker technologies and rice cooker efficiency programs. The results from the analysis can be summarized as the follows: Hong Kong has a Voluntary Energy Efficiency Labeling scheme for electric rice cookers initiated in 2001, with revision implemented in 2007; South Korea has both MEPS and Mandatory Energy Efficiency Label targeting the same category of rice cookers as Hong Kong; Thailand's voluntary endorsement labeling

  20. Evaluating the Differential Impact of Teaching Assistant Training Programs on International Graduate Student Teaching

    Science.gov (United States)

    Meadows, Ken N.; Olsen, Karyn C.; Dimitrov, Nanda; Dawson, Debra L.

    2015-01-01

    In this study, we compared the effects of a traditional teaching assistant (TA) training program to those of a specialized program, with a substantial intercultural component, for international graduate students. We expected both programs to result in an increase in international graduate students' teaching self-efficacy, observed teaching…