WorldWideScience

Sample records for internal design pressure

  1. Study on the quantitative rod internal pressure design criterion

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Oh Hwan; Han, Hee Tak

    1991-01-01

    The current rod internal pressure criterion permits fuel rods to operate with internal pressures in excess of system pressure only if internal overpressure does not cause the diametral gap enlargement. In this study, the generic allowable internal gas pressure not violating this criterion is estimated as a function of rod power. The results show that the generic allowable internal gas pressure decreases linearly with the increase of rod power. Application of the generic allowable internal gas pressure for the rod internal pressure design criterion will result in the simplication of the current design procedure for checking the diametral gap enlargement caused by internal overpressure because according to the current design procedure the cladding creepout rate should be compared with the fuel swelling rate at each axial node at each time step whenever internal pressure exceeds the system pressure. (Author)

  2. Probabilistic evaluation of concrete containment capacity for beyond design basis internal pressures

    International Nuclear Information System (INIS)

    Tang, H.T.; Dameron, R.A.; Rashid, Y.R.

    1995-01-01

    For beyond design basis internal pressure loading, experimental studies have demonstrated that the most probable failure mode governing the ultimate functional capacity of concrete containments is leak rather than break. Based on leak rates measured in experiments, a prediction formula for leak rate as functions of containment liner size and internal pressure has been postulated. The determination of liner tear is cast in a probabilistic framework. In calculating leakage, particular attention is paid to the evaluation of leakage versus rupture and the loading rates that may be required to leapfrog over a leakage mode. (orig.)

  3. Design and analysis of push pipe joint under internal pressure and temperature loading

    International Nuclear Information System (INIS)

    Abid, M.; Alam, K.

    2005-01-01

    Pipe joints flanged or welded are commonly used in industry for different applications ranging from sewerage to the high pressure and temperature applications. However, with the rapidly changing technological trends, for optimized space such as for heat exchanger applications, pipe joint design needs special consideration, especially for the internal pipe where no flanged/bolted joint due to space constraint can be used. In addition, where joint opening/closing is the requirement for maintenance or other functional purposes, it becomes inevitable to use some special design. In this paper, a push joint proposed is designed, analyzed, optimized and tested for safe stress and operating conditions. An experimental test rig is designed and tests are performed for internal pressure and temperature separately and joint's behaviour is analyzed in detail for any leaks. FEA results are compared and verified with the mathematical results. Based on the experimental observations, the joint is safe as no leaks are observed. (author)

  4. General Description of the Mechanic Design of the Pressure Vessel and the Internal Mechanical Component of the CAREM Reactor

    International Nuclear Information System (INIS)

    Diez, F.; Horro, R.

    2000-01-01

    This paper presents a brief description of the CAREM reactor pressure vessel and its main internal mechanical components and summarizes the functional requirements and approaches applied for their design, together with a review of the normative applicable in each case

  5. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  6. Proposed apparatus for measuring internal friction in rocks at high temperatures and pressures: a design analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.P.

    1977-10-03

    An apparatus is described that measures internal friction in rocks at high temperatures (approximately 800/sup 0/C) and pressures (approximately 1.0 GPa). Steady oscillations (approximately 1.0 Hz) are induced in a jacketed sample while coaxial capacitive transducers monitor the resulting radial strain. Sample strains are continuously compared to the deformation of a low-loss standard, which acts as a stress transducer. The stress state produced is uniaxial stress. We use the theory of viscoelasticity to partition the loss into components depending on pure shear and dilatation. The theoretical results emphasize the importance of ultimately measuring each loss independently.

  7. Analysis of quench-vent pressures for present design of ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coils

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three-dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 3 figs., 1 tab

  8. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  9. Pressure vessel failure at high internal pressure

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  10. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  11. Investigation of the design of a metal-lined fully wrapped composite vessel under high internal pressure

    Science.gov (United States)

    Kalaycıoğlu, Barış; Husnu Dirikolu, M.

    2010-09-01

    In this study, a Type III composite pressure vessel (ISO 11439:2000) loaded with high internal pressure is investigated in terms of the effect of the orientation of the element coordinate system while simulating the continuous variation of the fibre angle, the effect of symmetric and non-symmetric composite wall stacking sequences, and lastly, a stacking sequence evaluation for reducing the cylindrical section-end cap transition region stress concentration. The research was performed using an Ansys® model with 2.9 l volume, 6061 T6 aluminium liner/Kevlar® 49-Epoxy vessel material, and a service internal pressure loading of 22 MPa. The results show that symmetric stacking sequences give higher burst pressures by up to 15%. Stacking sequence evaluations provided a further 7% pressure-carrying capacity as well as reduced stress concentration in the transition region. Finally, the Type III vessel under consideration provides a 45% lighter construction as compared with an all metal (Type I) vessel.

  12. Pressure vessel design

    International Nuclear Information System (INIS)

    Annaratone, D.

    2007-01-01

    This book guides through general and fundamental problems of pressure vessel design. It moreover considers problems which seem to be of lower importance but which turn out to be crucial in the design phase. The basic approach is rigorously scientific with a complete theoretical development of the topics treated, but the analysis is always pushed so far as to offer concrete and precise calculation criteria that can be immediately applied to actual designs. This is accomplished through appropriate algorithms that lead to final equations or to characteristic parameters defined through mathematical equations. The first chapter describes how to achieve verification criteria, the second analyzes a few general problems, such as stresses of the membrane in revolution solids and edge effects. The third chapter deals with cylinders under pressure from the inside, while the fourth focuses on cylinders under pressure from the outside. The fifth chapter covers spheres, and the sixth is about all types of heads. Chapter seven discusses different components of particular shape as well as pipes, with special attention to flanges. The eighth chapter discusses the influence of holes, while the ninth is devoted to the influence of supports. Finally, chapter ten illustrates the fundamental criteria regarding fatigue analysis. Besides the unique approach to the entire work, original contributions can be found in most chapters, thanks to the author's numerous publications on the topic and to studies performed ad hoc for this book. (orig.)

  13. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  14. Innovations in prestressed concrete pressure vessel design

    International Nuclear Information System (INIS)

    Chow, P.Y.; Ngo, D.; Lin, T.Y.

    1979-01-01

    The study explored a new approach to the design of a high-pressure PCPV that accepts tension and tension cracks in the outer region of the PCPV. It examined the possibility of incorporating artificially-introduced preformed separations that pre-determined crack locations in the design as a method of controlling high tensile stresses generated by internal temperature and pressure. The results showed that the PCPV so designed was, in the extreme case of the DSV, approximately 70% cheaper than the 18 steel vessels of equivalent capacity it replaces. (orig.)

  15. Buckling of shells under internal pressure, practical formulas for sizing

    International Nuclear Information System (INIS)

    Roche, R.; Alix, M.; Perez, A.; Autrusson, B.

    1983-10-01

    For metallic dished heads which have great diameter/thickness ratio, elastic plastic internal pressure buckling may occur. Recently, the French Pressure Vessel Code (CODAP) made available rules to assist the designer with this buckling problem. The aim of this paper is to give a comparison between these rules and available experimental results [fr

  16. Internal pressure and solubility parameter as a function of pressure

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Andersen, Simon Ivar

    2005-01-01

    The main goal of this work was to measure the solubility parameter of a complex mixture, such as a crude oil, especially as a function of pressure. Thus, its definition is explained, as well as the main approximations generally used in literature. Then, the internal pressure is investigated, since...... pure compounds (four hydrocarbons and I alcohol) were investigated at 303.15 K and up to 30 MPa, as well as a dead crude oil. The "physical" solubility parameter is slightly increasing with pressure (up to 0.8 MPa1/2 for cyclohexane) and, at 0.1 MPa, the difference with literature data is less than 1...

  17. Fabrication of micro-channel arrays on thin metallic sheet using internal fluid pressure: Investigations on size effects and development of design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Mahabunphachai, Sasawat [NSF I/UCR Center for Precision Forming, Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA 23284 (United States); Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Koc, Muammer [NSF I/UCR Center for Precision Forming, Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2008-01-03

    Micro-feature (channel, protrusion, cavity, etc.) arrays on large area-thin metallic sheet alloys are increasingly needed for compact and integrated heat/mass transfer applications (such as fuel cells and fuel processors) that require high temperature resistance, corrosion resistance, good electrical/thermal conductivity, etc. The performance of these micro-feature arrays mainly affects the volume flow velocity of the reactants inside the arrays which directly controls the rate of convection mass/heat transport. The key factors that affect the flow velocity include channel size and shape, flow field pattern, flow path length, fluid pressure, etc. In this study, we investigated these micro-feature arrays from the manufacturability perspective since it is also an important factor to be considered in the design process. Internal fluid pressure (hydroforming) technique is investigated in this study with the specific goals to, first, understand if the so-called ''size effects'' (grain vs. feature size) are effective on the manufacturability of thin metallic sheet into micro-channels, and second, to establish design guidelines for the micro-channel hydroforming technique for robust mass production conditions. Thin stainless steel 304 blanks of 0.051 mm thick with three different grain sizes of 9.3, 10.6, and 17.0 {mu}m were used in hydroforming experiments to form micro-channels with the dimensions between 0.46-1.33 and 0.15-0.98 mm in width and height, respectively. Based on the experimental results, the effect of the grain size on the channel formability was found to be insignificant for the grain size range used in this study. On the other hand, the effect of the channel (feature) size was shown to dominate the overall formability. In addition, FE models of the process were developed and validated with the experimental results, then used to conduct a parametric study to establish micro-channel design guidelines. The results from the parametric

  18. Determination of Secondary Encasement Pipe Design Pressure

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  19. Methodology of fuel rod design for pressurized light water reactors

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  20. Failure internal pressure of spherical steel containments

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1985-01-01

    An application of the British CEGB's R6 Failure Assessment Approach to the determination of failure internal pressure of nuclear power plant spherical steel containments is presented. The presence of hypothetical cracks both in the base metal and in the welding material of the containment, with geometrical idealizations according to the ASME Boiler and Pressure Vessel Code (Section XI), was taken into account in order to analyze the sensitivity of the failure assessment with the values of the material fracture properties. Calculations of the elastoplastic collapse load have been performed by means of the Finite Element System SAMCEF. The clean axisymmetric shell (neglecting the influence of nozzles and minor irregularities) and two major penetrations (personnel and emergency locks) have been taken separately into account. Large-strain elastoplastic behaviour of the material was considered in the Code, using lower bounds of true stress-true strain relations obtained by testing a collection of tensile specimens. Assuming the presence of cracks in non-perturbed regions, the reserve factor for test pressure and the failure internal pressure have been determined as a function of the flaw depth. (orig.)

  1. Internal Friction of Pressure Vessel Steel Embrittlement

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. The thesis contains a literature study, a description of the construction details of a new inverted torsion pendulum. This device was designed to investigate pressure-vessel steels at high amplitudes (10 -4 to 10 -2 ) and over a wide temperature range (90-700K) at approximately 1 Hz in the irradiated condition. Results of measurements on a variety of reactor pressure vessel steels by means of the torsion penduli are reported and interpreted

  2. Ultimate internal pressure capacity of concrete containment structures

    International Nuclear Information System (INIS)

    Krishnaswamy, C.N.; Namperumal, R.; Al-Dabbagh, A.

    1983-01-01

    Lesson learned from the accident at Three-Mile Island nuclear plant has necessitated the computation of the ultimate internal pressure capacity of containment structures as a licensing requirement in the U.S. In general, a containment structure is designed to be essentially elastic under design accident pressure. However, as the containment pressure builds up beyond the design value due to a more severe postulated accident, the containment response turns nonlinear as it sequentially passes through cracking of concrete, yielding of linear plate, yielding of rebar, and yielding of post-tensioning tendon (if the containment concrete is prestressed). This paper reports on the determination of the ultimate internal pressure capacity and nonlinear behavior of typical reinforced and prestressed concrete BWR containments. The probable modes of failure, the criteria for ultimate pressure capacity, and the most critical sections are described. Simple equations to hand-calculate the ultimate pressure capacity and the nonlinear behavior at membrane sections of the containment shell are presented. A nonlinear finite element analysis performed to determine the nonlinear behavior of the entire shell including nonmembrane sections is briefly discribed. The analysis model consisted of laminated axisymmetric shell finite elements with nonlinear stress-strain properties for each material. Results presented for typical BWR concrete containments include nonlinear response plots of internal pressure versus containment deflection and strains in the liner, rebar, and post-tensioning tendons at the most stressed section in the shell. Leak-tightness of the containment liner and the effect of thermal loads on the ultimate capacity are discussed. (orig.)

  3. Time Pressure and Creativity in Industrial Design

    Science.gov (United States)

    Hsiao, Shih-Wen; Wang, Ming-Feng; Chen, Chien-Wie

    2017-01-01

    Creativity is a critical aspect of competitiveness in all trades and professions. In the case of designers, creativity is of the utmost importance. Based on the perspective of industrial design, the relationship between creativity and time pressure was investigated in this study using control and experimental groups. In the first part of the…

  4. Calculation of fission gases internal pressure in nuclear fuel rods

    International Nuclear Information System (INIS)

    Vasconcelos Santana, M. de.

    1981-12-01

    Models concerning the principal phenomena, particularly thermal expansion, fuel swelling, densification, reestructuring, relocation, mechanical strain, fission gas production and release, direct or indirectly important to calculate the internal pressure in nuclear fuel rods were analysed and selected. Through these analyses a computer code was developed to calculate fuel pin internal pressure evolution. Three different models were utilized to calculate the internal pressure in order to select the best and the most conservative estimate. (Author) [pt

  5. Design and Construction of Strain Gauge Interface Pressure ...

    African Journals Online (AJOL)

    Design and Construction of Strain Gauge Interface Pressure Transducer for Measurement of Static and Dynamic Interface Pressure Applied by Pressure Garments and its Relationship to Deep Vein Thrombosis.

  6. Implantable intraocular pressure monitoring systems: Design considerations

    KAUST Repository

    Arsalan, Muhammad; Ouda, Mahmoud H.; Marnat, Loic; Shamim, Atif; Salama, Khaled N.

    2013-01-01

    Design considerations and limitations of implantable Intraocular Pressure Monitoring (IOPM) systems are presented in this paper. Detailed comparison with the state of the art is performed to highlight the benefits and challenges of the proposed design. The system-on-chip, presented here, is battery free and harvests energy from incoming RF signals. This low-cost design, in standard CMOS process, does not require any external components or bond wires to function. This paper provides useful insights to the designers of implantable wireless sensors in terms of design choices and associated tradeoffs. © 2013 IEEE.

  7. Implantable intraocular pressure monitoring systems: Design considerations

    KAUST Repository

    Arsalan, Muhammad

    2013-12-01

    Design considerations and limitations of implantable Intraocular Pressure Monitoring (IOPM) systems are presented in this paper. Detailed comparison with the state of the art is performed to highlight the benefits and challenges of the proposed design. The system-on-chip, presented here, is battery free and harvests energy from incoming RF signals. This low-cost design, in standard CMOS process, does not require any external components or bond wires to function. This paper provides useful insights to the designers of implantable wireless sensors in terms of design choices and associated tradeoffs. © 2013 IEEE.

  8. Design by analysis of composite pressure equipment

    International Nuclear Information System (INIS)

    Durand, S.; Mallard, H.

    2004-01-01

    Design by analysis has been particularly pointed out by the european pressure equipment directive. Advanced mechanical analysis like finite element method are used instead of classical design by formulas or graphs. Structural behaviour can be understood by the designer. Design by analysis of metallic pressure equipments is widely used. Material behaviour or limits analysis is based on sophisticated approach (elasto-plastic analysis,..). Design by analysis of composite pressure equipments is not systematically used for industrial products. The difficulty comes from the number of information to handle. The laws of mechanics are the same for composite materials than for steel. The authors want to show that in design by analysis, the composite material approach is only more complete than the metallic approach. Mechanics is more general but not more complicated. A multi-material approach is a natural evolution of design by analysis of composite equipments. The presentation is illustrated by several industrial cases - composite vessel: analogy with metallic calculations; - composite pipes and fittings; - welding and bounding of thermoplastic equipments. (authors)

  9. Frictional pressure drop of high pressure steam-water two-phase flow in internally helical ribbed tubes

    International Nuclear Information System (INIS)

    Tingkuan, C.; Xuanzheng, C.

    1987-01-01

    It is well known that the internally helical ribbed tubes are effective in suppressing the dry-out in boiling tubes at high pressures, so they are widely used as furnace water wall tubes in modern large steam power boilers. Design of the boilers requires the data on frictional pressure drop characteristics of the ribbed tubes, but they are not sufficient now. This paper describes the experimental results on the adiabatic frictional pressure drop in both horizontal ribbed tubes with measured mean inside diameter of 11.69 mm and 35.42 mm at high pressure from 10 to 21 MPa, mass flow rate from 350 to 3800 kg/m/sup 2/s and steam quality from 0 to 1 in our high pressure electrically heated water loop. Simultaneously, both smooth tubes under the same conditions for comparison. Based on the tests the correlation for determining the frictional pressure drop of internally ribbed tubes are proposed

  10. Ultimate internal pressure capacity assessment of SC structure

    International Nuclear Information System (INIS)

    Park, Hyungkui; Choi, Inkil

    2013-01-01

    An SC structure applied to a containment building can be quite effective. However, an SC structure cannot be applied to a containment building, because its internal pressure resistance performance has not been verified. The containment building, which undergoes ultimate internal pressure, resists the internal pressure through a pre-stress tendon. It is hard to apply a tendon to an SC structure because of its structural characteristics. Therefore, the internal pressure resistance performance of the SC structure itself should be ensured to apply it to a structure with internal pressure resistance. In this study, the suitability of an SC structure as a substitution for the tendon of a pressure resistant structure was evaluated. A containment structure model was used in this study, because it was representative structures that resistance of ultimate internal pressure be required. In this study, a nonlinear analysis was performed to evaluate and compare the behaviors of tendon model and SC structure model. By comparing the internal pressure-displacement according to the structure type, the stability of SC structure model was assessed

  11. Ultimate capacity and influenced factors analysis of nuclear RC containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Song Chenning; Hou Gangling; Zhou Guoliang

    2014-01-01

    Ultimate compressive bearing capacity, influenced factors and its rules of nuclear RC containment are key problems of safety assessment, accident treatment and structure design, etc. Ultimate compressive bearing capacity of nuclear RC containment is shown by concrete damaged plasticity model and steel double liner model of ABAQUS. The study shows that the concrete of nuclear RC containment cylinder wall becomes plastic when the internal pressure is up to 0.87 MPa, the maximum tensile strain of steel liner exceeds 3000 × 10 6 and nuclear RC containment reaches ultimate status when the internal pressure is up to 1.02 MPa. The result shows that nuclear RC containment is in elastic condition under the design internal pressure and the bearing capacity meets requirement. Prestress and steel liner play key parts in the ultimate internal pressure and failure mode of nuclear RC containment. The study results have value for the analysis of ultimate compressive bearing capacity, structure design and safety assessment. (authors)

  12. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  13. Shielding design of ITER pressure suppression system

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Kawasaki, Hiromitsu

    2006-01-01

    The duct shield from streaming D-T neutrons has been designed for the ITER pressure suppression system. Streaming calculations are performed with the DUCT-III code for the region from the inlet of the pressure relief line to the rupture disk. Next, the neutron permeation through the shield is studied by Monte Carlo calculations with the MCNP code. It is found that 0.15 m thick iron shield is enough to suppress the permeating component from the outside. In addition, it is suggested that the volume of the shield can be reduced by about 30% if the optimized iron shield structure having localized thickness across intense permeation paths is employed to shield the pressure suppression line. (T.I.)

  14. Evaluation of CANDU NPP containment structure subjected to aging and internal pressure increase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xu [Department of Civil Engineering, University of Toronto, Toronto M5S 1A4 (Canada); Kwon, Oh-Sung, E-mail: os.kwon@utoronto.ca [Department of Civil Engineering, University of Toronto, Toronto M5S 1A4 (Canada); Bentz, Evan [Department of Civil Engineering, University of Toronto, Toronto M5S 1A4 (Canada); Tcherner, Julia [Candu Energy Inc. a member of SNC-Lavalin Group, Mississauga L5K 1B1 (Canada)

    2017-04-01

    Highlights: • The aging effects on the performance of a nuclear containment structure is evaluated. • A numerical model of the structure is subjected to increasing internal pressure. • No through-thickness cracks are predicted under the design level internal pressure. • The structure is predicted to be ductile up to large internal pressure levels. - Abstract: The objective of this study is to investigate the long-term performance of a typical CANDU® containment structure. A three-dimensional nonlinear finite element model was built to realistically evaluate the performance of the structure under service load as well as a hypothetical beyond-design level internal pressure. Consideration is given to the time-dependent effects, such as shrinkage, creep, and relaxation of prestressing tendons, over a 60-year timeframe. In addition, the sensitivity of the response of the containment structure against support condition, internal temperature profile and temporary construction openings was also investigated. The accuracy of the numerical model was validated against structural measurements made during a routine leak rate test. The analysis results show that the containment structure would develop a ductile mechanism if the internal pressure significantly exceeded the design pressure. The pressure-deformation relationship of the structure is sensitive to the considered time-dependent parameters.

  15. Design of the WWER-440 pressurizer

    International Nuclear Information System (INIS)

    Bednarek, L.

    1978-01-01

    The main specifications are presented of a pressurizer for the WWER-440 reactor as are factors securing operating reliability and the required life of the equipment. Ferritic-pearlite steel 22K is the basic material for the manufacture of the shell, support and couplings. The internal parts and the heads are manufactured from the 08KH18N10T chromium-nickel austenitic steel, the bolts and nuts of manholes from chromium-molybdenum steels 25KH1MF and 25KH2MFA. Quality testing of basic materials and quality control during the process of manufacture are briefly described. (Z.M.)

  16. Design of pressure vessels. Part 2

    International Nuclear Information System (INIS)

    Grandemange, J.M.

    2008-01-01

    This document deals with the classification of stresses, necessary for the implementation of the mechanical code criteria defined for the pressure vessels of PWR-type reactors. It describes the general approach of design, analysis, and in-service monitoring, the regulatory tests and the modalities of equivalence between industrial construction codes. Content: 1 - damage modes and stresses classification: context, general approach, example of application; 2 - from the design stage to the in-service monitoring: liabilities, design conditions, materials choice and dimensioning, analysis, particular case of pipes and valve parts, in-service monitoring; 3 - regulatory tests: context, tests prescribed by the design and construction rules of PWR mechanical components (RCC-M); 4 - equivalence possibilities between codes: codes for nuclear reactor equipments, convergence between industrial codes and standards; 5 - conclusion. (J.S.)

  17. Graphic Designer/Production Coordinator | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Provides design and graphic services for print- and Web-based publishing;; Initiates designs and carries out ... process, ensuring that such suppliers meet appropriate standards of quality and service at reasonable cost; ... Internal Services.

  18. Mathematics of flexible risers including pressure and internal flow affects

    Energy Technology Data Exchange (ETDEWEB)

    Seyed, F.B. (John Brown Engineers and Constructors Ltd., London (GB)); Patel, M.H. (University Coll., London (GB). Dept. of Mechanical Engineering)

    1992-01-01

    Derivations are presented for calculation of pressure and internal flow induced forces on flexible risers and other curved pipes using a mathematically rigorous approach. Approximate and exact methods are presented for calculation of pressure forces on straight and curved pipes in two dimensions. The mathematical identity of these equations with those for effective tension is illustrated. The force arising from the flow of an internal fluid of constant density is then calculated and combined with those for pressure forces in derivation of the catenary equations including pressure and internal flow terms. It is shown that internal flow contributes a new term to the expression for effective tension. These governing equations are then reduced for the specific cases of simple catenary, steep-S, lazy-S, steep-wave and lazy-wave risers. In each case, the solution method has been presented and the governing equilibrium and geometric compatability conditions cited. (author).

  19. Lower internals for pressurized water reactor

    International Nuclear Information System (INIS)

    Chevereau, G.; Babin, M.

    1989-01-01

    The lower internals for PWR has a separating plate mounted beneath its lower core plate and defining a distribution chamber with it, peripheral mechanical connectors joining the plates separated by coolant passage and apertures in the separation plate connected to a coolant pipe [fr

  20. Design of pressure vessels. Part 1

    International Nuclear Information System (INIS)

    Grandemange, J.M.

    2008-01-01

    The equipments and loops of PWR reactors are basically pressure vessels. Their specificities concern the integrity warranties that must be implemented considering their importance for the reactors safety. Thus, stress is put on the exhaustiveness of the prevention of in-service degradation and on the safety scenarios considered. The second specificity concerns the possibility of activation of wear and corrosion products during their flow inside the reactor core. This second aspect leads to some constraints on the choice of the materials used and on the surface coating of the inside wall of big components of the primary circuit. The aim of this document is to develop the general approach adopted for the design of the pressure vessels of PWR fluid loops, and to stress more particularly on the nuclear particularities of these equipments. Some extensions of these rules to high temperature resistant materials (FBR-type reactors) are also evoked. Content: General considerations: design basis of pressure vessels, risk analysis and design conditions, ruining paths and safety coefficients; 2 - damage prevention for excessive deformation: definitions, criteria; 3 - prevention of the plastic instability damage: definition, criteria; 4 - buckling prevention: definition and mechanisms, rules and criteria; 5 - prevention of progressive deformation damage: definitions, plastic adaptation, plastic accommodation, progressive deformation; 6 - prevention of fatigue damage: definitions, general prevention approach, design fatigue curves, analytic approach, particular aspects, analysis of zones with geometrical singularity; 7 - prevention of sudden rupture damage: fragile rupture and ductile tear, general approach, analytic criteria, irradiation and aging effects; 8 - other potential damages; 9 - conclusion. (J.S.)

  1. International differences in design approach

    International Nuclear Information System (INIS)

    Roberts, A.C.; McFarlane, J.P.

    1998-01-01

    The objective of this paper is to review a number of separate research studies and civil engineering nuclear projects from the authors' experience, with a view to examining the apparent differences in approach taken by different nationalities in the civil engineering design and specification of nuclear facilities. In particular, the development of design codes applicable to the UK nuclear power industry is reviewed and comparisons made with the highly regulated approach adopted in other major nuclear power generating countries. Significant differences resulting from the use of specific design codes and regulations are identified. (author)

  2. International Peer Reviews of Design Basis

    International Nuclear Information System (INIS)

    Hughes, Peter

    2013-01-01

    International peer reviews: Design and safety assessment review service: - Review of design requirements; - Review in support of licensing; - Review in support of severe accident management; - Review in support of modifications; - Review in relation to periodic safety, or life extension; - Reviews take place at any time in NPP lifecycle from concept, through design and operations

  3. Design of membrane pressure indicators with strain gages

    International Nuclear Information System (INIS)

    Haberzettl, G.

    1979-01-01

    A special type of pressure indicators, more or less well known under the name of 'membrane pressure indicators' is dealt with. In principle, they consist of a pipe socket which is open at one end and sealed by the 'membrane' at the other end. In case of internal pressure from the open side, the membrane will begin to arch. This arch, which is proportional to the internal pressure, is measured by suitable methods. A special form of strain ganges, so-called 'membrane pressure roses' have turned out to be particularly suitable here. The article gives general guidelines for the construction of membrane pressure indicators. (orig./HT) [de

  4. Problems in Pressure Vessel Design and Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, O [Uddeholms AB, Degerfors (Sweden); Nilson, Ragnar [AB Atomenergi, Nykoeping (Sweden)

    1963-05-15

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels.

  5. Problems in Pressure Vessel Design and Manufacture

    International Nuclear Information System (INIS)

    Hellstroem, O.; Nilson, Ragnar

    1963-05-01

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels

  6. Preliminary study of an expert system for mechanical design of a pressure vessel

    International Nuclear Information System (INIS)

    Kasmuri, N.H.; Md Som, A.

    2006-01-01

    This paper describes a preliminary study of an expert system for mechanical design of a pressure vessel. The system supports the framework for the conceptual mechanical design from the initial stages within the design procedures. ASME Boiler and Pressure Vessel Code Section VIII Division 1 were applied as a design rule. The proposed methodology facilitates the development of knowledge base acquisition, knowledge base construction and the prototype implementation. This study characterizes a knowledge base (procedure) of mechanical design of a pressure vessel subjected to internal pressure including all design parameters; i.e. temperature, shell thickness, selection of materials of constructions, stress analysis procedure, support and ancillary items. The rationalization of the mechanical design is shown in the form of a schematic flow diagram. A Kappa PC expert system shell is used as a tool to develop the prototype software. It provides graphical representation for creating objects, hierarchies and rules for knowledge base used in pressure vessel design. (Author)

  7. The pressure, internal energy, and conductivity of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, E.M. [Russian Academy of Sciences, Joint Institute for High Temperatures, Department of Computational Physics, Moscow (Russian Federation)

    2017-11-15

    The pressure, internal energy, and conductivity of a tantalum plasma were calculated at the temperatures 10-100 kK and densities less than 3 g/cm{sup 3}. The plasma composition, pressure, and internal energy were obtained by means of the corresponding system of the coupled mass action law equations. We have considered atom ionization up to +3. The conductivity was calculated within the relaxation time approximation. Comparisons of our results with available measurements and calculation data show good agreement in the area of correct applicability of the present model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Single pressure vessel (SPV) nickel-hydrogen battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.; Grindstaff, B.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States)

    1995-07-01

    Single pressure vessel (SPV) technology combines an entire multi-cell nickel-hydrogen (NiH{sub 2}) space battery within a single pressure vessel. SPV technology has been developed to improve the performance (volume/mass) of the NiH{sub 2} system at the battery level and ultimately to reduce overall battery cost and increase system reliability. Three distinct SPV technologies are currently under development and in production. Eagle-Picher has license to the COMSAT Laboratories technology, as well as internally developed independent SPV technology. A third technology resulted from the acquisition of Johnson Controls NiH{sub 2} battery assets in June, 1994. SPV batteries are currently being produced in 25 ampere-hour (Ah), 35 Ah and 50 Ah configurations. The battery designs have an overall outside diameter of 10 inches (25.4 centimeters).

  9. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  10. International Emissions Trading : Design and Political Acceptability

    NARCIS (Netherlands)

    Boom, Jan Tjeerd

    2006-01-01

    This thesis discusses the design and political acceptability of international emissions trading. It is shown that there are several designs options for emissions trading at the national level that have a different impact on output and thereby related factors such as employment and consumer prices.

  11. Conformable Pressurized Structures : Design and Analysis

    NARCIS (Netherlands)

    Geuskens, F.J.J.M.M.

    2012-01-01

    There are many applications where volume needs to be pressurised within a geometrical space for which conventional pressure vessels do not provide suitable solutions. Applications are for example found in pressure cabins for Blended Wing Body Aircraft and conformable pressure vessels for an

  12. Design optimization of a thin walled pressure vessel

    International Nuclear Information System (INIS)

    Sadiq, S.

    2001-01-01

    Design evaluation of a pressure vessel is not only to build confidence on its integrity but also to reduce structural weight and enhance the performance of the structure. Pressure vessel, e.g., a rocket motor not only has to withstand the high operating temperatures but it must also be able to survive the internal pressures and external aerodynamic forces and bending stresses during its operation in flight. A research program was devised to study the stresses, which are generated in a thin walled pressure vessel during actual operation and its simulation with cold testing technique, i.e., by means of hydrostatic testing employing electrical resistance strain gauges on the external surface of the cylinder. The objective of the research was to uphold the performance of the vessel by reducing its thickness from 6.09 to 5.5 mm (which of course reduces the safety factor margin from 1.8 to 1.5); thereby curtailing the overall structural weight and maintaining the efficiency of the vessel itself during its live operation. The techniques employed were hydrostatic testing, data acquisition system for obtaining data on strains from the electrical resistance strain gauges and later employing V on Mises yield criterion empirical relation to computer the stresses in hoop and longitudinal directions. (author)

  13. Multi-Canister overpack design pressure rating

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The SNF project was directed to increase the MCO pressure rating by the U.S. Department of Energy, Richland Operations Office (RL) unless the action was shown to be cost prohibitive. This guidance was driven by RL's assessment that there was a need to improve margin and reduce risks associated with assumptions supporting the bounding pressure calculation for the MCO Sealing Strategy. Although more recent pressure analyses show a bounding MCO pressure of 50 psig, RL still considers it prudent to retain the pressure margin the 450 psig rating provides. This rating creates a real, clearly definable margin and significantly reduces the risk that the safety basis will be challenged

  14. Photoelastic stress analysis in mitred bend under internal pressure

    International Nuclear Information System (INIS)

    Sawa, Yoshiaki

    1987-01-01

    The stress analysis and stress relaxation in mitred bend subjected to internal pressure have been studied by means of the photoelastic stress freezing method. The experimental results show that stress concentration occurs in the wedge tip of the intersectional plane and it is considerably influenced by the bent angle. Then, the stress relaxation was obtained by planing the wedge tip. (author)

  15. Measuring element for determining the internal pressure in fuel rods

    International Nuclear Information System (INIS)

    Deckers, H.; Drexler, H.; Reiser, H.

    1983-01-01

    A pressure cell is situated inside the fuel rod, which contains a magnetic core or a core influenced by magnetism, whose position relative to an outer front surface of an end stopper of the fuel rod can vary. The fuel rod contains a pressure cell directly above the lower end stopper or connected to it. This can consist of closed bellows, where if the internal pressure in the fuel rod rises, a ferrite core moves axially. When the pressure drops, this returns to the initial position, which is precisely defined by a stop. To detect a rod defect, the position of the soft iron core relative to the lower edge of the end stopper is scanned by a special measuring device. (orig./HP) [de

  16. Pressure vessel failure at high internal pressure; Untersuchungen zum Versagen des Reaktordruckbehaelters unter hohem Innendruck

    Energy Technology Data Exchange (ETDEWEB)

    Laemmer, H.; Ritter, B.

    1995-08-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also `hot spots`. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  17. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  18. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1994-01-01

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability

  19. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  20. Internal pressure effects in the AIRCO-LCT conductor sheath

    International Nuclear Information System (INIS)

    Luton, J.N.; Clinard, J.A.; Lue, J.W.; Gray, W.H.; Summers, L.T.; Kershaw, R.

    1985-01-01

    The large Nb 3 Sn superconducting test coil produced by Westinghouse Electric Corporation for the international Large Coil Task (LCT) utilizes a conductor composed of cabled multifilamentary strands immersed in flowing supercritical helium contained by a square structural sheath made of the high-strength stainless alloy JBX-75. Peak pressures of a few hundred atmospheres are predicted to occur during quench, and measurement of these pressures seems feasible only through penetrations of the sheath wall. Fully processed short lengths of conductor were taken from production ends, fitted with pressure taps and strain gauges, and pressurized with helium gas. Failure, at 1000 atm at liquid nitrogen temperature, was by a catastrophic splitting of the sheath at a corner. Strain measurements and burst pressure agreed with elastic-plastic finite element stress calculations made for the sheath alone. Neither the production seam weld nor the pressure tap penetrations or their fillet welds contributed to the failure, although the finite element calculations show that these areas were also highly stressed, and examination of the failed sample showed that the finite welds were of poor quality. Failure was by tensile overload, with no evidence of fatigue

  1. Designing an International Joint Venture Negotiation Game.

    Science.gov (United States)

    Kenkel, Phil; And Others

    1996-01-01

    Evaluates a simulation game that models management problems encountered in negotiating and managing international joint ventures. Designed to instruct executives of state-owned agribusinesses in Indonesia in abstract concepts such as partner rapport, transfer price conflicts, and marketing disagreements, its success suggests that simulation games…

  2. Optimization of reactor pressure vessel internals segmentation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Sik [Dankook Univ., Chungnam (Korea, Republic of). Dept. of Nuclear Engineering

    2017-11-15

    One of the most challenging tasks during plant decommissioning is the removal of highly radioactive internal components from the reactor pressure vessel (RPV). For RPV internals dismantling, it is essential that all activities are thoroughly planned and discussed in the early stage of the decommissioning project. One of the key activities in the detailed planning is to prepare the segmentation and packaging plan that describes the sequential steps required to segment, separate, and package each individual component of RPV, based on an activation analysis and component characterization study.

  3. Internal pressure changes of liquid filled shipping casks due to thermal environment

    International Nuclear Information System (INIS)

    Jackson, J.E.

    1978-01-01

    A discussion of the significance of internal pressure calculations in liquid filled shipping casks subjected to a high temperature thermal environment is presented. Some basic thermodynamic relationships are introduced and discussed as they apply to the two-phase mixture problem encountered with liquid filled casks. A model of the liquid filled cask is developed and the assumptions and limitations of the mathematical model are discussed. A relationship is derived which can be used to determine internal cask pressures as a function of initial thermodynamic loading conditions, initial fluid volume ratio and final mixture temperature. The results for water/air filled casks are presented graphically in a parametric form. The curves presented are particularly useful for preliminary design verification purposes. A qualitative discussion of the use of the results from an error analysis aspect is presented. Some pressure calculation problems frequently seen by NRC for liquid filled cask designs are discussed

  4. Material Usage in High Pressure Oxygen Systems for the International Space Station

    Science.gov (United States)

    Kravchenko, Michael; Sievers, D. Elliott

    2014-01-01

    The Nitrogen/Oxygen Recharge System (NORS) for the International Space Station (ISS) Program was required as part of the Space Shuttle retirement efforts to sustain the ISS life support systems. The system is designed around a 7000 psia Oxygen or Nitrogen Recharge Tank Assembly which is able to be utilized both internally and externally to the ISS. Material selection and usage were critical to ensure oxygen compatibility for the design, while taking into consideration toxicity, weldability, brazability and general fabrication and assembly techniques. The system uses unique hardware items such a composite overwrap pressure vessel (COPV), high pressure mechanical gauges, compact regulators and valves, quick disconnects, metal tubing and flexhoses. Numerous challenges and anomalies were encountered due to the exotic nature of this project which will be discussed in detail. The knowledge gained from these anomalies and failure resolutions can be applied to more than space applications, but can also be applicable to industry pressurized systems.

  5. Design description of the European pressurized water reactor

    International Nuclear Information System (INIS)

    Leverenz, R.

    1999-01-01

    The EPR (the European Pressurized Water Reactor) is an evolutionary PWR developed by Nuclear Power International and its parent companies, Framatome and Siemens, in co-operation with Electricite de France and German Utilities. NPI can rely on the huge experience gained by its parent companies; they have constructed more than 100 nuclear power plants throughout the world. The total installed capacity exceeds 100,000 MW - about 25% of the total world-wide figure. Following the conceptual design phase of the so-called Common Product conducted by NPI, Framatome and Siemens, from 1989 through 1991, Electricite de France (EDF) and several major German utilities decided to merge their own development programmes, - the N4 Plus and REP 2000 projects on the French side and the further development of the KONVOI technology on the German side, - with the NPI project. From that time on, the NPI project became one single common development line for both countries. In parallel, EDF and the German utilities decided to establish, together with other European utilities, specifications that would represent common utility views on the design and performance of future nuclear power plants. These are documented in the European Utility Requirements (EURs). The basic design has been completed in 1997, and in 1998 a design optimization is being carried out with the goal to even increase the economic competitiveness of nuclear power. This paper provides a brief design description of the EPR. (author)

  6. Comparative study for the design of optimal composite pressure vessels

    International Nuclear Information System (INIS)

    Butt, A.M.; Haq, S.W.U.

    2009-01-01

    Composite pressure vessels require special design attention to the dome region because of the varying wind angles generated using the filament winding process. Geometric variations in the dome region cause the fiber to change angels and thickness and hence offer difficulty to acquire a constant stress profile (isotensoid). Therefore a dome contour which allows an isotensoid behavior is the required structure. Two design methods to generate dome profiles for similar dome openings were investigated namely Netting Analysis and Optimal Design method. Both methods assume that loads are carried by the fiber alone (monotropic) ignoring the complete composite behavior. Former method produced a lower dome internal volume and a higher fiber thickness as compared to the later optimal design method when studied against different normalized dome opening radiuses. The optimal dome contour was studied in ANSYS with a trial design. The dome was considered to have transversely isotropic property with a dome contour based on monotropic model. While investigating the dome with non linear large displacement finite element analysis, the dome still exhibited isotensoid behavior with transverse isotropic material assignment. Elliptic integrals were used to generate the optimal dome contours and hence elliptic dome contours were formed which were isotensoid in nature with complete composite representation. (author)

  7. International certification in developing countries: the role of internal and external institutional pressure.

    Science.gov (United States)

    Fikru, Mahelet G

    2014-11-01

    This paper examines the different internal and external institutional factors that affect the decision of businesses in developing countries to adopt international certification (IC). Past studies focus on pressure from international laws, the role of multinationals, and businesses mimicking practices of their counterparts in developed countries. This paper finds that, in addition to these external factors, internal factors may have a significant role. Even though environmental regulation is weak in developing countries, governments do not ignore industrial pollution and casualties. They respond by increasing bureaucratic regulations for businesses and this can affect the decision to adopt IC. Furthermore, internal pressure may come from workers' unions that push for a safe and healthy working environment. Published by Elsevier Ltd.

  8. Human work interaction design meets international development

    DEFF Research Database (Denmark)

    Campos, P.; Clemmensen, T.; Barricelli, B.R.

    2017-01-01

    opportunity to observe technology-mediated innovative work practices in informal settings that may be related to the notion of International Development. In this unique context, this workshop proposes to analyze findings related to opportunities for design research in this type of work domains: a) human......Over the last decade, empirical relationships between work domain analysis and HCI design have been identified by much research in the field of Human Work Interaction Design (HWID) across five continents. Since this workshop takes place at the Interact Conference in Mumbai, there is a unique...

  9. Grain boundary cavity growth under applied stress and internal pressure

    International Nuclear Information System (INIS)

    Mancuso, J.F.

    1977-08-01

    The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress

  10. Designing high pressure containers for research- principles and applications

    International Nuclear Information System (INIS)

    Anandkumar, V.

    1997-01-01

    The high pressure scientist looks for a well engineered pressure apparatus for high pressure experiments for 1 kbar (0.1 GPa) and above. Often, a variety of difficulties including the choice of materials, design configuration, optimum utilisation of the strength of materials used in the design, are encountered. This article is intended to help the high pressure scientist to select the design approach for pressure retaining container. The limitations imposed by the strength of available materials and engineering standards in building high pressure containers are discussed. Engineering solutions to overcome these limitations with optimal utilisation of the strength of the materials are also discussed. Novel methods to boost up the pressure retaining capacity like multilayered design and autofrettaging are compared along with their relative advantages and disadvantages. Special methods by which it is possible to attain pressures which are several times the yield strength of the materials of construction are presented. In this aspects such as the basis of the codes and their relevance in the design of high pressure equipment will also be described. Discussions are centered around the methods to tackle situations where experimental constraints dictate requirements of pressures higher than those permitted by design codes. Safety features are also discussed. (author)

  11. Smart Design : First International Conference Proceedings

    CERN Document Server

    2012-01-01

    Good product designs merge materials, technology and hardware into a unified user experience; one where the technology recedes into the background and people benefit from the capabilities and experiences available. By focusing on functional gain, critical awareness and emotive connection, even the most multifaceted and complex technology can be made to feel straightforward and become an integral part of daily life. Researchers, designers and developers must understand how to progress or appropriate the right technical and human knowledge to inform their innovations. The 1st International Smart Design conference provides a timely forum and bring together researchers and practitioners to discuss issues, identify challenges and future directions, and share their R&D findings and experiences in the areas of design, materials and technology. This proceedings of the 1st Smart Design conference held at Nottingham Trent University in November 2011 includes summaries of the talks given on topics ranging from intel...

  12. Design of an internal dosimetry program

    International Nuclear Information System (INIS)

    Wu, C.F.; Goff, T.E.

    2004-01-01

    Measurement of radiation dose is an essential element of radiation protection programs at nuclear facilities. To protect workers and demonstrate compliance with regulatory requirements, dosimetry programs must be established based on sound technical basis. Historically, external exposure was controlled by occupational dose limits. Internal exposure to radionuclides was limited by maximum permissible body burden and maximum permissible concentration. With the issuance of ICRP 26, ICRP 30, DOE Order 5480.11, DOE/EH-0256T, and the new 10 CFR 20, it has become a requirement that internal dose be assessed and the sum of internal and external doses be maintained below regulatory limits. Nuclear facilities are required to have internal dose evaluation programs adequate to demonstrate compliance with radiation protection standards (RPSs). The Waste Isolation Pilot Plant is a DOE facility designed to demonstrate safe disposal of transuranic (TRU) wastes in an ancient salt bed 2,150 feet underground. Internal dose measurement is required to support waste handling activities. This paper describes the technical basis for the WIPP Internal Dosimetry Program. (author)

  13. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  14. 49 CFR 192.191 - Design pressure of plastic fittings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for plastic...

  15. Design criteria monograph for pressurized metal cases

    Science.gov (United States)

    1972-01-01

    Organiation and presentation of data pertaining to design of solid propellant rocket engine cases are discussed. Design criteria are presented in form of monograph based on accumulated experience and knowledge. Improvements in reliability, cost effectiveness, and engine efficiency are stressed.

  16. The out-of-pile test for internal pressure measurement of nuclear fuel rod using LVDT

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Kim, D. S.; Joo, K. N.; Park, S. J.; Kang, Y. H.; Kim, Y. K.; Yeum, K. I. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT(Linear Variable Differential Transformer). The objectives of this test were to understand the LVDT's characteristics and to study its application techniques for fuel irradiation technology. It will be required to analyze the acquired internal pressure of fuel rod during fuel irradiation test in HANARO. Therefore, the out of pile test system for pressure measurement was developed, and the test with the LVDT at room temperature were performed. This test were implemented in 1 kg/cm{sup 2} increment from 1 kg/cm{sup 2} to 30 kg/cm{sup 2}, and repeated 6 times at same condition. The LVDT's sensitivities were obtained by following two ways, the one by test and the other by calculation from characteristics data. These two sensitivities were compared and analyzed. The calculation method for internal pressure of nuclear fuel rod at specified temperature was also established. The results of the out-of-pile test will be used to predict accurately the internal pressure of fuel rod during irradiation test. And, the well qualified out-of-pile tests are needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation capsule.

  17. The out-of-pile test for internal pressure measurement of nuclear fuel rod using LVDT

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sohn Jae; Kang, Y. H.; Kim, B. G. [and others

    2001-11-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO, the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT. The objectives of this test were to understand the LVDT's characteristics and to study its application techniques for fuel irradiation technology. It will be required to analyze the acquired internal pressure of fuel rod during fuel irradiation test in HANARO. The out-of-pile test system for pressure measurement was developed, and the test with the LVDT at room temperature(19 .deg. C) were performed. A out-of-pile test were implemented in 1 kg/cm{sup 2} increment from 1 kg/cm{sup 2} to 30 kg/cm{sup 2} and repeated 6 times at each condition. The LVDT's sensitivities were obtained by following two ways, the one by test and the other by calculation from characteristics data. These two sensitivities were compared and analyzed. The calculation method for internal pressure of nuclear fuel rod at specified temperature was also established. This report describes the system configuration, the out-of-pile test procedures, and the results. The results of the out-of-pile test will be used to predict accurately the internal pressure of fuel rod during irradiation test. And, the well qualified out-of-pile tests are needed to understand the LVDT's detail characteristics for the detail design of the fuel irradiation capsule.

  18. Space Station Freedom pressurized element interior design process

    Science.gov (United States)

    Hopson, George D.; Aaron, John; Grant, Richard L.

    1990-01-01

    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  19. News and Perspectives on Treatment of Normal Pressure Internal Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Cristian Năstase

    2014-06-01

    Full Text Available Many patients, usually over 60 years old, presenting presenile dementia associated with marked gait disorders, impaired balance, urinary incontinence, have been shown to have enlarged ventricles associated with relatively small cortical atrophy. Intracranial pressure monitoring indicates normal values, or subject to only minor peaks, usually at night. Because some of these patients improve markedly after ventricular shunting procedures it has been suggested that their neurological dysfunction may be caused by a pressure effect on the brain from the increased internal surface of the ventricles. Many of these patients do benefit from surgery, and a lot of them have a history of subarachnoid hemorrhage, traumatic brain injury or meningitis which might have impaired the CSF absorption.

  20. Tax havens under international pressure: How do they react?

    OpenAIRE

    Patrice Pieretti; Giuseppe Pulina

    2015-01-01

    This paper contributes to the literature about tax havens by providing a more comprehensive analysis of their role. The aim is to analyze how low-tax jurisdictions can react to growing international pressure exerted, by high-tax countries, to enforce compliance with anti aggressive tax planning standards. To this end, we model how a small tax haven tries to be attractive to multinationals located in a high-tax region by providing aggressive tax planning services and/or a favorable environment...

  1. Monitoring programmes for internal exposure: designing criteria

    International Nuclear Information System (INIS)

    Rojo, Ana M.; Gomez Parada, Ines.

    2007-01-01

    The purpose of this document is to offer guidance for the decision whether a monitoring programme is required and how it should be designed. It can be also used as a tool for making the standing programmes consistent with the most recent publications on internal dosimetry, such as ISO 20553 'Monitoring of workers occupationally exposed to a risk of internal contamination with radioactive material', specific publications of the IAEA and ICRP, and including the conclusions of the OMINEX Project ('Optimisation of Monitoring for Internal Exposures') and IDEAS Project. It is established that the general purpose of the monitoring is verify that each worker is protected adequately against risks from radionuclide intakes and document that the protection complies with legal requirements. The criteria for a particular monitoring programme designing is based on the magnitude of the probable intake and the possibility of detecting a significant event when it occurs. So, the risk assessment for each work process must be evaluated and each worker is classified accordingly. This classification implies the acceptance of reference effective dose values (1 y 6 mSv/y ). (author) [es

  2. Rod internal pressure quantification and distribution analysis using Frapcon

    Energy Technology Data Exchange (ETDEWEB)

    Jessee, Matthew Anderson [ORNL; Wieselquist, William A [ORNL; Ivanov, Kostadin [Pennsylvania State University, University Park

    2015-09-01

    This report documents work performed supporting the Department of Energy (DOE) Office of Nuclear Energy (NE) Fuel Cycle Technologies Used Fuel Disposition Campaign (UFDC) under work breakdown structure element 1.02.08.10, ST Analysis. In particular, this report fulfills the M4 milestone M4FT- 15OR0810036, Quantify effects of power uncertainty on fuel assembly characteristics, within work package FT-15OR081003 ST Analysis-ORNL. This research was also supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. The discharge rod internal pressure (RIP) and cladding hoop stress (CHS) distributions are quantified for Watts Bar Nuclear Unit 1 (WBN1) fuel rods by modeling core cycle design data, operation data (including modeling significant trips and downpowers), and as-built fuel enrichments and densities of each fuel rod in FRAPCON-3.5. A methodology is developed which tracks inter-cycle assembly movements and assembly batch fabrication information to build individual FRAPCON inputs for each evaluated WBN1 fuel rod. An alternate model for the amount of helium released from the zirconium diboride (ZrB2) integral fuel burnable absorber (IFBA) layer is derived and applied to FRAPCON output data to quantify the RIP and CHS for these types of fuel rods. SCALE/Polaris is used to quantify fuel rodspecific spectral quantities and the amount of gaseous fission products produced in the fuel for use in FRAPCON inputs. Fuel rods with ZrB2 IFBA layers (i.e., IFBA rods) are determined to have RIP predictions that are elevated when compared to fuel rod without IFBA layers (i.e., standard rods) despite the fact that IFBA rods often have reduced fill pressures and annular fuel pellets. The primary contributor to elevated RIP predictions at burnups less than and greater than 30 GWd

  3. Simplifying the design of microstructured optical fibre pressure sensors.

    Science.gov (United States)

    Osório, Jonas H; Chesini, Giancarlo; Serrão, Valdir A; Franco, Marcos A R; Cordeiro, Cristiano M B

    2017-06-07

    In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.

  4. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1983-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and the USSR, under the auspices of the IAEA, to assess, define, design, construct and operate the next major experiment in the World Tokamak Program beyond the TFTR, JET, JT-60, T-15 generation. During the Zero-Phase (1979), a technical data base assessment was performed, leading to a positive assessment of feasibility. During Phase-I (1/80-6/81), a conceptual design was developed to define the concept. The programmatic objectives are that INTOR should: (1) be the maximum reasonable step beyond the TFTR, JET, JT-60, T-15 generation of tokamaks, (2) demonstrate the plasma performance required for tokamak DEMOs, (3) test the development and integration into a reactor system of those technologies required for a DEMO, (4) serve as a test facility for blanket, tritium production, materials, and plasma engineering technology, (5) test fusion reactor component reliability, (6) test the maintainability of a fusion reactor, and (7) test the factors affecting the reliability, safety and environmental acceptability of a fusion reactor. A conceptual design has been developed to define a device which is consistent with these objectives. The design concept could, with a reasonable degree of confidence, be developed into a workable engineering design of a tokamak that met the performance objectives of INTOR. There is some margin in the design to allow for uncertainty. While design solutions have been found for all of the critical issues, the overall design may not yet be optimal. (author)

  5. Design criteria for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.

    1989-01-01

    The work concerned with the PCRVs has been focussed on topics which are not sufficiently covered by the usual codes with respect to the special structure of PCRVs and the special demands on it, and different investigations yielding a basis for such specific design criteria have been carried out. Only a couple of subjects being in the fore under the aspect of defining quality enlarging design criteria for PCRVs are outlined. The materials for the concrete to be used for the PCRVs are carefully selected. (DG)

  6. Design of a pressurized water loop heated by electric resistances

    International Nuclear Information System (INIS)

    Ribeiro, S.V.G.

    1981-01-01

    A pressurized water loop design is presented. Its operating pressure is 420 psi and we seek to simulate qualitatively some thermo-hydraulic phenomena of PWR reactors. The primary circuit simulator consists basically of two elements: 1)the test section housing 16 electric resistences dissipating a total power of 100 Kw; 2)the loop built of SCH40S 304L steel piping, consisting of the pump, a heat exchanger and the pressurizer. (Author) [pt

  7. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  8. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1981-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and USSR. The Zero-Phase of the INTOR Workshop, which was conducted during 1979, assessed the technical data base that would support the construction of the next major device in the tokamak program to operate in the early 1990s and defined the objectives and characteristics of this device. The INTOR workshop was extended into phase-1, the Definition Phase, in early 1980. The objective of the Phase-1 Workshop was to develop a conceptual design of the INTOR experiment. The purpose of this paper is to give an overview of the work of the Phase-1 INTOR Workshop (January 1980-June 1981, with emphasis upon the conceptual design

  9. Computing radiation dose to reactor pressure vessel and internals

    International Nuclear Information System (INIS)

    1996-01-01

    Within the next twenty years many of the nuclear reactors currently in service will reach their design lifetime. One of the key factors affecting decisions on license extensions will be the ability to confidently predict the integrity of the reactor pressure vessel and core structural components which have been subjected to many years of cumulative radiation exposure. This report gives an overview of the most recent scientific literature and current methodologies for computational dosimetry in the OECD/NEA Member countries. Discussion is extended to consider some related issues of materials science, such as the metals, and limitations of the models in current use. Proposals are made for further work. (author)

  10. International linear collider reference design report

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  11. International linear collider reference design report 2007

    International Nuclear Information System (INIS)

    Aarons, G.

    2007-01-01

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R and D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade

  12. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed.

    Science.gov (United States)

    Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  13. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Science.gov (United States)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  14. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  15. Computer system for International Reactor Pressure Vessel Materials Database support

    International Nuclear Information System (INIS)

    Arutyunjan, R.; Kabalevsky, S.; Kiselev, V.; Serov, A.

    1997-01-01

    This report presents description of the computer tools for support of International Reactor Pressure Vessel Materials Database developed at IAEA. Work was focused on raw, qualified, processed materials data, search, retrieval, analysis, presentation and export possibilities of data. Developed software has the following main functions: provides software tools for querying and search of any type of data in the database; provides the capability to update the existing information in the database; provides the capability to present and print selected data; provides the possibility of export on yearly basis the run-time IRPVMDB with raw, qualified and processed materials data to Database members; provides the capability to export any selected sets of raw, qualified, processed materials data

  16. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal

  17. Analytical and experimental vibration analysis of BWR pressure vessel internals

    International Nuclear Information System (INIS)

    Krutzik, N.; Schad, O.

    1975-01-01

    This report attempts to evaluate the validity as well as quality of several analytical methods in the light of presently available experimental data for the internals of pressure vessels of boiling-water-reactor-types. The experimental checks were performed after the numerical analysis was completed and showed the accuracy of the numerical results. The analytical investigations were done by finite element programmes - 2-dimensional as well as 3-dimensional, where the effect of the mass distribution with parts of virtual masses on the dynamic response could be studied in depth. The experimental data were collected at various different plants and with different mass correlations. Besides evaluating the dynamic characteristics of the components, tests were also performed to evaluate the vibrations of the pressure vessel relative to the main structure. After analysing extensive recorded data much better understanding of the response under a variety of loading- and boundary conditions could be gained. The comparison of the results of analytical studies with the experimental results made a broad qualitative evaluation possible. (Auth.)

  18. Fracture Toughness Round Robin Test International in pressure tube materials

    International Nuclear Information System (INIS)

    Villagarcia, M.P.; Liendo, M.F.

    1993-01-01

    Part of the pressure tubes surveillance program of CANDU type reactors is to determine the fracture toughness using a special fracture specimen and test procedure. Atomic Energy of Canada Limited decided to hold a Round Robin Test International and 9 laboratories participated worldwide in which several pressure tube materials were selected: Zircaloy-2, Zr-2.5%Nb cold worked and Zr-2.5%Nb heat treated. The small specimens used held back the thickness and curvature of the tube. J-R curves at room temperature were obtained and the crack extension values were determined by electrical potential drop techniques. These values were compared with results generated from other laboratories and a bid scatter was founded. It could be due to slight variations in the test method or inhomogeneity of the materials and a statistical study must be done to see if there is any pattern. The next step for the Round Robin Test would be to make some modifications in the test method in order to reduce the scatter. (Author)

  19. International Space Station Crew Restraint Design

    Science.gov (United States)

    Whitmore, M.; Norris, L.; Holden, K.

    2005-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. In 2004, The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center completed development/evaluation of several design concepts for crew restraints to meet the various needs outlined above. Restraints were designed for general purpose use, for teleoperation (Robonaut) and for use with the Life Sciences Glovebox. All design efforts followed a human factors engineering design lifecycle, beginning with identification of requirements followed by an iterative prototype/test cycle. Anthropometric

  20. Design and Optimization of Filament Wound Composite Pressure Vessels

    NARCIS (Netherlands)

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound

  1. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  2. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD`s language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  3. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  4. A prototype knowledge based system for pressure vessel design

    International Nuclear Information System (INIS)

    Gunnarsson, L.

    1991-01-01

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au)

  5. Inspection and repair of reactor pressure vessel (RPV) internals

    International Nuclear Information System (INIS)

    Bohmann, W.; Poetz, F.; Nicolai, M.

    1996-01-01

    The past 10 years of operation of light water reactors were characterized by intensive inspection- and repair work on vital components. For boiling water reactors (BWR) it was typical to totally replace the piping system and for pressurized water reactors (PWR) it was the step to complete steam generator (SG) replacement - besides the development of increasingly diligent inspection and repair methods for SG tubes. It can be expected that in the 10 years to come the development of inspection- and repair methods will be aimed mainly at the core internals of BWR's as well as PWR's. Our prediction is that before the end of this decade a first complete replacement of these components will be performed. Already to date a broad range of techniques are available which enable the utilities to carry out inspections and repair of components of core internals in a relatively short time and acceptable expenses. Using examples such as Fuel Alignment Pin Inspection and Replacement, Baffle Former Bolt Inspection and Replacement, Core Barrel Former Bolt Inspection which are typical for PWR's we will in the following describe the existing methods, their development and - last but not least - their successful utilization. What is going to happen in the future? Ageing of the operating plants will continue, thus requesting the plant operators as well as the service companies to work on advanced technologies to fulfill the needs of the industry. (author)

  6. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    International Nuclear Information System (INIS)

    Courteau, R.; Bose, T.K.

    2004-01-01

    Piezoelectric transducers offer an effective, non-intrusive way to monitor dynamic cylinder pressure in internal combustion engines. Devices dedicated to this purpose are appearing on the market, often in the form of spark plugs with embedded piezo elements. Dynamic cylinder pressure is typically used to provide diagnostic functions, or to help map an engine after it is designed. With the advent of powerful signal processor chips, it is now possible to embed enough computing power in the engine controller to perform auto tuning based on the signals provided by such transducers. Such functionality is very useful if the fuel characteristics vary between fill ups, as is often the case with alternative fuels. We propose here an algorithm for self-adaptive tuning based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. (author)

  7. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  8. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    International Nuclear Information System (INIS)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10 -4 Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  9. Burst pressure of super duplex stainless steel pipes subject to combined axial tension, internal pressure and elevated temperature

    International Nuclear Information System (INIS)

    Lasebikan, B.A.; Akisanya, A.R.

    2014-01-01

    The burst pressure of super duplex stainless steel pipe is measured under combined internal pressure, external axial tension and elevated temperature up to 160 °C. The experimental results are compared with existing burst pressure prediction models. Existing models are found to provide reasonable estimate of the burst pressure at room temperature but significantly over estimate the burst pressure at elevated temperature. Increasing externally applied axial stress and elevated temperature reduces the pressure capacity. - Highlights: • The burst pressure of super duplex steel is measured under combined loading. • Effect of elevated temperature on burst pressure is determined. • Burst pressure decreases with increasing temperature. • Existing models are reliable at room temperature. • Burst strength at elevated temperature is lower than predictions

  10. Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

    Directory of Open Access Journals (Sweden)

    Farve Daneshvar Fard

    2014-08-01

    Full Text Available Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer prevention. Materials and Methods The monitoring system consists of 64 pressure and 64 temperature sensors on a 40×50 cm2 sheet. Pressure and temperature data and the corresponding maps were displayed on a computer in real-time. Risk assessment could be performed by monitoring and recording absolute pressure and temperature values, as well as deviations over time. Furthermore, a posture detection procedure was proposed for sitting posture identification. Information about the patient’s movement history may help caregivers make informed decisions about the patient’s repositioning and ulcer prevention strategies. Results Steady temporal behaviour of the designed system and repeatability of the measurements were evaluated using several particular tests. The results illustrated that the system could be utilized for continuous monitoring of interface pressure and temperature for pressure ulcer prevention. Furthermore, the proposed method for detecting sitting posture was verified using a statistical analysis. Conclusion A continuous time pressure and temperature monitoring system was presented in this study. This system may be suited for pressure ulcer prevention given its feasibility for simultaneous monitoring of pressure and temperature and alarming options. Furthermore, a method for detecting different sitting postures was proposed and verified. Pressure ulcers in wheelchair-bound patients may be prevented using this sitting posture detection method.

  11. Novel designs for application specific MEMS pressure sensors.

    Science.gov (United States)

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  12. Novel Designs for Application Specific MEMS Pressure Sensors

    Directory of Open Access Journals (Sweden)

    Erik V. Thomsen

    2010-10-01

    Full Text Available In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar, low temperature dependence and high capacitive output signal (more than 100 pF is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0–350 bar and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in  harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  13. Sizing rules for the pressure design of pump casings

    International Nuclear Information System (INIS)

    Aflalo, C.; Barbarulo, R.; Courcot, M.; Marolles, M. de; Douarin, M.; Grandemange, J.M.; Martin, R.

    1987-01-01

    The paper presents the theoretical and experimental studies undertaken by AFCEN (French Society for Design and Construction Rules for nuclear island components) and SCP (French Union of Pump Manufacturers) in order to develop sizing rules for the pressure design of radially split pump casings. Shape factors used in simplified design formulas have been developed for different configurations using results of finite element analyses and experimental extensometric analyses. (orig.)

  14. [Design of blood-pressure parameter auto-acquisition circuit].

    Science.gov (United States)

    Chen, Y P; Zhang, D L; Bai, H W; Zhang, D A

    2000-02-01

    This paper presents the realization and design of a kind of blood-pressure parameter auto-acquisition circuit. The auto-acquisition of blood-pressure parameter controlled by 89C2051 single chip microcomputer is accomplished by collecting and processing the driving signal of LCD. The circuit that is successfully applied in the home unit of telemedicine system has the simple and reliable properties.

  15. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  16. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  17. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    International Nuclear Information System (INIS)

    Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland

    2016-01-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  18. Registers of pressure ulcers in an international context

    Directory of Open Access Journals (Sweden)

    Andrea Pokorná

    2016-05-01

    Full Text Available Aim: The aim of the following review was to search for existing registers of pressure ulcer (PU incidence operating and collecting data on national level. Design: Type of study - review. Methods: Articles focusing on the subject of national PU registers were searched for by means of a systematic trawl through various databases using relevant terms. The search was limited to articles in English issued between 2010 and 2015 in the electronic databases SCOPUS and Nursing OVID. Articles focused on local datasets or registry as a part of local electronic health records were not included as well as studies which do not describe the dataset or the usability of data collection. Results: In total, six papers were found fulfilling the established criteria. Conclusion: According to information available from the literature review, it was recognised that only one register of PUs currently exists at the national level - the Registry of Ulcer Treatment (RUT in Sweden. It can be assumed that registers exist in other countries, but that the information is not available on electronic databases. After a detailed inspection of the articles, it appears the information derived from the studies could provide a useful picture of the data that should be collected, and at what time during the treatment period (initial and final assessment of the patients and local symptomatology of the wound/pressure ulcer it should be collected.

  19. Advanced dependent pressure vessel (DPV) nickel-hydrogen spacecraft battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.K.; Grindstaff, B.; Swaim, O.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States). Advanced Systems Operation

    1995-12-31

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH{sub 2}) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. The limitations of standard NiH{sub 2} individual pressure vessel (IPV) flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher energy density and reduced cost, while retaining the established IPV technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The geometry of the DPV cell promotes compact, minimum volume packaging and weight efficiency. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks.

  20. Behaviours of reinforced concrete containment models under thermal gradient and internal pressure

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Ohnuma, H.; Yoshioka, Y.; Okada, K.; Ueda, M.

    1979-01-01

    The provisions for design concepts in Japanese Technical Standard of Concrete Containments for Nuclear Power Plants require to take account of thermal effects into design. The provisions also propose that the thermal effects could be relieved according to the degree of crack formation and creep of concrete, and may be neglected in estimating the ultimate strength capacity in extreme environmental loading conditions. This experimental study was carried out to clarify the above provisions by investigating the crack and deformation behaviours of two identical reinforced cylindrical models with dome and basement (wall outer diameter 160 cm, and wall thickness 10 cm). One of these models was hydraulically pressurized up to failure at room temperature and the other was subjected to similar internal pressure combined with the thermal gradient of approximately 40 to 50 0 C across the wall. Initial visual cracks were recognized when the stress induced by the thermal gradient reached at about 85% of bending strength of concrete used. The thermal stress of reinforcement calculated with the methods proposed by the authors using an average flexural rigidity considering the contribution of concrete showed good agreement with test results. The method based on the fully cracked section, however, was recognized to underestimate the measured stress. These cracks considerably reduced the initial deformation caused by subsequent internal pressure. (orig.)

  1. Instabilities of bellows: Dependence on internal pressure, end supports, and interactions in accelerator magnet systems

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.

    1990-01-01

    For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines in addition to beam tube bellows. There could be approximately 10,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed or internally pressurized, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in an assembly, failure modes might interact. If designed properly, large bellows can be a very feasible possibility for connecting the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We present here (1) a spring-supported bellows model, in order to develop necessary design features for bellows and end supports so that instabilities will not occur in the bellows pressure operating region, including some margin, (2) a model of three superconducting accelerator magnets connected by two large bellows, in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Reliability of bellows for our application will be stressed. 3 refs., 4 figs

  2. Subgaleal Retention Sutures: Internal Pressure Dressing Technique for Dolenc Approach.

    Science.gov (United States)

    Burrows, Anthony M; Rayan, Tarek; Van Gompel, Jamie J

    2017-08-01

    Extradural approach to the cavernous sinus, the "Dolenc" approach recognizing its developing Dr. Vinko Dolenc, is a critically important skull base approach. However, resection of the lateral wall of the cavernous sinus, most commonly for cavernous sinus meningiomas, results commonly in a defect that often cannot be reconstructed in a water-tight fashion. This may result in troublesome pseudomeningocele postoperatively. To describe a technique designed to mitigate the development of pseudomeningocele. We found the Dolenc approach critical for resection of cavernous lesions. However, a number of pseudomeningoceles were managed with prolonged external pressure wrapping in the early cohort. Therefore, we incorporated subgaleal to muscular sutures, which were designed to close this potential space and retrospectively analyzed our results. Twenty-one patients treated with a Dolenc approach and resection of the lateral wall of the cavernous sinus over a 2-year period were included. Prior to incorporation of this technique, 12 patients were treated and 3 (25%) experienced postoperative pseudomeningoceles requiring multiple clinic visits and frequent dressing. After incorporation of subgaleal retention sutures, no patient (0%) experienced this complication. Although basic, subgaleal to temporalis muscle retention sutures likely aid in eliminating this potential dead space, thereby preventing patient distress postoperatively. This technique is simple and further emphasizes the importance of dead space elimination in complex closures. Copyright © 2017 by the Congress of Neurological Surgeons

  3. PROBABILISTIC FINITE ELEMENT ANALYSIS OF A HEAVY DUTY RADIATOR UNDER INTERNAL PRESSURE LOADING

    Directory of Open Access Journals (Sweden)

    ROBIN ROY P.

    2017-09-01

    Full Text Available Engine cooling is vital in keeping the engine at most efficient temperature for the different vehicle speed and operating road conditions. Radiator is one of the key components in the heavy duty engine cooling system. Heavy duty radiator is subjected to various kinds of loading such as pressure, thermal, vibration, internal erosion, external corrosion, creep. Pressure cycle durability is one of the most important characteristic in the design of heavy duty radiator. Current design methodologies involve design of heavy duty radiator using the nominal finite element approach which does not take into account of the variations occurring in the geometry, material and boundary condition, leading to over conservative and uneconomical designs of radiator system. A new approach is presented in the paper to integrate traditional linear finite element method and probabilistic approach to design a heavy duty radiator by including the uncertainty in the computational model. As a first step, nominal run is performed with input design variables and desired responses are extracted. A probabilistic finite elementanalysis is performed to identify the robust designs and validated for reliability. Probabilistic finite element includes the uncertainty of the material thickness, dimensional and geometrical variation. Gaussian distribution is employed to define the random variation and uncertainty. Monte Carlo method is used to generate the random design points.Output response distributions of the random design points are post-processed using different statistical and probability technique to find the robust design. The above approach of systematic virtual modelling and analysis of the data helps to find efficient and reliable robust design.

  4. Research and design of 3He pressure control loop

    International Nuclear Information System (INIS)

    Huang Xin; Zhang Peisheng; Tang Guoliang; Zhang Aimin; Zhang Yingchao

    2008-01-01

    In order to carry out power transient tests for PWR fuel element in China Advanced Research Reactor (CARR), the research and conceptual design of 3He pressure control loop were completed. The working principle, design parameters and technological flow of the loop were described. It is seen that the a He loop can adjust the power of the tested PWR fuel element rapidly, evenly and flexibly and it is an optimal path to realize the power transient regulation for tested PWR fuel. (authors)

  5. Structural analysis and evaluation for the design of pressure vessel

    International Nuclear Information System (INIS)

    Arai, K.; Uragami, K.; Funada, T.; Baba, K.; Kira, T.

    1977-01-01

    For the design of pressure vessel, the detailed structural analysis such as the fatigue analysis under operating conditions is required by ASME Code or Japanese regulation. Accordingly, it should be verified by the analysis that the design of the pressure vessel is in compliance with the stress limitation defined in the Code or the regulation. However, it was apparent that the analysis is very complicated and takes a lot of time to evaluate in accordance with the Code requirements. Thereupon we developed the computer program by which we can perform the stress analysis with correctness and comparatively in a short period of design work reflecting the calculation results on detailed drawings to be used for fabrication. The computer program is controlled in combination with the system of the design work and out put list of the program can be directly used for the stress analysis report which is issued to customers. In addition to the above computer program, we developed the specific three dimensional finite element computer program to make sure of the structural integrity of the vessel head and flanges which are most complex for the analysis compared with the stress distribution measured by strain gauges on the vessel head and flange. Besides the structural analysis, the fracture mechanics analysis for the purpose of preventing the pressure vessel from the brittle fracture during heat-up and cool-down operation is also important and thereby we showed herein that the pressure vessel is in safety against the brittle fracture for the specified operating conditions. As a result of the above-mentioned analysis, the pressure vessel is designed with safety from the stand-points of the structural intensity and the fracture mechanics. (auth.)

  6. 6th International Conference on Design Computing and Cognition

    CERN Document Server

    Hanna, Sean

    2015-01-01

    This book details the state-of-the-art of research and development in design computing and design cognition. It features more than 35 papers that were presented at the Sixth International Conference on Design Computing and Cognition, DCC’14, held at University College, London, UK. Inside, readers will find the work of expert researchers and practitioners that explores both advances in theory and application as well as demonstrates the depth and breadth of design computing and design cognition. This interdisciplinary coverage, which includes material from international research groups, examines design synthesis, design cognition, design creativity, design processes, design theory, design grammars, design support, and design ideation. Overall, the papers provide a bridge between design computing and design cognition. The confluence of these two fields continues to build the foundation for further advances and leads to an increased understanding of design as an activity whose influence continues to spread. ...

  7. Internal Validity: A Must in Research Designs

    Science.gov (United States)

    Cahit, Kaya

    2015-01-01

    In experimental research, internal validity refers to what extent researchers can conclude that changes in dependent variable (i.e. outcome) are caused by manipulations in independent variable. The causal inference permits researchers to meaningfully interpret research results. This article discusses (a) internal validity threats in social and…

  8. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  9. Design criteria and pressure vessel codes - an American view

    International Nuclear Information System (INIS)

    Tuppeny, W.H.

    1975-01-01

    To the pressure vessel designer, codes and criteria represent the common ground where the stress analyst and the metallurgist must interact and evolve rules and procedures which will ensure safety and open-ended responsiveness to technological, economic, and environmental change. The paper briefly discusses the evolution and rationale behind the current ASME code sections -emphasizing those portions applicable to designs operating in the creep range. The author then proposes a plan of action so that the analysts and materials people can make optimum use of time and resources, and evolve data and design criteria which will be responsive to changing technology and the economic and safety requirements of the future. (author)

  10. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation.

    Science.gov (United States)

    Solis, Leandro R; Liggins, Adrian; Uwiera, Richard R E; Poppe, Niek; Pehowich, Enid; Seres, Peter; Thompson, Richard B; Mushahwar, Vivian K

    2012-08-01

    The overall goal of this project is to develop interventions for the prevention of deep tissue injury (DTI), a form of pressure ulcers that originates in deep tissue around bony prominences. The present study focused on: (1) obtaining detailed measures of the distribution of pressure experienced by tissue around the ischial tuberosities, and (2) investigating the effectiveness of intermittent electrical stimulation (IES), a novel strategy for the prevention of DTI, in alleviating pressure in regions at risk of breakdown due to sustained loading. The experiments were conducted in adult pigs. Five animals had intact spinal cords and healthy muscles and one had a spinal cord injury that led to substantial muscle atrophy at the time of the experiment. A force-controlled servomotor was used to load the region of the buttocks to levels corresponding to 25%, 50% or 75% of each animal's body weight. A pressure transducer embedded in a catheter was advanced into the tissue to measure pressure along a three dimensional grid around the ischial tuberosity of one hind leg. For all levels of external loading in intact animals, average peak internal pressure was 2.01 ± 0.08 times larger than the maximal interfacial pressure measured at the level of the skin. In the animal with spinal cord injury, similar absolute values of internal pressure as that in intact animals were recorded, but the substantial muscle atrophy produced larger maximal interfacial pressures. Average peak internal pressure in this animal was 1.43 ± 0.055 times larger than the maximal interfacial pressure. Peak internal pressure was localized within a ±2 cm region medio-laterally and dorso-ventrally from the bone in intact animals and ±1 cm in the animal with spinal cord injury. IES significantly redistributed internal pressure, shifting the peak values away from the bone in spinally intact and injured animals. These findings provide critical information regarding the relationship between internal and

  11. Pressure Ulcer Risk in the Incontinent Patient: Analysis of Incontinence and Hospital-Acquired Pressure Ulcers From the International Pressure Ulcer Prevalence™ Survey.

    Science.gov (United States)

    Lachenbruch, Charlie; Ribble, David; Emmons, Kirsten; VanGilder, Catherine

    2016-01-01

    To measure the prevalence of incontinence in the 2013-2014 International Pressure Ulcer Prevalence (IPUP) surveys and determine the relative risk of developing a facility-acquired pressure ulcers (FAPUs) by stage and by Braden Scale score groupings. The IPUP survey is an observational, cross-sectional cohort database designed to determine the frequency and severity of pressure ulcers in various populations. The survey includes acute care (91.4%), long-term acute care (1.7%), rehabilitation patients (1.7%) and long-term care residents (5.2%). Geographic distribution included 182,832 patients in the United States, 22,282 patients in Canada, and the rest of the world, primarily in Europe and the Middle East. We analyzed data from the 2013 and 2014 IPUP surveys to better understand the relationship between incontinence and the frequency and severity of FAPUs. The IPUP survey is an annual voluntary survey of patients who are hospitalized or who reside in long-term care facilities. Data were collected over a 24-hour period within each participating facility. Data collection included limited demographics, presence and stage of pressure ulcers, and pressure ulcer risk assessment score (Braden Scale for Pressure Sore Risk, Braden Q, Norton, Waterlow, and others). In addition, data were collected on pertinent pressure ulcer risk factors including the number of linen layers, use of a pressure redistributing surface, adherence to repositioning schedule, and whether moisture management was provided in the last 24 hours. We aggregated data by urinary, urinary catheter, fecal, fecal management system, double (urinary and fecal), and ostomy incontinence category. If patients were managed by indwelling urinary catheter or fecal management systems, they were considered incontinent in this analysis. In order to analyze ulcers likely to be affected by incontinence, we defined a subset of ulcers as Relevant Pressure Ulcers, which are ulcers that are facility-acquired, non

  12. Experimental study of the structural behavior of the reinforced concrete containment vessel beyond design pressure

    International Nuclear Information System (INIS)

    Oyamada, O.; Saito, H.; Muramatsu, Y.; Hasegawa, T.; Tanaka, N.

    1990-01-01

    The first Advanced Boiling Water Reactor (ABWR) including a reinforced concrete containment vessel (RCCV) is scheduled to be constructed in the 1990s, in Japan. As the RCCV is new to Japan, we performed a trial design, several series of fundamental experiments and partial/total model experiments. This paper presents a summary of the 'TOP SLAB EXPERIMENT' carried out as one of partial model experiments, in which the structural behavior of the RCCV was examined under internal pressure. (orig.)

  13. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  14. Design of virtual SCADA simulation system for pressurized water reactor

    International Nuclear Information System (INIS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-01-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor

  15. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  16. Analytical studies on optimization of containment design pressure

    International Nuclear Information System (INIS)

    Haware, S.K.; Ghosh, A.K.; Kushwaha, H.S.

    2005-01-01

    The containment of the proposed Advanced Heavy Water Reactor (AHWR) is divided into two main volumes viz. V1 and V2 interconnected by vent system via suppression pool. The arrangement is such that the volume V2 surrounds the volume V1 (see Fig.1). Blow Out Panels (BOPs), installed on volume V1 are designed to rupture at a differential pressure of 50 kPa. The containment was analysed using the in-house developed code CONTRAN, for three different scenario considered viz. (i) Loss of Coolant Accident (LOCA) involving double ended break in the downcomer pipe, (ii) LOCA involving double ended break in the reactor inlet header and (iii) Main Steam Line Break (MSLB) Accident. It was revealed that the accident involving the double-ended break of reactor inlet header results in the maximum value of the containment peak pressure. Results of the analyses indicated that the size of the BOP has bearing on the containment peak pressure. Therefore, five cases were analysed, varying the size of BOP from 0 to 10 m 2 , in order to quantify the influence of the size of BOP on the containment peak pressure. The blowdown mass and energy discharge data calculated using the code RELAP5/MOD3.2 was used in the analysis. It was observed that the vents are cleared in around 0.41 seconds into the accident. The containment peak pressures obtained in various cases are presented in Fig.2. The containment peak pressure varies with the size of BOP and passes through minima for a BOP size of around 5 m 2 . There are two flow processes, competing with each other viz. the steam-air mixture passage through the vent system via suppression pool and direct passage of steam air mixture through BOP bypassing the suppression pool. Though the energy suppression efficiency of the suppression pool decreases with increasing size of BOP, the pressure suppression efficiency was found to be maximum at around 5 m 2 size of BOP. The containment peak pressure passing through minima indicates that there is a scope for

  17. Viscoelastic behavior and durability of steel wire - reinforced polyethylene pipes under a high internal pressure

    NARCIS (Netherlands)

    Ivanov, S.; Anoshkin, A.N.; Zuyko, V.Yu

    2011-01-01

    The strength tests of steel-wire-reinforced polyethylene pipe specimens showed that, under a constant internal pressure exceeding 80% of their short-term ultimate pressure, the fracture of the specimens occurred in less than 24 hours. At pressures slightly lower than this level, some specimens did

  18. Design, fabrication and quality assurance of pressure vessels

    International Nuclear Information System (INIS)

    Kimura, Ichiro; Miki, Masao; Yamazaki, Tsuneji; Tanaka, Yoshikazu; Sato, Misao

    1978-01-01

    The production facilities, design and manufacturing technologies, and quality assurance in the Toyo Works, Ehime Manufactory, Sumitomo Heavy Industries, Ltd., which manufactures pressure vessels, are described, and especially the actual example of non-destructive tests is shown. The Toyo Works was completed in April, 1973, to manufacture large structures such as pressure vessels, offshore structures and bridges. The total area of the site is 535,000 m 2 , that of factory buildings is 33,600 m 2 , and the outdoor assembling yard is 114,800 m 2 . The large dry dock and main installations such as 12,000 tf hydraulic press, an annealing furnace, a heat treating furnace, a quenching tank, a horizontal boring machine, 6 m vertical lathe, various welding machines, 8 MeV X-ray apparatus, sand blasting and pickling facilities, and two 160 t cranes for shipment are arranged so as to enable smooth flow of production. The standards for chemical pressure vessels in various countries are compared, and considerably high allowable stress is adopted in Europe. The design and stress analysis of pressure vessels are carried out in accordance with ASME Section 8, Div. 1 or Div. 2. As for the materials, attention must be paid to the change of properties due to heat and strain, temper brittleness, low temperature toughness and so on. The quality assurance system must be established to observe the requirements of standards. (Kako, I.)

  19. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  20. High Pressure Angle Gears: Comparison to Typical Gear Designs

    Science.gov (United States)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  1. Sampling of reactor pressure vessel and core internals

    International Nuclear Information System (INIS)

    Oberhaeuser, Ralf

    2012-01-01

    Decommissioning and dismantling of nuclear power plants is a growing business as a huge number of plants built in the 1970's have now reached their lifetime. It is well known that dismantling a nuclear power plant means an extraordinary expense for the owner respectively operator. Beside the dismantling works for itself, the disposal of activated components and other nuclear waste is very expensive. What comes next is the fact that final disposal facilities are not available yet in most countries meaning a need for interim storage on-site in specially built facilities. It can be concluded that a special attention is paid on producing a minimal radioactive waste volume. For this, optimized dismantling and packaging concepts have to be developed. AREVA is proud of versatile experience in successfully dismantling nuclear components like core internals and reactor pressure vessel (RPV). The basis of a well-founded and optimized dismantling and packaging concept must always be the detailed knowledge of the radiological condition of the component to be and in the best case a 3D activation- model. For keeping the necessary sampling effort as small as possible, but simultaneously as efficient as possible, representative sampling positions are defined in advance by theoretical radiological examinations. For this, a detailed 3D-CAD-model of the components to be dismantled has proven very helpful and effective. Under these aspects a sampling of RPV and its components is necessary to verify the theoretically calculated radiological data. The obtained results of activation and contamination are taken into account for the optimized dismantling and packaging strategy. The precise 3D-activation-model will reduce the necessary number and type of final disposal containers as security factors are minimized leading to a lower shielding effort, too. Besides, components or even parts of components may be subject of release measurement. In the end, costs can be reduced. In this context

  2. Design and testing of high-pressure railguns and projectiles

    International Nuclear Information System (INIS)

    Peterson, D.R.; Fowler, C.M.

    1984-01-01

    The results of high-pressure tests of four railgun designs and four projectile types are presented. All tests were conducted at the Los Alamos explosive magnetic-flux compression facility in Ancho Canyon. The data suggest that the high-strength projectiles have lower resistance to acceleration than the low strength projectiles, which expand against the bore during acceleration. The railguns were powered by explosive magneticflux compression generators. Calculations to predict railgun and power supply performance were performed by Kerrisk

  3. 7th International Conference on Design Computing and Cognition

    CERN Document Server

    2017-01-01

    This book gathers the peer-reviewed and revised versions of papers from the Seventh International Conference on Design Computing and Cognition (DCC'16), held at Northwestern University, Evanston (Chicago), USA, from 27–29 June 2016. The material presented here reflects cutting-edge design research with a focus on artificial intelligence, cognitive science and computational theories. The papers are grouped under the following nine headings, describing advances in theory and applications alike and demonstrating the depth and breadth of design computing and design cognition: Design Creativity; Design Cognition - Design Approaches; Design Support; Design Grammars; Design Cognition - Design Behaviors; Design Processes; Design Synthesis; Design Activity and Design Knowledge. The book will be of particular interest to researchers, developers and users of advanced computation in design across all disciplines, and to all readers who need to gain a better understanding of designing.

  4. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    Science.gov (United States)

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Brochure: Partnering by design | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... Partnerships are key to IDRC's business model. Other organizations are increasingly recognizing the importance of research and turn to IDRC. IDRC partners with donors and international organizations to: Promote greater collaboration among research funders and enhance effectiveness in development ...

  6. Design and test of a high pressure centrifugal compressor

    International Nuclear Information System (INIS)

    Choi, Jae Ho; Han, Chak Heui; Paeng, Ki Seok; Chen, Seung Bae; Kim, Yong Ryun

    2005-01-01

    This paper presents an aerodynamic design, flow analysis and performance test of a pressure ratio 4:1 centrifugal compressor for gas turbine engine. The compressor is made up of a centrifugal impeller, a two-stage diffuser consisted of radial and axial types. The impeller has a 45 degree backswept angle and the design running tip clearance is 5% of impeller exit height. Three-dimensional numerical analysis is performed to analyze the flows in the impeller, diffuser and deswirler considering the impeller tip clearance. Test module and rig facilities for the compressor stage performance test are designed and fabricated. The overall compressor stage performances as well as the static pressure fields on the impeller and diffuser are measured. Two diffusers of wedge and airfoil types are tested with an impeller. The calculation and test results show that flow fields downstream the deswirler at the design and off-design points are highly nonuniform and the airfoil diffuser has the better aerodynamic characteristics than those of wedge diffuser

  7. Effect of fuel assembly mechanical design changes on dynamic response of reactor pressure vessel system under extreme loadings

    International Nuclear Information System (INIS)

    Bhandari, D.R.; Hankinson, M.F.

    1993-01-01

    This paper presents the results of a study to assess the effect of fuel assembly mechanical design changes on the dynamic response of a pressurized water reactor vessel and reactor internals under Loss-Of-Coolant Accident (LOCA) conditions. The results of this study show that the dynamic response of the reactor vessel internals and the core under extreme loadings, such as LOCA, is very sensitive to fuel assembly mechanical design changes. (author)

  8. Design Optimization of Internal Flow Devices

    DEFF Research Database (Denmark)

    Madsen, Jens Ingemann

    The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies.......The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies....

  9. Hydroxyapatite implants with designed internal architecture.

    Science.gov (United States)

    Chu, T M; Halloran, J W; Hollister, S J; Feinberg, S E

    2001-06-01

    Porous hydroxyapatite (HA) has been used as a bone graft material in the clinics for decades. Traditionally, the pores in these HAs are either obtained from the coralline exoskeletal patterns or from the embedded organic particles in the starting HA powder. Both processes offer very limited control on the pore structure. A new method for manufacturing porous HA with designed pore channels has been developed. This method is essentially a lost-mold technique with negative molds made with Stereolithography and a highly loaded curable HA suspension as the ceramic carrier. Implants with designed channels and connection patterns were first generated from a Computer-Aided-Design (CAD) software and Computer Tomography (CT) data. The negative images of the designs were used to build the molds on a stereolithography apparatus with epoxy resins. A 40 vol% HA suspension in propoxylated neopentyl glycol diacrylate (PNPGDA) and iso-bornyl acrylate (IBA) was formulated. HA suspension was cast into the epoxy molds and cured into solid at 85 degrees C. The molds and acrylate binders were removed by pyrolysis, followed by HA green body sintering. With this method, implants with six different channel designs were built successfully and the designed channels were reproduced in the sintered HA implants. The channels created in the sintered HA implants were between 366 microm and 968 microm in diameter with standard deviations of 50 microm or less. The porosity created by the channels were between 26% and 52%. The results show that HA implants with designed connection pattern and well controlled channel size can be built with the technique developed in this study. Copyright 2001 Kluwer Academic Publishers

  10. CMC blade with pressurized internal cavity for erosion control

    Science.gov (United States)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    2016-02-02

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interior fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.

  11. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  12. Design and analysis of pressurized water reactor systems

    International Nuclear Information System (INIS)

    Juhn, P.E.; Kim, Y.H.

    1979-01-01

    To help develop nuclear engineering technologies in local industry sectors, technical and economical data on pressurized water reactor systems and components have been collected, systematically analyzed and computerized to a certain degree. Codes and standards necessary for engineering design of PWR systems have been surveyed and clarified in terms of NSSS, turbine-generator system and BOP, then again rearranged with respect to quality classes and seismic classes. Some design manuals, criteria and guidelines regarding design, construction, test and operation of PWR plants have also been surveyed and collected. Benchmark cost calculation for the construction of a 900 MWe PWR plant, according to the standard format, was carried out, and computer model on construction costs was improved and updated by considering the local supply of labor and materials. And for the indigeneous development of PWR equipment and materials, such data as delivery schedule and manufacturers of 52 systems and 36,000 components have also been reviewed herein. (author)

  13. The evolution and structural design of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Hannah, I.W.

    1978-01-01

    The introduction of the prestressed concrete pressure vessel to contain the main gas coolant circuit of nuclear reactors has marked a major step forward. This chapter traces the evolution and development of the PCPV, and lists the principal parameters adopted. Current design and loading standards are discussed in relation to the two main limit states of serviceability and safety. Prestressed concrete pressure vessel analysis has called for very extensive adaptation and expansion of conventional finite element and finite difference methods in order to deal with the elevated temperature of operation, together with extensive concrete testing at temperature and under multi-directional stressing. These new methods and extra data are being adopted in prestressed applications in other fields and may well prove to be of much wider significance than is presently appreciated. (author)

  14. Competition between Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles.

    Science.gov (United States)

    Vorselen, Daan; MacKintosh, Fred C; Roos, Wouter H; Wuite, Gijs J L

    2017-03-28

    Nanovesicles (∼100 nm) are ubiquitous in cell biology and an important vector for drug delivery. Mechanical properties of vesicles are known to influence cellular uptake, but the mechanism by which deformation dynamics affect internalization is poorly understood. This is partly due to the fact that experimental studies of the mechanics of such vesicles remain challenging, particularly at the nanometer scale where appropriate theoretical models have also been lacking. Here, we probe the mechanical properties of nanoscale liposomes using atomic force microscopy (AFM) indentation. The mechanical response of the nanovesicles shows initial linear behavior and subsequent flattening corresponding to inward tether formation. We derive a quantitative model, including the competing effects of internal pressure and membrane bending, that corresponds well to these experimental observations. Our results are consistent with a bending modulus of the lipid bilayer of ∼14k b T. Surprisingly, we find that vesicle stiffness is pressure dominated for adherent vesicles under physiological conditions. Our experimental method and quantitative theory represents a robust approach to study the mechanics of nanoscale vesicles, which are abundant in biology, as well as being of interest for the rational design of liposomal vectors for drug delivery.

  15. International Space Station (ISS) Oxygen High Pressure Storage Management

    Science.gov (United States)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  16. Blood pressure variability in relation to outcome in the International Database of Ambulatory blood pressure in relation to Cardiovascular Outcome

    DEFF Research Database (Denmark)

    Stolarz-Skrzypek, Katarzyna; Thijs, Lutgarde; Richart, Tom

    2010-01-01

    Ambulatory blood pressure (BP) monitoring provides information not only on the BP level but also on the diurnal changes in BP. In the present review, we summarized the main findings of the International Database on Ambulatory BP in relation to Cardiovascular Outcome (IDACO) with regard to risk...

  17. Information Architecture without Internal Theory: An Inductive Design Process.

    Science.gov (United States)

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  18. The international pressures on the energy market in Iberian America and Brazil

    International Nuclear Information System (INIS)

    Lavos Coimbra, G.

    2006-01-01

    This paper analyses Brazilian nuclear energy history, and addresses recent events, such as the international political pressures, the International Atomic Energy Agency/IAEA position, the new facts about nuclear energy in the world, the international energy market and the Iberian-America, the news about the Brazilian nuclear energy area, the best opportunities of good business in the Brazilian nuclear sector, the Brazilian Government and the Brazilian public position, in relation to International Law. (author)

  19. Introduction to reactor internal materials for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,.

  20. Introduction to reactor internal materials for pressurized water reactor

    International Nuclear Information System (INIS)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,

  1. The new international certification and design principles

    International Nuclear Information System (INIS)

    Heijnen, W.H.P.M.; Heineman, H.

    1995-01-01

    ISO/TC 67 deals with standardization of Equipment for the Petroleum and Natural Gas Industries at a global level. The paper will provide the reader with insight in the Certification system as well as its link with Design. It will explain how the total process fits in the business structure of the Petroleum and Natural Gas Industry, with the focus on the emerging concepts such as partnering, turn key contracts, the developments in the EC and the need to reduce costs at a global basis. The paper will also address the topic of Design Principles based on the results of the study performed for ISO/TC 67. The paper will provide a framework that can be used by the industry in how to deal with issues such as, there shall the activity of the Operator be focused on when ordering equipment or services and how the manufacturer or service provider should prepare himself to become an equal partner with regard to the required equipment, service and its associated technology now and in the future. In the changing world with ever increasing focus on Health, Safety and Environment (HSE), the topic efficiency, technology, equipment performance and functionality should not be overlooked or been given less attention. The Certification and Design principles, implemented in standards, aim predominantly at Fitness for Purpose of equipment and/or services to regain the balance. A further aim is to limit consequential costs due to deficiencies in the broadest sense, allowing the Petroleum and Natural Gas Industry to produce oil and gas in a cost effective manner with the highest possible HSE targets

  2. Negative-pressure wound therapy with instillation: international consensus guidelines.

    Science.gov (United States)

    Kim, Paul J; Attinger, Christopher E; Steinberg, John S; Evans, Karen K; Lehner, Burkhard; Willy, Christian; Lavery, Larry; Wolvos, Tom; Orgill, Dennis; Ennis, William; Lantis, John; Gabriel, Allen; Schultz, Gregory

    2013-12-01

    Negative-pressure wound therapy with instillation is increasingly utilized as an adjunct therapy for a wide variety of wounds. Despite its growing popularity, there is a paucity of evidence and lack of guidance to provide effective use of this therapy. A panel of experts was convened to provide guidance regarding the appropriate use of negative-pressure wound therapy with instillation. A face-to-face meeting was held where the available evidence was discussed and individual clinical experience with this therapy was shared. Follow-up communication among the panelists continued until consensus was achieved. The final consensus recommendations were derived through more than 80 percent agreement among the panelists. Nine consensus statements were generated that address the appropriate use of negative-pressure wound therapy with instillation. The question of clinical effectiveness of this therapy was not directly addressed by the consensus panel. This document serves as preliminary guidelines until more robust evidence emerges that will support or modify these consensus recommendations.

  3. Optimal design of pressurized irrigation systems. Application cases (Ecuador

    Directory of Open Access Journals (Sweden)

    Carmen Mireya Lapo Pauta

    2013-05-01

    Full Text Available This paper presents research completed with the intention of finding the most economical solution in the design of pressurized irrigation networks, while efficiently meet service delivery. A systematic methodology is proposed that combines two optimization techniques through a “hybrid method” in, which linear programming, nonlinear programming and genetic algorithms are fused. The overall formulations of the problem of optimal dimensioning consist of minimizing an objective function constituted through the associated cost of the pipes that form the network. This methodology was implemented in three networks a fictitious irrigation and two irrigation networks (Tuncarta and Cariyacu located in the cities of Loja and Chimborazo which yielded optimal design  solutions. Finally different scenarios were simulated in both models to obtain an overview of the operation of the hydraulic variables

  4. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  5. Assessment of integrity for the pressure vessel internals of PWRs under blowdown loadings

    International Nuclear Information System (INIS)

    Geiss, M.; Benner, J.; Ludwig, A.

    1984-01-01

    In safety analysis of pressurized water reactors the loss-of-coolant accident plays a central role. Thereby a sudden break of a cold primary coolant pipe close to the reactor pressure vessel is postulated. The sudden pressure release of the primary system (blowdown) causes high dynamic loading on the pressure vessel internals. The resulting deformations must not impair shut down of the reactor and decay heat removal in an inadmissible way. For this assessment a blowdown analysis for a 1300 MW pressurized water reactor is carried out. These investigations are completed with a detailed stress analysis for the highly loaded core barrel clamping. The results show that the reactor pressure vessel internals are able to withstand blowdown loading. Even in case of a sudden and complete break of the primary coolant pipe the loading has to be twice as high to endanger the structural integrity. (orig.) [de

  6. Failure pressure of straight pipe with wall thinning under internal pressure

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Suzuki, Tomohisa; Meshii, Toshiyuki

    2008-01-01

    The failure pressure of pipe with wall thinning was investigated by using three-dimensional elastic-plastic finite element analyses (FEA). With careful modeling of the pipe and flaw geometry in addition to a proper stress-strain relation of the material, FEA could estimate the precise burst pressure obtained by the tests. FEA was conducted by assuming three kinds of materials: line pipe steel, carbon steel, and stainless steel. The failure pressure obtained using line pipe steel was the lowest under the same flaw size condition, when the failure pressure was normalized by the value of unflawed pipe defined using the flow stress. On the other hand, when the failure pressure was normalized by the results of FEA obtained for unflawed pipe under various flaw and pipe configurations, the failure pressures of carbon steel and line pipe steel were almost the same and lower than that of stainless steel. This suggests that the existing assessment criteria developed for line pipe steel can be applied to make a conservative assessment of carbon steel and stainless steel

  7. International team releases design, cost for next great particle smasher

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "An internationl team has released a preliminary design and cost estimate for the International Linear Collider (ILC), the hoped-for straight-shot particle smasher that many researchers say is the future of their field."

  8. International Cooperation for the Dismantling of Chooz A Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Grenouillet, J.J.; Posivak, E.

    2009-01-01

    Chooz A is the first PWR that is being decommissioned in France. The main issue that is conditioning the success of the project is the Reactor Pressure Vessel (RPV) and Reactor Vessel Internals (RVI) segmentation. Whereas Chooz A is the first and unique RPV and RVI being dismantled in France, there are many similar experiences available in the world. Thus the project team was eager to cooperate with other teams facing or being faced with the same issue. A cooperation programme was established in two separate ways: - Benefiting from experience feedback from completed RPV and RVI dismantling projects, - Looking for synergy with future RPV dismantling projects for activities such as segmentation tools design, qualification and manufacturing for example. This paper describes the implementation of this programme and how the outcome of the cooperation was used for the implementation of Chooz-A RPV and RVI segmentation project. It shows also the limits of such a cooperation. (authors)

  9. International pressure vessels and piping codes and standards. Volume 2: Current perspectives; PVP-Volume 313-2

    International Nuclear Information System (INIS)

    Rao, K.R.; Asada, Yasuhide; Adams, T.M.

    1995-01-01

    The topics in this volume include: (1) Recent or imminent changes to Section 3 design sections; (2) Select perspectives of ASME Codes -- Section 3; (3) Select perspectives of Boiler and Pressure Vessel Codes -- an international outlook; (4) Select perspectives of Boiler and Pressure Vessel Codes -- ASME Code Sections 3, 8 and 11; (5) Codes and Standards Perspectives for Analysis; (6) Selected design perspectives on flow-accelerated corrosion and pressure vessel design and qualification; (7) Select Codes and Standards perspectives for design and operability; (8) Codes and Standards perspectives for operability; (9) What's new in the ASME Boiler and Pressure Vessel Code?; (10) A look at ongoing activities of ASME Sections 2 and 3; (11) A look at current activities of ASME Section 11; (12) A look at current activities of ASME Codes and Standards; (13) Simplified design methodology and design allowable stresses -- 1 and 2; (14) Introduction to Power Boilers, Section 1 of the ASME Code -- Part 1 and 2. Separate abstracts were prepared for most of the individual papers

  10. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  11. INTERNATIONAL LOGISTICS SYSTEMS DESIGN AND EFFECTIVENESS EVALUATION

    Directory of Open Access Journals (Sweden)

    N. V. Khalipova

    2015-08-01

    Full Text Available Purpose. In the paper the question of the development of a methodological approach to the determination of logistics systems’ performance and grounding of the most effective goods’ delivery schemes, based on the theory of functions and sets of multiple objects, vector optimization approaches and discrete maximum principle for multi-stage processes (phase method is considered. Methodology. To achieve the goals of the research, the model of logistic system represented by multiple object that defined by the structure and content. The object is represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and inhomogeneous sets (sequences, corteges, which at each stage of cargo delivery present sets of technological operations of their processing, choices and decisions algorithms. Multiple structure of objects is constructive three, consisting of the carrier, signatures and axiomatic. To determine the effective scheme of delivery, applied discrete maximum principle using vector optimization criterion. Findings. In this article, logistics system of delivery is presented in the form of a multi-stage (phase of the process. Each stage reviews a plurality of discrete activities sets, which includes the possible technology cycles of operations in goods handling. At each stage of a multi-phase delivery process from the supplier to the consumer, these sets are different. Considered a model example solving the problem of vector optimization options for delivery of goods by the road in the international logistics system for the five-step process. Optimization performed on the basis of three indicators. Originality. In this paper, the choice of the most effective way of delivery goods produced using the theory of functions and sets of multiple objects, using the discrete maximum principle for multi-stage processes, based on the vector optimization criterion. At each of its stages are formed a plurality of valid solutions as

  12. Guiding device for a manipulator mast for internal inspection of a reactor pressure vessel

    International Nuclear Information System (INIS)

    Seifert, W.; Schlueter, H.

    1977-01-01

    A remote-controlled supporting device centering a manipulator mast is described which is mounted and operated above a reactor pressure vessel under water in such a way that rotations and vertical movements necessary for the internal inspection of the pressure vessel remain possible. (RW) [de

  13. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  14. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  15. Analysis of French (Paluel) pressurized water reactor design differences compared to current US PWR designs

    International Nuclear Information System (INIS)

    1986-05-01

    To understand better the regulatory approaches to reactor safety in foreign countries, the staff of the Nuclear Regulatory Commisssion has reviewed design information on the Paluel nuclear power plant, one of the current standard 1300-MWe plant operating in France. This report provides the staff's evaluation of major design differences between this standardized French plant and current US pressurized water reactor plants, as well as insights concerning French regulatory practices. The staff identified approximately 25 design differences, and an analysis of the safety significance of each of these design features is presented, along with an assessment comparing the relative safety benefit of each

  16. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  17. Evolution of general design requirements for french pressurized water reactors

    International Nuclear Information System (INIS)

    Gros, G.; Jalouneix, J.; Rollinger, F.

    1988-10-01

    The design of French pressurized water reactors is based first on deterministic principles, using the well-known defense in depth concept. This safety approach, basically reflected current American practice at that time, which consisted notably in designing engineered safeguard systems capable of limiting the consequences of accidents assumed to be credible despite the preventive measures taken. Further reflections have led to complete this approach, resulting in modifications to regulatory practice, mainly related to better practical assimilation of the problems arising during plant unit operation and reactor control after an accident and to the determination to enhance the overall consistency of the safety approach. As regards system redundancy, it should be noted that common cause failures can result in the total loss of a redundant system. System redundancy aspects will be dealt with in Chapter 2. As regards study of design basis accidents, attention was focused on the human intervention stage following automatic activation of protection and safeguard systems. This resulted, for all plant units, in the revision of operating procedures, accompanied by examination of the means required for their implementation. These subjects will be discussed in Chapter 3. Finally, as regards equipment classification, the range of equipment subjected to particular requirements, formerly limited to design basis safety classified equipment, was enlarged to include important for safety equipment. This subject will be dealt with in Chapter 5

  18. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    Science.gov (United States)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  19. Design and safety of the Sizewell pressurized water reactor

    International Nuclear Information System (INIS)

    Marshall, W.

    1983-01-01

    The Central Electricity Generating Board propose to build a pressurized water reactor at Sizewell in Suffolk. The PWR Task Force was set up in June 1981 to provide a communications centre for developing firm design proposals for this reactor. These were to follow the Standardized Nuclear Unit Power Plant System designed by Bechtel for the Westinghouse nuclear steam supply system for reactors built in the United States. Changes were required to the design to accommodate, for example, the use of two turbine generators and to satisfy British safety requirements. Differences exist between the British and American licensing procedures. In the UK the statutory responsibility for the safety of a nuclear power station rests unambiguously with the Generating Boards. In the U.S.A. the Nuclear Regulatory Commission issues detailed written instructions, which must be followed precisely. Much of the debate on the safety of nuclear power focuses on the risks of big nuclear accidents. It is necessary to explain to the public what, in a balanced perspective, the risks of accidents actually are. The long-term consequences can be presented in terms of reduction in life expectancy, increased chance of cancer or the equivalent pattern of compulsory cigarette smoking. (author)

  20. Holistic design and implementation of pressure actuated cellular structures

    International Nuclear Information System (INIS)

    Gramüller, B; Köke, H; Hühne, C

    2015-01-01

    Providing the possibility to develop energy-efficient, lightweight adaptive components, pressure-actuated cellular structures (PACS) are primarily conceived for aeronautics applications. The realization of shape-variable flaps and even airfoils provides the potential to safe weight, increase aerodynamic efficiency and enhance agility. The herein presented holistic design process points out and describes the necessary steps for designing a real-life PACS structure, from the computation of truss geometry to the manufacturing and assembly. The already published methods for the form finding of PACS are adjusted and extended for the exemplary application of a variable-camber wing. The transfer of the form-finding truss model to a cross-sectional design is discussed. The end cap and sealing concept is described together with the implementation of the integral fluid flow. Conceptual limitations due to the manufacturing and assembly processes are discussed. The method’s efficiency is evaluated by finite element method. In order to verify the underlying methods and summarize the presented work a modular real-life demonstrator is experimentally characterized and validates the numerical investigations. (paper)

  1. Enhancement of pressurizer safety valve operability by seating design improvement

    International Nuclear Information System (INIS)

    Moisidis, N.T.; Ratiu, M.D.

    1995-01-01

    Operating conditions specific to pressurizer safety valves (PSVs) have led to numerous problems and have caused industry and NRC concerns regarding the adequacy of spring-loaded self-actuated safety valves for reactor coolant system (RCS) overpressure protection. Specific concerns are: setpoint drift, spurious actuations, and pressure protection. Specific concerns are: setpoint drift, spurious actuations, and leakage. Based on testing and valve construction analysis of a Crosby model 6M6 PSV (Moisidis and Ratiu, 1992), it was established that the primary contributor to the valve problems is a susceptibility to weak seating. To eliminate spring instability, a new spring washer was designed, which guides the spring and precludes its rotation from the reference installed position. Results of tests performed on a prototype PSV equipped with the modified upper spring washer has shown significant improvements in valve operability and a consistent setpoint reproducibility to less than ±1% of the PSV setpoint (testing of baseline, unmodified valve, resulted in a setpoint drift of ± 2%). Enhanced valve operability will result in a significant decrease in operating and maintenance costs associated with valve maintenance and testing. In addition, the enhanced setpoint reproducibility will allow the development of a nitrogen to steam correlation for future in-house PSV testing which will result in further reductions in costs associated with valve testing

  2. The deformation of zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-01-01

    The deformation behaviour is reported of specimens of Zircaloy PWR fuel cladding when directly heated in flowing steam. The range of internal pressures studied was 0.69-2.07 MPa; this extended earlier studies using higher pressures. The specimens were ramped and then held at a steady test temperature until rupture or until 600 seconds had elapsed. Under these conditions it was found that extended deformation occurred with pressures down to 1 MPa at temperatures up to 900 deg C. At lower pressures and higher temperatures there was no large extended deformation; this is believed to result from the effects of oxidation

  3. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    Science.gov (United States)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  4. Internal design of technical systems under conditions of uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Krasnoshchekov, P S; Morozov, V V; Fedorov, V V

    1982-03-01

    An investigation is made of a model of internal design of a complex technical system in the presence of uncertain factors. The influence of an opponent on the design is examined. The concepts of hierarchical and balanced compatibility between the criteria of the designer, the opponent and the segregations functions are introduced and studied. The connection between the approach proposed and the methods of artificial intelligence is discussed. 5 references.

  5. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    Science.gov (United States)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  6. Design stresses in probabilistic form for ellipsoidal and toroidal pressure vessels

    International Nuclear Information System (INIS)

    Smith, C.O.

    1979-01-01

    Design has customarily been based on applied loading, geometry, and handbook values for strength to give a deterministic solution. The engineering profession, however, has become increasingly concerned with the adequacy of design calculations. This concern indicates a need for critical evaluation of designs based on arbitrary multipliers, such as factors of safety or worst-case treatment. Ellipsoids are frequently used for end closure of cylindrical pressure shells. Toroids of elliptic or circular cross-section, are widely used, e.g., for connecting two parallel legs in a U-shape. This paper gives equations for means and standard deviations of stresses developed in ellipsoids and toroids with internal pressure. Inherent are: (1) design variables are generally characterized by spectra of values (assumed to be normally distributed), rather than by unique values, and (2) a small, but finite, probability of failure must be recognized in any design. By coupling stresses due to applied loading as calculated by the given equations with strength available in a material, reliability (or the alternative probability of failure) can be calculated. Conversely, for a given reliability the appropriate size can be determined. (orig.)

  7. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions

    Science.gov (United States)

    Yu, Huiyang; Huang, Jianqiu

    2015-01-01

    In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance. PMID:26371001

  8. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    Science.gov (United States)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  9. Consideration on evaluation of internal pressure creep rupture for tube with circumferential joint

    International Nuclear Information System (INIS)

    Nagato, Kotaro; Satoh, Keisuke

    1983-01-01

    The behavior of internal pressure creep rupture of the thin-walled cylinders with circumferential joints is affected by the combination of creep characteristics of parent materials and weld metals. In particular, the compatibility of the creep strain rate of parent materials and weld metals becomes an important controlling factor. The behavior of internal pressure creep of the welded parts in circumferential joint cylinders can be evaluated simply with the uniaxial creep data of parent materials and weld metals, considering it by approximately substituting with the creep behavior of a uniaxial longitudinal joint. The method of evaluation is, first, to analyze the breaking behavior of uniaxial longitudinal joints using the uniaxial creep characteristic values of parent materials and weld metals, and next, by combining the equation for the relation between the rupture times of uniaxial creep and internal pressure creep with the analyzed breaking behavior of uniaxial joints, the internal pressure creep rupture behavior of the cylinders with circumferential joints can be evaluated. The internal pressure creep behavior of the thin-walled cylinders with circumferential joints, their rupture life and the uniaxial creep rupture life of longitudinal joints, and the examination of Hastelloy X cylinders are reported. (Kako, I.)

  10. Engineering design of IFMIF/EVEDA lithium test loop. Electro-magnetic pump and pressure drop

    International Nuclear Information System (INIS)

    Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Wakai, Eiichi; Nakamura, Kazuyuki; Horiike, H.; Yamaoka, N.; Matsushita, I.

    2011-01-01

    The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeding as one of the ITER Broader Approach (ITER-BA). A Li circulation loop for testing hydraulic stability of the Li target (high speed free-surface flow of liquid Li as a beam target) and Li purification traps are under construction in the Japan Atomic Energy Agency as a major Japanese activities in the EVEDA. This paper presents specification of an electro-magnetic pump (EMP) for the EVEDA Li Test Loop (ELTL) and evaluation of the pressure drop in the main loop of the ELTL. The EMP circulates the liquid Li at a large flow rate up to 0.05 m 3 /s (3000 l/min) under a vacuum cover gas (Ar) pressure of 10 -3 Pa, thus the evaluation of cavitation generation is a crucial issue. The EMP used in the ELTL consists of two EMPs aligned in series through a U-tube whose size of one EMP is 0.8 m square and 2.6 m in length. The calculation of the pressure drop in the main Li loop to the EMP is approx. 25 kPa at the design maximum flow rate of 0.05 m 3 /s. On the other hand the height from the EMP to a Li tank to supply Li to the EMP is designed to be 9.72 m, and secures a static pressure and the cavitation number of 18 kPa and 3.4 respectively at the maximum flow rate in a vacuum condition. As a result, it is confirmed to prevent cavitation at the inlet of the EMP in this design. (author)

  11. Bandwidth of reactor internals vibration resonance with coolant pressure oscillations

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    In a few decades a significant increase in a part of an electricity development on the NPP will require NPP to be operated in non full capacity modes and increase in operation time in transitive modes. Operating in such conditions as compared to the operation on a constant mode will lead to the increase in cyclic dynamical loading. In water cooled water moderated reactors these loading are realized as low-cyclic and high-cyclic loadings. High-cyclic loadings increases are caused by a raised vibration in non stationary modes of operation. It is known, that in some modes of a non full capacity reactor high-cyclic dynamic loadings can increase. It is obvious, that the development of management technologies is necessary for the life time management operation. In the context of this problem one of the main tasks are revealing and the prevention of the conditions of the occurrence of the operation leading to the resonant interaction of the coolant fluctuations and the equipment, reactor vessel (RV), fuel assemblies (FA) and reactor internals (RI) vibration. To prevent the appearance of the conditions for resonance interaction between the fluid flow and the equipments, it is necessary to provide the different frequencies for the self oscillations in the separated elements of the circulating system and also in the parts of the system formed by the comprising of these elements. While solving these problems it is necessary to have a theoretical and settlement substantiation of an oscillation frequency band of coolant outside of which there is no resonant interaction. The presented work is devoted to finding the solution of this problem. There are results of theoretical an estimation of width of such band as well as the examples of a preliminary quantitative estimation of Q - factors of coolant acoustic oscillatory circuit formed by the equipment of the NPP. The accordance of results had been calculated with had been measured are satisfied for practical purposes. These

  12. Support schemes and market design in international offshore grids

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    International offshore grids can combine the grid connection of offshore wind parks with the possibility for international power trading in the future. This paper investigates the choice of support scheme and power market design in international offshore grids and derives resulting incentives...... support. For a stable investment framework in the near future, a tendering/feed-in tariff may be the best choice. It avoids exposing wind farms to balancing with multiple countries. In the long run, also other support scheme options may be of interest....

  13. Preliminary Design Concept for a Reactor-internal CRDM

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Jong Wook; Kim, Tae Wan; Choi, Suhn; Kim, Keung Koo

    2013-01-01

    A rod ejection accident may cause severer result in SMRs because SMRs have relatively high control rod reactivity worth compared with commercial nuclear reactors. Because this accident would be perfectly excluded by adopting a reactor-internal CRDM (Control Rod Drive Mechanism), many SMRs accept this concept. The first concept was provided by JAERI with the MRX reactor which uses an electric motor with a ball screw driveline. Babcock and Wilcox introduced the concept in an mPower reactor that adopts an electric motor with a roller screw driveline and hydraulic system, and Westinghouse Electric Co. proposes an internal Control Rod Drive in its SMR with an electric motor with a latch mechanism. In addition, several other applications have been reported thus far. The reactor-internal CRDM concept is now widely adopted in many SMR designs, and this concept may also be applied in an evolutionary reactor development. So the preliminary study is conducted based on the SMART CRDM design. A preliminary design concept for a reactor-internal CRDM was proposed and evaluated through an electromagnetic analysis. It was found that there is an optimum design for the motor housing, and the results may contribute to the realization a reactor-internal CRDM for an evolutionary reactor development. More detailed analysis results will be reported later

  14. Novel Designs for Application Specific MEMS Pressure Sensors

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse Vestergaard

    2010-01-01

    and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free...

  15. Loads on reactor pressure vessel internals induced by low-pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-02-01

    Departing from the conservation theorems for mass and impulse the computer code DRUWE has been developed which allows to calculate loads on the core shell with simplifying assumptions for the first period just after the rupture has opened. It can be supposed that the whole rupture cross section is set free within 15 msec. The calculation progresses in a way that for a core shell the local, timely pressure- and load development, respectively, the total dynamic load as well as the moments acting on the fixing of the core shell, can be calculated. The required input data are merely geometric data on the concept of the pressure vessel and its components as well as the effective subcooling of the fluid. By means of some parameters the programm development can be controlled in a way that the results are available in form of listings or diagrams, respectively, as well as in form of card decks for following investigations, e.g. solidity calculations. (orig./RW) [de

  16. Electromechanical phase transition of a dielectric elastomer tube under internal pressure of constant mass

    Directory of Open Access Journals (Sweden)

    Song Che

    2017-05-01

    Full Text Available The electromechanical phase transition for a dielectric elastomer (DE tube has been demonstrated in recent experiments, where it is found that the unbulged phase gradually changed into bulged phase. Previous theoretical works only studied the transition process under pressure control condition, which is not consistent with the real experimental condition. This paper focuses on more complex features of the electromechanical phase transition under internal pressure of constant mass. We derive the equilibrium equations and the condition for coexistent states for a DE tube under an internal pressure, a voltage through the thickness and an axial force. We find that under mass control condition the voltage needed to maintain the phase transition increases as the process proceeds. We analyze the entire process of electromechanical phase transition and find that the evolution of configurations is also different from that for pressure control condition.

  17. Design, fabrication and metrological evaluation of wearable pressure sensors.

    Science.gov (United States)

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  18. Modeling Attitude towards Drug Treament: The Role of Internal Motivation, External Pressure, and Dramatic Relief

    OpenAIRE

    Conner, Bradley T.; Longshore, Douglas; Anglin, M. Douglas

    2008-01-01

    Motivation for change has historically been viewed as the crucial element affecting responsiveness to drug treatment. Various external pressures, such as legal coercion, may engender motivation in an individual previously resistant to change. Dramatic relief may be the change process that is most salient as individuals internalize such external pressures. Results of structural equation modeling on data from 465 drug users (58.9% male; 21.3% Black, 34.2% Hispanic/Latino, and 35.1% White) enter...

  19. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2006-01-01

    Considering a rational maintenance rule of Light Water Reactor piping, reliable flaw evaluation criteria are essential to determine how a detected flaw is detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes to be considered for carbon steel piping, and can be analyzed by the elastic-plastic fracture mechanics. Some analytical efforts have been provided as flaw evaluation criteria using load correction factors such like the Z-factors in the JSME codes on fitness-for-service for nuclear power plants or the ASME boiler and pressure vessel code section XI. The present correction factors were conventionally determined taken conservatism and simplicity into account, however, the effect of internal pressure which would be an important factor under an actual plant condition was not adequately considered. Recently, a J-estimation scheme, 'LBB. ENGC' for ductile fracture analysis of circumferentially through-wall-cracked pipes subjected combined loading was newly developed to have a better prediction with more realistic manner. This method is explicitly incorporated the contribution of both bending and tension due to internal pressure by means of the scheme compatible with an arbitrary combined loading history. In this paper, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. A correction factor based on the new J-estimation scheme was compared with the present correction factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of internal pressure. (author)

  20. Enhancement of pressurizer safety valve operability by seating design improvement

    International Nuclear Information System (INIS)

    Moisidis, N.T.; Ratiu, M.D.

    1994-01-01

    Operating conditions specific to Pressurizer Safety Valves (PSVs) have led to numerous problems and have caused industry and NRC concerns regarding the adequacy of spring loaded self-actuated safety valves for Reactor Coolant System (RCS) overpressure protection. Specific concerns are: setpoint drift, spurious actuations and leakage. Based on testing and valve construction analysis of a Crosby model 6M6 PSV, it was established that the primary contributor to the valve problems is a susceptibility to weak seating. To eliminate spring instability, a new spring washer was designed, which guides the spring and precludes its rotation from the reference installed position. Results of tests performed on a prototype PSV equipped with the modified upper spring washer has shown significant improvements in valve operability and a consistent setpoint reproducibility to less than ±1% of the PSV setpoint (testing of baseline, unmodified valve, resulted in a setpoint drift of ±2%). Enhanced valve operability will result in a significant decrease in operating and maintenance costs associated with valve maintenance and testing. In addition, the enhanced setpoint reproducibility will allow the development of a nitrogen to steam correlation for future in-house PSV testing which will result in further reductions in costs associated with valve testing

  1. Internal fire protection analysis for the United Kingdom EPR design

    Energy Technology Data Exchange (ETDEWEB)

    Laid, Abdallah [Nuclear New Build Generation Company Ltd. (NNB GenCo), Barnwood (United Kingdom). EDF Energy Plc.; Cesbron, Mickael [Service Etudes et Project Thermiques et Nucleaires (SEPTEN), Lyon (France). EDF-SA

    2015-12-15

    In the deterministic design basis analysis of the United Kingdom (UK) EPR based nuclear power plants all postulated initiating events are grouped into two different types, internal faults and internal/external hazards. ''Internal Fires'' is one of the internal hazards analysed at the design stage of the UK EPR. In effect, the main safety objective for fire protection is to ensure that all the required safety functions are performed in the event of an internal fire. To achieve this safety objective, provisions for protection against fire risks are taken to: (i) limit the spread of a fire, protect the safety functions of the facility; (ii) limit the propagation of smoke and dispersion of toxic, radioactive, inflammable, corrosive or explosive materials, and (iii) ensure the achievement of a safe shutdown state, personnel evacuation and all other necessary emergency actions. This paper presents the UK EPR approach on how the above provisions are applied. Such provisions involve implementing means of fire prevention, surveillance, firefighting and limiting fire consequences, appropriate to the risks inherent to the facility. Overall, the design of the UK EPR fire protection systems is based on three types of measures: prevention, containment and control.

  2. A study on detection of internal defects of pressure vessel by digital shearography

    International Nuclear Information System (INIS)

    Kang, Young Jun; Park, Sung Tae; Lee, Hae Moo; Nam, Seung Hun

    1999-01-01

    Pipelines in power plants, nuclear facilities and chemical industries are often affected by corrosion effects. The inspection of internal defects of these pipelines is important to guarantee safe operational condition. Conventional NDT methods have been taken relatively much time, money, and manpower because of performing as the method of contact with objects to be inspected. Digital shearography is a laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time measurement. Therefore it is a good method to use for detecting internal defects. In this paper, the experiment was performed with some pressure vessels which has different internal cracks. We detected internal cracks of the pressure vessels at a real time and evaluated qualitatively these results. We also performed qualitative measurement of shearo fringe by using phase shifting method.

  3. Resistive internal kink modes in a tokamak with high-pressure plasma

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.; Tatarinov, E.G.

    1988-01-01

    Theory of resistive internal kink modes in a tokamak with high-pressure plasma is developed. Equation for Fourie-image of disturbed displacment in a resistive layer ie derived with regard to effects of the fourth order by plasma pressure within the framework of single-liquid approach. In its structure this equation coincides with a similar equation for resistive balloon modes and has an exact solution expressed by degenerated hypergeometric function. A general dispersion equation for resistive kink modes is derived with regard to the effects indicated. It is shown that plasma pressure finiteness leads to the reduction of reconnection and tyring-mode increments

  4. Proceedings of the international specialist meeting on BWR-pressure suppression containment technology. Vol. 1

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1981-01-01

    In the frame of R + D-work for BWR-pressure suppression systems the GKSS-Forschungszentrum Geesthacht GmbH organized an international specialist meeting. All important safety relevant aspects of pressure suppression system technology have been included. About 60 experts from USA, Japan, Sweden, Italy, Netherlands and the Federal Republic of Germany participated. They came from licensing authorities, vendors, research centers and universities. In 24 papers they have shown the world-wide present status of theoretical and experimental know-how on pressure suppression system behaviour. In discussions and working groups recommendations for future work have been compiled. (orig.) [de

  5. Proceedings of the international specialist meeting on BWR-pressure suppression containment technology. Vol. 2

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1981-01-01

    In the frame of R + D-work for BWR-pressure suppression systems the GKSS-Forschungszentrum Geesthacht GmbH organized an international specialist meeting. All important safety relevant aspects of pressure suppression system technology have been included. About 60 experts from USA, Japan, Sweden, Italy, Netherland and the Federal Republic of Germany participated. They came from licensing authorities, vendors, research centers and universities. In 24 papers they have shown the world-wide present status of theoretical and experimental know-how on pressure suppression system behaviour. In discussions and working groups recommendations for future work have been compiled. (orig.) [de

  6. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  7. Effects of High Pressure on Internally Self-Assembled Lipid Nanoparticles

    DEFF Research Database (Denmark)

    Kulkarni, Chandrashekhar V; Yaghmur, Anan; Steinhart, Milos

    2016-01-01

    We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3...... the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.......We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m......), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk...

  8. 5th International Conference on Research into Design

    CERN Document Server

    2015-01-01

    This book showcases cutting-edge research papers from the 5th International Conference on Research into Design – the largest in India in this area – written by eminent researchers from across the world on design process, technologies, methods and tools, and their impact on innovation, for supporting design across boundaries. The special features of the book are the variety of insights into the product and system innovation process, and the host of methods and tools from all major areas of design research for the enhancement of the innovation process. The main benefit of the book for researchers in various areas of design and innovation are access to the latest quality research in this area, with the largest collection of research from India. For practitioners and educators, it is exposure to an empirically validated suite of theories, models, methods and tools that can be taught and practiced for design-led innovation.

  9. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  10. Novel fabric pressure sensors: design, fabrication, and characterization

    International Nuclear Information System (INIS)

    Wang, Yangyong; Hua, Tao; Zhu, Bo; Li, Qiao; Yi, Weijing; Tao, Xiaoming

    2011-01-01

    Soft and pliable pressure sensors are essential elements in wearable electronics which have wide applications in modern daily lives. This paper presents a family of fabric pressure sensors made by sandwiching a piece of resistive fabric strain sensing element between two tooth-structured layers of soft elastomers. The pressure sensors are capable of measuring pressure from 0 to 2000 kPa, covering the whole range of human–machine interactions. A pressure sensitivity of up to 2.98 × 10 −3 kPa −1 was obtained. Theoretical modeling was conducted based on an energy method to predict the load–displacement relationship for various sensor configurations. By adjusting the Young's modulus of the two conversion layers, as well as the geometrical dimensions, the measurement ranges, and sensitivities of the sensors can be quantitatively determined. The sensors are being used for pressure measurements between the human body and garments, shoes, beds, and chairs

  11. International standardization of nuclear reactor designs - the way forward

    International Nuclear Information System (INIS)

    Raetzke, Christian

    2010-01-01

    The concept of 'International Standardization of Nuclear Reactor Designs' means that vendors could build their designs in every country without having to adapt it specifically to national safety requirements. Such standardization would have two main effects. It would greatly facilitate nuclear new build worldwide by giving greater efficiency and certainty to the national licensing procedures; by taking into account the fact that vendors, and nowadays also utilities, are active across borders; by helping developing countries to establish their nuclear new build programmes; and by reducing the strain on human resources on both the regulators' and the industry's side. The second valuable effect of standardization would be to further enhance safety by improving the exchange of construction and operating experience among a number of reactors belonging to fleets of the same design. The World Nuclear Association's CORDEL (Cooperation in Reactor Design Evaluation and Licensing) Group has developed a concept for implementation of international standardization of reactor designs. It has defined a number of steps to be taken by industry. At the same time, possibilities offered by national and international regulatory mechanisms would have to be fully made use of, and some changes in regulatory frameworks might be necessary. Some steps especially towards greater cooperation of regulators have already been taken; however, much still remains to be done. The concept of deploying standardized reactor designs across a number of countries supposes an alignment and, if possible, harmonization of national safety standards; a streamlining of national licensing procedures, making them more efficient and predictable; and the willingness of national regulators to take into account licensing done in other countries. In the end, this should lead to a mutual acceptance of design approvals or, in a more distant future, even to a multinational design approval process. All in all, the concept

  12. The high temperature out-of-pile test of LVDT for internal pressure measurement of nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Kim, D. S.; Yoon, K. B.; Sin, Y. T.; Park, S. J.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT(Linear Variable Differential Transformer). As the results of out-of-pile test at room temperature, it was concluded that the well qualified out-of-pile tests were needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation capsule, because LVDT is very sensitive to variation of temperature. Therefore, the high temperature out-of-pile test system for pressure measurement was developed, and this test was performed under the temperature condition between room temperature and 300 .deg. C increasing the pressure from 0 bar to 30 bar. The LVDT's high temperature characteristics and temperature sensitivity of LVDT were analyzed through this experiment. Based on the result of this test, the method for the application of LVDT at high temperature was introduced. It is known that the results will be used to predict accurately the internal pressure of fuel rod during irradiation test.

  13. 55th International Conference of Machine Design Departments 2014

    CERN Document Server

    Berka, Ondrej; Petr, Karel; Lopot, František; Dub, Martin

    2016-01-01

    This book is based on the 55th International Conference of Machine Design Departments 2014 (ICMD 2014) which was hosted by the Czech Technical University in September 2014. It features scientific articles which solve progressive themes from the field of machine design. The book addresses a broad range of themes including tribology, hydraulics, materials science, product innovation and experimental methods. It presents the latest interdisciplinary high-tech work. People with an interest in the latest research results in the field of machine design and manufacturing engineering will value this book with contributions of leading academic scientists and experts from all around the world.

  14. 4th International Conference on Sustainable Design and Manufacturing

    CERN Document Server

    Howlett, Robert; Setchi, Rossi; Cimatti, Barbara

    2017-01-01

    This volume includes papers presented at the 4th International Conference on Sustainable Design and Manufacturing (SDM-17) held in Bologna, Italy, in April 2017. The conference covered a wide range of topics from cutting-edge sustainable product design and service innovation, sustainable processes and technology for the manufacturing of sustainable products, sustainable manufacturing systems and enterprises, decision support for sustainability, and the study of the societal impact of sustainability including research for circular economy. Application areas are wide and varied, and the book provides an excellent overview of the latest research and development in the area of Sustainable Design and Manufacturing.

  15. Prevalence of pre-high blood pressure and high blood pressure among non-overweight children and adolescents using international blood pressure references in developed regions in China.

    Science.gov (United States)

    Tian, Changwei; Xu, Shuang; Wang, Hua; Wang, Wenming; Shen, Hui

    2017-09-01

    There is a lack of data on the prevalence of pre-high blood pressure (PreHBP) and high blood pressure (HBP), based on recent international blood pressure references, in non-overweight children and adolescents. To describe the prevalence of PreHBP and HBP in non-overweight children and adolescents in developed regions of China. In total, 588 097 non-overweight children and adolescents aged 6-17 years from the National Surveys on Chinese Students' Constitution and Health in 2015 were included. The prevalence of PreHBP was 13.41% and subjects in urban areas had a higher prevalence of PreHBP (14.14%) than those in rural areas (12.92%). Subjects in regions with a high (13.56%) or moderate (13.61%) socioeconomic status showed a higher prevalence of PreHBP than those in regions with a relatively low socioeconomic status (12.76%). A similar pattern was found for the prevalence of HBP, and the prevalence of HBP was 18.25% for all participants, 20.55% for subjects in urban areas, 16.71% in rural areas, 18.76% in high socioeconomic areas, 18.62% in moderate socioeconomic areas and 16.70% in relatively low socioeconomic areas. A large proportion of non-overweight children and adolescents had elevated blood pressure and there were urban-rural and socioeconomic disparities in the prevalence of elevated blood pressure.

  16. Proceedings of the 18th International Conference on Engineering Design

    DEFF Research Database (Denmark)

    The 18th International Conference on Engineering Design, ICED11, was held August 15-18th 2011 at The Technical University of Denmark (DTU), Copenhagen. The Conference is the flagship event of the Design Society, a society dedicated to contributing to a broad and established understanding of devel......The 18th International Conference on Engineering Design, ICED11, was held August 15-18th 2011 at The Technical University of Denmark (DTU), Copenhagen. The Conference is the flagship event of the Design Society, a society dedicated to contributing to a broad and established understanding...... of development and design. The ICED series of conferences has a long tradition, which started in 1981 with the first ICED in Rome. A total of 419 papers were presented at ICED11, each double-blind reviewed by multiple reviewers. The papers included research papers and case studies on a variety of topics...... concerned with design thinking, theory, and practice, with a premium placed on evidence-based research. The papers are published in a total of ten volumes of Proceedings, in addition to electronic publication. This volume is the first of two concerned with Design Methods and Tools, and contains 45 papers...

  17. Study on prestressed concrete reactor vessel structures. II-5: Crack analysis by three dimensional finite elements method of 1/20 multicavity type PCRV subjected to internal pressure

    Science.gov (United States)

    1978-01-01

    A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.

  18. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  19. Evaluation of stress intensity factor for craks in surface of tubes with internal pressure

    International Nuclear Information System (INIS)

    Cesari, F.; Hellen, T.K.

    1977-01-01

    In this report the authors have examined the different methods for calculation of the stress intensity factor in tubes subject at internal pressure with surface cracks. The analysis includes cracks in 2-D axialsymmetric and 3-D. Moreover the authors have clarified the difference between the ASME Sec.11 and the procedure more rigorous

  20. Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions

    NARCIS (Netherlands)

    van Haren, H.

    2013-01-01

    In the ocean, sloping bottom topography is important for the generation and dissipation of internal waves. Here, the transition of such waves to turbulence is demonstrated using an accurate bottom-pressure sensor that was moored with an acoustic Doppler current profiler and high-resolution

  1. FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Entin Hartini

    2016-06-01

    Full Text Available ABSTRACT FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE. The reactor pressure vessel (RPV is a pressure boundary in the PWR type reactor which serves to confine radioactive material during chain reaction process. The integrity of the RPV must be guaranteed either  in a normal operation or accident conditions. In analyzing the integrity of RPV, especially related to the crack behavior which can introduce break to the reactor pressure vessel, a fracture mechanic approach should be taken for this assessment. The uncertainty of input used in the assessment, such as mechanical properties and physical environment, becomes a reason that the assessment is not sufficient if it is perfomed only by deterministic approach. Therefore, the uncertainty approach should be applied. The aim of this study is to analize the uncertainty of fracture mechanics calculations in evaluating the reliability of PWR`s reactor pressure vessel. Random character of input quantity was generated using probabilistic principles and theories. Fracture mechanics analysis is solved by Finite Element Method (FEM with  MSC MARC software, while uncertainty input analysis is done based on probability density function with Latin Hypercube Sampling (LHS using python script. The output of MSC MARC is a J-integral value, which is converted into stress intensity factor for evaluating the reliability of RPV’s 2D. From the result of the calculation, it can be concluded that the SIF from  probabilistic method, reached the limit value of  fracture toughness earlier than SIF from  deterministic method.  The SIF generated by the probabilistic method is 105.240 MPa m0.5. Meanwhile, the SIF generated by deterministic method is 100.876 MPa m0.5. Keywords: Uncertainty analysis, fracture mechanics, LHS, FEM, reactor pressure vessels   ABSTRAK ANALISIS KETIDAKPASTIAN FRACTURE MECHANIC PADA EVALUASI KEANDALAN

  2. Modeling attitude towards drug treament: the role of internal motivation, external pressure, and dramatic relief.

    Science.gov (United States)

    Conner, Bradley T; Longshore, Douglas; Anglin, M Douglas

    2009-04-01

    Motivation for change has historically been viewed as the crucial element affecting responsiveness to drug treatment. Various external pressures, such as legal coercion, may engender motivation in an individual previously resistant to change. Dramatic relief may be the change process that is most salient as individuals internalize such external pressures. Results of structural equation modeling on data from 465 drug users (58.9% male; 21.3% Black, 34.2% Hispanic/Latino, and 35.1% White) entering drug treatment indicated that internal motivation and external pressure significantly and positively predicted dramatic relief and that dramatic relief significantly predicted attitudes towards drug treatment: chi (2) = 142.20, df = 100, p relief is also likely to be high. When dramatic relief is high, attitudes towards drug treatment are likely to be positive. The findings indicate that interventions to get individuals into drug treatment should include processes that promote Dramatic Relief. Implications for addictions health services are discussed.

  3. Development of a simplified statistical methodology for nuclear fuel rod internal pressure calculation

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Oh Hwan

    1999-01-01

    A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP. The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable. (author). 11 refs., 6 figs., 2 tabs

  4. A static analytical apparatus for vapour pressures and (vapour + liquid) phase equilibrium measurements with an internal stirrer and view windows

    International Nuclear Information System (INIS)

    Guo, Hao; Gong, Maoqiong; Dong, Xueqiang; Wu, Jianfeng

    2014-01-01

    Highlights: • A new static analytical apparatus for vapour pressures and VLE data was designed. • The {R600a + R245fa} system was selected as a verification system. • Correlation of VLE data was made using PRvdWs and PRHVNRTL model. • Good agreement can be found with the literature data. - Abstract: A new static analytical apparatus for reliable vapour pressures and (vapour + liquid) equilibrium data of small-scale cell (≈150 mL) with internal stirrer and view windows was designed. In this work, the compositions of the phases were analyzed by a gas chromatograph connected on-line with TCD detectors. The operating pressure ranges from (0 to 3000) kPa, and the operating temperature range from (293 to 400) K. Phase equilibrium data for previously reported systems were first measured to test the credibility of the newly developed apparatus. The test included vapour pressure of 1,1,1,3,3-pentafluoropropane (R245fa) and isobutane (R600a), VLE of the (R600a + R245fa) system from T = (293.150 to 343.880) K. The measured VLE data are regressed with thermodynamic models using Peng–Robinson EoS with two different models, viz. the van der Waals mixing rule, and the Huron–Vidal mixing rule utilising the non-random two-liquid activity coefficient model. Thermodynamic consistency testing is also performed for the newly measured experimental data

  5. International institutions for nuclear energy: issues of assessment and design

    International Nuclear Information System (INIS)

    Harris, W.R.

    1978-01-01

    Among the more attractive of candidate institutions and rules-of-trade for advanced fuel cycles are: extension of full-scope International Atomic Energy Agency (IAEA) safeguards as a condition of fuel assurances or technology transfer; international jurisdiction over spent fuel (custody or ownership); an IAEA remote near-real-time verification system for spent fuel remaining under national management; a convention on uniform nuclear fuel identification (tagging) designed to assist safeguards planners, trace diversionary pathways, assign liability, and enhance the credibility of fuel-cycle sanctions; international nuclear service centers for bulk processing operations (heavy water production, enrichment and reprocessing); and fuel-cycle specific regulations. Some risk-reduction measures, for example on internationally managed, remote shutdown and restart-delay system for bulk processing facilities, raise questions of acceptability. Despite uncertainties about international acceptability and hazards of enrichment technology transfer later in this century, it appears feasible to reduce proliferation risks associated with nuclear fuel cycles - existing ones and those under review within the International Nuclear Fuel Cycle Evaluation (INFCE). 6 refereces

  6. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  7. 5th International Conference on Design Computing and Cognition

    CERN Document Server

    2014-01-01

    Design thinking, the label given to the acts of designing, has become a paradigmatic view that has transcended the discipline of design and is now widely used in business and elsewhere. As a consequence there is an increasing interest in design research. This is because of the realization that design is part of the wealth creation of a nation and needs to be better understood and taught. The continuing globalization of industry and trade has required nations to re-examine where their core contributions lie if not in production efficiency. Design is a precursor to manufacturing for physical objects and is the precursor to implementation for virtual objects. At the same time, the need for sustainable development requires the design of new products and processes, which feeds a movement towards design innovations and inventions. The papers in this volume are from the Fifth International Conference on Design Computing and Cognition (DCC’12) held at Texas A & M University, USA. They represent the state-of-th...

  8. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  9. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  10. Implementation of utilities operation and maintenance experience into the European pressurized water reactor design

    International Nuclear Information System (INIS)

    Zaiss, W.; Lallier, M.

    1999-01-01

    Since 1992 Electricite de France EDF and German Utilities GU work together with Nuclear Power International NPI, a subsidiary of Framatome and Siemens, in the development of the future European Pressurized Water Reactor EPR. The EPR is an evolutionary concept, based on the French N4 plants and the German KONVOI plants. From the beginning, experienced operation and maintenance people from the precursor plants participate at the design process. Their experience will lead to a plant, which is not only characterised by low investment costs, but also by good operability, high availability and low operation and maintenance costs. No expensive back-fittings should be necessary after commissioning, to reach these availability and maintenance targets. The utility specialists give design requirements for outage performance, system design, and layout. These design requirements are really determining the system performances, and not what was design basis before. It does not necessarily lead to system increases. Mainly it is a shifting of the emphasis to other items. There are even cases, where the system performances can be reduced. Mostly very small modifications, which are nearly cost neutral when implemented early in the design, have big impact on the further operation. If there are big cost influences, a sound balance between investment and gained availability is made together with the designers. There is very fruitful discussion between designers and operators, which is highly estimated by both sides. In this frame also new, revolutionary ideas are coming up, which are going mostly in the direction of investment cost reduction, without loosing operation freedom. It is the first time in Europe, that designers and operators are working so close together. It is also the first time, that the management and the decision making is dominated by the utilities. (author)

  11. International conference on design, fabrication and economy of metal structures

    CERN Document Server

    Farkas, József

    2013-01-01

    These are the proceedings of the International Conference on Design, Fabrication and Economy of Metal Structures held on 24-26 April 2013 in Miskolc, Hungary which contain 99 papers covering: Structural optimization Thin-walled structures Stability Fatigue Frames Fire Fabrication Welding technology Applications Steel-concrete composite Special problems The authors are from 23 different countries, ensuring that the themes covered are of worldwide interest and importance. The International Institute of Welding (IIW), the International Society of Structural and Multidisciplinary Optimization (ISSMO), the TÁMOP 4.2.1.B-10/2/KONV-2010-0001 project entitled “Increasing the quality of higher education through the development of research - development and innovation program at the University of Miskolc supported by the European Union, co-financed by the European Social Fund” and many other sponsors helped organizers to collect these valuable studies, the results of which will provoke discussion, and provide an i...

  12. Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces

    Science.gov (United States)

    Shen, Chen; Cummer, Steven A.

    2018-05-01

    The rapid development of metasurfaces has enabled numerous intriguing applications with acoustically thin sheets. Here we report the theory and experimental realization of a nonresonant sound-absorbing strategy using metasurfaces by harnessing multiple internal reflections. We theoretically and numerically show that the higher-order diffraction of thin gradient-index metasurfaces is tied to multiple internal reflections inside the unit cells. Highly absorbing acoustic metasurfaces can be realized by enforcing multiple internal reflections together with a small amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, and we further experimentally verify the performance using a three-dimensional printed prototype. Measurements show over 99% energy absorption at the peak frequency and a 95% energy absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route for sound absorption without the necessity of high absorption of the individual unit cells.

  13. 3rd International Conference on Sustainable Design and Manufacturing

    CERN Document Server

    Howlett, Robert; Liu, Ying; Theobald, Peter

    2016-01-01

    This volumes consists of 59 peer-reviewed papers, presented at the International Conference on Sustainable Design and Manufacturing (SDM-16) held in Chania, Crete Greece in April 2016. Leading-edge research into sustainable design and manufacturing aims to enable the manufacturing industry to grow by adopting more advanced technologies, and at the same time improve its sustainability by reducing its environmental impact. SDM-16 covers a wide range of topics from sustainable product design and service innovation, sustainable process and technology for the manufacturing of sustainable products, sustainable manufacturing systems and enterprises, decision support for sustainability, and the study of societal impact of sustainability including research for circular economy. Application areas are wide and varied. The book will provide an excellent overview of the latest research and development in the area of Sustainable Design and Manufacturing.

  14. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  15. Safety design of the international fusion materials irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamaki, Daiju; Katsuta, Hiroji; Moeslang, Anton; Jameson, R.A.; Martone, Marcello; Shannon, T.E.

    1997-11-01

    In the Conceptual Design Activity of the IFMIF, major subsystems, as well as the entire facility is carefully designed to satisfy the safety requirements for any possible construction sites. Each subsystem is qualitatively analyzed to identify possible hazards to the workers, public and environments using Failure Mode and Effect Analysis (FMEA). The results are reflected in the design and operation procedure. Shielding of radiation, particularly neutron around the test cell is one of the most important issue in normal operation. Radiation due to beam halo and activation is a hazard for operation personnel in the accelerator system. For the maintenance, remote handling technology is designed to be applied in various facilities of the IFMIF. Lithium loop and target system hold the majority of the radioactive material in the facility. Tritium and beryllium-7 are generated by the nuclear reaction during operation and thus needed to be removed continuously. They are also the potential hazards of airborne source in off-normal events. Minimization of inventory, separation and immobilization, and multiple confinement are considered in the design. Generation of radioactive waste is anticipated to be minor, but waste treatment systems for gas, liquid and solid wastes are designed to minimize the environmental impact. Lithium leak followed by a fire is a major concern, and extensive prevention plan is made in the target design. One of the design option considered is composed of; primary enclosure of the lithium loop, secondary containment filled with positive pressure argon, and an air tight lithium cell made of concrete with a steel lining. This study will report some technical issues considered in the design of IFMIF. It was concluded that the IFMIF can be designed and constructed to meet or exceed current safely standards for workers, public and the environment with existing technology and reasonable construction cost. (J.P.N.)

  16. Optimizing the design of international safeguards inspection systems

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1983-01-01

    Efficient implementation of international inspections for verifying the operation of a nuclear facility requires that available resources be allocated among inspection activities to maximize detection of misoperation. This report describes a design and evaluation method for selecting an inspection system that is optimal for accomplishing inspection objectives. The discussion includes methods for identifying system objectives, defining performance measures, and choosing between candidate systems. Optimization theory is applied in selecting the most preferred inspection design for a single nuclear facility, and an extension to optimal allocation of inspection resources among States containing multiple facilities is outlined. 3 figures, 5 tables

  17. Design of a smart textile mat to study pressure distribution on multiple foam material configurations

    NARCIS (Netherlands)

    Donselaar, van R.; Chen, W.

    2011-01-01

    In this paper, we present a design of a smart textile pressure mat to study the pressure distribution with multiple foam material configurations for neonatal monitoring at Neonatal Intensive Care Units (NICU). A smart textile mat with 64 pressure sensors has been developed including software at the

  18. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...

  19. Modified fuel assembly design for pressurized water reactors with improved fuel utilization

    International Nuclear Information System (INIS)

    Galperin, A.; Ronen, Y.

    1983-01-01

    A method for reactivity control through variation of the moderator content in the reactor core was proposed. The main idea is to adjust the amount of water in the core from a low value at beginning of cycle to a high value at end of cycle, so as to compensate for fissile material burnup and buildup of fission products. The possible implementation of this idea may be carried out by introducing a number of hollow tubes into the fuel assembly between the fuel rods. Then variation of the moderator content in the core may be managed through a change of the water level in these tubes. cated a potential savings in the fuel cycle requirements and costs. Preliminary steady-state thermal-hydraulic calculations indicate the possibility of implementing the proposed method in the existing pressurized water reactor plants. Feasibility of the proposed design may be finally established after rigorous thermal hydraulics as well as safety analysis calculations. Furthermore, there is need to elaborate the mechanical design of the pressure vessel internals together with cost benefit analysis

  20. Pipeline's natural frequency response due to internal pressure effect

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Andre L.L.; Guevara Junior, Nestor O. [Suporte - Consultoria e Projetos Ltda., Rio de Janeiro, RJ (Brazil); Galgoul, Nelson S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Fernandes, Antonio C.; Coelho, Fabio M. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao de Programas de Pos-graduacao de Engenharia

    2009-12-19

    A few years ago, a discussion about how internal pressure is treated in submarine pipelines has taken place. Galgoul et al (2004) have pointed out the conservatism of the latest recommendations for pipeline free-span evaluations associated to the way the axial force is considered in the determination of the pipeline natural frequency. Fyrileiv and Collberg (2005) have also discussed this point in defense of the effective axial force concept and its use in the natural frequency determination. In order to contribute to this aspect, an experimental test has been performed with a fully embedded pipeline which was pressurized. The main object consists in showing that the pipe is under tension (and not under compression) and, as a consequence, it is the authors' intention to prove that the natural frequency increases instead of reducing when the internal pressure is incremented. In addition to the test, a finite element model has been presented where this internal pressure effect is taken into account as it actually is (and not as an axial force) in order to show the real behavior of the wall stresses. Static analyses, as well as modal and transient analysis have been performed in order to compare theoretical results with the experimental test conducted. (author)

  1. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2008-01-01

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure. (author)

  2. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    Science.gov (United States)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure

  3. Effects of the finite pressure of plasma on internal kink mode

    International Nuclear Information System (INIS)

    Oliveira, G.M.G. de.

    1980-01-01

    The objective of this work is to study the stability of the Internal Kink and Central Kink modes in ideal MHD cylindrical plasma due to the pressure variations and the different current profiles. It was used the σ Euler equation derived by Goedbloed and Sakanaka. Its analysis is based on the boundary layer method, where the effects due to the plasma inertia are only considered in a boundary layer in the neighborhood of the surface where the perturbation is parallel to the field lines. For the internal Kink mode a numerical analysis is also done by integrating the Euler equation. It was calculated the growth rate of the two modes for the different pressure ans current profiles. It was verified that for both, the Internal Kink and Central Kink modes, the growth rate becomes larger as the derivative of these profiles increases. However, for the Internal Kink mode, one obtains a reduction of up to 50% in the growth rate calculated by Rosenbluth et al. For the Central Kink mode, one notices that the growth rate is proportional to β of the plasma and to the derivatives of the pressure and current. (author) [pt

  4. Application-specific integrated circuit design for a typical pressurized water reactor pressure channel trip

    International Nuclear Information System (INIS)

    Battle, R.E.; Manges, W.W.; Emery, M.S.; Vendermolen, R.I.; Bhatt, S.

    1994-01-01

    This article discusses the use of application-specific integrated circuits (ASICs) in nuclear plant safety systems. ASICs have certain advantages over software-based systems because they can be simple enough to be thoroughly tested, and they can be tailored to replace existing equipment. An architecture to replace a pressurized water reactor pressure channel trip is presented. Methods of implementing digital algorithms are also discussed

  5. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  6. FLANGE-ORNL, Flanged Pipe Joint Stress Analysis, Internal Pressure, Moment Loads, Temperature

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1979-01-01

    1 - Description of problem or function: FLANGE-ORNL calculates appropriate loads, stresses, and displacements for the flanges, bolts, and gaskets that comprise a flanged piping joint for internal pressure or moment loading on the pipe, temperature difference between the flange hub and ring, and variations in bolt load that result from pressure, hub-ring temperature gradient and/or bolt-ring temperature differences. Flanges considered may be tapered-hub, straight or blind. 2 - Method of solution: The solution is based on discontinuity analysis and the theory of plates and shells

  7. 6th International Conference on Research into Design

    CERN Document Server

    Chakrabarti, Debkumar; ICoRD 2017; Research into design for communities

    2017-01-01

    This book showcases cutting-edge research papers from the 6th International Conference on Research into Design (ICoRD 2017) – the largest in India in this area – written by eminent researchers from across the world on design process, technologies, methods and tools, and their impact on innovation, for supporting design for communities. While design traditionally focused on the development of products for the individual, the emerging consensus on working towards a more sustainable world demands greater attention to designing for and with communities, so as to promote their sustenance and harmony - within each community and across communities. The special features of the book are the insights into the product and system innovation process, and the host of methods and tools from all major areas of design research for the enhancement of the innovation process. The main benefit of the book for researchers in various areas of design and innovation are access to the latest quality research in this area, with the...

  8. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  9. Design of experiments and equipment to test the ballooning characteristics of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Forrest, C.F.; Stern, F.; Hart, R.G.

    1992-01-01

    Experiments have been planned and an apparatus has been designed to enable creep testing of end-of-life pressure tube specimens in a LOCA environment. Effects that could be studied include: annealing of irradiation damage during transient heating; effects of hydride blisters on pressure tube ballooning strains; and, effects of uniformly-distributed hydrogen content on pressure tube ballooning strains. The proposed experimental program will consist of separate effects creep tests on pressure tube sections under transient heating conditions

  10. Axisymmetric global structural analysis of BARC prestressed concrete containment model for beyond design pressure

    International Nuclear Information System (INIS)

    Singh, Tarvinder; Singh, R.K.; Ghosh, A.K.

    2008-10-01

    In order to check the adequacy of the Indian Pressurized Heavy Water Reactor (PHWR) containment structure to withstand severe accident induced internal pressure load, the ultimate load capacity assessment is required. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC) has initiated an experimental program at BARC Tarapur Containment Test Facility to evaluate the ultimate load capacity of Indian PHWR containment. For this study, BARC Containment Model (BARCOM), which is 1:4 scale representation of Tarapur Atomic Power Station (TAPS) unit-3 and 4 540 MWe PHWR Inner Containment of Pre-stressed Concrete has been constructed. The model includes all the important major design features of the prototype containment and simulates Main Air Lock (MAL), Steam Generator (SG), Emergency Air Lock (EAL) and Fueling Machine Air Lock (FMAL) openings. The design pressure (Pd) of BARCOM is 1.44kg/cm 2 (g), which is same as the prototype. The pretest analysis of BARCOM has been performed with finite element axi-symmetric modeling. The objective of this simulation was to understand the behavior of containment model under internal pressure and find out the various failure modes and critical locations important for instrumentation during the experiment. The structural response of the containment model is assessed in terms of wall and dome displacement; cracking of concrete, longitudinal and hoop strains and stresses. Another objective of the analysis was to predict the various failure modes of BARCOM with regard to the concrete cracking, reinforcement yielding and tendon inelastic behavior along with the estimation of the ultimate load capacity of the containment model. It is noted that the BARCOM has an ultimate load capacity factor of 3.54 Pd. However, further analysis is needed to quantify the factor of safety with detail 3D model, which should account for the local structural behavior due to various openings. Meanwhile, this preliminary simplified analysis helps to

  11. Topology Design of Pressure Adaptive Honeycomb for a Morphing Fowler Flap

    NARCIS (Netherlands)

    Scheepstra, J.; Vos, R.; Barrett, R.

    2011-01-01

    A new method for designing a morphing Fowler flap based on pressure-adaptive honeycomb is detailed. Pressure adaptive honeycomb has been shown to be able to induce gross camber deformations in airfoil sections, such as a flap. However, due to the large amount of design variables the integration of

  12. Impact Of Melter Internal Design On Off-Gas Flammability

    International Nuclear Information System (INIS)

    Choi, A. S.; Lee, S. Y.

    2012-01-01

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good

  13. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  14. Design and analysis of a high pressure piezoelectric actuated microvalve

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2007-01-01

    A normally open piezoelectric actuated microvalve which modulates a gas flow is fabricated and tested. This work is based on the novel concept of combining micro-machining- and fine machining. The microvalve was tested for air flow. It is shown that a flow rate of 250 ml min-1 for a pressure

  15. Waste Feed Delivery Purex Process Connector Design Pressure

    International Nuclear Information System (INIS)

    BRACKENBURY, P.J.

    2000-01-01

    The pressure retaining capability of the PUREX process connector is documented. A context is provided for the connector's current use within existing Projects. Previous testing and structural analyses campaigns are outlined. The deficient condition of the current inventory of connectors and assembly wrenches is highlighted. A brief history of the connector is provided. A bibliography of pertinent references is included

  16. Dynamics of a Pipeline under the Action of Internal Shock Pressure

    Science.gov (United States)

    Il'gamov, M. A.

    2017-11-01

    The static and dynamic bending of a pipeline in the vertical plane under the action of its own weight is considered with regard to the interaction of the internal pressure with the curvature of the axial line and the axisymmetric deformation. The pressure consists of a constant and timevarying parts and is assumed to be uniformly distributed over the entire span between the supports. The pipeline reaction to the stepwise increase in the pressure is analyzed in the case where it is possible to determine the exact solution of the problem. The initial stage of bending determined by the smallness of elastic forces as compared to the inertial forces is introduced into the consideration. At this stage, the solution is sought in the form of power series and the law of pressure variation can be arbitrary. This solution provides initial conditions for determining the further process. The duration of the inertial stage is compared with the times of sharp changes of the pressure and the shock waves in fluids. The structure parameters are determined in the case where the shock pressure is accepted only by the inertial forces in the pipeline.

  17. Thermophysical instruments for non-destructive examination of tightness and internal gas pressure or irradiated power reactor fuel rods

    International Nuclear Information System (INIS)

    Pastoushin, V.V.; Novikov, A.Yu.; Bibilashvili, Yu.K.

    1998-01-01

    The developed thermophysical method and technical instruments for non-destructive leak-tightness and gas pressure inspection inside irradiated power reactor fuel rods and FAs under poolside and hot cell conditions are described. The method of gas pressure measuring based on the examination of parameters of thermal convection that aroused in gas volume of rod plenum by special technical instruments. The developed method and technique allows accurate value determination of not only one of the main critical rod parameters, namely total internal gas pressure, that forms rod mean life in the reactor core, but also the partial pressure of every main constituent of gaseous mixture inside irradiated fuel rod, that provides the feasibility of authentic and reliable leak-tightness detection. The described techniques were experimentally checked during the examination of all types power reactor fuel rods existing in Russia (WWER, BN, RBMK) and could form the basis for new technique development for non-destructive examination of PWR (and other) type rods and FAs having gas plenum filled with spring or another elements of design. (author)

  18. A database to evaluate stress intensity factors of elbows with throughwall flaws under combined internal pressure and bending moment

    International Nuclear Information System (INIS)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    The advent of Leak-Before-Break (LBB) concept has replaced the traditional design basis event of Double Ended Guillotine Break (DEGB) in the design of primary heat transport (PHT) piping. The use of LBB concept requires postulation of largest credible cracks at highly stressed locations and demonstration of its stability under the maximum credible loading conditions. Stress analysis of PHT piping in nuclear power plants shows that the highly stressed piping components are normally elbows and branch tees. This necessitates detailed fracture mechanics evaluation of piping connections by computing Stress Intensity Factor (SIF) and/or J-integral. Simple analytical solutions for evaluation of SIF and J-integral for cracks in straight pipes are readily available in literature. However, the same type of solutions for elbows and tees are limited in open literature. In the present work, a database is generated to evaluate SIF for throughwall circumferential and longitudinal cracks under combined internal pressure and bending moment. Different parameters to characterise a cracked elbow are pipe factor (h), pipe bore radius to thickness ratio (r/t) and crack length. Another parameter (σ) is used to consider the relative magnitude of stresses due to internal pressure and remote bending moment. The database has been used to derive closed form expressions to evaluate SIF for elbow with cracks in terms of the aforementioned parameters. (author). 8 refs., 12 figs., 3 tabs

  19. Aging considerations for PWR [pressurized water reactor] control rod drive mechanisms and reactor internals

    International Nuclear Information System (INIS)

    Ware, A.G.

    1988-01-01

    This paper describes age-related degradation mechanisms affecting life extension of pressurized water reactor control rod drive mechanisms and reactor internals. The major sources of age-related degradation for control rod drive mechanisms are thermal transients such as plant heatups and cooldowns, latchings and unlatchings, long-term aging effects on electrical insulation, and the high temperature corrosive environment. Flow induced loads, the high-temperature corrosive environment, radiation exposure, and high tensile stresses in bolts all contribute to aging related degradation of reactor internals. Another problem has been wear and fretting of instrument guide tubes. The paper also discusses age-related failures that have occurred to date in pressurized water reactors

  20. Abstracts of 2. international conference C-BN and diamond crystallization under reduced pressure

    International Nuclear Information System (INIS)

    1995-01-01

    The important problem and the last advanced one from the view point of electronic materials sciences is the new A III B V compounds creation and investigation of their properties. This domain was the main subject of the 2. International Conference on C-BN and diamond crystallization under reduced pressure. The conference has been divided into 8 sessions. They were: opening address, c-BN, new materials, posters, diamond, applications, posters

  1. Calculation of the internal pressure of fuel rod from measurements of krypton-85 at its plenum

    International Nuclear Information System (INIS)

    Arana, I.; Doncel, N.; Casado, C.

    2012-01-01

    ENUSA carried out numerous campaigns of measurement internal pressure of fuel rod irradiated. All of them have been performed of form destructively in a hot cell laboratory which implies a time high to obtain results and a high economic cost to obtain a single data by rod, representative of the end of the irradiation. The objective of the project is to develop a non-destructive measurement and a methodology for reliable calculation that eliminates these problems.

  2. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure

    OpenAIRE

    Zamani, J.; Soltani, B.; Aghaei, M.

    2014-01-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the inter...

  3. FFAG Designs for the International Design Study for the Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.; Machida, S.

    2009-05-04

    The International Design Study for the Neutrino Factory (IDS-NF) aims to produce a design report for a neutrino factory. One component of that design is a linear nonscaling fixed-field alternating gradient accelerator (FFAG) that will accelerate to the final energy of 25 GeV. An FFAG is used to reduce the machine cost by maximizing the number of passes made through the RF cavities. We present some design options for this FFAG, individually optimized for cost. We study the addition of nonlinear magnets to the lattice to improve the performance of the lattice and consider the negative effects of doing so.

  4. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  5. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    The TEMP-STRESS FEM represents an axisymmetric simulation of the reinforced concrete vessel to internal pressurization. The information shows the global deformation, the state of strain/stress within the containment vessel with respect to the imposed pressures. Thus, the location and progress of concrete cracking, the stretching of the liner and the reinforcing bars and final failure are indicated through the entire loading range. Equilibrium of the entire system is assured at definite loading increments. With the progress of concrete cracking, the resisting load is continuously transferred to the reinforcing bars and the liner. Thus, after the tensile strength is exceeded and the concrete stress is set to zero, the internal pressures are entirely resisted by the liner and the reserve strength of the reinforcing bars. The reinforcing bars are mechanically connected to each other by splices, the ultimate strength of which is less than that of the rebars themselves. The corresponding strain at this limiting stress is lower than the ultimate strain of the liner. Therefore, the specified ultimate strength of the splices limits the pressurization of the vessel. Furthermore, once any of the splices fail, then load is transferred to the adjacent members, causing their failure and general failure of the vessel. (orig./HP)

  6. Development of design technology for an advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Kim, Dong Soo; Chang, Won Pyo; Park, Koon Chul

    1991-07-01

    The objective of the project is to localize technology for the improvement of the reactor coolant system through a multidimensional thermal-hydraulic analysis for the steam generator and the pressurizer. Flow distribution analysis has been done for the YGN 3/4 steam generators when steady-state output conditions were varied in the ranges such as 100, 75, 50, and 25 using three-dimensional ATHOS 3 code. The results of the thermal-hydraulic analysis have been used for flow-induced vibration analysis for the YGN 3/4 steam generators. ATHOS 3 code has been modified for YGN 3/4 steam generator tube lane region using the cartesian geometry and the local porosity in the boundaries of the two adjacent cells. Stability ratio for the tube vibration has been calculated the modified ATHOS 3 and ANSYS code. A sensitivity study for the pressurizer volume change has been analyzed using LTC code which is for the performance analysis to predict an optimistic pressurizer volume. (Author)

  7. Fuel rod pressure in nuclear power reactors: Statistical evaluation of the fuel rod internal pressure in LWRs with application to lift-off probability

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Tomas

    2001-02-01

    In this thesis, a methodology for quantifying the risk of exceeding the Lift-off limit in nuclear light water power reactors is outlined. Due to fission gas release, the pressure in the gap between the fuel pellets and the cladding increases with burnup of the fuel. An increase in the fuel-clad gap due to clad creep would be expected to result in positive feedback, in the form of higher fuel temperatures, leading to more fission gas release, higher rod pressure, etc, until the cladding breaks. An increase in the fuel-clad gap that leads to this positive feedback is a phenomenon called Lift-off and is a limitation that must be considered in the fuel core management. Lift-off is a consequence of very high internal fuel rod pressure. The internal fuel rod pressure is therefore used as a Lift-off indicator. The internal fuel rod pressure is closely connected to the fission gas release into the fuel rod plenum and is thus used to increase the database. It is concluded that the dominating error source in the prediction of the pressure in Boiling Water Reactors (BWR), is the power history. There is a bias in the fuel pressure prediction that is dependent on the fuel rod position in the fuel assembly for BWRs. A methodology to quantify the risk of the fuel rod internal pressure exceeding a certain limit is developed; the risk is dependent of the pressure prediction and the fuel rod position. The methodology is based on statistical treatment of the discrepancies between predicted and measured fuel rod internal pressures. Finally, a methodology to estimate the Lift-off probability of the whole core is outlined.

  8. Development of computational methods of design by analysis for pressure vessel components

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan; Wu Honglin

    2005-01-01

    Stress classification is not only one of key steps when pressure vessel component is designed by analysis, but also a difficulty which puzzles engineers and designers at all times. At present, for calculating and categorizing the stress field of pressure vessel components, there are several computation methods of design by analysis such as Stress Equivalent Linearization, Two-Step Approach, Primary Structure method, Elastic Compensation method, GLOSS R-Node method and so on, that are developed and applied. Moreover, ASME code also gives an inelastic method of design by analysis for limiting gross plastic deformation only. When pressure vessel components design by analysis, sometimes there are huge differences between the calculating results for using different calculating and analysis methods mentioned above. As consequence, this is the main reason that affects wide application of design by analysis approach. Recently, a new approach, presented in the new proposal of a European Standard, CEN's unfired pressure vessel standard EN 13445-3, tries to avoid problems of stress classification by analyzing pressure vessel structure's various failure mechanisms directly based on elastic-plastic theory. In this paper, some stress classification methods mentioned above, are described briefly. And the computational methods cited in the European pressure vessel standard, such as Deviatoric Map, and nonlinear analysis methods (plastic analysis and limit analysis), are depicted compendiously. Furthermore, the characteristics of computational methods of design by analysis are summarized for selecting the proper computational method when design pressure vessel component by analysis. (authors)

  9. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  10. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  11. Link between self-consistent pressure profiles and electron internal transport barriers in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Razumova, K A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Andreev, V F [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Donne, A J H [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Hogeweij, G M D [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Lysenko, S E [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Shelukhin, D A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Spakman, G W [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Vershkov, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Zhuravlev, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation)

    2006-09-15

    Tokamak plasmas have a tendency to self-organization: the plasma pressure profiles obtained in different operational regimes and even in various tokamaks may be represented by a single typical curve, called the self-consistent pressure profile. About a decade ago local zones with enhanced confinement were discovered in tokamak plasmas. These zones are referred to as internal transport barriers (ITBs) and they can act on the electron and/or ion fluid. Here the pressure gradients can largely exceed the gradients dictated by profile consistency. So the existence of ITBs seems to be in contradiction with the self-consistent pressure profiles (this is also often referred to as profile resilience or profile stiffness). In this paper we will discuss the interplay between profile consistency and ITBs. A summary of the cumulative information obtained from T-10, RTP and TEXTOR is given, and a coherent explanation of the main features of the observed phenomena is suggested. Both phenomena, the self-consistent profile and ITB, are connected with the density of rational magnetic surfaces, where the turbulent cells are situated. The distance between these cells determines the level of their interaction, and therefore the level of the turbulent transport. This process regulates the plasma pressure profile. If the distance is wide, the turbulent flux may be diminished and the ITB may be formed. In regions with rarefied surfaces the steeper pressure gradients are possible without instantaneously inducing pressure driven instabilities, which force the profiles back to their self-consistent shapes. Also it can be expected that the ITB region is wider for lower dq/d{rho} (more rarefied surfaces)

  12. Joint AIRAPT-25th and EHPRG-53rd International Conference on High Pressure Science and Technology

    Science.gov (United States)

    Syassen, Karl

    2017-10-01

    The AIRAPT arose as a scientific forum for discussions aiming to promote contacts and cooperation between scientists and organizations of different countries, to collect and disseminate of information, having the advancement of science and technology in the field of high pressure as main objective. Nowadays the field has experienced an astonishing growth in an open multidisciplinary environment that rather contributed to the creation of different interdisciplinary teams of excellence, being able to face the important challenges posed by high-pressure research. Great achievements have been possible towards higher pressures, nowadays making possible experiments in the TPa range in our laboratories, the improvement and adaptation of different characterization techniques of matter under extreme conditions of pressure and temperature or the development of efficient ab initio methods with capabilities to explain and eventually predict new physical phenomena and materials design. All decisively contributed to the advance of science and understanding of nature, with high pressure as common leitmotiv. On the 50th Anniversary of the AIRAPT, this talk will is intended to commemorate the enthusiastic and encouraging work of high-pressure pioneers and to motivate young scientists to join us and continue the challenge of exploring compressed matter as a way to unveil new phenomena and materials and a better understanding of our world.

  13. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  14. Minimum weight design of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Boes, R.

    1975-01-01

    A method of non-linear programming for the minimization of the volume of rotationally symmetric prestressed concrete reactor pressure vessels is presented. It is assumed that the inner shape, the loads and the degree of prestressing are prescribed, whereas the outer shape is to be detemined. Prestressing includes rotational and vertical tension. The objective function minimizes the weight of the PCRV. The constrained minimization problem is converted into an unconstrained problem by the addition of interior penalty functions to the objective function. The minimum is determined by the variable metric method (Davidson-Fletcher-Powell), using both values and derivatives of the modified objective function. The one-dimensional search is approximated by a method of Kund. Optimization variables are scaled. The method is applied to a pressure vessel like for THTR. It is found that the thickness of the cylindrical wall may be reduced considerably for the load cases considered in the optimization. The thickness of the cover is reduced slightly. The largest reduction in wall thickness occurs at the junction of wall and cover. (Auth.)

  15. FOREWORD: CCM Second International Seminar: Pressure Metrology from 1 kPa to 1 GPa

    Science.gov (United States)

    Molinar, G. F.

    1994-01-01

    The Comité Consultatif pour la Masse et les Grandeurs Apparentées (CCM), through its High Pressure and Medium Pressure Working Groups, organized this Second International Seminar on Pressure Metrology from 1 kPa to 1 GPa, which was held at the Laboratoire National d'Essais (LNE), Paris, France, from 2 to 4 June 1993. The scope of the seminar was to review the state of the art of pressure measurements in the 1 kPa to I GPa pressure range and to present innovative contributions by standards laboratories, universities and industry. The seminar was organized in six sessions: liquid-column manometers; piston gauge pressure standards; properties of liquids and gases relevant to pressure metrology; pressure transducers and transfer standards; pressure standard comparison (methods and results); dynamic pressure measurements. Each session opened with the presentation of a review paper on major requirements in that field and, at the end of the seminar, a general discussion was organized on the actual limits of accuracy of static and dynamic pressure measurements in fluid media, and the fundamental problems in pressure metrology between 1 kPa and 1 GPa. The seminar was attended by sixty scientists from twenty-four countries, all working in the field of pressure measurements. Forty-nine papers were presented. The participation of scientists from so many countries indicates the importance of pressure metrology from the scientific and industrial points of view. Most papers were presented by scientists from national standards laboratories, with eight papers from universities and four from industry. Eleven papers reported the results of cooperative work involving metrological institutions dealing with high pressure, generally national standards laboratories, an indication that scientific links are already well established at this level. Links are also strengthening between industry and standards laboratories. Although industrial participation at the seminar was relatively small

  16. Design and evaluation of a pressure sensor for high temperature nuclear application

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1981-11-01

    The goal of this technical development task was the development of a small eddy-current pressure sensor for use within a high temperature nuclear environment. The sensor is designed for use at pressures and temperatures of up to 17.23 MPa and 650 0 F. The design of the sensor incorporated features to minimize possible errors due to temperature transients present in nuclear applications. This report describes a prototype pressure sensor that was designed, the associated 100 kHz signal conditioning electronics, and the evaluation tests which were conducted

  17. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    International Nuclear Information System (INIS)

    Kitchen, M J; Habib, A; Lewis, R A; Fouras, A; Dubsky, S; Wallace, M J; Hooper, S B

    2010-01-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  18. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    Science.gov (United States)

    Faddoul, J. R.

    1973-01-01

    The design concepts used for metal-lined glass-fiber composite pressure vessels are described, comparing the structural characteristics of the composite designs with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. The discussion centers around two distinctly different design concepts, which provide the basis for defining metal lined composite vessels as either (1) thin-metal lined, or (2) glass fiber reinforced (GFR). Both concepts are described and associated development problems are identified and discussed. Relevant fabrication and testing experience from a series of NASA-Lewis Research Center development efforts is presented.

  19. Development of design technology for advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Kim, Si Hwan; Chang, Moon Hee; Lee, Jong Chul

    1991-08-01

    In order to investigate the feasibility of the domestic passive reactor development, the analysis and evaluation on the development status, technical characteristics, and the safety and economy for the overseas passive reactors were carried out based on the vendor's information. Also the domestic nuclear technology basis was surveyed. The analysis and evaluation of the development status and technical characteristics were performed mainly for the AP-600 developed by Westing house and the SIR of UKAEA. The new design concepts and system characteristics have been evaluated by utilizing EPRI Utility Requirement Documents and Lahmeyer evaluation criteria. Based on this evaluation the recommendable design concepts in each major system were selected. The feasibility for the domestic passive reactor development has focused on the safety, technology and economy aspects, and on the applicability of the existing domestic technology to the design of the passive reactor. And the development plan for the domestic passive reactor was recommended in a step by step way. (Author)

  20. Buckling behaviour of imperfect ring-stiffened cone-cylinder intersections under internal pressure

    International Nuclear Information System (INIS)

    Zhao, Y.

    2005-01-01

    Cone-cylinder intersections are used commonly in pressure vessels and piping. In the case of a cone large end-to-cylinder intersection under internal pressure, the intersection is subject to a large circumferential compressive force. While both the cone and the cylinder may be locally thickened to strengthen the intersection, it is often desirable and convenient to provide an annular plate ring at the cone-to-cylinder joint to supplement local thickening or as an alternative strengthening measure, leading to a ring-stiffened cone-cylinder intersection. Only limited work has been carried out specifically on ring-stiffened cone-cylinder intersections under internal pressure. This paper presents the first experimental study on such intersections. In addition to the presentation of test results including geometric imperfections, failure behaviour and the determination of buckling mode and load based on displacement measurements, results from nonlinear bifurcation analysis using the perfect shape and nonlinear analysis using the measured imperfect shape are presented and compared with the experimental results

  1. Experimental tests on buckling of ellipsoidal vessel heads subjected to internal pressure

    International Nuclear Information System (INIS)

    Roche, R.L.; Alix, M.

    1980-05-01

    Tests were performed on 17 ellipsoidal vessel heads of three different materials and different geometries. The results include the following: 1) Accurate definition of the geometry and particularly a direct measurement of the thickness along the meridian. 2) The properties of the material of each head, obtained from test specimens cut from the head itself after the test. 3) The recording of deflection/pressure curves with indication of the pressure at which buckling occurred. These results can be used for validation and qualification of methods for calculating the buckling load when plasticity occurs before buckling. It was possible to develop an empirical equation representing the experimental results obtained with satisfactory accuracy. This equation may be useful in pressure vessel design

  2. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Hu, H.-T.; Lin, Y.-H.

    2006-01-01

    Numerical analyses are carried out by using the ABAQUS finite element program to predict the ultimate pressure capacity and the failure mode of the PWR prestressed concrete containment at Maanshan nuclear power plant. Material nonlinearity such as concrete cracking, tension stiffening, shear retention, concrete plasticity, yielding of prestressing tendon, yielding of steel reinforcing bar and degradation of material properties due to high temperature are all simulated with proper constitutive models. Geometric nonlinearity due to finite deformation has also been considered. The results of the analysis show that when the prestressed concrete containment fails, extensive cracks take place at the apex of the dome, the junction of the dome and cylinder, and the bottom of the cylinder connecting to the base slab. In addition, the ultimate pressure capacity of the containment is higher than the design pressure by 86%

  3. SSME Alternate Turbopump Development Program: Design verification specification for high-pressure fuel turbopump

    Science.gov (United States)

    1989-01-01

    The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.

  4. Key Success Factors and Guidance for International Collaborative Design Projects

    Directory of Open Access Journals (Sweden)

    Robby Soetanto

    2015-11-01

    Full Text Available In the built environment (BE sector, the co-creation process of design demands understanding of requirements (as viewed by parties involved, mobilisation of tacit knowledge, negotiation, and complex exchange of information. The need to collaborate over distance has further exacerbated the complexity of the process, and, in itself, represents a significant challenge for BE professionals who are increasingly expected to undertake this process within globally distributed virtual teams. The research aims to identify key success factors and develop guidance for international collaborative design projects, via the implementation of collaborative design courses in UK and Canadian universities over three academic years. Questionnaire surveys, focus groups, observation of online meetings, personal reflections provided data for the analysis. The findings reveal the significance of the perceived risk of collaboration and a difference in preferred communication mode between architects and civil/structural engineers. These findings suggest the impact of training in the subject discipline, and that the opportunity for co-located working has helped the development of trust. The guidance is aimed at BE educators who wish to implement this activity in their courses.

  5. The conceptual design of high temporal resolution HCN interferometry for atmospheric pressure air plasmas

    Science.gov (United States)

    Zhang, J. B.; Liu, H. Q.; Jie, Y. X.; Wei, X. C.; Hu, L. Q.

    2018-01-01

    A heterodyne interferometer operating at the frequency f = 890 GHz has been designed for measuring the electron density of atmospheric pressure air plasmas, it's density range is from 1015 to 3×1019 m-3 and the pressure range is from 1 Pa to 20 kPa. The system is configured as a Mach\

  6. Design Improvement of Double Pressure Vessel in the In-pile Test Section

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Heo, Sung-Ho; Joung, Chang-Young; Kim, Ka-Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To carry out an irradiation test of nuclear fuels, a nuclear fuel test rig should be fabricated and installed in the in-pile test section (IPS), which is installed in the reactor hall. While carrying out an irradiation test, sealing out coolant which passes through the test rig is one of the most important issues. In particular, although the double pressure vessel is assembled with the IPS head by two o-rings and six bolts, 15.5 MPa of highly pressurized coolant leaks through the gap between the vessel and IPS head. Because the temperature of the coolant in the test loop is 300 .deg. C , and the pool of HANARO is 40 .deg. C, the double pressure vessel is necessary to insulate them. Therefore, a new design to prevent the leakage of coolant needs to be developed. In this study, EB welding technique is considered to assemble the double pressure vessel and the IPS head, and their mechanical design is modified to enable the welding process. In this study, an improved design for sealing out the coolant at the pressure boundary between the double pressure vessel and the IPS head has been developed. An EB weld is applied to seal out the pressure boundary, and its sealing performance is verified by NDE, a cross section test, and a hydraulic pressure test. From the verification test results, the improved design can be used in fabricating the IPS for a nuclear fuel irradiation test.

  7. State-of-the-art and prospets for designing and constraction of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Short review of reports submitted to the symposium on pressure vessels, which was conducted in Calgary (Canada), has been presented. New tendencies of designing of prestressed concrete pressure vessels (PCPV) for nuclear for nuclear reactors are noted. Construction of hot vessel liner is studied. A conclusion is drawn on prospects of PCPV creation

  8. PREFACE: 23rd International Conference on High Pressure Science and Technology (AIRAPT-23)

    Science.gov (United States)

    Gupta, Satish C.

    2012-07-01

    The 23rd AIRAPT International Conference on High Pressure Science and Technology was held at Bhabha Atomic Research Centre, Mumbai, from 25-30 September 2011. This conference is part of the series of AIRAPT International Conferences which are held biennially. AIRAPT is an acronym for the French title which translates as 'International Association for the Advancement of High Pressure Science and Technology'. This was the second time the AIRAPT Conference was organized in India. The first was held 20 years ago at the National Aeronautical Laboratory, Bangalore in 1991. The 23rd Conference covered many important topics in the area of both static and dynamic high pressures including theoretical and experimental investigations on the response of materials under high pressures, new developments using neutron and synchrotron sources, investigations on superconductivity under high pressure, studies of geophysical and planetary sciences, biosciences, and the synthesis of new materials. The conference program included Bridgman award lecture, Jemieson award lecture, seven plenary talks, 85 invited talks, 83 oral presentations and about 195 posters. In all there were 372 presentations. 285 scientists from 19 countries participated in the conference. The countries represented included Austria, Canada, China, Estonia, France, Germany, India, Israel, Italy, Japan, Nepal, New Zealand, Poland, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, UK, Ukraine and USA. Many new developments were presented, for example, measurement techniques using the new generation synchrotron sources, more powerful neutron sources and much brighter laser sources; integration of gas-gun with synchrotron source; the achievement of multi-megabar pressures in shock-less dynamic compressions; and capabilities to synthesize centimeter size diamonds with better quality. All these developments have opened up new opportunities for understanding the physics of materials under high pressures. I would like

  9. Quench pressure, thermal expulsion, and normal zone propagation in internally cooled superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    When a nonrecovering normal zone appears in an internally cooled superconductor, the pressure in the conductor rises, helium is expelled from its ends, and the normal zone grows in size. This paper presents a model of these processes that allows calculation of the pressure, the expulsion velocity, and the propagation velocity with simple formulas. The model is intended to apply to conductors such as the cable-in-conduit conductor of the Westinghouse LCT (WH-LCT) coil, the helium volumes of which have very large length-to-diameter ratios (3 /times/ 10 5 ). The predictions of the model agree with the rather limited data available from propagation experiments carried out on the WH-LCT coil. 3 refs., 1 fig

  10. Shakedown and stress range of torispherical heads under cyclic internal pressure

    International Nuclear Information System (INIS)

    Kalnins, A.; Updike, D.P.

    1996-01-01

    Two effects on shakedown of torispherical heads are addressed in this paper: (1) changing geometry, and (2) initial pressurization, such as by a hydro (or proof) test. Shakedown and the cycled stress intensity range are calculated for two head geometries, having diameter-to-thickness ratios of 238 and 192. The calculations are carried out following two approaches: (1) using a nonlinear, elastic-plastic algorithm that accounts for changes in geometry, and (2) using elastic stresses in the undeformed geometry, which is the commonly used approach. The results show that, when the two geometries are subjected to the same initial and cyclic pressures, shakedown is achieved by the first approach but not by the second. Since real heads do benefit from geometry changes, and since most design codes require hydro (or proof) tests before operation, the first approach is recommended for the design of torispherical heads

  11. Study on effective prestressing effects on concrete containment under the design-basis pressure condition

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong; Wang Lu; Mao Huan; Yang Yu

    2013-01-01

    Prestressing technology is widely used in nuclear power plant containment building, and the durability of containment structure is affected directly by the distribution and loss of prestressing value under design-basis pressure. Containment structure and the distribution of prestressing system are introduced briefly. Furthermore, the calculating process of horizontal prestressing bunch loss near the equipment hatch hole is put forward in details, and the containment structure prestressing loss when 5-year pressure test is obtained. Based above analysis, the finite element model of the prestressed concrete containment structure is built by using ANSYS code, the prestressing effect on concrete containment is analysed. The results show that most of the design pressure is bore by the prestressing system under the design-basis pressure, so the containment structure is safe. These conclusions are consistent with prestressing containment system design concepts, which can provide reference to the engineering staff. (authors)

  12. Seismic design practice for Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Chhatre, A.G.; Ingole, S.M.; Bhardwaj, S.A.

    1996-01-01

    Nuclear power plants designed in India in the last twenty years have been designed for earthquake loading using the current licensing practices. Designers and equipment suppliers have therefore been required to consider seismic loading as a major load case. In India, the nuclear power plants have been seismically qualified using state-of-the-art techniques involving both seismic analysis and testing to ensure that the power plant is capable of safely surviving an earthquake that the plant is likely to experience during their operating life. Guidelines and criteria for meeting the qualification requirements are followed as given in various AERB (Indian Atomic Energy Regulatory Board), NRC, IAEA guides, ASME codes and IEEE standards. In this paper various methods available for qualification of structures, systems, mechanical and electrical equipment are explained. The approach and guidelines used within Indian nuclear industry which are evolved from simple analytical requirements to the more elaborate current requirements involving complex analysis and testing on shake table are also summarized

  13. 16th International Conference on Intelligent Systems Design and Applications

    CERN Document Server

    Abraham, Ajith; Gamboa, Dorabela; Novais, Paulo

    2017-01-01

    This book comprises selected papers from the 16th International Conference on Intelligent Systems Design and Applications (ISDA’16), which was held in Porto, Portugal from December 1 to16, 2016. ISDA 2016 was jointly organized by the Portugual-based Instituto Superior de Engenharia do Porto and the US-based Machine Intelligence Research Labs (MIR Labs) to serve as a forum for the dissemination of state-of-the-art research and development of intelligent systems, intelligent technologies, and applications. The papers included address a wide variety of themes ranging from theories to applications of intelligent systems and computational intelligence area and provide a valuable resource for students and researchers in academia and industry alike. .

  14. Fourth International Conference on Complex Systems Design & Management

    CERN Document Server

    Boulanger, Frédéric; Krob, Daniel; Marchal, Clotilde

    2014-01-01

    This book contains all refereed papers that were accepted to the fourth edition of the « Complex Systems Design & Management » (CSD&M 2013) international conference which took place in Paris (France) from December 4-6, 2013. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2013 conference is organized under the guidance of the CESAMES non-profit organization

  15. 7th International Conference on Complex Systems Design & Management

    CERN Document Server

    Goubault, Eric; Krob, Daniel; Stephan, François

    2017-01-01

    This book contains all refereed papers that were accepted to the seventh edition of the international conference « Complex Systems Design & Management Paris» (CSD&M Paris 2016) which took place in Paris (France) on the December 13-14, 2016 These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, defense & security, electronics & robotics, energy & environment, healthcare & welfare services, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, system is modeling tools) and system types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2016 conference is organized under the guidance of the CESAMES non-profit orga...

  16. 6th International Conference on Complex Systems Design & Management

    CERN Document Server

    Bocquet, Jean-Claude; Bonjour, Eric; Krob, Daniel

    2016-01-01

    This book contains all refereed papers that were accepted to the sixth edition of the « Complex Systems Design & Management Paris » (CSD&M Paris 2015) international conference which took place in Paris (France) on November 23-25, 2015. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautics & aerospace, defense & security, electronics & robotics, energy & environment, health & welfare, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systems modeling tools) and systems types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2015 conference is organized under the guidance of the CESAMES non-profit organization, address...

  17. 5th International Conference on Complex Systems Design & Management

    CERN Document Server

    Krob, Daniel; Morel, Gérard; Roussel, Jean-Claude

    2015-01-01

    This book contains all refereed papers that were accepted to the fifth edition of the « Complex Systems Design & Management » (CSD&M 2014) international conference which took place in Paris (France) on the November 12-14, 2014. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, transportation & systems, defense & security, electronics & robotics, energy & environment, health & welfare services, software & e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2014 conference is organized under the guidance of the CESAMES non-profit organization, addres...

  18. Accelerator conceptual design of the international fusion materials irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Kinsho, M. [Japan Atomic Energy Res. Inst., Tokai, Ibaraki (Japan). Intense Neutron Source Lab.; Jameson, R.A.; Blind, B. [Los Alamos National Lab., NM (United States); Teplyakov, V. [Institute for High Energy Physics, Moscow (Russian Federation); Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J. [Northrop Grumman Corp., Bethpage, NY (United States); Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K. [Johann Wolfgang Goethe Univ., Frankfurt (Germany). Inst. fur Angewandte Phys.; Ferdinand, R.; Lagniel, J.-M. [CEA Saclay LNS, Gif-sur-Yvette (France); Miyahara, A. [Teikyo Univ., Tokyo (Japan); Olivier, M. [CEA DSM, Saclay, Gif-sur-Yvette (France); Piechowiak, E. [Northrop Grumman Corp., Baltimore, MD (United States); Tanabe, Y. [Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    1998-10-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.) 8 refs.

  19. Accelerator conceptual design of the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, M.; Kinsho, M.; Teplyakov, V.; Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J.; Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K.; Miyahara, A.; Olivier, M.; Piechowiak, E.; Tanabe, Y.

    1998-01-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.)

  20. Validation of the SCIAN LD-735 wrist blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Kang, Yuan-Yuan; Chen, Qi; Li, Yan; Wang, Ji-Guang

    2016-08-01

    This study aimed to evaluate the accuracy of the automated oscillometric wrist blood pressure monitor SCIAN LD-735 for home blood pressure monitoring according to the International Protocol of the European Society of Hypertension revision 2010. Systolic and diastolic blood pressures were measured sequentially in 33 adult Chinese participants (10 women, mean age 44.8 years) using a mercury sphygmomanometer (two observers) and the SCIAN LD-735 device (one supervisor). A total of 99 pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. The SCIAN LD-735 device achieved the targets in part 1 of the validation study. The number of absolute differences between device and observers within 5, 10, and 15 mmHg was 86/99, 97/99, and 98/99, respectively, for systolic blood pressure and 85/99, 98/99, and 99/99, respectively, for diastolic blood pressure. The device also fulfilled the criteria in part 2 of the validation study. In total, 30 and 33 participants for systolic and diastolic blood pressure, respectively, had at least two of the three device-observer differences within 5 mmHg (required ≥24). No participant had all of the three device-observer comparisons greater than 5 mmHg for systolic or diastolic blood pressure. The SCIAN wrist blood pressure monitor LD-735 has passed the requirements of the International Protocol revision 2010, and hence can be recommended for home use in adults.

  1. Validation of the AVITA BPM17 wrist blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Kang, Yuan-Yuan; Chen, Qi; Liu, Chang-Yuan; Li, Yan; Wang, Ji-Guang

    2017-08-01

    The aim of the present study was to evaluate the accuracy of the automated oscillometric wrist blood pressure monitor AVITA BPM17 for home blood pressure monitoring according to the International Protocol of the European Society of Hypertension revision 2010. Systolic and diastolic blood pressures were sequentially measured in 33 adult Chinese (19 men, 45.7 years of mean age) using a mercury sphygmomanometer (two observers) and the AVITA BPM17 device (one supervisor). Ninety-nine pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. The AVITA BPM17 device achieved the targets in part 1 of the validation study. The number of absolute differences between device and observers within 5, 10, and 15 mmHg was 94/99, 98/99, and 98/99, respectively, for systolic blood pressure and 92/99, 99/99, and 99/99, respectively, for diastolic blood pressure. The device also fulfilled the criteria in part 2 of the validation study. Overall, 32 participants for both systolic and diastolic blood pressure, respectively, had at least two of the three device-observerss differences within 5 mmHg (required ≥24). None had all the three device-observers comparisons greater than 5 mmHg for systolic and diastolic blood pressure. The AVITA wrist blood pressure monitor BPM17 has passed the requirements of the International Protocol revision 2010, and hence can be recommended for home use in adults.

  2. Validation of the AVITA BPM15S wrist blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Kang, Yuan-Yuan; Zeng, Wei-Fang; Zhang, Lu; Li, Yan; Wang, Ji-Guang

    2014-06-01

    The present study aimed to evaluate the accuracy of the automated oscillometric wrist blood pressure monitor AVITA BPM15S for home blood pressure monitoring according to the International Protocol revision 2010 of the European Society of Hypertension. Systolic and diastolic blood pressures were sequentially measured in 33 Chinese adults (15 women, mean age 51 years) using a mercury sphygmomanometer (two observers) and the AVITA BPM15S device (one supervisor). Ninety-nine pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. The AVITA BPM15S device achieved the targets in part 1 of the validation study. The number of absolute differences between the device and observers within 5, 10, and 15 mmHg were 85/99, 94/99, and 98/99, respectively, for systolic blood pressure, and 82/99, 96/99, and 98/99, respectively, for diastolic blood pressure. The device also achieved the criteria in part 2 of the validation study. Thirty-two and 28 participants for systolic and diastolic blood pressure, respectively, had at least two of the three device-observer differences within 5 mmHg (required ≥ 24). No participant had all of the three device-observer comparisons greater than 5 mmHg for systolic or diastolic blood pressure. The AVITA wrist blood pressure monitor BPM15S fulfilled the requirements of the International Protocol revision 2010 and hence can be recommended for home use in an adult population.

  3. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    Prediction of the response of the Sandia National laboratory 1/6-scale reinforced concrete containment model test was obtained by Argonne National Laboratory (ANL) employing a computer program developed by ANL. The test model was internally pressurized to failure. The two-dimensional code TEMP-STRESS [1-5] has been developed at ANL for stress analysis of plane and axisymmetric 2-D reinforced structures under various thermal conditions. The program is applicable to a wide variety of nonlinear problems, and is utilized in the present study. The comparison of these pretest computations with test data on the containment model should be a good indication of the state of the code

  4. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure.

    Science.gov (United States)

    Zamani, J; Soltani, B; Aghaei, M

    2014-10-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.

  5. limit loads for wall-thinning feeder pipes under combined bending and internal pressure

    International Nuclear Information System (INIS)

    Je, Jin Ho; Lee, Kuk Hee; Chung, Ha Joo; Kim, Ju Hee; Han, Jae Jun; Kim, Yun Jae

    2009-01-01

    Flow Accelerated Corrosion (FAC) during inservice conditions produces local wall-thinning in the feeder pipes of CANDU. The Wall-thinning in the feeder pipes is main degradation mechanisms affecting the integrity of piping systems. This paper discusses the integrity assessment of wall-thinned feeder pipes using limit load analysis. Based on finite element limit analyses, this paper compare limit loads for wall-thinning feeder pipes under combined bending and internal pressure with proposed limit loads. The limit loads are determined from limit analyses based on rectangular wall-thinning and elastic-perfectly-plastic materials using the large geometry change.

  6. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  7. A study on the pressure distribution in the centrifugal compressor channel diffuser at design and off-design conditions

    International Nuclear Information System (INIS)

    Kang, Jeong Seek; Kang, Shin Hyoung

    2000-01-01

    The aim of this paper is to understand the time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates. Pressure distributions from the impeller exit to the channel diffuser exit are measured and discussed for various flow rates from choke to near surge condition, and the effect of operating condition is discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed

  8. Development of advanced design features for KNGR reactor vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new.

  9. Development of advanced design features for KNGR reactor vessel and internals

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new

  10. [A design and study of a novel electronic device for cuff-pressure monitoring].

    Science.gov (United States)

    Wang, Shupeng; Li, Wei; Li, Wen; Song, Dejing; Chen, Desheng; Duan, Jun; Li, Chen; Li, Gang

    2017-06-01

    To design a novel electronic device for measuring the pressure in the cuff of the artificial airway; and to study the advantage of this device on continuous and intermittent cuff pressure monitoring. (1) a portable electronic device for cuff pressure measurement was invented, which could turn pressure signal into electrical signal through a pressure transducer. Meantime, it was possible to avoid pressure leak from the joint and the inside of the apparatus by modified Luer taper and sophisticated design. If the cuff pressure was out of the normal range, the apparatus could release a sound and light alarm. (2) Six traditional mechanical manometers were used to determine the cuff pressure in 6 tracheal tubes. The cuff pressure was maintain at 30 cmH 2 O (1 cmH 2 O = 0.098 kPa) by the manometer first, and repeated every 30 seconds for 4 times. (3) Study of continuous cuff pressure monitoring: We used a random number generator to randomize 6 tracheal tubes, 6 mechanical manometers and 6 our products by number 1-6, which has the same number of a group. Every group was further randomized into two balanced groups, one group used the mechanical manometer first, and the other used our product first. The baseline pressure was 30 cmH 2 O, measurement was performed every 4 hours for 6 times. When traditional mechanical manometer was used for cuff pressure monitoring, cuff pressure was decreased by an average of 2.9 cmH 2 O for each measurement (F = 728.2, P = 0.000). In study of continually monitoring, at each monitoring point, the pressure measured by electronic manometer was higher than the mechanical manometer. All the pressures measured by mechanical manometer were dropped below 20 cmH 2 O at 8th hour, and there was no pressure decrease below 20 cmH 2 O measured by electronic manometer in 24 hours by contrast. In study of intermittent monitoring, the same result was found. The pressure was dropped significantly with time when measured by mechanical manometer (F = 61.795, P

  11. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Fischermeier, E. [Technische Univ. Dresden (Germany); Pospisil, P. [A.S.C. R., Prague (Czech Republic). J. Heyrovsky Inst. Physical Chemistry; Solioz, M. [Bern Univ. (Switzerland); Sayed, A.; Hof, M.

    2017-07-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P{sub 1B}-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  12. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    International Nuclear Information System (INIS)

    Fahmy, Karim; Pospisil, P.; Sayed, A.; Hof, M.

    2017-01-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P_1_B-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  13. Final report on the reactor pressure vessel pressurized-thermal-shock. International comparative assessment study (RPV PTS ICAS)

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.

    1999-10-01

    A summary of the recently completed International Comparative Assessment Study of Pressurized-Thermal-Shock in Reactor Pressure Vessels (RPV PTS ICAS) is presented here to record the results in actual and comparative fashions. Within the DFM task, where account was taken of material properties and boundary conditions, reasonable agreement was obtained in linear-elastic and elastic-plastic analysis results. Linear elastic analyses and J-estimation schemes were shown to provide conservative estimates of peak crack driving force when compared with those obtained using complex three-dimensional (3D) finite element analyses. Predictions of RT NDT generally showed less scatter than that observed in crack driving force calculations due to the fracture toughness curve used for fracture assessment in the transition temperature region. Observed scatter in some analytical results could be traced mainly to a misinterpretation of the thermal expansion coefficient data given for the cladding and base metal. Also, differences in some results could be due to a quality assurance problem related to procedures for approximating the loading data given in the Problem Statement. For the PFM task, linear-elastic solutions were again shown to be conservative with respect to elastic-plastic solutions (by a factor of 2 to 4). Scatter in solutions obtained using the same computer code was generally attributable to differences in input parameters, e.g. standard deviations for the initial value of RT NDT , as well as for nickel and copper content. In the THM task, while there was a high degree of scatter during the early part of the transient, reasonable agreement in results was obtained during the latter part of the transient. Generally, the scatter was due to differences in analytical approaches used by participants, which included correlation-based engineering methods, system codes and three-dimensional computational fluids dynamics codes. Some of the models used to simulate condensation

  14. 78 FR 71869 - Changes To Implement the Hague Agreement Concerning International Registration of Industrial Designs

    Science.gov (United States)

    2013-11-29

    ... transmittal fee to it, for its own benefit, in respect of any international application filed through it... the World Trade Organization.'' Article 6(2) provides that ``[t]he international design application...) provides for domestic benefit claims with respect to international design applications designating the...

  15. Finite element analysis of the design and manufacture of thin-walled pressure vessels used as aerosol cans

    Science.gov (United States)

    Abdussalam, Ragba Mohamed

    Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical

  16. The International Linear Collider Technical Design Report - Volume 2: Physics

    CERN Document Server

    Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather E; Nomerotski, Andrei; Perelstein, Maxim; Peskin, Michael E; Pöschl, Roman; Reuter, Jürgen; Riemann, Sabine; Savoy-Navarro, Aurore; Servant, Geraldine; Tait, Tim M P

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  17. The International Linear Collider Technical Design Report - Volume 4: Detectors

    CERN Document Server

    Behnke, Ties; Burrows, Philip N.; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  18. Effect of irradiation in design of LMFBR internals

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Cowan, A.; Vries, M. de; Heesen, E.

    1990-01-01

    Internal structures of nuclear power reactors are essentially made with the austenitic stainless steels Types 304L and 316L. In service these structures receive low to moderate neutron doses. In this paper, the work undertaken by the European Fast Breeder Working Group is reviewed. Conclusions drawn to this date are presented and tentative reduction factors to be used in design are discussed in terms of the number of displacements per atom (dpa) and the quantity of helium generated in the steel (appm He). For the lower core structure which operates at about 400 0 C existing design rules can be used for parts which are subjected to less than 2 dpa despite a reduction in ductility and toughness which occurs above about 0.8 dpa. For the above core structure which operates at about 550 0 C interim and rather conservative stress reduction factors are proposed which can become effective at helium levels as low as 10 -4 appm. Particular attention is paid to: - irradiation temperature, - neutron flux and fluence, - steel type and grade, - heat treatment and boron distribution, - weld metal composition and procedure (TIG,MMA,...), to ensure that service conditions are represented as closely as possible

  19. The International Linear Collider Technical Design Report - Volume 2: Physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Univ. of Oklahoma, Norman, OK (United States); Barklow, Tim [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fujii, Keisuke [National Lab. for High Energy Physics (KEK), Tokai (Japan); Gao, Yuanning [Unlisted; Hoang, Andre [Univ. of Vienna (Austria); Kanemura, Shinya [Univ. of Toyama (Japan); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Logan, Heather E. [Carleton Univ., Ottawa, ON (Canada); Nomerotski, Andrei [Univ. of Oxford (United Kingdom); Perelstein, Maxim [Cornell Univ., Ithaca, NY (United States); Peskin, Michael E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pöschl, Roman [Univ. Paris-Sud, Orsay (France). Linear Accelerator Lab. (LAL); Reuter, Jürgen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riemann, Sabine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Savoy-Navarro, Aurore [CNRS/IN2P3. Univ. Paris (France). Observatoire de Paris. AstroParticule et Cosmologie (APC); Servant, Geraldine [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tait, Tim P. [Univ. of California, Los Angeles, CA (United States); Yu, Jaehoon [Univ. of Science and Technology of China, Hefei (China)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  20. The International Linear Collider Technical Design Report - Volume 4: Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  1. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine

    International Nuclear Information System (INIS)

    Niu, Zhiqiang; Diao, Hai; Yu, Shuhai; Jiao, Kui; Du, Qing; Shu, Gequn

    2014-01-01

    Highlights: • A 3-D model for exhaust-based thermoelectric waste heat recovery is developed. • Various heat, mass and electric transfer characteristics are elucidated. • Channel size needs to be moderate to balance heat transfer and pressure drop. • Bafflers need to be placed at all locations near all TEG modules. • Baffler angle needs to be sufficiently large, especially for downstream locations. - Abstract: Thermoelectric generator (TEG) has attracted considerable attention for the waste heat recovery of internal combustion engine. In this study, a 3-D numerical model for engine exhaust-based thermoelectric generator (ETEG) system is developed. By considering the detailed geometry of thermoelectric generator (TEG) and exhaust channel, the various transport phenomena are investigated, and design optimization suggestions are given. It is found that the exhaust channel size needs to be moderate to balance the heat transfer to TEG modules and pressure drop along channel. Increasing the number of exhaust channels may improve the performance, however, since more space and TEG modules are needed, the system size and cost need to be considered as well. Although only placing bafflers at the channel inlet could increase the heat transfer coefficient for the whole channel, the near wall temperature downstream might decrease significantly, leading to performance degradation of the TEG modules downstream. To ensure effective utilization of hot exhaust gas, the baffler angle needs to be sufficiently large, especially for the downstream locations. Since larger baffler angles increase the pressure drop significantly, it is suggested that variable baffler angles, with the angle increasing along the flow direction, might be a middle course for balancing the heat transfer and pressure drop. A single ETEG design may not be suitable to all the engine operating conditions, and making the number of exhaust channels and baffler angle adjustable according to different engine

  2. Design and simulation analysis of a novel pressure sensor based on graphene film

    Science.gov (United States)

    Nie, M.; Xia, Y. H.; Guo, A. Q.

    2018-02-01

    A novel pressure sensor structure based on graphene film as the sensitive membrane was proposed in this paper, which solved the problem to measure low and minor pressure with high sensitivity. Moreover, the fabrication process was designed which can be compatible with CMOS IC fabrication technology. Finite element analysis has been used to simulate the displacement distribution of the thin movable graphene film of the designed pressure sensor under the different pressures with different dimensions. From the simulation results, the optimized structure has been obtained which can be applied in the low measurement range from 10hPa to 60hPa. The length and thickness of the graphene film could be designed as 100μm and 0.2μm, respectively. The maximum mechanical stress on the edge of the sensitive membrane was 1.84kPa, which was far below the breaking strength of the silicon nitride and graphene film.

  3. Evaluation of local allowable wall thickness of thinned pipe considering internal pressure and bending moment

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, C. Y.; Kim, B. Y.

    2000-01-01

    This study proposed the local allowable wall thickness (LAWT) evaluation method for local wall thinned pipe subjected by internal pressure and bending moment. Also, LAWT was evaluated for simplified thinned pipe and the effect of axial extent of thinned area on LAWT was investigated. The results showed that LAWT predicted by present method was thinner, about 50%, than that evaluated by construction code and ASME Code Case N-597, while it was thicker, about 2 times, than that calculated by evaluation model based on pipe experiments. LAWT decreased with increasing axial extent of thinned area and was saturated above axial extent of pipe radius, which was a contrast to the results of ASME Code Case N-597 evaluation. The results of stress analysis with applied loading type indicated that the effect of axial extent of thinned area on LAWT was dependent on loading type considering in the evaluation. That is, the dependence of axial extent on LAWT is determined by magnitude of bending moment, and the contrary trend with axial extent in ASME Code Case is because ASME Code Case N-597 considers only internal pressure in the evaluation

  4. GAS LOSS BY RAM PRESSURE STRIPPING AND INTERNAL FEEDBACK FROM LOW-MASS MILKY WAY SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Emerick, Andrew; Low, Mordecai-Mark Mac [Department of Astronomy, Columbia University, New York, NY (United States); Grcevich, Jana [Department of Astrophysics, American Museum of Natural History, New York, NY (United States); Gatto, Andrea [Max-Planck-Institute für Astrophysik, Garching, bei München (Germany)

    2016-08-01

    The evolution of dwarf satellites in the Milky Way (MW) is affected by a combination of ram pressure stripping (RPS), tidal stripping, and internal feedback from massive stars. We investigate gas loss processes in the smallest satellites of the MW using three-dimensional, high-resolution, idealized wind tunnel simulations, accounting for gas loss through both ram pressure stripping and expulsion by supernova feedback. Using initial conditions appropriate for a dwarf galaxy like Leo T, we investigate whether or not environmental gas stripping and internal feedback can quench these low-mass galaxies on the expected timescales, shorter than 2 Gyr. We find that supernova feedback contributes negligibly to the stripping rate for these low star formation rate galaxies. However, we also find that RPS is less efficient than expected in the stripping scenarios we consider. Our work suggests that although RPS can eventually completely strip these galaxies, other physics is likely at play to reconcile our computed stripping times with the rapid quenching timescales deduced from observations of low-mass MW dwarf galaxies. We discuss the roles additional physics may play in this scenario, including host-satellite tidal interactions, cored versus cuspy dark matter profiles, reionization, and satellite preprocessing. We conclude that a proper accounting of these physics together is necessary to understand the quenching of low-mass MW satellites.

  5. Experimental determination of radiated internal wave power without pressure field data

    Science.gov (United States)

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-04-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux left and total radiated power P for two-dimensional internal gravity waves. Both left and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  6. Creep strength of hastelloy X TIG-welded cylinder under internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Udoguchi, Teruyoshi; Indo, Hirosato; Isomura, Kazuyuki; Kobatake, Kiyokazu; Nakanishi, Tsuneo.

    1981-01-01

    Creep tests on circumferentially TIG-welded Hastelloy x cylinders were carried out under internal pressure for the investigation of structural behavior of welded components in high temperature environment. The creep rupture strength of TIG-welded cylinders was much lower than that of non-welded cylinders, while such reduction was not found in uniaxial creep tests on TIG-welded bars. It was deduced that the reduction was due to the low ductility (ranging from 1 to 5%) of the weld metal to which enhanced creep was induced by the adjacent base metal whose creep strain rate was much higher than that of the weld metal. Therefore, uniaxial creep tests on bar specimens is not sufficient for proper assessment of the creep rupture strength of welded components. Both creep strain rate and creep ductility should be concerned for the assessment. Creep tests by using components such as cylinder under internal pressure are recommendable for the confirmation of creep strength of welded structures and components. (author)

  7. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  8. Experimental strength evaluation of cylinders with a flat head subjected to internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, Mitsuru; Makino, Yutaka

    1978-01-01

    The experiments using component test models such as a cylinder with a flat head and F.E.M. elastic analyses to investigate the secondary stress, peak stress and creep-fatigue interaction effect are described. The comparison of uniaxial stress with multiaxial stress about deformation and strength at elevated temperatures are also described here. The results of experiments and analysis are summarized as follows: (1) The maximum stress as the equivalent stress is the most suitable for the prediction of the creep failure life of cylinders subjected to internal pressure using the uniaxial creep test results. And the Mises's equivalent stress is the suitable for this prediction using the data of the onset of the uniaxial tertiary creep. (2) In the creep characteristics of the cylinder there, is no tertiary creep stage, and the rupture elongation of the cylinder accords with the elongation of the onset of the uniaxial tertiary creep. (3) It was recognized that the secondary stress occurred at the corner of the cylinder with a flat head has a little effect on creep and creep-fatigue life. (4) The life reduction effect due to the creep-fatigue interaction around the corner was recognized by the linear damage rule and compared with the value of Code Case 1592. (5) A difference of failure modes by imposed conditions for vessel with the size-discontinuity section was recognized by the cyclic internal pressure tests with hold time. (author)

  9. Experimental determination of radiated internal wave power without pressure field data

    International Nuclear Information System (INIS)

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data

  10. Experience in dismantling and packaging of pressure vessel and core internals

    International Nuclear Information System (INIS)

    Pillokat, Peter; Bruhn, Jan Hendrik

    2011-01-01

    Nuclear Company AREVA is proud to look back on versatile experience in successfully dismantling nuclear components. After performing several minor dismantling projects and studies for nuclear power plants, AREVA completed the order for dismantling of all remaining Reactor Pressure Vessel internals at German Boiling Water Reactor Wuergassen NPP in October '08. During the onsite activities about 121 tons of steel were successfully cut and packed under water into 200l- drums, as the dismantling was performed partly in situ and partly in an underwater working tank. AREVA deployed a variety of different cutting techniques such as band sawing, milling, nibbling, compass sawing and water jet cutting throughout this project. After successfully finishing this task, AREVA dismantled the cylindrical part of the Wuergassen Pressure Vessel. During this project approximately 320 tons of steel were cut and packaged for final disposal, as dismantling was mainly performed by on air use of water jet cutting with vacuum suction of abrasive and kerfs material. The main clue during this assignment was the logistic challenge to handle and convey cut pieces from the pressure vessel to the packing area. For this, an elevator was installed to transport cut segments into the turbine hall, where a special housing was built for final storage conditioning. At the beginning of 2007, another complex dismantling project of great importance was acquired by AREVA. The contract included dismantling and conditioning for final storage of the complete RPV Internals of the German Pressurized Water Reactor Stade NPP. Very similar cutting techniques turned out to be the proper policy to cope this task. On-site activities took place in up to 5 separate working areas including areas for post segmentation and packaging to perform optimized parallel activities. All together about 85 tons of Core Internals were successfully dismantled at Stade NPP until September '09. To accomplish the best possible on

  11. The deformation of Zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-08-01

    Simulated PWR fuel rods clad with Zircaloy-4 were tested under convective steam cooling conditions, by pressurising to 0.69-2.07MPa (100-300lb/in 2 ), then ramping at 10 0 C/s to various temperatures in the region 800-955 0 C and holding until either 600 s elapsed or rupture occurred. The length of cladding strained 33% or more was greatest (about 20 times the original diameter) when the initial internal pressure was 1.38+-0.17 PMa (200+-25lb/in 2 ), and the temperature 885 0 C. It is thought that this results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilising the deformation and/or partial superplastic deformation. To avoid adjacent rods in a fuel assembly touching at any temperature, the pressure would have to be less than about 1MPa (145 1b/in 2 ). If the pressure was 1.38MPa (200lb/in 2 ) then the rods would not swell sufficiently to touch if the temperature did not exceed about 840 0 C. (author)

  12. Validation of the Andon KD-5965 upper-arm blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Huang, Jinhua; Li, Zhijie; Li, Guimei; Liu, Zhaoying

    2015-10-01

    This study aimed to evaluate the accuracy of the Andon KD-5965 upper-arm blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Systolic and diastolic blood pressures were sequentially measured in 33 adults, with 20 women using a mercury sphygmomanometer (two observers) and the Andon KD-5965 device (one supervisor). A total of 99 pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. The device achieved the targets in part 1 of the validation study. The number of absolute differences between the device and observers within 5, 10, and 15 mmHg was 70/99, 91/99, and 98/99, respectively, for systolic blood pressure and 81/99, 99/99, and 99/99, respectively, for diastolic blood pressure. The device also fulfilled the criteria in part 2 of the validation study. Twenty-five and 29 participants, for systolic and diastolic blood pressure, respectively, had at least two of the three device-observers differences within 5 mmHg (required≥24). Two and one participants for systolic and diastolic blood pressure, respectively, had all three device-observers comparisons greater than 5 mmHg. According to the validation results, with better performance for diastolic blood pressure than that for systolic blood pressure, the Andon automated oscillometric upper-arm blood pressure monitor KD-5965 fulfilled the requirements of the European Society of Hypertension International Protocol revision 2010, and hence can be recommended for blood pressure measurement in adults.

  13. Validation of the Rossmax CF175 upper-arm blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Zhang, Lu; Kang, Yuan-Yuan; Zeng, Wei-Fang; Li, Yan; Wang, Ji-Guang

    2015-04-01

    The present study aimed to evaluate the accuracy of the Rossmax CF175 upper-arm blood pressure monitor for home blood pressure monitoring according to the International Protocol of the European Society of Hypertension revision 2010. Systolic and diastolic blood pressures were sequentially measured in 33 adult Chinese (17 women, mean age 46 years) using a mercury sphygmomanometer (two observers) and the Rossmax CF175 device (one supervisor). A total of 99 pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. All the blood pressure requirements were fulfilled. The Rossmax CF175 device achieved the targets in part 1 of the validation study. The number of absolute differences between the device and observers within 5, 10, and 15 mmHg was 78/99, 94/99, and 98/99, respectively, for systolic blood pressure, and 81/99, 96/99, and 97/99, respectively, for diastolic blood pressure. The device also achieved the criteria in part 2 of the validation study. Twenty-nine participants, for both of systolic and diastolic blood pressure, had at least two of the three device-observers differences within 5 mmHg (required ≥24). Only one participant for diastolic blood pressure had all three device-observers comparisons greater than 5 mmHg. The Rossmax automated oscillometric upper-arm blood pressure monitor CF175 fulfilled the requirements of the International Protocol revision 2010, and hence can be recommended for blood pressure measurement in adults.

  14. Validation of the AVITA BPM63S upper arm blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Kang, Yuan-Yuan; Zeng, Wei-Fang; Liu, Ming; Li, Yan; Wang, Ji-Guang

    2014-02-01

    The present study aimed to evaluate the accuracy of the AVITA BPM63S upper arm blood pressure monitor for home blood pressure monitoring according to the International Protocol of the European Society of Hypertension revision 2010. Systolic and diastolic blood pressures were sequentially measured in 33 adult Chinese (14 women, mean age of 47 years) using a mercury sphygmomanometer (two observers) and the AVITA BPM63S device (one supervisor). Ninety-nine pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. All the blood pressure requirements were fulfilled. The AVITA BPM63S device achieved the targets in part 1 of the validation study. The number of absolute differences between device and observers within 5, 10, and 15 mmHg was 68/99, 89/99, and 96/99, respectively, for systolic blood pressure, and 75/99, 95/99, and 97/99, respectively, for diastolic blood pressure. The device also achieved the criteria in part 2 of the validation study. Twenty-four and 25 participants for systolic and diastolic blood pressure, respectively, had at least two of the three device-observers differences within 5 mmHg (required ≥24). One and two participants for systolic and diastolic blood pressure, respectively, had all three device-observers differences greater than 5 mmHg. The AVITA BPM63S automated oscillometric upper arm blood pressure monitor has passed the requirements of the International Protocol revision 2010, and hence can be recommended for blood pressure measurement at home in adults.

  15. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    2005-10-01

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The report addresses the reactor pressure vessel internals in BWRs. Maintaining the structural integrity of these reactor pressure vessel internals throughout NPP service life, in spite of several ageing mechanisms, is essential for plant safety

  16. Establishing International Blood Pressure References Among Nonoverweight Children and Adolescents Aged 6 to 17 Years.

    Science.gov (United States)

    Xi, Bo; Zong, Xin'nan; Kelishadi, Roya; Hong, Young Mi; Khadilkar, Anuradha; Steffen, Lyn M; Nawarycz, Tadeusz; Krzywińska-Wiewiorowska, Małgorzata; Aounallah-Skhiri, Hajer; Bovet, Pascal; Chiolero, Arnaud; Pan, Haiyan; Litwin, Mieczysław; Poh, Bee Koon; Sung, Rita Y T; So, Hung-Kwan; Schwandt, Peter; Haas, Gerda-Maria; Neuhauser, Hannelore K; Marinov, Lachezar; Galcheva, Sonya V; Motlagh, Mohammad Esmaeil; Kim, Hae Soon; Khadilkar, Vaman; Krzyżaniak, Alicja; Romdhane, Habiba Ben; Heshmat, Ramin; Chiplonkar, Shashi; Stawińska-Witoszyńska, Barbara; El Ati, Jalila; Qorbani, Mostafa; Kajale, Neha; Traissac, Pierre; Ostrowska-Nawarycz, Lidia; Ardalan, Gelayol; Parthasarathy, Lavanya; Zhao, Min; Zhang, Tao

    2016-01-26

    Several distributions of country-specific blood pressure (BP) percentiles by sex, age, and height for children and adolescents have been established worldwide. However, there are no globally unified BP references for defining elevated BP in children and adolescents, which limits international comparisons of the prevalence of pediatric elevated BP. We aimed to establish international BP references for children and adolescents by using 7 nationally representative data sets (China, India, Iran, Korea, Poland, Tunisia, and the United States). Data on BP for 52 636 nonoverweight children and adolescents aged 6 to 19 years were obtained from 7 large nationally representative cross-sectional surveys in China, India, Iran, Korea, Poland, Tunisia, and the United States. BP values were obtained with certified mercury sphygmomanometers in all 7 countries by using standard procedures for BP measurement. Smoothed BP percentiles (50th, 90th, 95th, and 99th) by age and height were estimated by using the Generalized Additive Model for Location Scale and Shape model. BP values were similar between males and females until the age of 13 years and were higher in males than females thereafter. In comparison with the BP levels of the 90th and 95th percentiles of the US Fourth Report at median height, systolic BP of the corresponding percentiles of these international references was lower, whereas diastolic BP was similar. These international BP references will be a useful tool for international comparison of the prevalence of elevated BP in children and adolescents and may help to identify hypertensive youths in diverse populations. © 2015 American Heart Association, Inc.

  17. Custom-made different designs of pressure clips for the management of ear lobe keloids

    Directory of Open Access Journals (Sweden)

    Anshul Chugh

    2013-01-01

    Full Text Available Introduction : Keloids are frequent finding after physical trauma. Keloids of ear lobe are common complication of ear piercing, although its incidence remains unknown. The use of intrakeloid resection and a form pressure device to treat pinna keloids. The recommendation of this therapy is to maintain constant pressure and duration of pressure therapy was about 25 weeks. Clinical innovation : This article will present inexpensive custom made pressure clips of various designs. The dimensions of polymethylmethacrylate (PMMA plates in ear lobe clip presented by us though they esthetically not so good, but colored PMMA has been used to make it decorative and acceptable by most of the patients. This has been an encouraging experience to use the different designs. Discussion : Ear clip prosthesis has been developed for maintaining pressure on ear lobe keloids before and after surgical removal. The prosthesis includes an ear clip to which heat-polymerized acrylic resin is attached, which covers the keloid area. Pressure therapy is widely used to help in the early maturation of scar tissue and to prevent the recurrence of keloid. The preliminary report by Brent revealed that constant light pressure was an effective means of preventing post excision recurrence of ear lobe keloids using a decorative, spring-pressure earring.

  18. Design and analysis of hot internals for the reactivity control and reserve shutdown units under test at the helium test facility - HTR2008-58159

    International Nuclear Information System (INIS)

    Beyer, E. J. J.; Craig, K. J.

    2008-01-01

    This paper describes the design process followed by Westinghouse Electric South Africa for the insertion of hot internals into the Reactivity Control System (RCS) and Reserve Shutdown System (RSS) Units Under Test (UUTs) at the Helium Test Facility (HTF) at Pelindaba (South Africa)). The aim of the UUTs is to allow the validation of the high temperature operation of the RCS and RSS systems for implementation into the proposed Demonstration Power Plant of the PBMR. The units use electrical heaters to obtain pebble-bed reactor thermal conditions for both the control rods and small absorber spheres (SAS) under a pressurized helium environment. Design challenges include providing for strength under elevated temperatures (900 deg. C maximum); pressure boundary integrity (9 MPa maximum); separation of different volumes (representing core barrel, reactor citadel and other Reactor Pressure Vessel (RPV) volumes); thermal protection of carbon steel vessels by using thermal insulation; allowing for diverse thermal expansion coefficients of different materials; allowing for de-pressurization events within the insulation and internals having access for temperature, pressure, stress and proximity sensors and electrical wiring through high pressure penetrations; and provision for assembly of the hot internals both on and off-site. thermal analyses using Computational Fluid Dynamics (CFD) were performed to evaluate both worst-case and operational conditions of the UUTs. Factors that were considered include thermal insulation properties, heat transfer modes (internal radiation, external radiation and natural convection, forced internal convection for cooling) and operating pressure (ranging from 1 to 9 MPa). The thermal design uses elements originally proposed for hot gas duct design. The results obtained show that the proposed design satisfies ASME VIII requirements of the pressure boundary and that all challenges are successfully met. (authors)

  19. Design of a new urban wind turbine airfoil using a pressure-load inverse method

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, J.C.C.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Marques da Silva, F. [LNEC - Laboratorio Nacional de Engenharia Civil, Av. Brasil, 101, 1700-066 Lisboa (Portugal); Estanqueiro, A.I. [INETI - Instituto Nacional de Engenharia, Tecnologia e Inovacao Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-12-15

    This paper presents the design methodology of a new wind turbine airfoil that achieves high performance in urban environment by increasing the maximum lift. For this purpose, an inverse method was applied to obtain a new wind turbine blade section with constant pressure-load along the chord, at the design inlet angle. In comparison with conventional blade section designs, the new airfoil has increased maximum lift, reduced leading edge suction peak and controlled soft-stall behaviour, due to a reduction of the adverse pressure gradient on the suction side. Wind tunnel experimental results confirmed the computational results. (author)

  20. Plantar pressure relief under the metatarsal heads: therapeutic insole design using three-dimensional finite element model of the foot.

    Science.gov (United States)

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2015-02-26

    Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Development of a Super-Pressure Balloon with an Improved Design

    Science.gov (United States)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  2. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    Science.gov (United States)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  3. Stress concentration factors for an internally pressurized circular vessel containing a radial U-notch

    International Nuclear Information System (INIS)

    Carvalho, E.A. de

    2005-01-01

    This paper evaluates the stress concentration factors for an internally pressurized cylinder containing a radial U-notch along its length. This work studies the cases where the external to internal radius ratio (Ψ) is equal to 1.26, 1.52, 2.00, and 3.00 and the notch radius to internal radius ratio (Φ) is fixed and equal to 0.026. The U-notch depth varies from 0.1 to 0.6 of the wall thickness. Results are also presented for a fixed size semi-circular notch. Hoop stresses at the external wall are presented, showing regions where the stress matches the nominal one and the favourable places to install strain sensors. The finite element method is used to determine the stress concentration factors (K t ) for the above described situations and for a special case where a varying semi-circular notch is present with Ψ=3.00. This notch depth varies from 0.013 to 0.3 of the wall thickness. It is pointed out that even relatively small notches introduce large stress concentrations and disrupt the hoop stress distribution all over the cross section. Results are also compared to an example found in the literature for semi-circular notches and K t curves for both cases present the same shape

  4. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  5. On anisotropy and internal pressure errors in numerical ocean models and processes near the shelf edge

    Energy Technology Data Exchange (ETDEWEB)

    Thiem, Oeyvind A.

    2004-12-01

    In this thesis the focus has been on anisotropy, internal pressure errors and shelf edge/slope processes. Anisotropy is a common problem in ocean models. Especially where a rectangular grid is used to discretize the horizontal. Selecting a horizontal grid, which reduces the anisotropy, will therefore probably be important when new ocean models are being developed. Hexagonal grid discretization in the horizontal has the desired property of reducing anisotropy, and therefore this grid should be considered as a reasonable choice for new ocean models. In sigma coordinate models internal pressure errors occur in areas with steep topography. In the second paper in this thesis, it is shown that the internal pressure errors depend on the grid orientation. It is further shown that the erroneous velocities in the sea mount test case of Beckmann and Haidvogel (1993) can be reduced significantly by first computing the internal pressure gradients in both the original and a coordinate system where the axis are rotated 45 degrees to the original. Then a normalized weighted linear combination of the two estimates is used as the internal pressure gradients in the simulation. A following up paper where this method is used on a real ocean should be performed to investigate how well this method performs in domains with irregular topography. In such an experiment the boundary should be closed and the initial velocities set to zero. The occurring currents should then be compared with a corresponding experiment, where the initial pressure gradients are computed in the original grid only. In the third and fourth paper the focus is on the use of BOM in along shelf barotropic flow. First the generation of eddies is investigated. This is done in the third paper and two simulations are performed. The first simulation is a barotropic simulation, and the second is a two layer simulation. The results from both simulations show development of eddies, but the strength of the eddies depend on the

  6. 2nd International Conference on Digital Enterprise Design and Management

    CERN Document Server

    Krob, Daniel; Lonjon, Antoine; Panetto, Hervé

    2014-01-01

    This book contains all refereed papers that were accepted to the second edition of the « Digital Enterprise Design & Management » (DED&M 2014) international conference that took place in Paris (France) from February 4 to February 5, 2014 . These proceedings cover the most recent trends in the emerging field of Digital Enterprise, both from an academic and a professional perspective. A special focus is put on digital uses, digital strategies, digital infrastructures and digital governance from an Enterprise Architecture point of view. The DED&M 2014 conference is organized under the guidance of the Center of Excellence on Systems Architecture, Management, Economy and Strategy  and benefits from the supports of both the Orange – Ecole Polytechnique – Télécom ParisTech “Innovation and Regulation” Chair and the Dassault Aviation – DCNS – DGA – Thales – Ecole Polytechnique – ENSTA ParisTech – Télécom ParisTech  “Complex Systems Engineering” Chair.  .

  7. 1st international conference on digital enterprise design and management

    CERN Document Server

    Krob, Daniel; Rowe, Frantz

    2013-01-01

    This book contains all refereed papers that were accepted to the first edition of the « Digital Enterprise Design & Management » (DED&M 2013) international conference that took place in Paris (France) from February 12 to February 13, 2013. (Website: http://www.dedm2013.dedm.fr/) These proceedings cover the most recent trends in the emerging field of Digital Enterprise, both from an academic and a professional perspective. A special focus is put on digital uses, digital strategies, digital infrastructures and digital governance from an Enterprise Architecture point of view. The DED&M 2013 conference is organized under the guidance of the CESAMES non profit organization (http://www.cesames.net/). and benefits from the support of the "Innovation and Regulation of Digital Services" Chair (Orange, Ecole Polytechnique and Telecom ParisTech) and of the "Complex Systems Engineering" Chair (Dassault Aviation - DCNS - DGA - Thales - Ecole Polytechnique - ENSTA ParisTech – Telecom ParisTech).

  8. Conceptual Design of the International Axion Observatory (IAXO)

    CERN Document Server

    Armengaud, E; Betz, M; Brax, P; Brun, P; Cantatore, G; Carmona, J M; Carosi, G P; Caspers, F; Caspi, S; Cetin, S A; Chelouche, D; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dratchnev, I; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; González-Díaz, D; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Irastorza, I G; Isern, J; Imai, K; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Karuza, M; Krčmar, M; Kousouris, K; Krieger, C; Lakić, B; Limousin, O; Lindner, A; Liolios, A; Luzón, G; Matsuki, S; Muratova, V N; Nones, C; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Semertzidis, Y K; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Weltman, A; Wester, W; Yildiz, S C; Zioutas, K

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, w...

  9. The international linear collider. Technical design report. Vol. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties; Brau, James E.; Foster, Brian; Fuster, Juan; Harrison, Mike; McEwan Paterson, James; Peskin, Michael; Stanitzki, Marcel; Walker, Nicholas; Yamamoto, Hitoshi (eds.)

    2013-07-01

    A review is given about the planned International Linear Collider. Especially described are the technical design, the accelerator layout and design, the R and D during the technical design phase, and the detectors. (HSI)

  10. The international linear collider. Technical design report. Vol. 1. Executive summary

    International Nuclear Information System (INIS)

    Behnke, Ties; Brau, James E.; Foster, Brian; Fuster, Juan; Harrison, Mike; McEwan Paterson, James; Peskin, Michael; Stanitzki, Marcel; Walker, Nicholas; Yamamoto, Hitoshi

    2013-01-01

    A review is given about the planned International Linear Collider. Especially described are the technical design, the accelerator layout and design, the R and D during the technical design phase, and the detectors. (HSI)

  11. Discussion of mechanical design for pressured cavity-air-receiver in solar power tower system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhilin; Zhang, Yaoming; Liu, Deyou; Wang, Jun; Liu, Wei [Hohai Univ., Nanjing (China). New Materials and Energy Sources Research and Exploitation Inst.

    2008-07-01

    In 2005, Hohai university and Nanjing Chunhui science and technology Ltd. of China, cooperating with Weizmann Institute of Science and EDIG Ltd. of Israel, built up a 70kWe solar power tower test plant in Nanjing, Jiangsu province, China, which was regarded as the first demonstration project to demonstrate the feasibility of solar power tower system in China. The system consists of heliostats field providing concentrated sunlight, a solar tower with a height of 33 meter, a pressured cavity-air-receiver transforming solar energy to thermal energy, a modified gas turbine adapting to solar power system, natural gas subsystem for solar-hybrid generation, cooling water subsystem for receiver and CPC, controlling subsystem for whole plant, et al. In this system, air acts as actuating medium and the system works in Brayton cycle. Testing results show that solar power tower system is feasible in China. To promote the development of solar powered gas turbine system and the pressured cavity-air-receiver technology in China, it is necessary to study the mechanical design for pressured Cavity-air-receiver. Mechanical design of pressured cavity-air-receiver is underway and some tentative principles for pressured cavity-air-receiver design, involving in power matching, thermal efficiency, material choosing, and equipment security and machining ability, are presented. At the same time, simplified method and process adapted to engineering application for the mechanical design of pressured cavity-air-receiver are discussed too. Furthermore, some design parameters and appearance of a test sample of pressured cavity-air-receiver designed in this way is shown. It is appealed that, in China, the research in this field should be intensified and independent knowledge patents for pivotal technological equipments such as receiver in solar power tower system should be formed. (orig.)

  12. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  13. Influence of circumferential flaw length on internal burst pressure of a wall-thinned pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masataka, E-mail: tsuji-m@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan); Meshii, Toshiyuki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan)

    2013-02-15

    Highlights: ► The effect of θ on p{sub f} was examined by experimental analysis and FEA. ► Here θ is the circumferential angle of a flaw, p{sub f} is the internal burst pressure. ► p{sub f} decreased as θ increased in some cases. ► The effect of θ on p{sub f} should be taken into consideration in evaluating p{sub f}. -- Abstract: This paper examines the effect of the circumferential angle of a flaw θ on the internal burst pressure p{sub f} of pipes with artificial wall-thinned flaws. The effect of θ has conventionally been regarded as unimportant in the evaluation of the p{sub f} of wall-thinned straight pipes. Therefore, a burst pressure equation for an axial crack inside a cylinder (Fig. 1, left), such as Kiefner's equation (Kiefner et al., 1973), has been widely applied (ANSI/ASME B31.G., 1991; Hasegawa et al., 2011). However, the following implicit assumptions notably exist when applying the equation to planar flaws in situations with non-planar flaws. 1)The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 2)The effect of θ on p{sub f}, which is not considered for an axial crack, is small or negligible. However, the experimental results from the systematic burst tests for carbon steel pipes with artificial wall-thinned flaws examined in this paper showed that these implicit assumptions may be incorrect. In this paper the experimental results are evaluated in further detail. The purpose of the evaluation was to clarify the effect of θ on p{sub f}. Specifically, the significance of the flaw configuration (axial length δ{sub z} and wall-thinning ratio t{sub 1}/t) was studied for its effects on θ and p{sub f}. In addition, a simulation of this effect was conducted using a large strain elastic-plastic Finite Element Analysis (FEA) model. As observed from the experimental results, θ tended to affect p{sub f} in cases with large δ{sub z}, and t{sub 1}/t was also correlated with a decrease in p{sub f

  14. Analisis Kekuatan Dan Ekspansi Volume Tangki Toroidal Penampang Eliptik Dengan Beban Internal Pressure

    OpenAIRE

    Lubis, Asnawi

    2014-01-01

    In under to reduce the Public Service Obligation (PSO) on oil fuel, the goverment of Indonesia initianted a program of conversion of oil fuel into gas fuel (BBG) for passenger cars. In supporting this program, it is required to develop the component of combustion system. One of the components is strorage tank for BBG that must be carefully designed to avoid burst type failure. Based on previous research, a toroidal tank can withstand higher limit pressure than the PERTAMINA LPG 3kg storage t...

  15. Robust design for shape parameters of high pressure thermal vapor compressor by numerical analysis

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A high motive pressure Thermal Vapor Compressor(TVC) for a commercial Multi-Effect Desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio

  16. Design study on steam generator integration into the VVER reactor pressure vessel

    International Nuclear Information System (INIS)

    Hort, J.; Matal, O.

    2004-01-01

    The primary circuit of VVER (PWR) units is arranged into loops where the heat generated by the reactor is removed by means of main circulating pumps, loop pipelines and steam generators, all located outside the reactor pressure vessel. If the primary circuit and reactor core were integrated into one pressure vessel, as proposed, e.g., within the IRIS project (WEC), a LOCA situation would be limited by the reactor pressure vessel integrity only. The aim of this design study regarding the integration of the steam generator into the reactor pressure vessel was to identify the feasibility limits and some issues. Fuel elements and the reactor pressure vessel as used in the Temelin NPP were considered for the analysis. From among the variants analyzed, the variant with steam generators located above the core and vertically oriented circulating pumps at the RPV lower bottom seems to be very promising for future applications

  17. 49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction... the risk of internal corrosion. At a minimum, unless it is impracticable or unnecessary to do so, each...

  18. The Design of a Novel Flexible Tactile Sensor Based on Pressure-conductive Rubber

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2011-01-01

    Full Text Available A novel flexible tactile sensor using conductive rubber with electrical-wires knitted method is presented. The sensor’s design is based on rubber’s pressure-sensitive property. It is flexible and can be mounted on any object to measure tactile information. The mathematic piezoresistivity model of the rubber is described, and we also discuss the sensor’s structure and scanning method. The simulation results show that the sensor can detect pressure accurately.

  19. Minimum weight designs for reinforcement of spherical pressure vessels with flush radial nozzles

    International Nuclear Information System (INIS)

    Yeo, K.T.; Robinson, M.

    1978-01-01

    A cylinder-sphere pressure vessel, reinforced in the sphere by a section of constant thickness, has been analysed from the point of view of minimum weight. The reinforcement is allowed to be offset from the main sphere and the design has to be such that the test pressure of the vessel equals the limit pressure. It is shown that in most circumstances an economy of weight may be obtained by making the reinforcement thicker, but less extensive, than suggested in a previous proposal. Further benefit can be obtained by offsetting the reinforcement radially outwards so that the inside surfaces of main sphere and reinforcement are flush. (author)

  20. Design of Diaphragm Based MEMS Pressure Sensor with Sensitivity Analysis for Environmental Applications

    Directory of Open Access Journals (Sweden)

    A. Nallathambi

    2015-05-01

    Full Text Available In this paper Micro-electromechanical System (MEMS diaphragm based pressure sensor for environmental applications is discussed. The main focus of this paper is to design, simulate and analyze the sensitivity of MEMS based diaphragm using different structures to measure the low and high pressure values. The simulation is done through the finite element tool and specifications related the maximum convinced stress; deflection and sensitivity of the diaphragms have been analyzed using the software INTELLISUITE 8.7v. The change in pressure is to bending of the diaphragm that modifies the measured displacement between the substrate and the diaphragm. This change in displacement gives the measure of the pressure in that environment. The design of these studies can be used to improve the sensitivity of these devices. Here the diaphragm based pressure sensor produced better displacement, sensitivity and stress output responses are obtained from the square diaphragm. The pressure range from 0.6 MPa to 25 MPa and its maximum displacement is accordingly 59 mm over a pressure range of 0 to 2 MPa. Its sensitivity is therefore 2.35 [10E-12/Pa].

  1. Adaptive pressure-controlled cellular structures for shape morphing I: design and analysis

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This work investigates adaptive bio-inspired pressure cellular structures for shape morphing. Optimum designs for cellular structures with void and pressure cells are proposed and then structural analyses are conducted. In the present design, a unit cell is comprised of straight and curved walls. When compressed air is pumped into a pressure cell, the curved walls deform in bending due to the pressure difference in two adjacent cells that leads to overall structural deformation in extension. One-dimensional actuation strain up to 35% can be theoretically achieved. In part I, we present basic design concepts and cellular mechanics. Unlike conventional structural analysis for cellular structures, a statically indeterminate unit cell is considered and novel analytical formulations are derived for the present pressurized cellular structures in linear and nonlinear analyses. In part II, we will present experimental testing and finite element analysis to demonstrate the feasibility of the present pressurized cellular actuators for morphing wings and to validate the present cellular mechanics formulations. (paper)

  2. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    Science.gov (United States)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  3. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR

    International Nuclear Information System (INIS)

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.P.; RORER, D.C.

    2002-01-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex(trademark) polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup

  4. Structural behaviour of a welded superalloy cylinder with internal pressure in a high temperature environment

    International Nuclear Information System (INIS)

    Udoguchi, T.; Nakanishi, T.

    1981-01-01

    Steady and cyclic creep tests with internal pressure were performed at temperatures of 800 to 1000 0 C on Hastelloy X cylinders with and without a circumferential Tungsten Inert Gas (TIG) welding technique. The creep rupture strength of the TIG welded cylinders was much lower than that of the non-welded cylinders whilst creep rupture strength reduction by the TIG technique was not observed in uniaxial creep tests. The reason for the low creep strength of welded cylinders is discussed and it is noted that the creep ductility of weld metal plays an essentially important role. In order to improve the creep strength of the TIG welded cylinder, various welding procedures with assorted weld metals were investigated. Some improvements were obtained by using welding techniques which had either Incoloy 800 or a modified Hastelloy X material as the filler metal. (U.K.)

  5. ELASTIC-PLASTIC AND RESIDUAL STRESS ANALYSIS OF AN ALUMINUM DISC UNDER INTERNAL PRESSURES

    Directory of Open Access Journals (Sweden)

    Numan Behlül BEKTAŞ

    2004-02-01

    Full Text Available This paper deals with elastic-plastic stress analysis of a thin aluminum disc under internal pressures. An analytical solution is performed for satisfying elastic-plastic stress-strain relations and boundary conditions for small plastic deformations. The Von-Mises Criterion is used as a yield criterion, and elastic perfectly plastic material is assumed. Elastic-plastic and residual stress distributions are obtained from inner radius to outer radius, and they are presented in tables and figures. All radial stress components, ?r, are compressive, and they are highest at the inner radius. All tangential stress components, ??, are tensile, and they are highest where the plastic deformation begins. Magnitude of the tangential residual stresses is higher than those the radial residual stresses.

  6. Anisotropic thermal creep of internally pressurized Zr-2.5Nb tubes

    International Nuclear Information System (INIS)

    Li, W.; Holt, R.A.

    2010-01-01

    The anisotropy of creep of internally pressurized cold-worked Zr-2.5Nb tubes with different crystallographic textures is reported. The stress exponent n was determined to be about three at transverse stresses from 100 to 250 MPa with an activation energy of ∼99.54 kJ/mol in the temperature range 300-400 o C. The stress exponent increased to ∼6 for transverse stresses from 250 to 325 MPa. From this data an experimental regime of 350 o C and 300 MPa was established in which dislocation glide is the likely strain-producing mechanism. Creep tests were carried out under these conditions on internally pressurized Zr-2.5Nb tubes with 18 different textures. Creep strain and creep anisotropy (ratio of axial to transverse steady-state creep rate, ε . A /ε . T ) exhibited strong dependence on crystallographic textures of the Zr-2.5Nb tubes. It was found that the values of (ε . A /ε . T ) increased as the difference between the resolved faction of basal plane normals in the transverse and radial directions (f T - f R ) increases. The tubes with the strongest radial texture showed a negative axial creep strain and a negative creep rate ratio (ε . A /ε . T ) and tubes with a strong transverse texture exhibited the positive values of steady-state creep rate ratio (ε . A /ε . T ) and good creep resistance in the transverse direction. These behaviors are qualitatively similar to those observed during irradiation creep, and also to the predictions of polycrystalline models for creep in which glide is the strain-producing mechanism and prismatic slip is the dominant system. A detailed analysis of the results using polycrystalline models may assist in understanding the anisotropy of irradiation creep.

  7. Tailoring International Pressure Ulcer Prevention Guidelines for Nigeria: A Knowledge Translation Study Protocol.

    Science.gov (United States)

    Ilesanmi, Rose Ekama; Gillespie, Brigid M; Adejumo, Prisca Olabisi; Chaboyer, Wendy

    2015-07-28

    The 2014 International Pressure Ulcer Prevention (PUP) Clinical Practice Guidelines (CPG) provides the most current evidence based strategies to prevent Pressure Ulcer (PU). The evidence upon which these guidelines have been developed has predominantly been generated from research conducted in developed countries. Some of these guidelines may not be feasible in developing countries due to structural and resource issues; therefore there is a need to adapt these guidelines to the context thus making it culturally acceptable. To present a protocol detailing the tailoring of international PUPCPG into a care bundle for the Nigerian context. Guided by the Knowledge to Action (KTA) framework, a two phased study will be undertaken. In Phase 1, the Delphi technique with stakeholder leaders will be used to review the current PUPCPG, identifying core strategies that are feasible to be adopted in Nigeria. These core strategies will become components of a PUP care bundle. In Phase 2, key stakeholder interviews will be used to identify the barriers, facilitators and potential implementation strategies to promote uptake of the PUP care bundle. A PUP care bundle, with three to eight components is expected to be developed from Phase 1. Implementation strategies to promote adoption of the PUP care bundle into clinical practice in selected Nigerian hospitals, is expected to result from Phase 2. Engagement of key stakeholders and consumers in the project should promote successful implementation and translate into better patient care. Using KTA, a knowledge translation framework, to guide the implementation of PUPCPG will enhance the likelihood of successful adoption in clinical practice. In implementing a PUP care bundle, developing countries face a number of challenges such as the feasibility of its components and the required resources.

  8. Tailoring International Pressure Ulcer Prevention Guidelines for Nigeria: A Knowledge Translation Study Protocol

    Directory of Open Access Journals (Sweden)

    Rose Ekama Ilesanmi

    2015-07-01

    Full Text Available Background: The 2014 International Pressure Ulcer Prevention (PUP Clinical Practice Guidelines (CPG provides the most current evidence based strategies to prevent Pressure Ulcer (PU. The evidence upon which these guidelines have been developed has predominantly been generated from research conducted in developed countries. Some of these guidelines may not be feasible in developing countries due to structural and resource issues; therefore there is a need to adapt these guidelines to the context thus making it culturally acceptable. Aim: To present a protocol detailing the tailoring of international PUPCPG into a care bundle for the Nigerian context. Methods: Guided by the Knowledge to Action (KTA framework, a two phased study will be undertaken. In Phase 1, the Delphi technique with stakeholder leaders will be used to review the current PUPCPG, identifying core strategies that are feasible to be adopted in Nigeria. These core strategies will become components of a PUP care bundle. In Phase 2, key stakeholder interviews will be used to identify the barriers, facilitators and potential implementation strategies to promote uptake of the PUP care bundle. Results: A PUP care bundle, with three to eight components is expected to be developed from Phase 1. Implementation strategies to promote adoption of the PUP care bundle into clinical practice in selected Nigerian hospitals, is expected to result from Phase 2. Engagement of key stakeholders and consumers in the project should promote successful implementation and translate into better patient care. Conclusion: Using KTA, a knowledge translation framework, to guide the implementation of PUPCPG will enhance the likelihood of successful adoption in clinical practice. In implementing a PUP care bundle, developing countries face a number of challenges such as the feasibility of its components and the required resources.

  9. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  10. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    International Nuclear Information System (INIS)

    Belwanshi, Vinod; Topkar, Anita

    2016-01-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  11. On designing low pressure loss working spaces for a planar Stirling micromachine

    Science.gov (United States)

    Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.

    2015-12-01

    In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.

  12. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    Science.gov (United States)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  13. International Linear Collider Technical Design Report (Volumes 1 through 4)

    Energy Technology Data Exchange (ETDEWEB)

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  14. Validation of the Kingyield BP210 wrist blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension-International Protocol.

    Science.gov (United States)

    Zeng, Wei-Fang; Huang, Qi-Fang; Sheng, Chang-Sheng; Li, Yan; Wang, Ji-Guang

    2012-02-01

    The present study aimed to evaluate the accuracy of the automated oscillometric wrist blood pressure monitor BP210 for home blood pressure monitoring according to the International Protocol of the European Society of Hypertension. Systolic and diastolic blood pressures were sequentially measured in 33 adult Chinese participants (21 women, 51 years of mean age) using a mercury sphygmomanometer (two observers) and the BP210 device (one supervisor). Ninety-nine pairs of comparisons were obtained from 15 participants in phase 1 and a further 18 participants in phase 2 of the validation study. Data analysis was conducted using the ESHIP analyzer. The BP210 device successfully passed phase 1 of the validation study with a number of absolute differences between device and observers within 5, 10, and 15 mmHg for at least 33/45, 44/45, and 44/45 measurements, respectively. The device also achieved the targets for phase 2.1, with 77/99, 95/99, and 97/99 differences within 5, 10, and 15 mmHg, respectively for systolic blood pressure, and with 78/99, 97/99, and 99/99 within 5, 10, and 15 mmHg, respectively for diastolic blood pressure. In phase 2.2, 29 and 25 participants had at least two of the three device-observers differences within 5 mmHg (required≥22) for systolic blood pressure and diastolic blood pressure, respectively. The Kingyield wrist blood pressure monitor BP210 has passed the International Protocol requirements, and hence can be recommended for home use in adults.

  15. Effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss

    Science.gov (United States)

    Koval, L. R.

    1976-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. Flow is shown to provide a modest increase in TL that is uniform with frequency up to the critical frequency. The increase is about 2 dB at Mach number M = 0.5, and about 3.5 dB at M = 1. Above the critical frequency where TL is damping controlled, the increase can be slightly larger at certain frequencies. Curvature is found to stiffen the panel, thereby increasing the TL at low frequencies, but also to introduce a dip at the 'ring frequency' of a full cylinder having the same radius as the panel. Pressurization appears to produce a slight decrease in TL throughout the frequency range, and also slightly shifts the dips at the critical frequency and at the ring frequency.

  16. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program

    International Nuclear Information System (INIS)

    Lucatero, Marco A.; Palacios-Hernandez, Javier C.; Ortiz-Villafuerte, Javier; Xolocostli-Munguia, J. Vicente; Gomez-Torres, Armando M.

    2010-01-01

    Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1. The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are

  17. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  18. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R.

    2011-01-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  19. Crew Restraint Design for the International Space Station

    Science.gov (United States)

    Norris, Lena; Holden, Kritina; Whitmore, Mihriban

    2006-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. Another ISS task that requires special consideration with respect to restraints is robotic teleoperation. The Robot Systems Technology Branch at the NASA Johnson Space Center is developing a humanoid robot astronaut, or Robonaut. It is being designed to perform extravehicular activities (EVAs) in the hazardous environment of space. An astronaut located inside the ISS will remotely operate Robonaut through a telepresence control system. Essentially, the robot mimics every move the operator makes. This requires the

  20. Validation of the HONSUN LD-578 blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol.

    Science.gov (United States)

    Zhang, Yi; Wang, Jie; Huang, Qi-Fang; Sheng, Chang-Sheng; Li, Yan; Wang, Ji-Guang

    2009-06-01

    This study aimed to evaluate the accuracy of the automated oscillometric upper arm blood pressure monitor LD-578 (HONSUN Group, Shanghai, China) for home blood pressure monitoring according to the International Protocol. Systolic and diastolic blood pressures were sequentially measured in 33 adult Chinese using a mercury sphygmomanometer (two observers) and the LD-578 device (one supervisor). Ninety-nine pairs of comparisons were obtained from 15 participants in phase 1 and a further 18 participants in phase 2 of the validation study. Data analysis was performed using the ESHIP Analyzer. The LD-578 device successfully passed phase 1 of the validation study with a number of absolute differences between device and observers within 5, 10, and 15 mmHg for at least 32 of 45, 41 of 45, and 45 of 45 measurements (required 25, 35, and 40), respectively. The device also achieved the targets for phase 2.1, with 67 of 99, 90 of 99, and 98 of 99 differences within 5, 10, and 15 mmHg, respectively, for systolic blood pressure, and with 69 of 99, 95 of 99, and 98 of 99 within 5, 10, and 15 mmHg, respectively, for diastolic blood pressure. In phase 2.2, 24 participants had at least two of the three device-observers differences within 5 mmHg (required >or=22) for systolic and diastolic blood pressure. The HONSUN upper arm blood pressure monitor LD-578 can be recommended for home use in adults.

  1. International scientific consensus on medical plantar pressure measurement devices: technical requirements and performance

    Directory of Open Access Journals (Sweden)

    Claudia Giacomozzi

    2012-01-01

    Full Text Available BACKGROUND: Since 2006, the Italian National Institute of Health (ISS has been conducting independent scientific activities to standardize the technical assessment of plantar pressure measurement devices (PMDs. MATERIAL AND METHODS: On the basis of the ISS results, in 2010 the Pedobarographic Group of the International Foot and Ankle Biomechanics community (i-FAB-PG promoted a consensus activity about the main technical requirements for the appropriate use of PMDs. The activity relied on a moodlebased on-line forum, documents exchange, discussions, reviews, meetings and a final survey. RESULTS: The participation of clinical and technical researchers, users, and manufacturers, contributed to the delivery of the hereby reported recommendations which specifically regard Medical PMDs in the form of platforms. CONCLUSIONS: The i-FAB-PG community reached overall agreement on the recommendations, with a few minor objections which are reported and commented in the document. RELEVANCE: The present document, the highest result achievable within a small scientific community, will hopefully represent the starting point of the wider process of establishing official international guidelines or standards, within scientific communities and standardization organizations.

  2. Designing and Managing Successful International Joint Development Programs

    Science.gov (United States)

    2016-04-30

    joint development programs are important because of their potential to reduce costs and increase partnership benefits such as interoperability, economies ...have actualized by discussing what characteristics research has shown as crucial to international joint development program outcomes. The study team... characteristics of international joint development programs that result in positive or negative cost, scheduling, and end-product outcomes, such as a final

  3. Designing Curriculum for Real-World International Business Needs

    Science.gov (United States)

    Wolf, Bernard M.; Wright, Lorna

    2014-01-01

    Economies continue to become more integrated through international trade and foreign investment, as well as by more, and more, complex global supply changes. With the expansion in the level and scope of international business (IB), it becomes all the more important that university graduates seeking careers in IB be able to "successfully hit…

  4. Validation of the SEJOY BP-1307 upper-arm blood pressure monitor for home blood pressure monitoring according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Lei, Lei; Chen, Yi; Chen, Qi; Li, Yan; Wang, Ji-Guang

    2017-12-01

    The present study aimed to evaluate the accuracy of the automated oscillometric upper-arm blood pressure monitor SEJOY BP-1307 (also called JOYTECH DBP-1307) for home blood pressure monitoring according to the International Protocol of the European Society of Hypertension revision 2010. Systolic and diastolic blood pressures were sequentially measured in 33 adult Chinese individuals (13 women, 45.1 years of mean age) using a mercury sphygmomanometer (two observers) and the SEJOY BP-1307 device (one supervisor). Ninety-nine pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. The average±SD of the device-observer differences was 0.2±4.1 and -1.7±4.7 mmHg for systolic and diastolic blood pressure, respectively. The SEJOY BP-1307 device achieved the criteria in both part 1 and part 2 of the validation study. The SEJOY upper-arm blood pressure monitor BP-1307 has passed the requirements of the International Protocol revision 2010, and hence can be recommended for home use in adults.

  5. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  6. COMPARATIVE STUDY THROUGH FINITE ELEMENT METHOD OF LIDS USED IN CYLINDRICAL VESSEL IN HORIZONTAL POSITION SUBJECT TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Eusebio V. Ibarra-Hernández

    2017-07-01

    Full Text Available In this work a study of the cylindrical vessels in horizontal position and subject to internal pressure is carried out, where lids are one of the main components of this equipment. The Autodesk Inventor pro. 2016 is used to make the geometrical characterization of these elements: parametric solid modeler, assembles and surfaces for the mechanical design of complex parts. The different geometric forms of the lids and bottoms analyzed in this work are: flat-circular with or without flange, elliptical with different values of the K factor, torispherical with different values of the M factor and the hemispherical bottoms. Using the Finate Element Method (FEM, a comparative study is made about the behavior of the stress and strain in the different geometrical forms mentioned before, being demonstrated that although the best resistance and rigidity values are presented by the hemispherical bottoms and the best options of production by the flat-circulars, they are not the bottoms used the most in this vessels, being the elliptic bottoms those of more use. The results obtained allow optimizing the design and knowing the thickness limit in the most requested areas.

  7. Effect of bicycle saddle designs on the pressure to the perineum of the bicyclist.

    Science.gov (United States)

    Lowe, Brian D; Schrader, Steven M; Breitenstein, Michael J

    2004-06-01

    Increasing awareness of an association between bicycling and male sexual dysfunction has led to the appearance of a variety of bicycle saddles that share the design objective of reducing pressure in the groin of the cyclist by removal of the narrow protruding nose of the saddle. This study compared three of these saddle designs to a traditional sport/road racing saddle with a narrow protruding nose in terms of pressure in the region of the perineum (groin) of the cyclist. Saddle, pedal, and handlebar contact pressure were measured from 33 bicycle police patrol officers pedaling a stationary bicycle at a controlled cadence and workload. Pressure was characterized over the saddle as a whole and over a region of the saddle assumed to represent pressure on the cyclist's perineum located anteriorly to the ischial tuberosities. The traditional sport/racing saddle was associated with more than two times the pressure in the perineal region than the saddles without a protruding nose (P perineum of the bicyclist.

  8. A Newly Designed Fiber-Optic Based Earth Pressure Transducer with Adjustable Measurement Range

    Directory of Open Access Journals (Sweden)

    Hou-Zhen Wei

    2018-03-01

    Full Text Available A novel fiber-optic based earth pressure sensor (FPS with an adjustable measurement range and high sensitivity is developed to measure earth pressures for civil infrastructures. The new FPS combines a cantilever beam with fiber Bragg grating (FBG sensors and a flexible membrane. Compared with a traditional pressure transducer with a dual diaphragm design, the proposed FPS has a larger measurement range and shows high accuracy. The working principles, parameter design, fabrication methods, and laboratory calibration tests are explained in this paper. A theoretical solution is derived to obtain the relationship between the applied pressure and strain of the FBG sensors. In addition, a finite element model is established to analyze the mechanical behavior of the membrane and the cantilever beam and thereby obtain optimal parameters. The cantilever beam is 40 mm long, 15 mm wide, and 1 mm thick. The whole FPS has a diameter of 100 mm and a thickness of 30 mm. The sensitivity of the FPS is 0.104 kPa/με. In addition, automatic temperature compensation can be achieved. The FPS’s sensitivity, physical properties, and response to applied pressure are extensively examined through modeling and experiments. The results show that the proposed FPS has numerous potential applications in soil pressure measurement.

  9. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  10. FOREWORD: The 4th CCM International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa)

    Science.gov (United States)

    Legras, Jean-Claude; Jousten, Karl; Severn, Ian

    2005-12-01

    The fourth CCM (Consultative Committee for Mass and related quantities) International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa) was held at the Institute of Physics in London from 19-21 April 2005. The event, which was organized by the Low, Medium and High Pressure working groups of the CCM, was attended by in excess of one hundred participants with representatives from five continents and every regional metrology organization. The purpose of this conference is to review all the work that is devoted to the highest quality of pressure measurement by primary standards as well as the dissemination of the pressure scale. A total of 52 papers were presented orally, and 26 as posters, in sessions that covered the following topics: Latest scientific advances in pressure and vacuum metrology Innovative transfer standards, advanced sensors and new instrument development Primary (top-level) measurement standards International and regional key comparisons New approaches to calibration It is interesting the note that since the third conference in 1999 the pressure range covered has increased by two orders of magnitude to 109 Pa, to take into account more exacting scientific and industrial demands for traceable vacuum measurement. A further feature of the conference was the increased range of instrumentation and techniques used in the realization and potential realization of pressure standards. Seton Bennett, Director of International Metrology at the National Physical Laboratory, opened the conference and Andrew Wallard, Director of the Bureau International des Poids et Mesures (BIPM), gave the keynote address which described the implementation of the mutual recognition arrangement and the resulting removal of metrological barriers to international trade. Many experts have contributed significant amounts of their time to organize the event and to review the submitted papers. Thanks are due to all of these people

  11. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some...... of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...

  12. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  13. Design, simulation and analysis of piezoresistive MEMS pressure sensor for fast reactor applications

    International Nuclear Information System (INIS)

    Patankar, Mahesh Kumar; Murali, N.; Satya Murty, S.A.V.; Kalyana Rao, K.; Sridhar, S.

    2013-01-01

    To exploit the extraordinary benefits of MEMS technology in fast reactor domain, a piezoresistive MEMS pressure sensor was designed, simulated and analyzed using Intellisuite Software to measure the RCB air pressure in 0 - 1.25 bar (a) range. For sensing the pressure, a thin square silicon diaphragm of size of 800 x 800 μm 2 with thickness of 20 μm was optimized using FEM analysis and to transfer the mechanical stress, induce in the diaphragm due to pressure, into electrical output voltage signal, a set of piezoresistors were arranged on top side of the diaphragm in full active wheatstone bridge configuration for obtaining the higher sensitivity. The simulation results were compared with the analytical results which were found in line of expectations and electrical sensitivity was obtained at 15 mV/V.bar. (author)

  14. IRIS (International Reactor Innovative and Secure) - design overview and deployment prospects

    International Nuclear Information System (INIS)

    Carelli, M.D.; Petrovic, B.; Cavlina, N.; Grgic, D.

    2005-01-01

    The International Reactor Innovative and Secure (IRIS) is an advanced, integral, lightwater cooled, pressurized reactor of medium generating capacity (1000 MWt, or about 335 MWe). It has been under development since the turn of the century by an international team - led by Westinghouse - that includes 19 organizations from 10 countries. In year 2002 it has initiated the pre-application review with the U.S. Nuclear Regulatory Commission (NRC), aiming at final design approval around 2010, and deployment in next decade (about 2015), consistent with the prediction of the growing energy supply gap in both developing and developed countries. This paper describes the reactor layout (i.e., its integral design, with the steam generators, pumps, pressurizer and control rod drive mechanisms all included inside the reactor vessel, together with the core, control rods, and neutron reflector/shield) and discusses the unique s afety-by-design T M IRIS philosophy. This approach, by eliminating accidents at the design stage, or decreasing their consequences and probabilities when outright elimination is not possible, provides a very powerful first level of defense in depth. The ''safety-bydesign'' TM allows a significant reduction and simplification of the passive safety systems, which not only improves its safety but simultaneously reduces the overall cost. Moreover, it supports licensing the power plant with reduced off-site emergency response requirements. The modular IRIS - with each module rated at ∼335 MWe - is an ideal size for smaller energy grids as it allows introducing sequentially single modules in regions only requiring a few hundred MWs at a time. IRIS naturally can be also deployed in multiple modules in areas requiring a larger amount of power increasing with time, thus fulfilling the needs of larger, developed countries as well. The performed top-down economic analysis indicates that the cost of generated electricity is competitive with other nuclear and non

  15. Contrast of aseismic design for NPP pressure pipelines of class 2

    International Nuclear Information System (INIS)

    Bai Wenting; Dai Junwu; Feng Guozhong; Rong Feng

    2011-01-01

    At present, the RCC-M of French, ASME (2007) of U.S.A and GB50267-97 of China are the primary nuclear technical codes for the design of facilities, systems, and components, which are similar in the classification of nuclear facilities in nu clear power plants, but are not exactly the same in the piping design clauses of the class 2 pressure pipeline. For the earthquake input methods, GB, ASME and RCC-M are basically similar. The hard soil standard response spectrum of GB is relatively safer. RCC-M emphasizes on the impact of the pressure, the GB50267-97 and ASME emphasize more on the weight and other occasional loads such as earthquakes effects. RCC-M is safer than GB and ASME in level D criteria. Case analysis shows that in the conditions of lower pressure and the same stress intensification factor, GB and ASME criteria are safer than RCC-M. (authors)

  16. Thermal design of a pressure electroslag remelting furnace applied for 5

    International Nuclear Information System (INIS)

    Cruz M, J.P.

    1999-01-01

    Actual work defines the thermal design methodology for pressure electroslag remelting furnaces (P ESR) of variable capacity, applied for 5 Kg. It begins with classification and description of secondary refining furnaces, after PESR process and the concept of thermal design are described. Next, in base of the steel weight to remelt (5 Kg); ingot, crucible and electrode dimensions are obtained. These elements will be inside of pressure vessel whose thickness are determined according to ASME Code (Section 8, Division 1, U G-27). It was developed a computer program, where the furnace capacity can be modified, so like other conditions, and display principal dimensions of the furnace. Current and voltage are obtained from the heat necessary to remelt the ingot and the heat transfer in the crucible, is analysed because of it is the most critical element. It was selected too the equipment to registry temperatures and pressure in base of thermocouple characteristics. (Author)

  17. Development and design of control rod drive mechanisms for pressurized water reactors

    International Nuclear Information System (INIS)

    Leme, Francisco Louzano

    2003-01-01

    The Control Rod Drive Mechanisms (CRDM) for a Pressurized Water Reactor (PWR) are equipment, integrated to the reactor pressure vessel, incorporating mechanical and electrical components designed to move and position the control rods to guarantee the control of power and shutdown of the nuclear reactor, during normal operation, either in emergency or accidental situations. The type of CRDM used in PWR reactors, whose detailed individual description will be presented in this monograph are the Roller-Nut and Magnetic-Jack. The environment, where the CRDM performs its above presented operational functions, includes direct contact with the fluid used as coolant peculiar to the interior of the reactor, and its associated chemical characteristics, the radiation field next to the reactor core, and also the temperature and pressure in the reactor pressure vessel. So the importance of the CRDM design requirements related to its safety functions are emphasized. Finally, some aspects related to the mechanical and structural design of CRDM of a case study, considering the CRDM for a PWR from the experimental nuclear plant to be applied by CTMSP (Centro Tecnologico da Marinha em Sao Paulo), are pointed out. The design and development of these equipment (author)

  18. Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect

    Science.gov (United States)

    Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang

    2018-03-01

    MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.

  19. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  20. Analysis and evaluation system for elevated temperature design of pressure vessels

    International Nuclear Information System (INIS)

    Hayakawa, Teiji; Sayawaki, Masaaki; Nishitani, Masahiro; Mii, Tatsuo; Murasawa, Kanji

    1977-01-01

    In pressure vessel technology, intensive efforts have recently been made to develop the elevated temperature design methods. Much of the impetus of these efforts has been provided mainly by the results of the Liquid Metal Fast Breeder Reactor (LMFBR) and more recently, of the High Temperature Gas-cooled Reactor (HTGR) Programs. The pressure vessels and associated components in these new type nuclear power plants must operate for long periods at elevated temperature where creep effects are significant and then must be designed by rigorous analysis for high reliability and safety. To carry out such an elevated temperature designing, numbers of highly developed analysis and evaluation techniques, which are so complicated as to be impossible by manual work, are indispensable. Under these circumstances, the authors have made the following approaches in the study: (1) Study into basic concepts and the associated techniques in elevated temperature design. (2) Systematization (Analysis System) of the procedure for loads and stress analyses. (3) Development of post-processor, ''POST-1592'', for strength evaluation based on ASME Code Case 1592-7. By linking the POST-1592 together with the Analysis System, an analysis and evaluation system is developed for an elevated temperature design of pressure vessels. Consequently, designing of elevated temperature vessels by detailed analysis and evaluation has easily and effectively become feasible by applying this software system. (auth.)

  1. Complex Systems Design & Management : Proceedings of the Third International Conference on Complex Systems Design & Management

    CERN Document Server

    Caseau, Yves; Krob, Daniel; Rauzy, Antoine

    2013-01-01

    This book contains all refereed papers that were accepted to the third edition of the « Complex Systems Design & Management » (CSD&M 2012) international conference that took place in Paris (France) from December 12-14, 2012. (Website: http://www.csdm2012.csdm.fr)  These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic  tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2012 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net).

  2. A pressure ulcer prevention programme specially designed for nursing homes: does it work?

    Science.gov (United States)

    Kwong, Enid W-Y; Lau, Ada T-Y; Lee, Rainbow L-P; Kwan, Rick Y-C

    2011-10-01

    The aim of this study was to evaluate a pressure ulcer prevention programme for nursing homes to ascertain the feasibility of its implementation, impact on care staff and outcomes for pressure ulcer knowledge and skills and pressure ulcer reduction. No pressure ulcer prevention protocol for long-term care settings has been established to date. The first author of this study thus developed a pressure ulcer prevention programme for nursing homes. A quasi-experimental pretest and post-test design was adopted. Forty-one non-licensed care providers and eleven nurses from a government-subsidised nursing home voluntarily participated in the study. Knowledge and skills of the non-licensed care providers were assessed before, immediately after and six weeks after the training course, and pressure ulcer prevalence and incidence were recorded before and during the protocol implementation. At the end of the programme implementation, focus group interviews with the subjects were conducted to explore their views on the programme. A statistically significant improvement in knowledge and skills scores amongst non-licensed care providers was noted. Pressure ulcer prevalence and incidence rates dropped from 9-2·5% and 2·5-0·8%, respectively, after programme implementation. The focus group findings indicated that the programme enhanced the motivation of non-licensed care providers to improve their performance of pressure ulcer prevention care and increased communication and cooperation amongst care staff, but use of the modified Braden scale was considered by nurses to increase their workload. A pressure ulcer prevention programme for nursing homes, which was feasible and acceptable, with positive impact and outcome in a nursing home was empirically developed. The study findings can be employed to modify the programme and its outcomes for an evaluation of effectiveness of the programme through a randomised controlled trial. © 2011 Blackwell Publishing Ltd.

  3. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  4. Ultimate internal pressure capacity of a reinforced concrete Mark III containment

    International Nuclear Information System (INIS)

    McGaughy, J.P. Jr.; Lin, F.T.; Sen, S.K.

    1983-01-01

    The static ultimate capacity of a Mark III BWR pressure suppression type containment has been investigated with a view to determine its capability to withstand the internal pressure associated with a postulated hydrogen burn. The reinforced concrete containment consists of a right circular cylinder covered by a hemispherical dome and supported on a flat circular foundation mat. A 1/4'' thick welded steel liner plate covers the inside surface of the containment shell. The cylinder is a 3.5 ft. thick shell with an inside radius of 62.0 feet. The thickness of the dome is 3.5 feet. Reinforcement in the shell is comprised of multi-layers of circumferential, meridional and diagonal rebars. Major containment penetrations consists of a circular equipment hatch and two personnel airlock assemblies. The containment ultimate capacity is determined by performing a non-linear analysis using the proprietary finite element computer code 'FINEL'. The code has the capability of modelling concrete cracking in tension and redistribution forces and moments to account for such phenomenon. For analysis purposes, the finite element model included the containment dome and the upper portion of the containment cylinder with appropriate boundary conditions applied at the model cut off region. This portion of the containment structure is selected because the segment of the cylinder that is included in the model has the least amount of hopp reinforcement, and when the general yield state is reached, the hoop reinforcement will be the limiting element. The containment structure has been treated as an axisymmetric shell using axisymmetric quadrilateral finite elements in the radial plane to model the liner plate and concrete. The reinforcing steel have been idealized by finite elements with unidirectional stiffness. (orig./RW)

  5. Economical opportunities on advanced conventional island design for the European pressurized water reactor (EPR) based on Konvoi design. Annex 6

    International Nuclear Information System (INIS)

    Kremayr, A.; Wagner, K.; Schuberth, U.

    2002-01-01

    Design of the European Pressurized Water Reactor (EPR) has been finalized by the end of 1998. In parallel with these efforts, the German utilities group contracted the Siemens AG Power generation Group (KWU) to develop an advanced and optimized conventional island for the EPR. The main objectives for improving the conventional island design were determined on the basis of experience of the Konvoi series plants and advanced fossil plants. This paper describes the innovations introduced to the conventional island and presents the reasons for the resultant cost reductions. (author)

  6. Management of high blood pressure in Blacks: an update of the International Society on Hypertension in Blacks consensus statement.

    Science.gov (United States)

    Flack, John M; Sica, Domenic A; Bakris, George; Brown, Angela L; Ferdinand, Keith C; Grimm, Richard H; Hall, W Dallas; Jones, Wendell E; Kountz, David S; Lea, Janice P; Nasser, Samar; Nesbitt, Shawna D; Saunders, Elijah; Scisney-Matlock, Margaret; Jamerson, Kenneth A

    2010-11-01

    Since the first International Society on Hypertension in Blacks consensus statement on the "Management of High Blood Pressure in African American" in 2003, data from additional clinical trials have become available. We reviewed hypertension and cardiovascular disease prevention and treatment guidelines, pharmacological hypertension clinical end point trials, and blood pressure-lowering trials in blacks. Selected trials without significant black representation were considered. In this update, blacks with hypertension are divided into 2 risk strata, primary prevention, where elevated blood pressure without target organ damage, preclinical cardiovascular disease, or overt cardiovascular disease for whom blood pressure consistently secondary prevention, where elevated blood pressure with target organ damage, preclinical cardiovascular disease, and/or a history of cardiovascular disease, for whom blood pressure consistently blood pressure is ≤10 mm Hg above target levels, monotherapy with a diuretic or calcium channel blocker is preferred. When blood pressure is >15/10 mm Hg above target, 2-drug therapy is recommended, with either a calcium channel blocker plus a renin-angiotensin system blocker or, alternatively, in edematous and/or volume-overload states, with a thiazide diuretic plus a renin-angiotensin system blocker. Effective multidrug therapeutic combinations through 4 drugs are described. Comprehensive lifestyle modifications should be initiated in blacks when blood pressure is ≥115/75 mm Hg. The updated International Society on Hypertension in Blacks consensus statement on hypertension management in blacks lowers the minimum target blood pressure level for the lowest-risk blacks, emphasizes effective multidrug regimens, and de-emphasizes monotherapy.

  7. Validation of Transtek blood pressure monitor TMB-1491 for self-measurement according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Tian, Huiyong; Zeng, Sijian; Zhong, Xiaoyan; Gong, Wei; Liu, Wenjun

    2015-10-01

    Transtek blood pressure monitor TMB-1491 is an automatic upper arm device designed for self/home measurement in adult populations. This study aimed to evaluate its accuracy according to the European Society of Hypertension International Protocol revision 2010. The protocol requirements were followed precisely with the recruitment of 33 adult individuals on whom same-left-arm sequential systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured. According to the validation protocol, 99 pairs of test device and reference blood pressure measurements were obtained in this study (three pairs for each of the 33 participants). The device produced 74, 95 and 99 measurements within 5, 10, and 15 mmHg for SBP and 85, 97, and 99 for DBP, respectively. The mean±SD device-observer difference was -0.6±4.4 mmHg for SBP and -0.6±3.4 mmHg for DBP. The number of participants with two or three device-observer difference within 5 mmHg was 24 for SBP and 29 for DBP. In addition, none of the participants had a device-observer difference within 5 mmHg for SBP, and three of the participants had the same for DBP. Transtek TMB-1491 has passed all phases of European Society of Hypertension International Protocol revision 2010 and can be recommended for self/home measurement in adult populations.

  8. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  9. PA.NET International Quality Certification Protocol for blood pressure monitors.

    Science.gov (United States)

    Omboni, Stefano; Costantini, Carlo; Pini, Claudio; Bulegato, Roberto; Manfellotto, Dario; Rizzoni, Damiano; Palatini, Paolo; O'brien, Eoin; Parati, Gianfranco

    2008-10-01

    Although standard validation protocols provide assurance of the accuracy of blood pressure monitors (BPMs), there is no guidance for the consumer as to the overall quality of a device. The PA.NET International Quality Certification Protocol, developed by the Association for Research and Development of Biomedical Technologies and for Continuing Medical Education (ARSMED), a nonprofit organization, with the support of the Italian Society of Hypertension-Italian Hypertension League, and the dabl Educational Trust denotes additional criteria of quality for BPMs that fulfilled basic validation criteria, published in full in peer-reviewed medical journals. The certification is characterized by three phases: (i) to determine that the device fulfilled standard validation criteria; (ii) to determine the technical and functional characteristics of the device (e.g. operativity, display dimension, accessory functions, memory availability, etc.) and (iii) to determine the commercial characteristics (e.g. price-quality ratio, after-sale service, guarantee, etc.). At the end of the certification process, ARSMED attributes a quality index to the device, based on a scale ranging from 1 to 100, and a quality seal with four different grades (bronze, silver, gold and diamond) according to the achieved score. The seal is identified by a unique alphanumeric code. The quality seal may be used on the packaging of the appliance or in advertising. A quality certification is released to the manufacturer and published on www.pressionearteriosa.net and www.dableducational.org. The PA.NET International Quality Certification Protocol represents the first attempt to provide health care personnel and consumers with an independent and objective assessment of BPMs based on their quality.

  10. Indigeneous design and development of differential pressure reducing valves for PHWRs (Paper No. 055)

    International Nuclear Information System (INIS)

    Soni, N.L.; Agrawal, R.C.; Chandra, Rajesh

    1987-02-01

    On load fuelling of Pressurised Heavy Water Reactors (PHWRs) is being achieved with the help of Fuelling Machine (F/M). Various actuations are to be carried out inside the F/M magazine pressure housing with the help of high pressure water hydraulic actuators. A constant differential pressure is required to be maintained between pressurized magazine housing and the actuators-supply line for proper operation of the actuators which are to be located inside it. This is achieved with the help of the Differential Pressure Reducing Valve (DPRV). So far these valves have been procured only from a single foreign supplier. In March 1980, the price of each valve was US dollars 3100.00. Dependence on a single foreign supplier may create problems of timely procurement. An effort was made to design and manufacture the DPRV indigensouly meeting the stringent specifications. Theoretical study of single acting DPRV was carried out and design criteria were established. The valve was tested for its performance and was found satisfactory. (author). 8 figs

  11. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  12. Research design and improvement of high temperature high pressure solenoid valve

    International Nuclear Information System (INIS)

    Luo Yongtang

    1987-12-01

    A process for development of the pilot type high temperature high pressure solenoid valve used in a PWR power plant is described. The whole development process might be divided into two phases: research design and improvement. In the former phase the questions had chiefly been approached in the following several aspects: the principle construction design, the determination of values for the constructionally key elements, the valve seal design and the solenoid actuator design, and made such valve's successful design in the main. In the latter phase an improvement had been made upon such valve against the problems during the testing use of the valve for a period of time, i.e. the unsatisfactory leak tightness, and achieved satisfactory results. The consummate success in this development not only has met the needs of the engineering project, but also made us obtain a valuable experience useful to design the similar valves

  13. Efficient design and operation of a data acquisition system for pressurized pipeline systems.

    Science.gov (United States)

    Kim, S

    2006-01-01

    The unsteady flow analysis of pipeline systems provides useful guidelines for implementing data acquisition components such as data filtering ranges, sensor locations and sampling frequencies. A theoretical integration among hydraulics, free vibration analysis and signal processing is proposed for a comprehensive approach aiming at enhanced design and operation of data acquisition system. Transient analysis is performed to extract flow variation by a valve modulation in a pipeline system. Frequency transformation analysis is developed to convert pressure variations between time domain and frequency domain. Free vibration analysis provides spatial distribution of impedance characteristics and pressure variation for determining optimum sensor location. A real-time filter can be designed to secure valid signals of any particular unsteady event. Hypothetical and experimental applications show that the proposed method has potentials of the leakage detection of a pipeline system as well as an efficient design of data acquisition system.

  14. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  15. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  16. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Helene Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  17. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1987-05-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  18. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1988-01-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  19. General design and main problems of a gas-heavy-water power reactor contained in a pressure vessel

    International Nuclear Information System (INIS)

    Roche, R.; Gaudez, J.C.

    1964-01-01

    In the framework of research carried out on a CO 2 -cooled power reactor moderated by heavy water, the so-called 'pressure vessel' solution involves the total integration of the core, of the primary circuit (exchanges and blowers) and of the fuel handling machine inside a single, strong, sealed vessel made of pre-stressed concrete. A vertical design has been chosen: the handling 'attic' is placed above the core, the exchanges being underneath. This solution makes it possible to standardize the type of reactor which is moderated by heavy-water or graphite and cooled by a downward stream of carbon dioxide gas; it has certain advantages and disadvantages with respect to the pressure tube solution and these are considered in detail in this report. Extrapolation presents in particular.problems due specifically to the heavy water (for example its cooling,its purification, the balancing of the pressures of the heavy water and of the gas, the assembling of the internal structures, the height of the attic, etc. (authors) [fr

  20. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A. [Atomic Energy of Canada, Ltd., Chalk River Laboratories, Chalk River, ON (Canada)

    2013-07-01

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  1. Interim Design Report for the International Design Study for a Neutrino Factory

    International Nuclear Information System (INIS)

    Choubey, S.; Gandhi, R.; Goswami, S.; Berg, J.S.; Fernow, R.; Gallardo, J.C.; Gupta, R.; Kirk, H.; Simos, N.; Souchlas, N.; Ellis, M.

    2011-01-01

    The starting point for the International Design Study for the Neutrino Factory (the IDS-NF) was the output of the earlier International Scoping Study for a future Neutrino Factory and super-beam facility (the ISS). The accelerator facility described in section 2 incorporates the improvements that have been derived from the substantial amount of work carried out within the Accelerator Working Group. Highlights of these improvements include: (1) Initial concepts for the implementation of the proton driver at each of the three example sites, CERN, FNAL, and RAL; (2) Detailed studies of the energy deposition in the target area; (3) A reduction in the length of the muon beam phase-rotation and bunching systems; (4) Detailed analyses of the impact of the risk that stray magnetic field in the accelerating cavities in the ionization cooling channel will reduce the maximum operating gradient. Several alternative ionization-cooling lattices have been developed as fallback options to mitigate this technical risk; (5) Studies of particle loss in the muon front-end and the development of strategies to mitigate the deleterious effects of such losses; (6) The development of more complete designs for the muon linac and re-circulating linacs; (7) The development of a design for the muon FFAG that incorporates insertions for injection and extraction; and (8) Detailed studies of diagnostics in the decay ring. Other sub-systems have undergone a more 'incremental' evolution; an indication that the design of the Neutrino Factory has achieved a degree of maturity. The design of the neutrino detectors described in section 3 has been optimized and the Detector Working Group has made substantial improvements to the simulation and analysis of the Magnetized Iron Neutrino Detector (MIND) resulting in an improvement in the overall neutrino-detection efficiency and a reduction in the neutrino-energy threshold. In addition, initial consideration of the engineering of the MIND has generated a

  2. Interim Design Report for the International Design Study for a Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, S.; Gandhi, R.; Goswami, S.; /Harish-Chandra Res. Inst.; Berg, J.S.; Fernow, R.; Gallardo, J.C.; Gupta, R.; Kirk, H.; Simos, N.; Souchlas, N.; /Brookhaven; Ellis, M.; /Brunel U. /CERN /Durham U., IPPP /Fermilab /Geneva U. /Glasgow U. /Heidelberg, Max Planck Inst. /Imperial Coll., London /Jefferson Lab /Saha Inst.

    2011-10-01

    The starting point for the International Design Study for the Neutrino Factory (the IDS-NF) was the output of the earlier International Scoping Study for a future Neutrino Factory and super-beam facility (the ISS). The accelerator facility described in section 2 incorporates the improvements that have been derived from the substantial amount of work carried out within the Accelerator Working Group. Highlights of these improvements include: (1) Initial concepts for the implementation of the proton driver at each of the three example sites, CERN, FNAL, and RAL; (2) Detailed studies of the energy deposition in the target area; (3) A reduction in the length of the muon beam phase-rotation and bunching systems; (4) Detailed analyses of the impact of the risk that stray magnetic field in the accelerating cavities in the ionization cooling channel will reduce the maximum operating gradient. Several alternative ionization-cooling lattices have been developed as fallback options to mitigate this technical risk; (5) Studies of particle loss in the muon front-end and the development of strategies to mitigate the deleterious effects of such losses; (6) The development of more complete designs for the muon linac and re-circulating linacs; (7) The development of a design for the muon FFAG that incorporates insertions for injection and extraction; and (8) Detailed studies of diagnostics in the decay ring. Other sub-systems have undergone a more 'incremental' evolution; an indication that the design of the Neutrino Factory has achieved a degree of maturity. The design of the neutrino detectors described in section 3 has been optimized and the Detector Working Group has made substantial improvements to the simulation and analysis of the Magnetized Iron Neutrino Detector (MIND) resulting in an improvement in the overall neutrino-detection efficiency and a reduction in the neutrino-energy threshold. In addition, initial consideration of the engineering of the MIND has

  3. Development and design of a UF{sub 6} gas pressure meter for 42 mm pipes

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.; Wichers, V.A.

    1995-08-01

    X-ray fluorescence (XRF) has proved to be a feasible method of measuring the pressure of UF{sub 6}-gas for enrichment verification purposes. Complications will arise under extreme conditions, such as high uranium deposit to gas ratios, pipe diameters smaller than 40 mm and pressures less than 100 Pa. This report presents an experimental analysis of the XRF method for design worst case conditions for 42 outer diameter cascade-to-header pipes and the development of a prototype measurement device. This prototype is integrated in the construction of the enrichment verification system. (orig.).

  4. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer

    Directory of Open Access Journals (Sweden)

    Guohui Lyu

    2017-02-01

    Full Text Available In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

  5. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer.

    Science.gov (United States)

    Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu

    2017-02-15

    In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

  6. Development and design of a UF6 gas pressure meter for 42 mm pipes

    International Nuclear Information System (INIS)

    Peters, E.; Wichers, V.A.

    1995-08-01

    X-ray fluorescence (XRF) has proved to be a feasible method of measuring the pressure of UF 6 -gas for enrichment verification purposes. Complications will arise under extreme conditions, such as high uranium deposit to gas ratios, pipe diameters smaller than 40 mm and pressures less than 100 Pa. This report presents an experimental analysis of the XRF method for design worst case conditions for 42 outer diameter cascade-to-header pipes and the development of a prototype measurement device. This prototype is integrated in the construction of the enrichment verification system. (orig.)

  7. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  8. Shakedown analysis of thick-walled cylinders subjected to internal pressure with the unified strength criterion

    International Nuclear Information System (INIS)

    Xu Shuanqiang; Yu Maohong

    2005-01-01

    Most previous studies on shakedown of thick-walled cylinders were based on the assumption that the compressive and tensile strengths of the materials were identical. In this paper the shakedown of an internally pressurized cylinder made of a material with a strength-difference and intermediate principal stress effects is dealt with by using a unified strength criterion which consists of a family of convex piecewise linear strength criteria. Through an elasto-plastic analysis the solutions for the loading stresses, residual stresses, elastic limit, plastic limit and shakedown limit of the cylinder are derived. It is shown that the present solutions include the classical plasticity solutions as special cases and have the ability to account for the strength-difference and intermediate principal stress effects. Finally, the influence of the two effects on the shakedown limit of the cylinder is investigated. The results show that the shakedown limit depends on the two effects and is underestimated if these effects are neglected as in the classical plasticity solution based on the Tresca criterion

  9. High burnup fuel onset conditions in dry storage. Prediction of EOL rod internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E.

    2015-07-01

    During dry storage, cladding resistance to failure can be affected by several degrading mechanisms like creep or hydrides radial reorientation. The driving force of these effects is the stress at which the cladding is submitted. The maximum stress in the cladding is determined by the end-of-reactor-life (EOL) rod internal pressure, PEOL, at the maximum temperature attained during dry storage. Thus, PEOL sets the initial conditions of storage for potential time-dependent changes in the cladding. Based on FRAPCON-3.5 calculations, the aim of this work is to analyse the PEOL of a PWR fuel rod irradiated to burnups greater than 60 GWd/tU, where limited information is available. In order to be conservative, demanding irradiation histories have been used with a peak linear power of 44 kW/m. FRAPCON-3.5 results show an increasing exponential trend of PEOL with burnup, from which a simple correlation has been derived. The comparison with experimental data found in the literature confirms the enveloping nature of the predicted curve. Based on that, a conservative prediction of cladding stress in dry storage has been obtained. The comparison with a critical stress threshold related to hydrides embrittlement seems to point out that this issue should not be a concern at burnups below 65 GWd/tU. (Author)

  10. On the design of invoicing practices in international trade

    NARCIS (Netherlands)

    J.M.A. Viaene (Jean-Marie); C.G. de Vries (Casper)

    1992-01-01

    textabstractWe advance an explanation for the choice of the invoice currency of international trade contracts on the basis of strategic bargaining considerations. The choice of the invoice currency originates in a situation in which each trader takes into account the other party's bargaining power.

  11. Conceptual design of the International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Armengaud, E.; Avignone, F. T.; Betz, M.

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO wi...

  12. Ethical Considerations in Designing the International Business Communication Course.

    Science.gov (United States)

    Victor, David A.

    As awareness of the need for ethical business behavior increases, businesspeople must address the issue of an ethical standard acceptable for use in international business or, in individual situations, which country's ethical standards will be respected. Ethical absolutes cannot be determined without cultural bias. Legalistic, religious, and…

  13. Proceedings of the First International Symposium on Robust Design 2014

    DEFF Research Database (Denmark)

    The symposium concerns the topic of robust design from a practical and industry orientated perspective. During the 2 day symposium we will share our understanding of the need of industry with respect to the control of variance, reliability issues and approaches to robust design. The target audience...

  14. International conference on engineering design in welded construction. Opening speech

    International Nuclear Information System (INIS)

    Garcia Rodriguez, A.

    1993-01-01

    The importance of the welding in different industrial areas and especially in nuclear energy industry is outlined in the paper. It is also emphasized the importance of the design phase and the need of developing of good design rules to deal with fatigue and other problems in welded joints

  15. International manufacturing and logistics: application of a design method in five case studies

    NARCIS (Netherlands)

    Vos, G.C.J.M.

    1993-01-01

    International manufacturing and logistics has become an important topic for an increasing number of industrial firms. In this paper, a design method will be described which is aimed at supporting managers in decisions regarding the (re)design of international logistic structures. The heart of this

  16. The development of reactor vessel internal heavy forging for 1000 MW pressurized-water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Zhifeng; Chen Yongbo; Ding Xiuping; Zhang Lingfang

    2012-01-01

    This Paper introduced the development of Reactor Vessel Internal (RVI) heavy forgings for 1000 MW Pressurized Water Reactor (PWR) nuclear power plant, analyzed the manufacture difficulties and technical countermeasures. The testing result of the product indicated that the performance of RVI heavy forgings manufactured by Shanghai Heavy Machinery Plant Ld. (SHMP) is outstanding and entirely satisfy the technical requirements for RVI product. (authors)

  17. Conceptual design of a pressure tube light water reactor with variable moderator control

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2012-01-01

    This paper presents the development of innovative pressure tube light water reactor with variable moderator control. The core layout is derived from a CANDU line of reactors in general, and advanced ACR-1000 design in particular. It should be stressed however, that while some of the ACR-1000 mechanical design features are adopted, the core design basics of the reactor proposed here are completely different. First, the inter fuel channels spacing, surrounded by the calandria tank, contains a low pressure gas instead of heavy water moderator. Second, the fuel channel design features an additional/external tube (designated as moderator tube) connected to a separate moderator management system. The moderator management system is design to vary the moderator tube content from 'dry' (gas) to 'flooded' (light water filled). The dynamic variation of the moderator is a unique and very important feature of the proposed design. The moderator variation allows an implementation of the 'breed and burn' mode of operation. The 'breed and burn' mode of operation is implemented by keeping the moderator tube empty ('dry' filled with gas) during the breed part of the fuel depletion and subsequently introducing the moderator by 'flooding' the moderator tube for the 'burn' part. This paper assesses the conceptual feasibility of the proposed concept from a neutronics point of view. (authors)

  18. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    Energy Technology Data Exchange (ETDEWEB)

    Chordia, Lalit [Thar Energy, LLC, Pittsburgh, PA (United States); Portnoff, Marc A. [Thar Energy, LLC, Pittsburgh, PA (United States); Green, Ed [Thar Energy, LLC, Pittsburgh, PA (United States)

    2017-03-31

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO2. Additional project tasks included building a hot air-to-sCO2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated a number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.

  19. A Design Method of Robust Servo Internal Model Control with Control Input Saturation

    OpenAIRE

    山田, 功; 舩見, 洋祐

    2001-01-01

    In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.

  20. Iodine stress corrosion cracking (SCC) of unirradiated Zircaloy-4 tubing by means of internal gas pressurization, (1)

    International Nuclear Information System (INIS)

    Onchi, Takeo; Inoue, Tadashi

    1982-01-01

    The internal gas pressurization tests were conducted at 360 0 C, to examine the influence of iodine concentration on the iodine stress corrosion cracking (SCC) susceptibility of Zircaloy-4 tubing of 17 x 17 type PWR design. The iodine contents studied were ranging of 0.06 to 6 mg/cm 2 , corresponding to 30 from 0.3 mg/cm 3 . Applied hoop stress vs. time-to-failure relationships were obtained in argon gas with iodine, as well as without iodine, from the tests of maximum holding times up to 72 hrs. The relationships obtained were insensitive to iodine contents. The applied stress lowering in iodine atmosphere approached a threshold stress below which SCC failure did not occur within the holding time, but not in argon gas alone. The threshold stresses were approximately 25.5 kg/mm 2 (250 Mpa), independent on iodine concentrations. Based on fracture mechanics approach and fractographic analysis, an interpretation was made of those applied stress and time-to-failure relationships. (author)

  1. A multilayered thick cylindrical shell under internal pressure and thermal loads applicable to solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Renganathan, K.; Nageswara Rao, B.; Jana, M.K. [Vikram Sarabhai Space Centre, Trivandrum (India). Structural Engineering Group

    2000-09-01

    A solid propellant rocket motor can be considered to be made of various circumferential layers of different properties. A simple procedure is described here to obtain an analytical solution for the general case of multilayered thick cyclindrical shell for internal pressure and thermal loads. This analytical procedure is useful in the preliminary design analysis of solid propellant rocket motors. Since solid propellant material is of viscoelastic behaviour an approximate viscoelastic solution methodology for the multilayered shell is described for estimation of time dependent solutions of propellant grain in a rocket motor. The analytical solution for a two layer reinforced thick cylindrical shell available in the literature is shown to be a special case of the present analytical solution. The results from the present analytical solution for multilayers is found to be in good agreement with FEA results. (orig.) [German] Der grundlegende Aufbau von Feststoffraketenmotoren kann auf einen Zylinder aus mehreren Schichten mit unterschiedlichen Eigenschaften zurueckgefuehrt werden. Eine einfache Berechnungsprozedur fuer die analytische Loesung des allgemeinen Falles eines mehrschichtigen Zylinders unter innerem Druck und thermischer Belastung wird hier vorgestellt. Diese analytische Methodik ist fuer den Auslegungsprozess von Feststoffraketenmotoren von grundlegender Bedeutung. Das viskoelastische Fliessverhalten des festen Brennstoffes, das den zeitlichen Ablauf des Verbrennungsprozesses wesentlich bestimmt, wird durch ein Naeherungsverfahren gut erfasst. Ein in der Literatur enthaltenes spezielles Ergebnis fuer einen zweischaligen verstaerkten Zylinder ergibt sich als Sonderfall der hier vorgestellten Methodik. Die analytisch erhaltenen Loesungen fuer mehrschichtige Aufbauten sind in guter Uebereinstimmung mit mittels der FEM ermittelten Ergebnisse. (orig.)

  2. Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor

    Science.gov (United States)

    Makki, Noaman; Pop-Iliev, Remon

    2011-06-01

    An in-wheel wireless and battery-less piezo-powered tire pressure sensor is developed. Where conventional battery powered Tire Pressure Monitoring Systems (TPMS) are marred by the limited battery life, TPMS based on power harvesting modules provide virtually unlimited sensor life. Furthermore, the elimination of a permanent energy reservoir simplifies the overall sensor design through the exclusion of extra circuitry required to sense vehicle motion and conserve precious battery capacity during vehicle idling periods. In this paper, two design solutions are presented, 1) with very low cost highly flexible piezoceramic (PZT) bender elements bonded directly to the tire to generate power required to run the sensor and, 2) a novel rim mounted PZT harvesting unit that can be used to power pressure sensors incorporated into the valve stem requiring minimal change to the presently used sensors. While both the designs eliminate the use of environmentally unfriendly battery from the TPMS design, they offer advantages of being very low cost, service free and easily replaceable during tire repair and replacement.

  3. Design and Manufacturing of a Passive Pressure Sensor Based on LC Resonance

    Directory of Open Access Journals (Sweden)

    Cheng Zheng

    2016-05-01

    Full Text Available The LC resonator-based passive pressure sensor attracts much attention because it does not need a power source or lead wires between the sensing element and the readout system. This paper presents the design and manufacturing of a passive pressure sensor that contains a variable capacitor and a copper-electroplated planar inductor. The sensor is fabricated using silicon bulk micro-machining, electroplating, and anodic bonding technology. The finite element method is used to model the deflection of the silicon diaphragm and extract the capacitance change corresponding to the applied pressure. Within the measurement range from 5 to 100 kPa, the sensitivity of the sensor is 0.052 MHz/kPa, the linearity is 2.79%, and the hysteresis error is 0.2%. Compared with the sensitivity at 27 °C, the drop of output performance is 3.53% at 140 °C.

  4. Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert (West Virginia University, Morgantown, WV); Perez, Eduardo (West Virginia University, Morgantown, WV)

    2007-01-01

    As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

  5. DESIGNING AND PROTOTYPING OF AN ALTERNATIVE ELLIPTIC INTERNAL COMBUSTION ENGINE

    OpenAIRE

    AKSOY, Nadir; İÇİNGÜR, Yakup

    2010-01-01

    ABSTRACTIn the conventional internal combustion engines, the elements of linear movement cause the friction power to increase the manufacturing economy to deteriorate and also cause vibration. The diameter of intake valves, which is smaller than the diameter of the cylinder, causes the volumetric efficiency to decrease. In the two stroke engines, in which the number of work per cycle is increased, power output per unit volume (kW/liter) is higher; however, specific fuel consumption decreases ...

  6. Geothermal FIT Design: International Experience and U.S. Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rickerson, W.; Gifford, J.; Grace, R.; Cory, K.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date, a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).

  7. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    International Nuclear Information System (INIS)

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W.

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost

  8. Pressurized water reactor system model for control system design and analysis

    International Nuclear Information System (INIS)

    Cooper, K.F.; Cain, J.T.

    1975-01-01

    Satisfactory operation of present generation Pressurized Water Reactor (PWR) Nuclear Power systems requires that several independent and interactive control systems be designed. Since it is not practical to use an actual PWR system as a design tool, a mathematical model of the system must be developed as a design and analysis tool. The model presented has been developed to be used as an aid in applying optimal control theory to design and implement new control systems for PWR plants. To be applicable, the model developed must represent the PWR system in its normal operating range. For safety analysis the operating conditions of the system are usually abnormal and, therefore, the system modeling requirements are different from those for control system design and analysis

  9. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  10. Contemporary large-scale international design competitions1 in China. A case study of Baietan, Guangzhou

    Directory of Open Access Journals (Sweden)

    Zheng Liang

    2013-12-01

    Full Text Available The importance of contemporary design competitions has been increasingly recognized in fast-growing China in the course of World Trade Organization (WTO integration and globalization. However, scientific and systematic analysis is rare on how international design competitions are introduced, and how they interact and transplant in the Chinese context. The well-known Chinese-Western culture gap and complicated social and political background make this topic more challenging. Herein, the authors focus on how the international design competitions were “translated” into both international and local perspectives with a compara­tive analysis on development of international design competitions between the Chinese and the Finnish model. To fully exemplify the design-completion procedure and the different roles of Chinese stakeholders and their perspectives on design competitions, the authors study the Baietan case, which was chosen due to its specific relationship with the city’s strategic plan, its representativeness in using international design competitions in connection to large-scale urban projects in China and its public access to the relevant documentation. The preliminary findings suggest that Chinese-style design competitions, acting as ‘designed trading zones’, with less-defined competition rules compared to the Finnish model, may foster the settings of local transformation in adopting international urban planning and design knowledge. However, an integrated approach is required to address subsequent implementation.

  11. Design of pressure-driven microfluidic networks using electric circuit analogy.

    Science.gov (United States)

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  12. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    Science.gov (United States)

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  13. Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals.

    Science.gov (United States)

    Li, Jian-Qiang; Li, Rui; Chen, Zhuang-Zhuang; Deng, Gen-Qiang; Wang, Huihui; Mavromoustakis, Constandinos X; Song, Houbing; Ming, Zhong

    2018-01-01

    With increasingly fierce competition for jobs, the pressures on people have risen in recent years, leading to lifestyle and diet disorders that result in significantly higher risks of cardiovascular disease. Hypertension is one of the common chronic cardiovascular diseases; however, mainstream blood pressure measurement devices are relatively heavy. When multiple measurements are required, the user experience and the measurement results may be unsatisfactory. In this paper, we describe the design of a signal collection module that collects pulse waves and electrocardiograph (ECG) signals. The collected signals are input into a signal processing module to filter the noise and amplify the useful physiological signals. Then, we use a wavelet transform to eliminate baseline drift noise and detect the feature points of the pulse waves and ECG signals. We propose the concept of detecting the wave shape associated with an instance, an approach that minimizes the impact of atypical pulse waves on blood pressure measurements. Finally, we propose an improved method for measuring blood pressure based on pulse wave velocity that improves the accuracy of blood pressure measurements by 58%. Moreover, the results meet the american medical instrument promotion association standards, which demonstrate the feasibility of our measurement system.

  14. Design of an additional heat sink based on natural circulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Frischengruber, Kurt; Solanilla, Roberto; Fernandez, Ricardo; Blumenkrantz, Arnaldo; Castano, Jorge

    1989-01-01

    Residual heat removal through the steam generators in Nuclear Power Plant with pressurized water reactors (PWR) or pressurized heavy water reactors (PHWR in pressured vessel or pressured tube types) requires the maintenance of the steam generator inventory and the availability of and appropriate heat sink, which are based on the operability of the steam generators feedwater system. This paper describes the conceptual design of an assured heat removal system which includes only passive elements and is based on natural circulation. The system can supplement the original systems of the plant. The new system includes a condenser/boiler heat exchanger to condense the steam produced in the steam generator, transferring the heat to the water of an open pool at atmospheric pressure. The condensed steam flows back to the steam generators by natural circulation effects. The performance of an Atucha type PHWR nuclear power station with and without the proposed system is calculated in an emergency power case for the first 5000 seconds after the incident. The analysis shows that the proposed system offers the possibility to cool-down the plant to a low energy state during several hours and avoids the repeated actuation of the primary and secondary system safety valves. (Author) [es

  15. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.

    2013-01-01

    Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.

  16. Study on frictional pressure drop of steam-water two phase flow in optimized four-head internal-ribbed tube

    International Nuclear Information System (INIS)

    Wang Weishu; Zhu Xiaojing; Bi Qincheng; Wu Gang; Yu Shuiqing

    2012-01-01

    The optimized internal-ribbed tube is different from the normal internal-ribbed tube on the frictional pressure drop characteristics. The frictional pressure drop characteristics of steam-water two phase flow in horizontal four-head optimized internal-ribbed were studied under adiabatic condition. According to the experimental and calculation results, the two-phase multiplier is greatly affected by the steam quality and pressure. The two-phase multiplier increases with increasing quality, and decreases with increasing pressure. In the near-critical pressure region, the two-phase multiplier is close to 1. The frictional pressure drop of two phase flow in optimized tube is less than that in the normal tube under the same work condition. The good hydrodynamic condition could be achieved when the optimized internal-ribbed tube is used in the heat transfer equipment because the self-compensating characteristics exist due to the reduction of frictional pressure drop. (authors)

  17. Effect of pressure on critical heat flux for water in an internally heated annulus

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi; Nishihara, Hideaki

    2004-01-01

    It was pointed out earlier that existing CHF correlations based upon data for annuli at high pressures did not reproduce CHF very well at the atmospheric pressure. It appears to be necessary to investigate CHF at intermediate pressures to interpret the apparent discrepancy between CHFs at high and low pressures. In view of this an experiment was performed to obtain more information on CHF at intermediate pressures and the effect of pressure was discussed in the present study. It was revealed from this study that the effect of pressure on the CHF in the range from 0.1 to 1 MPa could be explained by the annular flow boundary and the critical quality. (author)

  18. Design improvement for partial penetration welds of Pressurizer heater sleeves to head junctures

    International Nuclear Information System (INIS)

    Kim, Jin-Seon; Lee, Kyoung-Jin; Park, Tae-Jung; Kim, Moo-Yong

    2007-01-01

    ASME Code, Section III allows partial penetration welds for openings for instrumentation on which there are substantially no piping reactions and requires to have interference fit or limited diametral clearance between nozzles and vessel penetrations for the partial penetration welds. Pressurizer heater sleeves are nonaxisymmetrically attached on the hill-side of bottom head by partial penetration welds. The excessive stresses in the partial penetration weld regions of the heater sleeves are induced by pressure and thermal transient loads and also by the deformation due to manual welding process. The purpose of this study is 1) to improve design for the partial penetration welds between heater sleeves to head junctures, 2) to demonstrate the structural integrity according to the requirements of ASME Code, Section III and 3) to improve welding procedure considering the proposed design

  19. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  20. Design and Optimization of a Low Power Pressure Sensor for Wireless Biomedical Applications

    Directory of Open Access Journals (Sweden)

    J. Sosa

    2015-01-01

    (ADC are designed, optimized, and integrated in the same substrate using a commercial 1 μm CMOS technology. As result of the optimization, we obtained a digital sensor with high sensitivity, low noise (0.002 μV/Hz, and low power consumption (358 μW. Finally, the piezoresistance noise does not affect the pressure sensor application since its value is lower than half least significant bit (LSB of the ADC.

  1. Contribution to internal pressure and flammable gas concentration in RAM [radioactive material] transport packages

    International Nuclear Information System (INIS)

    Warrant, M.M.; Brown, N.

    1989-01-01

    Various facilities in the US generate wastes contaminated with transuranic (TRU) isotopes (such as plutonium and americium) that decay primarily by emission of alpha particles. The waste materials consist of a wide variety of commercially available plastics, paper, cloth, and rubber; concreted or sludge wastes containing water; and metals, glass, and other solid inorganic materials. TRU wastes that have surface dose rates of 200 mrem/hr or less are typically packaged in plastic bags placed inside metal drums or boxes that are vented through high efficiency particulate air (HEPA) filters. These wastes are to be transported from waste generation or storage sites to the Waste Isolation Pilot Plant (WIPP) in the TRUPACT-II, a Type B package. Radiolysis of organic wastes or packaging materials, or wastes containing water generates gas which may be flammable or simply contribute to the internal pressure of the radioactive material (RAM) transport package. This paper discusses the factors that affect the amount and composition of this gas, and summarizes maximum radiolytic G values (number of molecules produced per 100 eV absorbed energy) found in the technical literature for many common materials. These G values can be used to determine the combination of payload materials and decay heats that are safe for transport. G values are established for categories of materials, based on chemical functional groups. It is also shown using transient diffusion and quasi-equilibrium statistical mechanics methods that hydrogen, if generated, will not stratify at the top of the transport package void space. 9 refs., 1 tab

  2. Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.

    Science.gov (United States)

    Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng

    2004-08-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.

  3. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube

    International Nuclear Information System (INIS)

    Wang Jianguo; Li Huixiong; Guo Bin; Yu Shuiqing; Zhang Yuqian; Chen Tingkuan

    2009-01-01

    In the present paper, the forced convection heat transfer characteristics of water in a vertically upward internally ribbed tube at supercritical pressures were investigated experimentally. The six-head internally ribbed tube is made of SA-213T12 steel with an outer diameter of 31.8 mm and a wall thickness of 6 mm and the mean inside diameter of the tube is measured to be 17.6 mm. The experimental parameters were as follows. The pressure at the inlet of the test section varied from 25.0 to 29.0 MPa, and the mass flux was from 800 to 1200 kg/(m 2 s), and the inside wall heat flux ranged from 260 to 660 kW/m 2 . According to experimental data, the effects of heat flux and pressure on heat transfer of supercritical pressure water in the vertically upward internally ribbed tube were analyzed, and the characteristics and mechanisms of heat transfer enhancement, and also that of heat transfer deterioration, were also discussed in the so-called large specific heat region. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, may result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid makes the heat transfer deteriorated eventually and explains how this lighter fluid layer forms. It was found that the heat transfer characteristics of water at supercritical pressures were greatly different from the single-phase convection heat transfer at subcritical pressures. There are three heat transfer modes of water at supercritical pressures: (1) normal heat transfer, (2) deteriorated heat transfer with low HTC but high wall temperatures in comparison to the normal heat transfer, and (3) enhanced heat transfer with high HTC and low wall temperatures in comparison to the normal heat transfer. It was also found that the heat transfer deterioration at supercritical pressures was

  4. SATCAP-C : a program for thermal hydraulic design of pressurized water injection type capsule

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Someya, Hiroyuki; Asoh, Tomokazu; Niimi, Motoji

    1992-10-01

    There are capsules called 'Pressure Water Injection Type Capsule' as a kind of irradiation devices at the Japan Materials Testing Reactor (JMTR). A type of the capsules is a 'Boiling Water Capsule' (usually named BOCA). The other type is a 'Saturated Temperature Capsule' (named SATCAP). When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature so far as the water does not fully change to steam. These type capsules are designed on the basis of the conception of applying the water characteristic to the control of irradiation temperature of specimens in the capsules. In designing of the capsules in which the pressurized water is injected, thermal performances have to be understood as exactly as possible. It is not easy however to predict thermal performances such as axially temperature distribution of water injected in the capsule, because there are heat-sinks at both side of inner and outer of capsule casing as the result that the water is fluid. Then, a program (named SATCAP-C) for the BOCA and SATCAP was compiled to grasp the thermal performances in the capsules and has been used the design of the capsules and analysis of the data obtained from some actual irradiation capsules. It was confirmed that the program was effective in thermal analysis for the capsules. The analysis found out the values for heat transfer coefficients at various surfaces of capsule components and some thermal characteristics of capsules. (author)

  5. Designing safe and inclusive streets in India | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-11-17

    Nov 17, 2016 ... In fast-growing Indian cities such as Ahmedabad, streets are also the site of conflict. ... while instances of violence against women are partly linked to land ... by poor street design, and to develop people-centred alternatives.

  6. Two new planar coil designs for a high pressure radio frequency plasma source

    Science.gov (United States)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  7. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  8. MDEP Technical Report TR-CSWG-03. Technical Report: fundamental attributes for the design and construction of reactor coolant pressure-boundary components

    International Nuclear Information System (INIS)

    2014-01-01

    The primary, long-term goal of MDEP's CSWG is to achieve international harmonisation of codes and standards for pressure boundary components in nuclear power plants that are important to reactor safety. The key to achieving harmonisation is to understand the extent of similarities and differences amongst the pressure boundary codes and standards used in various countries. To assist the CSWG in its long-term goals, several standards development organisations (SDOs) from various countries performed a comparison of their pressure boundary codes and standards to identify the extent of similarities and differences in code requirements and the reasons for their differences. This CSWG document provides the fundamental attributes which have been developed for the codes and standards used in the design and construction of reactor coolant pressure boundary components in nuclear power plants. The fundamental attributes are the basic concepts to be considered in the design, materials, fabrication, installation, examination, testing and over-pressure protection requirements for pressure boundary components

  9. Design optimization of anisotropic pressure vessels with manufacturing uncertainties accounted for

    International Nuclear Information System (INIS)

    Walker, M.; Tabakov, P.Y.

    2013-01-01

    Accurate optimal design solutions for most engineering structures present considerable difficulties due to the complexity and multi-modality of the functional design space. The situation is made even more complex when potential manufacturing tolerances must be accounted for in the optimizing process. The present study provides an original in-depth analysis of the problem and then a new technique for determining the optimal design of engineering structures, with manufacturing tolerances accounted for, is proposed and demonstrated. The numerical examples used to demonstrate the technique involve the design optimization of anisotropic fibre-reinforced laminated pressure vessels. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus it is a worst-case scenario approach. A genetic algorithm with fitness sharing, including a micro-genetic algorithm, has been found to be very suitable to use, and implemented in the technique

  10. DRS // CUMULUS Oslo 2013. The 2nd International Conference for Design Education Researchers

    Directory of Open Access Journals (Sweden)

    Liv Merete Nielsen

    2012-08-01

    Full Text Available This international conference is a springboard for sharing ideas and concepts about contemporary design education research. Contributors are invited to submit research that deals with different facets of contemporary approaches to design education research. All papers will be double-blind peer-reviewed. This conference is open to research in any aspect and discipline of design education. Conference theme:Design Learning for Tomorrow - Design Education from Kindergarten to PhD

  11. Teaching interpersonal skills in an international design-build course

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Karhu, Markku; Christensen, Cecillia

    2011-01-01

    in that its chief purpose is to bring into focus the fact that students have to take an active part in the exercises as well as involve themselves in the interactive communication process. This is in stark contrast to a teacher giving lectures about communication, leaving the students passive listeners......The Technical University of Denmark (DTU) and Helsinki Metropolia University of Applied Sciences (Metropolia) started the CDIO concept in the autumn of 2008. The aim with this was to reform the B.Sc. courses to guide students to become better and more efficient engineers. The working conditions...... of an International Communication Course for the engineering students and to emphasize the importance of including a course like this into the CDIO concept, to be worked on in the process of further development. The course described in this paper is a strictly non-engineering course in communication; it is special...

  12. Design and Optimization of Resorbable Silk Internal Fixation Devices

    Science.gov (United States)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed

  13. Analysis of international content of ranked nursing journals in 2005 using ex post facto design.

    Science.gov (United States)

    Dougherty, Molly C; Lin, Shu-Yuan; McKenna, Hugh P; Seers, Kate; Keeney, Sinead

    2011-06-01

    The purpose of this study was to examine articles in ISI-ranked nursing journals and to analyse the articles and journals, using definitions of international and article content. Growing emphasis on global health includes attention on international nursing literature. Contributions from Latin America and Africa have been reported. Attention to ranked nursing journals to support scholarship in global health is needed. Using an ex post facto design, characteristics of 2827 articles, authors and journals of 32 ranked nursing journals for the year 2005 were analysed between June 2006 and June 2007. Using definitions of international and of article content, research questions were analysed statistically. (a) 928 (32·8%) articles were international; (b) 2016 (71·3%) articles were empirical or scholarly; (c) 826 (89·3%) articles reflecting international content were scholarly or empirical; (d) among international articles more were empirical (66·3 % vs. 32·8 %; χ(2) ((1)) = 283·6, P international articles more were scholarly (29·2 % vs. 22·7 %; χ(2) ((1)) = 15·85, P international, based on author characteristics; (f) 20 (62·5 %) journals were led by an international editorial team; and (g) international journals had more international articles (3·6 % vs. 29·2 %; χ(2) ((1)) = 175·75, P international journals (t = -14·43, P international journals. Results indicate the need to examine the international relevance of the nursing literature. © 2011 Blackwell Publishing Ltd.

  14. The design of the Work Programme in international context

    OpenAIRE

    Finn, Dan

    2011-01-01

    This report compares the design and procurement of the Work Programme (WP) with pertinent experience in Australia, the USA and the Netherlands. It considers the risks in the implementation of performance based contracts, their implications for the WP, and their address in the other countries. The review finds that contract and procurement systems in the comparator countries have been in flux as policy makers have sought to secure the advantages of contracting out whilst minimising attendant r...

  15. Optimal closed-loop identification test design for internal model control

    NARCIS (Netherlands)

    Zhu, Y.; Bosch, van den P.P.J.

    2000-01-01

    In this work, optimal closed-loop test design for control is studied. Simple design formulas are derived based on the asymptotic theory of Ljung. The control scheme used is internal model control (IMC) and the design constraint is the power of the process output or that of the reference signal. The

  16. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-01-01

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal

  17. Outcome-driven thresholds for home blood pressure measurement: international database of home blood pressure in relation to cardiovascular outcome.

    Science.gov (United States)

    Niiranen, Teemu J; Asayama, Kei; Thijs, Lutgarde; Johansson, Jouni K; Ohkubo, Takayoshi; Kikuya, Masahiro; Boggia, José; Hozawa, Atsushi; Sandoya, Edgardo; Stergiou, George S; Tsuji, Ichiro; Jula, Antti M; Imai, Yutaka; Staessen, Jan A

    2013-01-01

    The lack of outcome-driven operational thresholds limits the clinical application of home blood pressure (BP) measurement. Our objective was to determine an outcome-driven reference frame for home BP measurement. We measured home and clinic BP in 6470 participants (mean age, 59.3 years; 56.9% women; 22.4% on antihypertensive treatment) recruited in Ohasama, Japan (n=2520); Montevideo, Uruguay (n=399); Tsurugaya, Japan (n=811); Didima, Greece (n=665); and nationwide in Finland (n=2075). In multivariable-adjusted analyses of individual subject data, we determined home BP thresholds, which yielded 10-year cardiovascular risks similar to those associated with stages 1 (120/80 mm Hg) and 2 (130/85 mm Hg) prehypertension, and stages 1 (140/90 mm Hg) and 2 (160/100 mm Hg) hypertension on clinic measurement. During 8.3 years of follow-up (median), 716 cardiovascular end points, 294 cardiovascular deaths, 393 strokes, and 336 cardiac events occurred in the whole cohort; in untreated participants these numbers were 414, 158, 225, and 194, respectively. In the whole cohort, outcome-driven systolic/diastolic thresholds for the home BP corresponding with stages 1 and 2 prehypertension and stages 1 and 2 hypertension were 121.4/77.7, 127.4/79.9, 133.4/82.2, and 145.4/86.8 mm Hg; in 5018 untreated participants, these thresholds were 118.5/76.9, 125.2/79.7, 131.9/82.4, and 145.3/87.9 mm Hg, respectively. Rounded thresholds for stages 1 and 2 prehypertension and stages 1 and 2 hypertension amounted to 120/75, 125/80, 130/85, and 145/90 mm Hg, respectively. Population-based outcome-driven thresholds for home BP are slightly lower than those currently proposed in hypertension guidelines. Our current findings could inform guidelines and help clinicians in diagnosing and managing patients.

  18. Proceedings of the International Symposium on Optimum Structural Design,

    Science.gov (United States)

    1981-01-01

    problemA posed in Eqs. ing fixes the relative size of some preselect- I and 2 i4 that o dinding the corAect set ed group of finite elements. The reduced oJ...optimal design are very hard to be cements), the analytical formulations shown in the fo- investigated. regoing ar very simplified t appears worth...scalar r that is not an eigenvalue of reduced somewhat by noting that (2), we consider the matrix -1 -1 A [D + (m - rk)P NP ’ ]/k 2-28 which leads to

  19. SCW Pressure-Channel Nuclear Reactors: Some Design Features and Concepts

    International Nuclear Information System (INIS)

    Duffey, R.B.; Pioro, I.L.; Gabaraev, B.A.; Kuznetsov, Yu. N.

    2006-01-01

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950's and 1960's in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with supercritical water (SCW) became attractive again as the ultimate development path for water-cooling. The main objectives of using SCW in nuclear reactors are 1) to increase the thermal efficiency of modern nuclear power plants (NPPs) from 33 -- 35% to about 40 -- 45%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (∼$ 1000 US/kW). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625 deg. C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia. Design features related to both channels and fuel bundles are discussed in this paper. Also, Russian experience with operating supercritical steam heaters at NPP is presented. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal energy systems. (authors)

  20. Optimization of core reload design for low leakage fuel management in pressurized water reactors

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1986-01-01

    A new method was developed to optimize pressurized water reactor core reload design for low leakage fuel management, a strategy recently adopted by most utilities to extend cycle length and mitigate pressurized thermal shock concerns. The method consists of a two-stage optimization process which provides the maximum cycle length for a given fresh fuel loading subject to power peaking constraints. In the first stage, a best fuel arrangement is determined at the end of cycle in the absence of burnable poisons. A direct search method is employed in conjunction with a constant power, Haling depletion. In the second stage, the core control poison requirements are determined using a linear programming technique. The solution provides the fresh fuel burnable poison loading required to meet core power peaking constraints. An accurate method of explicitly modeling burnable absorbers was developed for this purpose. The design method developed here was implemented in a currently recognized fuel licensing code, SIMULATE, that was adapted to the CYBER-205 computer. This methodology was applied to core reload design of cycles 9 and 10 for the Commonwealth Edison Zion, Unit-1 Reactor. The results showed that the optimum loading pattern for cycle 9 yielded almost a 9% increase in the cycle length while reducing core vessel fluence by 30% compared with the reference design used by Commonwealth Edison

  1. High-frequency bottom-pressure and acoustic variations in a sea strait: internal wave turbulence

    NARCIS (Netherlands)

    van Haren, H.

    2012-01-01

    During a period of 3 days, an accurate bottom-pressure sensor and a four-beam acoustic Doppler current profiler (ADCP) were mounted in a bottom frame at 23 m in a narrow sea strait with dominant near-rectilinear tidal currents exceeding 1 m s(-1) in magnitude. The pressure record distinguishes small

  2. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger Ray

    2002-08-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing an overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  3. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.R.

    2002-05-15

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  4. Entombment Using Cementitious Materials: Design Considerations and International Experience

    International Nuclear Information System (INIS)

    Seitz, R.R.

    2002-01-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective

  5. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2018-02-01

    Full Text Available To meet the radiosonde requirement of high sensitivity and linearity, this study designs and implements a monolithically integrated array-type piezoresistive intelligent pressure sensor system which is made up of two groups of four pressure sensors with the pressure range of 0–50 kPa and 0–100 kPa respectively. First, theoretical models and ANSYS (version 14.5, Canonsburg, PA, USA finite element method (FEM are adopted to optimize the parameters of array sensor structure. Combing with FEM stress distribution results, the size and material characteristics of the array-type sensor are determined according to the analysis of the sensitivity and the ratio of signal to noise (SNR. Based on the optimized parameters, the manufacture and packaging of array-type sensor chips are then realized by using the standard complementary metal-oxide-semiconductor (CMOS and microelectromechanical system (MEMS process. Furthermore, an intelligent acquisition and processing system for pressure and temperature signals is achieved. The S3C2440A microprocessor (Samsung, Seoul, Korea is regarded as the core part which can be applied to collect and process data. In particular, digital signal storage, display and transmission are realized by the application of a graphical user interface (GUI written in QT/E. Besides, for the sake of compensating the temperature drift and nonlinear error, the data fusion technique is proposed based on a wavelet neural network improved by genetic algorithm (GA-WNN for average measuring signal. The GA-WNN model is implemented in hardware by using a S3C2440A microprocessor. Finally, the results of calibration and test experiments achieved with the temperature ranges from −20 to 20 °C show that: (1 the nonlinear error and the sensitivity of the array-type pressure sensor are 8330 × 10−4 and 0.052 mV/V/kPa in the range of 0–50 kPa, respectively; (2 the nonlinear error and the sensitivity are 8129 × 10−4 and 0.020 mV/V/kPa in the

  6. Aspects of the design and structural analysis of the prestressed cast iron nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Thomas, R.G.

    1978-09-01

    The development of the prestressed cast iron nuclear reactor pressure vessel up to the present time is reviewed, and the current status is outlined of the techniques used for its structural analysis. Details of the manufacturing processes involved in the production of the castings, and problems of inspecting them to the standards required for a nuclear application are discussed. A method for the detailed modelling of the cast iron segments is proposed, using the finite element technique with plate bending elements, and criteria for obtaining accurate results are derived. The application of the technique to the analysis of a single cast segment situated in the wall of a PCIPV has enabled an accurate determination of the stress field to be made. Account is taken of the effect of the vessel displacements on the tendon stresses at normal vault pressure and at high overpressure. Studies by this method of several different casting designs have identified favourable features, which have been incorporated into an optimised design. The sensitivity of the structure to a machining error in a casting and to the failure or removal of circumferential and axial tendons is examined, making use of axisymmetric and three-dimensional global finite element solutions to provide boundary conditions for detailed local analyses. Some aspects of the economics of the cast iron reactor pressure vessel are discussed, and recommendations are made for further research in areas relevant to the assessment of the reliability of the vessel. (author)

  7. Reactor pressure vessel embrittlement of NPP borssele: Design lifetime and lifetime extension

    International Nuclear Information System (INIS)

    Blom, F.J.

    2007-01-01

    Embrittlement of the reactor pressure vessel of the Borssele nuclear power plant has been investigated taking account of the design lifetime of 40 years and considering 20 years subsequent lifetime extension. The paper presents the current licensing status based on considerations of material test data and of US nuclear regulatory standards. Embrittlement status is also evaluated against German and French nuclear safety standards. Results from previous fracture toughness and Charpy tests are investigated by means of the Master curve toughness transition approach. Finally, state of the art insights are investigated by means of literature research. Regarding the embrittlement status of the reactor pressure vessel of Borssele nuclear power plant it is concluded that there is a profound basis for the current license up to the original end of the design life in 2013. The embrittlement temperature changes only slightly with respect to the acceptance criterion adopted postulating further operation up to 2033. Continued safe operation and further lifetime extension are therefore not restricted by reactor pressure vessel embrittlement

  8. Perceived social pressures and the internalization of the mesomorphic ideal: The role of drive for muscularity and autonomy in physically active men.

    Science.gov (United States)

    Edwards, Christian; Tod, David; Molnar, Gyozo; Markland, David

    2016-03-01

    We examined if there were both direct and indirect relationships (via the drive for muscularity) between the perceived pressure to be muscular and internalization of the mesomorphic ideal, and if autonomy moderates these relationships in physically active men. A sample of 330 men, who were undergraduate students studying sport, completed the Behavioral Regulation in Exercise Questionnaire-2, the Mesomorphic Ideal Internalization subscale of the revised male version Sociocultural Attitudes Toward Appearance Questionnaire, the Perceived Sociocultural Pressure Scale-Modified, and the Drive for Muscularity Scale Attitudes subscale. Perceived pressure predicted internalization directly, and indirectly through the drive for muscularity. The direct relationship between pressure and internalization was weaker under higher levels of autonomy. The indirect path, via drive for muscularity, was stronger under higher levels of autonomy. These results provide insights into why men vary in the degree to which they internalize pressure to develop a mesomorphic ideal, supporting further examination of autonomy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Stresses in reinforced nozzle-cylinder attachments under internal pressure loading analyzed by the finite-element method: a parameter study

    International Nuclear Information System (INIS)

    Bryson, J.W.; Johnson, W.G.; Bass, B.R.

    1977-01-01

    A parameter study was conducted on stresses in reinforced nozzle-to-cylinder attachments under internal pressure loading as analyzed by the finite-element method. Twenty-five models with branch-to-run diameter ratios 0.08 less than or equal to d/D less than or equal to 0.50 and run diameter-to-thickness ratios 10 less than or equal to D/T less than or equal to 100 were investigated. A three-dimensional finite-element program, CORTES-SA, which was developed at the University of California at Berkeley specifically for analyzing tee-joint configurations, was used in the study. It was concluded from the study that both of the reinforcement designs investigated significantly reduce maximum stresses relative to configurations having little or no reinforcement. For internal pressure loading, neither of the reinforcement designs offered a significant advantage over the other in that both types of reinforcement gave very nearly the same maximum stresses

  10. Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    Science.gov (United States)

    Kezirian, Michael; Cook, Anthony; Dick, Brandon; Phoenix, S. Leigh

    2012-01-01

    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress.

  11. Design of an integral missile shield in integrated head assembly for pressurized water reactor at commercial nuclear plants

    International Nuclear Information System (INIS)

    Baliga, Ravi; Watts, Tom Neal; Kamath, Harish

    2015-01-01

    In ICONE22, the authors presented the Integrated Head Assembly (IHA) design concept implemented at Callaway Nuclear Power Plant in Missouri, USA. The IHA concept is implemented to reduce the outage duration and the associated radiation exposure to the workers by reducing critical path time during Plant Refueling Outage. One of the head area components in the IHA is a steel missile shield designed to protect the Control Rod Drive Mechanism (CRDM) assembly from damaging other safety-related components in the vicinity in the Containment. Per Federally implemented General Design Criteria for commercial nuclear plants in the USA, the design of Nuclear Steam Supply System (NSSS) must provide protection from the damages caused by a postulated event of CRDM housing units and their associated parts disengaging from the reactor vessel assembly. This event is considered as a Loss of Coolant Accident (LOCA) and assumes that once the CRDM housing unit and their associated parts disengage from the reactor vessel internals assembly, they travel upward by the water jet with the following sequence of events: Per Reference 1, the drive shaft and control rod cluster are forced out of the reactor core by the differential pressure across the drive shaft with the assumption that the drive shaft and control rod cluster, latched together, are fully inserted when the accident occurs. After the travel, the rod cluster control spider will impact the lower side of the upper support plate inside the reactor vessel fracturing the flexure arms in the joint freeing the drive shaft from the control rod cluster. The control rod cluster is stopped by the upper support plate and will remain below the upper support plate during this accident. However, the drive shaft will continue to accelerate in the upward direction until it is stopped by a safety feature in the IHA. The integral missile shield as a safety feature in the IHA is designed to stop the CRDM drive shaft from moving further up in the

  12. Ninth regular meeting of the International Working Group on Reliability of Reactor Pressure Components, Vienna, 18-20 October 1988

    International Nuclear Information System (INIS)

    1990-04-01

    The 9th regular meeting of the International Working Group on Reliability of Pressure Components took place from 18-20 October 1988 at the Agency's Headquarters. The meeting was attended by 25 representatives from 19 Member States and International Organizations. The agenda of the meeting included overviews of the national activities in the field of pressure retaining components of PWRs, review of the past IWGRRPC activities and updating of the working plan for years 1989-1992. A great deal of attention was paid to the involvement of the IWGRRPC in the Agency's programme on nuclear power plant ageing and life extension. Members of the IWGRRPC reviewed the long term plan of the activities and proposed a provisional list and scope of the IAEA Specialists' Meetings planned for the period 1989-1992. Seventeen papers were presented at the meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. Institutionalising Design Education and Design Promotion in Australia: From Early British Influences to Wider International Engagement

    Science.gov (United States)

    Jackson, Simon

    2016-01-01

    Industrial design has grown in Australia from a series of unnamed activities clustered about an emerging 19th century manufacturing industry into a recognised profession. This transformation largely occurred because of the emergence of specific design education and the support offered by professional design associations. Designers working for the…

  14. High-temperature deformation and rupture behavior of internally-pressurized Zircaloy-4 cladding in vacuum and steam enivronments

    International Nuclear Information System (INIS)

    Chung, H.M.; Garde, A.M.; Kassner, T.F.

    1977-01-01

    The high-temperature diametral expansion and rupture behavior of Zircaloy-4 fuel-cladding tubes have been investigated in vacuum and steam environments under transient-heating conditions that are of interest in hypothetical loss-of-coolant accident situations in light-water reactors. The effects of internal pressure, heating rate, axial constraint, and localized temperature nonuniformities in the cladding on the maximum circumferential strain have been determined for burst temperatures between approximately 650 and 1350 0 C

  15. Seventh regular meeting of the International Working Group on Reliability of Reactor Pressure Components, Vienna, 3-5 September 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The seventh regular meeting of the IAEA International Working Group on Reliability of Reactor Pressure Components was held at the Agency's Headquarters in Vienna from 3 to 5 September 1985. The representatives of Member States and of the Commission of the European Communities reported the status of the research programmes in this field (12 presentations). A separate abstract was prepared for each of the presentations

  16. Buckling calculations with the CEASEMT system for elliptical heads subjected to an internal pressure. Comparison with the Saclay experiments

    International Nuclear Information System (INIS)

    Bung, Hariddh; Alix, Michel; Hoffmann, Alain.

    1980-06-01

    In this paper, Buckling calculations with the CEASEMT System (INCA) are compared with experimental results obtained on elliptical heads subjected to an internal pressure. Tests were performed with 18 ellipsoidal heads welded on cylinders made of carbon steel A 36-401, stainless steel Z6CN18-09 and aluminium-magnesium alloys (AG3). Experimental data are higher than calculated data, this leads to a good safety factor [fr

  17. Internal helical modes with m > 1 in a tokamak with a small shear and high plasma pressure

    International Nuclear Information System (INIS)

    Mikha lovskij, A.B.; Aburdzhaniya, G.D.; Krymskij, A.M.

    1979-01-01

    Internal helical modes with m>1 in a circular cross-section tokamak with a small shear and large value of the parameter β (β is the ratio between the mean plasma pressure and the mean pressure of the poloidal magnetic field) are investigated. The equations obtained are used to study the destabilizing effects leading to helical instabilities. The role of destabilizing effects is regarded both in local and in a nonlocal approximations on the assumption that the radial plasma pressure is distributed parabolically and that the radial current distribution is also parabolic though slightly varying. It has been established that the profiling of current may lead to the tokamak plasma stability with respect to the modes under investigation. A tokamak with a small shear has been shown to be more stable relative to these modes than that with a large shear

  18. Research on the internal pressure behavior of metal gas distribution pipelines with different types of tubing defects

    Directory of Open Access Journals (Sweden)

    Filip Stefan Mihai

    2017-01-01

    Full Text Available The paper aims to approach an important subject related to natural gas distribution networks which, depending on the expansion of the localities, are composed of intercommunicating pipes, pressure reducing stations and branch connections fittings. The urban networks are the most complex ones and the rural areas networks are the simplest. However, irrespective of their installation, they must meet the safety operating requirements as much as possible. According to standards, all these components must be tight and pressure resistant. In this regard, we intend to approach a very important issue related to the behavior of the tubular steel material showing corrosion and/or material defects, and to the internal stress caused by the gas pressure on the walls of the tubing material.

  19. Prognosis of white-coat and masked hypertension: International Database of HOme blood pressure in relation to Cardiovascular Outcome.

    Science.gov (United States)

    Stergiou, George S; Asayama, Kei; Thijs, Lutgarde; Kollias, Anastasios; Niiranen, Teemu J; Hozawa, Atsushi; Boggia, José; Johansson, Jouni K; Ohkubo, Takayoshi; Tsuji, Ichiro; Jula, Antti M; Imai, Yutaka; Staessen, Jan A

    2014-04-01

    Home blood pressure monitoring is useful in detecting white-coat and masked hypertension and is recommended for patients with suspected or treated hypertension. The prognostic significance of white-coat and masked hypertension detected by home measurement was investigated in 6458 participants from 5 populations enrolled in the International Database of HOme blood pressure in relation to Cardiovascular Outcomes. During a median follow-up of 8.3 years, 714 fatal plus nonfatal cardiovascular events occurred. Among untreated subjects (n=5007), cardiovascular risk was higher in those with white-coat hypertension (adjusted hazard ratio 1.42; 95% CI [1.06-1.91]; P=0.02), masked hypertension (1.55; 95% CI [1.12-2.14]; P<0.01) and sustained hypertension (2.13; 95% CI [1.66-2.73]; P<0.0001) compared with normotensive subjects. Among treated patients (n=1451), the cardiovascular risk did not differ between those with high office and low home blood pressure (white-coat) and treated controlled subjects (low office and home blood pressure; 1.16; 95% CI [0.79-1.72]; P=0.45). However, treated subjects with masked hypertension (low office and high home blood pressure; 1.76; 95% CI [1.23-2.53]; P=0.002) and uncontrolled hypertension (high office and home blood pressure; 1.40; 95% CI [1.02-1.94]; P=0.04) had higher cardiovascular risk than treated controlled patients. In conclusion, white-coat hypertension assessed by home measurements is a cardiovascular risk factor in untreated but not in treated subjects probably because the latter receive effective treatment on the basis of their elevated office blood pressure. In contrast, masked uncontrolled hypertension is associated with increased cardiovascular risk in both untreated and treated patients, who are probably undertreated because of their low office blood pressure.

  20. Design of the US-CRBRP sodium/water reaction pressure relief system

    International Nuclear Information System (INIS)

    Kruger, G.B.; Murdock, T.B.; Rodwell, E.; Sane, J.O.

    1976-01-01

    Protection against intermediate sodium system overpressure from the sodium/water reaction associated with large leaks within the CRBRP Steam Generators is provided by the sodium/water reaction pressure relief system (SWRPRS). This system consists of rupture disks connected to the intermediate sodium piping adjacent to the inlet to the superheater and outlet from the evaporator modules. The rupture discs relieve into piping that leads to reaction produce separator tanks, which in turn are vented to a centrifugal separator and flare stack arranged to burn hydrogen gas exhausting into the atmosphere. Analyses have been conducted using the TRANSWRAP Computer Code to predict the system pressures and flow rates during the large leak event. Experimental tests to be conducted in the large leak test rig (LLTR) will be used to confirm the analysis techniques used in the design