WorldWideScience

Sample records for internal cooling passages

  1. Shape design of internal cooling passages within a turbine blade

    Science.gov (United States)

    Nowak, Grzegorz; Nowak, Iwona

    2012-04-01

    The article concerns the optimization of the shape and location of non-circular passages cooling the blade of a gas turbine. To model the shape, four Bezier curves which form a closed profile of the passage were used. In order to match the shape of the passage to the blade profile, a technique was put forward to copy and scale the profile fragments into the component, and build the outline of the passage on the basis of them. For so-defined cooling passages, optimization calculations were carried out with a view to finding their optimal shape and location in terms of the assumed objectives. The task was solved as a multi-objective problem with the use of the Pareto method, for a cooling system composed of four and five passages. The tool employed for the optimization was the evolutionary algorithm. The article presents the impact of the population on the task convergence, and discusses the impact of different optimization objectives on the Pareto optimal solutions obtained. Due to the problem of different impacts of individual objectives on the position of the solution front which was noticed during the calculations, a two-step optimization procedure was introduced. Also, comparative optimization calculations for the scalar objective function were carried out and set up against the non-dominated solutions obtained in the Pareto approach. The optimization process resulted in a configuration of the cooling system that allows a significant reduction in the temperature of the blade and its thermal stress.

  2. Airfoil, platform, and cooling passage measurements on a rotating transonic high-pressure turbine

    Science.gov (United States)

    Nickol, Jeremy B.

    An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other

  3. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  4. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  5. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out...... and locations, using VC as a mean of indoor comfort improvement. The building-spreadsheet highlights distributions of technologies and strategies, such as the following. (Numbers in % refer to the sample of the database’s 91 buildings.) It may be concluded that Ventilative Cooling is applied in temporary......, systematically investigating the distribution of technologies and strategies within VC. The database is structured as both a ticking-list-like building-spreadsheet and a collection of building-datasheets. The content of both closely follows Annex 62 State-Of-The- Art-Report. The database has been filled, based...

  6. Experimental investigation of heat transfer and flow using V and broken V ribs within gas turbine blade cooling passage

    Science.gov (United States)

    Kumar, Sourabh; Amano, R. S.

    2015-05-01

    Gas turbines are extensively used for aircraft propulsion, land-based power generation, and various industrial applications. With an increase in turbine rotor inlet temperatures, developments in innovative gas turbine cooling technology enhance the efficiency and power output; these advancements of turbine cooling have allowed engine designs to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream of gas are based on an increase in the heat transfer areas and on the promotion of turbulence of the cooling flow. In this study, an improvement in performance is obtained by casting repeated continuous V- and broken V-shaped ribs on one side of the two pass square channels into the core of the blade. A detailed experimental investigation is done for two pass square channels with a 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for a steady state experiment. Four different combinations of 60° V- and broken 60° V-ribs in a channel are considered. A series of thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for Reynolds numbers 16,000, 56,000 and 85,000 within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the rib. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. A series of experimental measurements is performed to predict the overall performance of the channel. This paper presents an attempt to collect information about the Nusselt number, the pressure drop and the overall performance of the eight different ribbed ducts at the specified Reynolds number. The main contribution of this study is to evaluate the best combination of rib arrangements

  7. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Science.gov (United States)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  8. Internally cooled V-shape inclined monochromator

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2008-01-01

    Roč. 15, - (2008), 8-11 ISSN 0909-0495 R&D Projects: GA AV ČR IAA100100716 Grant - others:VEGA(SK) 1/4134/07 Institutional research plan: CEZ:AV0Z10100522 Keywords : inclined monochromator * heat load * internal cooling Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.333, year: 2008

  9. Response of upper ocean cooling off northeastern Taiwan to typhoon passages

    Science.gov (United States)

    Zheng, Zhe-Wen; Zheng, Quanan; Gopalakrishnan, Ganesh; Kuo, Yi-Chun; Yeh, Ting-Kuang

    2017-07-01

    A comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted. Using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated. In addition to Kuroshio intrusion, the present study demonstrates another important mechanism of typhoon induced near-inertial currents over the continental shelf of East China Sea, which can also trigger a distinct cooling (through entrainment mixing) within this region. Results indicate that the processes of typhoon inducing distinct cooling off northeastern Taiwan are conditional phenomena (only ∼12% of typhoons passing Taiwan triggered extreme cooling there). Subsequently, by executing a series of sensitivity experiments and systematic analyses on the behaviors and background conditions of all those typhoon cases, key criteria determining the occurrences of cooling through both mechanisms were elucidated. Occurrences of cooling through the Kuroshio intrusion mechanism are determined mainly by the strength of the local wind over northeastern Taiwan. A distinct cooling triggered by enhanced near-inertial currents is shown to be associated with the process of wind-current resonance. Both processes of Kuroshio intrusion and enhanced near-inertial currents are dominated by wind forcing rather than upper oceanic conditions. Based on the recent findings on the possible dynamic linkage between sea surface temperature near northeast Taiwan and local weather systems, the results elucidated in this study lay the foundation for further improvement in the regional weather prediction surrounding northeast Taiwan.

  10. Investigation of heat transfer and flow using ribs within gas turbine blade cooling passage: Experimental and hybrid LES/RANS modeling

    Science.gov (United States)

    Kumar, Sourabh

    Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped ribs on one side of the two pass square channel into the core of blade. Despite extensive research on ribs, only few papers have validated the numerical data with experimental results in two pass channel. In the present study, detailed experimental investigation is carried out for two pass square channels with 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for steady state experiment. Four different combinations of 60° and Broken 60° V ribs in channel are considered. Thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for various Reynolds numbers, within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the ribs with. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. Computational Fluid Dynamics (CFD) simulations were carried out for the same geometries using different turbulence models such as k-o Shear stress transport (SST) and Reynolds stress model (RSM). These CFD simulations were based on advanced computing in order to improve the accuracy of three dimensional metal

  11. Effect of turbulence intensity on cross-injection film cooling at a stepped or smooth endwall of a gas turbine vane passage.

    Science.gov (United States)

    Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua

    2014-01-01

    This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  12. Effect of Turbulence Intensity on Cross-Injection Film Cooling at a Stepped or Smooth Endwall of a Gas Turbine Vane Passage

    Directory of Open Access Journals (Sweden)

    Pey-Shey Wu

    2014-01-01

    Full Text Available This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I.=1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20×104 , 1.24×105, and  1.50×105, three blowing ratios (0.5, 1.0, and 2.0, and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step. Thermochromic liquid crystal (TLC technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  13. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  14. Superconducting solenoids for an international muon cooling experiment

    International Nuclear Information System (INIS)

    Green, M.A.; Rey, J.M.

    2002-01-01

    The international muon ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the muons to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the muons putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the muon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about 1 part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling

  15. Status of the International Muon Ionization Cooling Experiment (MICE)

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Zisman, Michael S.

    2007-01-01

    An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory (RAL) in 2007. The experiment comprises one cell of the Study II cooling channel [1], along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1 percent. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including cooling channel hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and their spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting Focus Coil solenoids, 201-MHz normal conducting RF cavities, and their surrounding Coupling Coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this is discussed

  16. STATUS OF THE INTERNATIONAL MUON IONIZATION COOLING EXPERIMENT(MICE)

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2007-01-01

    An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory (RAL) in 2007. The experiment comprises one cell of the Study II cooling channel [1], along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1%. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including cooling channel hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and their spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting Focus Coil solenoids, 201-MHz normal-conducting RF cavities, and their surrounding Coupling Coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this is discussed

  17. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  18. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  19. [Fluid dynamics of supercritical helium within internally cooled cabled superconductors

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1995-01-01

    The Applied Superconductivity Center of the University of Wisconsin-Madison proposes to conduct research on low temperature helium fluid dynamics as it applies to the cooling of internally cooled cabled superconductors (ICCS). Such conductors are used in fusion reactor designs including most of the coils in ITER. The proposed work is primarily experimental involving measurements of transient and steady state pressure drop in a variety of conductor configurations. Both model and prototype conductors for actual magnet designs will be investigated. The primary goal will be to measure and model the friction factor for these complex geometries. In addition, an effort will be made to study transient processes such as heat transfer and fluid expulsion associated with quench conditions

  20. Sand transport in a two pass internal cooling duct with rib turbulators

    International Nuclear Information System (INIS)

    Singh, Sukhjinder; Tafti, Danesh; Reagle, Colin; Delimont, Jacob; Ng, Wing; Ekkad, Srinath

    2014-01-01

    Highlights: • Highest particle impingement observed in the bend and first quarter of 2nd pass. • Average particle impingement per pitch is 28% higher in the second pass. • Rib faces are by far the most susceptible to particle impingement. • Particle impingement is sensitive to particle size. • Particle impingement is sensitive to wall collision model used. - Abstract: Jet engines often operate under dirty conditions where large amounts of particulate matter can be ingested, especially, sand, ash and dirt. Particulate matter in different engine components can lead to degradation in performance. The focus of this study is to investigate the sand transport and deposition in the internal cooling passages of turbine blades. A two pass stationary square duct with rib turbulators subjected to sand ingestion is studied using Large Eddy Simulations (LES). Each pass has ribs on two opposite walls and aligned normal to the main flow direction. The rib pitch to rib height (P/e) is 9.28, the rib height to channel hydraulic diameter (e/D h ) is 0.0625 and calculations have been carried out for a bulk Reynolds number of 25,000. Particle sizes in the range 0.5–25 μm are considered, with the same size distribution as found in Arizona Road Dust (medium). Large Eddy Simulation (LES) with a wall-model is used to model the flow and sand particles are modeled using a discrete Lagrangian framework. Results quantify the distribution of particle impingement density on all surfaces. Highest particle impingement density is found in the first quarter section of the second pass after the 180° turn, where the recorded impingement is more than twice that of any other region. It is also found that the average particle impingement per pitch is 28% higher in the second pass than the first pass. Results show lower particle tendency to impact the region immediately behind the rib in the first pass compared to the second pass where particle impingement is more uniform in the region

  1. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    Science.gov (United States)

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  2. Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm

    Science.gov (United States)

    Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.

    2014-08-26

    An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.

  3. Application of internally cooled superconductors to tokamak fusion reactors

    International Nuclear Information System (INIS)

    Materna, P.A.

    1986-01-01

    Recent proposals for ignition tokamaks containing superconductors are reviewed. As the funding prospects for the U.S. fusion program have worsened, the proposed designs have been shrinking to smaller machines with less ambitious goals. The most recent proposal, the Tokamak Fusion Core Experiment (TFCX), was based on internally cooled cabled Nb 3 Sn conductors for the options which used superconductors. Internally cooled conductors are particularly advantageous in their electrical insulating properties and in the similarity of their winding procedures to those of conventional copper coils. Epoxy impregnation is possible and is advantageous both structurally and electrically. The allowable current density for this type of conductor was shown to be larger than the current density for more conventional superconducting technology. The TFCX effort identified research and development needed in advance of TFCX or any other large ignition machine. These topics include the metal used for the conduit; nuclear effects on materials; properties of electrical and thermal insulators; extension of superconducting technology to the sizes of coils envisioned and to the field level envisioned; pulsed coil superconducting technology; joints and insulating breaks in conductors; heat removal or flow path length limitations; mechanical behavior of potted conductor bundles; instrumentation; and fault modes and various questions integrated with overall machine design

  4. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  5. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  6. Internal target effects in ion storage rings with beam cooling

    International Nuclear Information System (INIS)

    Gostishchev, Vitaly

    2008-06-01

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  7. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  8. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  9. Optimizing the multicycle subrotational internal cooling of diatomic molecules

    Science.gov (United States)

    Aroch, A.; Kallush, S.; Kosloff, R.

    2018-05-01

    Subrotational cooling of the AlH+ ion to the miliKelvin regime, using optimally shaped pulses, is computed. The coherent electromagnetic fields induce purity-conserved transformations and do not change the sample temperature. A decrease in a sample temperature, manifested by an increase of purity, is achieved by the complementary uncontrolled spontaneous emission which changes the entropy of the system. We employ optimal control theory to find a pulse that stirs the system into a population configuration that will result in cooling, upon multicycle excitation-emission steps. The obtained optimal transformation was shown capable to cool molecular ions to the subkelvins regime.

  10. International working group on gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-15

    The purpose of the meeting was to provide a forum for exchange of information on safety and licensing aspects for gas-cooled reactors in order to provide comprehensive review of the present status and of directions for future applications and development. Contributions were made concerning the operating experience of the Fort St. Vrain (FSV) HTGR Power Plant in the United States of America, the experimental power station Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany, and the CO/sub 2/-cooled reactors in the United Kingdom such as Hunterson B and Hinkley Point B. The experience gained at each of these reactors has proved the high safety potential of Gas-cooled Reactor Power Plants.

  11. Computer simulation of multiple stability regions in an internally cooled superconducting conductor and of helium replenishment in a bath-cooled conductor

    International Nuclear Information System (INIS)

    Turner, L.R.; Shindler, J.

    1984-09-01

    For upcoming fusion experiments and future fusion reactors, superconducting magnetic have been chosen or considered which employ cooling by pool-boiling HeI, by HeII, and by internally flowing HeI. The choice of conductor and cooling method should be determined in part by the response of the magnet to sudden localized heat pulses of various magnitudes. The paper describes the successful computer simulation of multiple stability in internally cooled conductors, as observed experimentally, using the computer code SSICC. It also describes the modeling of helium replenishment in the cooling channels of a bath-cooled conductor, using the computer code TASS

  12. Status of the international Muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Palladino, V.; Bonesini, M.

    2009-01-01

    Muon ionization cooling provides the only practical solution to prepare high brilliance beams necessary for a neutrino factory or muon colliders. The muon ionization cooling experiment (MICE) is under development at the Rutherford Appleton Laboratory (UK). It comprises a dedicated beam line to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. A first measurement of emittance is performed in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in liquid hydrogen and RF acceleration. A second spectrometer identical to the first one and a particle identification system provide a measurement of the outgoing emittance. By July 2009 it is expected that the beam and first set of detectors will have been commissioned and a first measurement of input beam emittance may be reported. Along with the steps in the measurement of emittance reduction (cooling) that will follow later and in 2010. (authors)

  13. Verification of Thermal Models of Internally Cooled Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Igor Shevchenko

    2018-01-01

    Full Text Available Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side.

  14. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  15. Serotonin Receptors in the Medulla Oblongata of the Human Fetus and Infant: The Analytic Approach of the International Safe Passage Study

    Science.gov (United States)

    Folkerth, Rebecca D.; Paterson, David S.; Broadbelt, Kevin G.; Dan Zaharie, S.; Hewlett, Richard H.; Dempers, Johan J.; Burger, Elsie; Wadee, Shabbir; Schubert, Pawel; Wright, Colleen; Sens, Mary Ann; Nelsen, Laura; Randall, Bradley B.; Tran, Hoa; Geldenhuys, Elaine; Elliott, Amy J.; Odendaal, Hein J.; Kinney, Hannah C.

    2016-01-01

    The Safe Passage Study is an international, prospective study of approximately 12 000 pregnancies to determine the effects of prenatal alcohol exposure (PAE) upon stillbirth and the sudden infant death syndrome (SIDS). A key objective of the study is to elucidate adverse effects of PAE upon binding to serotonin (5-HT) 1A receptors in brainstem homeostatic networks postulated to be abnormal in unexplained stillbirth and/or SIDS. We undertook a feasibility assessment of 5-HT1A receptor binding using autoradiography in the medulla oblongata (6 nuclei in 27 cases). 5-HT1A binding was compared to a reference dataset from the San Diego medical examiner’s system. There was no adverse effect of postmortem interval ≤100 h. The distribution and quantitated values of 5-HT1A binding in Safe Passage Study cases were essentially identical to those in the reference dataset, and virtually identical between stillbirths and live born fetal cases in grossly non-macerated tissues. The pattern of binding was present at mid-gestation with dramatic changes in binding levels in the medullary 5-HT nuclei over the second half of gestation; there was a plateau at lower levels in the neonatal period and into infancy. This study demonstrates feasibility of 5-HT1A binding analysis in the medulla in the Safe Passage Study. PMID:27634962

  16. The Northwest Passage Dispute

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2018-01-01

    This is an article written for the Oxford Research Group "Sustainable Security" series. It gives an overview of the dispute of the Northwest Passage and discusses factors which will contribute to the evolution of the dispute in the 21st century. This short contribution summarizes and adds to the ...... to the research recently published by the author through Palgrave Macmillan, Danita Catherine Burke, 2018, International Disputes and Cultural Ideas in the Canadian Arctic...

  17. The effect of internal mould water spray cooling on rotationally moulded polyethylene parts

    Science.gov (United States)

    McCourt, Mark P.; Kearns, Mark P.; Martin, Peter J.

    2018-05-01

    The conventional method of cooling during the rotational moulding process is through the use of forced air. During the cooling phase of a typical rotomoulding cycle, large volumes of high velocity room temperature air are forced across the outside of the rotating rotomoulding tool to encourage cooling of the metal mould and molten polymer. Since no cooling is applied to the inside of the mould, the inner surface of the polymer (polyethylene) cools more slowly and will have a tendency to be more crystalline and the polyethylene will have a higher density in this region. The side that cools more quickly (in contact with the inside mould wall) will be less crystalline, and will therefore have a lower density. The major consequence of this difference in crystallinity will be a buildup of internal stresses producing warpage and excessive shrinkage of the part with subsequent increased levels of scrap. Therefore excessive cooling on the outside of the mould should be avoided. One consequence of this effect is that the cooling time for a standard rotationally moulded part can be quite long and this has an effect on the overall economics of the process in terms of part manufacture. A number of devices are currently on the market to enhance the cooling of rotational moulding by introducing a water spray to the inside of the rotomoulding during cooling. This paper reports on one such device 'Rotocooler' which during a series of initial industrial trials has been shown to reduce the cycletime by approximately 12 to 16%, with minimal effect on the mechanical properties, leading to a part which has less warpage and shrinkage than a conventionally cooled part.

  18. Thermo-Elastic Analysis of Internally Cooled Structures Using a Higher Order Theory

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Aboudi, Jacob

    2001-01-01

    This paper presents the results of a study on the thermomechanical behavior of internally cooled silicon nitride structures. Silicon nitride is under consideration for elevated temperature aerospace engine applications. and techniques for lowering the operating temperature of structures composed of this material are under development. Lowering the operating temperature provides a large payoff in terms of fatigue life and may be accomplished through the use of thermal barrier coatings (TBC's) and the novel concept of included cooling channels. Herein, an in-depth study is performed on the behavior of a flame-impinged silicon nitride plate with a TBC and internal channels cooled by forced air. The analysis is performed using the higher order theory for functionally graded materials (HOTFGM), which has been developed through NASA Glenn Research Center funding over the past several years. HOTFGM was chosen over the traditional finite element approach as a prelude to an examination of functionally graded silicon nitride structures for which HOTFGM is ideally suited. To accommodate the analysis requirement% of the internally cooled plate problem, two crucial enhancements were made to the two-dimensional Cartesian-based version of HOTFGM. namely, incorporation of internal boundary capabilities and incorporation of convective boundary conditions. Results indicate the viability and large benefits of cooling the plate via forced air through cooling channels. Furthermore, cooling can positively impact the stress and displacement fields present in the plate, yielding an additional payoff in terms of fatigue life. Finally, a spin-off capability resulted from inclusion of internal boundaries within HOTFGM; the ability to simulate the thermo-elastic response of structures with curved surfaces. This new capability is demonstrated, and through comparison with an analytical solution, shown to be viable and accurate.

  19. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  20. Experimental investigation of cooling oil flow in disk-type transformer windings with zigzag flow passages. Paper no. IGEC-1-134

    International Nuclear Information System (INIS)

    Zhang, J.; Li, X.

    2005-01-01

    An experimental study has been conducted to investigate cooling dielectric oil flow in oil naturally cooled (ON) transformer windings. Static pressure in winding ducts has been measured at various strategic locations. Experimental results have been used for the validation of an existing hydraulic network simulation model developed earlier by the authors. It is found that minor losses in ON transformer windings are on the same order of magnitude as frictional loss. Since empirical correlations in literature overestimate the minor losses in low Reynolds number laminar flow regime, an implicit nonlinear optimization approach has been used to calibrate the existing hydraulic model. Consequently, an accurate correlation for minor loss coefficients has been developed, and is valid for Reynolds numbers ranging from 1.1 to 20.9 in horizontal cooling ducts and up to 102.0 in vertical ducts. It is shown that the improved hydraulic network model is in good agreement with the present experimental results and previous results in the literature. (author)

  1. Two strategies of lowering surface deformations of internally cooled X-ray optics

    International Nuclear Information System (INIS)

    Oberta, P.; Áč, V.; Hrdý, J.

    2013-01-01

    Internally cooled X-ray optics, like X-ray monochromators and reflecting X-ray mirrors, play a crucial role in defining a beamlines resolution, degree of coherence and flux. A great effort is invested in the development of these optical components. An important aspect of the functionality of high heat load optics is its cooling and its influence on surface deformation. The authors present a study of two different geometrical cooling approaches. Its influence on beam inhomogeneity due to the strain from the manufacturing process is presented. X-ray topographic images and FWHM measurements are presented. FEA simulations of cooling efficiency and surface deformations were performed. The best achieved results are under an enlargement of 0.4μrad of the measured rocking curve

  2. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    Science.gov (United States)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  3. Technology development for laser-cooled clocks on the International Space Station

    Science.gov (United States)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  4. Two strategies of lowering surface deformations of internally cooled X-ray optics

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2013-01-01

    Roč. 729, NOV (2013), s. 302-306 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional support: RVO:68378271 Keywords : internal cooling * X-ray optics * monochromator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013

  5. PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)

    Science.gov (United States)

    2015-09-01

    The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.

  6. High power cable with internal water cooling 400 kV

    Energy Technology Data Exchange (ETDEWEB)

    Rasquin, W; Harjes, B

    1982-08-01

    The project was planned for a duration of 4 years. Afterwards it has been extended over 6 years and finally stopped after 3 1/2 years. Therefore, of course results of field tests with an internally cooled 400 kV cable are not available. Nevertheless, this conductor cooled high power cable has been developed to such an extend, that this manufactured cable could withstand type tests according to IEC/VDE recommendations. Even by missing field tests it is obvious that a high power cable for 400 kV is available.

  7. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  8. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors

    International Nuclear Information System (INIS)

    Boudouresque, B.; Courcon, P.; Lestiboubois, G.

    1964-01-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm 2 gas pressure, should remain in contact with the fuel. (authors) [fr

  9. Heat transfer analysis in internally-cooled fuel elements by means of a conformal mapping approach

    International Nuclear Information System (INIS)

    Sarmiento, G.S.; Laura, P.A.A.

    1981-01-01

    The present paper deals with an approximate solution of the steady-state heat conduction problem in internally cooled fuel elements of fast breeder reactors. Explicit expressions for the dimensionless temperature distribution in terms of the governing physical and geometrical parameters are determined by means of a coupled conformal mapping-variational approach. The results obtained are found to be in very good agreement with those calculated by means of a finite element code. (orig.)

  10. Low-Z internal target from a cryogenically cooled liquid microjet source

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, M.; Petridis, N. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Winters, D.F.A. [GSI, Planckstr. 1, 64291 (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Philosophenweg 12, 69120 Heidelberg (Germany); Popp, U. [GSI, Planckstr. 1, 64291 (Germany); Doerner, R. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt a. M. (Germany); Stoehlker, Th. [GSI, Planckstr. 1, 64291 (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Philosophenweg 12, 69120 Heidelberg (Germany); Grisenti, R.E. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); GSI, Planckstr. 1, 64291 (Germany)], E-mail: grisenti@atom.uni-frankfurt.de

    2009-04-21

    We carried out an extensive investigation on the production of cryogenically cooled liquid hydrogen and helium droplet beams at the experimental storage ring at GSI with the goal to achieve high area densities for these low-Z internal targets. Our results show that an area density of up to 10{sup 14}cm{sup -2} is achieved for both light gases by expanding the liquid through sub-10 {mu}m diameter nozzles. The achieved area density is comparable with the previous results for the hydrogen internal target and represents an improvement by about four orders of magnitude for the helium target.

  11. Low-Z internal target from a cryogenically cooled liquid microjet source

    International Nuclear Information System (INIS)

    Kuehnel, M.; Petridis, N.; Winters, D.F.A.; Popp, U.; Doerner, R.; Stoehlker, Th.; Grisenti, R.E.

    2009-01-01

    We carried out an extensive investigation on the production of cryogenically cooled liquid hydrogen and helium droplet beams at the experimental storage ring at GSI with the goal to achieve high area densities for these low-Z internal targets. Our results show that an area density of up to 10 14 cm -2 is achieved for both light gases by expanding the liquid through sub-10 μm diameter nozzles. The achieved area density is comparable with the previous results for the hydrogen internal target and represents an improvement by about four orders of magnitude for the helium target.

  12. Electron cooling application for luminosity preservation in an experiment with internal targets at COSY

    CERN Document Server

    Meshkov, I N; Maier, R; Prasuhn, D; Sidorin, A O; Smirnov, A V; Stein, H J; Stockhorst, H; Trubnikov, G V

    2003-01-01

    This report is an investigation of the beam parameter evolution in the experiments with internal target. In calculations of the proton and deuteron beams we concentrated on cluster, atomic beam, storage cell and pellet targets at ANKE experiment mainly. In these calculations electron and stochastic cooling, intrabeam scattering, scattering on the target and residual gas atoms are taken into account. Beam parameter evolution is investigated in the long-term time scale, up to one hour, at different beam energies in the range from 1.0 to 2.7 GeV for proton beam and from 1 to 2.11 GeV for deuteron beam. The results of numerical simulations of the proton and deuteron beam parameters at different energies obtained using new version of BETACOOL program (elaborated at the first stage of this work [1]) are presented. Optimum parameters of the electron cooling system are estimated. The COSY experiment requirements can be satisfied even when electron cooling time is rather long. That allows to apply an electron cooling ...

  13. Analysis of flavor and perfume using an internally cooled coated fiber device.

    Science.gov (United States)

    Chen, Yong; Begnaud, Frédéric; Chaintreau, Alain; Pawliszyn, Janusz

    2007-05-01

    A miniaturized internally cooled coated fiber device was applied for the analysis of flavors and fragrances from various matrices. Its integration with a CTC CombiPAL autosampler enabled high throughput for the analysis of analytes in complex matrices that required simultaneous heating of the matrices and cooling of the fiber coating to achieve high extraction efficiency. It was found that up to ten times increase of extraction efficiencies was observed when the device was used to extract flavor compounds in water, even when limited sample temperatures were used to preserve the integrity of target compounds. The extraction of the flavor compounds in water with the device was reproducible, with RSD not larger than 15%. The lower limits of the linear ranges were in the low ppb range, which was about one order of magnitude smaller than those obtained with the commercialized 100 microm PDMS fibers. Exhaustive extraction of some perfume ingredients from a complex matrix (shampoo) was realized. All achieved recoveries were not less than 80%. The repeatability of the extraction of the perfume compounds from shampoo was better than 10%. The linear ranges were about 1-3000 microg/g, and the LOD was about 0.2-1 microg/g. The automated internally cooled coated fiber device was demonstrated to be a powerful sample preparation tool in flavor and fragrance analysis.

  14. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    International Nuclear Information System (INIS)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.; Hoenig, M.O.

    1981-01-01

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test of that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs

  15. Cooling equilibrium and beam loss with internal targets in high energy storage rings

    International Nuclear Information System (INIS)

    Boine-Frankenheim, O.; Hasse, R.; Hinterberger, F.; Lehrach, A.; Zenkevich, P.

    2006-01-01

    The beam cooling equilibrium with internal target interaction is analyzed for parameters relevant to the proposed High Energy Storage Ring (HESR). For the proposed experiments with anti-protons high luminosities together with low momentum spreads are required. Rate equations are used to predict the rms equilibrium beam parameters. The cooling and IBS rate coefficients are obtained from simplified models. Energy loss straggling in the target and the associated beam loss are analyzed analytically assuming a thin target. A longitudinal kinetic simulation code is used to study the evolution of the momentum distribution in coasting and bunched beams. Analytic expressions for the target induced momentum tail are found in good agreement with the simulation results

  16. High power cable with internal water cooling 400 kV

    Science.gov (United States)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  17. Thermal and Fluid Mechanical Investigation of an Internally Cooled Piston Rod

    Science.gov (United States)

    Klotsche, K.; Thomas, C.; Hesse, U.

    2017-08-01

    The Internal Cooling of Reciprocating Compressor Parts (ICRC) is a promising technology to reduce the temperature of the thermally stressed piston and piston rod of process gas compressors. The underlying heat transport is based on the flow of a two-phase cooling medium that is contained in the hollow reciprocating assembly. The reciprocating motion forces the phases to mix, enabling an enhanced heat transfer. In order to investigate this heat transfer, experimental results from a vertically reciprocating hollow rod are presented that show the influence of different liquid charges for different working temperatures. In addition, pressure sensors are used for a crank angle dependent analysis of the fluid mechanical processes inside the rod. The results serve to investigate the two-phase flow in terms of the velocity and distribution of the liquid and vapour phase for different liquid fractions.

  18. Preliminary study on the adjonction of a cooling system and internal target ring to the GEPL project

    International Nuclear Information System (INIS)

    Potaux, D.

    1983-01-01

    Various heavy particle storage rings (LEAR, Indiana, Uppsala) are planned for operation with combined electron cooling system and internal ultra-thin targets. The advantage of adding a similar device to the IPN cyclotron project is discussed [fr

  19. Internally gas-cooled radiofrequency applicators as an alternative to conventional radiofrequency and microwave ablation devices: An in vivo comparison

    Energy Technology Data Exchange (ETDEWEB)

    Rempp, Hansjörg, E-mail: Hansjoerg.rempp@med.uni-tuebingen.de [Eberhard Karls University of Tübingen, Tübingen University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Straße 3, Tübingen, 72076 (Germany); Voigtländer, Matthias [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Schenk, Martin [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Enderle, Markus D. [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Scharpf, Marcus [Eberhard Karls University of Tuebingen, Insitute of Pathology, Department on General Pathology and Pathological Anatomy, Liebermeisterstraße 8, 72076 Tübingen (Germany); Greiner, Tim O. [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Neugebauer, Alexander [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); and others

    2013-08-15

    Purpose: To test the efficacy of internally CO{sub 2}-cooled radiofrequency (RF) ablation in vivo and to compare its effectiveness to a standard water-cooled RF probe and to a gas-cooled microwave (MW) device. Method and materials: 49 ablations were performed on 15 pigs under general anesthesia using 15G monopolar CO{sub 2}-cooled RF applicators, 17G monopolar water-cooled RF applicators and 15G internally CO{sub 2}-cooled microwave devices. The power of the MW device was 45 W, the current of the gas-cooled RF device was 1200–1600 mA. At the water-cooled RF probe, maximum power of 200 W was set. Ablation time was 15 min. The short and long axes of the ablation zone were measured. Histological analyses and NADH-staining were performed. The diameters and the ablation volumes were compared using an analysis of variance. Results: No spots of untreated tissue were observed close to the cooled needle track in any of the ablation zones. The largest short axis diameter was 3.4 ± 0.5 cm achieved with the gas-cooled monopolar applicator. With the water-cooled applicators, short axis diameter was significantly smaller, reaching 2.5 ± 0.4 cm. Gas-cooled MW probes achieved 2.9 ± 1.0 cm. The largest ablation volume was 31.5 ± 12 ml (gas-cooled RF), and the smallest was 12.7 ± 4 ml (water-cooled RF). Short/long axis ratio was largest for gas-cooled RF probes with 0.73 ± 0.08 versus 0.64 ± 0.04 for the water-cooled probes and 0.49 ± 0.25 for the microwave applicator. Conclusion: Gas-cooled RF applicators may have a higher potential for effective destruction of liver lesions than comparable water-cooled RF systems, and may be an alternative to standard RF and MW ablation devices.

  20. The Topology Optimization of Three-dimensional Cooling Fins by the Internal Element Connectivity Parameterization Method

    International Nuclear Information System (INIS)

    Yoo, Sung Min; Kim, Yoon Young

    2007-01-01

    This work is concerned with the topology optimization of three-dimensional cooling fins or heat sinks. Motivated by earlier success of the Internal Element Connectivity Method (I-ECP) method in two dimensional problems, the extension of I-ECP to three-dimensional problems is carried out. The main efforts were made to maintain the numerical trouble-free characteristics of I-ECP for full three-dimensional problems; a serious numerical problem appearing in thermal topology optimization is erroneous temperature undershooting. The effectiveness of the present implementation was checked through the design optimization of three-dimensional fins

  1. Dynamic response of a system with internal heat sources cooled by a flowing incompressible fluid

    International Nuclear Information System (INIS)

    Georgescu, R.; Dobrescu, C.

    1975-01-01

    The paper investigates the dynamic temperature response of an incompressible fluid which cools a duct with internal heat sources sinusoidally oscillated. The analytical results utilise the Laplace transformation technique. The experimental and calculated results are obtained by transfer function approach. Comparison of the calculated with the experimental data indicates agreement from 6 to 24 percent for the amplitude and up to 30 degree for the phase-shift. All the calculated data are below the experimental ones. The analytical method of transfer function approach presents interest and may be utilized for the initial calculations giving good results for flow rates above 1000 kg per hour

  2. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  3. Propagation of internal stresses in composite materials during heating and cooling according to thermal cycles of welding

    International Nuclear Information System (INIS)

    Gukasyan, L.E.; Belov, V.V.

    1977-01-01

    Investigations of free thermal expansion of a composite material, of fibre and matrix during welding thermal cycle make it possible to estimate mean internal strain and stress in the composite components, as well as the residual internal stress and strain present in the composite material after manufacturing. The samples investigated consisted of nickel-chromium EhI445 alloy, reinforced by tungsten-rhenium alloy fibres. As the composite material was cooled and heated in course of welding, the stress and strain changed their sign twice, the first time upon heating, the second time upon cooling. After complete cooling of the composite material residual stresses in the fibre stay at the proportionality level, while those in the matrix are lower. Experimental evidence of internal stress and strain appearing in the composite material during heating are fairly consistent with calculations in the elastic region, if account is taken of the temperature of internal residual stress relaxation upon heating

  4. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy

    Directory of Open Access Journals (Sweden)

    Yahya Isik

    2016-05-01

    Full Text Available Nickel-based superalloys such as Waspaloy are used for engine components and in the nuclear industry, where considerable strength and corrosion resistance at high operating temperatures are called for. These characteristics of such alloys cause increases in cutting temperature and resultant tool damage, even at low cutting speeds and low feed rates. Thus, they are classified as difficult-to-cut materials. This article presents a cooling method to be used in metal cutting based on a tool holder with a closed internal cooling system with cooling fluid circulating inside. Hence, a green cooling method that does not harm the environment and is efficient in removing heat from the cutting zone was developed. A series of cutting experiments were conducted to investigate the practicality and effectiveness of the internally cooled tool model. The developed system achieved up to 13% better surface quality than with dry machining, and tool life was extended by 12%. The results clearly showed that with the reduced cutting temperature of the internal cooling, it was possible to control the temperature and thus prevent reaching the critical cutting temperature during the turning process, which is vitally important in extending tool life during the processing of Waspaloy.

  5. Status of international HTGR [high-temperature gas-cooled reactor] development

    International Nuclear Information System (INIS)

    Homan, F.J.; Simon, W.A.

    1988-01-01

    Programs for the development of high-temperature gas-cooled reactor (HTGR) technology over the past 30 years in eight countries are briefly described. These programs have included both government sector and industrial participation. The programs have produced four electricity-producing prototype/demonstration reaactors, two in the United States, and two in the Federal Republic of Germany. Key design parameters for these reactors are compared with the design parameters planned for follow-on commercial-scale HTGRs. The development of HTGR technology has been enhanced by numerous cooperative agreements over the years, involving both government-sponsored national laboratories and industrial participants. Current bilateral cooperative agreements are described. A relatively new component in the HTGR international cooperation is that of multinational industrial alliances focused on supplying commercial-scale HTGR power plants. Current industrial cooperative agreements are briefly discussed

  6. Quench pressure, thermal expulsion, and normal zone propagation in internally cooled superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    When a nonrecovering normal zone appears in an internally cooled superconductor, the pressure in the conductor rises, helium is expelled from its ends, and the normal zone grows in size. This paper presents a model of these processes that allows calculation of the pressure, the expulsion velocity, and the propagation velocity with simple formulas. The model is intended to apply to conductors such as the cable-in-conduit conductor of the Westinghouse LCT (WH-LCT) coil, the helium volumes of which have very large length-to-diameter ratios (3 /times/ 10 5 ). The predictions of the model agree with the rather limited data available from propagation experiments carried out on the WH-LCT coil. 3 refs., 1 fig

  7. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  8. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-01-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  9. Quantum first passage problem

    International Nuclear Information System (INIS)

    Kumar, N.

    1984-07-01

    Quantum first passage problem (QUIPP) is formulated and solved in terms of a constrained Feynman path integral. The related paradox of blocking of unitary evolution by continuous observation on the system implicit in QUIPP is briefly discussed. (author)

  10. Experimental determination of average turbulent heat transfer and friction factor in stator internal rib-roughened cooling channels.

    Science.gov (United States)

    Battisti, L; Baggio, P

    2001-05-01

    In gas turbine cooling design, techniques for heat extraction from the surfaces exposed to the hot stream are based on the increase of the inner heat transfer areas and on the promotion of the turbulence of the cooling flow. This is currently obtained by casting periodic ribs on one or more sides of the serpentine passages into the core of the blade. Fluid dynamic and thermal behaviour of the cooling flow have been extensively investigated by means of experimental facilities and many papers dealing with this subject have appeared in the latest years. The evaluation of the average value of the heat transfer coefficient most of the time is inferred from local measurements obtained by various experimental techniques. Moreover the great majority of these studies are not concerned with the overall average heat transfer coefficient for the combined ribs and region between them, but do focus just on one of them. This paper presents an attempt to collect information about the average Nusselt number inside a straight ribbed duct. Series of measurements have been performed in steady state eliminating the error sources inherently connected with transient methods. A low speed wind tunnel, operating in steady state flow, has been built to simulate the actual flow condition occurring in a rectilinear blade cooling channel. A straight square channel with 20 transverse ribs on two sides has been tested for Re of about 3 x 10(4), 4.5 x 10(4) and 6 x 10(4). The ribbed wall test section is electrically heated and the heat removed by a stationary flow of known thermal and fluid dynamic characteristics.

  11. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    Science.gov (United States)

    Minett, Geoffrey M.; Bach, Aaron J. E.; Zietek, Stephanie A.; Stewart, Kelly L.; Stewart, Ian B.

    2018-01-01

    Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (Ptemperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker. PMID:29357373

  12. Post-recombination early Universe cooling by translation-internal inter-conversion: The role of minor constituents.

    Science.gov (United States)

    McCaffery, Anthony J

    2015-09-14

    Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.

  13. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity.

    Directory of Open Access Journals (Sweden)

    Matthew J Maley

    Full Text Available The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity.Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON (34°C, 58% relative humidity. The cooling methods utilised were: ice cooling vest (CV0, phase change cooling vest melting at 14°C (CV14, evaporative cooling vest (CVEV, arm immersion in 10°C water (AI, portable water-perfused suit (WPS, heliox inhalation (HE and ice slushy ingestion (SL. Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task and gross (grip and pinch strength manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout.Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012. All externally applied cooling methods reduced skin temperature (P0.05.The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.

  14. The influence of the mould cooling temperature on the surface appearance and the internal quality of ESR ingots

    Science.gov (United States)

    Kubin, M.; Ofner, B.; Holzgruber, H.; Schneider, R.; Enzenhofer, D.; Filzwieser, A.; Konetschnik, S.

    2016-07-01

    One of the main benefits of the ESR process is to obtain an ingot surface which is smooth and allows a subsequent forging operation without any surface dressing. The main influencing factor on surface quality is the precise controlling of the process such as melt rate and electrode immersion depth. However, the relatively strong cooling effect of water as a cooling medium can result in the solidification of the meniscus of the liquid steel on the boundary liquid steel and slag which is most likely the origin of surface defects. The usage of different cooling media like ionic liquids, a salt solution which can be heated up to 250°C operating temperature might diminish the meniscus solidification phenomenon. This paper shows the first results of the usage of an ionic liquid as a mould cooling medium. In doing so, 210mm diameter ESR ingots were produced with the laboratory scale ESR furnace at the university of applied science using an ionic liquid cooling device developed by the company METTOP. For each trial melt different inlet and outlet temperatures of the ionic liquid were chosen and the impact on the surface appearance and internal quality were analyzed. Furthermore the influence on the energy balance is also briefly highlighted. Ultimately, an effect of the usage of ionic liquids as a cooling medium could be determined and these results will be described in detail within the scope of this paper.

  15. Oxygen (average seabed consumption) data collected using pressure gauge from the Drake Passage in part of the International Decade of Ocean Exploration / International Southern Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage from 1976-02-08 to 1982-03-19 (NODC Accession 9000027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oxygen (average seabed consumption) data were collected using pressure gauge from the Drake Passage from February 8, 1976 to March 19, 1982. Data were submitted by...

  16. Bipolar Radiofrequency Ablation Using Dual Internally Cooled Wet Electrodes: Experimental Study in Ex Vivo Bovine Liver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Joon; Byun, Jae Young [Dept. of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea, College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To determine the optimized protocol for bipolar radiofrequency ablation (RFA), using dual internally cooled wet (ICW) electrodes in the ex vivo bovine liver. RFA was applied to the explanted bovine liver, using two 3 cm active tip electrodes with 3.5 cm spacing. A total of 25 ablation zones were created by five groups; group A: 70 W-20 minute (min), group B: 70 W-25 min, group C: 90 W-15 min, group D: 90 W-20 min, and group E: 90 W-25 min. We measured the total energy and size of ablation zones with a color of grey or pink. Statistical analysis was done using Kruskal Wallis test and Mann Whitney U-test. The mean energy, mean volume of ablation zone with grey and pink color of groups A to E were 16.7, 23.9, 16.7, 21.8, 29.2 kcal, 25.7, 34.3, 29.5, 36.2, 45.2 cm{sup 3}, and 60.0, 88.0, 71.5, 87.4, 104.5 cm{sup 3}, respectively. Those were significantly different (p < 0.05). The volume of ablation zone of group E with grey color was larger than groups A, B and C (p < 0.05). Bipolar RFA, using dual ICW electrodes, can produce a large ablation zone with the protocol of 90 W-25 min.

  17. Bipolar Radiofrequency Ablation Using Dual Internally Cooled Wet Electrodes: Experimental Study in Ex Vivo Bovine Liver

    International Nuclear Information System (INIS)

    Lee, Young Joon; Byun, Jae Young

    2012-01-01

    To determine the optimized protocol for bipolar radiofrequency ablation (RFA), using dual internally cooled wet (ICW) electrodes in the ex vivo bovine liver. RFA was applied to the explanted bovine liver, using two 3 cm active tip electrodes with 3.5 cm spacing. A total of 25 ablation zones were created by five groups; group A: 70 W-20 minute (min), group B: 70 W-25 min, group C: 90 W-15 min, group D: 90 W-20 min, and group E: 90 W-25 min. We measured the total energy and size of ablation zones with a color of grey or pink. Statistical analysis was done using Kruskal Wallis test and Mann Whitney U-test. The mean energy, mean volume of ablation zone with grey and pink color of groups A to E were 16.7, 23.9, 16.7, 21.8, 29.2 kcal, 25.7, 34.3, 29.5, 36.2, 45.2 cm 3 , and 60.0, 88.0, 71.5, 87.4, 104.5 cm 3 , respectively. Those were significantly different (p < 0.05). The volume of ablation zone of group E with grey color was larger than groups A, B and C (p < 0.05). Bipolar RFA, using dual ICW electrodes, can produce a large ablation zone with the protocol of 90 W-25 min.

  18. The deformation of Zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-08-01

    Simulated PWR fuel rods clad with Zircaloy-4 were tested under convective steam cooling conditions, by pressurising to 0.69-2.07MPa (100-300lb/in 2 ), then ramping at 10 0 C/s to various temperatures in the region 800-955 0 C and holding until either 600 s elapsed or rupture occurred. The length of cladding strained 33% or more was greatest (about 20 times the original diameter) when the initial internal pressure was 1.38+-0.17 PMa (200+-25lb/in 2 ), and the temperature 885 0 C. It is thought that this results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilising the deformation and/or partial superplastic deformation. To avoid adjacent rods in a fuel assembly touching at any temperature, the pressure would have to be less than about 1MPa (145 1b/in 2 ). If the pressure was 1.38MPa (200lb/in 2 ) then the rods would not swell sufficiently to touch if the temperature did not exceed about 840 0 C. (author)

  19. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A. [Atomic Energy of Canada, Ltd., Chalk River Laboratories, Chalk River, ON (Canada)

    2013-07-01

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  20. Second meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Helsinki, 6-9 June 1988

    International Nuclear Information System (INIS)

    1989-05-01

    The Second Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) was held in Helsinki, Finland, from 6-9 June 1988. The Summary Report (Part II) contains the papers which review the national programmes since the first meeting of IWGATWR in May 1987 in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of these 12 papers presented at the meeting. Figs and tabs

  1. Boundaries, transitions and passages

    NARCIS (Netherlands)

    Koenderink, Jan; van Doorn, Andrea J.; Pinna, Baingio; Wagemans, Johan

    2016-01-01

    Many pictures are approximately piecewise uniform quilts. The patches meet in transitional areas that have a vague, ribbon-like geometry. These borders may occasionally get lost and sometimes pick up again, creating a 'passage' that partly blends adjacent patches. This type of structure is widely

  2. Hot gas path component cooling system having a particle collection chamber

    Science.gov (United States)

    Miranda, Carlos Miguel; Lacy, Benjamin Paul

    2018-02-20

    A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.

  3. Ninth meeting of the International Working Group on Gas Cooled Reactors, Oak Ridge, USA, 8-9 November 1990

    International Nuclear Information System (INIS)

    1991-05-01

    This report contains the minutes of the meeting, the papers presented as overview of the national programmes in the field of gas-cooled reactors and the main results from discussions on the different items of the agenda. The meeting was attended by 20 members and/or alternates from 9 countries and 2 international organizations. 8 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Heat transfer in rotating serpentine passages with trips normal to the flow

    Science.gov (United States)

    Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.

    1991-01-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.

  5. Contrastive experimental study on heat transfer and friction characteristics in steam cooled and air cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Li, Guojun; Gao, Tieyu [Xian Jiaotong University, Xian (China)

    2014-09-15

    The present experiment compares the heat transfer and friction characteristics in steam cooled and air cooled rectangular channels (simulating a gas turbine blade cooling passage) with two opposite rib-roughened walls. The Reynolds number (Re) whose length scale is the hydraulic diameter of the passage is set within the range of 10000-60000. The channel length is 1000 mm. The pitch-to-rib height ratio, the channel aspect ratio and the channel blockage ratio is 10, 0.5 and 0.047, respectively. It is found that the average Nu, the average friction coefficient, and the heat transfer performance of both steam and air in the ribbed channels show almost the same change trend with the increase of Re. Under the same test conditions, the average Nu of steam is 30.2% higher than that of air, the average friction coefficient is 18.4% higher, and the heat transfer performances of steam on the ribbed and the smooth walls are 8.4% and 7.3% higher than those of air, respectively. In addition, semi-empirical correlations for the two test channels are developed, which can predict the Nu under the given test condition. The correlations can be used in the design of the internal cooling passage of new generation steam cooled gas turbine blade/vane.

  6. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  7. First passage time probability in risk analysis

    International Nuclear Information System (INIS)

    Karmeshu; Ariaratnam, S.T.

    1982-01-01

    Many natural phenomena are subject to uncertain fluctuations due to a variety of internal or external factors. These phenomena can be described using stochastic models. An important quantity of interest involves the time lapse before some variables reach unacceptable values: the first passage time. A related question pertains to the statistical distributions of the extreme values of these variables in a given period of time. The authors discuss some problems drawn from population ecology and environmental engineering to illustrate the usefulness of the first passage time concept

  8. Trapped Ion Quantum Computation by Adiabatic Passage

    International Nuclear Information System (INIS)

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-01-01

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  9. Eighth meeting of the International Working Group on Gas-Cooled Reactors Vienna, 30 January - 1 February 1989. Summary report. Part 2

    International Nuclear Information System (INIS)

    1989-12-01

    The Eighth Meeting of the IAEA International Working Group on Gas-Cooled Reactors was held in Vienna, Austria, from 30 January - 1 February, 1989. The Summary Report (Part II) contains the papers which review the national programmes in the field of Gas-Cooled Reactors and other presentations at the Meeting. Refs, figs and tabs

  10. Passage kinetics of dry matter and neutral detergent fibre through the gastro-intestinal tract of growing beef heifers fed a high-concentrate diet measured with internal ð13C and external markers

    NARCIS (Netherlands)

    Daniel, J.B.; Laar, van H.; Warner, D.; Dijkstra, J.; Navarro-Villa, A.; Pellikaan, W.F.

    2014-01-01

    Fractional rumen passage rates (K1) are fundamental in feed evaluation systems for ruminants to predict the extent of nutrient degradation. Data on passage kinetics of growing beef cattle fed high-concentrate diets are scarce and mainly rely on external passage markers which do not provide

  11. A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane

    Science.gov (United States)

    Heidmann, James D.; Rigby, David L.; Ameri, Ali A.

    1999-01-01

    A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.

  12. Eighth meeting of the International Working Group on Gas-Cooled Reactors, Vienna, 30 January - 1 February 1989. Summary report. Part 1

    International Nuclear Information System (INIS)

    1989-12-01

    The Eighth Meeting of the IAEA International Working Group on Gas-Cooled Reactors was held in Vienna, Austria, from 30 January - 1 February, 1989. The Summary Report (Part I) contains the Minutes of the Meeting

  13. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 1)

    International Nuclear Information System (INIS)

    1987-12-01

    The first meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. Part I of the Summary Report contains the minutes of the meeting

  14. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  15. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    Energy Technology Data Exchange (ETDEWEB)

    Fallahi, A. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Duraschlag, H. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Elliott, D. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Hartsough, J. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Shukla, N. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Kosny, J. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States)

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  16. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    Energy Technology Data Exchange (ETDEWEB)

    Fallahi, A. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Durschlag, H. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Elliott, D. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Hartsough, J. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Shukla, N. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Kosny, J. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States)

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulkinsulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosedreflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  17. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    Science.gov (United States)

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  18. Method for estimating failure probabilities of structural components and its application to fatigue problem of internally cooled superconductors

    International Nuclear Information System (INIS)

    Shibui, M.

    1989-01-01

    A new method for fatigue-life assessment of a component containing defects is presented such that a probabilistic approach is incorporated into the CEGB two-criteria method. The present method assumes that aspect ratio of initial defect, proportional coefficient of fatigue crack growth law and threshold stress intensity range are treated as random variables. Examples are given to illustrate application of the method to the reliability analysis of conduit for an internally cooled cabled superconductor (ICCS) subjected to cyclic quench pressure. The possible failure mode and mechanical properties contributing to the fatigue life of the thin conduit are discussed using analytical and experimental results. 9 refs., 9 figs

  19. Alternatives and passages

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2010-01-01

    While much research into serious games focus on following teaching and/or learning activities, and particularly the human and institutional actors involved in these, the central actors of game based learning research (i.e. the games) seldom get much attention (unless the focus is so......-called "technological"). This brief positioning paper takes point of departure in an ongoing postdoc project following circulations and establishments of http://www.mingoville.com/ , which is a virtual universe with game based elements developed for beginning English teaching and learning.  The paper presents a Science...... and Technology Studies (STS) and Actor-Network-Theory (ANT) inspired approach to researching emerging passages between beginning English teaching and learning and Mingoville....

  20. Non-equilibrium effects of core-cooling and time-dependent internal heating on mantle flush events

    Directory of Open Access Journals (Sweden)

    D. A. Yuen

    1995-01-01

    Full Text Available We have examined the non-equilibrium effects of core-cooling and time-dependent internal-heating on the thermal evolution of the Earth's mantle and on mantle flush events caused by the two major phase transitions. Both two- and three-dimensional models have been employed. The mantle viscosity responds to the secular cooling through changes in the averaged temperature field. A viscosity which decreases algebraically with the average temperature has been considered. The time-dependent internal-heating is prescribed to decrease exponentially with a single decay time. We have studied the thermal histories with initial Rayleigh numbers between 2 x 107 and 108 . Flush events, driven by the non-equilibrium forcings, are much more dramatic than those produced by the equilibrium boundary conditions and constant internal heating. Multiple flush events are found under non-equilibrium conditions in which there is very little internal heating or very fast decay rates of internal-heating. Otherwise, the flush events take place in a relatively continuous fashion. Prior to massive flush events small-scale percolative structures appear in the 3D temperature fields. Time-dependent signatures, such as the surface heat flux, also exhibits high frequency oscillatory patterns prior to massive flush events. These two observations suggest that the flush event may be a self-organized critical phenomenon. The Nusselt number as a function of the time-varying Ra does not follow the Nusselt vs. Rayleigh number power-law relationship based on equilibrium (constant temperature boundary conditions. Instead Nu(t may vary non-monotonically with time because of the mantle flush events. Convective processes in the mantle operate quite differently under non-equilibrium conditions from its behaviour under the usual equilibrium situations.

  1. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco

    2013-01-01

    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  2. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Directory of Open Access Journals (Sweden)

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  3. Three-dimensional studies of mixing and stratification in containments cooled by internal condensers

    Energy Technology Data Exchange (ETDEWEB)

    Putz, F.; Dury, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    Within the scope of the fourth EU Framework Programme IPSS project, two passive containment cooling systems, the so-called Building Condenser (BC, under an additional bilateral contract between PSI and Siemens) and Plate Condenser (PC), have been studied at the PSI PANDA facility. From the two tests series, tests BC4 and PC1 have been selected for analysis with the code GOTHIC 6.0. Particular phenomena which are of importance with regard to the condensers operating conditions (mixing/stratification of non-condensable gases, such as air and helium) have been analysed. The GOTHIC simulations have been complemented by CFD calculations with CFX-4. (author)

  4. Three-dimensional studies of mixing and stratification in containments cooled by internal condensers

    International Nuclear Information System (INIS)

    Putz, F.; Dury, T.

    2001-01-01

    Within the scope of the fourth EU Framework Programme IPSS project, two passive containment cooling systems, the so-called Building Condenser (BC, under an additional bilateral contract between PSI and Siemens) and Plate Condenser (PC), have been studied at the PSI PANDA facility. From the two tests series, tests BC4 and PC1 have been selected for analysis with the code GOTHIC 6.0. Particular phenomena which are of importance with regard to the condensers operating conditions (mixing/stratification of non-condensable gases, such as air and helium) have been analysed. The GOTHIC simulations have been complemented by CFD calculations with CFX-4. (author)

  5. Experimental study on internal cooling system in hard turning of HCWCI using CBN tools

    Science.gov (United States)

    Ravi, A. M.; Murigendrappa, S. M.

    2018-04-01

    In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.

  6. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  7. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  8. Internal film cooling of permanent magnet external rotor machine using the example of a small wind power generator; Innenkuehlung permanentmagneterregter Aussenlaeufermaschinen am Beispiel eines Kleinwindenergiegenerators

    Energy Technology Data Exchange (ETDEWEB)

    Miersch, Soeren; Eckart, Martin; Michalke, Norbert [HTW Dresden (Germany)

    2011-07-01

    This article discusses the fluid flow and thermal cooling system design of a permanent magnet small wind power generator in external rotor construction. Analytical calculation attachment pieces and numerical simulations will be served as authoring tool. Calculation and simulation results will be exhibited in comparing with model and prototype measurements. With the help of stationary temperature allocation, the effectiveness of intensive internal film cooling will be shown. (orig.)

  9. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 2)

    International Nuclear Information System (INIS)

    1987-12-01

    The First Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. The Summary Report (Pt. 2) contains the papers which review the national programmes in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of the 10 papers presented at this meeting. Refs, figs

  10. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    Science.gov (United States)

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  11. Cooling of an internal-heated debris bed with fine particles

    International Nuclear Information System (INIS)

    Yang, Z.L.; Sehgal, B.R.

    2001-01-01

    In this paper, an analytical model on dryout heat flux of ex-vessel debris beds with fines particles under top flooding conditions has been developed. The parametric study is performed on the effect of the stratification of the debris beds on the dryout heat flux. The calculated results show that the stratification configuration of the debris beds with smaller particles and lower porosity layer resting on the top of another layer of the beds has profound effect on the dryout heat flux for the debris beds both with and without a downcomer. The enhancement of the dryout heat flux by the downcomer is significant. The efficiency of the single downcomer on the enhancement of the dryout heat flux is also analyzed. This, in general, agrees well with experimental data. The model is also employed to perform the assessment on the coolability of the ex-vessel debris bed under representative accidental conditions. One conservative case is chosen, and it is found that the downcomer could be efficient measure to cool the debris bed and hence terminate the severe accident. (authors)

  12. First results of out-of-pile experiments concerning cooling phenomena of molten layers with internal heat sources

    International Nuclear Information System (INIS)

    Fieg, G.

    1977-01-01

    After severe hypothetical reactor accidents, large amounts of molten core material with internal heat generation may appear. It must be guaranteed that these materials can be kept within the containment. To clarify this situation, the knowledge of heat transport from liquid layers with internal heat generation is needed. First experimental results on heat transport from internally heated horizontal fluid layers are presented. The experiments have been performed in a smooth horizontal vessel with the base of 15 x 15 cm 2 . The Joule-heated liquid layer (depth L = 1 cm - 3.5 cm) is enclosed between two isothermal horizontal walls. They are polished fore parts of heat exchangers. The temperatures of the walls were held constant with thermostatically controlled water circulating through the heat exchangers. Horizontal heat fluxes were depressed by appropriate insulation of the side walls. The total heat transport to the upper and lower boundaries has been measured by the mass transport through the heat exchangers and the temperature rise of the cooling water

  13. Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips

    Science.gov (United States)

    Tse, David G.N.; Steuber, Gary

    1996-01-01

    Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.

  14. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    Science.gov (United States)

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  15. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine

    International Nuclear Information System (INIS)

    Novella, R.; Dolz, V.; Martín, J.; Royo-Pascual, L.

    2017-01-01

    Highlights: • Enough power in the exhaust gases is available to operate the absorption cycle. • Three engine operating points are presented in the article. • Improvement potential up to 4% is possible in the engine indicated efficiency. • Engine indicated efficiency benefit was experimentally confirmed by direct testing. - Abstract: This paper deals with the thermodynamic analysis of an absorption refrigeration cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures and the low freezing point. The effects of operating temperatures, pressures, concentrations of strong and weak solutions in the absorption refrigeration cycle were examined to achieve proper heat rejection to the ambient. Potential of increasing Internal Combustion Engine efficiency and reduce pollutant emissions was estimated by means of theoretical models and experimental tests. In order to provide boundary conditions for the absorption refrigeration cycle and to simulate its effect on engine performance, a 0D thermodynamic model was used to reproduce the engine performance when the intake air is cooled. Furthermore, a detailed experimental work was carried out to validate the results in real engine operation. Theoretical results show how the absorption refrigeration system decreases the intake air flow temperature down to a temperature around 5 °C and even lower by using the bottoming waste heat energy available in the exhaust gases in a wide range of engine operating conditions. In addition, the theoretical analysis estimates the potential of the strategy for increasing the engine indicated efficiency in levels up to 4% also at the operating conditions under evaluation. Finally, this predicted benefit in engine indicated efficiency has been experimentally confirmed by direct

  16. International conference on opportunities and challenges for water cooled reactors in the 21. century. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    Water Cooled Reactors have been the keystone of the nuclear industry in the 20th Century. As we move into the 21st Century and face new challenges such as the threat of climate change or the large growth in world energy demand, nuclear energy has been singled out as one of the sources that could substantially and sustainably contribute to power the world. As the nuclear community worldwide looks into the future with the development of advanced and innovative reactor designs and fuel cycles, it becomes important to explore the role Water Cooled Reactors (WCRs) will play in this future. To support the future role of WCRs, substantial design and development programmes are underway in a number of Member States to incorporate additional technology improvements into advanced nuclear power plants (NPPs) designs. One of the key features of advanced nuclear reactor designs is their improved safety due to a reduction in the probability and consequences of accidents and to an increase in the operator time allowed to better assess and properly react to abnormal events. A systematic approach and the experience of many years of successful operation have allowed designers to focus their design efforts and develop safer, more efficient and more reliable designs, and to optimize plant availability and cost through improved maintenance programs and simpler operation and inspection practices. Because many of these advanced WCR designs will be built in countries with no previous nuclear experience, it is also important to establish a forum to facilitate the exchange of information on the infrastructure and technical issues associated with the sustainable deployment of advanced nuclear reactors and its application for the optimization of maintenance of operating nuclear power plants. This international conference seeks to be all-inclusive, bringing together the policy, economic and technical decision-makers and the stakeholders in the nuclear industry such as operators, suppliers

  17. An Economic Analysis of Container Shipping Through Canadian Northwest Passage

    Directory of Open Access Journals (Sweden)

    Dongqin Lu

    2014-12-01

    This paper considers Canada's sovereignty in matters of navigation over the waters at the Arctic Archipelago, in the form of a toll fee for passage usage. We concluded that the NWP has an advantage over the Panama Canal if it is open for free international passage, regardless of ship size. However, if it is not free, its advantages depend on its toll fee. The lower the toll fee is, the more advantages the NWP will boast.

  18. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  19. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  20. PANDA experiment and International Standard Problem for passive cooling systems for afterheat removal

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Aksan, N.S.

    1999-01-01

    In the context of OECD/NEA, Paul Scherrer Institut (PSI) is working on an International Standard Problem which is to provide information on the efficiency and use of computer program systems for passive afterheat removal systems. The PANDA test facility of PSI was designed for these investigations. A six-phase PANDA experiment provides a basis for pre-calculation and recalculation of selected phases covering a limited number of system-typical operating states and phenomena. The experiment was specified and carried out in the year under report [de

  1. The deformation of zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-01-01

    The deformation behaviour is reported of specimens of Zircaloy PWR fuel cladding when directly heated in flowing steam. The range of internal pressures studied was 0.69-2.07 MPa; this extended earlier studies using higher pressures. The specimens were ramped and then held at a steady test temperature until rupture or until 600 seconds had elapsed. Under these conditions it was found that extended deformation occurred with pressures down to 1 MPa at temperatures up to 900 deg C. At lower pressures and higher temperatures there was no large extended deformation; this is believed to result from the effects of oxidation

  2. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  3. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Niu

    2017-04-01

    Full Text Available Micro-nanoencapsulated phase change materials (M-NEPCMs are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate:Tween80 (polyoxyethylene sorbitan monooleate:Span80 (sorbitan monooleate = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  4. Homogenization of the internal structures of a reactor with the cooling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, M.F. [CEA Saclay, SEMT, 91 - Gif sur Yvette (France); Bliard, F. [Socotec Industrie, Service AME, 78 - Montigny le Bretonneux (France)

    2001-07-01

    To take into account the influence of a structure net among a fluid flow, without modelling exactly the structure shape, a concept of ''equivalent porosity method'' was developed. The structures are considered as solid pores inside the fluid. The structure presence is represented by three parameters: a porosity, a shape coefficient and a pressure loss coefficient. The method was studied for an Hypothetical Core Disruptive Accident in a Liquid Metal Fast Breeder Reactor, but it can be applied to any problem involving fluid flow getting through a solid net. The model was implemented in the computer code CASTEM-PLEXUS and validated on an analytical shock tube test, simulating an horizontal slice of a schematic LMFBR in case of a HCDA (bubble at high pressure, liquid sodium and internal structures of the reactor). A short parametric study shows the influence of the porosity and the structure shape on the pressure wave impacting the shock tube bottom. These results were used to simulate numerically the HCDA mechanical effects in a small scale reactor mock-up. (author)

  5. Homogenization of the internal structures of a reactor with the cooling fluid

    International Nuclear Information System (INIS)

    Robbe, M.F.; Bliard, F.

    2001-01-01

    To take into account the influence of a structure net among a fluid flow, without modelling exactly the structure shape, a concept of ''equivalent porosity method'' was developed. The structures are considered as solid pores inside the fluid. The structure presence is represented by three parameters: a porosity, a shape coefficient and a pressure loss coefficient. The method was studied for an Hypothetical Core Disruptive Accident in a Liquid Metal Fast Breeder Reactor, but it can be applied to any problem involving fluid flow getting through a solid net. The model was implemented in the computer code CASTEM-PLEXUS and validated on an analytical shock tube test, simulating an horizontal slice of a schematic LMFBR in case of a HCDA (bubble at high pressure, liquid sodium and internal structures of the reactor). A short parametric study shows the influence of the porosity and the structure shape on the pressure wave impacting the shock tube bottom. These results were used to simulate numerically the HCDA mechanical effects in a small scale reactor mock-up. (author)

  6. Seventh meeting of the International Working Group on Gas-Cooled Reactors, Beckum, Federal Republic of Germany, 29-30 October 1987

    International Nuclear Information System (INIS)

    1988-06-01

    The document contains a summary report on the seventh meeting of the International Working Group on Gas-Cooled Reactors and 8 reports describing the national GCR programmes of Austria, China, France, Japan, Switzerland, USSR, UK and Commission of European Communities. A separate abstract was prepared for each of these reports. Refs and tabs

  7. The passage from Rio.

    Science.gov (United States)

    Strong, M F

    1992-01-01

    The Secretary-General of the UN Conference on Environment and Development notes that after the Earth Summit in Rio de Janeiro discussions about the environment and development will differ from those prior to the Summit. These discussions must now incorporate problems of developing countries, poverty, inequalities, flow of resources to developing countries, and terms of trade. The Rio Declaration on Environment and Development consists of important tenets, but it must evolve into an Earth Charter to be endorsed on the 50th anniversary of the UN in 1965. The Summit's Plan of Action, Agenda 21, must also continue to evolve and, despite its shortcomings, is the most extensive and, if implemented, most effective international action ever approved by the international community. Financing the Agenda 21 initiatives remains to be decided. New possible sources of funding must be based n the polluter pays principle and may include new taxes, user charges, emission permits, and citizen funding. Even though the most serious problem in the 1990s is stabilization of atmospheric gases, the Rio agreement does not include targets or timetables. Governments must take united action immediately to reduce carbon dioxide emissions by at least 60%. 1 nation has not yet approved the convention on biological diversity. Governments also need to move forward on conventions on decertification and deforestation. They need to incorporate the global objectives of Agenda 21 into their own national policies and practices. This must also be done at the global, regional, organizational, local, and individual levels. The global community must also begin technology capacity building. The participatory process should also include nongovernmental organizations. Population growth must also slow dramatically to achieve sustainable development. The various participatory levels must consider elimination of poverty.

  8. Effect of the in- and ex-vessel dual cooling on the retention of an internally heated melt pool in a hemispherical vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K.I.; Kim, B.S.; Kim, D.H. [Korea Atomic Energy Research Inst., Thermal Hydraulic Safety Research, Taejon (Korea, Republic of)

    2001-07-01

    A concept of in-vessel melt retention (IVMR) by in-vessel reflooding and/or reactor cavity flooding has been considered as one of severe accident management strategies and intensive researches to be performed worldwide. This paper provides some results of analytical investigations on the effect of both in- / ex-vessel cooling on the retention of an internally heated molten pool confined in a hemispherical vessel and the related thermal behavior of the vessel wall. For the present analysis, a scale-down reactor vessel for the KSNP reactor design of 1000 MWe (a large dry PWR) is utilized for a reactor vessel. Aluminum oxide melt simulant is also utilized for a real corium pool. An internal power density in the molten pool is determined by a simple scaling analysis that equates the heat flux on the the scale-down vessel wall to that estimated from KSNP. Well-known temperature-dependent boiling heat transfer curves are applied to the in- and ex-vessel cooling boundaries and radiative heat transfer has been only considered in the case of dry in-vessel. MELTPOOL, which is a computational fluid dynamics (CFD) code developed at KAERI, is applied to obtain the time-varying heat flux distribution from a molten pool and the vessel wall temperature distributions with angular positions along the vessel wall. In order to gain further insights on the effectiveness of in- and ex-vessel dual cooling on the in-vessel corium retention, four different boundary conditions has been considered: no water inside the vessel without ex-vessel cooling, water inside the vessel without ex-vessel cooling, no water inside the vessel with ex-vessel cooling, and water inside the vessel with ex-vessel cooling. (authors)

  9. Effect of the in- and ex-vessel dual cooling on the retention of an internally heated melt pool in a hemispherical vessel

    International Nuclear Information System (INIS)

    Ahn, K.I.; Kim, B.S.; Kim, D.H.

    2001-01-01

    A concept of in-vessel melt retention (IVMR) by in-vessel reflooding and/or reactor cavity flooding has been considered as one of severe accident management strategies and intensive researches to be performed worldwide. This paper provides some results of analytical investigations on the effect of both in- / ex-vessel cooling on the retention of an internally heated molten pool confined in a hemispherical vessel and the related thermal behavior of the vessel wall. For the present analysis, a scale-down reactor vessel for the KSNP reactor design of 1000 MWe (a large dry PWR) is utilized for a reactor vessel. Aluminum oxide melt simulant is also utilized for a real corium pool. An internal power density in the molten pool is determined by a simple scaling analysis that equates the heat flux on the the scale-down vessel wall to that estimated from KSNP. Well-known temperature-dependent boiling heat transfer curves are applied to the in- and ex-vessel cooling boundaries and radiative heat transfer has been only considered in the case of dry in-vessel. MELTPOOL, which is a computational fluid dynamics (CFD) code developed at KAERI, is applied to obtain the time-varying heat flux distribution from a molten pool and the vessel wall temperature distributions with angular positions along the vessel wall. In order to gain further insights on the effectiveness of in- and ex-vessel dual cooling on the in-vessel corium retention, four different boundary conditions has been considered: no water inside the vessel without ex-vessel cooling, water inside the vessel without ex-vessel cooling, no water inside the vessel with ex-vessel cooling, and water inside the vessel with ex-vessel cooling. (authors)

  10. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  11. The future of fish passage science, engineering, and practice

    Science.gov (United States)

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore R.; Katopodis, Christos; Baumgartner, Lee J.; Thiem, Jason D.; Aarestrup, Kim; Pompeu, Paulo S.; O'Brien, Gordon C.; Braun, Douglas C.; Burnett, Nicholas J.; Zhu, David Z.; Fjeldstad, Hans-Petter; Forseth, Torbjorn; Rajarathnam, Nallamuthu; Williams, John G.; Cooke, Steven J.

    2018-01-01

    Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering‐focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South‐East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post‐passage impacts, requires adaptive management and continued innovation. While the use of fishways in river restoration demands a transition towards fish passage at the community scale, advances in selective fishways are also needed to manage invasive fish colonization. Because of the erroneous view in some literature and communities of practice that fish passage is largely a proven technology, improved international collaboration, information sharing, method standardization and multidisciplinary training are needed. Further development of regional expertise is needed in South America, Asia and Africa where hydropower dams are currently being planned and constructed.

  12. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  13. Distribution of steady state temperatures and thermoelastic stresses in a cylindrical shell with internal heat generation and cooled on both sides or only on one side

    International Nuclear Information System (INIS)

    Melese d'Hospital, G.B.

    1979-10-01

    General expressions for steady state temperatures and elastic thermal stress distributions are derived for a hollow fuel element cooled on both sides. The main simplifying assumptions consist of one dimensional heat transfer and a single medium. Dimensionless numerical results are plotted in the case of uniform internal heat generation and for constant thermal conductivity. Solid rods and flat plates are treated as special cases. As could be expected, cooling on both sides rather than on only one side, leads to significant reduction in maximum fuel temperature and thermal stresses for a given power density, or to a significant increase in power density for either given maximum temperature drop in the fuel or for maximum tensile thermal stress. Typically, for a rod diameter ratio of 2, the power density could be increased by a factor of 3 to 4 without increasing the maximum stress. Similarly, for the same power density, replacing internal cooling of a hollow fuel element by external cooling reduces the maximum fuel temperature drop by a factor of 1.5 and the average fuel temperature drop (or maximum tensile stress) by a factor of 2, with the same maximum compressive stress

  14. 915 MHz microwave ablation with implanted internal cooled-shaft antenna: Initial experimental study in in vivo porcine livers

    International Nuclear Information System (INIS)

    Cheng Zhigang; Xiao Qiujin; Wang Yang; Sun Yuanyuan; Lu Tong; Liang Ping

    2011-01-01

    Purpose: To explore a preferred power output for further clinical application based on the ablated lesions induced by the four power outputs of 915 MHz microwave in experimental study of in vivo porcine livers. Materials and methods: A KY2000-915 microwave ablation system with an implanted 915 MHz internal cooled-shaft antenna was used in this study. A total of 24 ablations were performed in eight in vivo porcine livers. The energy was applied for 10 min at microwave output powers of 50 W, 60 W, 70 W, and 80 W. Long-axis and short-axis diameters of the coagulation zone were measured on all gross specimens. Results: The shapes of the 915 MHz microwave ablation lesions were elliptical commonly. As the power increased, the long-axis and short-axis diameters of the coagulation zone had a tendency to rise. But the long-axis diameter of the ablated lesion at 50 W was not significantly smaller than that of the ablated lesion at 60 W (P > 0.05) and there were no statistical differences in short-axis diameters of the ablated lesion among the three power outputs of 60 W, 70 W and 80 W (P > 0.05). After 10 min irradiation of 60 W, the long-axis and short-axis diameters of the coagulation zone were 5.02 ± 0.60 cm and 3.65 ± 0.46 cm, respectively. Conclusions: For decreasing the undesired damages of liver tissues along the shaft and the number of antenna in further clinically percutaneous microwave ablation treatment, the power of 60 W may be a preferred setting among the four power outputs used in present study.

  15. Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes

    Science.gov (United States)

    Yoon, J H; Woo, S; Hwang, E J; Hwang, I; Choi, W; Han, J K; Choi, B I

    2015-01-01

    Objective: To evaluate whether switching bipolar radiofrequency ablation (SB-RFA) using three internally cooled wet (ICW) electrodes can induce coagulations >5 cm in porcine livers with better efficiency than consecutive monopolar (CM) or switching monopolar (SM) modes. Methods: A total of 60 coagulations were made in 15 in vivo porcine livers using three 17-gauge ICW electrodes and a multichannel radiofrequency (RF) generator. RF energy (approximately 200 W) was applied in CM mode (Group A, n = 20) for 24 min, SM mode for 12 min (Group B, n = 20) or switching bipolar (SB) mode for 12 min (Group C, n = 20) in in vivo porcine livers. Thereafter, the delivered RFA energy, as well as the shape and dimension of coagulations were compared among the groups. Results: Spherical- or oval-shaped ablations were created in 30% (6/20), 85% (17/20) and 90% (18/20) of coagulations in the CM, SM and SB groups, respectively (p = 0.003). SB-RFA created ablations >5 cm in minimum diameter (Dmin) in 65% (13/20) of porcine livers, whereas SM- or CM-RFA created ablations >5 cm in only 25% (5/20) and 20% (4/20) of porcine livers, respectively (p = 0.03). The mean Dmin of coagulations was significantly larger in Group C than in Groups A and B (5.1 ± 0.9, 3.9 ± 1.2 and 4.4 ± 1.0 cm, respectively, p = 0.002) at a lower delivered RF energy level (76.8 ± 14.3, 120.9 ± 24.5 and 114.2 ± 18.3 kJ, respectively, p 5 cm in diameter with better efficiency than do SM- or CM-RFA. Advances in knowledge: SB-RFA can create large, regular ablation zones with better time–energy efficiency than do CM- or SM-RFA. PMID:25873479

  16. A study on nuclear heat load tolerable for NET/TF coils cooled by internal flow of helium II

    International Nuclear Information System (INIS)

    Hofmann, A.

    1988-02-01

    NbTi cables cooled by internal flow of superfluid helium are considered an option for the design of NET/TF coils with about 11 T peak fields. Starting from an available winding cross section of 0.61x0.61 m 2 for a 8 MA turns coil made of a 16 kA conductor it is shown that sufficient hydraulic cross section can be provided within such cables to remove the expected thermal load resulting from nuclear heating with exponential decay from inboard to outboard side of the winding. The concept is a pancake type coil with 1.8 K helium fed-in the high field region of each pancake. The temperature distribution within such coils is calculated, and the local safety margin is determined from temperature and field. The calculation takes account of nuclear and a.c. heating, and of thermal conductance between the individual layers and the coil casing. It is shown that operation with 1.8 K inlet and about 3 K outlet temperature is possible. The electrical insulation with about 0.5 mm thickness proves to provide sufficient thermal insulation. No additional thermal shield is required between the coil casing and the winding package. Two different types of conductors are being considered: a) POLO type cable with quadratic cross section and a central circular coolant duct, and b) an LCT type cable with two conductors wound in hand. Both concepts with about 500 m length of the cooland channels are shown to meet the requirements resulting from a peak nuclear heat load of 0.3 mW/cm 3 in the inboard turns. The hydraulic diameters are sufficient to operate each coils with self-sustained fountain effect pumps. Even appreciably higher heat loads with up to 3 mW/cm 3 of nuclear heating can be tolerated for the POLO type cable when the hydraulic diameter is enlarged to its maximum of 17 mm. (orig.) [de

  17. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  18. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown

  19. Heat transfer and friction characteristics in steam cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Gao, Tieyu; Li, Guojun [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    We studied the heat transfer and friction characteristics in steam-cooled rectangular channels with rib turbulators on W side or H side walls in the Reynolds number (Re) range of 10000-80000. Each of the test channels was welded by four stainless steel plates to simulate the actual geometry and heat transfer structure of blade/vane internal cooling passage. The length of the channel L was 1000 mm, the cross section of the channel was 40 mm X 80 mm, and the pitch-to-rib height ratio p/e was kept at 10. The channel blockage ratio (W/H) was 0.047. Results showed that the Nusselt number (Nu) distributions displayed different trends at the entrance region with the increase of Re for the rib turbulators on the W side walls. The heat transfer performance of the rib turbulators on the H side walls was about 24- 27% higher than that on the W side walls at the same pumping power. In addition, semi-empirical correlations for the two cases, rib turbulators on W side walls and rib turbulators on H side walls, were developed based on the heat transfer results, which could be used in the design of the internal cooling passage of new generation steam-cooled gas turbine blade/vane.

  20. Experimental and numerical study of near bleed hole heat transfer enhancement in internal turbine blade cooling channels

    CSIR Research Space (South Africa)

    Scheepers, G

    2006-01-01

    Full Text Available This paper describes an experimental and numerical study of the heat transfer augmentation near the entrance to a gas turbine film cooling hole at different engine representative suction ratios (Vhole/V). For the experimental component the use...

  1. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  2. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  3. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  4. Simultaneous prediction of internal and external aerodynamic and thermal flow fields of a natural-draft cooling tower in a cross-wind

    International Nuclear Information System (INIS)

    Radosavljevic, D.; Spalding, D.B.

    1989-01-01

    The quantitative simulation of cooling-tower performance is useful to designers, enabling them to make optimal choices regarding: the type, volume and shape of the packing (i.e. fill); and the shape and size of the tower. In order to simulate performance realistically, non-uniformities of distribution of water and air mass-flow rates across the tower radius must be taken into account. This necessitates at least 2D modeling; and in order to establish the influence of a cross-wind, boundary conditions must be far away from the tower inlet and outlet, and 3D modeling must be performed. This paper is concerned with large wet natural-draught cooling towers of the type used in many steam power stations for cooling large quantities of water by direct contact with the atmosphere. The aim of the present work has been to improve the procedures of calculation by using numerical integration of the heat and mass transfer equations, and to connect internal and external aerodynamics thus enabling wind influence to be studied. It permits predicting the performance of a proposed design of the tower over a range of operating conditions. PHOENICS, a general-purpose computer code for fluid-flow simulation, is used to provide numerical solutions to governing differential equations

  5. Opening Remarks by Mr. Yury A. Sokolov [International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21. Century, Vienna (Austria), 27-30 October 2009

    International Nuclear Information System (INIS)

    Sokolov, Y.A.

    2011-01-01

    On behalf of the International Atomic Energy Agency, I would like to welcome you to this important international Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century. First, I would like to express our sincere appreciation to the European Commission, the OECD Nuclear Energy Agency, the World Nuclear Association and the International Electrotechnical Commission for their cooperation and the assistance provided in the organization of this conference. Challenges and opportunities, like the poles of a magnet, do not exist separately. Furthermore, what some perceive as an opportunity may be a challenge for others, and a challenge today will probably become an opportunity tomorrow. All these complexities are fully applicable to the nuclear industry and its future. Water Cooled Reactors have been the keystone of the nuclear industry in the 20th Century. As we move into the 21st Century and face new challenges such as the growth in world energy demand or the threat of global climate change, nuclear energy has been identified as one of the sources that could substantially and sustainably contribute to power the world. Many projections forecast significant growth in the use of nuclear energy both in countries currently taking advantage of it and in countries considering its use for the first time. As we look into the future with the development of advanced and innovative reactor designs and fuel cycles, it seems clear that Water Cooled Reactors will play an important role in the future too. In recent times, there has been a two prong approach on the expansion of nuclear power. - On one hand, countries with existing nuclear power programmes have made a large effort towards making the most of their current nuclear assets by capitalizing in many years of operational excellence, as well as by extending and optimizing their operational life. - On the other hand, and despite these life management efforts, there is a clear need to eventually

  6. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  7. International symposium on evolutionary water cooled reactors: strategic issues, technologies and economic viability. Book of extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Within the frame of growing energy demand caused by global economic growth and taking into account the Kyoto protocol on carbon dioxide emissions nuclear power plants attaining a new role. The presented papers deal mostly with improvements in NPP design, construction and safety. Some new concepts are proposed, especially in the field of inherent or passive reactor safety as well as computerised control systems. Water cooled reactors achieved already the necessary cost reduction but require some radical thinking in fuel design, construction rate, built-in safety. The key factor will be mass production in order to attain capital cost of half today's level

  8. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Wade, D.C.; Moisseytsev, A.

    2008-01-01

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus

  9. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  10. Passage of American shad: paradigms and realities

    Science.gov (United States)

    Haro, Alex; Castro-Santos, Theodore

    2012-01-01

    Despite more than 250 years of development, the passage of American shad Alosa sapidissima at dams and other barriers frequently remains problematic. Few improvements in design based on knowledge of the swimming, schooling, and migratory behaviors of American shad have been incorporated into passage structures. Large-scale technical fishways designed for the passage of adult salmonids on the Columbia River have been presumed to have good performance for American shad but have never been rigorously evaluated for this species. Similar but smaller fishway designs on the East Coast frequently have poor performance. Provision of effective downstream passage for both juvenile and postspawning adult American shad has been given little consideration in most passage projects. Ways to attract and guide American shad to both fishway entrances and downstream bypasses remain marginally understood. The historical development of passage structures for American shad has resulted in assumptions and paradigms about American shad behavior and passage that are frequently unsubstantiated by supporting data or appropriate experimentation. We propose that many of these assumptions and paradigms are either unfounded or invalid and that significant improvements to American shad upstream and downstream passage can be made via a sequential program of behavioral experimentation, application of experimental results to the physical and hydraulic design of new structures, and controlled tests of large-scale prototype structures in the laboratory and field.

  11. Passage of stable isotope-labeled grass silage fiber and fiber-bound protein through the gastroinstestinal tract of dairy cows

    NARCIS (Netherlands)

    Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F.

    2013-01-01

    Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (d) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of

  12. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  13. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  14. Unfrozen sea : sailing the northwest passage

    International Nuclear Information System (INIS)

    Byers, M.

    2007-01-01

    This article described the author's journey into the Canadian Arctic that documented the shrinking sea of Canada's Arctic region. It emphasized the loss of ecosystem and animal habitat. It addressed issues regarding Canada's claims of Arctic sovereignty over disputed waters, such as the Northwest Passage. In March 2006, the area covered during the winter by sea-ice was at an all-time low, namely 300,000 square kilometres less than the previous year. At this rate the Arctic could lose all of its sea-ice by 2030. The article also discussed phytoplankton in the Arctic which, removes carbon dioxide from the atmosphere by photosynthesis. Since the waters they live in are so cold, the phytoplankton sink into the ocean depths when they die, without decomposing. The carbon they removed from the atmosphere remains at the bottom of the sea for hundreds of years. However, as water warms up, the activity of marine bacteria that feed on the dead plankton will increase, releasing carbon dioxide back into the atmosphere. Issues related to international shipping, navigation, ownership of Arctic islands, military presence and boats in the northern channels, and political promises with respect to the Canadian Coast Guard and northern waterways were also discussed. 1 fig

  15. Evidence and mechanism of Hurricane Fran-Induced ocean cooling in the Charleston Trough

    Science.gov (United States)

    Xie, Lian; Pietrafesa, L. J.; Bohm, E.; Zhang, C.; Li, X.

    Evidence of enhanced sea surface cooling during and following the passage of Hurricane Fran in September 1996 over an oceanic depression located on the ocean margin offshore of Charleston, South Carolina (referred to as the Charleston Trough), [Pietrafesa, 1983] is documented. Approximately 4C° of sea surface temperature (SST) reduction within the Charleston Trough following the passage of Hurricane Fran was estimated based on SST imagery from Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 polar orbiting satellite. Simulations using a three-dimensional coastal ocean model indicate that the largest SST reduction occurred within the Charleston Trough. This SST reduction can be explained by oceanic mixing due to storm-induced internal inertia-gravity waves.

  16. Results of out-of-pile experiments to investigate the possibilities of cooling a core melt with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1976-01-01

    After serious hypothetical reactor accidents, melted core materials with internal heat production can occur in large quantities. A retention of these molten core masses within the containment must be ensured. The knowledge of the heat transport from volume-heated layers is necessary to clarify this matter. (orig./LH) [de

  17. Passage relevance models for genomics search

    Directory of Open Access Journals (Sweden)

    Frieder Ophir

    2009-03-01

    Full Text Available Abstract We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential functions within a Markov Random Field. The probability of a passage being relevant to a biologist's information need is represented as the joint distribution across all potential functions. Relevance model feedback of top ranked passages is used to improve distributional estimates of query concepts and topics in context, and a dimensional indexing strategy is used for efficient aggregation of concept and term statistics. By integrating multiple sources of evidence including dependencies between topics, concepts, and terms, we seek to improve genomics literature passage retrieval precision. Using this model, we are able to demonstrate statistically significant improvements in retrieval precision using a large genomics literature corpus.

  18. Skeptical notes on a physics of passage.

    Science.gov (United States)

    Huggett, Nick

    2014-10-01

    This paper investigates the mathematical representation of time in physics. In existing theories, time is represented by the real numbers, hence their formal properties represent properties of time: these are surveyed. The central question of the paper is whether the existing representation of time is adequate, or whether it can or should be supplemented: especially, do we need a physics incorporating some kind of "dynamical passage" of time? The paper argues that the existing mathematical framework is resistant to such changes, and might have to be rejected by anyone seeking a physics of passage. Then it rebuts two common arguments for incorporating passage into physics, especially the claim that it is an element of experience. Finally, the paper investigates whether, as has been claimed, causal set theory provides a physics of passage. © 2014 New York Academy of Sciences.

  19. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  20. Brook trout passage performance through culverts

    Science.gov (United States)

    Goerig, Elsa; Castro-Santos, Theodore R.; Bergeron, Normand

    2016-01-01

    Culverts can restrict access to habitat for stream-dwelling fishes. We used passive integrated transponder telemetry to quantify passage performance of >1000 wild brook trout (Salvelinus fontinalis) attempting to pass 13 culverts in Quebec under a range of hydraulic and environmental conditions. Several variables influenced passage success, including complex interactions between physiology and behavior, hydraulics, and structural characteristics. The probability of successful passage was greater through corrugated metal culverts than through smooth ones, particularly among smaller fish. Trout were also more likely to pass at warmer temperatures, but this effect diminished above 15 °C. Passage was impeded at higher flows, through culverts with steep slopes, and those with deep downstream pools. This study provides insight on factors influencing brook trout capacity to pass culverts as well as a model to estimate passage success under various conditions, with an improved resolution and accuracy over existing approaches. It also presents methods that could be used to investigate passage success of other species, with implications for connectivity of the riverscape.

  1. A differentiated plane wave: its passage through a slab

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2013-01-01

    Differentiating a monochromatic uniform plane electromagnetic wavefield with respect to its direction produces, from a field that is completely lacking in localized specific features, one that contains a straight vortex-like line, a ‘C-line’ of defined circular polarization. There is also a second separate C-line of opposite handedness; indeed, in a sense, a straight line of every polarization is realized. Because of its primitive construction it is analytically simple to study the passage of a differentiated wave obliquely through a plane interface into a medium of different refractive index, to trace its C-line. This was done in an earlier paper. Here we extend the method to passage through a parallel-sided transparent slab. There are multiple reflections within the slab, as in a Fabry–Pérot interferometer. The exiting wave, as a single differentiated plane wave, has a straight oblique C-line. Inside the slab, and in front of it, there is wave interference. The result is a coiled, helix-like, C-line in front of the slab and another inside it. The two coils wrap around separate hyperboloids of one sheet, like cooling towers. The emerging straight C-line is shifted (with respect to a C-line in a notional undisturbed incident plane wave) both in the plane of incidence and transversely to it, and the second C-line behaves similarly. The analysis is exact and could be extended in a straightforward way to a general stratified medium. (paper)

  2. Insertable fluid flow passage bridgepiece and method

    Science.gov (United States)

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  3. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    Science.gov (United States)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  4. First Passage Time Intervals of Gaussian Processes

    Science.gov (United States)

    Perez, Hector; Kawabata, Tsutomu; Mimaki, Tadashi

    1987-08-01

    The first passage time problem of a stationary Guassian process is theretically and experimentally studied. Renewal functions are derived for a time-dependent boundary and numerically calculated for a Gaussian process having a seventh-order Butterworth spectrum. The results show a multipeak property not only for the constant boundary but also for a linearly increasing boundary. The first passage time distribution densities were experimentally determined for a constant boundary. The renewal functions were shown to be a fairly good approximation to the distribution density over a limited range.

  5. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  6. Effect of Coriolis and centrifugal forces on flow and heat transfer at high rotation number and high density ratio in non orthogonally internal cooling channel

    Directory of Open Access Journals (Sweden)

    Brahim Berrabah

    2017-02-01

    Full Text Available Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0, 0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers.

  7. Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditions

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2014-01-01

    This article investigates the classical entropy generation in cooled slabs. Two types of materials are assumed for the slab: homogeneous material and FGM (functionally graded material). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM slab the thermal conductivity is modeled to vary in accordance with the rule of mixtures. The boundary conditions are assumed to be convective and radiative concurrently, and the internal heat generation of the slab is a linear function of temperature. Using the DTM (differential transformation method) and resultant temperature fields from the DTM, the local and total entropy generation rates within slabs are derived. The effects of physically applicable parameters such as the thermal conductivity parameter for the homogenous slab, β, the thermal conductivity parameter for the FGM slab, γ, gradient index, j, internal heat generation parameter, Q, Biot number at the right side, Nc 2 , conduction–radiation parameter, Nr 2 , dimensionless convection sink temperature, δ, and dimensionless radiation sink temperature, η, on the local and total entropy generation rates are illustrated and explained. The results demonstrate that considering temperature- or coordinate-dependent thermal conductivity and radiation heat transfer at both sides of the slab have great effects on the entropy generation. - Highlights: • The paper investigates entropy generation in a slab due to heat generation and convective–radiative boundary conditions. • Both homogeneous material and FGM (functionally graded material) were considered. • The calculations are carried out using the differential transformation method which is a well-tested analytical technique

  8. RITES OF PASSAGE AND SUSTANABLE DEVELOPMENT IN ...

    African Journals Online (AJOL)

    throughout the world experience and perform rites of passage in their different cultures ... The various stages of human development starting from birth, puberty ... one is momentary stripped of former self and status and recreate to something new ... culture of African and X-ray their attachment to their gods and supernatural ...

  9. Yakima Basin Fish Passage Project, Phase 2

    International Nuclear Information System (INIS)

    1991-08-01

    Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs

  10. Navigable windows of the Northwest Passage

    Science.gov (United States)

    Liu, Xing-he; Ma, Long; Wang, Jia-yue; Wang, Ye; Wang, Li-na

    2017-09-01

    Artic sea ice loss trends support a greater potential for Arctic shipping. The information of sea ice conditions is important for utilizing Arctic passages. Based on the shipping routes given by ;Arctic Marine Shipping Assessment 2009 Report;, the navigable windows of these routes and the constituent legs were calculated by using sea ice concentration product data from 2006 to 2015, by which a comprehensive knowledge of the sea ice condition of the Northwest Passage was achieved. The results showed that Route 4 (Lancaster Sound - Barrow Strait - Prince Regent Inlet and Bellot Strait - Franklin Strait - Larsen Sound - Victoria Strait - Queen Maud Gulf - Dease Strait - Coronation Gulf - Dolphin and Union Strait - Amundsen Gulf) had the best navigable expectation, Route 2 (Parry Channel - M'Clure Strait) had the worst, and the critical legs affecting the navigation of Northwest Passage were Viscount Melville Sound, Franklin Strait, Victoria Strait, Bellot Strait, M'Clure Strait and Prince of Wales Strait. The shortest navigable period of the routes of Northwest Passage was up to 69 days. The methods used and the results of the study can help the selection and evaluation of Arctic commercial routes.

  11. a Passage to the Universe

    Science.gov (United States)

    1995-11-01

    Exciting Week Ahead for Winners of Unique Astronomy Contest Following the very successful events of 1993 and 1994 [1], ESO again opens its doors for an `educational adventure' next week. It takes place within the framework of the `Third European Week for Scientific and Technological Culture', initiated and supported by the European Commission. On Tuesday, November 14, 1995, about forty 16-18 year old students and their teachers will converge towards Munich from all corners of Europe. They are the happy winners of a Europe-wide astronomy contest (`Europe Towards the Stars') that took place during the summer and early autumn. Their prize is a free, week-long stay at the Headquarters of the European Southern Observatory. During this time they will work with professional astronomers and get a hands-on experience within modern astronomy and astrophysics at one of the world's foremost international centres. In particular, the participants will be exposed to the scientific method by carrying through a research programme of their own, all the way from conception to interpretation of the data. The culmination of the stay will be the opportunity to perform remote observations via a satellite link with two major telescopes at the ESO La Silla observatory in Chile, including the very advanced 3.5-metre New Technology Telescope (NTT). The European Contest This year's EU/ESO programme was devised as a contest between joint teams of secondary school students and their teachers. The teams had to choose between four different subjects requiring either practical or theoretical work, and all with strong scientific and technological components. One subject was to devise an observational programme with an existing telescope and instrument and to discuss the resulting data in order to arrive at a scientific conclusion. This was the preferred subject by many teams. For instance, the winning German team observed the moons of Jupiter and the Danish team studied a star cluster in order to

  12. Upper ocean response to the passage of two sequential typhoons

    Science.gov (United States)

    Wu, Renhao; Li, Chunyan

    2018-02-01

    Two sequential typhoons, separated by five days, Chan-hom and Nangka in the summer of 2015, provided a unique opportunity to study the oceanic response and cold wake evolution. The upper ocean response to the passage of these two typhoons was investigated using multi-satellite, Argo float data and HYCOM global model output. The sea surface cooling (SSC) induced by Chan-hom was gradually enhanced along its track when the storm was intensified while moving over the ocean with shallow mixed layer. The location of maximum cooling of sea surface was determined by the storm's translation speed as well as pre-typhoon oceanic conditions. As a fast-moving storm, Chan-hom induced significant SSC on the right side of its track. Localized maximum cooling patches are found over a cyclonic eddy (CE). An analysis of data from Argo floats near the track of Chan-hom demonstrated that the mixed layer temperature (MLT) and mixed layer depth (MLD) had more variabilities on the right side than those on the left side of Chan-hom's track, while mixed layer salinity (MLS) response was different from those of MLT and MLD with an increase in salinity to the right side and a decrease in salinity to the left side of the track. Subsequently, because of the remnant effect of Chan-hom, the strong upwelling induced by Typhoon Nangka, the pre-existing CE as well as a slow translation speed (process. The enhancement of chlorophyll-a concentrations was also noticed at both the CE region and close to Chan-hom's track.

  13. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  14. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  15. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  16. Reuso de efluentes em torres de resfriamento - estudo conceitual: Aeroporto Internacional do Rio de Janeiro = Water reuse for cooling towers – conceptual study: Rio de Janeiro International Airport

    Directory of Open Access Journals (Sweden)

    Denize Dias de Carvalho

    2010-07-01

    Full Text Available O reuso de água é ferramenta valiosa na gestão da água, que promove a otimização da utilização do recurso desta, que reduz e, muitas vezes, até elimina os impactos no meio ambiente. Neste trabalho foi investigada a composição do efluente secundário da estação de tratamento de efluentes (ETE APOIO do Aeroporto Internacional do Rio de Janeiro, com o objetivo de propor o processo adequado à reutilização deste efluente como água de reposição nas torres de resfriamento desse Aeroporto. Com base nas análises de cátions, ânions, DBO e DQO, verificou-se o parâmetro SDT - Cl- como crítico para processamento do efluente. Foi proposta uma sequência para reutilização do efluente que continha o tratamento de osmose inversa, o custo do m3 produzido por essa sequência foi estimado em R$ 2,90 m-3. Water reuse is an important tool in water management; it is a conceptthat promotes optimization of the water resource, reducing and often even eliminating environmental impacts. In this work, the composition of a secondary effluent (from the effluent treatment station (ETE APOIO at Rio de Janeiro International Airport was analyzed, with theaim of determining an adequate process for the reutilization of this effluent as replacement cooling water. Chemical analyses such as cation and anion analysis, BOD and COD were performed. Based on these analyses, it was found that TDS - Cl- was the critical parameter foreffluent processing. A treatment system was proposed for effluent reuse including reverse osmosis; the cost estimate per m3 produced by this system was R$ 2.90 m-3.

  17. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors; Etude de la tenue de la gaine interne pour-element combustible a refroidissement interne et externe d'un reacteur graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boudouresque, B; Courcon, P; Lestiboubois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm{sup 2} gas pressure, should remain in contact with the fuel. (authors) [French] La cartouche d'un element combustible annulaire, a refroidissement interne et externe pour reacteur graphite-gaz, est composee d'un tube combustible en uranium, d'une gaine externe et d'une gaine interne en alliage de magnesium. Pour que l'echange thermique entre la gaine interne et le combustible soit bon, il faut que la gaine reste appliquee sur l'uranium quel que soit le regime de temperature. Cette note a pour but de montrer comment, d'apres une etude theorique, le jeu combustible-gaine interne varie au cours des operations de gainage, de chargement dans le reacteur, et des cyclages thermiques. Les parametres suivants sont etudies: diametres de tube, pression du gaz caloporteur, temperature d'entree du gaz, plasticite de l'alliage de gaine. Il est montre que, quel que soit le regime de fonctionnement, la gaine interne d'un element 77 x 95, en projet pour un reacteur graphite-gaz sous pression de 40 kg/cm{sup 2}, doit rester appliquee sur le combustible. (auteurs)

  18. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  19. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  20. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  1. Conceptual Design of Structural Components of a Dual Cooled Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Kang-Hee; Kim, Jae-Yong; Yoon, Kyung-Ho

    2008-01-15

    A dual cooled fuel, featured by an internal as well as an external coolant flow passage of a fuel rod, was suggested to enable a large-scaled power-uprate of PWR plant and launched as one of the National Nuclear R and D Projects in 2007. It is necessary to make the dual cooled fuel be compatible with an OPR-1000 system to maximize the economy. Also, the structural components of the dual cooled fuel should be designed to realize their features. To this end, a conceptual design of a spacer grid, outer and center guide tubes, and top and bottom end pieces has been carried out in the project 'Development of Design Technology for Dual Cooled Fuel Structure'. For the spacer grids, it is suggested that springs and dimples are located at or near the cross points of the straps due to a considerably narrowed rod-to-rod gap. Candidate shapes of the grids were also developed and applied for domestic patents. For the outer and center guide tubes, a dual tube like a fuel rod was suggested to make the subchannel areas around the guide tubes be similar to those around the fuel rods of enlarged diameter. It was applied for the domestic patent as well. For the top and bottom end pieces, the shape and pattern have been changed from the conventional ones reflecting the fuel rods' changes. Technical issues and method of resolution for each components were listed up for a basic design works in the following years.

  2. Evaporative cooling in polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shimotori, S; Sonai, A [Toshiba Corp. Tokyo (Japan)

    1996-06-05

    The concept of the evaporative cooling for the internally humidified PEFC was confirmed by the experiment. The evaporative cooling rates at the anode and the cathode were mastered under the various temperatures and air utilizations. At a high temperature the proportion of the evaporative cooling rate to the heat generation rate got higher, the possibility of the evaporative cooling was demonstrated. 2 refs., 7 figs., 1 tab.

  3. The Zenith Passage of the Sun at the Mesoamerican Sites of Tula and Chichen Itza

    OpenAIRE

    Sparavigna, Amelia Carolina

    2017-01-01

    International audience; Using software SunCalc.org we can easily observe the alignments of buildings along the direction of the sunset on the day of the zenith passage of the sun, at two Mesoamerican sites. These sites are those of Tula and Chichen Itza.

  4. 49 CFR 192.150 - Passage of internal inspection devices.

    Science.gov (United States)

    2010-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY... transmission lines 103/4 inches (273 millimeters) or more in outside diameter on which construction begins... on investigation or experience, that there is no reasonably practical alternative under the design...

  5. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  6. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  7. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  8. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  9. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: Results in ex vivo and in vivo porcine livers

    International Nuclear Information System (INIS)

    Yu Jie; Liang Ping; Yu Xiaoling; Liu Fangyi; Chen Lei; Wang Yang

    2011-01-01

    Purpose: The purpose of this study was to compare the effectiveness of microwave (MW) ablation and radiofrequency (RF) ablation using a single internally cooled probe in a hepatic porcine model. Materials and methods: In the ex vivo experiment, MW ablations (n = 40) were performed with a 2450 MHz and 915 MHz needle antenna, respectively at 60 W, 70 W power settings. Bipolar RF ablations (n = 20) were performed with a 3-cm (T30) and 4-cm (T40) active tip needle electrodes, respectively at a rated power 30 W and 40 W according to automatically systematic power setting. In the in vivo experiment, the 2450 MHz and 915 MHz MW ablation both at 60 W and T30 bipolar RF ablation at 30 W were performed (n = 30). All of the application time were 10 min. Long-axis diameter (Dl), short-axis diameter (Ds), ratio of Ds/Dl, the temperature data 5 mm from the needle and the time of temperature 5 mm from the needle rising to 54 deg. C were measured. Results: Both in ex vivo and in vivo models, Ds and Dl of 915 MHz MW ablations were significantly larger than all the RF ablations (P < 0.05); the Ds for all the 2450 MHz MW ablations were significantly larger than that of T30 RF ablations (P < 0.05). 2450 MHz MW and T30 RF ablation tended to produce more elliptical-shaped ablation zone. Tissue temperatures 5 mm from the needle were considerably higher with MW ablation, meanwhile MW ablation achieved significantly faster rate of temperature rising to 54 deg. C than RF ablation. For in vivo study after 10 min of ablation, the Ds and Dl of 2450 MHz MW, 915 MHz MW and Bipolar RF were 2.35 ± 0.75, 2.95 ± 0.32, 1.61 ± 0.33 and 3.86 ± 0.81, 5.79 ± 1.03, 3.21 ± 0.51, respectively. Highest tissue temperatures 5 mm from the needle were 80.07 ± 12.82 deg. C, 89.07 ± 3.52 deg. C and 65.56 ± 15.31 deg. C and the time of temperature rising to 54 deg. C were respectively 37.50 ± 7.62 s, 24.50 ± 4.09 s and 57.29 ± 23.24 s for three applicators. Conclusion: MW ablation may have higher

  10. Integrated axial and tangential serpentine cooling circuit in a turbine airfoil

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J; Dalton, John P

    2015-05-05

    A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall and not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.

  11. Improving hydroturbine pressures to enhance salmon passage survival and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trumbo, Bradly A. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Ahmann, Martin L. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Renholods, Jon F. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-12

    This paper provides an overview of turbine pressure data collection and barotrauma studies relative to fish passage through large Kaplan turbines and how this information may be applied to safer fish passage through turbines. The specific objectives are to 1) discuss turbine pressures defined by Sensor Fish releases; 2) discuss what has been learned about pressure effects on fish and the factors influencing barotrauma associated with simulated turbine passage; 3) elucidate data gaps associated with fish behavior and passage that influence barotrauma during turbine passage; 4) discuss how the results of these studies have led to turbine design criteria for safer fish passage; and 5) relate this information to salmon recovery efforts and safer fish passage for Atlantic and Pacific salmonids.

  12. Meridional contrasts in productivity changes driven by the Cenozoic opening of Drake Passage

    Science.gov (United States)

    Donnadieu, Y.; Ladant, J. B.; Bopp, L.; Wilson, P. A.; Lear, C. H.

    2017-12-01

    The progressive opening of Drake Passage across the Eocene and the Oligocene occurs contemporaneously to the long-term global cooling of the late Eocene, which culminated with the Eocene-Oligocene glaciation of Antarctica. Atmospheric pCO2 decline during the late Eocene is thought to have played a major role in the climatic shifts of the Eocene-Oligocene boundary, yet reasons behind CO2 variations remain obscure. Changes in marine productivity affecting the biological oceanic carbon pump represent a possible cause. Here, we explore whether and how the opening of Drake Passage may have affected the marine biogeochemistry, and in particular paleoproductivity changes, with the use of a fully coupled atmosphere-ocean-biogeochemical model (IPSL-CM5A). We find that the simulated changes to Drake Passage opening exhibit a uniform decrease in the low latitudes while the high latitude response is more spatially heterogeneous. Mechanistically, the low latitude productivity decrease is a consequence of the dramatic reorganization of the ocean circulation when Drake Passage opens, as the shift from a well ventilated to a swampier ocean drives nutrient depletion in the low latitudes. In the high latitudes, the onset of the Antarctic Circumpolar Current in the model exerts a strong control both on nutrient availability but also on regions of deep water formation, which results in non-uniform patterns of productivity change in the Southern Ocean. The qualitative agreement between geographically diverse long-term paleoproductivity records and the simulated variations suggests that the opening of Drake Passage may contribute to part of the long-term paleoproductivity signal recorded in the data.

  13. Condensation phenomena in a turbine blade passage

    International Nuclear Information System (INIS)

    Skillings, S.A.

    1989-02-01

    The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)

  14. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  15. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  16. Passive Safety Systems in Advanced Water Cooled Reactors (AWCRS). Case Studies. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    This report presents the results from the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) collaborative project (CP) on Advanced Water Cooled Reactor Case Studies in Support of Passive Safety Systems (AWCR), undertaken under the INPRO Programme Area C. INPRO was launched in 2000 - on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21) - to ensure that nuclear energy is available in the 21st century in a sustainable manner, and it seeks to bring together all interested Member States to consider actions to achieve innovation. An important objective of nuclear energy system assessments is to identify 'gaps' in the various technologies and corresponding research and development (R and D) needs. This programme area fosters collaboration among INPRO Member States on selected innovative nuclear technologies to bridge technology gaps. Public concern about nuclear reactor safety has increased after the Fukushima Daiichi nuclear power plant accident caused by the loss of power to pump water for removing residual heat in the core. As a consequence, there has been an increasing interest in designing safety systems for new and advanced reactors that are passive in nature. Compared to active systems, passive safety features do not require operator intervention, active controls, or an external energy source. Passive systems rely only on physical phenomena such as natural circulation, thermal convection, gravity and self-pressurization. Passive safety features, therefore, are increasingly recognized as an essential component of the next-generation advanced reactors. A high level of safety and improved competitiveness are common goals for designing advanced nuclear power plants. Many of these systems incorporate several passive design concepts aimed at improving safety and reliability. The advantages of passive safety systems include simplicity, and avoidance of human intervention, external power or signals. For these reasons, most

  17. Pathos and the Mundane in the Symbolic Space of 1956 Revolution: the Case of Corvin-passage, Budapest

    Directory of Open Access Journals (Sweden)

    Ágnes Erőss

    2016-11-01

    Full Text Available The Corvin passage is one of the most important symbolic spaces of 1956 revolution in Hungary. The majority of armed conflicts took place in Budapest, where the largest resistance group had to battle against Soviet tanks in the neighbourhood of the Corvin Passage. This study aims to highlight the fact that, even though a general shift has taken place from the pre-1990 policy to ‘forget’ to today’s established remembrance practices, the Corvin Passage still does not have a prominent position as a major historic site. Our research is based on a study of relevant national and international literature, on an analysis of documents relating to tourism site management, on historical sources related to the Corvin Passage, and on a content analysis of guide-books and websites. The authors would tribute to 70 anniversary of treading out of Hungarian revolution and war of independence with this paper.

  18. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  19. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  20. The microclimate within a Neolithic passage grave

    DEFF Research Database (Denmark)

    Klenz Larsen, Poul; Aasbjerg Jensen, Lars; Ryhl-Svendsen, Morten

    2017-01-01

    Microclimate measurements in a Neolithic passage grave in Denmark have shown that natural ventilation through the open entrance destabilizes the relative humidity (RH), whereas a sealed entrance gives a much more stable RH, above 90%. Episodes of condensation occur on the stone surfaces in summer...... with too much ventilation and in winter with too little ventilation. Soil moisture measurements above, below, and beside the grave mound indicate that rainfall on the mound is not a significant source of moisture to the chamber, whereas the ground below the sealed chamber is constantly moist. The chamber...... can be kept dry all year by putting a moisture barrier membrane over the floor. Apart from the more variable climate within the open chamber, there is also a significant penetration of ozone, which is absent in the sealed chamber. The ozone may have deteriorated the folds of birch bark put between...

  1. Bird of passage recollections of a physicist

    CERN Document Server

    1985-01-01

    Here is the intensely personal and often humorous autobiography of one of the most distinguished theoretical physicists of his generation, Sir Rudolf Peierls. Born in Germany in 1907, Peierls was indeed a bird of passage," whose career of fifty-five years took him to leading centers of physics--including Munich, Leipzig, Zurich, Copenhagen, Cambridge, Manchester, Oxford, and J. Robert Oppenheimer''s Los Alamos. Peierls was a major participant in the revolutionary development of quantum mechanics in the 1920s and 1930s, working with some of the pioneers and, as he puts it, "some of the great characters" in this field. Originally published in 1988. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of- print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Libr...

  2. Critical behavior of the two-dimensional first passage time

    International Nuclear Information System (INIS)

    Chayes, J.T.; Chayes, L.; Durrett, R.

    1986-01-01

    We study the two-dimensional first passage problem in which bonds have zero and unit passage times with probability p and 1-p, respectively. We provide that as the zero-time bonds approach the percolation threshold p/sub c/, the first passage time exhibits the same critical behavior as the correlation function of the underlying percolation problem. In particular, if the correlation length obeys ξ(p)--chemical bondp-p/sub c/chemical bond/sup -//sup v/, then the first passage time constant satisfies μ(p)--chemical bondp-p/sub c/chemical bond/sup v/. At p/sub c/, where it has been asserted that the first passage time from 0 to x scales as chemical bondxchemical bond to a power psi with 0< psi<1, we show that the passage times grow like log chemical bondxchemical bond, i.e., the fluid spreads exponentially rapidly

  3. The future of fish passage science, engineering, and practice

    DEFF Research Database (Denmark)

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore

    2018-01-01

    science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge......Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i...... underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South-East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post-passage impacts, requires adaptive management and continued...

  4. The passage and initial implementation of Oregon's Measure 44

    Science.gov (United States)

    Goldman, L.; Glantz, S.

    1999-01-01

    OBJECTIVE—To prepare a history of the passage and early implementation of Ballot Measure 44, "An Act to Support the Oregon Health Plan", and tobacco control policymaking in Oregon. Measure 44 raised cigarette taxes in Oregon by US$0.30 per pack, and dedicated 10% of the revenues to tobacco control.
METHODS—Data were gathered from interviews with members of the Committee to Support the Oregon Health Plan, Measure 44's campaign committee, as well as with state and local officials, and tobacco control advocates. Additional information was obtained from public documents, internal memoranda, and news reports.
RESULTS—Although the tobacco industry outspent Measure 44's supporters 7 to 1, the initiative passed with 56% of the vote. Even before the election, tobacco control advocates were working to develop an implementation plan for the tobacco control programme. They mounted a successful lobbying campaign to see that the legislature did not divert tobacco control funds to other uses. They also stopped industry efforts to limit the scope of the programme. The one shortcoming of the tobacco control forces was not getting involved in planning the initiative early enough to influence the amount of money that was devoted to tobacco control. Although public health groups provided 37% of the money it cost to pass Measure 44, only 10% of revenues were devoted to tobacco control.
CONCLUSIONS—Proactive planning and aggressive implementation can secure passage of tobacco control initiatives and see that the associated implementing legislation follows good public health practice.


Keywords: advocacy; legislation; implementation; tobacco tax PMID:10599577

  5. Synthesis of juvenile lamprey migration and passage research and monitoring at Columbia and Snake River Dams

    Science.gov (United States)

    Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.

    2016-01-01

    We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.

  6. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  7. Workshop on beam cooling and related topics

    International Nuclear Information System (INIS)

    Bosser, J.

    1994-01-01

    The sessions of the Workshop on Beam Cooling and Related Topics, held in Montreux from 4-8 October 1993, are reported in these Proceedings. This meeting brought together international experts in the field of accelerator beam cooling. Its purpose was to discuss the status of the different cooling techniques currently in use (stochastic, electron, ionization, heavy-ion, and laser) and their actual performances, technological implications, and future prospects. Certain theoretical principles (muon cooling, cyclotron maser cooling) were discussed and are reported on in these Proceedings. Also of interest in this Workshop was the possibility of beam crystallization in accelerators using ultimate cooling. In the first part of these Proceedings, overview talks on the various cooling techniques, their implications, present performance, and future prospects are presented. More detailed reports on all the topics are then given in the form of oral presentations or poster sessions. Finally, the chairmen and/or convenors then present summary talks. (orig.)

  8. Fish Passage Center 2001 annual report.; ANNUAL

    International Nuclear Information System (INIS)

    Fish Passage Center

    2002-01-01

    Extremely poor water conditions within the Columbia River Basin along with extraordinary power market conditions created an exceptionally poor migration year for juvenile salmon and steelhead. Monthly 2001 precipitation at the Columbia above Grand Coulee, the Snake River above Ice Harbor, and the Columbia River above The Dalles was approximately 70% of average. As a result the 2001 January-July runoff volume at The Dalles was the second lowest in Columbia River recorded history. As a compounding factor to the near record low flows in 2001, California energy deregulation and the resulting volatile power market created a financial crisis for the Bonneville Power Administration (BPA). Power emergencies were first declared in the summer and winter of 2000 for brief periods of time. In February of 2001, and on April 3, the BPA declared a ''power emergency'' and suspended many of the Endangered Species Act (ESA) and Biological Opinion (Opinion) measures that addressed mainstem Columbia and Snake Rivers juvenile fish passage. The river and reservoir system was operated primarily for power generation. Power generation requirements in January through March coincidentally provided emergence and rearing flows for the Ives-Pierce Islands spawning area below Bonneville Dam. In particular, flow and spill measures to protect juvenile downstream migrant salmon and steelhead were nearly totally suspended. Spring and summer flows were below the Opinion migration target at all sites. Maximum smolt transportation was implemented instead of the Opinion in-river juvenile passage measures. On May 16, the BPA Administrator decided to implement a limited spill for fish passage at Bonneville and The Dalles dams. On May 25, a limited spill program was added at McNary and John Day dams. Spill extended to July 15. Juvenile migrants, which passed McNary Dam after May 21, experienced a noticeable, improved survival, as a benefit of spill at John Day Dam. The suspension of Biological Opinion

  9. RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity

    International Nuclear Information System (INIS)

    Virostek, S.; Li, D.

    2005-01-01

    A finite element analysis has been carried out to characterize the RF, thermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling channel. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. The high-gradient closed-cell cavity is currently being fabricated for the MICE (international Muon Ionization Cooling Experiment) and MUCOOL experiments. The 1200 mm diameter cavity is constructed of 6 mm thick copper sheet and incorporates a rounded pillbox-like profile with an open beam iris terminated by 420 mm diameter, 0.38 mm thick curved beryllium foils. Tuning is accomplished through elastic deformation of the cavity, and cooling is provided by external water passages. Details of the analysis methodology will be presented including a description of the ANSYS macro that computes the heat loads from the RF solution and applies them directly to the thermal model. The process and results of a calculation to determine the resulting frequency shift due to thermal and structural distortion of the cavity will also be presented

  10. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  11. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle

    International Nuclear Information System (INIS)

    Sanjay; Singh, Onkar; Prasad, B.N.

    2008-01-01

    A comparative study of the influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle power plant is presented. Seven schemes involving air and steam as coolants under open and closed loop cooling techniques have been studied. The open loop incorporates the internal convection, film and transpiration cooling techniques. Closed loop cooling includes only internal convection cooling. It has been found that closed loop steam cooling offers more specific work and consequently gives higher value of plant efficiency of about 60%, whereas open loop transpiration steam cooling, open loop steam internal convection cooling, transpiration air cooling, film steam cooling, film air, and internal convection air cooling have been found to yield lower values of plant efficiency in decreasing order as compared to closed loop steam cooling

  12. Gender Differences in Implicit and Explicit Memory for Affective Passages

    Science.gov (United States)

    Burton, Leslie A.; Rabin, Laura; Vardy, Susan Bernstein.; Frohlich, Jonathan; Wyatt, Gwinne; Dimitri, Diana; Constante, Shimon; Guterman, Elan

    2004-01-01

    Thirty-two participants were administered 4 verbal tasks, an Implicit Affective Task, an Implicit Neutral Task, an Explicit Affective Task, and an Explicit Neutral Task. For the Implicit Tasks, participants were timed while reading passages aloud as quickly as possible, but not so quickly that they did not understand. A target verbal passage was…

  13. Teleportation of an Unknown Atomic State via Adiabatic Passage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.

  14. 50 years of first-passage percolation

    CERN Document Server

    Auffinger, Antonio; Hanson, Jack

    2017-01-01

    First-passage percolation (FPP) is a fundamental model in probability theory that has a wide range of applications to other scientific areas (growth and infection in biology, optimization in computer science, disordered media in physics), as well as other areas of mathematics, including analysis and geometry. FPP was introduced in the 1960s as a random metric space. Although it is simple to define, and despite years of work by leading researchers, many of its central problems remain unsolved. In this book, the authors describe the main results of FPP, with two purposes in mind. First, they give self-contained proofs of seminal results obtained until the 1990s on limit shapes and geodesics. Second, they discuss recent perspectives and directions including (1) tools from metric geometry, (2) applications of concentration of measure, and (3) related growth and competition models. The authors also provide a collection of old and new open questions. This book is intended as a textbook for a graduate course or as a...

  15. Upstream Atlantic salmon (Salmo salar) passage

    International Nuclear Information System (INIS)

    Clay, C.H.

    1993-01-01

    Upstream salmon passage though a dam is discussed with respect to three main components: the fishway entrance, the fishway, and the exit. Design considerations and alternative types of components are presented. For fishway entrances, an important consideration is the positioning of the entrance as far upstream as the fish can swim with respect to obstacles. For powerhouses using water diverted from a river, the problem of leading fish past the powerhouse may be overcome by either installing a tailrace barrier or increasing the flow until the home stream odor is sufficient to attract fish. Swimming ability should be the first consideration in fishway design. Fishways with 50 cm drops per pool would be satisfactory in most cases. The problem of headwater fluctuation is overcome through careful fishway selection. Fish locks, hoists, and elevators are other alternatives to pool/weir fishways. The location for a fish exit must be decided on the basis of whether the fishway will be used only for upstream migrations. 5 refs., 1 fig., 1 tab

  16. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  17. Nuclear fast neutron reactor cooled by a liquid metal and of which internal structures are equipped with a thermal protection device

    International Nuclear Information System (INIS)

    Lemercier, G.; Lions, N.

    1986-01-01

    The internal structures of a nuclear fast neutron reactor are covered at least partially, on the most hot side, by a thermal protection device. This device comprises modular plates arranged end to end with a certain play between themselves and taking approximately the shape of the internal structures. Each plate is fixed in its center on the internal structures by a stud. A small plate fixed at one of the corners of each plate and covering partially the adjacent plates ensures the safety fixing of these ones [fr

  18. Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors. Report of the collaborative project COOL of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-05-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO aims at helping to ensure that nuclear energy is available in the twenty-first century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to jointly consider actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. One of the aims of INPRO is to develop options for enhanced sustainability through promotion of technical and institutional innovations in nuclear energy technology through collaborative projects among IAEA Member States. Collaboration among INPRO members is fostered on selected innovative nuclear technologies to bridge technology gaps. Collaborative projects have been selected so that they complement other national and international R and D activities. The INPRO Collaborative Project COOL on Investigation of Technological Challenges Related to the Removal of Heat by Liquid Metal and Molten Salt Coolants from Reactor Cores Operating at High Temperatures investigated the technological challenges of cooling reactor cores that operate at high temperatures in advanced fast reactors, high temperature reactors and accelerator driven systems by using liquid metals and molten salts as coolants. The project was initiated in 2008 and was led by India; experts from Brazil, China, Germany, India, Italy and the Republic of Korea participated and provided chapters of this report. The INPRO Collaborative Project COOL addressed the following fields of research regarding liquid metal and molten salt coolants: (i) survey of thermophysical properties; (ii) experimental investigations and computational fluid dynamics studies on thermohydraulics, specifically pressure drop and heat transfer under different operating conditions; (iii) monitoring and control of coolant

  19. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Science.gov (United States)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  20. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Directory of Open Access Journals (Sweden)

    Janovcová Martina

    2015-01-01

    Full Text Available Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air – water, air is the primary low – energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  1. Fish Passage Center 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele [Fish Passage Center of the Columbia Basin Fish & Wildlife Authority

    2008-11-25

    and McNary dams), whereas prior to 2005 spill was terminated at these projects after the spring period. In addition, the 2007 operations agreement provided regardless of flow conditions. For the first time spill for fish passage was provided in the low flow conditions that prevailed in the Snake River throughout the spring and summer migration periods. Gas bubble trauma (GBT) monitoring continued throughout the spill period. A higher incidence of rank 1, GBT signs were observed in late arriving steelhead smolts arriving after the 95% passage date had occurred. During this time dissolved gas levels were generally below the 110% water quality standard in the forebay where fish were sampled. This occurrence was due to prolonged exposure and extended travel times due to low migration flows. The 2007 migration conditions differed from any year in the historic record. The migration conditions combined low river flows in the Snake River with spill throughout the spring and summer season. The juvenile migration characteristics observed in 2007 were unique compared to past years in that high levels of 24 hour spill for fish passage were provided in low flow conditions, and with a delayed start to the smolt transportation program a smaller proportion of the total run being transported. This resulted in relatively high spring juvenile survival despite the lower flows. The seasonal spring average flow in the Snake River was 61 Kcfs much lower than the spring time average of 120 Kcfs that occurred in 2006. However juvenile steelhead survival through the Lower Granite to McNary reach in 2007 was nearly 70% which was similar to the juvenile steelhead survival seen in 2006 under higher migration flows. The low flows in the May-July period of 2007 were similar to the 2001 low flow year, yet survival for fall chinook juveniles in this period in 2007 was much higher. In 2001 the reach survival estimate for juvenile fall Chinook from Lower Granite to McNary Dam ranged from 0

  2. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  3. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  4. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  5. Excess bottom radon 222 distribution in deep ocean passages

    International Nuclear Information System (INIS)

    Sarmiento, J.L.; Broecker, W.S.; Biscaye, P.E.

    1978-01-01

    Radon 222 and STD profiles were obtained as part of the Geosecs program in the Vema Channel in the southwest Atlantic Ocean and in the Samoan, Clarion, and Wake Island passages in the Pacific Ocean. The standing crop of excess radon 222 is higher in the passages than at other nearby locations. The most likely explanation for this is that there is a high flux of radon 222 from the floor of the passages. Since much of the floor is covered with manganese nodules and encrustations, the high flux of radon 222 may be attributable to the high concentrations of radium 226 in the outer few millimeters of such deposits. Laboratory measurements of radon 222 emissivity from maganese encrustations obtained in Vema Channel support this hypothesis. The excess radon 222 in the Vema Channel and Wake Island Passage is found in substantial quantities at heights above bottom greatly exceeding the heights at which excess radon 222 is found in nonpassage areas. The horizontal diffusion of radon emanating from the walls of the passages is unlikely to be the cause of the observed concentrations because the ratio of wall surface area to water volume is very low. The profiles must therefore be a result of exceptionally high apparent vertical mixing in the passages. Further work is needed to determine the nature of this apparent vertical mixing. The excess radon 222 and STD data in all four passages have been fit with an empirical model in which it is assumed that the bouyancy flux is constant with distance above bottom. The fits are very good and yield apparent buoyancy fluxes that are between 1 and 3 orders of magnitude greater than those obtained at nearby stations outside the passages for three of the four passages

  6. An investigation of critical heat fluxes in vertical tubes internally cooled by Freon-12. Part I - Critical heat flux experiments with axially uniform and non-uniform heating and comparisons of data with selected correlations

    International Nuclear Information System (INIS)

    Green, W.J.; Stevens, J.R.

    1981-08-01

    Experiments have been performed using vertical heated tubes, cooled internally by Freon-12, to determine critical heat fluxes (CHFs) for both a uniformly heated section and an exit region with a separately controlled power supply. Heated lengths of the main separately were 2870 mm (8.48 and 16.76 mm tube bores) and 3700 mm (for 21.34 mm tube bore); heated length of the exit section was 230 mm. Coolant pressures, exit qualities and mass fluxes were in the range 0.9 to 1.3 MPa, 0.19 to 0.86, and 380 to 2800 kg m -2 s -1 , respectively. The data have been compared with published empirical correlations specifically formulated to predict CHFs in Freon-cooled, vertical tubes; relevant published CHF data have also been compared with these correlations. These comparisons show that, even over the ranges of conditions for which the correlations were developed, predicted values are only accurate to within +-20 per cent. Moreover, as mass fluxes increase above 3500 kg m -2 s -1 , the modified Groeneveld correlation becomes increasingly inadequate, and the Bertoletti and modified Bertoletti correlations under-predict CHF values by increasing amounts. At mass fluxes below 750 kg m -2 s -1 the Bertoletti correlations exhibit increasing inaccuracy with a decrease in mass flux. For non-uniform heating, the correlations are at variance with the experimental data

  7. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  8. The relativistic titls of Giza pyramids' entrance-passages

    Science.gov (United States)

    Aboulfotouh, H.

    The tilts of Giza pyramids' entrance-passages have never been considered as if they were the result of relativistic mathematical equations, and never been thought to encode the Earth's obliquity parameters. This paper presents an attempt to retrieve the method of establishing the equations that the pyramids' designer used to quantify the entrance-passages' tilts of these architectonic masterpieces. It proves that the pyramids' designer was able to include the geographic, astronomical and time parameters in one relativistic equation, encoding the date of the design of the Giza pyramids in the tilt of the entrance passage of the great pyramid.

  9. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  10. Innovative technologies for Faraday shield cooling

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-01-01

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm 2 ;. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach

  11. Removal of cyanobacterial toxins by sediment passage

    Science.gov (United States)

    Gruetzmacher, G.; Boettcher, G.; Chorus, I.; Bartel, H.

    2003-04-01

    Cyanbacterial toxins ("Cyanotoxins") comprise a wide range of toxic substances produced by cyanobacteria ("blue-green algae"). Cyanobacteria occur in surface water word wide and can be found in high concentrations during so-called algal blooms when conditions are favourable (e.g. high nutrient levels, high temperatures). Some cyanobacteria produce hepato- or neurotoxins, of which the hepatotoxic microcystins are the most common in Germany. The WHO guideline value for drinking water was set at 1 μg/L. However, maximum concentrations in surface water can reach 25 mg/L, so that a secure method for toxin elimination has to be found when this water is used as source water for drinking water production. In order to assess if cyanotoxins can be removed by sediment passage the German Federal Environmental Agency (UBA) conducted laboratory- and field scale experiments as well as observations on bank filtration field sites. Laboratory experiments (batch- and column experiments for adsorption and degradation parameters) were conducted in order to vary a multitude of experimental conditions. These experiments were followed by field scale experiments on the UBA's experimental field in Berlin. This plant offers the unique possibility to conduct experiments on the behaviour of various agents - such as harmful substances - during infiltration and bank filtration under well-defined conditions on a field scale, and without releasing these substances to the environment. Finally the development of microcystin concentrations was observed between infiltrating surface water and a drinking water well along a transsecte of observation wells. The results obtained show that infiltration and bank filtration normally seem to be secure treatment methods for source water contaminated by microcystins. However, elimination was shown to be difficult under the following circumstances: - dying cyanobacterial population due to insufficient light and / or nutrients, low temperatures or application of

  12. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  13. Culvert Length and Interior Lighting Impacts to Topeka Shiner Passage

    Science.gov (United States)

    2017-11-01

    Culverts can act as barriers to fish passage for a number of reasons including insufficient water depth or excess velocity. In addition, concern is being raised over behavioral barriers where culvert conditions elicit an avoidance response that deter...

  14. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  15. Fish passage hydroelectric power plant Linne, Netherlands. Didson measurements

    International Nuclear Information System (INIS)

    Van Keeken, O.A.; Griffioen, A.B.

    2011-11-01

    The hydroelectric power plant in the Dutch Maas River near Linne has a fish deflection and passage system. For this study, two evenings in the months of August and September 2011 were dedicated to examining the extent to which fish approached and used the fish passage system. To establish the swimming behavior of the fish, a high-resolution sonar (DIDSON) was used, which generates moving images of fish in turbid waters, to study their behavior. [nl

  16. Algorithms for Brownian first-passage-time estimation

    Science.gov (United States)

    Adib, Artur B.

    2009-09-01

    A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.

  17. Fire passage on geomorphic fractures in Cerrado: effect on vegetation

    OpenAIRE

    Otacílio Antunes Santana; José Marcelo Imaña Encinas; Flávio Luiz de Souza Silveira

    2017-01-01

    Geomorphic fracture is a natural geologic formation that sometimes forms a deep fissure in the rock with the establishment of soil and vegetation. The objective of this work was to analyze vegetation within geomorphic fractures under the effect of wildfire passage. The biometric variables evaluated before and after fire passage were: diameter, height, leaf area index, timber volume, grass biomass, number of trees and shrubs and of species. Results (in fractures) were compared to adjacent area...

  18. Computer simulations of the damage due to the passage of a heavy fast ion through diamond

    International Nuclear Information System (INIS)

    Sorkin, Anastasia; Adler, Joan; Kalish, Rafi

    2004-01-01

    Full Text:The present tight-binding molecular dynamics simulations of the structural modifications that result from the ''thermal spike'' that occurs during the passage of a heavy fast ion through a thin diamond or amorphous carbon layer, and the subsequent regrowth upon cooling. The thermal spike and cooling down are simulated by locally heating and then quenching a small region of carbon: surrounded either by diamond or by a mostly sp''3 bonded amorphous carbon network. For the case of the thermal spike in diamond Fe find that if the ''temperature'' (kinetic energy of the atoms) at the center of the thermal spike is high enough, an amorphous carbon region containing a large fraction of threefold coordinated C atoms (sp 2 bonded) remains within the diamond network after cooling. The structure of this amorphous layer depends very strongly on the ''temperature'' of heating and on the dimensions of the thermal spike. Scaling is found between curves of the dependence of the percentage of sp''2 bonded atoms in the region of the thermal spike on the heating ''temperature'' for different volumes. Justification of the validity of the' tight-binding approximation for these simulations will also be given

  19. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  20. Hydroacoustic Evaluation of Fish Passage through Bonneville Dam in 2004

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Schilt, Carl R.; Kim, Jina; Johnson, Peter N.; Hanks, Michael E.; Patterson, Deborah S.; Skalski, John R.; Hedgepeth, J

    2005-12-22

    The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2004. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of four studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 15 and July 15, 2004, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, (2) B2 fish guidance efficiency and gap loss, (3) smolt approach and fate at the B2 Corner Collector (B2CC), and (4) B2 vertical barrier screen head differential.

  1. Measuring methods in out-of-pile simulation experiments investigating the cooling capability of melted core material with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1977-01-01

    The present paper deals with the application of various measuring methods in model experiments for studying the steady heat transport from volume-heated liquid films by natural convection. The aim of these model experiments is to test computing models for temperature and flow behavior of internally heated liquid films at different boundary conditions. Therefore, besides pure heat transfer measurements, temperature as well as velocity fields must be experimentally determined. Determination of the temperature fields is carried our with suitable thermoelements of small size, the velocity fields are determined by the laser-Doppler method as well as the stroboscopic method for photographically visualizing the flow. (orig.) [de

  2. International

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)

  3. Advanced turbine cooling, heat transfer, and aerodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Je-Chin Han; Schobeiri, M.T. [Texas A& M Univ., College Station, TX (United States)

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  4. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  5. Liquid-metal-cooled reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Filonov, V.S.; Zaitsev, B.I.; Artemiev, L.N.; Rakhimov, V.V.

    1976-01-01

    A liquid-metal-cooled reactor is described comprising two rotatable plugs, one of them, having at least one hole, being arranged internally of the other, a recharging mechanism with a guide tube adapted to be moved through the hole of the first plug by means of a drive, and a device for detecting stacks with leaky fuel elements, the recharging mechanism tube serving as a sampler

  6. Flow directing means for air-cooled transformers

    Science.gov (United States)

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  7. Proceedings of a workshop on American Eel passage technologies

    Science.gov (United States)

    Haro, Alexander J.

    2013-01-01

    Recent concerns regarding a decline in recruitment of American eels (Anguilla rostrata) have prompted efforts to restore this species to historic habitats by providing passage for both upstream migrant juveniles and downstream migrant adults at riverine barriers, including low-head and hydroelectric dams (Castonguay et al. 1994, Haro et al. 2000). These efforts include development of management plans and stock assessment reviews in both the US and Canada (COSEWIC 2006, Canadian Eel Working Group 2009, DFO 2010, MacGregor et al. 2010, ASMFC 2000, ASMFC 2006, ASMFC 2008, Williams and Threader 2007), which target improvement of upstream and downstream passage for eels, as well as identification and prioritization of research needs for development of new and more effective passage technologies for American eels. Traditional upstream fish passage structures, such as fishways and fish lifts, are often ineffective passing juvenile eels, and specialized passage structures for this species are needed. Although designs for such passage structures are available and diverse (Knights and White 1998, Porcher 2002, FAO/DVWK 2002, Solomon and Beach 2004a,b, Environment Agency UK 2011), many biologists, managers, and engineers are unfamiliar with eel pass design and operation, or unaware of the technical options available for upstream eel passage, Better coordination is needed to account for eel passage requirements during restoration efforts for other diadromous fish species. Also, appropriately siting eel passes at hydropower projects is critical, and siting can be difficult and complex due to physical restrictions in access to points of natural concentrations of eels, dynamic hydraulics of tailrace areas, and presence of significant competing flows from turbine outfalls or spill. As a result, some constructed eel passes are sited poorly and may pass only a fraction of the number of eels attempting to pass the barrier. When sited and constructed appropriately, however, eel passes

  8. Heat transfer and thermodynamic performance of convective–radiative cooling double layer walls with temperature-dependent thermal conductivity and internal heat generation

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2015-01-01

    Highlights: • First and second laws of thermodynamics have been investigated in a composite wall. • Convective–radiative heat transfer is assumed on both surfaces. • Optimum interface location is calculated to minimize the total entropy generation rate. • Thermal conductivities ratio has great effects on the temperature and entropy generation. - Abstract: Composite geometries have numerous applications in industry and scientific researches. This work investigates the temperature distribution, and local and total entropy generation rates within two-layer composite walls using conjugate convection and radiation boundary conditions. Thermal conductivities of the materials of walls are assumed temperature-dependent. Temperature-dependent internal heat generations are also incorporated into the modeling. The differential transformation method (DTM) is used as an analytical technique to tackle the highly nonlinear system of ordinary differential equations. Thereafter, the local and total entropy generation rates are calculated using the DTM formulated temperature distribution. An exact analytical solution, for the temperature-independent model without radiation effect, is also derived. The correctness and accuracy of the DTM solution are checked against the exact solution. After verification, effects of thermophysical parameters such as location of the interface, convection–conduction parameters, radiation–conduction parameters, and internal heat generations, on the temperature distribution, and both local and total entropy generation rates are examined. To deliver the minimum total entropy generation rate, optimum values for some parameters are also found. Since composite walls are widely used in many fields, the abovementioned investigation is a beneficial tool for many engineering industries and scientific fields to minimize the entropy generation, which is the exergy destruction, of the system

  9. Flow-Induced Vibration Measurement of an Inner Cladding Tube in a Simulated Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho; Kim, Jae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    To create an internal coolant flow passage in a dual cooled fuel rod, an inner cladding tube cannot have intermediate supports enough to relieve its vibration. Thus it can be suffered from a flow-induced vibration (FIV) more severely than an outer cladding tube which will be supported by series of spacer grids. It may cause a fatigue failure at welding joints on the cladding's end plug or fluid elastic instability of long, slender inner cladding due to decrease of a critical flow velocity. This is one of the challenging technical issues when a dual cooled fuel assembly is to be realized into a conventional reactor core To study an actual vibration phenomenon of a dual cooled fuel rod, FIV tests using a small-scale test bundle are being carried out. Measurement results of inner cladding tube of two typically simulated rods are presented. Causes of the differences in the vibration amplitude and response spectrum of the inner cladding tube in terms of intermediate support condition and pellet stacking are discussed.

  10. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    Science.gov (United States)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  11. High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA

    Science.gov (United States)

    Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi

    2017-04-01

    Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.

  12. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  13. Mesh sensitivity in the thermal analysis of a gas turbine a blade with internal cooling; Sensibilidad de malla en el analisis termico de un alabe de turbina de gas con enfriamiento interno

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro Ayala, Jorge Arturo; Gallegos Munoz, Armando [Facultad de Ingenieria Mecanica, Electrica y Electronica (FIMEE), Universidad de Guanajuato (Mexico); Campos Amezcua, Alfonso [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    This article presents the methodology to generate the mesh model of the computer model of a blade by means of commands in the software of CFD Fluent, mainly in the fluid zone, since a mesh sensitivity analysis becomes too expensive in terms of human and computer resources. When geometry is too irregular, modifications are required in the mesh to avoid problems such as the divergence, instability in the solution and the dependency on the results of temperature, pressure, velocity, etc. Such is the case of a blade with internal cooling of the first stage of a gas turbine. The results are included of the generated mesh as well as of the thermal analysis of the blade. Additionally the results of temperature, pressure and velocity of the combustion gases and of the cooling air are shown. [Spanish] Este articulo presenta la metodologia para generar el mallado del modelo computacional de un alabe por medio de comandos en el software de CFD Fluent, principalmente en la zona del fluido, ya que un analisis de sensibilidad de malla se vuelve demasiado costoso en terminos de recursos humanos y computacionales. Cuando la geometria es demasiado irregular, se requiere de modificaciones en la malla para evitar problemas como son la divergencia, inestabilidad en la solucion y la dependencia de los resultados de temperatura, presion, velocidad, etc. Tal es el caso de un alabe con enfriamiento interno de la primera etapa de una turbina de gas. Se incluyen los resultados tanto de la malla generada como del analisis termico del alabe. Adicionalmente se muestran los resultados de temperatura, presion y velocidad de los gases de la combustion y del aire de enfriamiento.

  14. Variable cooling circuit for thermoelectric generator and engine and method of control

    Science.gov (United States)

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  15. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  16. Sensor Fish: an autonomous sensor package for characterizing complex flow fields and fish passage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Martinez, Jayson J.; Lu, Jun

    2016-10-04

    Fish passing through dams or other hydraulic structures may be injured or killed despite advances in turbine design, project operations, and other fish bypass systems. The Sensor Fish (SF) device is an autonomous sensor package that characterizes the physical conditions and stressors to which fish are exposed during passage through hydro facilities. It was designed to move passively as a neutrally buoyant object through severe hydraulic environments, while collecting high-resolution sensor data. Since its first generation1, the SF device has been successfully deployed in many fish passage studies and has evolved to be a major tool for characterizing fish passage conditions during fish passage in the Columbia River Basin. To better accelerate hydropower development, the U.S. Department of Energy Water Power Program provided funding to develop a new generation (Gen 2 SF) to incorporate more capabilities and accommodate a wider range of users over a broader range of turbine designs and operating environments. The Gen 2 SF (Figure 1) is approximately the size and density of a yearling salmon smolt and is nearly neutrally buoyant. It contains three-dimensional (3D) rotation sensors, 3D linear acceleration sensors, a pressure sensor, a temperature sensor, a 3D orientation sensor, a radiofrequency (RF) transmitter, and a recovery module2. A low-power microcontroller collects data from the sensors and stores up to 5 min of data on internal flash memory at a sampling frequency of 2048 Hz. The recovery module makes the SF positively buoyant after a pre-programmed period of time, causing it to float to the surface for recovery.

  17. Development of Test Methods for Structural Components of a Dual Cooled Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Kim, Jae Yong

    2009-01-15

    The most unique feature of a dual-cooled fuel is that the outer diameter of a fuel rod is considerably increased due to an internal coolant passage additionally formed inside the rod. This increases the fuel rod's weight and decreases the gap between the fuel rods. Change of the weight and gap causes the shape and the performance of a fuel rod support structure to be necessarily altered. It also alters the flow-induced vibration (FIV) as well as the fretting wear characteristics of a fuel rod. These are directly related with the integrity of the rod so that they should be investigated in the design stage. Finite element analysis and semi-empirical formulae can be used to roughly investigate the support performance and FIV of a fuel rod, respectively. However, the fretting wear characteristic can be investigated only through an experiment. The support performance and FIV need experiment as well to obtain the characteristics more accurately. Therefore, experimental investigation of those has been included in the present project scope. In the second year, it has been planned to establish the experimental devices and technologies to accommodate the altered dimensions and feature of a dual-cooled fuel. As a result, devices to obtain the characteristics of fuel rod supports and holddown springs were developed. As for the FIV and fretting wear characteristics, the existing facilities were modified. Experimental procedures were also re-established this year.

  18. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  19. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  20. PANDA experiment and International Standard Problem for passive cooling systems for afterheat removal; PANDA-Versuch und Internationales Standardproblem zu passiven Kuehlsystemen fuer die Nachwaermeabfuhr

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G.; Aksan, N.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. fuer Thermohydraulik

    1999-09-03

    In the context of OECD/NEA, Paul Scherrer Institut (PSI) is working on an International Standard Problem which is to provide information on the efficiency and use of computer program systems for passive afterheat removal systems. The PANDA test facility of PSI was designed for these investigations. A six-phase PANDA experiment provides a basis for pre-calculation and recalculation of selected phases covering a limited number of system-typical operating states and phenomena. The experiment was specified and carried out in the year under report. [Deutsch] Im Rahmen der OECD/NEA fuehrt das Paul Scherrer Institut (PSI) ein Internationales Standardproblem durch, das Aufschluss ueber die Leistungsfaehigkeit und Handhabung von Computer-Programmsystemen geben soll, die im Zusammenhang mit passiven Nachwaerme-Abfuhrsystemen eingesetzt werden. Die Versuchsanlage PANDA am PSI ist speziell auf die Untersuchung derartiger Systeme ausgerichtet. Ein PANDA-Versuch in sechs Phasen liefert den teilnehmenden Organisationen die Basis fuer Voraus- und Nachrechnungen einzelner oder mehrerer Phasen, die jeweils eine begrenzte Anzahl von systemtypischen Betriebszustaenden und Phaenomenen abdecken. Im Berichtsjahr wurde der Versuch spezifiziert und gefahren. (orig.)

  1. First passage Brownian functional properties of snowmelt dynamics

    Science.gov (United States)

    Dubey, Ashutosh; Bandyopadhyay, Malay

    2018-04-01

    In this paper, we model snow-melt dynamics in terms of a Brownian motion (BM) with purely time dependent drift and difusion and examine its first passage properties by suggesting and examining several Brownian functionals which characterize the lifetime and reactivity of such stochastic processes. We introduce several probability distribution functions (PDFs) associated with such time dependent BMs. For instance, for a BM with initial starting point x0, we derive analytical expressions for : (i) the PDF P(tf|x0) of the first passage time tf which specify the lifetime of such stochastic process, (ii) the PDF P(A|x0) of the area A till the first passage time and it provides us numerous valuable information about the total fresh water availability during melting, (iii) the PDF P(M) associated with the maximum size M of the BM process before the first passage time, and (iv) the joint PDF P(M; tm) of the maximum size M and its occurrence time tm before the first passage time. These P(M) and P(M; tm) are useful in determining the time of maximum fresh water availability and in calculating the total maximum amount of available fresh water. These PDFs are examined for the power law time dependent drift and diffusion which matches quite well with the available data of snowmelt dynamics.

  2. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  3. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  4. Cooling Scenario for the HESR Complex

    International Nuclear Information System (INIS)

    Stockhorst, H.; Prasuhn, D.; Maier, R.; Lorentz, B.

    2006-01-01

    The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an anti-proton cooler ring in the momentum range from 1.5 to 15 GeV/c. An important and challenging feature of the new facility is the combination of phase space cooled beams with internal targets. The required beam parameters and intensities are prepared in two operation modes: the high luminosity mode with beam intensities up to 1011 anti-protons, and the high resolution mode with 1010 anti-protons cooled down to a relative momentum spread of only a few 10-5. Consequently, powerful phase space cooling is needed, taking advantage of high-energy electron cooling and high-bandwidth stochastic cooling. Both cooling techniques are envisaged here theoretically, including the effect of beam-target interaction and intra-beam scattering to find especially for stochastic cooling the best system parameters

  5. Flow characteristics in nuclear steam turbine blade passage

    International Nuclear Information System (INIS)

    Ahn, H.J.; Yoon, W.H.; Kwon, S.B.

    1995-01-01

    The rapid expansion of condensable gas such as moist air or steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the nuclear steam turbine blade passage, the entropy of the flow increases, and the efficiency of the turbine decreases. In the present study, in order to investigate the flow characteristics of moist air in two-dimensional turbine blade passage which is made from the configuration of the last stage tip section of the actual nuclear steam turbine moving blade, the static pressures along both pressure and suction sides of blade are measured by static pressure taps and the distribution of Mach number on both sides of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a Schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in the two dimensional steam turbine blade passage are clearly identified

  6. Passage times of asymmetric anomalous walks with multiple paths

    International Nuclear Information System (INIS)

    Caceres, Manuel O; Insua, G Liliana

    2005-01-01

    We investigate the transient and the long-time behaviour of asymmetric anomalous walks in heterogeneous media. Two types of disorder are worked out explicitly: weak and strong disorder; in addition, the occurrence of disordered multiple paths is considered. We calculate the first passage time distribution of the associated stochastic transport process. We discuss the occurrence of the crossover from a power law to an exponential decay for the long-time behaviour of the distribution of the first passage times of disordered biased walks

  7. FUNCTIONS OF VATA (BASED ON CHARAKA) A Passage from Vaatkalaakaleeyam.

    Science.gov (United States)

    Trivedi, A R

    1982-04-01

    The author has chosen 12(th) Chapter from the Sutra Sthana of this great epic containing 12,000 verses and passages which is replete with materials to revive the whole art of healing even if the whole medical literatures is lost. The passage puts in a nutshell the key role played by Vayu / Vata in the working of the tantra and yantra of the body. Though exploration of the humours is yet to be done by modern physiologists to explain the Ayurvedic Vata which is responsible to no less than 18 functions of the normal body mechanism.

  8. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  9. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  10. Roof slab cooling device in a FBR type reactor

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1987-01-01

    Purpose: To obtain a roof slab cooling device capable of retaining cooling performance even in a case of electric power supply stop or failure and effective from economical point of view. Constitution: Atmospheric air is introduced into the cooling chamber of a proof slab and spontaneously passed to a exit pipeway connected to a stack thereby cooling the roof slab. Specifically, atmospheric air entered from the inlet pipeway is introduced to the cooling chamber and absorbs heat generate from the inside of the reactor container. Warmed air is sucked from the exit pipeway and then released into the atmosphere passing through the stack. The air cools the roof slab during circulation due to spontaneous passage and keeps the slab at a low temperature. Since the air is passed spontaneously, no power such as for a blower is required at all and, if the electric power supply should be lost, the cooling power can be maintained as it is to provide a high reliability. Further, since no electric power is required for the blowing power, it has high economical merit. (Horiuchi, T.)

  11. California's tobacco tax initiative: the development and passage of Proposition 99.

    Science.gov (United States)

    Traynor, M P; Glantz, S A

    1996-01-01

    In this case study, we describe and analyze the development and passage of California's tobacco tax initiative, Proposition 99, the Tobacco Tax and Health Promotion Act of 1988. We gathered information from published reports, public documents, personal correspondence, internal memorandums, polling data, and interviews with representatives from organizations that participated in the Proposition 99 campaign. Proposition 99 passed as a result of the efforts of a coalition of voluntary health agencies, medical organizations, and environmental groups. They organized a long-term effort by conducting essential polling, planning strategies, gaining media exposure, developing a coalition, and running a successful campaign to enact the tax by shifting the venue from legislative to initiative politics. To build the coalition that was needed to pass Proposition 99, public health proponents enlisted the help of medical organizations in exchange for additional revenue to be allocated to medical services. By shifting the venue from the legislature to the general public, advocates capitalized on public concern about tobacco and for youth and took advantage of the tobacco industry's low credibility. The passage of Proposition 99, despite a massive campaign against it by the tobacco industry, represents a milestone in the tobacco control and public health fields. From its passage in 1988 through 1993, tobacco use in California declined by 27 percent, which is three times faster than the United States average. As a result, Proposition 99 has served as a national model for other states and the federal government. Although allocation of tobacco tax revenues specifically to health education and prevention was a primary goal during the development and passage of Proposition 99, when the venue shifted back to the legislature for implementation, medical organizations successfully advocated illegal diversions of Proposition 99 tobacco control and research funds to medical services

  12. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  13. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  14. Planning Guide for Fish Passage at Pittsburgh District Dams

    Science.gov (United States)

    2013-08-01

    attracted to a downstream flow at the entrance gate of the lift. 2) Immigrants pass around a moveable crowder that, when engaged, forces fish into the...might influence fish passage over a large number of sites. REFERENCES Bailey, M. M., J. J. Isely, and W. C. Bridges , Jr. 2004. Movement and

  15. Nonstationary Narrow-Band Response and First-Passage Probability

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The notion of a nonstationary narrow-band stochastic process is introduced without reference to a frequency spectrum, and the joint distribution function of two consecutive maxima is approximated by use of an envelope. Based on these definitions the first passage problem is treated as a Markov po...

  16. Universality for first passage percolation on sparse random graphs

    NARCIS (Netherlands)

    Bhamidi, S.; Hofstad, van der R.W.; Hooghiemstra, G.

    2014-01-01

    We consider first passage percolation on the conguration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the

  17. Rites of passage and sustainable development in traditional Africa ...

    African Journals Online (AJOL)

    This study attempts to exhume the instrumentality of rites of passage with particular attention to puberty andmarriage rites in fostering and sustaining development. The study further proffers strategic choices for the retrieval of this integral part of African life for the moral development of the averageNigerian youth. The present ...

  18. First-Passage-Time Distribution for Variable-Diffusion Processes

    Science.gov (United States)

    Barney, Liberty; Gunaratne, Gemunu H.

    2017-05-01

    First-passage-time distribution, which presents the likelihood of a stock reaching a pre-specified price at a given time, is useful in establishing the value of financial instruments and in designing trading strategies. First-passage-time distribution for Wiener processes has a single peak, while that for stocks exhibits a notable second peak within a trading day. This feature has only been discussed sporadically—often dismissed as due to insufficient/incorrect data or circumvented by conversion to tick time—and to the best of our knowledge has not been explained in terms of the underlying stochastic process. It was shown previously that intra-day variations in the market can be modeled by a stochastic process containing two variable-diffusion processes (Hua et al. in, Physica A 419:221-233, 2015). We show here that the first-passage-time distribution of this two-stage variable-diffusion model does exhibit a behavior similar to the empirical observation. In addition, we find that an extended model incorporating overnight price fluctuations exhibits intra- and inter-day behavior similar to those of empirical first-passage-time distributions.

  19. readability of comprehension passages in junior high school (jhs)

    African Journals Online (AJOL)

    CHARLES

    ... to enhance readability. Key Words: readability formulas, comprehension passages, Junior High School, .... Index has a manual version but in this study the electronic version was used. The ..... probably the majority of the people heard the news by word of mouth. A critical look ..... The Journal of Tourism Studies 9.2: 49-60.

  20. Universality for first passage percolation on sparse random graphs

    NARCIS (Netherlands)

    Bhamidi, S.; Van Der Hofstad, R.W.; Hooghiemstra, G.

    2017-01-01

    We consider first passage percolation on the configuration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the

  1. Providing Aquatic Organism Passage in Vertically Unstable Streams

    Directory of Open Access Journals (Sweden)

    JanineM Castro

    2016-04-01

    Full Text Available Aquatic organism passage barriers have been identified as one of the key impediments to recovery of salmonids and other migratory aquatic organisms in the Pacific Northwest of the United States. As such, state and federal agencies invest millions of dollars annually to address passage barriers. Because many barriers function as ad hoc grade control structures, their removal and/or replacement can unwittingly set off a cascade of effects that can negatively impact the very habitat and passage that project proponents seek to improve. The resultant vertical instability can result in a suite of effects that range from floodplain disconnection and loss of backwater and side channel habitat, to increased levels of turbidity. Risk assessment, including an evaluation of both the stage of stream evolution and a longitudinal profile analysis, provides a framework for determining if grade control is warranted, and if so, what type of structure is most geomorphically appropriate. Potential structures include placement of large wood and roughness elements, and constructed riffles, step-pools, and cascades. The use of structure types that mimic natural reach scale geomorphic analogues should result in improved aquatic organism passage, increased structural resilience, and reduced maintenance.

  2. Enloe Dam Passage Project, Volume I, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, M.L.

    1985-07-01

    This report discusses issues related to the provision of fish passage facilities at Enloe Dam and the introduction of anadromous salmonid fish to the upper Similkameen River basin. The species of fish being considered is a summer run of steelhead trout adapted to the upper Columbia basin. (ACR)

  3. Passage of sediment through flumes and over weirs

    NARCIS (Netherlands)

    Bos, M.G.; Wijbenga, J.H.A.

    1997-01-01

    This paper reports on laboratory research on the sediment passage capability through long-throated flumes and broad-crested weirs with which the Froude number in the approach channel does not exceed 0.6 over a distance of about 20 times the water depth upstream of the structure. Design rules are

  4. Fire passage on geomorphic fractures in Cerrado: effect on vegetation

    Directory of Open Access Journals (Sweden)

    Otacílio Antunes Santana

    2017-01-01

    Full Text Available Geomorphic fracture is a natural geologic formation that sometimes forms a deep fissure in the rock with the establishment of soil and vegetation. The objective of this work was to analyze vegetation within geomorphic fractures under the effect of wildfire passage. The biometric variables evaluated before and after fire passage were: diameter, height, leaf area index, timber volume, grass biomass, number of trees and shrubs and of species. Results (in fractures were compared to adjacent areas (control. The effect of wildfire passage on vegetation within geomorphic fractures was not significant because fire followed plant biomass bed and when it met the fracture (wetter, it changed from soil surface to canopy surface (jump fire effect, affecting without significance the number of plants or species; so, fracture could be plants refuge against fire passage. We could infer in our experimental model that quality of plant biomass bed could be more significant than quantity, and microclimate variability recruits plants to the refuge (geomorphic fracture.

  5. Australian experience of fish passage past instream structures

    International Nuclear Information System (INIS)

    Lewis, B.

    2008-01-01

    The growth in hydropower has resulted in the construction of various structures across rivers and streams, such as dams and weirs, which may impede essential fish movements and result in local extinctions of some fish species. When it is not practical to build instream structures that provide for fish passage, it may be appropriate to install some type of fishway. Site specific factors such as the fish species present, topography, flow characteristics and cost effectiveness will determine how best to provide for fish passage. The types of fishways suitable at small dams and weirs up to five metres high were described in this paper along with their benefits and effectiveness. The purpose was to provide simple and appropriate solutions that can improve the health of rivers considerably by managing the native aquatic habitat. The upstream passage past obstacles can be provided for through several types of fishways such as pool-type fishways, Denil fish passes, rock ramps, nature-like bypass channels, fish lifts or locks, collection and transportation facilities. In addition to environmental benefits, providing for fish passage can have long term social and economic benefits as well. 17 refs., 3 figs

  6. First-passage percolation on the random graph

    NARCIS (Netherlands)

    Hofstad, van der R.W.; Hooghiemstra, G.; Van Mieghem, P.

    2001-01-01

    We study first-passage percolation on the random graph Gp(N) with exponentially distributed weights on the links. For the special case of the complete graph, this problem can be described in terms of a continuous-time Markov chain and recursive trees. The Markov chain X(t) describes the number of

  7. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  8. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  9. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  10. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  11. Influence of Shading on Cooling Energy Demand

    Science.gov (United States)

    Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof

    2017-10-01

    The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.

  12. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  13. Right of innocent passage of ships carrying ultra-hazardous cargoes

    International Nuclear Information System (INIS)

    Sousa Ferro, M.

    2006-01-01

    The analysis carried out in this paper suggests that coastal states would probably fail to persuade an international tribunal of the existence of the right to deny passage of ships carrying ultra-hazardous cargoes through their territorial seas, much less through their exclusive economic zones. The same applies to the obligation to provide (or right to require) prior notification of such passage. This may partly explain why no international litigation concerning these issues has so far taken place, even though there have been a number of conflicts between coastal states and shipping states, widely published in the media. Still, evidence suggests that officers at the head of authorities in several coastal states, often non legal experts, firmly believe in the existence of these rights and obligations, at least insofar as concerns the territorial sea; The gap between the law and practice seems to be widening. At the same time, several states are clearly pursuing a policy of pushing for an evolution of customary law, either by claiming that this evolution has already taken place, or that the letter of this or that treaty already allows for claims. It would not be surprising if this strategy should succeed eventually. For the time being, however, one must not be too hasty to confuse diplomatic concessions with an evolution of the law. (author)

  14. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  15. Statistics Analysis Measures Painting of Cooling Tower

    Directory of Open Access Journals (Sweden)

    A. Zacharopoulou

    2013-01-01

    Full Text Available This study refers to the cooling tower of Megalopolis (construction 1975 and protection from corrosive environment. The maintenance of the cooling tower took place in 2008. The cooling tower was badly damaged from corrosion of reinforcement. The parabolic cooling towers (factory of electrical power are a typical example of construction, which has a special aggressive environment. The protection of cooling towers is usually achieved through organic coatings. Because of the different environmental impacts on the internal and external side of the cooling tower, a different system of paint application is required. The present study refers to the damages caused by corrosion process. The corrosive environments, the application of this painting, the quality control process, the measures and statistics analysis, and the results were discussed in this study. In the process of quality control the following measurements were taken into consideration: (1 examination of the adhesion with the cross-cut test, (2 examination of the film thickness, and (3 controlling of the pull-off resistance for concrete substrates and paintings. Finally, this study refers to the correlations of measurements, analysis of failures in relation to the quality of repair, and rehabilitation of the cooling tower. Also this study made a first attempt to apply the specific corrosion inhibitors in such a large structure.

  16. Self-Esteem, Locus of Control, and First-Time NCLEX-RN Passage of BSN Students at Historically Black Colleges and Universities.

    Science.gov (United States)

    Chavis, Pamella Ivey

    Relationships between self-esteem, locus of control (LOC), and first-time passage of National Council Licensure Examination for Registered Nurses (NCLEX-RN®) were examined at baccalaureate nursing programs at two historically black colleges and universities. Shortages continue to exceed demands for RNs prepared at the baccalaureate level. Inconsistent pass rates on the NCLEX-RN for graduates of historically black colleges and universities impede the supply of RNs. Surveys and archival data were used to examine characteristics of the sample and explore relationships among variables. All participants (N = 90) reported high self-esteem and internal LOC. Models suggested that all those with high self-esteem and internal LOC would pass the NCLEX-RN; only 85 percent passed the first time. Statistical analysis revealed a lack of statistical significance between self-esteem, LOC, and first-time passage. Variables not included in the study may have affected first-time passage.

  17. Final Report: Cooling Molecules with Laser Light

    International Nuclear Information System (INIS)

    Di Rosa, Michael D.

    2012-01-01

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  18. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  19. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  20. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  1. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  2. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  3. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  4. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  5. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  6. A Study on the Structural Integrity Issues of a Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Kang-Hee; Lee, Young-Ho; Yoon, Kyung-Ho; Kim, Jae-Yong; Song, Kun-Woo [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong Daejeon 305-353 (Korea, Republic of)

    2009-06-15

    A dual-cooled fuel rod has an internal coolant flow passage in addition to the external one. A remarkable power up-rate can be achieved due to the increased surface area, which may draw great interests from the fuel researchers, designers and vendors. However, it requires effective resolution to the difficult technical issues when a fuel assembly is to be realized. It becomes much more difficult if a tough boundary condition needs to be satisfied such as a compatibility with the existing reactor internal structures. This kind of challenge is tackled through a national R and D project in Korea: to develop the structural components of a dual-cooled fuel that should be compatible with the current OPR 1000 (Korea Standard Nuclear Power Plant) internal structures. Fuel rod supporting structures, top and bottom end pieces and guide tubes are the components. Besides, the fuel rod components have to be developed as well since the fuel rod's geometry becomes much different from the conventional rod's one. The dimension change may well affect the above mentioned structural components. As a part of the work, structural integrity of the components of a dual-cooled fuel rod is studied in this paper. The investigated topics are: i) the thickness determination of a cladding tube (especially outer tube of a large diameter), ii) vibration issue of an inner cladding tube, iii) design concern of plenum spring and spacer. The cladding thickness issue arises due to the increased outside diameter of a fuel rod, which is caused by an internal flow passage formation. Among the criteria for the thickness determination, an elastic buckling criteria was focused on. Theoretical background for the well-known formula (such as a stability problem) was revisited. Verification tests were carried out independently with using a cladding tube of PHWR fuel rod. Results showed that the formula was not conservative to apply for the cladding thickness determination. Minimum thickness for the

  7. The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F [ORNL; Schweizer, Peter E [ORNL

    2012-04-01

    ) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

  8. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  9. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  10. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  11. Anchoring effect on first passage process in Taiwan financial market

    Science.gov (United States)

    Liu, Hsing; Liao, Chi-Yo; Ko, Jing-Yuan; Lih, Jiann-Shing

    2017-07-01

    Empirical analysis of the price fluctuations of financial markets has received extensive attention because a substantial amount of financial market data has been collected and because of advances in data-mining techniques. Price fluctuation trends can help investors to make informed trading decisions, but such decisions may also be affected by a psychological factors-the anchoring effect. This study explores the intraday price time series of Taiwan futures, and applies diffusion model and quantitative methods to analyze the relationship between the anchoring effect and price fluctuations during first passage process. Our results indicate that power-law scaling and anomalous diffusion for stock price fluctuations are related to the anchoring effect. Moreover, microscopic price fluctuations before switching point in first passage process correspond with long-term price fluctuations of Taiwan's stock market. We find that microscopic trends could provide useful information for understanding macroscopic trends in stock markets.

  12. Simple relations between mean passage times and Kramers' stationary rate

    International Nuclear Information System (INIS)

    Boilley, David; Jurado, Beatriz; Schmitt, Christelle

    2004-01-01

    The classical problem of the escape time of a metastable potential well in a thermal environment is generally studied by various quantities like Kramers' stationary escape rate, mean first passage time, nonlinear relaxation time, or mean last passage time. In addition, numerical simulations lead to the definition of other quantities as the long-time limit escape rate and the transient time. In this paper, we propose some simple analytical relations between all these quantities. In particular, we point out the hypothesis used to evaluate these various times in order to clarify their comparison and applicability, and show how average times include the transient time and the long-time limit of the escape rate

  13. Passages of high energy hadrons through atomic nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    2001-01-01

    The subject matter in this paper are descriptions of more important results of investigations of the intranuclear matter properties by means of hadronic probes (pionic, e.g.). The projectile-nucleus collisions occurred in liquid xenon in the 180 litre xenon bubble chamber. The chamber in the experiments was practically a total 4π angle aperture for detection of the secondary products from the hadron-nucleus collision reactions. All the π +-0 mesons were practically registered with an efficiency near to 100 %. The hadron passages through nuclei (through layers of intranuclear matter) in their pure sort, when multiparticle creation does not occur, were observed. Conclusive information, obtained on the hadron passages, is presented here. It may be used for new nuclear power technology, in radioactive waste neutralization, in other works on intranuclear matter properties

  14. Effect of stress on turbine fish passage mortality estimates

    International Nuclear Information System (INIS)

    Ruggles, C.P.

    1993-01-01

    Tests were conducted with juvenile alewife to determine the effects of four experimental protocols upon turbine fish passage mortality estimates. Three protocols determined the effect of cumulative stresses upon fish, while the fourth determined the effect of long range truck transportation prior to release into the penstock or tailrace. The wide range in results were attributed to the presence or absence of additional stress factors associated with the experiments. For instance, fish may survive passage through a turbine, or non-turbine related stresses imposed by the investigator; however, when both are imposed, the cumulative stresses may be lethal. The impact of protocol stress on turbine mortality estimates becomes almost exponential after control mortality exceeds 10%. Valid turbine related mortalities may be determined only after stresses associated with experimental protocol are adequately reduced. This is usually indicated by a control mortality of less than 10%. 14 refs., 5 figs., 6 tabs

  15. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  16. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  17. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  18. First-passage exponents of multiple random walks

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2010-01-01

    We investigate first-passage statistics of an ensemble of N noninteracting random walks on a line. Starting from a configuration in which all particles are located in the positive half-line, we study S n (t), the probability that the nth rightmost particle remains in the positive half-line up to time t. This quantity decays algebraically, S n (t)∼t -β n , in the long-time limit. Interestingly, there is a family of nontrivial first-passage exponents, β 1 2 N-1 ; the only exception is the two-particle case where β 1 = 1/3. In the N → ∞ limit, however, the exponents attain a scaling form, β n (N) → β(z) with z=(n-N/2)/√N. We also demonstrate that the smallest exponent decays exponentially with N. We deduce these results from first-passage kinetics of a random walk in an N-dimensional cone and confirm them using numerical simulations. Additionally, we investigate the family of exponents that characterizes leadership statistics of multiple random walks and find that in this case, the cone provides an excellent approximation.

  19. Benefits of fish passage and protection measures at hydroelectric projects

    International Nuclear Information System (INIS)

    Cada, G.F.; Jones, D.W.

    1993-01-01

    The US Department of Energy's Hydropower Program is engaged in a multi-year study of the costs and benefits of environmental mitigation measures at nonfederal hydroelectric power plants. An initial report (Volume 1) reviewed and surveyed the status of mitigation methods for fish passage, instream flows, and water quality; this paper focuses on the fish passage/protection aspects of the study. Fish ladders were found to be the most common means of passing fish upstream; elevators/lifts were less common, but their use appears to be increasing. A variety of mitigative measures is employed to prevent fish from being drawn into turbine intakes, including spill flows, narrow-mesh intake screens, angled bar racks, and lightor sound-based guidance measures. Performance monitoring and detailed, quantifiable performance criteria were frequently lacking at non-federal hydroelectric projects. Volume 2 considers the benefits and costs of fish passage and protection measures, as illustrated by case studies for which performance monitoring has been conducted. The report estimates the effectiveness of particular measures, the consequent impacts on the fish populations that are being maintained or restored, and the resulting use and non-use values of the maintained or restored fish populations

  20. Effects of hydroelectric turbine passage on fish early life stages

    International Nuclear Information System (INIS)

    Cada, G.F.

    1991-01-01

    Turbine-passage mortality has been studied extensively for juveniles and adults of migratory fish species, but few studies have directly quantified orality of fish eggs and larvae. This paper provides an analysis of literature relating to component stresses of turbine passage (i.e., pressure changes, blade contact, and shear) which indicates that mortality of early life stages of fish would be relatively low at low-head, bulb turbine installations. The shear forces and pressure regimes normally experienced are insufficient to cause high mortality rates. The probability of contact with turbine blades is related to the size of the fish; less than 5% of entrained ichthyoplankton would be killed by the blades in a bulb turbine. Other sources of mortality (e.g., cavitation and entrainment of fish acclimated to deep water) are controlled by operation of the facility and thus are mitigable. Because turbine-passage mortality among fish early life stages can be very difficult to estimate directly, it may be more fruitful to base the need for mitigation at any given site on detailed knowledge of turbine characteristics and the susceptibility of the fish community to entrainment

  1. Is motivation important to brook trout passage through culverts?

    Science.gov (United States)

    Goerig, Elsa; Castro-Santos, Theodore R.

    2017-01-01

    Culverts can restrict movement of stream-dwelling fish. Motivation to enter and ascend these structures is an essential precursor for successful passage. However, motivation is challenging to quantify. Here, we use attempt rate to assess motivation of 447 brook trout (Salvelinus fontinalis) entering three culverts under a range of hydraulic, environmental, and biological conditions. A passive integrated transponder system allowed for the identification of passage attempts and success of individual fish. Attempt rate was quantified using time-to-event analysis allowing for time-varying covariates and recurrent events. Attempt rate was greatest during the spawning period, at elevated discharge, at dusk, and for longer fish. It decreased during the day and with increasing number of conspecifics downstream of the culvert. Results also show a positive correlation between elevated motivation and successful passage. This study enhances understanding of factors influencing brook trout motivation to ascend culverts and shows that attempt rate is a dynamic phenomenon, variable over time and among individuals. It also presents methods that could be used to investigate other species’ motivation to pass natural or anthropogenic barriers.

  2. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  3. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  4. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  5. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  6. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  7. Fiscal 1999 international energy conservation model project. Report on result of demonstrative research concerning cement clinker cooling system; 1999 nendo kokusai energy shohi koritsuka nado model jigyo seika hokokusho. Cement clinker reikyaku sochi ni kakawaru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing energy consumption and CO2 discharge in a cement plant in Indonesia, R and D was conducted on new clinker cooling system, high performance kiln combustion system, and technology for steady kiln operation and control, with the fiscal 1999 results reported. In the research on the optimum clinker cooling system, a new type clinker cooling system (CCS) was developed in which air beams are applied only to stationary grate rows, in an air beam type clinker cooling system where cooling air is fed to each block, with grate plates used as the air duct. This year, in an actual machine testing equipment (capacity 2,500 t/d), the whole heat recuperation area was modified for the CCS, with the operation started since February, 1999, aiming at the optimal clinker cooling effect and high heat recovery efficiency. The heat quantity for the entire system showed a decrease of 60 kcal/kg in the heat consumption rate through CCS modification, kiln burner adjustment, etc. So long as the demonstration plant is concerned, design of a new type burner and study/design for the kiln stabilization were nearly completed. (NEDO)

  8. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    Directory of Open Access Journals (Sweden)

    Christopher C Caudill

    Full Text Available Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp. often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T at four dams over four years. Some spring Chinook salmon (O. tshawytscha experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

  9. Veganism as status passage: the process of becoming a vegan among youths in Sweden.

    Science.gov (United States)

    Larsson, Christel L; Rönnlund, Ulla; Johansson, Gunnar; Dahlgren, Lars

    2003-08-01

    In a town in northern Sweden, 3.3% of the 15-year-old adolescents were vegans in 1996. This study describes the process of becoming a vegan among adolescents and interprets the informants' descriptions by constructing categories, which later on were related to relevant theories. Group interviews were conducted with three vegans and in-depth interviews were performed with three other vegan adolescents. The methodology was grounded theory and the adolescents' perceptions were analyzed in the framework of symbolic interactionism. Three types of vegans were identified: the Conformed Vegan, the Organized Vegan, and the Individualistic Vegan. The decision to become a vegan was reported to be influenced by perceived internal reasons such as ethics, health, distaste for meat, and preference for vegetarian food. In addition, friends, family, school, media, and music influenced the decision to become a vegan. The perceived consequences of becoming a vegan were positive as well as negative and differed between the three types of vegans. Veganism as a new type of status passage with specific characteristics was illustrated. No modifications or new properties were discovered that add to the theory of status passage which indicates that the general model is applicable also in a vegan context.

  10. The Effect of an Externally Attached Neutrally Buoyant Transmitter on Mortal Injury during Simulated Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Pflugrath, Brett D.; Carlson, Thomas J.; Deng, Zhiqun

    2012-02-03

    On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing through hydroturbines experience a rapid decrease in pressure as they pass by the turbine blade and the severity of this decompression can be highly variable. This rapid decrease in pressure can result in injuries such as swim bladder rupture, exophthalmia, and emboli and hemorrhaging in the fins and tissues. However, recent research indicates that the presence of a telemetry tag (acoustic, radio, inductive) implanted inside the coelom of a juvenile salmon increases the likelihood that the fish will be injured or die during turbine passage. Thus, previous research conducted using telemetry tags implanted into the coelom of fish may have been inaccurate. Thus, a new technique is needed to provide unbiased estimates of survival through turbines. This research provides an evaluation of the effectiveness of a neutrally buoyant externally attached acoustic transmitter. Both nontagged fish and fish tagged with a neutrally buoyant external transmitter were exposed to a range of rapid decompressions simulating turbine passage. Juvenile Chinook salmon tagged with a neutrally buoyant externally attached acoustic transmitter did not receive a higher degree of barotrauma than their nontagged counterparts. We suggest that future research include field-based comparisons of survival and behavior among fish tagged with a neutrally buoyant external transmitter and those internally implanted with transmitters.

  11. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  12. Water-cooled grid ''wires'' for direct converters

    International Nuclear Information System (INIS)

    Schwer, C.J.

    1976-01-01

    A study was conducted to determine the feasibility of internal convective cooling of grid ''wires'' for direct converters. Detailed computer calculations reveal that the use of small diameter water cooled tubes as grid ''wires'' is feasible for a considerable range of lengths and thermal fluxes

  13. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    flow and heat transfer measurements to generate a predictive model for flow through AM microchannels. The flow compressibility was also found to play a significant role in flow loss through these channels. Overall effectiveness of film cooling combined with the internal microchannel flow was examined in a conjugate experimental setup. The validity of the experimental conditions was established by matching important dimensionless parameters of the experimental setup to common values found in turbine engines. These results showed that the roughness in the film cooling holes produced higher in-hole convection than those made with current manufacturing methods. The roughness in the holes also repressed the film performance. However, high relative roughness was shown to minimize the impact of coolant feed direction on the film effectiveness of the AM holes.

  14. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  15. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  16. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  17. 77 FR 28253 - Safety Zone; America's Cup World Series, East Passage, Narragansett Bay, RI

    Science.gov (United States)

    2012-05-14

    ...-AA00 Safety Zone; America's Cup World Series, East Passage, Narragansett Bay, RI AGENCY: Coast Guard... navigable waters of the East Passage, Narragansett Bay, Rhode Island, during the America's Cup World Series... rulemaking (NPRM) entitled ``Safety Zones; America's Cup World Series, East Passage, Narragansett Bay, RI...

  18. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  19. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  20. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  1. Nuclear demagnetisation cooling of a nanoelectronic device

    Science.gov (United States)

    Jones, Alex; Bradley, Ian; Guénault, Tony; Gunnarsson, David; Haley, Richard; Holt, Stephen; Pashkin, Yuri; Penttilä, Jari; Prance, Jonathan; Prunnila, Mika; Roschier, Leif

    We present a new technique for on-chip cooling of electrons in a nanostructure: nuclear demagnetisation of on-chip, thin-film copper refrigerant. We are motivated by the potential improvement in the operation of nanoelectronic devices below 10 mK . At these temperatures, weak electron-phonon coupling hinders traditional cooling, yet here gives the advantage of thermal isolation between the environment and the on-chip electrons, enabling cooling significantly below the base temperature of the host lattice. To demonstrate this we electroplate copper onto the metallic islands of a Coulomb blockade thermometer (CBT), and hence provide a direct thermal link between the cooled copper nuclei and the device electrons. The CBT provides primary thermometry of its internal electron temperature, and we use this to monitor the cooling. Using an optimised demagnetisation profile we observe the electrons being cooled from 9 mK to 4 . 5 mK , and remaining below 5 mK for an experimentally useful time of 1200 seconds. We also suggest how this technique can be used to achieve sub- 1 mK electron temperatures without the use of elaborate bulk demagnetisation stages.

  2. Cooling of pressurized water nuclear reactor vessels

    International Nuclear Information System (INIS)

    Curet, H.D.

    1978-01-01

    The improvement of pressurized water nuclear reactor vessels comprising flow dividers providing separate and distinct passages for the flow of core coolant water from each coolant water inlet, the flow dividers being vertically disposed in the annular flow areas provided by the walls of the vessel, the thermal shield (if present), and the core barrel is described. In the event of rupture of one of the coolant water inlet lines, water, especially emergency core coolant water, in the intact lines is thus prevented from by-passing the core by circumferential flow around the outermost surface of the core barrel and is instead directed so as to flow vertically downward through the annulus area between the vessel wall and the core barrel in a more normal manner to increase the probability of cooling of the core by the available cooling water in the lower plenum, thus preventing or delaying thermal damage to the core, and providing time for other appropriate remedial or damage preventing action by the operator

  3. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  4. Heat Transfer Augmentation in Gas Turbine Blade Rectangular Passages Using Circular Ribs with Fins

    Directory of Open Access Journals (Sweden)

    Mohammed W. Al-Jibory

    2017-11-01

    Full Text Available In this paper, an experimental system  was designed and built to simulate conditions in the gas turbine blade cooling and run the experimental part. Boundary conditions are: inlet coolant air temperature is 300K with Reynolds numbers (Re=7901 .The surrounding constant hot air temperatures was (673 K.The numerical simulations were done by using software FLUENT version (14.5, in this part, it was presented the effect of using circular ribs having middle fin fitted in rectangular passage channel on fluid flow and heat transfer characteristics.  Ribs used with pitch-rib height of 10, rectangular channel of (30x60 mm cross section, 1.5 mm duct thickness and 0.5 m long. The temperature, velocity distribution contours, cooling air temperature distribution at the duct centerline, the inner wall surface temperature of the duct, and thermal performance factor are presented in this paper. it can be seen that the duct with all ribs with middle fins was the better case which leads to increase the coolant air temperature by (10.22 % and decrease the inner wall temperature by (6.15 % . The coolant air flow velocity seems to be accelerated and decelerated through the channel in the presence of ribs, so it was shown that the thermal performance factor along the duct is larger than 1, this is due to the fact that the ribs create turbulent conditions and increasing thermal surface area, and thus increasing heat transfer coefficient than the smooth channel.

  5. Nitrogen uptake in the northeastern Arabian Sea during winter cooling

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Ramesh, R.; Dwivedi, R.M.; Raman, M.; Sheshshayee, M.S.; DeSouza, W.

    /plain; charset=UTF-8 Hindawi Publishing Corporation International Journal of Oceanography Volume 2010, Article ID 819029, 11 pages doi:10.1155/2010/819029 Research Article Nitrogen Uptake in the Northeastern Arabian Sea during Winter Cooling S. Kumar, 1...

  6. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  7. THE 2011 PERIASTRON PASSAGE OF THE Be BINARY {delta} Scorpii

    Energy Technology Data Exchange (ETDEWEB)

    Miroshnichenko, A. S. [Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, NC 27402-6170 (United States); Pasechnik, A. V. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Puekkioe (Finland); Manset, N. [CFHT Corporation, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Carciofi, A. C. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo (Brazil); Rivinius, Th. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Stefl, S. [ESO/ALMA, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Ribeiro, J. [Observatorio do Instituto Geografico do Exercito, Lisboa (Portugal); Fernando, A. [ATALAIA.org Group, Lisboa (Portugal); Garrel, T. [Observatoire de Juvignac, 19 avenue de Hameau du Golf F-34990, Juvignac (France); Knapen, J. H. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Buil, C. [Castanet Tolosan Observatory, 6 place Clemence Isaure F-31320 Castanet Tolosan (France); Heathcote, B. [Barfold Observatory, Glenhope, Victoria 3444 (Australia); Pollmann, E. [Emil-Nolde-Str. 12, D-51375, Leverkusen (Germany); Mauclaire, B. [Observatoire du Val d' Arc, route de Peynier F-13530, Trets (France); Thizy, O. [Shelyak Instruments, 1116 route de Chambery, F-38330, Saint-Ismier (France); Martin, J. [Barber Research Observatory, Department of Physics and Astronomy, University of Illinois-Springfield, IL 62703 (United States); Zharikov, S. V. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 877, Ensenada, 22800, Baja California (Mexico); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); others, and

    2013-04-01

    We describe the results of the world-wide observing campaign of the highly eccentric Be binary system {delta} Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 {+-} 0.0005 yr. Fitting of the He II 4686 A line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M{sub Sun }) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the H{alpha} line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R{sub Sun }. Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that {delta} Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40 Degree-Sign with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations.

  8. THE 2011 PERIASTRON PASSAGE OF THE Be BINARY δ Scorpii

    International Nuclear Information System (INIS)

    Miroshnichenko, A. S.; Pasechnik, A. V.; Manset, N.; Carciofi, A. C.; Rivinius, Th.; Štefl, S.; Gvaramadze, V. V.; Ribeiro, J.; Fernando, A.; Garrel, T.; Knapen, J. H.; Buil, C.; Heathcote, B.; Pollmann, E.; Mauclaire, B.; Thizy, O.; Martin, J.; Zharikov, S. V.; Okazaki, A. T.

    2013-01-01

    We describe the results of the world-wide observing campaign of the highly eccentric Be binary system δ Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 ± 0.0005 yr. Fitting of the He II 4686 Å line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M ☉ ) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the Hα line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R ☉ . Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that δ Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40° with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations.

  9. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    Science.gov (United States)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  10. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  11. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  12. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  13. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO2 in a Vertical Annulus Passage

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Sin; Kim, Hwan Yeol; Bae, Yoon Yeong

    2007-01-01

    Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical CO 2 . The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400 ∼1200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations

  14. Reaction paths based on mean first-passage times

    International Nuclear Information System (INIS)

    Park, Sanghyun; Sener, Melih K.; Lu Deyu; Schulten, Klaus

    2003-01-01

    Finding representative reaction pathways is important for understanding the mechanism of molecular processes. We propose a new approach for constructing reaction paths based on mean first-passage times. This approach incorporates information about all possible reaction events as well as the effect of temperature. As an application of this method, we study representative pathways of excitation migration in a photosynthetic light-harvesting complex, photosystem I. The paths thus computed provide a complete, yet distilled, representation of the kinetic flow of excitation toward the reaction center, thereby succinctly characterizing the function of the system

  15. Genre Analysis On Reading Passages Grade VII English Textbooks

    OpenAIRE

    Sukma, Ardini Nur

    2010-01-01

    Referring to the latest curriculum, School-Based Curriculum, every English textbook should provide genres based on the level of literacy of each grade. On this paper, I analyzed English textbooks published by Erlangga ?óÔé¼ÔÇ£ English on Sky (EOS), and by Pakar Raya -- Let?óÔé¼Ôäós Talk. This paper focuses on how are the reading passages of the textbooks compatible with ?óÔé¼?ôStandard Isi?óÔé¼?Ø?. Coinciding with the statement of the problems, the objectives of this paper are to describe the...

  16. First-passage time: a conception leading to superstatistics

    Directory of Open Access Journals (Sweden)

    V.V.Ryazanov

    2006-01-01

    Full Text Available To describe the nonequilibrium states of a system we introduce a new thermodynamic parameter -- the lifetime (the first passage time of a system. The statistical distributions that can be obtained out of the mesoscopic description characterizing the behaviour of a system by specifying the stochastic processes are written. Superstatistics, introduced in [Beck C., Cohen E.G.D., Physica A, 2003, 322A, 267] as fluctuating quantities of intensive thermodynamical parameters, are obtained from statistical distribution with lifetime (random time to system degeneracy as thermodynamical parameter (and also generalization of superstatistics.

  17. Stimulated Raman adiabatic passage in Tm3+:YAG

    International Nuclear Information System (INIS)

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-01-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results

  18. An extraction machine for the passage of a chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, B Ia; Krupnik, V S; Krut, V S; Nenakhov, D F; Niugai, M V; Sagatov, B S

    1980-05-18

    The subject of the invention is the extraction machine for the passage of a chamber with a direct path of a narrow face and the reverse path of a wide face, comprising an actuation unit, a drive reducer, a shield and hydraulic jack for the control brush, is characterized in that for the purpose of insuring the effectiveness of the overlapping, the zones for the loading of the brushes are equipped with chains, whose one end is reinforced on it in a hinge-like fashion, and the other, on the reducer, with which one of the chains is connected to the hydraulic jack by the control brush.

  19. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  20. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  1. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  2. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  4. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  5. The MuCool/MICE LH2 Absorber Program

    International Nuclear Information System (INIS)

    Cummings, Mary Anne

    2004-01-01

    Hydrogen absorber R and D for the MuCool Collaboration is actively pushing ahead on two parallel and complementary fronts. The continuing LH2 engineering and technical developments by the MuCool group, conducted by ICAR institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University in cooperation with Fermilab, are summarized here, including plans for the first tests of an absorber prototype from Osaka University and KEK cooled by internal convection at the newly constructed FNAL MuCool Test Area (MTA). Designs for the high-power test of another absorber prototype (employing external heat exchange) are complete and the system will be installed by summer 2004. A convection-cooled absorber design is being developed for the approved MICE cooling demonstration at Rutherford Appleton Laboratory

  6. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  7. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  8. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  9. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  10. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  11. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  12. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  13. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  14. Wireless Sensor Network Deployment for Monitoring Wildlife Passages

    Science.gov (United States)

    Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Losilla, Fernando; Kulakowski, Pawel; Garcia-Haro, Joan; Rodríguez, Alejandro; López-Bao, José-Vicente; Palomares, Francisco

    2010-01-01

    Wireless Sensor Networks (WSNs) are being deployed in very diverse application scenarios, including rural and forest environments. In these particular contexts, specimen protection and conservation is a challenge, especially in natural reserves, dangerous locations or hot spots of these reserves (i.e., roads, railways, and other civil infrastructures). This paper proposes and studies a WSN based system for generic target (animal) tracking in the surrounding area of wildlife passages built to establish safe ways for animals to cross transportation infrastructures. In addition, it allows target identification through the use of video sensors connected to strategically deployed nodes. This deployment is designed on the basis of the IEEE 802.15.4 standard, but it increases the lifetime of the nodes through an appropriate scheduling. The system has been evaluated for the particular scenario of wildlife monitoring in passages across roads. For this purpose, different schemes have been simulated in order to find the most appropriate network operational parameters. Moreover, a novel prototype, provided with motion detector sensors, has also been developed and its design feasibility demonstrated. Original software modules providing new functionalities have been implemented and included in this prototype. Finally, main performance evaluation results of the whole system are presented and discussed in depth. PMID:22163601

  15. Wireless Sensor Network Deployment for Monitoring Wildlife Passages

    Directory of Open Access Journals (Sweden)

    José-Vicente López-Bao

    2010-08-01

    Full Text Available Wireless Sensor Networks (WSNs are being deployed in very diverse application scenarios, including rural and forest environments. In these particular contexts, specimen protection and conservation is a challenge, especially in natural reserves, dangerous locations or hot spots of these reserves (i.e., roads, railways, and other civil infrastructures. This paper proposes and studies a WSN based system for generic target (animal tracking in the surrounding area of wildlife passages built to establish safe ways for animals to cross transportation infrastructures. In addition, it allows target identification through the use of video sensors connected to strategically deployed nodes. This deployment is designed on the basis of the IEEE 802.15.4 standard, but it increases the lifetime of the nodes through an appropriate scheduling. The system has been evaluated for the particular scenario of wildlife monitoring in passages across roads. For this purpose, different schemes have been simulated in order to find the most appropriate network operational parameters. Moreover, a novel prototype, provided with motion detector sensors, has also been developed and its design feasibility demonstrated. Original software modules providing new functionalities have been implemented and included in this prototype. Finally, main performance evaluation results of the whole system are presented and discussed in depth.

  16. Intermediate-level crossings of a first-passage path

    International Nuclear Information System (INIS)

    Bhat, Uttam; Redner, S

    2015-01-01

    We investigate some simple and surprising properties of a one-dimensional Brownian trajectory with diffusion coefficient D that starts at the origin and: (i) is at X at time T, or (ii) first reaches X at time T. We determine the most likely location of the first-passage trajectory from (0, 0) to (X, T) and its distribution at any intermediate time t < T. A first-passage path typically starts out by being repelled from its final location when X 2 /DT ≪ 1. We also determine the distribution of times when the trajectory first crosses and last crosses an arbitrary intermediate position x < X. The distribution of first-crossing times may be unimodal or bimodal, depending on whether X 2 /DT ≪ 1 or X 2 /DT ≫ 1. The form of the first-crossing probability in the bimodal regime is qualitatively similar to, but more singular than, the well-known arcsine law. (paper)

  17. First passage time in a two-layer system

    International Nuclear Information System (INIS)

    Lee, J.; Koplik, J.

    1995-01-01

    As a first step in the first passage problem for passive tracer in stratified porous media, we consider the case of a two-dimensional system consisting of two layers with different convection velocities. Using a lattice generating function formalism and a variety of analytic and numerical techniques, we calculate the asymptotic behavior of the first passage time probability distribution. We show analytically that the asymptotic distribution is a simple exponential in time for any choice of the velocities. The decay constant is given in terms of the largest eigenvalue of an operator related to a half-space Green's function. For the anti-symmetric case of opposite velocities in the layers, we show that the decay constant for system length L crosses over from L -2 behavior in the diffusive limit to L -1 behavior in the convective regime, where the crossover length L* is given in terms of the velocities. We also have formulated a general self-consistency relation, from which we have developed a recursive approach which is useful for studying the short-time behavior

  18. The Be Binary δ Scorpii and Its 2011 Periastron Passage

    Science.gov (United States)

    Miroshnichenko, A. S.; Manset, N.; Pasechnik, A. V.; Carciofi, A. C.; Rivinius, Th.; Štefl, S.; Ribeiro, J. M.; Fernando, A.; Garrel, T.; Knapen, J. H.; Buil, C.; Heathcote, B.; Pollmann, E.; Thizy, O.; Eversberg, T.; Reinecke, N.; Martin, J.; Okazaki, A. T.; Gandet, T. L.; Gvaramadze, V. V.; Zharikov, S. V.

    2012-12-01

    δ Scorpii is an unusual Be binary system. The binarity was discovered by interferometry in the 1970's and only confirmed by radial velocity measurements during the periastron passage in September 2000, when the primary component became a Be star. The components brightness and mass suggest that both are normal B-type stars. However, the large orbital eccentricity (e = 0.94) is highly uncommon, as most such Be binaries have circular orbits. The orbital period, only recently constrained by interferometry at 10.81 years, needed confirmation from spectroscopy during the last periastron passage in July 2011. The periastron observing campaign that involved professionals and amateurs resulted in obtaining several hundreds of spectra during the period of a large radial velocity change compared to only thirty obtained in 2000. Along with a determination of the orbital period accurate to 3-4 days, the radial velocity curve was found to be more complicated than one expected from just a binary system. I will briefly review the primary's disk development followed by a discussion of the recent observations. Implications for the system properties and ideas for future observations will be presented.

  19. First passage time problems in time-dependent fields

    International Nuclear Information System (INIS)

    Fletcher, J.E.; Havlin, S.; Weiss, G.H.

    1988-01-01

    This paper discusses the simplest first passage time problems for random walks and diffusion processes on a line segment. When a diffusing particle moves in a time-varying field, use of the adjoint equation does not lead to any simplification in the calculation of moments of the first passage time as is the case for diffusion in a time-invariant field. We show that for a discrete random walk in the presence of a sinusoidally varying field there is a resonant frequency omega* for which the mean residence time on the line segment in a minimum. It is shown that for a random walk on a line segment of length L the mean residence time goes like L 2 for large L when omega omega*, but when omega = omega* the dependence is proportional to L. The results of our simulation are numerical, but can be regarded as exact. Qualitatively similar results are shown to hold for diffusion processes by a perturbation expansion in powers of a dimensionless velocity. These results are extended to higher values of this parameter by a numerical solution of the forward equation

  20. Fish Passage Center : Fish Passage Center of the Columbia Basin Fish and Wildlife Authority; Annual report 1998

    International Nuclear Information System (INIS)

    DeHart, Michele

    1999-01-01

    The 1998 operations of the Columbia and Snake rivers system illustrated that there was potential flexibility in the operation of the hydrosystem to improve fish passage for juvenile salmon and increase the degree to which the NMS Biological Opinion measures could have been implemented successfully. This additional flexibility was not exercised. Some measures of the Biological Opinion were not implemented. The 1998 operation showed that the Hells Canyon Complex, operation, the Upper Snake River operation and Non-treaty storage operation could have provided flexibility to meet early spring and later summer flows

  1. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  2. JUELICH: COSY acceleration and cooling

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The COSY cooler synchrotron at the KFA Forschungszentrum Jülich, inaugurated on 1 April, is now well on its way towards precision-defined high energy beams to open new fields for Jülich physics experiments. In two important goals, on 25 May the first beam cooled by electrons circulated inside the accelerator, then on 25 July physicists succeeded in accelerating the beam from the 270 MeV/c injection momentum to 600 MeV. Shortly after, this was pushed well above 1 GeV. Throughout the tuning process the number of stored particles increased steadily, finally peaking at 1.1 x 10 11 , a value compatible with the predicted limit at the injection energy. This success was the result of a painstaking search for the optimum parameter set, the commissioning crew being acutely aware that bringing such a large machine on line was a major experiment in its own right. The 3.3 GeV/c COSY machine belongs to the new class of hadron storage and cooler synchrotrons which started with CERN's LEAR low energy antiproton ring. COSY will 'sharpen' its beams to a narrow momentum spread using both electron and stochastic cooling to control the circulating particles. In addition it will provide space for internal experiments. Both features will allow for novel experimental approaches, and more than 100 physicists are eagerly waiting for the first proton reactions in their detectors

  3. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    1980-01-01

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  4. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  5. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  6. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  7. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  8. Carburetor for internal combustion engines

    Science.gov (United States)

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  9. Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants.

    Science.gov (United States)

    Parsha, Kaushik; Mir, Osman; Satani, Nikunj; Yang, Bing; Guerrero, Waldo; Mei, Zhuyong; Cai, Chunyan; Chen, Peng R; Gee, Adrian; Hanley, Patrick J; Aronowski, Jaroslaw; Savitz, Sean I

    2017-01-01

    Extensive animal data indicate that mesenchymal stromal cells (MSCs) improve outcome in stroke models. Intra-arterial (IA) injection is a promising route of delivery for MSCs. Therapeutic effect of MSCs in stroke is likely based on the broad repertoire of secreted trophic and immunomodulatory cytokines produced by MSCs. We determined the differential effects of exposing MSCs to different types of clinically relevant vehicles, and/or different additives and passage through a catheter relevant to IA injections. MSCs derived from human bone marrow were tested in the following vehicles: 5% albumin (ALB), 6% Hextend (HEX) and 40% dextran (DEX). Each solution was tested (i) alone, (ii) with low-dose heparin, (iii) with 10% Omnipaque, or (iv) a combination of heparin and Omnipaque. Cells in vehicles were collected directly or passed through an IA catheter, and MSC viability and cytokine release profiles were assessed. Cell viability remained above 90% under all tested conditions with albumin being the highest at 97%. Viability was slightly reduced after catheter passage or exposure to heparin or Omnipaque. Catheter passage had little effect on MSC cytokine secretion. ALB led to increased release of angiogenic factors such as vascular endothelial growth factor compared with other vehicles, while HEX and DEX led to suppression of pro-inflammatory cytokines such as interleukin-6. However, when these three vehicles were subjected to catheter passage and/or exposure to additives, the cytokine release profile varied depending on the combination of conditions to which MSCs were exposed. Exposure of MSCs to certain types of vehicles or additives changes the profile of cytokine secretion. The activation phenotype of MSCs may therefore be affected by the vehicles used for these cells or the exposure to the adjuvants used in their administration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro.

    Science.gov (United States)

    Griffiths, Sarah; Baraniak, Priya R; Copland, Ian B; Nerem, Robert M; McDevitt, Todd C

    2013-12-01

    Multipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown. MSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to "rescue" the proliferative capacity of MSCs. hPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS. hPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Cooling towers - terms and definitions

    International Nuclear Information System (INIS)

    1991-02-01

    In the field of cooling tower construction and operation, the use of publications has shown that a systematic glossary has not yet been developed. Therefore a dictionary of the terms used in this field, together with their clear definitions, is urgently required. This work has been started by the V.I.K. (Association for the Industrial Power Economy) in Essen and completed by the VDI-Group 'Energy Engineering'. Because of the strong international links and the increasing overseas trade in this field also the corresponding terms in other languages, English, French and Spanish are included. As to make it possible to find the German terms and definitions when starting from a foreign language, alphabetical lists are included for the various languages giving the number of the corresponding German term. In such cases where the technical term used in the United States is not identical with the corresponding term used in the United Kingdom, both terms are included. (orig./HP) [de

  12. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  13. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  14. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  15. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  16. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  17. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  18. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  19. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  20. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  1. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  2. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  3. The 2011 Periastron Passage of the Be Binary δ Scorpii

    Science.gov (United States)

    Miroshnichenko, A. S.; Pasechnik, A. V.; Manset, N.; Carciofi, A. C.; Rivinius, Th.; Štefl, S.; Gvaramadze, V. V.; Ribeiro, J.; Fernando, A.; Garrel, T.; Knapen, J. H.; Buil, C.; Heathcote, B.; Pollmann, E.; Mauclaire, B.; Thizy, O.; Martin, J.; Zharikov, S. V.; Okazaki, A. T.; Gandet, T. L.; Eversberg, T.; Reinecke, N.

    2013-04-01

    We describe the results of the world-wide observing campaign of the highly eccentric Be binary system δ Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 ± 0.0005 yr. Fitting of the He II 4686 Å line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M ⊙) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the Hα line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R ⊙. Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that δ Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40° with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations. This paper is partially based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique de France, and the University of Hawaii, the 2.2 m MPG telescope operated at ESO/La Silla under program IDs 086.A-9019 and 087.A-9005, the IAC80 telescope in the Spanish Observatorio del Teide

  4. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  5. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  6. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  7. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Sear, Sheri

    2001-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  8. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Charles D.

    2000-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  9. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  10. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  11. CFD Analyses on LHe Cooling for SCQ Magnets in BEPCII Upgrade

    International Nuclear Information System (INIS)

    He, Z.H.; Wang, L.; Tang, H.M.; Zhang, X.B.; Jia, L.X.

    2004-01-01

    A pair of superconducting interaction region quadrupole magnets in Beijing Electron-Positron Collider Upgrade (BEPCII) are to be cooled by supercritical helium in order to eliminate the flow instabilities in the constrained cooling channels. The fluid flow is simulated by the commercial computational dynamics fluid software. The heat loads to the superconducting quadrupole (SCQ) magnets from the radiation shields at 80 K and from the thermal conduction of mechanical supports are considered. The temperature distribution of the fluid in the liquid helium cooling channels, and the heat transfer in the SCQ magnet and by its supports are presented. The influence of mass flow rate on pressure drop in the cooling passage is analyzed

  12. CFD ANALYSES ON THE COOLING FOR SCQ MAGNETS IN BEPC II UPGRADE

    International Nuclear Information System (INIS)

    HE, Z.H.; WANG, L.; TANK, H.M.; ZHANG, X.B.; JIA, L.X.

    2003-01-01

    A pair of superconducting interaction region quadrupole magnets in Beijing Electron-Positron Collider Upgrade (BEPCII) are to be cooled by supercritical helium in order to eliminate the flow instabilities in the constrained cooling channels. The fluid flow is simulated by the commercial computational dynamics fluid software. The heat loads to the superconducting quadrupole (SCQ) magnets from the radiation shields at 80 K and from the thermal conduction of mechanical supports are considered. The temperature distribution of the fluid in the liquid helium cooling channels, and the heat transfer in the SCQ magnet and by its supports are presented. The influence of mass flow rate on pressure drop in the cooling passage is analyzed

  13. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  14. Movement of Water Across Passages Connecting Philippine Inland Sea Basins

    Directory of Open Access Journals (Sweden)

    Lambert Anthony B Meñez

    2006-12-01

    Full Text Available Advection of Pacific water to the inland seas is through a number of straits bordering the archipelago. Movement of water was demonstrated by temperature-salinity diagrams plotted for a number of stations situated along the various passages. As water from the Pacific flowed through the straits its characteristic T-S profile was modified as it mixed with waters of different properties. This was best seen along the San Bernardino-Verde Island transect where strong surface flow during the NE monsoon resulted in separation of profiles at the surface indicating dilution as water moved away from the source. For deeper water, the erosion of the subsurface salinity minimum and maximum representing the core of the intermediate waters showed transport. These waters were restricted by shallow sill along the eastern coast of the country and limited to a depth of 441m by the sill across the Mindoro Strait.

  15. Disintegration of swift carbon clusters during passage through matter

    International Nuclear Information System (INIS)

    Koch, K.; Otteken, D.; Tuszynski, W.; Seidl, M.; Voit, H.

    2003-01-01

    Thin luminescent foils covered upstream with layers of Formvar or gold of various thicknesses were bombarded with C 8 clusters with energies between 5 and 10 MeV. The C 8 induced relative luminescence yield Φ 8 increases with growing layer thickness and approaches smoothly the value 8Φ 1 , i.e., the luminescence yield induced by eight well-separated C 1 cluster constituents. This is a clear demonstration of the gradual separation between the cluster constituents during the passage of the cluster through the layers. The layer thickness necessary to separate cluster constituents far enough to act as independent atomic ions with respect to the luminescence process was calculated. The result is that Formvar layers with a thickness of about 1150 nm or ≅250-nm-thick gold layers are necessary to establish this mutual independence of the cluster constituents. Both calculated values agree roughly with the layer thickness obtained from an extrapolation of the experimental data

  16. Adiabatic passage and ensemble control of quantum systems

    International Nuclear Information System (INIS)

    Leghtas, Z; Sarlette, A; Rouchon, P

    2011-01-01

    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol-chirped pulse-practised by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude-shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with unknown coupling strengths. These adiabatic control protocols are illustrated by simulations on a four-level ladder.

  17. Spatial non-adiabatic passage using geometric phases

    Energy Technology Data Exchange (ETDEWEB)

    Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)

    2017-12-15

    Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)

  18. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  19. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  20. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    2003-06-01

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  1. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.

    Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  2. Fish ladders: safe fish passage or hotspot for predation?

    Directory of Open Access Journals (Sweden)

    Angelo Antonio Agostinho

    Full Text Available Fish ladders are a strategy for conserving biodiversity, as they can provide connectivity between fragmented habitats and reduce predation on shoals that accumulate immediately below dams. Although the impact of predation downstream of reservoirs has been investigated, especially in juvenile salmonids during their downstream movements, nothing is known about predation on Neotropical fish in the attraction and containment areas commonly found in translocation facilities. This study analysed predation in a fish passage system at the Lajeado Dam on the Tocantins River in Brazil. The abundance, distribution, and the permanence (time spent of large predatory fish along the ladder, the injuries imposed by piranhas during passage and the presence of other vertebrate predators were investigated. From December 2002 to October 2003, sampling was conducted in four regions (downstream, along the ladder, in the forebay, and upstream of the reservoir using gillnets, cast nets and counts or visual observations. The captured fish were tagged with thread and beads, and any mutilations were registered. Fish, birds and dolphins were the main predator groups observed, with a predominance of the first two groups. The entrance to the ladder, in the downstream region, was the area with the highest number of large predators and was the only region with relevant non-fish vertebrates. The main predatory fish species were Rhaphiodon vulpinus, Hydrolycus armatus, and Serrasalmus rhombeus. Tagged individuals were detected predating along the ladder for up to 90 days. Mutilations caused by Serrasalmus attacks were noted in 36% of species and 4% of individuals at the top of the ladder. Our results suggested that the high density of fish in the restricted ladder environment, which is associated with injuries suffered along the ladder course and the presence of multiple predator groups with different predation strategies, transformed the fish corridor into a hotspot for

  3. Study on the utilization of the energy produced by the exhaust gases and the cooling water of a internal combustion engine; Estudo do aproveitamento da energia obtida pelos gases de escapamento e pela agua de resfriamento de um motor de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre Luiz dos; Arroyo, Narciso Angel Ramos [Santa Catarina Univ., Florianopolis (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Motores Termicos]. E-mail: als2000@tutopia.com.br; arroyo@sinmec.ufsc.br

    2000-07-01

    This work is about heat balance of an automotive internal combustion engine of 4 cylinders, using ethylic alcohol, and utilize the energy obtained in the exhaust gas and the water cooling system. This paper show an theoretical - experimental model for use this energy in an absorption refrigeration system using the work fluid water and Li Br. In this paper are analyzed engines charges of 30%, 50% and 100%. The results shows that for this charges and for any speed of the engines, the energy obtained in the evaporator are significant. (author)

  4. Hybrid Methods for Muon Accelerator Simulations with Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Josiah [Anderson U.; Snopok, Pavel [Fermilab; Berz, Martin [Michigan State U.; Makino, Kyoko [Michigan State U.

    2018-03-28

    Muon ionization cooling involves passing particles through solid or liquid absorbers. Careful simulations are required to design muon cooling channels. New features have been developed for inclusion in the transfer map code COSY Infinity to follow the distribution of charged particles through matter. To study the passage of muons through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map--Monte-Carlo approach in which transfer map methods describe the deterministic behavior of the particles, and Monte-Carlo methods are used to provide corrections accounting for the stochastic nature of scattering and straggling of particles. The advantage of the new approach is that the vast majority of the dynamics are represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed are expected to simplify the optimization of cooling channels which is usually computationally demanding. Progress on the development of the required algorithms and their application to modeling muon ionization cooling channels is reported.

  5. Experimental and analytical study on thermoelectric self cooling of devices

    International Nuclear Information System (INIS)

    Martinez, A.; Astrain, D.; Rodriguez, A.

    2011-01-01

    This paper presents and studies the novel concept of thermoelectric self cooling, which can be introduced as the cooling and temperature control of a device using thermoelectric technology without electricity consumption. For this study, it is designed a device endowed with an internal heat source. Subsequently, a commonly used cooling system is attached to the device and the thermal performance is statistically assessed. Afterwards, it is developed and studied a thermoelectric self cooling system appropriate for the device. Experimental and analytical results show that the thermal resistance between the heat source and the environment reduced by 25-30% when the thermoelectric self cooling system is installed, and indicates the promising applicability of this technology to devices that generate large amounts of heat, such as electrical power converters, transformers and control systems. Likewise, it was statistically proved that the thermoelectric self cooling system leads to significant reductions in the temperature difference between the heat source and the environment, and, what is more, this reduction increases as the heat flow generated by the heat source increases, which makes evident the fact that thermoelectric self cooling systems work as temperature controllers. -- Highlights: → Novel concept of thermoelectric self cooling is presented and studied. → No extra electricity is needed. → Thermal resistance between the heat source and the environment reduces by 25-30%. → Increasing reduction in temperature difference between heat source and environment. → Great applicability to any device that generates heat and must be cooled.

  6. Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Koehler Karl R

    2011-08-01

    Full Text Available Abstract Background The use of induced pluripotent stem cells (iPSCs for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly derived iPSC cell lines. Extended passaging is emerging as a method of ensuring faithful reprogramming. We adapted an established and efficient embryonic stem cell (ESC neural induction protocol to test whether iPSCs (1 have the competence to give rise to functional neurons with similar efficiency as ESCs and (2 whether the extent of neural differentiation could be altered or enhanced by increased passaging. Results Our gene expression and morphological analyses revealed that neural conversion was temporally delayed in iPSC lines and some iPSC lines did not properly form embryoid bodies during the first stage of differentiation. Notably, these deficits were corrected by continual passaging in an iPSC clone. iPSCs with greater than 20 passages (late-passage iPSCs expressed higher expression levels of pluripotency markers and formed larger embryoid bodies than iPSCs with fewer than 10 passages (early-passage iPSCs. Moreover, late-passage iPSCs started to express neural marker genes sooner than early-passage iPSCs after the initiation of neural induction. Furthermore, late-passage iPSC-derived neurons exhibited notably greater excitability and larger voltage-gated currents than early-passage iPSC-derived neurons, although these cells were morphologically indistinguishable. Conclusions These findings strongly suggest that the efficiency neuronal conversion depends on the complete reprogramming of iPSCs via extensive passaging.

  7. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  8. On correlations between certain random variables associated with first passage Brownian motion

    International Nuclear Information System (INIS)

    Kearney, Michael J; Pye, Andrew J; Martin, Richard J

    2014-01-01

    We analyse how the area swept out by a Brownian motion up to its first passage time correlates with the first passage time itself, obtaining several exact results in the process. Additionally, we analyse the relationship between the time average of a Brownian motion during a first passage and the maximum value attained. The results, which find various applications, are in excellent agreement with simulations. (paper)

  9. Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Johnson, Gary E.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required by the 2008 Columbia Basin Fish Accords.

  10. Behaviour and locomotor activity of a migratory catostomid during fishway passage.

    Directory of Open Access Journals (Sweden)

    Ana T Silva

    Full Text Available Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations.

  11. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  12. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  13. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  14. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  15. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  16. Cooling your home naturally

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  17. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  18. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  19. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  20. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  1. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  2. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  3. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  4. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  5. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  6. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  7. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Directory of Open Access Journals (Sweden)

    Richard S Brown

    Full Text Available Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to

  8. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Science.gov (United States)

    Brown, Richard S; Deng, Z Daniel; Cook, Katrina V; Pflugrath, Brett D; Li, Xinya; Fu, Tao; Martinez, Jayson J; Li, Huidong; Trumbo, Bradly A; Ahmann, Martin L; Seaburg, Adam G

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this.

  9. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  10. Fracture during cooling of cast borosilicate glass containing nuclear wastes

    International Nuclear Information System (INIS)

    Smith, P.K.; Baxter, C.A.

    1981-09-01

    Procedures and techniques were evaluated to mitigate thermal stress fracture in waste glass as the glass cools after casting. The two principal causes of fracture identified in small-scale testing are internal thermal stresses arising from excessive thermal gradients when cooled too fast, and shear fracturing in the surface of the glass because the stainless steel canister shrinks faster than the glass on cooling. Acoustic emission and ceramographic techniques were used to outline an annealing schedule that requires at least three weeks of controlled cooling below 550 0 C to avoid excessive thermal gradients and corresponding stresses. Fracture arising from canister interactions cannot be relieved by slow cooling, but can be eliminated for stainless steel canisters by using ceramic paper, ceramic or graphite paste linings, or by choosing a canister material with a thermal expansion coefficient comparable to, or less than, that of the glass

  11. Quenching of hot wall of vertical-narrow-annular passages by water falling down counter-currently

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Arai, Manabu; Okabayashi, Yoshiaki; Nagae, Takashi; Okano, Yukimitsu

    2004-01-01

    quenching of a thin-gap annular flow passage by gravitational liquid penetration was examined by using water. The outer wall of the test flow channel was made of stainless steel. The inner wall was made of glass or stainless steel. The annular gap spacings tested were 10, 5.0, 2.0, 1.0 and 0.5 mm. No inner wall case; the gap width = ∞, was also tested. The stainless steel walls(s) was (were) heated electrically. When the glass wall was used for the inner wall, a fiber scope was inserted inside to observe a flow state. The quenching was observed for the gap spacing over 1.0 mm. When the spacing was less than 1.0 mm, the wall was gradually and monotonously cooled down without any quenching. As the gap spacing became narrow, the counter-current flow limiting; flooding, severely occurred. The peak heat flux during the quenching process became lower than that in pool boiling as the gap spacing became narrower. The quenching propagated from the bottom when the gap spacing was larger than 5 mm. When the gap clearance was less than 2.0 mm, the quenching proceeded from the top in the bottom closed case. It was visually observed that liquid accumulated in the lower portion of the flow passage in the 5 mm gap case and the rewetting front propagated upward from the bottom. In the 1.0 mm gap case, the moving-down of the rewetting front was observed. The quenching velocity became slow as the gap spacing became narrow. Quenching simulation was performed by solving a transient heat conduction equation. The simulation indicated that the quenching velocity becomes fast as the peak heat flux becomes low with the gap spacing, which was opposite to the experimental results. It was also suggested that precursory cooling is one of key factors to control the rewetting velocity; as the precursory cooling becomes weak, the rewetting velocity becomes slow. (author)

  12. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  13. Plant Vogtle cooling tower studies

    International Nuclear Information System (INIS)

    O'Steen, L.

    2000-01-01

    Intensive ground-based field studies of plumes from two large, natural-draft cooling towers were conducted in support of the MTI modeling effort. Panchromatic imagery, IR imagery, meteorological data, internal tower temperatures and plant power data were collected during the field studies. These data were used to evaluate plume simulations, plume radioactive transfer calculations and plume volume estimation algorithms used for power estimation. Results from six field studies indicate that a 3-D atmospheric model at sufficient spatial resolution can effectively simulate a cooling tower plume if the plume is of sufficient size and the ambient meteorology is known and steady. Small plumes and gusty wind conditions degrade the agreement between the simulated and observed plumes. Thermal radiance calculations based on the simulated plumes produced maximum IR temperatures (near tower exit) which were in good agreement with measured IR temperatures for the larger plumes. For the smaller plumes, the calculated IR temperature was lower than the measured temperature by several degrees. Variations in maximum IR plume temperature with decreasing power (one reactor was undergoing a shutdown process), were clearly observed in the IR imagery and seen in the simulations. These temperature changes agreed with those calculated from an overall tower energy and momentum balance. Plume volume estimates based on camcorder images at three look angles were typically 20--30 percent larger than the plume volumes derived from the simulations, although one estimate was twice the simulated volume. Volume overestimation is expected and will have to be accounted for to some degree if plume volume is to be a useful diagnostic quantity in power estimation. Volume estimation with MTI imagery will require a large, stable plume and two looks in the visible bands (5m GSD) along with a solar shadow

  14. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  15. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  16. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  17. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  18. Active cooling of a mobile phone handset

    International Nuclear Information System (INIS)

    Grimes, Ronan; Walsh, Ed; Walsh, Pat

    2010-01-01

    Power dissipation levels in mobile phones continue to increase due to gaming, higher power applications, and increased functionality associated with the internet. The current cooling methodologies of natural convection and radiation limit the power dissipation within a mobile phone to between 1-2 W depending on size. As power dissipation levels increase, products such as mobile phones will require active cooling to ensure that the devices operate within an acceptable temperature envelop from both user comfort and reliability perspectives. In this paper, we focus on the applied thermal engineering problem of an active cooling solution within a typical mobile phone architecture by implementing a custom centrifugal fan within the mobile phone. Its performance is compared in terms of flow rates and pressure drops, allowable phone heat dissipation and maximum phone surface temperature as this is the user constraint for a variety of simulated PCB architectures in the mobile phone. Perforated plates with varying porosity through different size orifices are used to simulate these architectures. The results show that the power level dissipated by a phone for a constant surface temperature may be increased by ∼50 - 75% depending on pressure drop induced by the internal phone architecture. Hence for successful implementation and efficient utilization of active cooling will require chip layout to be considered at the design stage.

  19. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  20. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  1. A study of the life expectancy of cooling towers

    International Nuclear Information System (INIS)

    Bolvin, M.; Chauvel, D.

    1993-01-01

    The paper describes the following different tasks of the study whose aim was to extend the life time of cooling towers for French Nuclear Power plants to 40 years. The aging factors specific to cooling towers were measured and analysed with regard to the external surface, the internal surface and inside the concrete. The safety coefficient for buckling was calculated and then the stress analysis of the materials (concrete and steel) was done. A special computer program written for cooling towers was used with a model including the soil stiffness and the supports of the tower. (author)

  2. Island-enhanced cooling mechanism in typhoon events revealed by field observations and numerical simulations for a coral reef area, Sekisei Lagoon, Japan

    Science.gov (United States)

    Bernardo, Lawrence Patrick C.; Nadaoka, Kazuo; Nakamura, Takashi; Watanabe, Atsushi

    2017-11-01

    While widely known for their destructive power, typhoon events can also bring benefit to coral reef ecosystems through typhoon-induced cooling which can mitigate against thermally stressful conditions causing coral bleaching. Sensor deployments in Sekisei Lagoon, Japan's largest coral reef area, during the summer months of 2013, 2014, and 2015 were able to capture local hydrodynamic features of numerous typhoon passages. In particular, typhoons 2015-13 and 2015-15 featured steep drops in near-bottom temperature of 5 °C or more in the north and south sides of Sekisei Lagoon, respectively, indicating local cooling patterns which appeared to depend on the track and intensity of the passing typhoon. This was further investigated using Regional Ocean Modeling System (ROMS) numerical simulations conducted for the summer of 2015. The modeling results showed a cooling trend to the north of the Yaeyama Islands during the passage of typhoon 2015-13, and a cooling trend that moved clockwise from north to south of the islands during the passage of typhoon 2015-15. These local cooling events may have been initiated by the Yaeyama Islands acting as an obstacle to a strong typhoon-generated flow which was modulated and led to prominent cooling of waters on the leeward sides. These lower temperature waters from offshore may then be transported to the shallower inner parts of the lagoon area, which may partly be due to density-driven currents generated by the offshore-inner area temperature difference.

  3. Improvement of Cooling Technology through Atmosphere Gas Management

    Energy Technology Data Exchange (ETDEWEB)

    Renard, Michel; Dosogne, Edgaar; Crutzen, Jean Pierre; Raick, Jean Mare [DREVER INTERNATIONAL S.A., Liege (Belgium); Ji, Ma Jia; Jun, Lv; Zhi, Ma Bing [SHOUGANG Cold Rolling Mill Headquarter, Beijin (China)

    2009-12-15

    The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Driver international developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas: the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipment between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

  4. Status of and prospects for gas-cooled reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The IAEA International Working Group on Gas-Cooled Reactors (IWGGCR) (see Annex I), which was established in 1978, recommended to the Agency that a report be prepared in order to provide an up-to-date summary of gas-cooled reactor technology. The present Technical Report is based mainly on submissions of Member Countries of the IWGGCR and consists of four main sections. Beside some general information about the gas-cooled reactor line, section 1 contains a description of the incentives for the development and deployment of gas-cooled reactors in various Agency Member States. These include both electricity generation and process steam and process heat production for various branches of industry. The historical development of gas-cooled reactors is reviewed in section 2. In this section information is provided on how, when and why gas-cooled reactors have been developed in various Agency Member States and, in addition, a detailed description of the different gas-cooled reactor lines is presented. Section 3 contains information about the technical status of gas-cooled reactors and their applications. Gas-cooled reactors that are under design or construction or in operation are listed and shortly described, together with an outlook for future reactor designs. In this section the various applications for gas-cooled reactors are described in detail. These include both electricity generation and process steam and process heat production. The last section (section 4) is entitled ''Special features of gas-cooled reactors'' and contains information about the technical performance, fuel utilization, safety characteristics and environmental impact, such as radiation exposure and heat rejection

  5. Stable isotope-labelled feed nutrients to assess nutrient-specific feed passage kinetics in ruminants

    NARCIS (Netherlands)

    Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F.

    2014-01-01

    Knowledge of digesta passage kinetics in ruminants is essential to predict nutrient supply to the animal in relation to optimal animal performance, environmental pollution and animal health. Fractional passage rates (FPR) of feed are widely used in modern feed evaluation systems and mechanistic

  6. 77 FR 7025 - Safety Zones; America's Cup World Series, East Passage, Narragansett Bay, RI

    Science.gov (United States)

    2012-02-10

    ...-AA00 Safety Zones; America's Cup World Series, East Passage, Narragansett Bay, RI AGENCY: Coast Guard... the America's Cup World Series sailing vessel racing event. This safety zone is intended to safeguard...'s Cup-class races on the waters of the East Passage, Narragansett Bay, Rhode Island. Vessels will be...

  7. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging.

    Science.gov (United States)

    Dinardo, Carla Luana; Venturini, Gabriela; Omae, Samantha Vieira; Zhou, Enhua H; da Motta-Leal-Filho, Joaquim Maurício; Dariolli, Rafael; Krieger, José Eduardo; Alencar, Adriano Mesquita; Costa Pereira, Alexandre

    2012-01-01

    One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.

  8. Dissolved Fe across the Weddell Sea and Drake Passage: impact of DFe on nutrient uptake

    NARCIS (Netherlands)

    Klunder, M.B.; Laan, P.; de Baar, H.J.W.; Middag, R.; Neven, I.; Van Ooijen, J.

    2014-01-01

    This manuscript reports the first full depth distributions of dissolved iron (DFe) over a high-resolution Weddell Sea and Drake Passage transect. Very low dissolved DFe concentrations (0.01-0.1 nM range) were observed in the surface waters of the Weddell Sea, and within the Drake Passage polar

  9. Dissolved Fe across the Weddell Sea and Drake Passage : Impact of DFe on nutrient uptake

    NARCIS (Netherlands)

    Klunder, M. B.; Laan, P.; De Baar, H. J. W.; Middag, R.; Neven, I.; Van Ooijen, J.

    2014-01-01

    This manuscript reports the first full depth distributions of dissolved iron (DFe) over a high-resolution Weddell Sea and Drake Passage transect. Very low dissolved DFe concentrations (0.01-0.1 nM range) were observed in the surface waters of the Weddell Sea, and within the Drake Passage polar

  10. "The Caterpillar": A Novel Reading Passage for Assessment of Motor Speech Disorders

    Science.gov (United States)

    Patel, Rupal; Connaghan, Kathryn; Franco, Diana; Edsall, Erika; Forgit, Dory; Olsen, Laura; Ramage, Lianna; Tyler, Emily; Russell, Scott

    2013-01-01

    Purpose: A review of the salient characteristics of motor speech disorders and common assessment protocols revealed the need for a novel reading passage tailored specifically to differentiate between and among the dysarthrias (DYSs) and apraxia of speech (AOS). Method: "The Caterpillar" passage was designed to provide a contemporary, easily read,…

  11. Introducing Intertextuality-Aware Instruction as a Novel Approach of Teaching Reading Passages in EFL Context

    Science.gov (United States)

    Khaghaninejad, Mohammad Saber

    2014-01-01

    This study was an attempt to investigate the possible effect of intertextuality-aware instruction of reading passages on a sample of intermediate EFL learners of both genders. First, the intertextuality deployed through the reading passages of the study's course-book was focused inspired by Fairclough's (192) framework in terms of genre, text…

  12. Bladed disc crack diagnostics using blade passage signals

    Science.gov (United States)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  13. Does gently clearing the nasal passage affect odor identification?

    Directory of Open Access Journals (Sweden)

    Mitchell G. Spring

    2014-12-01

    Full Text Available Identifying scents in a wine’s bouquet is considered one of the most important steps in the process of wine tasting. An individual’s ability to successfully do this is dependent on the sense of smell; thus, altering the nasal microenvironment could have a powerful effect on the wine tasting experience. In the present study, we examined olfactory performance in healthy participants who cleared their nasal cavity before odorant presentations. Fifty undergraduate participants were assessed with a standardized test of olfaction requiring the recognition of a battery of odors. Half of these participants cleared mucus from their nasal cavities (by gently blowing their noses prior to the assessment. No difference was found in performance between those who cleared their nasal passages and those who did not. Further, data were not different than known population data from the test. These data suggest that gently clearing the nasal cavity before presentation of odorants bears no effect on the ability to perceive those odor qualities.

  14. Automatic system for monitoring fish passage at dams

    Science.gov (United States)

    Castignolles, Nathalie; Cattoen, Michel; Larinier, M.

    1994-09-01

    Devices called fishways or fish passes are constructed in rivers to help migratory fish get over obstacles (dams). There counting windows are used to monitor fish passage by video-based counting. Our goal is to design and construct a vision system to automate this process. Images are taken by a video camera fitted with an electronic shutter in a backlit fishway. They are stored on optical disks in real time but are processed in delayed time. Faced with high volumes of data, a compression is necessary and an electronic board has been designed to accomplish it in real time. The coding method used is based on a run description of binarized images. Then, a tracking process is implemented on a micro-computer to count the fish crossing the pass. It includes fish recognition, which is based on a Bayesian classification process. In order to reduce processing times, recognition operations (labelling, parameter extraction) are accomplished on coded images. Classification results are satisfactory and are improved by the temporal redundancy generated by the tracking process. Image processing time permits the user, on average, to process images faster than they have been stored. Thus there is no data accumulation. At the end of the processing it is possible to edit a result file, to choose a fish, view its crossing images and change its species if wrong.

  15. Left passage probability of Schramm-Loewner Evolution

    Science.gov (United States)

    Najafi, M. N.

    2013-06-01

    SLE(κ,ρ⃗) is a variant of Schramm-Loewner Evolution (SLE) which describes the curves which are not conformal invariant, but are self-similar due to the presence of some other preferred points on the boundary. In this paper we study the left passage probability (LPP) of SLE(κ,ρ⃗) through field theoretical framework and find the differential equation governing this probability. This equation is numerically solved for the special case κ=2 and hρ=0 in which hρ is the conformal weight of the boundary changing (bcc) operator. It may be referred to loop erased random walk (LERW) and Abelian sandpile model (ASM) with a sink on its boundary. For the curve which starts from ξ0 and conditioned by a change of boundary conditions at x0, we find that this probability depends significantly on the factor x0-ξ0. We also present the perturbative general solution for large x0. As a prototype, we apply this formalism to SLE(κ,κ-6) which governs the curves that start from and end on the real axis.

  16. The passage of a diffusible indicator through a microvascular system

    Directory of Open Access Journals (Sweden)

    Kislukhin Victor V

    2013-02-01

    Full Text Available Abstract The aim. (1 To develop a mathematical model of the passage of a diffusible indicator through microcirculation based on a stochastic description of diffusion and flow; (2 To use Goresky transform of the dilution curves of the diffusible indicators for the estimation of the permeability of a tissue-capillary barrier. The method. We assume that there are two causes for flow to be stochastic: (a All microvessels are divided between open and closed microvessels. There exists random exchange between the two groups. (b The flow through open microvessels is also random. We assume that each diffusing tracer has a probability to leave the intravascular space, and has a probability to return. We also assume that all considered processes are stationary (stability of microcirculation. Conclusion. (a The distribution of the time to pass microcirculation by diffusing indicator is given by a compound Poisson distribution; (b The permeability of tissue-capillary barrier can be obtained from the means, delay, and dispersions of the dilutions of intravascular and diffusing traces.

  17. MULTIAGENT PLANNING OF INTERSECTION PASSAGE BY AUTONOMOUS VEHICLES

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2016-09-01

    Full Text Available We propose a traffic management system for autonomous vehicles that are agents at the intersection. In contrast to the known solutions based on the usage of semiautonomous control systems in assembly with the control unit, this algorithm is based on the principles of decentralized multiagent control. The best travel plan for intersection passage is produced by means of optimization methods jointly by all agents belonging to a dynamic collaboration of autonomous vehicles. The order of road intersection optimal for a given criterion is determined by the agents in the process of information exchange about themselves and environment. Our experiments show that this protocol can reduce significantly the traffic density as compared to the traditional systems of traffic management. Moreover, the effectiveness of the proposed algorithm increases with increasing density of road traffic. In addition, the absence of the critical object, that is the control unit, in the control system, reduces significantly the effectiveness of possible failures and hacker attacks on the intersection control system.

  18. Aging as a social form: the phenomenology of the passage.

    Science.gov (United States)

    Blum, Alan

    2014-03-01

    If philosophers have discussed life as preparation for death, this seems to make aging coterminous with dying and a melancholy passage that we are condemned to survive. It is important to examine the discourse on aging and end of life and the ways various models either limit possibilities for human agency or suggest means of being innovative in relation to such parameters. I challenge developmental views of aging not by arguing for eternal life, but by using Plato's conception of form in conjunction with Simmel's work and Arendt's meditation on intergenerational solidarity, to evoke a picture of the subject as having capacities that offer avenues for improvisational action. This paper proposes a method for analyzing any social form as a problem-solving situation where the real "problem" is the fundamental ambiguity that inheres in the mix between the finite characteristics of the action and its infinite perplexity. I work through the most conventional chronological view of aging to show how it dramatizes a fundamental ethical collision in life that intensifies anxiety under many conditions, always raising the question of what is to be done with respect to contingency, revealing such "work" as a paradigm of the human condition.

  19. Topographic control of oceanic flows in deep passages and straits

    Science.gov (United States)

    Whitehead, J. A.

    1998-08-01

    Saddle points between neighboring deep ocean basins are the sites of unidirectional flow from one basin to the next, depending on the source of bottom water. Flow in these sites appears to be topographically controlled so the interface between the bottom water and the water above adjusts itself to permit bottom water flow from the basin that contains a source of bottom water into the next. Examples in the Atlantic include flow in the Romanche Fracture Zone, the Vema Channel, the Ceara Abyssal Plain, the Anegada-Jungfern passage, and the Discovery Gap, but there are many more. Theoretical predictions of volume flux using a method that requires only conductivity-temperature-depth data archives and detailed knowledge of bathymetry near the saddle point are compared with volume flux estimates using current meters and/or geostrophic estimates for seven cases. The ratio of prediction to volume flux estimate ranges from 1.0 to 2.7. Some ocean straits that separate adjacent seas are also found to critically control bidirectional flows between basins. Theory of the influence of rotation on such critical flows is reviewed. Predictions of volume flux in eight cases are compared with ocean estimates of volume flux from traditional methods.

  20. Stimulated Raman adiabatic passage in physics, chemistry, and beyond

    Science.gov (United States)

    Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas

    2017-01-01

    The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).

  1. Upper Oceanic Energy Response to Tropical Cyclone Passage

    Science.gov (United States)

    2013-04-15

    lagged SST cooling is approximately 0.78C for a ‘‘typical’’ TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of...during tropical to extratropical transition). The scenario above led to the development of the TC potential intensity (PI) thesis, an important...is approximately 0.78C for a ??typical?? TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of upper oceanic

  2. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Riffat, S.B. [School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Li, J.M. [Department of Thermal Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2008-10-15

    The paper presents numerical investigation of a novel counter-flow heat and mass exchanger used in the indirect evaporative dew point cooling systems, a potential alternative to the conventional mechanical compression air conditioning systems. Numeric simulation was carried out to optimise the geometrical sizes and operating conditions of the exchanger in order to enhance the cooling (dew point and wet bulb) effectiveness of the exchanger and maximise the energy efficiency of the dew point cooling system. The results of the simulations indicated that cooling (dew point and wet bulb) effectiveness and energy efficiency are largely dependent on the dimensions of the airflow passages, air velocity and working-to-intake-air ratio, and less dependent on the temperature of the feed water. It is recommended that exchanger intake air velocity should be controlled to a value below 0.3-0.5 m/s; height of air passage (channel) should be set to 6 mm or below and the length of the passage should be 200 time the height; the working-to-intake-air ratio should be around 0.4. Under the UK summer design condition, i.e., 28{sup o}C of dry bulb temperature, 20{sup o}C of wet bulb temperature and 16{sup o}C of dew point temperature, the exchanger can achieve wet-bulb effectiveness of up to 1.3 and dew-point effectiveness of up to 0.9. (author)

  3. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  4. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  5. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  6. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    Science.gov (United States)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  7. Spark PRM: Using RRTs within PRMs to efficiently explore narrow passages

    KAUST Repository

    Shi, Kensen

    2014-05-01

    © 2014 IEEE. Probabilistic RoadMaps (PRMs) have been successful for many high-dimensional motion planning problems. However, they encounter difficulties when mapping narrow passages. While many PRM sampling methods have been proposed to increase the proportion of samples within narrow passages, such difficult planning areas still pose many challenges. We introduce a novel algorithm, Spark PRM, that sparks the growth of Rapidly-expanding Random Trees (RRTs) from narrow passage samples generated by a PRM. The RRT rapidly generates further narrow passage samples, ideally until the passage is fully mapped. After reaching a terminating condition, the tree stops growing and is added to the roadmap. Spark PRM is a general method that can be applied to all PRM variants. We study the benefits of Spark PRM with a variety of sampling strategies in a wide array of environments. We show significant speedups in computation time over RRT, Sampling-based Roadmap of Trees (SRT), and various PRM variants.

  8. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  9. Spark PRM: Using RRTs within PRMs to efficiently explore narrow passages

    KAUST Repository

    Shi, Kensen; Denny, Jory; Amato, Nancy M.

    2014-01-01

    © 2014 IEEE. Probabilistic RoadMaps (PRMs) have been successful for many high-dimensional motion planning problems. However, they encounter difficulties when mapping narrow passages. While many PRM sampling methods have been proposed to increase the proportion of samples within narrow passages, such difficult planning areas still pose many challenges. We introduce a novel algorithm, Spark PRM, that sparks the growth of Rapidly-expanding Random Trees (RRTs) from narrow passage samples generated by a PRM. The RRT rapidly generates further narrow passage samples, ideally until the passage is fully mapped. After reaching a terminating condition, the tree stops growing and is added to the roadmap. Spark PRM is a general method that can be applied to all PRM variants. We study the benefits of Spark PRM with a variety of sampling strategies in a wide array of environments. We show significant speedups in computation time over RRT, Sampling-based Roadmap of Trees (SRT), and various PRM variants.

  10. Evaluation of Fish Passage Conditions for Juvenile Salmonids Using Sensor Fish at Detroit Dam, Oregon

    International Nuclear Information System (INIS)

    Duncan, Joanne P.

    2010-01-01

    Fish passage conditions through two spillways at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions through Spillbay 3 and Spillbay 6 at 1.5- and 3.5-ft gate openings, identifying potential fish injury regions of the routes. The study was performed in July 2009, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish and live fish were deployed at elevations approximately 3 ft above structure at depths determined using a computational fluid dynamics model. Data collected were analyzed to estimate (1) exposure conditions, particularly exposure to severe collision and shear events by passage route sub-regions; (2) differences in passage conditions between passage routes; and (3) relationships to live-fish injury and mortality data estimates.

  11. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  12. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  13. Nuclear powerplant with closed gas-cooling circuit

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Winter, U.

    1976-01-01

    Disclosed is a nuclear power plant comprising a pressure-tight safety vessel surrounding the entire plant, an inner vessel of reinforced concrete, a high-temperature reactor contained in the inner vessel, a gas turbine assembly having a turbine and a high- and low-pressure compressor located in a horizontally oriented chamber below the reactor, a plurality of heat exchange units positioned in a plurality of vertically oriented pods spaced radially symmetrically about the reactor and suitable conduits for carrying the reactive gas between the system components. The conduits are arranged in generally horizontally and vertically oriented straight lines, and the conduits for carrying low-pressure gas comprise a horizontal system positioned beneath the turbine assembly having a plurality of coaxial connecting tubes, collectors and distributors as well as normal conduits, so that high pressure gas flows in the internal passage and low-pressure gas flows in the outer passage. 22 claims, 7 figures

  14. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  15. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  16. Limites, passages et transformations en jeu dans l’architecture / Limits, passages and transformations involved in Architecture.

    Directory of Open Access Journals (Sweden)

    Younès, Chris

    2006-11-01

    Full Text Available La manière de tracer des limites et d’opérer des passages par transferts, incursions, interférences notamment, rend compte du mode d’expression propre à l’architecture et de sa façon d’agencer le stable et l’instable, le délimité et l’illimité, la mesure et l’incommensurable, la continuité et la discontinuité. L’art de les mettre en œuvre par le projet architectural, urbain et paysager est une des problématiques de recherche du laboratoire interdisciplinaire Gerjau (philosophie architecture urbain qui a conduit différentes études sur ce sujet et en particulier du point de vue des rapports entre nature et culture./The way in which limits are drawn and passageways are operated for transfers, incursions, and specially interferences, show how architecture has it’s own way of expression that deals with the stable and the unstable, the limited and the unlimited, etc.

  17. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  18. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  19. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  20. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.