WorldWideScience

Sample records for internal co2 conductance

  1. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    Science.gov (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  2. Thermal pressure and isochoric thermal conductivity of solid CO2

    International Nuclear Information System (INIS)

    Purs'kij, O.Yi.

    2005-01-01

    The analysis of the correlation between the thermal pressure and the isochoric thermal conductivity of solid CO 2 has been carried out. The temperature dependences of the thermal pressure and isochoric thermal conductivity for samples with various molar volumes have been obtained. The isothermal pressure dependences of the thermal conductivity of solid CO 2 have been calculated. The form of the temperature dependence of the isochoric thermal conductivity taking the thermal pressure into account has been revealed. Behaviour of the isochoric thermal conductivity is explained by phonon-phonon interaction and additional influence of the thermal pressure

  3. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  4. Biofunctionalized conductive polymers enable efficient CO2 electroreduction

    Science.gov (United States)

    Coskun, Halime; Aljabour, Abdalaziz; De Luna, Phil; Farka, Dominik; Greunz, Theresia; Stifter, David; Kus, Mahmut; Zheng, Xueli; Liu, Min; Hassel, Achim W.; Schöfberger, Wolfgang; Sargent, Edward H.; Sariciftci, Niyazi Serdar; Stadler, Philipp

    2017-01-01

    Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine—a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes—could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film–based processing. We achieve catalytic performance with geometric current densities of 18 mA cm−2 at 0.21 V overpotential (−0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm−1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications. PMID:28798958

  5. Estimation of mesophyll conductance to CO2 flux by three different methods

    International Nuclear Information System (INIS)

    Loreto, F.; Harley, P.C.; Di Marco, G.; Sharkey, T.D.

    1992-01-01

    The resistance to diffusion of CO2 from the intercellular airspaces within the leaf through the mesophyll to the sites of carboxylation during photosynthesis was measured using three different techniques, The three techniques include a method based on discrimination against the heavy stable isotope of carbon, 13C, and two modeling methods. The methods rely upon different assumptions, but the estimates of mesophyll conductance were similar with all three methods. The mesophyll conductance of leaves from a number of species was about 1.4 times the stomatal conductance for CO2 diffusion determined in unstressed plants at high light. The relatively low CO2 partial pressure inside chloroplasts of plants with a low mesophyll conductance did not lead to enhanced O2 sensitivity of photosynthesis because the low conductance caused a significant drop in the chloroplast CO2 Partial pressure upon switching to low O2. We found no correlation between mesophyll conductance and the ratio of internal leaf area to leaf surface area and only a weak correlation between mesophyll conductance and the proportion of leaf volume occupied by air. Mesophyll conductance was independent of CO2 and O2 partial pressure during the measurement, indicating that a true physical parameter, independent of biochemical effects, was being measured. No evidence for accumulating mechanisms was found. Some plants, notably Citrus aurantium and Simmondsia chinensis, had very low conductances that limit the rate of photosynthesis these plants can attain at atmospheric CO2 level

  6. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Howard J. Herzog; E. Eric Adams

    2003-04-01

    The main goal of our work during this time period (August 23, 2001-August 23, 2002) was to conduct a field experiment in Norwegian waters. Preparation for the field experiment included building the apparatus, designing and obtaining the measurement systems, planning the logistics (ships, crew, supplies, etc.) and conducting a survey cruise. The survey cruise, conducted in July 2002, is documented in this report. The field experiment, scheduled for August 2002, was postponed when the Norwegian environmental minister revoked our permit under pressure from Greenpeace. Events surrounding the permitting situation are documented in the Appendix.

  7. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, O.; Golombek, R.; Hoel, M.

    1992-01-01

    According to most scientists, greenhouse gas emissions must be reduced significantly relative to current trends to avoid dramatic adverse climatic changes during the next century. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that it is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the 'tradeable quotas' type tends to imply higher producer prices and a larger efficiency loss than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 2 tabs

  8. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, Oe.; Golombek, R.; Hoel, M.

    1991-01-01

    In order to avoid a relatively large risk of dramatic adverse climatic changes during the next century, greenhouse gas emissions must be reduced significantly relative to present emissions. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the ''tradeable quotas'' type tends to imply higher producer prices than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 1 tab

  9. International Collaboration on CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter H. Israelsson; E. Eric Adams

    2007-06-30

    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be

  10. CO2 emissions embodied in international trade: evidence for Spain

    International Nuclear Information System (INIS)

    Sanchez-Choliz, Julio; Duarte, Rosa

    2004-01-01

    The objective of this paper is to analyse the sectoral impacts that Spanish international trade relations have on present levels of atmospheric pollution using an input-output model. We try to evaluate the exports and imports of the Spanish economy in terms of the direct and indirect CO 2 emissions (CO 2 embodied) generated in Spain and abroad. The results show a slightly exporting behaviour in the Spanish economy which, nevertheless, hides important pollution interchanges. Moreover, the sectors transport material, mining and energy, non-metallic industries, chemical and metals are the most relevant CO 2 exporters and other services, construction, transport material and food the biggest CO 2 importers, and those whose final demands also embody more than 70% of the CO 2 emissions

  11. CO2 on the International Space Station: An Operations Update

    Science.gov (United States)

    Law, Jennifer; Alexander, David

    2016-01-01

    PROBLEM STATEMENT: We describe CO2 symptoms that have been reported recently by crewmembers on the International Space Station and our continuing efforts to control CO2 to lower levels than historically accepted. BACKGROUND: Throughout the International Space Station (ISS) program, anecdotal reports have suggested that crewmembers develop CO2-related symptoms at lower CO2 levels than would be expected terrestrially. Since 2010, operational limits have controlled the 24-hour average CO2 to 4.0 mm Hg, or below as driven by crew symptomatology. In recent years, largely due to increasing awareness by crew and ground team, there have been increased reports of crew symptoms. The aim of this presentation is to discuss recent observations and operational impacts to lower CO2 levels on the ISS. CASE PRESENTATION: Crewmembers are routinely asked about CO2 symptoms in their weekly private medical conferences with their crew surgeons. In recent ISS expeditions, crewmembers have noted symptoms attributable to CO2 starting at 2.3 mmHg. Between 2.3 - 2.7 mm Hg, fatigue and full-headedness have been reported. Between 2.7 - 3.0 mm Hg, there have been self-reports of procedure missed steps or procedures going long. Above 3.0 - 3.4 mm Hg, headaches have been reported. A wide range of inter- and intra-individual variability in sensitivity to CO2 have been noted. OPERATIONAL / CLINICAL RELEVANCE: These preliminary data provide semi-quantitative ranges that have been used to inform a new operational limit of 3.0 mmHg as a compromise between systems capabilities and the recognition that there are human health and performance impacts at recent ISS CO2 levels. Current evidence would suggest that an operational limit between 0.5 and 2.0 mm Hg may maintain health and performance. Future work is needed to establish long-term ISS and future vehicle operational limits.

  12. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2

    NARCIS (Netherlands)

    Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.

    2011-01-01

    Plant physiological adaptation to the global rise in atmospheric CO 2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by

  13. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.

    Science.gov (United States)

    Franks, Peter J; Beerling, David J

    2009-06-23

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.

  14. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation

    NARCIS (Netherlands)

    Lammertsma, E.I.; de Boer, H.J.; Dekker, S.C.; Dilcher, D.L.; Lotter, A.F.; Wagner-Cremer, F.

    2011-01-01

    A principle response of C3 plants to increasing concentrations of atmospheric CO2 (CO2) is to reduce transpirational water loss by decreasing stomatal conductance (gs) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate.

  15. Improvement of the ionic conductivity for amorphous polyether electrolytes using supercritical CO2 treatment technology

    International Nuclear Information System (INIS)

    Kwak, Gun-Ho; Tominaga, Yoichi; Asai, Shigeo; Sumita, Masao

    2003-01-01

    The influence of the supercritical carbon dioxide (scCO 2 ) on ionic conductivity for polyether electrolytes based on oligo(oxyethylene glycol) methacrylate with lithium triflate, LiCF 3 SO 3 , has been investigated. In particular, the present research is a first attempt to improve an ion transport behavior of the polyether electrolytes using scCO 2 treatment technique. Consequently, the ionic conductivity of scCO 2 treated samples at room temperature was more than ten times elevated by the scCO 2 treatment under the condition of 10 MPa and 40 deg. C. From the Raman spectroscopy, decrease of aggregate ions and increase of free ions for the scCO 2 treated samples have been observed

  16. CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column

    Science.gov (United States)

    puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.

    2018-03-01

    Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.

  17. Increase of Internal CO2 of Cotton Plants by Methanol Application to Increase Yield

    International Nuclear Information System (INIS)

    Badron Zakaria; Darmawan; Nurlina Kasim; Joseph Saepuddin

    2004-01-01

    A field experiment has been conducted to increase internal CO 2 and Rubisco activity detected by 14 C and to determinate which factors influence this activities. Plant material used was cotton plants which internal CO 2 concentrations and Rubisco activity was observed at 35, 50, 65, 80 days after planting (DAP). Treatments applied were methanol with concentrations of 0%, 10%,20% and 30% at available water (AW) at 25-50% AW, 50-75% AW, 75-100% AW. Results obtained showed that application of methanol at concentration of 20% at 75-100% AW, increase internal CO 2 from 266.60 ppm to 295.10 ppm (11 % increase) and this will also increase Rubisco activity from 3.81 to 14.28 (μmol. CO 2 menit -1 (μmol. Rubisco -1 ). This increase is expected to push photosynthesis rate and result in increase cotton yield. The use of 14 C was satisfactorily detected the amount of carbon. (author)

  18. The urgent need to internalize CO2 emission costs

    International Nuclear Information System (INIS)

    Goodland, R.; El Serafy, S.

    1998-01-01

    Despite growing manifestations of global warming and the commitment of most nations to move towards reducing greenhouse gas (GHG) emissions, a simple device that can be effective in reducing GHG emissions continues to be overlooked or even rejected. This is to acknowledge the fact that carbon emissions inflict global costs that are not borne by emitters. This paper advocates that all activities emitting or saving carbon emissions should internalize the carbon cost inflicted or avoided by new projects involving CO 2 . Considering the current wide range of carbon cost estimates, the paper recommends that a two-stage approach be adopted. Firstly, incorporate carbon costs in project analysis only theoretically in order to differentiate objectively among alternative designs involving carbon emissions of varying degrees. Different estimates of the costs of a ton of carbon would be used in order to test the sensitivity of rates of return to alternative carbon costs. While this process would have the effect of screening the allocation of scarce investment funds among projects that affect global warming in different degrees, it should be viewed as only a first step. Secondly, we advocate a rigorous process of passing through estimated carbon costs to the ultimate users of the services of carbon-emitting projects and processes. It is this ultimate process that will secure the urgently needed transition from the current dependence on fossil fuels to more benign sources of energy that would reduce climate-change risks. Since the time available is limited, the paper points out the urgency of these proposals that are crucial for sustainability

  19. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  20. Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis?

    Science.gov (United States)

    Easlon, Hsien Ming; Carlisle, Eli; McKay, John K; Bloom, Arnold J

    2015-03-01

    The objective of this study was to determine if low stomatal conductance (g) increases growth, nitrate (NO3 (-)) assimilation, and nitrogen (N) utilization at elevated CO2 concentration. Four Arabidopsis (Arabidopsis thaliana) near isogenic lines (NILs) differing in g were grown at ambient and elevated CO2 concentration under low and high NO3 (-) supply as the sole source of N. Although g varied by 32% among NILs at elevated CO2, leaf intercellular CO2 concentration varied by only 4% and genotype had no effect on shoot NO3 (-) concentration in any treatment. Low-g NILs showed the greatest CO2 growth increase under N limitation but had the lowest CO2 growth enhancement under N-sufficient conditions. NILs with the highest and lowest g had similar rates of shoot NO3 (-) assimilation following N deprivation at elevated CO2 concentration. After 5 d of N deprivation, the lowest g NIL had 27% lower maximum carboxylation rate and 23% lower photosynthetic electron transport compared with the highest g NIL. These results suggest that increased growth of low-g NILs under N limitation most likely resulted from more conservative N investment in photosynthetic biochemistry rather than from low g. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Thermal conductivity of Ca3Co2O6 single crystals

    Science.gov (United States)

    Che, H. L.; Shi, J.; Wu, J. C.; Rao, X.; Liu, X. G.; Zhao, X.; Sun, X. F.

    2018-05-01

    Ca3Co2O6 is a rare example of one-dimensional Ising spin-chain material with the moments preferentially aligned along the c axis. In this work, we study the c-axis thermal conductivity (κc) of Ca3Co2O6 single crystal at low temperatures down to 0.3 K and in magnetic fields up to 14 T. The zero-field κc(T) shows a large phonon peak and can be well fitted by using the classical Debye model, which indicates that the heat transport is purely phononic. Moreover, the low-T κc(H) isotherms with H || c display a field-independent behavior. These results indicate that there is no contribution of magnetic excitations to the thermal conductivity in Ca3Co2O6, neither carrying heat nor scattering phonons, which can be attributed to the Ising-like spin anisotropy.

  2. A possible CO2 conducting and concentrating mechanism in plant stomata SLAC1 channel.

    Directory of Open Access Journals (Sweden)

    Qi-Shi Du

    Full Text Available BACKGROUND: The plant SLAC1 is a slow anion channel in the membrane of stomatal guard cells, which controls the turgor pressure in the aperture-defining guard cells, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought, high levels of carbon dioxide, and bacterial invasion. Recent study demonstrated that bicarbonate is a small-molecule activator of SLAC1. Higher CO(2 and HCO(3(- concentration activates S-type anion channel currents in wild-type Arabidopsis guard cells. Based on the SLAC1 structure a theoretical model is derived to illustrate the activation of bicarbonate to SLAC1 channel. Meanwhile a possible CO(2 conducting and concentrating mechanism of the SLAC1 is proposed. METHODOLOGY: The homology structure of Arabidopsis thaliana SLAC1 (AtSLAC1 provides the structural basis for study of the conducting and concentrating mechanism of carbon dioxide in SLAC1 channels. The pK(a values of ionizable amino acid side chains in AtSLAC1 are calculated using software PROPKA3.0, and the concentration of CO(2 and anion HCO(3(- are computed based on the chemical equilibrium theory. CONCLUSIONS: The AtSLAC1 is modeled as a five-region channel with different pH values. The top and bottom layers of channel are the alkaline residue-dominated regions, and in the middle of channel there is the acidic region surrounding acidic residues His332. The CO(2 concentration is enhanced around 10(4 times by the pH difference between these regions, and CO(2 is stored in the hydrophobic region, which is a CO(2 pool. The pH driven CO(2 conduction from outside to inside balances the back electromotive force and maintain the influx of anions (e.g. Cl(- and NO(3(- from inside to outside. SLAC1 may be a pathway providing CO(2 for photosynthesis in the guard cells.

  3. China’s provincial CO2 emissions embodied in international and interprovincial trade

    International Nuclear Information System (INIS)

    Guo Ju’e; Zhang Zengkai; Meng Lei

    2012-01-01

    Trades create a mechanism of embodied CO 2 emissions transfer among regions, causing distortion on the total emissions. As the world’s second largest economy, China has a large scale of trade, which results in the serious problem of embodied CO 2 emissions transfer. This paper analyzes the characteristics of China’s CO 2 emissions embodied in international and interprovincial trade from the provincial perspective. The multi-regional Input–Output Model is used to clarify provincial CO 2 emissions from geographical and sectoral dimensions, including 30 provinces and 28 sectors. Two calculating principles (production accounting principle and consumption accounting principle, ) are applied. The results show that for international trade, the eastern area accounts for a large proportion in China’s embodied CO 2 emissions. The sectors as net exporters and importers of embodied CO 2 emissions belong to labor-intensive and energy-intensive industries, respectively. For interprovincial trade, the net transfer of embodied CO 2 emissions is from the eastern area to the central area, and energy-intensive industries are the main contributors. With the largest amount of direct CO 2 emissions, the eastern area plays an important role in CO 2 emissions reduction. The central and western areas need supportive policies to avoid the transfer of industries with high emissions. - Highlights: ► China’s embodied CO 2 emissions are analyzed from the provincial perspective. ► Eastern provinces have larger CO 2 emissions embodied in international trade. ► Embodied CO 2 emissions are mainly transferred from eastern area to central area. ► Coastal provinces play important roles in CO 2 emissions reduction. ► Inland provinces need supportive policies on emissions reduction.

  4. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilizationpce

    Science.gov (United States)

    Jean-Christophe Domec; Sari Palmroth; Eric Ward; Chris Maier; M. Therezien; Ram Oren

    2009-01-01

    We investigated how leaf hydraulic conductance (Kleaf) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO2 concentrations CO2 a and CO2 e, respectively). We also examined how Kleaf varies with changes in reference leaf water potential (...

  5. International and European legal aspects on underground geological storage of CO2

    International Nuclear Information System (INIS)

    Wall, C.; Olvstam, M.-L.; Bernstone, C.

    2005-01-01

    The often disconnected international and European legal rules regarding carbon dioxide (CO 2 ) storage in geological formations create legal uncertainty and a slow down in investments. Existing rules for waste dumping, such as the OSPAR and London Conventions implies that CO 2 storage in sub seabed geological formations is not permitted for climate change mitigating purposes. This paper emphasized that even in cases when complete certainty about the exact application of a legal rule is not possible, it is necessary to know if an activity is lawful. It also emphasized that CO 2 storage should be a priority in the international agenda. The current gaps in knowledge concerning the relevant international and European legislation directly related to CO 2 storage were identified in this paper, including long-term liability for risk of damages caused during the injection phase of the well. The current relevant legislation that is not directly concerned with CO 2 storage but which might have an impact on future legislation was also discussed along with relevant legal principles that might influence future legislation. Some of the many ongoing projects concerning CO 2 storage were reviewed along with papers and reports on regulating CO 2 storage. It was concluded that if CO 2 capture and storage is going to be a large-scale concept for mitigating climate change, the legal issues and requirements need to be an area of priority. 16 refs

  6. Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid

    Czech Academy of Sciences Publication Activity Database

    Vrábl, D.; Vašková, M.; Hronková, Marie; Flexas, J.; Šantrůček, Jiří

    2009-01-01

    Roč. 60, č. 8 (2009), s. 2315-2323 ISSN 0022-0957 R&D Projects: GA AV ČR(CZ) IAA601410505 Institutional research plan: CEZ:AV0Z50510513 Keywords : Carbon dioxide * mesophyll conductance * Helianthus annuus Subject RIV: ED - Physiology Impact factor: 4.271, year: 2009

  7. Controls of evapotranspiration and CO2 fluxes from scots pine by surface conductance and abiotic factors.

    Directory of Open Access Journals (Sweden)

    Tianshan Zha

    Full Text Available Evapotranspiration (E and CO2 flux (Fc in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc , surface conductance (gc , and decoupling coefficient (Ω, showing similar trends to those in radiation (PAR and vapour pressure deficit (δ. The maximum mean daily values (24-h average for E, Fc , gc , and Ω were 1.78 mmol m(-2 s(-1, -11.18 µmol m(-2 s(-1, 6.27 mm s(-1, and 0.31, respectively, with seasonal averages of 0.71 mmol m(-2 s(-1, -4.61 µmol m(-2 s(-1, 3.3 mm s(-1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc . Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc , while vapour pressure deficit was the most important environmental factor affecting gc . Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O(-1 and a seasonal average of 7.06 μmol CO2 (μmol H2O(-1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.

  8. Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger

    International Nuclear Information System (INIS)

    Zhang, F.Z.; Jiang, P.X.; Lin, Y.S.; Zhang, Y.W.

    2011-01-01

    An internal heat exchanger (IHX) is often used to improve the coefficient of performance (COP) of CO 2 inverse cycles. This paper presents a detailed analysis of the IHX's effect in CO 2 inverse cycles and finds suitable operating conditions for the IHX from a thermodynamic performance point of view. The results indicate that the COP is slightly reduced by an IHX in a CO 2 subcritical inverse cycle, so an IHX is not justified. However, for transcritical CO 2 inverse cycles, the compressor discharge pressures and CO 2 gas cooler outlet temperatures both have significant impacts on system performance. The analysis results for transcritical CO 2 inverse cycles show that a transition discharge pressure and a transition CO 2 gas cooler outlet temperature are objective existence above which the IHX improves the cycle performance. - Research highlights: → Find suitable operating conditions for the IHX. → Above transition CO2 gas cooler outlet temperature IHX improves cycle performance. → The IHX is not very useful for optimized space heating and refrigerating cycles.

  9. Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux

    Directory of Open Access Journals (Sweden)

    J. Q. Chambers

    2012-12-01

    Full Text Available Respiration in tree stems is an important component of forest carbon balance. The rate of CO2 efflux from the stem has often been assumed to be a measure of stem respiration. However, recent work in temperate forests has demonstrated that stem CO2 efflux can either overestimate or underestimate respiration rate because of emission or removal of CO2 by transport in xylem water. Here, we studied gas exchange from stems of tropical forest trees using a new approach to better understand respiration in an ecosystem that plays a key role in the global carbon cycle. Our main questions were (1 is internal CO2 transport important in tropical trees, and, if so, (2 does this transport result in net release of CO2 respired in the roots at the stem, or does it cause the opposite effect of net removal of stem-respired CO2? To answer these questions, we measured the ratio of stem CO2 efflux to O2 influx. This ratio, defined here as apparent respiratory quotient (ARQ, is expected to equal 1.0 if carbohydrates are the substrate for respiration, and the net transport of CO2 in the xylem water is negligible. Using a stem chamber approach to quantifying ARQ, we found values of 0.66 ± 0.18. These low ARQ values indicate that a large portion of respired CO2 (~ 35% is not emitted locally, and is probably transported upward in the stem. ARQ values of 0.21 ± 0.10 were found for the steady-state gas concentration within the stem, sampled by in-stem equilibration probes. These lower values may result from the proximity to the xylem water stream. In contrast, we found ARQ values of 1.00 ± 0.13 for soil respiration. Our results indicate the existence of a considerable internal flux of CO2 in the stems of tropical trees. If the transported CO2 is used in the canopy as a substrate for photosynthesis, it could account for up to 10% of the C fixed by the tree, and perhaps serve as a mechanism that buffers the response of the tree to changing CO2 levels. Our results also

  10. Modelling Energy Systems and International Trade in CO2 Emission Quotas - The Kyoto Protocol and Beyond

    International Nuclear Information System (INIS)

    Persson, Tobias A.

    2002-01-01

    A transformation of the energy system in the 21st century is required if the CO 2 concentration in the atmosphere should be stabilized at a level that would prevent dangerous anthropogenic interference with the climate system. The industrialized countries have emitted most of the anthropogenic CO 2 released to the atmosphere since the beginning of the industrial era and still account for roughly two thirds of global fossil fuel related CO 2 emissions. Industrial country CO 2 emissions on a per capita basis are roughly five to ten times higher than those of developing countries. However, a global atmospheric CO 2 concentration target of 450 ppm, if adopted would require that global average per capita CO 2 emissions by the end of this century have to be comparable to those of developing countries today. The industrialized countries would have to reduce their emissions substantially and the emissions in developing countries could not follow a business-as-usual scenario. The transformation of the energy system and abatement of CO 2 emissions would need to occur in industrialized and developing countries. Energy-economy models have been developed to analyze of international trading in CO 2 emission permits. The thesis consists of three papers. The cost of meeting the Kyoto Protocol is estimated in the first paper. The Kyoto Protocol, which defines quantitative greenhouse gas emission commitments for industrialized countries over the period 2008-2012, is the first international agreement setting quantitative goals for abatement of CO 2 emissions from energy systems. The Protocol allows the creation of systems for trade in emission permits whereby countries exceeding their target levels can remain in compliance by purchasing surplus permits from other developed countries. However, a huge carbon surplus, which has been christened hot air, has been created in Russia and Ukraine since 1990 primarily because of the contraction of their economies. The current Unites States

  11. Trends in CO2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications

    Directory of Open Access Journals (Sweden)

    Hualong Yang

    2017-07-01

    Full Text Available The demand for marine transportation and its associated CO2 emissions are growing rapidly as a result of increasing international trade and economic growth. An activity-based approach is developed for forecasting CO2 emissions from the China-oriented international seaborne trade sector. To accurately estimate the aggregated emissions, CO2 emissions are calculated individually for five categories of vessels: crude oil tanker, product tanker, chemical tanker, bulk carrier, and container. A business-as-usual (BAU scenario was developed to describe the current situation without additional mitigation policies, whilst three alternative scenarios were developed to describe scenarios with various accelerated improvements of the key factors. The aggregated CO2 emissions are predicted to reach 419.97 Mt under the BAU scenario, and 258.47 Mt under the optimal case, AD3. These predictions are 4.5 times and 2.8 times that of the aggregated emissions in 2007. Our analysis suggests that regulations for monitoring, reporting, and verifying the activities of vessels should be proposed, in order to quantify the CO2 emissions of marine transportation activities in Chinese territorial waters. In the long-term future, mitigation policies should be employed to reduce CO2 emissions from the marine trade sector and to address the climatic impact of shipping.

  12. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    Science.gov (United States)

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.

  13. Mesophyll conductance in Zea mays responds transiently to CO2 availability: implications for transpiration efficiency in C4 crops.

    Science.gov (United States)

    Kolbe, Allison R; Cousins, Asaph B

    2018-03-01

    Mesophyll conductance (g m ) describes the movement of CO 2 from the intercellular air spaces below the stomata to the site of initial carboxylation in the mesophyll. In contrast with C 3 -g m , little is currently known about the intraspecific variation in C 4 -g m or its responsiveness to environmental stimuli. To address these questions, g m was measured on five maize (Zea mays) lines in response to CO 2 , employing three different estimates of g m . Each of the methods indicated a significant response of g m to CO 2 . Estimates of g m were similar between methods at ambient and higher CO 2 , but diverged significantly at low partial pressures of CO 2 . These differences are probably driven by incomplete chemical and isotopic equilibrium between CO 2 and bicarbonate under these conditions. Carbonic anhydrase and phosphoenolpyruvate carboxylase in vitro activity varied significantly despite similar values of g m and leaf anatomical traits. These results provide strong support for a CO 2 response of g m in Z. mays, and indicate that g m in maize is probably driven by anatomical constraints rather than by biochemical limitations. The CO 2 response of g m indicates a potential role for facilitated diffusion in C 4 -g m . These results also suggest that water-use efficiency could be enhanced in C 4 species by targeting g m . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO(2).

    Science.gov (United States)

    Drake, B; Raschke, K

    1974-06-01

    Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO(2) exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO(2) concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO(2) concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO(2) concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO(2) concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO(2); they responded to changes in CO(2) concentration in the range from 100 to 1000 microliters per liter.

  15. Analysis of the international distribution of per capita CO2 emissions using the polarization concept

    International Nuclear Information System (INIS)

    Duro, Juan Antonio; Padilla, Emilio

    2008-01-01

    The concept of polarization is linked to the extent that a given distribution leads to the formation of homogeneous groups with opposing interests. This concept, which is basically different from the traditional one of inequality, is related to the level of inherent potential conflict in a distribution. The polarization approach has been widely applied in the analysis of income distribution. The extension of this approach to the analysis of international distribution of CO 2 emissions is quite useful as it gives a potent informative instrument for characterizing the state and evolution of the international distribution of emissions and its possible political consequences in terms of tensions and the probability of achieving agreements. In this paper we analyze the international distribution of per capita CO 2 emissions between 1971 and 2001 through the adaptation of the polarization concept and measures. We find that the most interesting grouped description deriving from the analysis is a two groups' one, which broadly coincide with Annex B and non-Annex B countries of the Kyoto Protocol, which shows the power of polarization analysis for explaining the generation of groups in the real world. The analysis also shows a significant reduction in international polarization in per capita CO 2 emissions between 1971 and 1995, but not much change since 1995, which might indicate that polarized distribution of emission is still one of the important factors leading to difficulties in achieving agreements for reducing global emissions. (author)

  16. International inequalities in per capita CO2 emissions: a decomposition methodology by Kaya factors

    International Nuclear Information System (INIS)

    Duro, J.A.; Universitat de Barcelona; Padilla, E.

    2006-01-01

    In this paper, we provide a methodology for decomposing international inequalities in per capita CO 2 emissions into Kaya (multiplicative) factors and two interaction terms. We use the Theil index of inequality and show that this decomposition methodology can be extended for analyzing between- and within-group inequality components. We can thus analyze the factors behind inequalities in per capita CO 2 emissions across countries, between groups of countries and within groups of countries. The empirical illustration for international data suggests some points. Firstly, international inequality in per capita CO 2 emissions is mainly attributable to inequalities in per capita income levels, which helps to explain its recent reduction, while differences in carbon intensity of energy and energy intensity have made a less significant contribution. This result is strongly influenced by the performance of China and India. Secondly, the between-group inequality component, which is the biggest component, is also largely explained by the income factor. Thirdly, the within-group inequality component increased slightly during the period, something mainly due to the change in the income factor and the interaction terms in a few regions. (author)

  17. CO2 embodied in international trade with implications for global climate policy.

    Science.gov (United States)

    Peters, Glen P; Hertwich, Edgar G

    2008-03-01

    The flow of pollution through international trade flows has the ability to undermine environmental policies, particularly for global pollutants. In this article we determine the CO2 emissions embodied in international trade among 87 countries for the year 2001. We find that globally there are over 5.3 Gt of CO2 embodied in trade and that Annex B countries are net importers of CO2 emissions. Depending on country characteristics--such as size variables and geographic location--there are considerable variations in the embodied emissions. We argue that emissions embodied in trade may have a significant impact on participation in and effectiveness of global climate policies such as the Kyoto Protocol. We discuss several policy options to reduce the impact of trade in global climate policy. If countries take binding commitments as a part of a coalition, instead of as individual countries, then the impacts of trade can be substantially reduced. Adjusting emission inventories for trade gives a more consistent description of a country's environmental pressures and circumvents many trade related issues. It also gives opportunities to exploit trade as a means of mitigating emissions. Not least, a better understanding of the role that trade plays in a country's economic and environmental development will help design more effective and participatory climate policy post-Kyoto.

  18. Effects of CO2 Concentration on Leaf Photosynthesis and Stomatal Conductance of Potatoes Grown Under Different Irradiance Levels and Photoperiods

    Science.gov (United States)

    Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.

    2012-01-01

    Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased

  19. The international race for CO2 capture and storage. And the winner is ...?

    International Nuclear Information System (INIS)

    De Coninck, H.C.

    2008-06-01

    Ever since CO2 capture and storage (CCS) has gained prominence among greenhouse gas reduction alternatives, researchers, policymakers, and industry have speculated about who would become the technology leader in this field. Will it be a technology that follows in the footsteps of solar and wind energy and sees European companies as market leaders benefiting from an early mover advantage, strengthened by a favorable internal market? Will the enormous investments of the U.S. government in R and D combined with its greater entrepreneurial power and better investment climate pay off? Or will other countries - like Australia which is very active in this area, or maybe China - become the world's market leader in CO2 capture installations, a highly capital-intensive technology? Given exploding world energy demand, climate-friendly technologies will be indispensable for stabilizing greenhouse gas concentrations. Thus, countries being able to develop and maintain themselves as technology leaders are likely to benefit from the deep reductions in CO2 emissions that we will need to achieve in the near future

  20. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  1. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  2. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    Science.gov (United States)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  3. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  5. Light-Triggered CO2 Breathing Foam via Nonsurfactant High Internal Phase Emulsion.

    Science.gov (United States)

    Zhang, Shiming; Wang, Dingguan; Pan, Qianhao; Gui, Qinyuan; Liao, Shenglong; Wang, Yapei

    2017-10-04

    Solid materials for CO 2 capture and storage have attracted enormous attention for gaseous separation, environmental protection, and climate governance. However, their preparation and recovery meet the problems of high energy and financial cost. Herein, a controllable CO 2 capture and storage process is accomplished in an emulsion-templated polymer foam, in which CO 2 is breathed-in under dark and breathed-out under light illumination. Such a process is likely to become a relay of natural CO 2 capture by plants that on the contrary breathe out CO 2 at night. Recyclable CO 2 capture at room temperature and release under light irradiation guarantee its convenient and cost-effective regeneration in industry. Furthermore, CO 2 mixed with CH 4 is successfully separated through this reversible breathing in and out system, which offers great promise for CO 2 enrichment and practical methane purification.

  6. Fiscal 1996 survey of potential international cooperation for a long-term scenario on CO2 reduction; 1996 nendo CO2 sakugen ni kakawaru choki shinario ni kansuru kokusai kyoryoku kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the purpose of working out a CO2 reduction scenario and a CO2 policy introduction scenario, a survey was conducted of comparisons between ten and several models which are world-known and models of the New Earth 21, potential international cooperation to be carried out in the future, etc. The survey included organizations which are developing CO2 policy evaluation models, survey reports made in the past, details of literature for the analysis and arrangement. From the result, details of the questionnaire survey and organizations to be surveyed were decided on for the questionnaire survey. Objects for the survey were 7 countries and 22 organizations, and survey items were places for information exchange, sending/receiving of researchers, exchange of input data, comparative calculation based on the common database, joint research work, economy, the carbon tax, impact, renewable energy, how to handle and think of the carbon isolation, etc. As a result of the survey, proposed were a workshop on CO2 reduction, a comparative study of simulation models, etc. 25 refs., 50 figs., 12 tabs.

  7. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    Science.gov (United States)

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Magnetic and conductivity study on Mn0.5Ru0.5Co2O4 spinel

    International Nuclear Information System (INIS)

    Bhowmik, R.N.; Ranganathan, R.

    2003-01-01

    The magnetic measurements suggest that Mn 0.5 Ru 0.5 Co 2 O 4 is a ferrimagnet with T c ≅ 140 K followed by irreversibility between zero field cooled and field cooled magnetization and peak in zero field cooled maximum at T m ≅ 100 K on decreasing the temperature. The scaling analysis of the conductivity (G) as a function of frequency (f) with functional form G p (f)/G o ∼ (f/f c ) n suggests two activated regimes at above and below of 210 K, respectively. The G o vs T shows semi-conducting behaviour of the sample. (author)

  9. Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability

    Science.gov (United States)

    Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik

    2017-08-01

    Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.

  10. Ion Internal Excitation and Co++ 2 Reactivity: Effect On The Titan, Mars and Venus Ionospheric Chemistry

    Science.gov (United States)

    Nicolas, C.; Zabka, J.; Thissen, R.; Dutuit, O.; Alcaraz, C.

    In planetary ionospheres, primary molecular and atomic photoions can be produced with substantial electronic and vibrational internal energy. In some cases, this is known to strongly affect both the rate constants and the branching ratio between the reac- tion products. A previous experimental study (Nicolas et al.) made at the Orsay syn- chrotron radiation facility has shown that many endothermic charge transfer reactions which were not considered in the ionospheric chemistry models of Mars, Venus and Earth have to be included because they are driven by electronic excitation of the parent ions. New measurements on two important reactions for Titan and Mars ionospheres, N+ + CH4 and O+ + CO2, will be presented. Branching ratios between products are very different when the parent atomic ions are prepared in their ground states, N+(3P) and O+(4S), or in their first electronic metastable states N+(1D) and O+(2D or P). 2 As the lifetime of these states are long enough, they survive during the mean time be- tween two collisions in the ionospheric conditions. So, the reactions of these excited states must be included in the ionospheric models. Absolute cross section measurements of the reactivity of stable doubly charged molec- ular ions CO++ and their implications for the Martian ionosphere will also be pre- 2 sented. The molecular dication CO++ production by VUV photoionisation and elec- 2 tron impact in the upper ionosphere of Mars is far from being negligible. However, to determine its concentration, it was necessary to evaluate the major loss channels of these ions. For this purpose, we measured the absolute reaction cross section of the sta- ble dications with CO2, the major neutral species of the Mars ionosphere. CO++ ions 2 were produced either by photoionisation or by electron impact, and a reaction cross section of 45 Å2 with 13CO2 was measured. The reaction leads to charge transfer or to collision induced dissociation. These results were integrated in a model

  11. Incentive-based regulation of CO2 emissions from international aviation

    International Nuclear Information System (INIS)

    Carlsson, F.; Hammar, H.

    2002-01-01

    We explore the possibilities of using incentive-based environmental regulations of CO 2 emissions from international civil aviation. In theory incentive-based instruments such as an emission charge or a tradable emission permit system are better regulations than so-called command-and-control regulations such as emission limits or technology standards. However, the implementation of these instruments is a complex issue. We therefore describe and discuss how an emission charge and a tradable emission permit system for international aviation should be designed in order to improve efficiency. We also compare these two types of regulations. In brief, we find that an emission charge and a tradable emission permit system in which the permits are auctioned have more or less the same characteristics. The main advantage of a tradable emission permit system is that the effect, in terms of emission reductions, is known. On the other hand, we show that under uncertainty an emission charge is preferred. The choice of regulation is a political decision and it does not seem likely that an environmental charge or a tradable emission permit system would be implemented without consideration of the costs of the regulation. Revenue-neutral charges or gratis distribution of permits would, for this reason, be realistic choices of regulations. However, such actions are likely to result in less stringent regulations and other negative welfare effects.(author)

  12. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    International Nuclear Information System (INIS)

    Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro

    2011-01-01

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni 30 and Ni 200 ). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO 2 ] than in control leaves. However chloroplastic [CO 2 ] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni 0 (control plants); 2 - Ni 200 ; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: → We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. → Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. → Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  13. Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. : I. A comparison of contrasting natural environments.

    Science.gov (United States)

    Benecke, U; Schulze, E -D; Matyssek, R; Havranek, W M

    1981-08-01

    CO 2 -assimilation and leaf conductance of Larix decidua Mill. were measured in the field at high (Patscherkofel, Austria) and low (Bayreuth, Germany) elevation in Europe, and outside its natural range along an altitudinal gradient in New Zealand.Phenology of leaf and stem growth showed New Zealand sites to have much longer growing seasons than in Europe, so that the timberline (1,330 m) season was almost twice as long as at the Austrian timberline (1,950 m).The maximum rates of photosynthesis, A max , were similar at all sites after completion of leaf growth, namely 3 to 3.5 μmol m -2 s -1 . Only the sun needles of the Bayreuth tree reached 3.5 to 5 μmol m -2 s -1 . Light response curves for CO 2 -assimilation changed during leaf ontogeny, the slope being less in young than in adult leaves. The temperature optimum for 90% of maximum photosynthesis was at all sites similar between ca. 12-28°C for much of the summer. Only at the cooler high altitude timberline sites were optima lower at ca. 10-16°C in developing needles during early summer.A linear correlation existed between A max and leaf conductance at A max , and this showed no difference between the sites except for sun needles at Bayreuth.Leaf conductance responded strongly to light intensity and this was concurrent with the light response of CO 2 -uptake. A short-term and a long-term effect were differentiated. With increasing age maximum rates of CO 2 -uptake and leaf conductance at A max increased, whereas short-term response during changes in light declined. The stomata became less responsive with increasing age and tended to remain open. The stomatal responses to light have a significant effect on the water use efficiency during diurnal courses. A higher water use efficiency was found for similar atmospheric conditions in spring than in autumn.Stomata responded with progressive closure to declining air humidity in a similar manner under dissimilar climates. Humidity response thus showed insensitivity

  14. Attribution of CO2 emissions from Brazilian deforestation to domestic and international drivers

    Science.gov (United States)

    Karstensen, J.; Peters, G.

    2011-12-01

    Efforts to address extensive deforestation to reduce climate change and save primary forests are taking place on a global scale. Whilst several studies have estimated the emissions occurring from deforestation in large rainforests, few studies have investigated the domestic and international drivers sustaining and increasing the deforestation rates. Brazil, having the largest rainforest in the world and one of the highest deforestation rates, is also currently one of the world's largest exporters of soybeans and beef. In this case study we establish the link between Brazilian deforestation and cattle and soybean production, and further attribute emissions to countries and economic sectors through export and import of Brazilian commodities. The emissions from deforestation can therefore be allocated to the countries and sectors consuming goods and services produced on deforested land in Brazil. A land-use change model and deforestation data is coupled with a carbon cycle model to create yearly emission estimates and different emission allocation schemes, depending on emission amortizations and discounting functions for past deforestation. We use an economic multi-regional input-output model (with 112 regions and 57 sectors) to distribute these emissions along agricultural trade routes, through domestic and international consumption in 2004. With our implementation we find that around 80 % of emissions from deforested land is due to cattle grazing, while agricultural transition effects suggests soy beans are responsible for about 20 % of the emissions occurring in 2004. Nearly tree quarters of the soy beans are consumed outside Brazil, of which China, Germany and France are the biggest consumers. Soy beans are consumed by a variety of sectors in the food industry. Brazil exports about 30 % of the cattle it produces, where Russia, USA and Germany are among the largest consumers. Cattle consumption mainly occurs in the meat sectors. In this study we estimate the CO2

  15. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    International Nuclear Information System (INIS)

    Moroney, J.V.; Togasaki, R.K.; Husic, H.D.; Tolbert, N.E.

    1987-01-01

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO 2 . Both air-grown cells, that have a CO 2 concentrating system, and 5% CO 2 -grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO 2 -grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO 2 fixation by high CO 2 -grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO 2 -grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  16. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified "Ball-Berry" Model.

    Science.gov (United States)

    Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai

    2018-01-01

    Stomatal conductance ( g s ) and water use efficiency ( WUE ) of tomato leaves exposed to different irrigation regimes and at ambient CO 2 ( a [CO 2 ], 400 ppm) and elevated CO 2 ( e [CO 2 ], 800 ppm) environments were simulated using the "Ball-Berry" model (BB-model). Data obtained from a preliminary experiment (Exp. I) was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate ( P n ) was used as an input for the model. Considering the effect of soil water deficits on g s , an equation modifying the slope ( m ) based on the mean soil water potential (Ψ s ) in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both g s and WUE of tomato leaves at each [CO 2 ] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II) where plants were subjected to three irrigation regimes: full irrigation (FI), deficit irrigation (DI), and alternative partial root-zone irrigation (PRI) for 40 days at both a [CO 2 ] and e [CO 2 ] environment. The simulation results indicated that g s was independently acclimated to e [CO 2 ] from P n . The modified BB-model performed better in estimating g s and WUE , especially for PRI strategy at both [CO 2 ] environments. A greater WUE could be seen in plants grown under e [CO 2 ] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting g s and WUE of tomato leaves in various irrigation regimes at both a [CO 2 ] and e [CO 2 ] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO 2 enriched environment.

  17. Austria's CO2 responsibility and the carbon content of its international trade

    International Nuclear Information System (INIS)

    Munoz, Pablo; Steininger, Karl W.

    2010-01-01

    Seeking to limit global warming to 2 C puts narrow restrictions on the remaining carbon budget. While the prevalent accounting framework for carbon emissions is production based (Production-Based Principle, PBP), we here quantify the CO 2 emissions on the basis of the Consumption-Based Principle (CBP) for Austria. At a methodological level, a Multi-Regional Input-Output model with full linkages is used to account for Austria's CO 2 responsibility on a global scale. Estimates are carried out for the years 1997 and 2004. Results show that during 1997 CO 2 responsibility based on CBP were 36% larger than those based on PBP. This relation has increased through time. The CBP indicator of 2004 was 44% larger than the PBP. In terms of carbon emission location, for each Euro spent on Austrian final demand in 2004, it is estimated that two-thirds of the CO 2 emissions occur outside Austrian borders. Regarding the origin of the emissions embodied in imports, it is estimated that about one-fourth originated in non-Annex I countries in 1997. This proportion increased to one-third by 2004. Due to this divergence between CBP and PBP indicators, there is a need to re-think current accounting bases in order to properly assign CO 2 responsibilities. (author)

  18. International comparison of CO2 emission trends in the iron and steel industry

    International Nuclear Information System (INIS)

    Yeonbae, Kim; Worrell, E.

    2002-01-01

    In this paper, we present an in-depth decomposition analysis of trends in CO 2 emissions in the iron and steel industry using physical indicators. Physical indicators allow a detailed analysis of intra- sectoral trends, in contrast to the mostly used monetary indicators. Detailed decomposition analysis makes it possible to link developments in energy intensity to technology change and (indirectly) to policy. We present an analysis for the iron and steel industry in seven countries, i.e. Brazil, China, India (developing countries), Mexico and South Korea (newly industrialized countries) and the United States (industrialized country). We found substantial differences in energy efficiency among these countries. In most countries the increased (or decreased) production was the main contributor to changes in CO 2 emissions, while energy-efficiency was the main factor reducing emission intensities of steel production in almost all countries. Changes in power generation contributed to a reduction of specific emissions in the case of South Korea only. (Author)

  19. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Domec, J.C.; North Carolina State Univ., Raleigh, NC; Schafer, K.; Oren, R.; Kim, H.S.; McCarthy, H.R.

    2010-01-01

    Tree growth and wood quality are being affected by changes in atmospheric carbon dioxide (CO 2 ) concentrations and precipitation regimes. Plant photosynthesis is likely to be higher under elevated atmospheric CO 2 concentrations, thereby increasing the availability of carbohydrates for growth. This study quantified the effect of elevated CO 2 concentration on anatomical and functional traits related to water transport, gas exchange, water economy and drought tolerance. The conditions under which embolism in the xylem of roots and branches are most likely to occur were investigated on 4 tree species at the Duke Forest free-air CO 2 enrichment (FACE) facility. The trees occupied different canopy strata and represented different xylem types. The study determined whether different xylem anatomies result in a wide range of hydraulic conductance and difference in resistance to cavitation. The link between liquid and gas-phase transport and how it is affected by elevated CO 2 was then quantified. Physiological changes observed under elevated CO 2 were not clearly related to structural change in the xylem of any of the species. The study showed that in some species, elevated CO 2 changed the hydraulic pathways, most likely structurally, thereby affecting the liquid phase transport and reducing stomatal conductance. The results provided a better understanding of the physiological and anatomical mechanisms that determine the responses of tree species to drought, and more generally to global change. 96 refs., 3 tabs., 8 figs.

  20. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    Science.gov (United States)

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  1. International marine and aviation bunker fuel. Trends, ranking of countries and comparison with national CO2 emission

    International Nuclear Information System (INIS)

    Olivier, J.G.J.; Peters, J.A.H.W.

    1999-01-01

    This report summarises and characterises fuel consumption and associated CO2 emissions from international transport based on energy statistics compiled by the International Energy Agency (IEA). Shares in 1990 and 1970-1995 trends in national and global bunker fuel consumption and associated CO2 emissions are analysed for marine and air transport. Also, the global total of international transport emissions are compared with national emissions and domestic transport emissions. During the last 25 years the average global annual increase was for marine bunkers about 0.8% and for aviation emissions about 3.3%. Annual variations per country of marine bunker fuel use larger than of aviation fuel use, sometimes more than 50%. However, the distinction between fuel use for domestic and for international aviation is more difficult to monitor. The dominant fuel in marine bunker fuel consumption is residual fuel oil ('heavy fuel oil'). The share of diesel oil has slowly increased from 11% in 1970 to 20% in 1990. Aviation fuels sold are predominantly jet fuel ('jet kerosene'). The small share of aviation gasoline is slowly decreasing: from about 4% in 1970 to 1.3% in 1990. Carbon dioxide emissions from combustion of international marine bunker fuels and aviation contributed in 1990 globally about 1.8% and 2.4% expressed as percentage of global total anthropogenic emissions (excluding deforestation). However, aviation emissions include an unknown part of domestic aviation. When comparing with total transport emissions, then international transport has a share of 20%. For both marine and aviation bunker fuel, the Top-10 of largest consuming countries account for about 2/3 of the global total; the Top-25 countries cover already 85% or more of global total CO2 emissions

  2. Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency

    International Nuclear Information System (INIS)

    Belov, Igor; Paulussen, Sabine; Bogaerts, Annemie

    2016-01-01

    This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO 2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO 2 , but also O 2 ), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metal-dielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO 2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO 2 conversion, more specifically, the CO 2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO 2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and

  3. Meteorological and small scale internal ecosystem variability characterize the uncertainty of ecosystem level responses to elevated CO2. Insights from the Duke Forest FACE experiment

    Science.gov (United States)

    Paschalis, A.; Katul, G. G.; Fatichi, S.; Palmroth, S.; Way, D.

    2017-12-01

    One of the open questions in climate change research is the pathway by which elevated atmospheric CO2 concentration impacts the biogeochemical and hydrological cycles at the ecosystem scale. This impact leads to significant changes in long-term carbon stocks and the potential of ecosystems to sequester CO2, partially mitigating anthropogenic emissions. While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at the ecosystem level and at long-time scales remains a subject of debate. This debate has taken on some urgency as illustrated by differences arising between ecosystem modelling studies, and data-model comparisons using Free Air CO2 Enrichment (FACE) sites around the world. Inherent leaf-to-leaf variability in gas exchange rates can generate such inconsistencies. This inherent variability arises from the combined effect of meteorological "temporal" variability and the "spatial" variability of the biochemical parameters regulating vegetation carbon uptake. This combined variability leads to a non-straightforward scaling of ecosystem fluxes from the leaf to ecosystems. To illustrate this scaling behaviour, we used 10 years of leaf gas exchange measurements collected at the Duke Forest FACE experiment. The internal variability of the ecosystem parameters are first quantified and then combined with three different leaf-scale stomatal conductance models and an ecosystem model. The main results are: (a) Variability of the leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters; (b) Meteorological variability plays the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (c) Leaf level results do not necessarily translate to similar ecosystem

  4. Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis

    International Nuclear Information System (INIS)

    Rhee, Hae-Chun; Chung, Hyun-Sik

    2006-01-01

    This paper is intended to analyze CO 2 transmission between Japan and South Korea through international trade based on 1990 and 1995 international input-output data. It applied a residual-free structural decomposition method proposed by Chung and Rhee [Chung, H.S., Rhee, H.C., 2001. A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries. Energy 26 (1), 15-30] to emission-related international input-output analysis for the first time in the decomposition studies. This paper is a case study regarding the manner and the extent to which CO 2 emissions are influenced by international trade between Japan (an Annex I country) and South Korea (a non-Annex I country), which is of particular interest for the carbon leakage issue. In this paper, we attempted to show which factors contributed to the changes in emission of the major greenhouse gas in South Korea and Japan. The changes in emission are analyzed in terms of emission intensity, input techniques, demand composition, and trade structures. According to our analysis, South Korea, a non-Annex I country, has more energy-intensive production structures than Japan, an Annex I country. South Korea's trade pattern with Japan reflects these production features, resulting in the Korea's comparative advantage in emission intensive products, though the degree has somewhat mitigated in 1995 compared to 1990. (author)

  5. International comparison of fossil power efficiency and CO2 intensity. Update 2011

    Energy Technology Data Exchange (ETDEWEB)

    Klaassen, E.

    2011-08-15

    This study is an update of the 2010 study and aims to compare fossil-fired power generation efficiency and CO2-intensity (coal, oil and gas) for Australia, China (including Hong Kong), France, Germany, India, Japan, Nordic countries (Denmark, Finland, Sweden and Norway aggregated), South Korea, United Kingdom and Ireland, and United States. This selection of countries and regions is based on discussions with the client. United Kingdom and Ireland, and the Nordic countries are aggregated, because of the interconnection between their electricity grids. Although all electricity grids in Europe are interconnected, there are a number of markets that operate fairly independent. These are the Nordic market (Denmark, Finland, Sweden and Norway), the Iberian market (Spain and Portugal), Central (Eastern European countries) and United Kingdom and Ireland. Only public power plants are taken into account, including public CHP plants. For the latter a correction for heat extraction has been applied. This chapter gives an overview of the fuel mix for power generation for the included countries and of the amount of fossil-fired power generation. The methodology for this study is described in Chapter 2. Chapter 3 gives an overview of the efficiency of fossil-fired power generation by fuel source. Chapter 4 gives the conclusions.

  6. Panorama 2010: CO2 markets and the current status of international climate negotiations

    International Nuclear Information System (INIS)

    Alberola, E.

    2010-01-01

    The emission of greenhouse gases (GHGs) to the atmosphere is causing climatic disturbances of increasing severity, representing risks for the entire planet. Existing GHG emissions reduction policies mainly focus on setting up cap and trade systems (carbon markets) geared to achieving such reductions. The Kyoto Protocol, an international treaty established under the auspices of the United Nations, sets forth the guiding principles, objectives and legally binding targets imposed on the parties concerned until 2012. The purpose of the international negotiations underway is to set up a new regulatory framework for the post-2012 period. (author)

  7. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    Science.gov (United States)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  8. Actions conducted in Switzerland for energy conservation and CO2 emission reduction, particularly in the transport sector

    International Nuclear Information System (INIS)

    Cattin, J.

    1991-01-01

    The aim of Switzerland is to stabilize the CO 2 emissions by year 2000 and to reduce them from 20 pc by 2005 and from 50 pc by 2025. In order to attain these objectives, several measures should be taken: in the residential sector, the heating appliances (space heating and hot water production) should be efficiency-enhanced and an individual counting system should be used; energy audits should be enforced in industry; in the transportation sector, railway transportation should be enhanced and a pollution tax on automobile fuel should be applied

  9. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.

    Science.gov (United States)

    Ward, Eric J; Oren, Ram; Bell, David M; Clark, James S; McCarthy, Heather R; Kim, Hyun-Seok; Domec, Jean-Christophe

    2013-02-01

    In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration (E(L)) and stomatal conductance (G(S)) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO(2) levels (eCO(2)) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO(2) intermittently (49% of monthly values) decreased stomatal conductance (G(S)) relative to the control, with a mean reduction of 13% in both total E(L) and mean daytime G(S). This intermittent response was related to changes in a hydraulic allometry index (A(H)), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO(2) over the course of the study, due mostly to a mean 19% increase in leaf area (A(L)). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G(S) with eCO(2) with a total reduction of 32% E(L), 31% G(S) and 23% A(H) (due to increased A(L) per sapwood area). For L. styraciflua, like P. taeda, the relationship between A(H) and G(S) at reference conditions suggested a decrease in G(S) across the range of A(H). Our findings suggest an indirect structural effect of eCO(2) on G(S) in P. taeda and a direct leaf level effect in L. styraciflua. In the initial year of fertilization, P. taeda in both CO(2) treatments, as well as L. styraciflua in eCO(2), exhibited higher G(S) with N(F) than expected from shifts in A(H), suggesting a transient direct effect on G(S). Whether treatment effects on mean leaf-specific G(S) are direct or indirect, this paper highlights that long-term treatment effects on G(S) are generally reflected in A(H) as well.

  10. Report on survey of international cooperation possibility on chemical CO2 fixation and utilization technology in FY 1997; 1997 nendo chosa hokokusho (kagakuteki CO2 koteika yuko riyo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This survey focused on the end of the more promising companion and promoting the international cooperation on chemical CO2 fixation and utilization technology. As a result, the way of the carrying-forward of the international cooperation with more than one companion could be arranged beforehand. It led to getting an arrangement about a secrecy agreement respectively with Lurgi company and ABB company in Europe, and to providing a catalyst sample developed by RITE to implement an examination by the other party and to show related technical information. In addition, it concluded a cooperation agreement about a total system of the chemical CO2 fixation and utilization technology and methanol synthesis with ZSW. In Australia, negotiation about international cooperation with CSIRO which is a federal research organization and CRC (Cooperative Research Centre) for renewable energy has been started. The ideal circumstances are being ready for the chemical CO2 fixation project for which the international cooperation with the country where the natural energy is rich like Australia is essential when coming to practical use. To do alternating current with further high density in the following year it is desired to build a concrete study cooperation system. 1 fig., 4 tabs.

  11. US Human Rights Conduct and International Legitimacy

    DEFF Research Database (Denmark)

    Keating, Vincent Charles

    Did the Bush administration fundamentally harm the international human rights system through its rejection of human rights norms? This is the central question explored within US Human Rights Conduct and International Legitimacy, which analyses the practices of legitimacy between the Bush...... nations have followed in America's footsteps, and that the Bush administration's deviation from international norms has served to reaffirm worldwide commitment to human rights....... administration, states, and international organizations in cases of torture, habeas corpus, and rendition. Vincent Keating argues that despite the material power of the United States, there is little evidence that the Bush administration gravely damaged international norms on torture and habeas corpus as few...

  12. US Human Rights Conduct and International Legitimacy

    DEFF Research Database (Denmark)

    Keating, Vincent Charles

    Did the Bush administration fundamentally harm the international human rights system through its rejection of human rights norms? This is the central question explored within US Human Rights Conduct and International Legitimacy, which analyses the practices of legitimacy between the Bush...... nations have followed in America's footsteps, and that the Bush administration's deviation from international norms has served to reaffirm worldwide commitment to human rights....

  13. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  14. Biochemical Basis of CO2-Related Internal Browning Disorders in Pears (Pyrus communis L. cv. Rocha) during Long-Term Storage

    NARCIS (Netherlands)

    Deuchande, Teresa; Larrigaudière, Christian; Giné-bordonaba, Jordi; Pinto de Carvalho, Susana; Vasconcelos, Marta W.

    2016-01-01

    This study aimed at understanding the biochemical basis of internal browning disorders (IBDs) in ‘Rocha’ pear. For this purpose, the effects of storage under normal controlled atmosphere (CA) (3 kPa of O2 + 0.5 kPa of CO2) and IBD-inducing CA (1 kPa of O2 + 10 kPa of CO2) on the antioxidant and

  15. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.

    2017-12-04

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  16. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.; Cavallaro, Andrea; Li, Cheng; Handoko, Albertus D.; Chan, Kuang Wen; Walker, Robert J.; Regoutz, Anna; Herrin, Jason S.; Yeo, Boon Siang; Payne, David J.; Kilner, John A.; Ryan, Mary P.; Skinner, Stephen J.

    2017-01-01

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  17. Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products

    Science.gov (United States)

    Namwong, Lawit; Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2016-11-01

    Proton-conducting solid oxide electrolysis cells (SOEC-H+) are a promising technology that can utilize carbon dioxide to produce syngas. In this work, a detailed electrochemical model was developed to predict the behavior of SOEC-H+ and to prove the assumption that the syngas is produced through a reversible water gas-shift (RWGS) reaction. The simulation results obtained from the model, which took into account all of the cell voltage losses (i.e., ohmic, activation, and concentration losses), were validated using experimental data to evaluate the unknown parameters. The developed model was employed to examine the structural and operational parameters. It is found that the cathode-supported SOEC-H+ is the best configuration because it requires the lowest cell potential. SOEC-H+ operated favorably at high temperatures and low pressures. Furthermore, the simulation results revealed that the optimal S/C molar ratio for syngas production, which can be used for methanol synthesis, is approximately 3.9 (at a constant temperature and pressure). The SOEC-H+ was optimized using a response surface methodology, which was used to determine the optimal operating conditions to minimize the cell potential and maximize the carbon dioxide flow rate.

  18. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  19. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified “Ball-Berry” Model

    Directory of Open Access Journals (Sweden)

    Zhenhua Wei

    2018-04-01

    Full Text Available Stomatal conductance (gs and water use efficiency (WUE of tomato leaves exposed to different irrigation regimes and at ambient CO2 (a[CO2], 400 ppm and elevated CO2 (e[CO2], 800 ppm environments were simulated using the “Ball-Berry” model (BB-model. Data obtained from a preliminary experiment (Exp. I was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate (Pn was used as an input for the model. Considering the effect of soil water deficits on gs, an equation modifying the slope (m based on the mean soil water potential (Ψs in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both gs and WUE of tomato leaves at each [CO2] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II where plants were subjected to three irrigation regimes: full irrigation (FI, deficit irrigation (DI, and alternative partial root-zone irrigation (PRI for 40 days at both a[CO2] and e[CO2] environment. The simulation results indicated that gs was independently acclimated to e[CO2] from Pn. The modified BB-model performed better in estimating gs and WUE, especially for PRI strategy at both [CO2] environments. A greater WUE could be seen in plants grown under e[CO2] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting gs and WUE of tomato leaves in various irrigation regimes at both a[CO2] and e[CO2] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO2 enriched environment.

  20. The relative roles of external and internal CO(2) versus H(+) in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hypercarbia.

    Science.gov (United States)

    Perry, S F; McKendry, J E

    2001-11-01

    Fish breathing hypercarbic water encounter externally elevated P(CO(2)) and proton levels ([H(+)]) and experience an associated internal respiratory acidosis, an elevation of blood P(CO(2)) and [H(+)]. The objective of the present study was to assess the potential relative contributions of CO(2) versus H(+) in promoting the cardiorespiratory responses of dogfish (Squalus acanthias) and Atlantic salmon (Salmo salar) to hypercarbia and to evaluate the relative contributions of externally versus internally oriented receptors in dogfish. In dogfish, the preferential stimulation of externally oriented branchial chemoreceptors using bolus injections (50 ml kg(-1)) of CO(2)-enriched (4 % CO(2)) sea water into the buccal cavity caused marked cardiorespiratory responses including bradycardia (-4.1+/-0.9 min(-1)), a reduction in cardiac output (-3.2+/-0.6 ml min(-1) kg(-1)), an increase in systemic vascular resistance (+0.3+/-0.2 mmHg ml min(-1) kg(-1)), arterial hypotension (-1.6+/-0.2 mmHg) and an increase in breathing amplitude (+0.3+/-0.09 mmHg) (means +/- S.E.M., N=9-11). Similar injections of CO(2)-free sea water acidified to the corresponding pH of the hypercarbic water (pH 6.3) did not significantly affect any of the measured cardiorespiratory variables (when compared with control injections). To preferentially stimulate putative internal CO(2)/H(+) chemoreceptors, hypercarbic saline (4 % CO(2)) was injected (2 ml kg(-1)) into the caudal vein. Apart from an increase in arterial blood pressure caused by volume loading, internally injected CO(2) was without effect on any measured variable. In salmon, injection of hypercarbic water into the buccal cavity caused a bradycardia (-13.9+/-3.8 min(-1)), a decrease in cardiac output (-5.3+/-1.2 ml min(-1) kg(-1)), an increase in systemic resistance (0.33+/-0.08 mmHg ml min(-1) kg(-1)) and increases in breathing frequency (9.7+/-2.2 min(-1)) and amplitude (1.2+/-0.2 mmHg) (means +/- S.E.M., N=8-12). Apart from a small increase

  1. Feasible study of international cooperation on the long-term scenario for reducing CO2. DNE-21 simulation database; CO2 sakugen ni kakawaru choki scenario ni kansuru kokusai kyoryoku kanosei chosa. DNE21 simulation database

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes calculation codes of DNE-21 which can simulate the optimization model for reducing CO2. The DNE-21 was modified from the former NE-21. The term was set between 2000 and 2100. Optimization can be conducted across the different time. Non-conventional petroleum was removed from the primary energy. Capacity of nuclear power generation facilities was taken in the model for the optimization. Decision making analysis can be done by considering the uncertainty. The DNE-21 has eleven input files including the model operation, technical property related data, cost related data, data of tax, subsidy and customs, and scenario data of future energy demand and supply, GNP, population and nuclear power. The DNE-21 has fifteen output files including the optimization calculation results for the world, Oceania, the Middle East, North Africa, Central America, South America, former USSR, and OECD countries. 2 figs.

  2. Inverse anisotropic conductivity from internal current densities

    International Nuclear Information System (INIS)

    Bal, Guillaume; Guo, Chenxi; Monard, François

    2014-01-01

    This paper concerns the reconstruction of a fully anisotropic conductivity tensor γ from internal current densities of the form J = γ∇u, where u solves a second-order elliptic equation ∇ · (γ∇u) = 0 on a bounded domain X with prescribed boundary conditions. A minimum number of n + 2 such functionals known on Y⊂X, where n is the spatial dimension, is sufficient to guarantee a unique and explicit reconstruction of γ locally on Y. Moreover, we show that γ is reconstructed with a loss of one derivative compared to errors in the measurement of J in the general case and no loss of derivatives in the special case where γ is scalar. We also describe linear combinations of mixed partial derivatives of γ that exhibit better stability properties and hence can be reconstructed with better resolution in practice. (paper)

  3. Mitigating CO2 Leakage by Immobilizing CO2 into Solid Reaction Products: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016. 14 November 2016 through 18 November 2016

    NARCIS (Netherlands)

    Wasch, L.J.; Wollenweber, J.; Neele, F.; Fleury, M.

    2017-01-01

    In the unlikely case of CO2 leakage from a storage reservoir, it is desirable to close the leak efficiently and permanently. This could be done by injecting a reactive solution into the leak path, thereby immobilizing migrating CO2 by consuming the gas and forming solid reactants. With regard to

  4. 15th International Conference on Thermal Conductivity

    CERN Document Server

    1978-01-01

    Once again, it gives me a great pleasure to pen the Foreword to the Proceedings of the 15th International Conference on Thermal Conductivity. As in the past, these now biannual conferences pro­ vide a broadly based forum for those researchers actively working on this important property of matter to convene on a regular basis to exchange their experiences and report their findings. As it is apparent from the Table of Contents, the 15th Conference represents perhaps the broadest coverage of subject areas to date. This is indicative of the times as the boundaries between disciplines be­ come increasingly diffused. I am sure the time has come when Con­ ference Chairmen in coming years will be soliciting contributions not only in the physical sciences and engineering', but will actively seek contributions from the earth sciences and life sciences as well. Indeed, the thermal conductivity and related properties of geological and biological materials are becoming of increasing im­ portance to our way of life. As...

  5. Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes.

    Science.gov (United States)

    Wong, Shau-Lian; Chen, Chung-Wei; Huang, Hsien-Wen; Weng, Jen-Hsien

    2012-05-01

    We aimed to understand the relation of photosynthetic rate (A) with g(s) and electron transport rate (ETR) in species of great taxonomic range and light adaptation capability during photosynthetic light induction. We studied three woody species (Alnus formosana, Ardisia crenata and Ardisia cornudentata) and four fern species (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai) with different light adaptation capabilities. Pot-grown materials received 100 and/or 10% sunlight according to their light adaptation capabilities. At least 4 months after light acclimation, CO(2) and H(2)O exchange and chlorophyll fluorescence were measured simultaneously by equipment in the laboratory. In plants adapted or acclimated to low light, dark-adapted leaves exposed to 500 or 2000 µmol m(-2) s(-1) photosynthetic photon flux (PPF) for 30 min showed low gross photosynthetic rate (P(g)) and short time required to reach 90% of maximum P(g) (). At the initiation of illumination, two broad-leaved understory shrubs and the four ferns, especially ferns adapted to heavy shade, showed higher stomatal conductance (g(s)) than pioneer tree species; materials with higher g(s) had short at both 500 and 2000 µmol m(-2) s(-1) PPF. With 500 or 2000 µmol m(-2) s(-1) PPF, the g(s) for the three woody species increased from 2 to 30 min after the start of illumination, but little change in the g(s) of the four ferns. Thus, P(g) and g(s) were not correlated for all material measured at the same PPF and induction time. However, P(g) was positively correlated with ETR, even though CO(2) assimilation may be influenced by stomatal, biochemical and photoinhibitory limitations. In addition, was closely related to time required to reach 90% maximal ETR for all materials and with two levels of PPF combined. Thus, ETR is a good indicator for estimating the light induction of photosynthetic rate of species, across a wide taxonomic range and light adaptation and acclimation

  6. Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector

    International Nuclear Information System (INIS)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2014-01-01

    Highlights: • Use ISEEM to evaluate energy and emission reduction in U.S. Iron and Steel sector. • ISEEM is a new bottom-up optimization model for industry sector energy planning. • Energy and emission reduction includes efficiency measure and international trading. • International trading includes commodity and carbon among U.S., China and India. • Project annual energy use, CO 2 emissions, production, and costs from 2010 to 2050. - Abstract: Using the ISEEM modeling framework, we analyzed the roles of energy efficiency measures, steel commodity and international carbon trading in achieving specific CO 2 emission reduction targets in the U.S iron and steel sector from 2010 to 2050. We modeled how steel demand is balanced under three alternative emission reduction scenarios designed to include national energy efficiency measures, commodity trading, and international carbon trading as key instruments to meet a particular emission restriction target in the U.S. iron and steel sector; and how production, process structure, energy supply, and system costs change with those scenarios. The results advance our understanding of long-term impacts of different energy policy options designed to reduce energy consumption and CO 2 emissions for U.S. iron and steel sector, and generate insight of policy implications for the sector’s environmentally and economically sustainable development. The alternative scenarios associated with 20% emission-reduction target are projected to result in approximately 11–19% annual energy reduction in the medium term (i.e., 2030) and 9–20% annual energy reduction in the long term (i.e., 2050) compared to the Base scenario

  7. International network non-energy use and CO2 emissions (NEU-CO2). An activity within the European Commission's ENRICH programme, DG RTD, 'Environment and Climate'. Final report of the first phase of the network (January 1999 - June 2000)

    International Nuclear Information System (INIS)

    Patel, M.; Gielen, D.; Kilde, N.; Simmons, T.

    2000-07-01

    This report concludes the first phase of the NEU-CO 2 network, covering the period from January 1999 to June 2000. Within this period, two workshops were held, one in Paris in September 1999 and the other in Brussels in April 2000. The results of these workshops represent the basis of this report. The workshop papers have also been compiled in workshop proceedings which are publicly available. Due to the success of the NEU-CO 2 network, the partners decided to apply for the continuation of this activity which was recently accepted by the European Commission. The second phase of the of the NEU-CO 2 network will start in Fall 2000 and will continue for 18 months. This will allow the NEU-CO 2 network to improve the methods applied, to close data gaps, to check the preliminary conclusions given in this report and to provide consolidated results and recommendations by mid 2002. The ultimate goal of the NEU-CO 2 network is to contribute to an improvement of the IPCC guidelines in the area of non-energy use and to provide inventorists with tools and methods to estimate more accurately non-energy CO 2 emissions. (orig.)

  8. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  9. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    Science.gov (United States)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  10. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  11. CO2 pellet blasting studies

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1997-01-01

    Initial tests with CO 2 pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO 2 pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO 2 blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report

  12. Foraminiferal calcification and CO2

    Science.gov (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  13. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  14. FY 2000 report on the promotion projects by Research Institute of Innovative Technology for the Earth. Proceedings of the international seminar (Reports on photosynthetic CO2-assimilating enzymes by the international workshops); 2000 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo kokusai seminar jigyo shiryo. Kogosei CO2 kotei koso kokusai workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the reports on photosynthetic CO2-assimilating enzymes, presented to the international symposium. These enzymes are important for assimilating CO2 in air, maintaining the environments and production of foods. For genes and proteins, the topics include diversification and function evolution of the RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) in the natural environments, in particular in microorganisms. For activity regulation of PEPC, the topics include three-dimensional structures of PEPC and phosphorylation mechanisms and activity regulation therefor. For activity regulation of RuBisCO, the topics include post-translational activity of the enzymes (e.g., methylated enzyme); molecular regulation mechanisms involved in the biosynthesis and decomposition of RuBisCO; and activity regulation mechanisms in the chloroplast. For leaf photosynthesis and RuBisCO, the topics include importance of enzymes and involved in-vivo reaction steps for leaf photosynthesis CO2 assimilation reactions. For function of PEPC, the topics include the biochemically and molecular biologically necessary and sufficient conditions for the C4 mechanism as the special photosynthesis mechanism. For transgenic approaches, the topics include procedure for allowing the RuBisCO gene of a dissimilar organism to function in the tobacco chloroplast, and introduction of enzymes involved in the C4 photosynthesis pathway in C3 plants. (NEDO)

  15. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  16. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  17. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    Science.gov (United States)

    J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy

    2010-01-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.

  18. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  19. The impact of international codes of conduct on employment ...

    African Journals Online (AJOL)

    The study examined how international codes of conduct address employment conditions and gender issues in the Chinese flower industry. A sample of 20 companies was purposively selected and 200 workers from these companies were interviewed. The adoption of international codes did not improve workers conditions ...

  20. The CO2nnect activities

    Science.gov (United States)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  1. Clean Coal: myth or reality? At the heart of the energy-climate equation, capturing and storing CO2 - Proceedings of the 2007 Le Havre's international meetings

    International Nuclear Information System (INIS)

    Rufenacht, Antoine; Brodhag, Christian; Mocilnikar, Antoine-Tristan; Bennaceur, Kamel; Esseid, Ablaziz; Lemoine, Stephane; Prevot, Henri; Diercks, Thorsten; Jaclot, Francois; Fache, Dominique; Coulon, Pierre-Jean; Capris, Renaud; TRANIE, Jean-Pascal; Le Thiez, Pierre; Marliave, Luc de; Perrin, Nicolas; Paelinck, Philippe; Clodic, Denis; Thabussot, Laurent; Alf, Martin; Boon, Gustaaf; Giger, Francois; Bisseaud, Jean-Michel; Michel, Patrick; Poyer, Luc; Biebuyck, Christian; Kalaydjian, Francois; Roulet, Claude; Bonijoly, Didier; Gresillon, Francois Xavier; Bonneville, Alain; Tauziede, Christian; Munier, Gilles; Moncomble, Jean-Eudes; Frois, Bernard; Charmant, Marcel; Thybaud, Nathalie; Fares, Tewfik; Lacave, Jean-Marc; Duret, Benoit; Gerard, Bernard

    2007-03-01

    This document comprises the French and English versions of the executive summary of the RIH 2007 meetings, followed by the available presentations (slides). Content: - Symposium Opening: Government and the Coal Issue; 1 - First Session - Energy, Climate, Coal: - Scenarios for energy technologies and CO 2 emissions: Energy outlooks, CO 2 emissions, Technologies (Kamel BENNACEUR); - The global situation of coal: The situation of the international steam coal market, Change in this market, Total's position in this business, Major challenges for the future (Ablaziz ESSEID); - Coal markets: availability, competitiveness, and growing maturity (Stephane LEMOINE); - Coal in the geopolitics of greenhouse gases (Henri PREVOT); - Questions; 2 - Second Session - Coal Economy: - Opportunities and challenges for coal in the European energy mix: the Commission's energy package: The European situation, The European energy mix, The role of EURACOAL (Thorsten DIERCKS); - The development of a coal bed in Lucenay-les-Aix and Cossaye in the Massif Central (Francois JACLOT); - The Russian view of coal's place in the energy mix (Dominique FACHE); - Coal, a key to development in Niger (Pierre-Jean COULON); - The energy and environmental efficiency of coal-fired power plants associated with heating networks (Renaud CAPRIS); - The Valorca project: efficient and immediate use of coal, and strong outlooks for the future (Jean-Pascal TRANIE); - Questions; 3 - Third and Forth Sessions - Clean Power Plants: - CO 2 capture systems (Pierre LE THIEZ); - CO 2 geological capture and storage in the Lacq basin (Luc de MARLIAVE); - Clean coal: Air Liquide technology developments and industrial solutions (Nicolas PERRIN); - Clean combustion and CO 2 (Philippe PAELINCK); - CO 2 capture by freezing/defrosting at low temperatures (Denis CLODIC); - Questions; - Using the experience of a large corporation (ENDESA), to develop clean energy: coal (Laurent THABUSSOT); - Pathways to reduce CO 2

  2. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  3. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  4. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  5. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    with the expansions of natural gas networks for Sweden should be looked for. Issues that need more deep studies are how the injection infrastructures for aquifers need to be modified compared to those used for oil fields, successively improved validation of CO 2 handling costs for Europe and Sweden, regarding i.a. ship transport and industrial compression and cooling of large CO 2 flows in connection to CO 2 capture. It is likely that the local environment would be affected by a possible leakage. Many organisms and ecosystems are sensitive to small changes in the CO 2 concentration. Knowledge exists on how humans, animals and plants would be affected by enhanced contents of carbon dioxide in their immediate surroundings, and on how the physical part of soils and water would be influenced by higher CO 2 concentrations. How individual ecosystems would be affected will have to be assessed based on the conditions in each specific system. Further studies are needed on consequences for ecosystems, especially for ecosystems in the ground, particularly those deep in the ground. Severe environmental damages (large short-term emissions that would damage the surrounding environment, i.e. concentrations around 25 % CO 2 ) would be limited to a few tens of meters from the plant and will therefore not need to be considered. No calculations have been performed for any transport means besides pipelines. Two parallels to CO 2 transport and storage are geothermic projects and natural gas pipelines. For geothermic projects there is a basic positive attitude already before the project start and the operations take place deep in the ground, i.e. at a safe distance from those concerned, and no threatening picture has been felt. No overall legal framework applicable to CO 2 transport and storage exist today, neither within the national Swedish law nor within international/European law. There are however adjacent legal frameworks mainly regarding transport. Providing that the construction of

  6. FY 2000 Project of developing international standards for supporting new industries. Standardization of the marine environment analyzers (Analyzers for measuring CO2 in ocean); 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Kaiyo kankyo keisoku kiki (kaiyo CO2 sokutei kanren kikirui) no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development of analyzers and analytical procedures necessary for evaluating CO2 abatement effects and fixed quantities in ocean, for proposing the international standards. The program for studying the analytical procedures makes a literature survey mainly on papers and also on patent publications, to collect the data related to this project and establish the database. The program for measuring CO2 in deep ocean studies a suspension type CO2 profiler with a liquid-liquid leveler and develops a small-size, high-precision device serviceable at a depth of 3,000m, around 1m in length and 40kg in weight. The program for flux meters tests various commercial sensors, to obtain the design requirements for the sensor of improved functions to withstand splashes and rolling/pitching. The program for CO2 flux measurement methods study aims at the eddy correlation method, which is the most direct procedure involving limited number of assumptions, after having investigated various procedures, to improve precision of the sensor. (NEDO)

  7. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2008-01-01

    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...

  8. High-flux MFI-alumina hollow fibres: a membrane-based process for on-board CO2 capture from internal combustion vehicles

    International Nuclear Information System (INIS)

    Nicolas, C.H.

    2011-01-01

    This work focuses on the conception and development of a membrane-based process for an on-board CO 2 capture/storage application. In a first part, we simulate an on-board CO 2 capture unit based on a membrane process for the case study of a heavy vehicle (≥3500 kg). This study includes an energy analysis of the impact of gas separation and compression on the required membrane surface and module volume, as well the autonomy of the storage unit and the energy overconsumption involved in the process. In a second part, we study the influence of the hollow-fibre support quality on the final intergrowth level of nano-composite MFI-alumina membranes. Special attention is devoted to the influence of the isomorphic substitution of silica by boron and germanium, and replacement of the counter-cation (proton) by other elements, on the CO 2 /N 2 separation and permeance properties. Next, a complete chapter has been devoted to the evaluation of the thermodynamic (adsorption) and kinetic (diffusion) parameters in the CO 2 /N 2 separation. Finally, we analyze the influence of standard pollutants (water, NO x , hydrocarbons) on the CO 2 separation properties of the synthesized membranes. (author)

  9. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  10. The pressure, internal energy, and conductivity of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, E.M. [Russian Academy of Sciences, Joint Institute for High Temperatures, Department of Computational Physics, Moscow (Russian Federation)

    2017-11-15

    The pressure, internal energy, and conductivity of a tantalum plasma were calculated at the temperatures 10-100 kK and densities less than 3 g/cm{sup 3}. The plasma composition, pressure, and internal energy were obtained by means of the corresponding system of the coupled mass action law equations. We have considered atom ionization up to +3. The conductivity was calculated within the relaxation time approximation. Comparisons of our results with available measurements and calculation data show good agreement in the area of correct applicability of the present model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  12. Outsourcing CO2 within China.

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-07-09

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country's borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world's largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China's emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low-value-added but high-carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China.

  13. CO2 flowrate calculator

    International Nuclear Information System (INIS)

    Carossi, Jean-Claude

    1969-02-01

    A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented

  14. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective

    International Nuclear Information System (INIS)

    Gunter, W.D.; Wong, S.; Cheel, D.B.; Sjostrom, G.

    1998-01-01

    Significant reduction of CO 2 emissions on a global scale may be achieved by reduction of energy intensity, by reduction of carbon intensity or by capture and storage of CO 2 . A portfolio of these methods is required to achieve the large reductions required; of which utilization of carbon sinks (i.e. material, geosphere and biosphere) will be an important player. Material sinks will probably only play a minor role as compared to biosphere and geosphere sinks in storage of CO 2 . Biosphere sinks are attractive because they can sequester CO 2 from a diffuse source whereas geosphere sinks require a pure waste stream of CO 2 (obtained by using expensive separation methods). On the other hand, environmental factors and storage time favor geosphere sinks. It is expected that a combination of the two will be used in order to meet emission reduction targets over the next 100 yr.A critical look is taken at capacities, retention/residence times, rates of uptake and relative cost of utilization of biosphere and geosphere sinks at three scales - global, national (Canada) and provincial (Alberta). Biosphere sinks considered are oceans, forests and soils. Geosphere sinks considered are enhanced oil recovery, coal beds, depleted oil and gas reservoirs and deep aquifers. The largest sinks are oceans and deep aquifers. The other biosphere and geosphere sinks have total capacities approximately of an order of lower magnitude. The sinks that will probably be used first are those that are economically viable such as enhanced oil-recovery, agriculture, forestry and possibly enhanced coalbed methane-recovery. The other sinks will be used when these options have been exhausted or are not available or a penalty (e.g. carbon tax) exists. Although the data tabulated for these sinks is only regarded as preliminary, it provides a starting point for assessment of the role of large sinks in meeting greenhouse gas emission reduction targets. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam

  15. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata.

    Science.gov (United States)

    von Caemmerer, Susanne; Griffiths, Howard

    2009-05-01

    To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata, which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in pCO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low pCO2. Stomata did not respond to a decreased pCO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal pCO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to pCO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low pCO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.

  16. Barriers and Solutions to Conducting Large International, Interdisciplinary Research Projects

    Science.gov (United States)

    Pischke, Erin C.; Knowlton, Jessie L.; Phifer, Colin C.; Gutierrez Lopez, Jose; Propato, Tamara S.; Eastmond, Amarella; de Souza, Tatiana Martins; Kuhlberg, Mark; Picasso Risso, Valentin; Veron, Santiago R.; Garcia, Carlos; Chiappe, Marta; Halvorsen, Kathleen E.

    2017-12-01

    Global environmental problems such as climate change are not bounded by national borders or scientific disciplines, and therefore require international, interdisciplinary teamwork to develop understandings of their causes and solutions. Interdisciplinary scientific work is difficult enough, but these challenges are often magnified when teams also work across national boundaries. The literature on the challenges of interdisciplinary research is extensive. However, research on international, interdisciplinary teams is nearly non-existent. Our objective is to fill this gap by reporting on results from a study of a large interdisciplinary, international National Science Foundation Partnerships for International Research and Education (NSF-PIRE) research project across the Americas. We administered a structured questionnaire to team members about challenges they faced while working together across disciplines and outside of their home countries in Argentina, Brazil, and Mexico. Analysis of the responses indicated five major types of barriers to conducting interdisciplinary, international research: integration, language, fieldwork logistics, personnel and relationships, and time commitment. We discuss the causes and recommended solutions to the most common barriers. Our findings can help other interdisciplinary, international research teams anticipate challenges, and develop effective solutions to minimize the negative impacts of these barriers to their research.

  17. Barriers and Solutions to Conducting Large International, Interdisciplinary Research Projects.

    Science.gov (United States)

    Pischke, Erin C; Knowlton, Jessie L; Phifer, Colin C; Gutierrez Lopez, Jose; Propato, Tamara S; Eastmond, Amarella; de Souza, Tatiana Martins; Kuhlberg, Mark; Picasso Risso, Valentin; Veron, Santiago R; Garcia, Carlos; Chiappe, Marta; Halvorsen, Kathleen E

    2017-12-01

    Global environmental problems such as climate change are not bounded by national borders or scientific disciplines, and therefore require international, interdisciplinary teamwork to develop understandings of their causes and solutions. Interdisciplinary scientific work is difficult enough, but these challenges are often magnified when teams also work across national boundaries. The literature on the challenges of interdisciplinary research is extensive. However, research on international, interdisciplinary teams is nearly non-existent. Our objective is to fill this gap by reporting on results from a study of a large interdisciplinary, international National Science Foundation Partnerships for International Research and Education (NSF-PIRE) research project across the Americas. We administered a structured questionnaire to team members about challenges they faced while working together across disciplines and outside of their home countries in Argentina, Brazil, and Mexico. Analysis of the responses indicated five major types of barriers to conducting interdisciplinary, international research: integration, language, fieldwork logistics, personnel and relationships, and time commitment. We discuss the causes and recommended solutions to the most common barriers. Our findings can help other interdisciplinary, international research teams anticipate challenges, and develop effective solutions to minimize the negative impacts of these barriers to their research.

  18. Supercritical CO2 uptake by nonswelling phyllosilicates.

    Science.gov (United States)

    Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J

    2018-01-30

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.

  19. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  20. CO2 laser development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  1. CO2 emissions of nuclear power supply

    International Nuclear Information System (INIS)

    Wissel, S.; Mayer-Spohn, O.; Fahl, U.; Voss, A.

    2007-01-01

    Increasingly, supported by the recent reports of the IPCC (International Panel on Climate Change), political, social and scientific institutions call for the use of atomic energy for reducing CO2 emissions. In Germany, the discussion is highly controversial. A life-cycle balance of nuclear power shows that its CO2 emissions are much lower than those of other technologies, even if changes in the nuclear fuel cycle are taken into account. (orig.)

  2. Studies on CO2 removal and reduction. CO2 taisaku kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1993-02-01

    This paper summarizes study trends mainly in CO2 fixing processes. Underground CO2 storage is a most promising method because it can fix a huge amount of CO2 and has low effects on ecological systems. Storing CO2 in ocean includes such methods as storing it in deep oceans; storing it in deep ocean beds; dissolving it into sea water; neutralizing it with calcium carbonates; and precipitating it as dry ice. Japan, disposing CO2 in these ways, may create international problems. Separation of CO2 may use a chemical absorption process as a superior method. Other processes discussed include a physical adsorption method and a membrane separation method. A useful method for CO2 fixation using marine organisms is fixation using coral reefs. This process will require an overall study including circulation of phosphorus and nitrogen. Marine organisms may include planktons and algae. CO2 fixation using land plants may be able to fix one trillion and 8 hundred billion tons of CO2 as converted to carbon. This process would require forest protection, prevention of desertification, and tree planting. Discussions are being given also on improving power generation cycles, recovering CO2 from automotive exhausts, and backfilling carbons into ground by means of photosynthesis. 23 refs., 7 figs., 1 tab.

  3. Outsourcing CO2 within China

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-01-01

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  4. CO2 Laser Market

    Science.gov (United States)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  5. Carbonation and CO2 uptake of concrete

    International Nuclear Information System (INIS)

    Yang, Keun-Hyeok; Seo, Eun-A; Tae, Sung-Ho

    2014-01-01

    This study developed a reliable procedure to assess the carbon dioxide (CO 2 ) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO 2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO 2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO 2 diffusion coefficient and increased CO 2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO 2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO 2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO 2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO 2 emissions from the production of ordinary Portland cement. - Highlights: • CO 2 uptake assessment approach owing to the

  6. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  7. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  8. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  9. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  10. CO2 hydrogenation to hydrocarbons over iron nanoparticles ...

    Indian Academy of Sciences (India)

    481–486. c Indian Academy of Sciences. CO2 ... degrees of CO2 conversion shows that reverse water gas shift equilibrium had been ... rise in CO2 emission.1 Additionally, depletion in crude .... detectors (FID) using argon as internal standard.

  11. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  12. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  13. DETERMINATION OF CO2 MASSES IN THE EXHAUST GASES OF THE MARINE DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Doru COSOFRET

    2016-05-01

    Full Text Available Currently, reducing CO2 emissions that contribute to the greenhouse effect is currently under attention of the relevant international bodies. In the field of maritime transport, in 2011 International Maritime Organization (IMO has taken steps to reduce emissions of CO2 from the exhaust gases of marine diesel engines on ships, by imposing their energy efficiency standards. In this regard, we conducted a laboratory study on a 4-stroke diesel engine naturally aspirated by using to power it diesel and different blends of biodiesel with diesel fuel. The purpose of the study was to determine the formulas for calculating the mass flow rates of CO2 from exhaust gases’ concentrations experimentally determined. Determining the mass flow of CO2 is necessary to calculate the energy efficiency coefficient of the ship to assess the energy efficiency of the board of the limits imposed by the IMO.

  14. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  15. CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2007-01-01

    Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount of CO 2 -the most important greenhouse gas-emissions, for the Turkish economy. An extended input-output model is estimated by using 1996 data in order to identify the sources of CO 2 emissions and to discuss the share of sectors in total emission. Besides, 'CO 2 responsibility', which takes into account the CO 2 content of imports, is estimated for the Turkish economy. The sectoral CO 2 emissions and CO 2 responsibilities are compared and these two notions are linked to foreign trade volume. One of the main conclusions is that the manufacturing industry has the first place in both of the rankings for CO 2 emissions and CO 2 responsibilities, while agriculture and husbandry has the last place

  16. Effect of CO_2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Bo; Cong, Xiaoyu; Liu, Xiaolong

    2016-01-01

    CO_2 (Carbon dioxide) dilution is a feasible way for controlling NOx (Nitrogen oxides) emissions and loads of the internal combustion engines. This paper investigated the effect of CO_2 dilution on the combustion and emissions characteristics of a hydrogen-enriched gasoline engine. The experiment was conducted on a 1.6 L spark-ignition engine with electronically controlled hydrogen and gasoline injection systems. At two hydrogen volume fractions of 0 and 3%, the CO_2 volume fraction in the intake was gradually increased from 0 to 4%. The fuel-air mixtures were kept at the stoichiometric. The experimental results demonstrated that brake mean effective pressure of the gasoline engine was quickly reduced after adopting CO_2 dilution. Comparatively, Bmep (Brake mean effective pressure) of the 3% hydrogen-enriched engine was gently decreased with the increase of CO_2 dilution level. Thermal efficiency of the 3% hydrogen-enriched gasoline engine was raised under properly increased CO_2 dilution levels. However, thermal efficiency of the pure gasoline engine was generally dropped after the CO_2 dilution. The addition of hydrogen could shorten flame development and propagation durations under CO_2 diluent conditions for the gasoline engine. Increasing CO_2 fraction in the intake caused the dropped NOx and raised HC (Hydrocarbon) emissions. Increasing hydrogen fraction in the intake could effectively reduce HC emissions under CO_2 diluent conditions. - Highlights: • CO_2 dilution reduces cooling loss and NOx of H_2-enriched gasoline engines. • H_2-blended gasoline engine gains better efficiency after CO_2 dilution. • CoVimep of H_2-blended gasoline engine is kept at low level after CO_2 addition. • CO_2 dilution has small effect on reducing Bmep of H_2-blended gasoline engine.

  17. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  18. Exergoeconomic analysis of utilizing the transcritical CO_2 cycle and the ORC for a recompression supercritical CO_2 cycle waste heat recovery: A comparative study

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping

    2016-01-01

    Highlights: • An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle. • Performance of the sCO_2/tCO_2 cycle and sCO_2/ORC cycle are presented and compared. • The sCO_2/tCO_2 cycle performs better than the sCO_2/ORC cycle at lower PRc. • The sCO_2/tCO_2 cycle has comparable total product unit cost with the sCO_2/ORC cycle. - Abstract: Two combined cogeneration cycles are examined in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by either a transcritical CO_2 cycle (tCO_2) or an Organic Rankine Cycle (ORC) for generating electricity. An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle performance and its comparison to the sCO_2/ORC cycle. The following organic fluids are considered as the working fluids in the ORC: R123, R245fa, toluene, isobutane, isopentane and cyclohexane. Thermodynamic and exergoeconomic models are developed for the cycles on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are conducted to evaluate the influence of decision variables on the performance of sCO_2/tCO_2 and sCO_2/ORC cycles. The performance of these cycles is optimized and then compared. The results show that the sCO_2/tCO_2 cycle is preferable and performs better than the sCO_2/ORC cycle at lower PRc. When the sCO_2 cycle operates at a cycle maximum pressure of around 20 MPa (∼2.8 of PRc), the tCO_2 cycle is preferable to be integrated with the recompression sCO_2 cycle considering the off-design conditions. Moreover, contrary to the sCO_2/ORC system, a higher tCO_2 turbine inlet temperature improves exergoeconomic performance of the sCO_2/tCO_2 cycle. The thermodynamic optimization study reveals that the sCO_2/tCO_2 cycle has comparable second law efficiency with the sCO_2/ORC cycle. When the optimization is conducted based on the exergoeconomics, the total product unit cost of the sCO_2/ORC is slightly lower than that of the sCO_2/tCO_2

  19. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  20. Recent developments in CO2 lasers

    Science.gov (United States)

    Du, Keming

    1993-05-01

    CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.

  1. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  2. Study on CO2 global recycling system

    International Nuclear Information System (INIS)

    Takeuchi, M.; Sakamoto, Y.; Niwa, S.

    2001-01-01

    In order to assist in finding ways to mitigate CO 2 emission and to slow the depletion of fossil fuels we have established and evaluated a representative system, which consists of three technologies developed in our laboratory. These technologies were in CO 2 recovery, hydrogen production and methanol synthesis and in addition we established the necessary supporting systems. Analysis of outline designs of the large scale renewable energy power generation system and this system and energy input for building plant, energy input for running plant has been conducted based on a case using this system for a 1000-MW coal fired power plant, followed by an evaluation of the material balance and energy balance. The results are as follows. Energy efficiency is 34%, the CO 2 reduction rate is 41%, the balance ratio of the energy and CO 2 of the system is 2.2 and 1.8, respectively, on the assumption that the primary renewable energy is solar thermal power generation, the stationary CO 2 emission source is a coal-fired power plant and the generation efficiency of the methanol power plant is 60%. By adopting the system, 3.7 million tons of CO 2 can be recovered, approximately 2.7 million tons of methanol can be produced, and 15.4 billion kWh of electricity can be generated per year. Compared to generating all electrical power using only coal, approximately 2.6 million tons of coal per year can be saved and approximately 2.15 million tons of CO 2 emission can be reduced. Therefore, it is clearly revealed that this system would be effective to reduce CO 2 emissions and to utilize renewable energy

  3. Business Ethics: International Analysis of Codes of Ethics and Conduct

    Directory of Open Access Journals (Sweden)

    Josmar Andrade

    2017-03-01

    Full Text Available Codes of ethics and code of conduct formalize an ideal of expected behavior patterns to managers and employees of organizations, providing standards and orientation that states companies interactions with the community, through products /services, sales force, marketing communications, investments, and relationships with other stakeholders, influencing company reputation and overall Marketing performance. The objective of this study is to analyze the differences in codes of ethics of the largest companies based in Brazil and in Portugal, given their cultural and linguistic similarities. Findings show that the use of codes of ethics are more common in Brazil than in Portugal and that codes of ethics are substantially more extensive and cover a larger number of categories in Brazilian companies, reflecting the organizations’ mission and perception of stakeholders concerns and priorities. We conclude that ethical issues severely impact company reputation and, in a comprehensive sense, overall Marketing performance. Marketing professionals should be systematically aware of how company core values are transmitted to different audiences, including the use of code of ethics to communicate both with internal and external publics. 0 0 1 171 966 CASA DOS ANDRADES 23 14 1123 14.0 96 800x600 Normal 0 false false false EN-US JA X-NONE  

  4. New era for CO2 as a working fluid

    International Nuclear Information System (INIS)

    Stene, Joern

    2000-01-01

    During the past decade there has been extensive international activity to find acceptable alternatives to ozone-depleting CFC and HCFC substances that have been widely used as working fluids in refrigerating and heat pump plants. At present, the so-called natural working fluids constitute the most environmentally friendly alternative, and they include first of all ammonia, hydrocarbons and carbon dioxide (CO2). NTNU and SINTEF Energy Research, Norway, have been pioneers in the development of refrigerating and heat pump systems that use CO2 as a working fluid. The favourable technical and environmental properties of CO2 as well as the promising results have now led to considerable international interest in CO2 technology for refrigerating and heat pump applications. Two examples are international licensing for Norwegian CO2 technology and co-operation with Indonesia on CO2 for refrigeration

  5. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    Science.gov (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  6. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  7. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  8. The Development of International Law Through the Unauthorised Conduct of International Institutions

    Directory of Open Access Journals (Sweden)

    Johan D van der Vyver

    2015-12-01

    Full Text Available The law, including international law, is subject to continuous change. It can be adapted to changing circumstances through formal amendments of or additions to existing norms and practices. It can also be changed through the conduct of international institutions that is not within their legally defined competencies, provided - it will be argued - that the unauthorised conduct (a is not expressly forbidden by existing rules of international law, and (b is accepted or condoned by a cross-section of the international community of states. The creation by the Security Council of the United Nations of ad hoc international criminal tribunals, for example, cannot even with a stretch of the imagination be justified on the basis of the powers of the Council stipulated in the UN Charter. However, their creation was applauded by the nations of the world as a feasible and practical way of responding to the atrocities of the early 1990's in the former Yugoslavia and Rwanda. The creation of international criminal tribunals by the Security Council has thus come to be accepted as a new rule of international law. The same reasoning is applied to the newly acquired competence of NATO forces to intervene militarily on humanitarian grounds as exemplified by the NATO bombing campaign of 1999 in Serbia, while not one of the NATO countries was being attacked or under threat of an attack, and the competence of States to attack terrorist groups in a foreign country if the government of that country is either unwilling or unable to prevent the ongoing acts of terror violence.

  9. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  10. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  11. Photosynthetic responses of yellow poplar and white oak to long term atmospheric CO2 enrichment in the field

    International Nuclear Information System (INIS)

    Gunderson, C.A.; Norby, R.J.

    1991-01-01

    A critical consideration in evaluating forest response to rising atmospheric CO 2 is whether the enhancement of net photosynthesis (P N ) by elevated CO 2 can be sustained over the long term. There are reports of declining enhancement of P N with duration of exposure to elevated CO 2 , associated with decreases in photosynthetic capacity and carboxylation efficiency. We investigated whether this photosynthetic acclimation occurs in two tree species under field conditions. Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were planted in the ground within six open-top field chambers in May 1989 and have been exposed continuously to CO 2 enrichment during the last two growing seasons. The three CO 2 treatment levels were: ambient, ambient +150, and ambient +300 μL/L. Throughout the second season, gas exchange of upper, light-saturated leaves was surveyed periodically, and leaves of different ages and canopy positions were measured occasionally. Net photosynthesis remained higher at higher CO 2 levels (28-32% higher in +150 and 49-67% higher in +300 seedlings) in both species throughout the season, regardless of increasing leaf age and duration of exposure to CO 2 enrichment. Stomatal conductance remained unchanged or decreased slightly with increasing CO 2 , but instantaneous water use efficiency (P N /transpiration) increased significantly with CO 2 . Analysis of P N versus internal CO 2 concentration indicated no significant treatment differences in carboxylation efficiency, CO 2 -saturated P N , or CO 2 compensation point. There was no evidence of a downward acclimation of photosynthesis to CO 2 enrichment in this system

  12. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    Science.gov (United States)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability

  13. Economics show CO2 EOR potential in central Kansas

    Science.gov (United States)

    Dubois, M.K.; Byrnes, A.P.; Pancake, R.E.; Willhite, G.P.; Schoeling, L.G.

    2000-01-01

    Carbon dioxide (CO2) enhanced oil recovery (EOR) may be the key to recovering hundreds of millions of bbl of trapped oil from the mature fields in central Kansas. Preliminary economic analysis indicates that CO2 EOR should provide an internal rate of return (IRR) greater than 20%, before income tax, assuming oil sells for \\$20/bbl, CO2 costs \\$1/Mcf, and gross utilization is 10 Mcf of CO2/bbl of oil recovered. If the CO2 cost is reduced to \\$0.75/Mcf, an oil price of $17/bbl yields an IRR of 20%. Reservoir and economic modeling indicates that IRR is most sensitive to oil price and CO2 cost. A project requires a minimum recovery of 1,500 net bbl/acre (about 1 million net bbl/1-mile section) under a best-case scenario. Less important variables to the economics are capital costs and non-CO2 related lease operating expenses.

  14. FY 1999 report on the results of the R and D project on the industrial technology for the global environment. R and D of the prediction technology of environmental effects brought by CO2 ocean sequestration (Development of prediction technology of environmental effects around the point of CO2 discharge and the research support survey); 1999 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo NEDO seika hokokusho. Nisankatanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu (CO2 horyuten shuhen'iki no kankyo eikyo yosoku gijutsu no kaihatsu narabini kenkyu shien chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of studying viability of CO2 ocean sequestration by discharging it at the intermediate depth of ocean, the R and D were conducted of 'prediction technology of environmental effects around the point of CO2 discharge,' and the FY 1999 results were summarized. In the study of elucidation of behavior of liquid CO2 at the time of discharge, melting speed of CO2 in water and seawater, 2D CO2 concentration distribution, etc. were measured using the circulation type deep-sea simulation experimental equipment. In the study of technology to send CO2 into the sea and dilute it, the process test using mock liquid was conducted. In the indoor experiment on CO2 effects on marine organisms, conducted were the detailed experiment on long-term effects of low concentration CO2 on sea urchins and shellfish, experiment on CO2 acute effects on eggs/fry and experiment on CO2 effects on adult fish. In the developmental study of the model to predict environmental effects around the point of CO2 discharge, carried out were the improvement of the model for prediction of effects on marine organisms, study of the CO2 diffusion in topographic features supposed to be Hawaii, etc. In the international joint study, measurement/observation technology, facilities, etc. were studied in preparation for the experiment actually conducted in the sea. (NEDO)

  15. FY 1999 report on the results of the R and D project on the industrial technology for the global environment. R and D of the prediction technology of environmental effects brought by CO2 ocean sequestration (Development of prediction technology of environmental effects around the point of CO2 discharge and the research support survey); 1999 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo NEDO seika hokokusho. Nisankatanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu (CO2 horyuten shuhen'iki no kankyo eikyo yosoku gijutsu no kaihatsu narabini kenkyu shien chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of studying viability of CO2 ocean sequestration by discharging it at the intermediate depth of ocean, the R and D were conducted of 'prediction technology of environmental effects around the point of CO2 discharge,' and the FY 1999 results were summarized. In the study of elucidation of behavior of liquid CO2 at the time of discharge, melting speed of CO2 in water and seawater, 2D CO2 concentration distribution, etc. were measured using the circulation type deep-sea simulation experimental equipment. In the study of technology to send CO2 into the sea and dilute it, the process test using mock liquid was conducted. In the indoor experiment on CO2 effects on marine organisms, conducted were the detailed experiment on long-term effects of low concentration CO2 on sea urchins and shellfish, experiment on CO2 acute effects on eggs/fry and experiment on CO2 effects on adult fish. In the developmental study of the model to predict environmental effects around the point of CO2 discharge, carried out were the improvement of the model for prediction of effects on marine organisms, study of the CO2 diffusion in topographic features supposed to be Hawaii, etc. In the international joint study, measurement/observation technology, facilities, etc. were studied in preparation for the experiment actually conducted in the sea. (NEDO)

  16. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  17. CO2 reduction strategies for the Czech Republic

    International Nuclear Information System (INIS)

    De Kruijk, H.; Van den Broek, M.A.; Van Harmelen, T.; Van Oostvoorn, F.; Maly, M.

    1994-08-01

    Reduction of CO 2 emissions now has high priority on the international political agenda. The UN Convention on Climate Change provides countries the option for fulfilling the CO 2 reduction obligations individually or jointly. But before identifying opportunities, a reference path or scenario is needed to indicate how emissions will vary without joint implementation of projects or policies. This paper looks at the situation in the Czech Republic. First objective of the study concerns collecting information on CO 2 emissions in the Czech Republic, a reference scenario for CO 2 developments, and the reduction scope till the year 2015. Second objective is development of CEC energy/environmental model EFOM-ENV (Energy Flow and Optimization Model - ENVironment) for the Czech Republic. In the new orientation towards a market economy it is important to start preparing policy recommendations for energy and environmental needs based on the least cost approach. Presently the energy/environmental model EFOM-ENV is used for this type of studies by CEC, Directorate-General 12, and research institutes in almost all EC countries. It showed usefulness in EC countries for developing integrated energy /environmental strategies. Furthermore, based on its experience with this type of studies, the Netherlands Energy Research Foundation has the last years developed a GAMS PC-version of EFOM-ENV, very flexible and efficient to use. Increasing international cooperation in areas of energy and environmental policies requires a common analytical approach. Particularly for preparing harmonized emission control policies in Europe the use of the EC model EFOM-ENV for all Central European countries can provide comparable and useful insight in the relation between energy use and emissions in Central Europe. In fact similar studies have been and will be conducted for the Slovak Republic, Hungary, Bulgaria, other Central European countries. 4 figs., 5 tabs., 6 refs

  18. CO2: a worldwide myth

    International Nuclear Information System (INIS)

    Gerondeau, Ch.

    2009-01-01

    In this book, the author demonstrates the paradox that reducing CO 2 emissions leads to no CO 2 abatement at all. This assertion is based on an obvious statement. Everybody knows that oil resources are going to be exhausted in few decades. The oil that industrialized countries will not use will be consumed by emerging countries and the CO 2 emissions will remain the same. Who would believe that the oil, gas or coal still available will remain unused? The Kyoto protocol, the national policies, the European agreements of emissions abatement, the carbon taxes, the emissions abatement requests sent to the rest of the world, all these actions cost a lot and are useless. CO 2 concentration in the atmosphere will inescapably double during the 21. century but, according to the author, without any catastrophic consequence for the Earth. (J.S.)

  19. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  20. CTEPP STANDARD OPERATING PROCEDURE FOR CONDUCTING INTERNAL FIELD AUDITS AND QUALITY CONTROL (SOP-2.25)

    Science.gov (United States)

    This SOP describes the method for conducting internal field audits and quality control procedures. Internal field audits will be conducted to ensure the collection of high quality data. Internal field audits will be conducted by Field Auditors (the Field QA Officer and the Field...

  1. Techno-economic Issues and Trade-offs for CO2 Purity in CCS Chains: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016. 14 November 2016 through 18 November 2016

    NARCIS (Netherlands)

    Eickhoff, C.; Brown, A.; Neele, F.

    2017-01-01

    The IMPACTS project has the objective to develop the knowledge base of CO2 quality required for establishing norms and regulations to ensure safe and reliable design, construction and operation of CO2 pipelines and injection equipment, and safe long-term geological storage of CO2. More specifically

  2. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.

    Science.gov (United States)

    Bloemen, Jasper; Agneessens, Laura; Van Meulebroek, Lieven; Aubrey, Doug P; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2014-02-01

    There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  4. State of Energy Consumption and CO2 Emission in Bangladesh

    International Nuclear Information System (INIS)

    Azad, Abul K.; Nashreen, S.W.; Sultana, J.

    2006-01-01

    Carbon dioxide (CO 2 ) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO 2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO 2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO 2 release from all primary fossil fuels used in Bangladesh amounted to 5,072 Gg in 1977, and 14,423 Gg in 1995. The total amounts of CO 2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83,026 Gg (50% of CO 2 emission), 72,541 Gg (44% of CO 2 emission), and 9,545 Gg (6% CO 2 emission), respectively. A trend in CO 2 emission with projections to 2070 is generated. In 2070, total estimated CO 2 emission will be 293,260 Gg with a current growth rate of 6.34%/y. CO 2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO 2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO 2 emission is less than that of petroleum products. The use of coal as well as CO 2 emission from coal is expected to gradually decrease

  5. A Multi-scale Approach for CO2 Accounting and Risk Analysis in CO2 Enhanced Oil Recovery Sites

    Science.gov (United States)

    Dai, Z.; Viswanathan, H. S.; Middleton, R. S.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S. Y.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2015-12-01

    Using carbon dioxide in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce carbon sequestration costs in the absence of greenhouse gas emissions policies that include incentives for carbon capture and storage. This study develops a multi-scale approach to perform CO2 accounting and risk analysis for understanding CO2 storage potential within an EOR environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and transport in the Marrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2 injection rate, CO2 first breakthrough time, CO2 production rate, cumulative net CO2 storage, cumulative oil and CH4 production, and water injection and production rates. A global sensitivity analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/CH4 recovery rates. The well spacing (the distance between the injection and production wells) and the sequence of alternating CO2 and water injection are the major operational parameters for designing an effective five-spot CO2-EOR pattern. The response surface analysis shows that net CO2 injection rate increases with the increasing reservoir thickness, permeability, and porosity. The oil/CH4 production rates are positively correlated to reservoir permeability, porosity and thickness, but negatively correlated to the initial water saturation. The mean and confidence intervals are estimated for quantifying the uncertainty ranges of the risk metrics. The results from this study provide useful insights for understanding the CO2 storage potential and the corresponding risks of commercial-scale CO2-EOR fields.

  6. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  7. CO2 reduction strategies for the Northern Netherlands

    NARCIS (Netherlands)

    Benders, Rene; Moll, Henk; Noorman, Klaas Jan; Wiersma, Gerwin

    2011-01-01

    The concern about global warming initiated ambitious CO2 reduction goals in cities and regions in the Netherlands. This article describes a study of such a local initiative for the Northern Netherlands. The research aimed to develop CO2 reduction scenarios for 2035 with national and international

  8. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L; Pelayo, M; Recreo, F

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  9. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  10. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  11. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  12. Review of The Conduct of Inquiry in International Relations

    OpenAIRE

    McArthur, Daniel

    2011-01-01

    Book reviews in this journal usually proceed by considering the value of the book in question for Dewey scholarship. In this case I would rather say that this book is of interest to Dewey Scholars. Jackson's general project is heavily informed by Dewey's pluralistic brand of pragmatism. As Jackson notes “Dewey's Logic... stand[s] firmly in the tradition leading to this book” (216). Dewey scholars will greet Jackson's extension of this approach to the study of international relations warmly.

  13. Membrane-assisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production

    NARCIS (Netherlands)

    Bouma, R.H.B.; Vercauteren, F.F.; Os, P.J. van; Goetheer, E.L.V.; Berstad, D.; Anantharaman, R.

    2017-01-01

    CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO2 capture in the European cement industry. This paper concerns the performance modeling of membraneassisted CO2 liquefaction as a possible retrofit application for

  14. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    H.J. Herzog; E.E. Adams

    2000-08-23

    The specific objective of our project on CO{sub 2} ocean sequestration is to investigate its technical feasibility and to improve the understanding of any associated environmental impacts. Our ultimate goal is to minimize any impacts associated with the eventual use of ocean carbon sequestration to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2001 off the Kona Coast of Hawaii. At GHGT-4 in Interlaken, we presented a paper detailing our plans. The purpose of this paper is to present an update on our progress to date and our plans to complete the project. The co-authors of this paper are members of the project's Technical Committee, which has been formed to supervise the technical aspects and execution of this project.

  15. Studies on CO2-laser Hybrid-Welding of Copper

    DEFF Research Database (Denmark)

    Nielsen, Jakob Skov; Olsen, Flemming Ove; Bagger, Claus

    2005-01-01

    CO2-laser welding of copper is known to be difficult due to the high heat conductivity of the material and the high reflectivity of copper at the wavelength of the CO2-laser light. THis paper presents a study of laser welding of copper, applying laser hybrid welding. Welding was performed as a hy...

  16. On a CO2 ration

    International Nuclear Information System (INIS)

    De Wit, P.

    2003-01-01

    In 2 years all the large energy companies in the European Union will have a CO2 ration, including a system to trade a shortage or surplus of emission rights. A cost effective system to reduce emission, provided that the government does not auction the emission rights [nl

  17. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  18. A method for permanent CO2 mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, David C.; O' Connor, William K.; Nilsen, David N.; Rush, G.E.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Department of Energy (DOE) has been conducting research to investigate the feasibility of mineral carbonation as a method for carbon dioxide (CO2) sequestration. The research is part of a Mineral Carbonation Study Program within the Office of Fossil Energy in DOE. Other participants in this Program include DOE?s Los Alamos National Laboratory and National Energy Technology Laboratory, Arizona State University, and Science Applications International Corporation. The research has focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC reacts a slurry of magnesium silicate mineral with supercritical CO2 to produce a solid magnesium carbonate product. To date, olivine and serpentine have been used as the mineral reactant, but other magnesium silicates could be used as well. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and consequently, these results may also be applicable to strategies for in-situ geological sequestration. Baseline tests were begun in distilled water on ground products of foundry-grade olivine. Tests conducted at 150 C and subcritical CO2 pressures (50 atm) resulted in very slow conversion to carbonate. Increasing the partial pressure of CO2 to supercritical (>73 atm) conditions, coupled with agitation of the slurry and gas dispersion within the water column, resulted in significant improvement in the extent of reaction in much shorter reaction times. A change from distilled water to a bicarbonate/salt solution further improved the rate and extent of reaction. When serpentine, a hydrated mineral, was used instead of olivine, extent of reaction was poor until heat treatment was included prior to the carbonation reaction. Removal of the chemically bound water resulted in conversion to carbonate similar to those obtained with olivine. Recent results have shown that conversions of nearly 80 pct are achievable after 30 minutes

  19. Laboratory Experiments to Stimulate CO2 Ocean Disposal

    International Nuclear Information System (INIS)

    Masutani, S.M.

    1997-01-01

    This Technical Progress Report summarizes activities conducted over the period 8/16/96-2/15/97 as part of this project. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation is to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO 2 ) from coal and other fossil fuel combustion systems into the atmosphere. Critical technical uncertainties of ocean disposal of CO 2 will be addressed by performing experiments that: (1) characterize size spectra and velocities of a dispersed CO 2 phase in the near-field of a discharge jet; and (2) estimate rates of mass transfer from dissolving droplets of liquid CO 2 encased in a thin hydrate shell. Experiments will be conducted in a laboratory facility that can reproduce conditions in the ocean to depths of 600 m (1,969 ft). Between 8/16/96 and 2/15/97, activities focused on modifications to the experimental apparatus and the testing of diagnostics. Following completion of these tasks, experiments will be initiated and will continue through the end of the 36 month period of performance. Major accomplishments of this reporting period were: (1) delivery, set-up, and testing of the PDPA (Phase Doppler Particle Analyzer), which will be the principal diagnostic of the continuous CO 2 jet injection tests; (2) presentation of research papers and posters at the 212th American Chemical Society National Meeting and the Third International Conference on Carbon Dioxide Removal; (3) participation in the 4th Expert Workshop on Ocean Storage of Carbon Dioxide; (4) execution of an Agreement with ABB Management, Ltd. to support and extend the activities of this grant; and (5) initiation of research collaborations with Dr. P.M. Haugen of the University of

  20. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  1. Elevated CO2 and nitrogen effects on soil CO2 flux from a pasture upon return to cultivation

    Science.gov (United States)

    Soil CO2 efflux patterns associated with converting pastures back to row crop production remain understudied in the Southeastern U.S. A 10-year study of bahiagrass (Paspalum notatum Flüggé) response to elevated CO2 was conducted using open top field chambers on a Blanton loamy sand (loamy siliceous,...

  2. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  3. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  4. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    2010-01-01

    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  5. CO2 reduction by dematerialization

    Energy Technology Data Exchange (ETDEWEB)

    Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute, Utrecht University, Utrecht (Netherlands)

    2002-04-01

    Current policy for the reduction of greenhouse gases is mainly concerned with a number of types of solutions: energy saving, shifting to the use of low-carbon fuels and the implementation of sustainable energy technologies. Recent research has shown that a strategy directed at a more efficient use of materials could make a considerable contribution to reducing CO2 emissions. Moreover, the costs to society as a whole of such a measure appear to be very low.

  6. Exploration of public acceptance regarding CO2 underground sequestration technologies

    International Nuclear Information System (INIS)

    Uno, M.; Tokushige, K.; Mori, Y.; Furukawa, A.

    2005-01-01

    Mechanisms for gaining public acceptance of carbon dioxide (CO 2 ) aquifer sequestration were investigated through the use of questionnaires and focus group interviews. The study was performed as part of a CO 2 sequestration technology promotion project in Japan. The questionnaire portion of the study was conducted to determine public opinions and the extent of public awareness of CO 2 sequestration technologies. Questionnaires were distributed to undergraduate students majoring in environmental sociology. Participants were provided with newspaper articles related to CO 2 sequestration. The focus group study was conducted to obtain qualitative results to complement findings from the questionnaire survey. Results of the survey suggested that many participants were not particularly concerned about global warming, and had almost no knowledge about CO 2 sequestration. The opinions of some students were influenced by an awareness of similar types of facilities located near their homes. Attitudes were also influenced by the newspaper articles provided during the focus group sessions. However, many older participants did not trust information presented to them in newspaper format. Results suggested that many people identified afforestation as an alternative technology to CO 2 sequestration, and tended to think of CO 2 in negative terms as it contributed to global warming. Some participants assumed that CO 2 was harmful. The majority of respondents agreed with the development of CO 2 sequestration technologies as part of a program of alternative emissions abatement technologies. The provision of detailed information concerning CO 2 sequestration did not completely remove anxieties concerning the technology's potential negative impacts. It was concluded that a confident communications strategy is needed to persuade Japanese residents of the need to implement CO 2 sequestration technologies. 11 refs., 2 figs

  7. Practical guidebook about the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2005-01-01

    Since January 1, 2005, the European directive about the trading of CO 2 emission quotas foresees the allocation of CO 2 emission quotas to the industrial sectors that generate huge amounts of greenhouse gases (energy generation, cement, glass, steel-making, mineral and paper industries). A system of trading of CO 2 quotas has been implemented and allows the companies to exchange, sale or purchase quotas in order to be conformable with the volume of CO 2 they have been authorized to release in the atmosphere. This guidebook is a vade mecum of the management of emission quotas. It explains the actions of the international community in favor of the fight against greenhouse emissions, the 3 flexibility mechanisms, the French environmental policy, the European system of fight against climatic change, the CO 2 quotas system and its practical implementation. (J.S.)

  8. Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring

    International Nuclear Information System (INIS)

    Paoletti, E.; Seufert, G.; Della Rocca, G.; Thomsen, H.

    2007-01-01

    Photosynthetic stimulation and stomatal conductance (Gs) depression in Quercus ilex leaves at a CO 2 spring suggested no down-regulation. The insensitivity of Gs to a CO 2 increase (from ambient 1500 to 2000 μmol mol -1 ) suggested stomatal acclimation. Both responses are likely adaptations to the special environment of CO 2 springs. At the CO 2 -enriched site, not at the control site, photosynthesis decreased 9% in leaves exposed to 2x ambient O 3 concentrations in branch enclosures, compared to controls in charcoal-filtered air. The stomatal density reduction at high CO 2 was one-third lower than the concomitant Gs reduction, so that the O 3 uptake per single stoma was lower than at ambient CO 2 . No significant variation in monoterpene emission was measured. Higher trichome and mesophyll density were recorded at the CO 2 -enriched site, accounting for lower O 3 sensitivity. A long-term exposure to H 2 S, reflected by higher foliar S-content, and CO 2 might depress the antioxidant capacity of leaves close to the vent and increase their O 3 sensitivity. - Very high CO 2 concentrations did not compensate for the effects of O 3 on holm oak photosynthesis

  9. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  10. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects

    Science.gov (United States)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun

    2017-04-01

    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  11. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  12. RODZAJE METOD SEKWESTRACJI CO2

    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  13. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.

    2004-01-01

    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2 → MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2 → MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  14. CO2 emissions: a peak level in 2010

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    After a reduction of CO 2 emissions in 2009 due to the financial crisis, these emissions have again reached a peak in 2010: 30.6 Gt, it means an increase by 5% compared to the previous peak. According to IEA (International Energy Agency): 44% of the emissions come from coal, 36% from oil and 20% from natural gas, and OECD countries are responsible of 40% of the CO 2 global emissions but only of 25% of their increase since 2009. For China and India the emissions of CO 2 have increased sharply due to their strong economic growth. (A.C.)

  15. CO2 maximum in the oxygen minimum zone (OMZ)

    OpenAIRE

    Paulmier, Aurélien; Ruiz-Pino, D.; Garcon, V.

    2011-01-01

    International audience; Oxygen minimum zones (OMZs), known as suboxic layers which are mainly localized in the Eastern Boundary Upwelling Systems, have been expanding since the 20th "high CO2" century, probably due to global warming. OMZs are also known to significantly contribute to the oceanic production of N2O, a greenhouse gas (GHG) more efficient than CO2. However, the contribution of the OMZs on the oceanic sources and sinks budget of CO2, the main GHG, still remains to be established. ...

  16. Predictive value of 14CO2 breath tests for clinical use of 13CO2 breath tests

    International Nuclear Information System (INIS)

    Glaubitt, D.M.H.

    1975-01-01

    The knowledge of the efficiency of 14 CO 2 breath tests makes possible the comparison of the efficiency of analogous tests using the stable isotope 13 C. 14 CO 2 exhalation studies render overall information. After parenteral administration of a 14 C labeled substrate, 14 CO 2 breath tests permit insight into the metabolism of the 14 C substrate and the associated intermediary metabolism. If the 14 C substrate is given orally or by intraduodenal instillation, 14 CO 2 breath tests supply information not only about gastrointenstinal absorption and digestion but also about the intermediary metabolism yielding 14 CO 2 , after the administered substrate or its degradation products have been absorbed in the gastrointestinal tract. The fraction of 14 CO 2 arising from absorption, digestion and intermediary metabolism can be estimated only by additional methods. 14 CO 2 breath tests are unable to delineate single metabolic reactions involved in the formation of carbon dioxide. Under these considerations the clinical application of 14 CO 2 breath tests may provide diagnostically useful results, especially in internal medicine and surgery. The tests are suitable for intraindividual assessment of the course of a disease and of therapeutic effects. They may be important in the research of the metabolism of 14 C labeled substrates

  17. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)

    2000-06-01

    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  18. CO2 storage. An internet study by order of the city of Barendrecht, Netherlands; CO2 opslag. Een internet onderzoek in opdracht van Gemeente Barendrecht

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, T.

    2010-06-15

    The Dutch cabinet has decided that a pilot for CO2 storage will be conducted in the city of Barendrecht. This study has examined how the inhabitants of municipalities that quality for CO2 storage feel about this. [Dutch] Het kabinet heeft besloten dat in Barendrecht een proef wordt uitgevoerd met CO2 opslag. In dit onderzoek is nagegaan hoe inwoners van gemeenten die potentieel in aanmerking komen voor CO2 opslag daarover denken.

  19. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  20. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  1. Grey forecasting model for CO2 emissions: A Taiwan study

    International Nuclear Information System (INIS)

    Lin, Chiun-Sin; Liou, Fen-May; Huang, Chih-Pin

    2011-01-01

    Highlights: → CO 2 is the most frequently implicated in global warming. → The CARMA indicates that the Taichung coal-fired power plants had the highest CO 2 emissions in the world. → GM(1,1) prediction accuracy is fairly high. → The results show that the average residual error of the GM(1,1) was below 10%. -- Abstract: Among the various greenhouse gases associated with climate change, CO 2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO 2 in 2007 - the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO 2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO 2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO 2 emissions in Taiwan from 2010 until 2012. Forecasts of CO 2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO 2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO 2 emissions by curbing the unnecessary the consumption of energy.

  2. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.

    1998-01-01

    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  3. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  4. Improvements and artifact analysis in conductivity images using multiple internal electrodes

    International Nuclear Information System (INIS)

    Farooq, Adnan; McEwan, Alistair Lee; Woo, Eung Je; Oh, Tong In; Tehrani, Joubin Nasehi

    2014-01-01

    Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations such as intensive care or RF ablation. This paper addresses the research question related to the benefit of one or more internal electrodes usage since these are invasive. Internal electrodes would be able to reduce the effect of insulating boundaries such as fat and bone and provide improved internal sensitivity. We found there was a measurable benefit with increased numbers of internal electrodes in saline tanks of a cylindrical and complex shape with up to two insulating boundary gel layers modeling fat and muscle. The internal electrodes provide increased sensitivity to internal changes, thereby increasing the amplitude response and improving resolution. However, they also present an additional challenge of increasing sensitivity to position and modeling errors. In comparison with previous work that used point sources for the internal electrodes, we found that it is important to use a detailed mesh of the internal electrodes with these voxels assigned to the conductivity of the internal electrode and its associated holder. A study of different internal electrode materials found that it is optimal to use a conductivity similar to the background. In the tank with a complex shape, the additional internal electrodes provided more robustness in a ventilation model of the lungs via air filled balloons. (paper)

  5. Alteration of bentonite when contacted with supercritical CO2

    Science.gov (United States)

    Jinseok, K.; Jo, H. Y.; Yun, S. T.

    2014-12-01

    Deep saline formations overlaid by impermeable caprocks with a high sealing capacity are attractive CO2 storage reservoirs. Shales, which consist of mainly clay minerals, are potential caprocks for the CO2 storage reservoirs. The properties of clay minerals in shales may affect the sealing capacity of shales. In this study, changes in clay minerals' properties when contacted with supercritical (SC) CO2 at various conditions were investigated. Bentonite, whichis composed of primarily montmorillonite, was used as the clay material in this study. Batch reactor tests on wet bentonite samples in the presence of SC CO2 with or without aqueous phases were conducted at high pressure (12 MPa) and moderate temperature (50 oC) conditions for a week. Results show that the bentonite samples obtained from the tests with SC CO2 had less change in porosity than those obtained from the tests without SC CO2 (vacuum-drying) at a given reaction time, indicating that the bentonite samples dried in the presence of SC CO2 maintained their structure. These results suggest that CO2 molecules can diffuse into interlayer of montmorillonite, which is a primary mineral of bentonite, and form a single CO2 molecule layer or double CO2 molecule layers. The CO2 molecules can displace water molecules in the interlayer, resulting in maintaining the interlayer spacing when dehydration occurs. Noticeable changes in reacted bentonite samples obtained from the tests with an aqueous phase (NaCl, CaCl2, or sea water) are decreases in the fraction of plagioclase and pyrite and formation of carbonate minerals (i.e., calcite and dolomite) and halite. In addition, no significant exchanges of Na or Ca on the exchangeable complex of the montmorillonite in the presence of SC CO2 occurred, resulting in no significant changes in the swelling capacity of bentonite samples after reacting with SC CO2 in the presence of aqueous phases. These results might be attributed by the CO2 molecule layer, which prevents

  6. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    International Nuclear Information System (INIS)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-01

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  7. Social Learning and the Mitigation of Transport CO2 Emissions

    OpenAIRE

    Maha Al Sabbagh

    2017-01-01

    Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the gen...

  8. CO2 reduction through energy conservation

    International Nuclear Information System (INIS)

    1991-05-01

    A study was carried out of the potential to economically reduce carbon dioxide emissions through energy conservation in the petroleum and natural gas industry. The study examined current and projected emissions levels, cogeneration at gas plants, flaring, economics, regulation, reporting requirements, implementation, and research and development. Economically attractive energy conservation measures can reduce oil and gas industry, exclusive of Athabasca oil sands operations, CO 2 emissions by 6-7%. The energy conservation options identified range from field energy awareness committees through to equipment retrofits and replacement. At ca 3 million tonnes/y, these reductions will not offset the increases in oil and gas related CO 2 emissions anticipated by producers and Alberta government agencies. There will be increasing emphasis on in-situ bitumen production, more energy intensive light crude oil production and increasing natural gas sales, increasing energy inputs in excess of reductions. Cogeneration of electricity for utility company distribution and for internally required steam at gas plants and in-situ production sites is not economic due to low electricity prices. 8 tabs

  9. The Apparel Industry and Codes of Conduct: A Solution to the International Child Labor Problem?

    Science.gov (United States)

    Bureau of International Labor Affairs (DOL), Washington, DC.

    Corporate codes of conduct prohibiting the use of child labor are becoming more common as consumers are increasingly calling upon companies to take responsibility for the conditions under which the goods they sell are manufactured. This report (the third volume in the Bureau of International Labor Affairs' international child labor series) details…

  10. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  11. Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia

    2005-01-01

    Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

  12. Bioelectrochemical conversion of CO2 to chemicals

    NARCIS (Netherlands)

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J.N.; Strik, David P.B.T.B.; Pant, Deepak

    2017-01-01

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds

  13. A multi-regional MARKAL-MACRO model to study an international market of CO2 emission permits. A detailed analysis of a burden sharing strategy among the Netherlands, Sweden and Switzerland

    International Nuclear Information System (INIS)

    Bahn, O.; Barreto, L.; Bueeler, B.; Kypreos, S.

    1997-11-01

    The development of a multi-regional MARKAL-MACRO (mMM) model and associated solution techniques have been actively continued during the first year (July 1996 - June 1997) of the IEA/ETSAP/Annex VI. This has been a joint research effort between: - the Systems Analysis Section of the Paul Scherrer Institute (PSI), - the Inst. for Operations Research (IFOR) of the Swiss Federal Inst. of Technology at Zurich, - the Logistics Lab. (Logilab) of the Univ. of Geneva, and - the different ETSAP partners that provide the regional MARKAL-MACRO (MM) models. This report intends to give an update on the development of mMM and associated solution techniques, highlighting the progress made since July 1996. It details also first JI study performed with mMM. The mMM model enables one to study an international co-operation to curb jointly carbon dioxide (CO 2 ) emissions through a market of emission permits, and to evaluate the economic implications of co-ordinating abatement policies on the participating regions. Along with emission permits, the regions may exchange other goods. So far, only an aggregate good in monetary unit has been considered. The mMM model integrates regional MM models into a meta-modelling framework. This integration can be done following two equivalent alternatives: mMM can be formulated either with market equilibrium conditions, or with an aggregated utility function and a global excess constraint. In both alternatives, regional MM models have to be extended by coherent budget and/or trade relationships. A first coding of a mMM model with three countries had been done in GAMS. Work has been done to generalise this coding to consider more traded goods and more countries. To solve mMM, two alternative mathematical methods can be used. The first one considers mMM formulated with market equilibrium conditions, and solves it as a variational inequality problem using a cutting plane algorithm. The second one considers mMM formulated with an aggregated utility

  14. Possibilities for reducing CO2 emissions by rational energy used as viewed by enterprises

    International Nuclear Information System (INIS)

    Preuss, H.J.

    1993-01-01

    From the view of the industry, energy conservation offers many options for CO 2 reduction. CO 2 reduction in electric power generation is particularly important. The global CO 2 problem cannot be solved by any single measure, but international efforts are required in all production and consumption sectors. Providing energy for the growing world population while at the same time reducing CO 2 is one of the biggest challenges ever faced by mankind. (orig./UA) [de

  15. Analysis of ex situ processes of CO2 sequestration. Final report

    International Nuclear Information System (INIS)

    Touze, S.; Bourgeois, F.; Baranger, P.; Durst, P.

    2004-01-01

    The aim of this study is to bring quantitative elements to evaluate the validation of the CO 2 mineral sequestration to limit the greenhouse effect gases. This analysis aims to calculate the CO 2 accounting of the system (internal energy production balance the energy expend) sequestrated CO 2 and produced CO 2 . The first part detailed the possible experimental solutions. Then two carbonation processes, direct and indirect, have been chosen of the analysis. (A.L.B.)

  16. The greenhouse effect and the amount of CO2 emissions in Romania

    International Nuclear Information System (INIS)

    Manea, Gh.

    1992-01-01

    In order to reduce the CO 2 emissions, responsible by the greenhouse effect on Terra, an international control for monitoring them is to be instated. The development of methods for reducing the CO 2 emissions, implies the identification and evaluation of the CO 2 sources, the forecasting of probable evolution of the CO 2 emissions, and also the assessment of the economic impact. This paper tries to accomplish such an evaluation and to draft several scenarios for reduction of the CO 2 emissions. Also considerations about the suitability of the Romanian adhesion to the international treaties regarding the greenhouse effect monitoring are presented. (author). 7 tabs

  17. Input-output analysis of CO2 emissions embodied in trade. The effects of sector aggregation

    International Nuclear Information System (INIS)

    Su, Bin; Huang, H.C.; Ang, B.W.; Zhou, P.

    2010-01-01

    Energy-related CO 2 emissions embodied in international trade have been widely studied by researchers using the input-output analysis framework. These studies are often conducted at a specific level of sector aggregation and the choice made to a large extent is dictated by economic and energy data availability. We investigate analytically the possible effects of sector aggregation on the study results. We conduct empirical studies using the data of China and Singapore where energy-related CO 2 emissions embodied in their exports are estimated at different levels of sector aggregation. A finding from the studies is that levels around 40 sectors appear to be sufficient to capture the overall share of emissions embodied in a country's exports. Another finding is that in approximating the 'ideal' situation the hybrid data treatment approach produces better results than the uniformly distributed data treatment approach. Other findings and some recommendations are also presented. (author)

  18. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  19. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  20. US calls for CO2 cut

    International Nuclear Information System (INIS)

    Roberts, M.

    1996-01-01

    The US Government has outraged energy-intensive industries by calling for an international agreement to reduce global emissions of carbon dioxide (CO 2 ) and other greenhouse gases. In a clear policy shift, the US--the world's largest emitter of greenhouse gases and not previously an advocate of curbing them--says it now intends to lead moves to prevent global warming. At last week's Second Conference of the Parties (COP-2) to the United Nations Framework Convention on Climate Change (FCCC), US Undersecretary for Global Affairs Timothy Wirth called for open-quotes an agreement that sets a realistic, verifiable, and binding medium-term emissions target.close quotes Individual countries should be free to choose how to meet targets, and the US favors market-based mechanisms, he says. open-quotes Climate change is a serious problem and will require sustained long-term investment to be addressed successfully,close quotes Wirth says

  1. Integrated system for capturing CO2 as feedstock for algae production: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016, 14-18 November 2016, Lausanne, Switzerland

    NARCIS (Netherlands)

    Könst, P.M.; Hernandez Mireles, I.; Stel, R.W. van der; Os, P.M van; Goetheer, E.L.V.

    2017-01-01

    In view of its promise as sustainable process for CO2 capture and its potential in the production of feed, food and natural high value products such as omega-3 fatty acids and anti-oxidants such as astaxanthin, large scale algae cultivation is gaining commercial interest. Currently, most systems are

  2. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  3. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is

  4. Capturing and storing CO2 to combat the greenhouse effect. What IFP is doing

    International Nuclear Information System (INIS)

    2009-01-01

    The growing awareness of the international community and the convergence of the scientific data concerning climate change make it urgent to deploy, throughout the world, technologies to reduce emissions of greenhouse gases. Indeed, the growth of the world energy demand will prevent any rapid reduction of the use of fossil fuels - oil, natural gas, and coal - that are the main sources of greenhouse gas emissions. To reconcile the use of these resources with control of the emissions responsible for global warming, the capture and storage of CO 2 are a very promising approach; the economic and industrial stakes are high. To meet the objective of reducing CO 2 emissions, IFP is exploring three approaches: The first approach is to reduce energy consumption by improving the efficiency of energy converters, in particular internal combustion engines. A second approach is to reduce the carbon content of energy by favoring the use of natural gas or by incorporating in the fuel recycled carbon (biofuels and synfuels) and by developing hydrogen as an energy carrier. The third approach is to capture the CO 2 from industrial processes used for electricity, steel, and cement production, which emit it in large quantities, then store it underground so as to keep it out of the atmosphere. This approach for reducing the CO 2 emissions consists in capturing the CO 2 (Post-combustion, oxy-combustion), transporting it to the place of storage, then injecting it underground to store it. Storage sites are selected and evaluated prior to injection in order to estimate the injectivity, the propagation of CO 2 in the subsoil and the impact of geochemical and geomechanical transformations on the tightness of the overburden and of the injection well. The injection phase is followed by a phase of monitoring to ensure the safety and long-term viability of CO 2 storage facilities. IFP, through the research it is conducting either alone or in partnership with universities, research centers, and the

  5. Does Elevated CO2 Alter Silica Uptake in Trees?

    Directory of Open Access Journals (Sweden)

    Robinson W. Fulweiler

    2015-01-01

    Full Text Available Human activities have greatly altered global carbon (C and N (N cycling. In fact, atmospheric concentrations of carbon dioxide (CO2 have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global carbon dioxide fertilization, long-term free-air CO2 enrichment (FACE experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine, and five hardwood species. Specifically, we measured foliar biogenic silica (BSi concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20% and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  6. Forest succession at elevated CO2; TOPICAL

    International Nuclear Information System (INIS)

    Clark, James S.; Schlesinger, William H.

    2002-01-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response

  7. Tradable CO2 permits in Danish and European energy policy

    DEFF Research Database (Denmark)

    Varming, S.; Eriksen, P.B.; Grohnheit, Poul Erik

    2000-01-01

    This report presents the results of the project "Tradable CO2 permits in Danish and European energy policy". The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operationbetween Elsamprojekt A/S (project manager...... for a tradable CO_2 permit market for the energy sector in the EU. Experience from the tradable SO_2 permit market in the US is taken into consideration as well. Topresent an overview of price estimates of CO_2 and greenhouse gas permits in different models as well as discussing the assumptions leading...... to the different outcomes. Furthermore, the special role of backstop technologies in relation to permit prices isanalysed. To analyse the connection between CO_2 permit prices and technology choice in the energy sector in the medium and longer term (i.e., 2010 and 2020) with a special emphasis on combined heat...

  8. Second law analysis of the transcritical CO2 refrigeration cycle

    International Nuclear Information System (INIS)

    Fartaj, Amir; Ting, David S.-K.; Yang, Wendy W.

    2004-01-01

    Because of the global warming impact of HFCs, the use of natural refrigerants has received worldwide attention. Efficient use of refrigerants is of pressing concern to the present automotive and HVAC industries. The natural refrigerant, carbon dioxide (CO 2 ), exhibits promise for use in automotive air conditioning systems, in particular the transcritical CO 2 refrigeration cycle. The objective of this work is to identify the main factors that affect CO 2 system performance. A second law of thermodynamic analysis on the entire CO 2 refrigeration cycle is conducted so that the effectiveness of the components of the system can be deduced and ranked, allowing future efforts to focus on improving the components that have the highest potential for advancement. The analysis reveals that the compressor and the gas cooler exhibit the largest non-idealities within the system, and hence, efforts should be focused on improving these components

  9. CO2 clearance by membrane lungs.

    Science.gov (United States)

    Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H

    2018-05-01

    Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO 2 than adding oxygen, but the range of CO 2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO 2 removal capacity. CO 2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO 2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO 2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO 2 removal.

  10. A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage

    DEFF Research Database (Denmark)

    Kopp, Andreas; Binning, Philip John; Johannsen, K.

    2010-01-01

    2 leakage from subsurface reservoirs. The amounts of leaking CO2 are estimated by evaluating the extent of CO2 plumes after numerically simulating a large number of reservoir realizations with a radially symmetric, homogeneous model To conduct the computationally very expensive simulations, the 'CO2...

  11. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  12. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models

    International Nuclear Information System (INIS)

    Li, Hailong; Jakobsen, Jana P.; Wilhelmsen, Oivind; Yan, Jinyue

    2011-01-01

    Highlights: → Accurate knowledge about the thermodynamic properties of CO 2 is essential in the design and operation of CCS systems. → Experimental data about the phase equilibrium and density of CO 2 -mixtures have been reviewed. → Equations of state have been reviewed too regarding CO 2 -mixtures. None has shown any clear advantage in CCS applications. → Identified knowledge gaps suggest to conducting more experiments and developing novel models. -- Abstract: The knowledge about pressure-volume-temperature-composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO 2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO 2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour-liquid equilibrium, there are no data about CO 2 /COS and few data about the CO 2 /N 2 O 4 mixture. For the volume property, there are no published experimental data for CO 2 /O 2 , CO 2 /CO, CO 2 /N 2 O 4 , CO 2 /COS and CO 2 /NH 3 and the liquid volume of CO 2 /H 2 . The experimental data available for multi-component CO 2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO 2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee-Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour-liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.

  13. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  14. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  15. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  16. CO2 flux from Javanese mud volcanism.

    Science.gov (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  17. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  18. Explaining CO2 fluctuations observed in snowpacks

    Science.gov (United States)

    Graham, Laura; Risk, David

    2018-02-01

    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  19. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  20. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL CARBON DENSITY FRACTIONS IN A DOUGLAS FIR MESOCOSM STUDY

    Science.gov (United States)

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  1. The conduct of inquiry in international relations: The view from graduate school

    OpenAIRE

    Banks, David; O'Mahoney, Joseph

    2010-01-01

    Jackson’s book, The Conduct of Inquiry in International Relations, is most likely to be assigned or recommended in graduate classes addressing the philosophy of science, qualitative methodology, and research design. It might then be useful to ask two graduate students whether this is a good idea. How helpful is yet another book on the meta-theoretical status of International Relations? Our answer to this question has four parts. First, we ask whether and how Jackson’s ordering scheme clarifie...

  2. Comparative methane estimation from cattle based on total CO2 production using different techniques

    Directory of Open Access Journals (Sweden)

    Md N. Haque

    2017-06-01

    Full Text Available The objective of this study was to compare the precision of CH4 estimates using calculated CO2 (HP by the CO2 method (CO2T and measured CO2 in the respiration chamber (CO2R. The CO2R and CO2T study was conducted as a 3 × 3 Latin square design where 3 Dexter heifers were allocated to metabolic cages for 3 periods. Each period consisted of 2 weeks of adaptation followed by 1 week of measurement with the CO2R and CO2T. The average body weight of the heifer was 226 ± 11 kg (means ± SD. They were fed a total mixed ration, twice daily, with 1 of 3 supplements: wheat (W, molasses (M, or molasses mixed with sodium bicarbonate (Mbic. The dry mater intake (DMI; kg/day was significantly greater (P < 0.001 in the metabolic cage compared with that in the respiration chamber. The daily CH4 (L/day emission was strongly correlated (r = 0.78 between CO2T and CO2R. The daily CH4 (L/kg DMI emission by the CO2T was in the same magnitude as by the CO2R. The measured CO2 (L/day production in the respiration chamber was not different (P = 0.39 from the calculated CO2 production using the CO2T. This result concludes a reasonable accuracy and precision of CH4 estimation by the CO2T compared with the CO2R.

  3. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  4. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum : Characterization of leaf and stem CO2 fixation and H2O vapor exchange under controlled conditions.

    Science.gov (United States)

    Osmond, C B; Smith, S D; Gui-Ying, B; Sharkey, T D

    1987-07-01

    The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO 2 concentrations (to 14000 μbar), but fixation of this internal CO 2 was 6-10 times slower than fixation of atmospheric CO 2 by these stems. Although the pool of CO 2 is a trivial source of CO 2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO 2 fixation in CO 2 response curves, light and temperature response curves in IRGA systems, and by means of O 2 exchange at CO 2 saturation in a leaf disc O 2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO 2 and O 2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.

  5. Potential gains from CO2 trading in the EU

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2003-01-01

    A new Green Paper from the European Commission on emissions trading foresees the setting-up of a CO2 trading system within the EU for the energy sector. Because any such international environmental agreement is self-enforcing, the participants must have an economic net gain from joining the propo......A new Green Paper from the European Commission on emissions trading foresees the setting-up of a CO2 trading system within the EU for the energy sector. Because any such international environmental agreement is self-enforcing, the participants must have an economic net gain from joining...... the proposed system. Our contribution is therefore to follow the Green Paper proposal and investigate whether member countries and the largest industrial boilers in the electricity sector actually will get significant net gains from CO2 trade in the European Union rather than undertaking domestic actions...... solely. We show, based on PRIMES model, that a full CO2 emission trading system between Annex B countries suggest overall cost savings in the order of 40 % compared to a situation with no trading at all between Member States. A tradable CO2 permit scheme with comprehensive coverage of emissions within...

  6. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  7. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  8. Influence of trade on national CO2 emissions

    International Nuclear Information System (INIS)

    Munksgaard, Jesper; Pade, Lise-Lotte; Minx, Jan; Lenzen, Manfred

    2005-01-01

    International trade has an impact on national CO 2 emissions and consequently on the ability to fulfil national CO 2 reduction targets. Through goods and services traded in a globally interdependent world, the consumption in each country is linked to greenhouse gas emissions in other countries. It has been argued that in order to achieve equitable reduction targets, international trade has to be taken into account when assessing nations' responsibility for abating climate change. Especially for open economies such as Denmark, greenhouse gases embodied in internationally traded commodities can have a considerable influence on the national 'greenhouse gas responsibility'. By using input-output modelling, we analyse the influence from international trade on national CO 2 emissions. The aim is to show that trade is the key to define CO 2 responsibility on a macroeconomic level and that imports should be founded in a multi-region model approach. Finally, the paper concludes on the need to consider the impact from foreign trade when negotiating reduction targets and base line scenarios. (Author)

  9. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  10. CO2 sequestration: Storage capacity guideline needed

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  11. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1996-01-01

    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  12. Coupled multiphase reactive flow and mineral dissolution-precipitation kinetics: Examples of long-term CO2 sequestration in Utsira Sand, Norway and Mt. Simon Formation, Midwest USA

    Science.gov (United States)

    Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.

    2017-12-01

    The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume

  13. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  14. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  15. Exergy and exergoeconomic analyses of a supercritical CO_2 cycle for a cogeneration application

    International Nuclear Information System (INIS)

    Wang, Xurong; Yang, Yi; Zheng, Ya; Dai, Yiping

    2017-01-01

    Detailed exergy and exergoeconomic analyses are performed for a combined cogeneration cycle in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by a transcritical CO_2 cycle (tCO_2) for generating electricity. Thermodynamic and exergoeconomic models are developed on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are then conducted to evaluate the influence of key decision variables on the sCO_2/tCO_2 performance. Finally, the combined cycle is optimized from the viewpoint of exergoeconomics. It is found that, combining the sCO_2 with a tCO_2 cycle not only enhances the energy and exergy efficiencies of the sCO_2, but also improves the cycle exergoeconomic performance. The results show that the most exergy destruction rate takes place in the reactor, and the components of the tCO_2 bottoming cycle have less exergy destruction. When the optimization is conducted based on the exergoeconomics, the overall exergoeconomic factor, the total cost rate and the exergy destruction cost rate are 53.52%, 11243.15 $/h and 5225.17 $/h, respectively. The optimization study reveals that an increase in reactor outlet temperature leads to a decrease in total cost rate and total exergy destruction cost rate of the system. - Highlights: • Exergy and exergoeconomic analyses of a combined sCO_2/tCO_2 cycle were performed. • Exergoeconomic optimization of the sCO_2/tCO_2 cycle was presented. • The reactor had the highest exergy loss among sCO_2/tCO_2 cycle components. • The overall exergoeconomic factor was up to 53.5% for the optimum case.

  16. Review of Project Permits under the London Protocol - An Assessment of the Proposed P18-4 CO2 Storage Site: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016. 14 November 2016 through 18 November

    OpenAIRE

    Mikunda, T.; Dixon, T.

    2017-01-01

    The London Protocol (1996) is a global agreement to promote the protection of the marine environment by prohibiting the dumping of wastes and other matter into the sea. Under the Protocol all dumping is prohibited, with the exception of a limited number of selected wastes on the so-called "reverse list", which can be considered for dumping. In 2007, an amendment entered into force which permitted CO2 streams to be considered for dumping under the London Protocol. The amendment was shortly fol...

  17. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  18. DF--CO2 transfer laser development

    International Nuclear Information System (INIS)

    Tregay, G.W.; Drexhage, M.G.; Wood, L.M.; Andrysiak, S.J.

    1975-01-01

    Power extraction and chemiluminescence experiments have been conducted in the large-scale DF-CO 2 transfer chemical laser (TCL) (IRIS-I and IRIS-II) facility at Bell Aerospace Company (BAC). The modular design of the device allowed testing to be conducted with both a supersonic nozzle bank and also in subsonic flow with sonic injection for the deuterium. Power levels of 15 kW at 10.6 μ were obtained in IRIS-I (subsonic) employing an unstable resonator with a 50 percent output coupling ratio and cavity pressure of 35 torr. For IRIS-II (supersonic) somewhat lower power was obtained. In both systems the fluorine dissociation (α = F/F + 2F 2 ) was less than 0.01. Chemiluminescent emission from HF and DF was monitored under zero-power conditions along an axis parallel to the laser-mirror axis. From the measured DF-concentration profiles it can be inferred that vibrationally excited DF is being produced throughout the cavity and, accordingly, the production of DF must be attributed largely to the chain reaction

  19. Corn residue removal and CO2 emissions

    Science.gov (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  20. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, K.; Kovscek, A.R.; Orr, F.M. Jr.

    2005-01-01

    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage. [Author

  1. NIST Photoionization of CO2 (ARPES) Database

    Science.gov (United States)

    SRD 119 NIST Photoionization of CO2 (ARPES) Database (Web, free access)   CO2 is studied using dispersed synchrotron radiation in the 650 Å to 850 Å spectral region. The vibrationally resolved photoelectron spectra are analyzed to generate relative vibrational transition amplitudes and the angular asymmetry parameters describing the various transitions observed.

  2. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  3. Eindhoven Airport : towards zero CO2 emissions

    NARCIS (Netherlands)

    Jorge Simoes Pedro, Joana

    2015-01-01

    Eindhoven airport is growing and it is strongly committed to take this opportunity to invest in innovative solutions for a sustainable development. Therefore, this document proposes a strategic plan for reaching Zero CO2 emissions at Eindhoven airport. This document proposes to reduce the CO2

  4. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance...

  5. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, Kristian; Kovscek, Anthony R.; Orr, Franklin M.

    2005-01-01

    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage

  6. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda

    2014-01-01

    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  7. Flow assurance studies for CO2 transport

    NARCIS (Netherlands)

    Veltin, J.; Belfroid, S.P.C.

    2013-01-01

    In order to compensate for the relative lack of experience of the CCTS community, Flow Assurance studies of new CO2 pipelines and networks are a very important step toward reliable operation. This report details a typical approach for Flow Assurance study of CO2 transport pipeline. Considerations to

  8. Effects of outplanting horticultural species on soil CO2 efflux

    Science.gov (United States)

    Increased atmospheric carbon dioxide (CO2) concentration is widely thought to be the main driving factor behind global climate change. Much of the work on reducing greenhouse gas (GHG) emissions and methods of carbon (C) sequestration has been conducted in row crop and forest systems; however, virt...

  9. Growth strategy of Norway spruce under air elevated [CO2

    Science.gov (United States)

    Pokorny, R.; Urban, O.; Holisova, P.; Sprtova, M.; Sigut, L.; Slipkova, R.

    2012-04-01

    Plants will respond to globally increasing atmospheric CO2 concentration ([CO2]) by acclimation or adaptation at physiological and morphological levels. Considering the temporal onset, physiological responses may be categorized as short-term and morphological ones as long-term responses. The degree of plant growth responses, including cell division and cell expansion, is highly variable. It depends mainly on the specie's genetic predisposition, environment, mineral nutrition status, duration of CO2 enrichment, and/or synergetic effects of other stresses. Elevated [CO2] causes changes in tissue anatomy, quantity, size, shape and spatial orientation and can result in altered sink strength. Since, there are many experimental facilities for the investigation of elevated [CO2] effects on trees: i) closed systems or open top chambers (OTCs), ii) semi-open systems (for example glass domes with adjustable lamella windows - DAWs), and iii) free-air [CO2] enrichments (FACE); the results are still unsatisfactory due to: i) relatively short-term duration of experiments, ii) cultivation of young plants with different growth strategy comparing to old ones, iii) plant cultivation under artificial soil and weather conditions, and iv) in non-representative stand structure. In this contribution we are discussing the physiological and morphological responses of Norway spruce trees cultivated in DAWs during eight consecutive growing seasons in the context with other results from Norway spruce cultivation under air-elevated [CO2] conditions. On the level of physiological responses, we discuss the changes in the rate of CO2 assimilation, assimilation capacity, photorespiration, dark respiration, stomatal conductance, water potential and transpiration, and the sensitivity of these physiological processes to temperature. On the level of morphological responses, we discuss the changes in bud and growth phenology, needle and shoot morphology, architecture of crown and root system, wood

  10. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  11. The ins and outs of CO2

    Science.gov (United States)

    Raven, John A.; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  12. Large-scale CO2 storage — Is it feasible?

    Directory of Open Access Journals (Sweden)

    Johansen H.

    2013-06-01

    Full Text Available CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit. The large-scale storage challenge (several Gigatons of CO2 per year is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1 finding reservoirs with adequate storage capacity, 2 make sure that the sealing capacity above the reservoir is sufficient, 3 build the infrastructure for transport, drilling and injection, and 4 set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1 the storage activity results in pressure increase in the subsurface, 2 there is no production of fluids that give important feedback on reservoir performance, and 3 the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples

  13. Large-scale CO2 storage — Is it feasible?

    Science.gov (United States)

    Johansen, H.

    2013-06-01

    CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit). The large-scale storage challenge (several Gigatons of CO2 per year) is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1) finding reservoirs with adequate storage capacity, 2) make sure that the sealing capacity above the reservoir is sufficient, 3) build the infrastructure for transport, drilling and injection, and 4) set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1) the storage activity results in pressure increase in the subsurface, 2) there is no production of fluids that give important feedback on reservoir performance, and 3) the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples close to the

  14. NiCo2O4-Based Supercapacitor Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chenggang Wang

    2017-02-01

    Full Text Available In recent years, the research on supercapacitors has ushered in an explosive growth, which mainly focuses on seeking nano-/micro-materials with high energy and power densities. Herein, this review will be arranged from three aspects. We will summarize the controllable architectures of spinel NiCo2O4 fabricated by various approaches. Then, we introduce their performances as supercapacitors due to their excellent electrochemical performance, including superior electronic conductivity and electrochemical activity, together with the low cost and environmental friendliness. Finally, the review will be concluded with the perspectives on the future development of spinel NiCo2O4 utilized as the supercapacitor electrodes.

  15. NiCo2O4-Based Supercapacitor Nanomaterials

    Science.gov (United States)

    Wang, Chenggang; Zhou, E; He, Weidong; Deng, Xiaolong; Huang, Jinzhao; Ding, Meng; Wei, Xianqi; Liu, Xiaojing; Xu, Xijin

    2017-01-01

    In recent years, the research on supercapacitors has ushered in an explosive growth, which mainly focuses on seeking nano-/micro-materials with high energy and power densities. Herein, this review will be arranged from three aspects. We will summarize the controllable architectures of spinel NiCo2O4 fabricated by various approaches. Then, we introduce their performances as supercapacitors due to their excellent electrochemical performance, including superior electronic conductivity and electrochemical activity, together with the low cost and environmental friendliness. Finally, the review will be concluded with the perspectives on the future development of spinel NiCo2O4 utilized as the supercapacitor electrodes. PMID:28336875

  16. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus; Cokoja, Mirza; Kü hn, Fritz E.

    2012-01-01

    . A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation

  17. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  18. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  19. Opportunities for low-cost CO2 storage demonstration projects in China

    International Nuclear Information System (INIS)

    Meng, Kyle C.; Williams, Robert H.; Celia, Michael A.

    2007-01-01

    Several CO 2 storage demonstration projects are needed in a variety of geological formations worldwide to prove the viability of CO 2 capture and storage as a major option for climate change mitigation. China has several low-cost CO 2 sources at sites that produce NH 3 from coal via gasification. At these plants, CO 2 generated in excess of the amount needed for other purposes (e.g., urea synthesis) is vented as a relatively pure stream. These CO 2 sources would potentially be economically interesting candidates for storage demonstration projects if there are suitable storage sites nearby. In this study a survey was conducted to estimate CO 2 availability at modern Chinese coal-fed ammonia plants. Results indicate that annual quantities of available, relatively pure CO 2 per site range from 0.6 to 1.1 million tonnes. The CO 2 source assessment was complemented by analysis of possible nearby opportunities for CO 2 storage. CO 2 sources were mapped in relation to China's petroliferous sedimentary basins where prospective CO 2 storage reservoirs possibly exist. Four promising pairs of sources and sinks were identified. Project costs for storage in deep saline aquifers were estimated for each pairing ranging from $15-21/t of CO 2 . Potential enhanced oil recovery and enhanced coal bed methane recovery opportunities near each prospective source were also considered

  20. Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals

    Science.gov (United States)

    Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.

    2017-12-01

    Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  1. Experimental Investigation on the Behavior of Supercritical CO2 during Reservoir Depressurization.

    Science.gov (United States)

    Li, Rong; Jiang, Peixue; He, Di; Chen, Xue; Xu, Ruina

    2017-08-01

    CO 2 sequestration in saline aquifers is a promising way to address climate change. However, the pressure of the sequestration reservoir may decrease in practice, which induces CO 2 exsolution and expansion in the reservoir. In this study, we conducted a core-scale experimental investigation on the depressurization of CO 2 -containing sandstone using NMR equipment. Three different series of experiments were designed to investigate the influence of the depressurization rate and the initial CO2 states on the dynamics of different trapping mechanisms. The pressure range of the depressurization was from 10.5 to 4.0 MPa, which covered the supercritical and gaseous states of the CO 2 (named as CO 2 (sc) and CO 2 (g), respectively). It was found that when the aqueous phase saturated initially, the exsolution behavior strongly depended on the depressurization rate. When the CO 2 and aqueous phase coexisting initially, the expansion of the CO 2 (sc/g) contributed to the incremental CO 2 saturation in the core only when the CO 2 occurred as residually trapped. It indicates that the reservoir depressurization has the possibility to convert the solubility trapping to the residual trapping phase, and/or convert the residual trapping to mobile CO 2 .

  2. Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2017-06-14

    Ideal carbon dioxide (CO 2 ) capture materials for practical applications should bind CO 2 molecules neither too weakly to limit good loading kinetics nor too strongly to limit facile release. Although charge-modulated switchable CO 2 capture has been proposed to be a controllable, highly selective, and reversible CO 2 capture strategy, the development of a practical gas-adsorbent material remains a great challenge. In this study, by means of density functional theory (DFT) calculations, we have examined the possibility of conductive borophene nanosheets as promising sorbent materials for charge-modulated switchable CO 2 capture. Our results reveal that the binding strength of CO 2 molecules on negatively charged borophene can be significantly enhanced by injecting extra electrons into the adsorbent. At saturation CO 2 capture coverage, the negatively charged borophene achieves CO 2 capture capacities up to 6.73 × 10 14 cm -2 . In contrast to the other CO 2 capture methods, the CO 2 capture/release processes on negatively charged borophene are reversible with fast kinetics and can be easily controlled via switching on/off the charges carried by borophene nanosheets. Moreover, these negatively charged borophene nanosheets are highly selective for separating CO 2 from mixtures with CH 4 , H 2 , and/or N 2 . This theoretical exploration will provide helpful guidance for identifying experimentally feasible, controllable, highly selective, and high-capacity CO 2 capture materials with ideal thermodynamics and reversibility.

  3. The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2.

    Science.gov (United States)

    He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M

    2018-04-01

    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. sCO2 Power Cycles Summit Summary November 2017.

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Lance, Blake

    2018-04-01

    Over the past ten years, the Department of Energy (DOE) has helped to develop components and technologies for the Supercritical Carbon Dioxide (sCO2) power cycle capable of efficient operation at high temperatures and high efficiency. The DOE Offices of Fossil Energy, Nuclear Energy, and Energy Efficiency and Renewable Energy collaborated in the planning and execution of the sCO2 Power Cycle Summit conducted in Albuquerque, NM in November 2017. The summit brought together participants from government, national laboratories, research, and industry to engage in discussions regarding the future of sCO 2 Power Cycles Technology. This report summarizes the work involved in summit planning and execution, before, during, and after the event, including the coordination between three DOE offices and technical content presented at the event.

  5. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  6. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  7. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  8. Electrocatalytic Alloys for CO2 Reduction.

    Science.gov (United States)

    He, Jingfu; Johnson, Noah J J; Huang, Aoxue; Berlinguette, Curtis P

    2018-01-10

    Electrochemically reducing CO 2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO 2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO 2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO 2 electrocatalysis is particularly large because of the myriad products that can be formed during CO 2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO 2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO 2 reduction reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  10. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  11. CO2 content of electricity losses

    International Nuclear Information System (INIS)

    Daví-Arderius, Daniel; Sanin, María-Eugenia; Trujillo-Baute, Elisa

    2017-01-01

    Countries are implementing policies to develop greener energy markets worldwide. In Europe, the ¨2030 Energy and Climate Package¨ asks for further reductions of green house gases, renewable sources integration, and energy efficiency targets. But the polluting intensity of electricity may be different in average than when considering market inefficiencies, in particular losses, and therefore the implemented policy must take those differences into account. Precisely, herein we study the importance in terms of CO2 emissions the extra amount of energy necessary to cover losses. With this purpose we use Spanish market and system data with hourly frequency from 2011 to 2013. Our results show that indeed electricity losses significantly explain CO2 emissions, with a higher CO2 emissions rate when covering losses than the average rate of the system. Additionally, we find that the market closing technologies used to cover losses have a positive and significant impact on CO2 emissions: when polluting technologies (coal or combined cycle) close the market, the impact of losses on CO2 emissions is high compared to the rest of technologies (combined heat and power, renewables or hydropower). To the light of these results we make some policy recommendations to reduce the impact of losses on CO2 emissions. - Highlights: • Electricity losses significantly explain CO2 emissions. • Policies aimed to reducing losses have a positive impact on CO2 emissions. • The market closing technology used to cover losses have impacts on CO2 emissions. • Pollutant technologies that close the market should be replaced by renewables.

  12. Inequality aspects of alternative CO2 agreement designs

    International Nuclear Information System (INIS)

    Welsch, Heinz

    1992-01-01

    In recent years, the expected climate change, due to the atmospheric accumulation of CO 2 and other trace gases, has become an increasingly important issue in energy policy. Given the important contribution of CO 2 to the greenhouse effect, and the global character of the problem, an international agreement on curbing CO 2 emissions is under current consideration. The design of such an agreement inevitably raises significant questions of equity and efficiency. In the international political debate, most emphasis is generally put on the distributive aspect. Interestingly, the discussion usually focuses on equity in terms of the distribution of emissions. From an economic perspective, it appears more natural to address the equity issue from the point of view of income. It is obvious that a given degree of abatement can have dramatically different economic effects in different countries. Of course, this aspect is implicitly at the centre of all CO 2 related equity considerations. In what follows, this issue will be addressed explicitly, by examining the applicability and the implications of various economic approaches to distributive justice. (author)

  13. Is NiCo2S4 really a semiconductor?

    KAUST Repository

    Xia, Chuan

    2015-08-31

    NiCo2S4 is a technologically important electrode material that has recently achieved remarkable performance in pseu-docapacitor, catalysis, and dye-synthesized solar cell applications.[1-5] Essentially, all reports on this material have pre-sumed it to be semiconducting, like many of the chalcogenides, with a reported band-gap in the range of 1.2-1.7 eV.[6,7] In this report, we have conducted detailed experimental and theoretical studies, most of which done for the first time, which overwhelmingly show that NiCo2S4 is in fact a metal. We have also calculated the Raman spectrum of this mate-rial and experimentally verified it for the first time, hence clarifying inconsistent Raman spectra reports. Some of the key results that support our conclusions include: (1) the measured carrier density in NiCo2S4 is 3.18×1022 cm-3, (2) Ni-Co2S4 has a room temperature resistivity of around 103 µΩ cm which increases with temperature, (3) NiCo2S4 exhibits a quadratic dependence of the magnetoresistance on magnetic field, (4) thermopower measurements show an extremely low Seebeck coefficient of 5 µV K-1, (5) first principles calculations confirm that NiCo2S4 is a metal. These results sug-gest that it is time to re-think the presumed semiconducting nature of this promising material. They also suggest that the metallic conductivity is another reason (besides the known significant redox activity) behind the excellent perfor-mance reported for this material.

  14. Geomechanical/Geochemical Modeling Studies Conducted within the International DECOVALEX Project

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.; Barr, D.; Chijimatsu, M.; Kolditz, O.; Liu, Q.; Oda, Y.; Wang, W.; Xie, M.; Zhang, C.

    2005-01-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysis of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status

  15. Geomechanical/Geochemical Modeling Studies Conducted Within the International DECOVALEX Project

    International Nuclear Information System (INIS)

    J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal; D. Barr; M.Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; M. Xie; C. Zhang

    2006-01-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysis of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status

  16. A MIXED MODEL ANALYSIS OF SOIL CO2 EFFLUX AND NIGHT-TIME RESPIRATION RESPONSES TO ELEVATED CO2 AND TEMPERATURE

    Science.gov (United States)

    Abstract: We investigated the effects of elevated soil temperature and atmospheric CO2 on soil CO2 efflux and system respiration responses. The study was conducted in sun-lit controlled-environment chambers using two-year-old Douglas-fir seedlings grown in reconstructed litter-so...

  17. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  18. CO2, the promises of geological sequestration

    International Nuclear Information System (INIS)

    Rouat, S.

    2006-01-01

    Trapping part of the world CO 2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO 2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO 2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  19. Climate change and the CO2 myth

    International Nuclear Information System (INIS)

    Boettcher, C.J.F.

    1994-01-01

    Further increase of the CO 2 concentration in the atmosphere has little effect on the greenhouse effect contrary to the effect of the increase of other greenhouse gases. However, politicians are using targets for the reduction of CO 2 emissions that are unrealistic, taking into account the scientific uncertainties of the applied models, the doubts about the feasibility of quantitative targets and the economic consequences of such drastic measures. Some recommendations are given for a more realistic CO 2 policy. Also attention is paid to the important role that coal will play in the future of the energy supply. 5 figs., 3 ills

  20. Trend of CO2 laser cutting; Saikin no CO2 laser setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Sano, Y.; Nagahori, M. [Tanaka Engineering Works Ltd., Saitama (Japan)

    1998-08-01

    This paper describes CO2 laser cutting of medium thick plates. Carbon dioxide laser is mainly used for laser generators. The generation efficiency of CO2 laser is 5 to 15% which is higher than that of the other lasers. Ninety percent of the usage is for cutting, piercing and welding. Laser cutter having a separated generator with a power from 3 to 6 kW is often used for cutting medium thick plates. The recent trend of new cutting technology is introduced. When power is increased from 3 kW to 6 kW without using oxygen as assist gas, the cutting thickness of stainless steel plate increased into 1.5 times, and the cutting speed increased into 1.5 to 2 times. For the soft steel members with black coating in which the power-up effects have not been obtained, the cutting speed, quality of cutting surface and cutting stability were improved by introducing new technology. Piercing time has been reduced by developing a method by which pulse generation is changed during piercing and a method by which piercing is conducted by irradiating the maximum power of continuous generation. Cutting quality with high accuracy has been realized by developing light weight generator and high performance NC unit. 10 figs.

  1. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest.

    Science.gov (United States)

    Drake, Brandon L; Hanson, David T; Lowrey, Timothy K; Sharp, Zachary D

    2017-02-01

    From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO 2 concentrations from 270 to 400 mol mol -1 . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free-air CO 2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO 2 partial pressure (c i ) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO 2 concentrations. Our data set, which includes a 115-year-long selection of grasses collected in New Mexico since 1892, is consistent with an increased c i as a response to historical CO 2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ 13 C (r 2  = 0.32, P < 0.01) before 1950, with no correlation (r 2  = 0.00, P = 0.91) after 1950. These results indicate that increased c i may have conferred some drought resistance to these grasses through increased availability of CO 2 in the event of reduced stomatal conductance in response to short-term water shortage. Comparison with C 3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO 2 while wetter environments see increased c i . This study suggests that (i) the observed increases in c i in FACE experiments are consistent with historical CO 2 increases and (ii) the CO 2 increase influences plant sensitivity to water shortage, through either increased WUE or c i in arid and wet environments, respectively. © 2016 John Wiley & Sons Ltd.

  2. Hollow Co2P nanoflowers organized by nanorods for ultralong cycle-life supercapacitors

    KAUST Repository

    Cheng, Ming

    2017-08-24

    Hollow Co2P nanoflowers (Co2P HNF) are successfully prepared via a one-step, template-free method. Microstructure analysis reveals that Co2P HNF is assembled by nanorods, possesses abundant mesopores and a amorphous carbon shell. Density functional theory calculation and electrochemical measurements demonstrate the high electrical conductivity of Co2P. Benefiting from the unique nanostructures, when employed as electrode material for supercapacitors, Co2P HNF exhibits a high specific capacitance, an outstanding rate capability, and an ultralong cycle stability. Furthermore,. the constructed Co2P HNF//AC ASC yields a high energy density of 30.5 Wh kg-1 at a power density of 850 W kg-1, along with an superior cycling performance (108.0% specific capacitance retained after 10000 cycles at 5 A g-1). These impressive results make Co2P HNF a promising candidate for supercapacitor applications.

  3. Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors.

    Science.gov (United States)

    Cheng, Ming; Fan, Hongsheng; Xu, Yingying; Wang, Rongming; Zhang, Xixiang

    2017-09-28

    Hollow Co 2 P nanoflowers (Co 2 P HNFs) were successfully prepared via a one-step, template-free method. Microstructure analysis reveals that Co 2 P HNFs are assembled from nanorods and possess abundant mesopores and an amorphous carbon shell. Density functional theory calculations and electrochemical measurements demonstrate the high electrical conductivity of Co 2 P. Benefiting from the unique nanostructures, when employed as an electrode material for supercapacitors, Co 2 P HNFs exhibit a high specific capacitance, an outstanding rate capability, and an ultralong cycling stability. Furthermore, the constructed Co 2 P HNF//AC ASC exhibits a high energy density of 30.5 W h kg -1 at a power density of 850 W kg -1 , along with a superior cycling performance (108.0% specific capacitance retained after 10 000 cycles at 5 A g -1 ). These impressive results make Co 2 P HNFs a promising candidate for supercapacitor applications.

  4. Equilibration of metabolic CO2 with preformed CO2 and bicarbonate

    International Nuclear Information System (INIS)

    Hems, R.; Saez, G.T.

    1983-01-01

    Entry of metabolic 14 CO 2 into urea is shown to occur more readily than it equilibrates with the general pool of cellular plus extracellular bicarbonate plus CO 2 . Since the sites of CO 2 production (pyruvate dehydrogenase and oxoglutarate dehydrogenase) and of fixation (carbamoylphosphate synthetase) are intramitochondrial, it is likely that the fixation of CO 2 is also more rapid than its equilibration with the cytoplasmic pool of bicarbonate plus CO 2 . This observation may point to a more general problem concerning the interpretation of isotope data, with compartmentation or proximity of sites of production and utilisation of metabolites may result in the isotope following a preferred pathway. (Auth.)

  5. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  6. Energy Efficiency instead of CO2 levy

    International Nuclear Information System (INIS)

    Uetz, R.

    2005-01-01

    This article takes a look at ways of avoiding a future, planned Swiss CO 2 levy by improving the efficiency of energy use. The political situation concerning the reduction of CO 2 emissions in Switzerland is reviewed and the likeliness of the introduction of a CO 2 levy is discussed. Strategies for the reduction of fossil fuel consumption and therefore of CO 2 emissions are looked at, including process optimisation. Recommendations are made on how to approach this work systematically - data collection, assessment of the potential for reduction and the planning of measures to be taken are looked at. The high economic efficiency of immediate action is stressed and typical middle and long-term measures are listed

  7. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  8. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  9. CO2 Washout Capability with Breathing Manikin

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon Dioxide (CO2) Washout performance is a critical parameter needed to ensure proper and sufficient designs in a spacesuit and in vehicle applications such as...

  10. Emerging terawatt picosecond CO2 laser technology

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-09-01

    The first terawatt picosecond (TWps) CO 2 laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO 2 lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO 2 lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. The authors discuss applications of TWps-CO 2 lasers for LWFA modules of a tentative electron-positron collider, for γ-γ (or γ-lepton) colliders, for a possible table-top source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams

  11. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-01-01

    to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs

  12. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  13. Photoacoustic CO2-Sensor for Automotive Applications

    OpenAIRE

    Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J.

    2016-01-01

    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  14. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  15. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  16. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  17. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  18. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    Science.gov (United States)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  19. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  20. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas.

    Science.gov (United States)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-06-01

    The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant's lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant-plant interactions was analysed. Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant-plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in

  1. Plant–plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas

    Science.gov (United States)

    van Loon, Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P. R.

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant’s lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant–plant interactions was analysed. Methods Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. Key Results It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. Conclusion The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant–plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly

  2. Income and CO2 emissions: Evidence from panel unit root and cointegration tests

    International Nuclear Information System (INIS)

    Lee, C.-C.; Lee, J.-D.

    2009-01-01

    This paper re-investigates the stationarity properties of per capita carbon dioxide (CO 2 ) emissions and real Gross Domestic Product (GDP) per capita for 109 countries within seven regional panel sets covering 1971-2003. We apply the recent unit-root test of the panel seemingly unrelated regressions augmented Dickey-Fuller (SURADF) test developed by Breuer et al. [2001. Misleading inferences from panel unit-root tests with an illustration from purchasing power parity. Review of International Economics 9, 482-493; 2002. Series-specific unit-root tests with panel data, Oxford Bulletin of Economics and Statistics 64, 527-546]. The panel SURADF test accounts for the presence of cross-country correlations in the data, and the parameters in the panel specification vary across countries. More importantly, this test allows us to identify how many and which members of the panel contain a unit root. Overall, our empirical results illustrate that real GDP and CO 2 emissions in these countries are a mixture of I(0) and I(1) processes, and that the traditional panel unit-root tests could lead to misleading inferences as well as the conduct of cointegration analysis being perhaps inappropriate. The results of our analysis carry critical implications for the modeling of CO 2 emissions and GDP because of the different orders of integration for the two variables

  3. Does the oil fortune vanish with Kyoto. The effects on energy consumption and emissions from stabilising the CO2 concentration

    International Nuclear Information System (INIS)

    Lindholt, Lars; Rosendahl, Knut Einar

    2000-01-01

    The article discusses measures for and the consequences of stabilising the CO 2 concentration at various levels on the oil industry, the environment and the energy policies. The structure of an international taxation scenario will depend on which CO 2 level and forecasting model are selected as well as the time profiles and levels of CO 2 emissions in the various countries

  4. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    Science.gov (United States)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  6. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  7. Diffuse CO2 degassing at Vesuvio, Italy

    Science.gov (United States)

    Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido

    2004-10-01

    At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.

  8. Nuclear energy - the century's principles of law and good conduct in international nuclear trade

    International Nuclear Information System (INIS)

    Coimbra, G.L.

    1992-01-01

    This paper considers the object and nature of the models of nuclear co-operation between Brazil and developed countries, with regard to the peaceful uses of nuclear energy. As an observer, the author analyses some of the juridicial and ethical aspects of the Brazilian Nuclear Programme. She examines some of the realities to be faced, and points out how important it is to anticipate and take necessary steps in order that difficulties, which are easily identifiable, may be reversed in the near future. The author also calls into question the means for reversal of the current situation, so as to satisfy the parties concerned: Brazil and her potential partners. Finally, the paper aims at complying with the conclusions reached by Working Group number 3 of the International Law Association on ''The Principles of Good Conduct in the International Nuclear Trade''. (author)

  9. Capture and geological storage of CO2. Innovation, industrial stakes and realizations

    International Nuclear Information System (INIS)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th.

    2007-01-01

    The awareness of the international community and the convergence of scientific data about the global warming confirm the urgency of implementing greenhouse gases abatement technologies at the world scale. The growth of world energy demand will not allow to rapidly get rid of the use of fossil fuels which are the main sources of greenhouse gases. Therefore, the capture and disposal of CO 2 is a promising way to conciliate the use of fossil fuels and the abatement of pollutants responsible for the global warming. The economical and industrial stakes of this technique are enormous. In front of the success of a first international colloquium on this topic held in Paris in 2005, the IFP, the BRGM and the Ademe have jointly organized a second colloquium in October 2007, in particular to present the first experience feedbacks of several pilot experiments all over the world. This document gathers the transparencies of 27 presentations given at this colloquium and dealing with: the 4. IPCC report on the stakes of CO 2 capture and storage; the factor 4: how to organize the French economy transition from now to 2050; the technology perspectives, scenarios and strategies up to 2050; the European technological platform on 'zero-emission thermal plants'; the CO 2 capture and storage road-map in the USA; research, development and implementation of CO 2 capture and storage in Australia; the Canadian experience; ten years of CO 2 capture and storage in Norway; the In Salah operations (Algeria); CO 2 capture and storage: from vision to realisation; the oxi-combustion and storage pilot unit of Lacq (France); the Altmark gas field (Germany): analysis of CO 2 capture and storage potentialities in the framework of a gas assisted recovery project; oil assisted recovery and CO 2 related storage activities in Brazil: the Buracica and Miranga fields experience; carbon capture and storage, an option for coal power generation; steel-making industries and their CO 2 capture and storage needs

  10. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)

    NARCIS (Netherlands)

    Bakker, D.C.E.; Pfeil, B.; Smith, K.; Hankin, S.; Olsen, A.; Alin, S. R.; Cosca, C.; Harasawa, S.; Kozyr, A.; Nojiri, Y.; O'Brien, K. M.; Schuster, U.; Telszewski, M.; Tilbrook, B.; Wada, C.; Akl, J.; Barbero, L.; Bates, N. R.; Boutin, J.; Bozec, Y.; Cai, W. -J.; Castle, R. D.; Chavez, F. P.; Chen, L.; Chierici, M.; Currie, K.; de Baar, H. J. W.; Evans, W.; Feely, R. A.; Fransson, A.; Gao, Z.; Hales, B.; Hardman-Mountford, N. J.; Hoppema, M.; Huang, W. -J.; Hunt, C. W.; Huss, B.; Ichikawa, T.; Johannessen, T.; Jones, E. M.; Jones, S. D.; Jutterstrom, S.; Kitidis, V.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Manke, A. B.; Mathis, J. T.; Merlivat, L.; Metzl, N.; Murata, A.; Newberger, T.; Omar, A. M.; Ono, T.; Park, G. -H.; Paterson, K.; Pierrot, D.; Rios, A. F.; Sabine, C. L.; Saito, S.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Sullivan, K. F.; Sun, H.; Sutton, A. J.; Suzuki, T.; Sweeney, C.; Takahashi, T.; Tjiputra, J.; Tsurushima, N.; van Heuven, S. M. A. C.; Vandemark, D.; Vlahos, P.; Wallace, D. W. R.; Wanninkhof, R.; Watson, A.J.

    2014-01-01

    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO(2) (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data

  11. Initial Results of an Intercomparison of AMS-Based Atmospheric 14CO2 Measurements

    NARCIS (Netherlands)

    Miller, John; Lehman, Scott; Wolak, Chad; Turnbull, Jocelyn; Dunn, Gregory; Graven, Heather; Keeling, Ralph; Meijer, Harro A. J.; Aerts-Bijma, Anita Th; Palstra, Sanne W. L.; Smith, Andrew M.; Allison, Colin; Southon, John; Xu, Xiaomei; Nakazawa, Takakiyo; Aoki, Shuji; Nakamura, Toshio; Guilderson, Thomas; LaFranchi, Brian; Mukai, Hitoshi; Terao, Yukio; Uchida, Masao; Kondo, Miyuki

    2013-01-01

    This article presents results from the first 3 rounds of an international intercomparison of measurements of Delta(CO2)-C-14 in liter-scale samples of whole air by groups using accelerator mass spectrometry (AMS). The ultimate goal of the intercomparison is to allow the merging of Delta(CO2)-C-14

  12. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  13. Rising CO2 widens the transpiration-photosynthesis optimality space

    Science.gov (United States)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    Stomatal conductance (gs) and photosynthetic biochemistry, typically expressed by the temperature-adjusted maximum rates of carboxylation (V cmax) and electron transport (Jmax), are key traits in land ecosystem models. Contrary to the many approaches available for simulating gs responses, the biochemical parameters V cmax and Jmax are often treated as static traits in ecosystem models. However, observational evidence indicates that V cmax and Jmax respond to persistent changes in atmospheric CO2. Hence, ecosystem models may be improved by incorporating coordinated responses of photosynthetic biochemistry and gs to atmospheric CO2. Recently, Prentice et al. (2014) proposed an optimality framework (referred to as the Prentice framework from here on) to predict relationships between V cmax and gs based on Fick's law, Rubisco-limited photosynthesis and the carbon costs of transpiration and photosynthesis. Here we show that this framework is, in principle, suited to predict CO2-induced changes in the V cmax -gs relationships. The framework predicts an increase in the V cmax:gs-ratio with higher atmospheric CO2, whereby the slope of this relationship is determined by the carbon costs of transpiration and photosynthesis. For our empirical analyses we consider that the carbon cost of transpiration is positively related to the plant's Huber value (sapwood area/leaf area), while the carbon cost of photosynthesis is positively related to the maintenance cost of the photosynthetic proteins. We empirically tested the predicted effect of CO2 on the V cmax:gs-ratio in two genotypes of Solanum dulcamara (bittersweet) that were grown from seeds to maturity under 200, 400 and 800 ppm CO2 in walk-in growth chambers with tight control on light, temperature and humidity. Seeds of the two Solanum genotypes were obtained from two distinct natural populations; one adapted to well-drained sandy soil (the 'dry' genotype) and one adapted to poorly-drained clayey soil (the 'wet' genotype

  14. Microorganisms implication in the CO2 geologic storage processes

    International Nuclear Information System (INIS)

    Dupraz, S.

    2008-01-01

    A first result of this thesis is the building and validation of a circulation reactor named BCC (Bio-mineralization Control Cell). The reactor has the functionality of a biological reactor and allows a monitoring of physico-chemical characteristics such as Eh, pH, electrical conductivity, spectro-photochemical parameters. It also has a capability of percolation through rock cores. It is a first step toward an analogical modeling of interactions between injected CO 2 and deep bio-spheric components. Moreover, a new spectro-photochemical method for monitoring reduced sulfur species has been developed which allows efficient monitoring of sulfate-reducing metabolisms. In the thesis, we have tested four metabolisms relevant to bio-mineralisation or biological assimilation of CO 2 : a reference ureolytic aerobic strain, Bacillus pasteurii, a sulfate-reducing bacterium, Desulfovibrio longus, a sulfate-reducing consortium (DVcons) and an homoacetogenic bacterium, Acetobacterium carbinolicum. In the case of Bacillus pasteurii, which is considered as a model for non photosynthetic prokaryotic carbonate bio-mineralization, we have demonstrated that the biological basification and carbonate bio-mineralization processes can be modelled accurately both analogically and numerically under conditions relevant to deep CO 2 storage, using a synthetic saline groundwater. We have shown that salinity has a positive effect on CO 2 mineral trapping by this bacterium; we have measured the limits of the system in terms of CO 2 pressure and we have shown that the carbonates that nucleate on intracellular calcium phosphates have specific carbon isotope signatures. The studied deep-subsurface strains (Desulfovibrio longus and Acetobacterium carbinolicum) as well as the sulfate-reducing consortium also have capabilities of converting CO 2 into solid carbonates, much less efficient though than in the case of Bacillus pasteurii. However, once inoculated in synthetic saline groundwater and

  15. On the CO2 Wettability of Reservoir Rocks: Addressing Conflicting Information

    Science.gov (United States)

    Garing, C.; Wang, S.; Tokunaga, T. K.; Wan, J.; Benson, S. M.

    2017-12-01

    Conventional wisdom is that siliclastic rocks are strongly water wet for the CO2-brine system, leading to high irreducible water saturation, moderate residual gas trapping and implying that tight rocks provide efficient seals for buoyant CO2. If the wetting properties become intermediate or CO2 wet, the conclusions regarding CO2 flow and trapping could be very different. Addressing the CO2 wettability of seal and reservoir rocks is therefore essential to predict CO2 storage in geologic formation. Although a substantial amount of work has been dedicated to the topic, contact angle data show a large variability and experiments on plates, micromodels and cores report conflicting results regarding the influence of supercritical CO2 (scCO2) exposure on wetting properties: whereas some experimental studies suggest dewetting upon reaction with scCO2, some others observe no wettability alteration under reservoir scCO2 conditions. After reviewing evidences for and against wettability changes associated with scCO2, we discuss potential causes for differences in experimental results. They include the presence of organic matter and impact of sample treatment, the type of media (non consolidated versus real rock), experimental time and exposure to scCO2, and difference in measurement system (porous plate versus stationary fluid method). In order to address these points, new scCO2/brine drainage-imbibition experiments were conducted on a same Berea sandstone rock core, first untreated, then fired and finally exposed to scCO2 for three weeks, using the stationary fluid method. The results are compared to similar experiments performed on quartz sands, untreated and then baked, using the porous plate method. In addition, a comparative experiment using the same Idaho gray sandstone rock core was performed with both the porous plate and the stationary fluid methods to investigate possible method-dependent results.

  16. Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods.

    Science.gov (United States)

    Watson, Sue-Ann; Fabricius, Katharina E; Munday, Philip L

    2017-01-01

    Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate the partial pressure of CO2 (pCO2) in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1) Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) measurement of dissolved inorganic carbon (CT) and AT, 2) spectrophotometric measurement of pHT and AT, 3) electrode measurement of pHNBS and AT, and 4) the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR) gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator) produced estimated measurement uncertainties of 3.5-4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 μatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use.

  17. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    , a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...... are evaluated according to CO2 reduction potential and according to the ‘shadow price’ on a reduction of one ton CO2. The shadow price reflects the costs (and benefits) of the different measures. Comparing the measures it is possible to identify cost effective measures, but these measures are not necessarily...... by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020...

  18. Rangeland -- plant response to elevated CO2

    International Nuclear Information System (INIS)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.; Parton, W.; Rice, C.; Auen, L.M.; Adam, N.

    1993-01-01

    Plots of a tallgrass prairie ecosystem were exposed to ambient and twice-ambient CO 2 concentrations in open-top chambers and compared to unchambered ambient CO 2 plots during the entire growing season from 1989 through 1992. Relative root production among treatments was estimated using root ingrowth bags which remained in place throughout the growing season. Latent heat flux was simulated with and without water stress. Botanical composition was estimated annuallyin all treatments. Open-top chambers appeared to reduce latent heat flux and increase water use efficiency similar to elevated CO 2 when water stress was not severe, but under severe water stress, chamber effect on water use efficiency was limited. In natural ecosystems with periodic moisture stress, increased water use efficiency under elevated CO 2 apparently would have a greater impact on productivity than photosynthetic pathway. Root ingrowth biomass was greater in 1990 and 1991 on elevated CO 2 plots compared to ambient or chambered-ambient plots. In 1992, there was no difference in root ingrowth biomass among treatments

  19. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von

    1993-01-01

    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  20. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels.

    Science.gov (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping

    2017-12-20

    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  1. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    2004-11-01

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO 2 ) capture and storage. There has been growing interest in the implementation of components of CO 2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO 2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO 2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO 2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO 2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO 2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO 2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO 2 and simultaneous CO 2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  2. CO2 capture and geological storage: The BRGM, sixteen years of involvement in major research projects. The contribution of technical abilities and expertise in Earth Sciences to the work of national and international authorities

    International Nuclear Information System (INIS)

    2009-01-01

    This press document presents the abilities and the activities of the French BRGM (Bureau de Recherches Geologiques et Minieres, Office for geological and mining researches) in developing knowledge on storage capacities and on the behaviour of deep aquifers, in contributing to the main national and European research programs, in actively participating to European and international networks, in being an expert for the MEEDDM (the French ministry of energy, ecology, sustainable development and sea) and the ADEME (the French agency for energy conservation), and as the French representative in several international authorities

  3. Evaluation of a Prototype pCO2 Optical Sensor

    Science.gov (United States)

    Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.

    2016-12-01

    Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.

  4. Some safety aspects of CO2 vapour compression systems

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, J. [Department of Refrigeration and Air Conditioning, Norwegian University of Science and Technology NTNU, Trondheim (Norway); Hafner, A.; Braanaas, M. [SINTEF Energy Research, Refrigeration and Air Conditioning, Trondheim (Norway)

    2000-11-01

    Since CO2 is a non-toxic and non-flammable refrigerant, the major safety issues for CO2 systems are related to the high operating pressure. In case of a component rupture, the explosion energy (stored energy) may characterise the extent of potential damage.The explosion energy can be estimated based on component (refrigerant-side) volumes, pressures and refrigerant property data. The explosion (stored) energies of baseline systems and CO2 systems are calculated and compared. Results show that the explosion energies are not as different as the large difference in pressure would indicate. It has been suggested that a Boiling Liquid Expanding Vapour Explosion (BLEVE) may occur when a vessel containing pressurised liquid or supercritical fluid is rapidly depressurised, e.g. due to a crack or a rupture. The overpressure from a BLEVE may be high enough to rupture the whole vessel, with a resulting blast wave and risk of flying fragments. Some tests on CO2 have been conducted at varying initial conditions and liquid fill levels, and with varying vent areas. No significant overpressure peaks above the initial pressure has been observed in the current test programme. 19 refs.

  5. Evasion of CO2 injected into the ocean in the context of CO2 stabilization

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.

    2004-01-01

    The eventual evasion of injected CO 2 to the atmosphere is one consideration when assessing deep-sea disposal of CO 2 as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO 2 emissions, including illustrative cases leading to stabilization of CO 2 concentration at various levels. Modeled residence time for CO 2 injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO 2 concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO 2 emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO 2 concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO 2 concentration, with less effect on concentration later on in time

  6. Effect of Uncertainties in CO2 Property Databases on the S-CO2 Compressor Performance

    International Nuclear Information System (INIS)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoonhan; Kim, Seong Gu; Cha, Je Eun

    2013-01-01

    Various S-CO 2 Brayton cycle experiment facilities are on the state of construction or operation for demonstration of the technology. However, during the data analysis, S-CO 2 property databases are widely used to predict the performance and characteristics of S-CO 2 Brayton cycle. Thus, a reliable property database is very important before any experiment data analyses or calculation. In this paper, deviation of two different property databases which are widely used for the data analysis will be identified by using three selected properties for comparison, C p , density and enthalpy. Furthermore, effect of above mentioned deviation on the analysis of test data will be briefly discussed. From this deviation, results of the test data analysis can have critical error. As the S-CO 2 Brayton cycle researcher knows, CO 2 near the critical point has dramatic change on thermodynamic properties. Thus, it is true that a potential error source of property prediction exists in CO 2 properties near the critical point. During an experiment data analysis with the S-CO 2 Brayton cycle experiment facility, thermodynamic properties are always involved to predict the component performance and characteristics. Thus, construction or defining of precise CO 2 property database should be carried out to develop Korean S-CO 2 Brayton cycle technology

  7. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  8. The idea of global CO2 trade

    International Nuclear Information System (INIS)

    Svendsen, G.T.

    1999-01-01

    The US has been criticized for wanting to earn a fortune on a global CO 2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO 2 market may provide the world with an epoch-making means of cost-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO 2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future

  9. CO2 utilization: Developments in conversion processes

    Directory of Open Access Journals (Sweden)

    Erdogan Alper

    2017-03-01

    The potential utilization of CO2, captured at power plants, should also been taken into consideration for sustainability. This CO2 source, which is potentially a raw material for the chemical industry, will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects. Products resulting from carboxylation reactions are obvious conversions. In addition, provided that enough supply of energy from non-fossil resources, such as solar [1], is ensured, CO2 reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds, such as ethylene and acrylic acid, in addition to C1 chemicals and polymers. Presently, there are only few developing technologies which can find industrial applications. Therefore, there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally.

  10. Crop responses to CO2 enrichment

    International Nuclear Information System (INIS)

    Rogers, H.H.; Dahlman, R.C.

    1993-01-01

    Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agroecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO 2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO 2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO 2 . 137 refs., 4 figs., 4 tabs

  11. Waste cleaning using CO2-acid microemulsion

    International Nuclear Information System (INIS)

    Park, Kwangheon; Sung, Jinhyun; Koh, Moonsung; Ju, Minsu

    2011-01-01

    Frequently we need to decontaminate radioactive wastes for volume reduction purposes. Metallic contaminants in wastes can be removed by dissolution to acid; however, this process produces a large amount of liquid acid waste. To reduce this 2ndary liquid waste, we suggest CO 2 -acid emulsion in removing metallic contaminants. Micro- and macro-emulsion of acid in liquid/supercritical CO 2 were successfully made. The formation region of microemulsion (water or acid in CO 2 ) was measured, and stability of the microemulsion was analyzed with respect to surfactant types. We applied micro- and macro-emulsion containing acid to the decontamination of radioactive metallic parts contaminated on the surface. The cleaning methods of micro- and macro-emulsion seemed better compared to the conventional acid cleaning. Moreover, these methods produce very small amount of secondary wastes. (author)

  12. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele

    2006-01-01

    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  13. Cutting weeds with a CO2 laser

    DEFF Research Database (Denmark)

    Heisel, T.; Schou, Jørgen; Christensen, S.

    2001-01-01

    Stems of Chenopodium album. and Sinapis arvensis. and leaves of Lolium perenne. were cut with a CO2 laser or with a pair of scissors. Treatments were carried out on greenhouse-grown pot plants at three different growth stages and at two heights. Plant dry matter was measured 2 to 5 weeks after...... treatment. The relationship between dry weight and laser energy was analysed using a non-linear dose-response regression model. The regression parameters differed significantly between the weed species. At all growth stages and heights S. arvensis was more difficult to cut with a CO2 laser than C. album....... When stems were cut below the meristems, 0.9 and 2.3 J mm(-1) of CO2 laser energy dose was sufficient to reduce by 90% the biomass of C. album and S. arvensis respectively. Regrowth appeared when dicotyledonous plant stems were cut above meristems, indicating that it is important to cut close...

  14. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.

    2014-01-01

    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  15. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  16. Novel concepts for CO2 capture

    International Nuclear Information System (INIS)

    Dijkstra, J.W.; Jansen, D.

    2004-01-01

    This paper describes the possibilities for power generation with CO 2 capture using envisaged key technologies: gas turbines, membranes and solid oxide fuel cells (SOFCs). First, the underlying programs in the Netherlands and at ECN are introduced. Then the key technologies are introduced, and concepts using these technologies are discussed. A literature overview of systems for power generation with fuel cells in combination with CO 2 capture is presented. Then a novel concept is introduced. This concept uses a water gas shift membrane reactor to convert the CO and H 2 in the SOFC anode off-gas to gain a CO 2 rich stream, which can be used for sequestration without elaborate treatment. Several implementation schemes of the technique are discussed such as atmospheric systems and hybrid SOFC-GT systems

  17. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2014-01-01

    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  18. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

    2004-01-01

    A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs'', was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. The project has received a one-year, no-cost extension to September 27, 2005. During this extra time additional deliverables will be (1) the version of MASTER that has been debugged and a foam option added for CO 2 mobility control and (2) adsorption/desorption data on pure component minerals common in reservoir rock that will be used to improve predictions of chemical loss to adsorption in reservoirs. This report discusses the activity during the six-month period covering October 1, 2003 through March 31, 2004 that comprises the first and second fiscal quarters of the project's third year. During this period of the project several areas have advanced: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. Presentations and papers included: a papers covered in a previous report was presented at the fall SPE ATCE in Denver in October 2003, a presentation at the Southwest ACS meeting in Oklahoma City, presentation on CO 2 flood basic behavior at the Midland Annual CO 2 Conference December 2003; two papers prepared for the biannual SPE/DOE Symposium on IOR, Tulsa, April 2004; one paper accepted for the fall 2004 SPE ATCE in Houston; and a paper submitted to an international journal Journal of Colloid and Interface Science which is being revised after peer review

  19. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    OpenAIRE

    Pasquale Russo Spena

    2017-01-01

    This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests wer...

  20. NiCo2O4-Based Supercapacitor Nanomaterials

    OpenAIRE

    Chenggang Wang; E Zhou; Weidong He; Xiaolong Deng; Jinzhao Huang; Meng Ding; Xianqi Wei; Xiaojing Liu; Xijin Xu

    2017-01-01

    In recent years, the research on supercapacitors has ushered in an explosive growth, which mainly focuses on seeking nano-/micro-materials with high energy and power densities. Herein, this review will be arranged from three aspects. We will summarize the controllable architectures of spinel NiCo2O4 fabricated by various approaches. Then, we introduce their performances as supercapacitors due to their excellent electrochemical performance, including superior electronic conductivity and electr...

  1. Spectroscopic technique for measuring atmospheric CO2

    International Nuclear Information System (INIS)

    Stokes, G.M.; Stokes, R.A.

    1979-01-01

    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  2. 10 MW Supercritical CO2 Turbine Test

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  3. 14CO2 fixation pattern of cyanobacteria

    International Nuclear Information System (INIS)

    Erdmann, N.; Schiewer, U.

    1985-01-01

    The 14 CO 2 fixation pattern of three cyanobacteria in the light and dark were studied. Two different chromatographic methods widely used for separating labelled photosynthetic intermediates were compared. After ethanolic extraction, a rather uniform fixation pattern reflecting mainly the β-carboxylation pathway is obtained for all 3 species. Of the intermediates, glucosylglycerol is specific and high citrulline and low malate contents are fairly specific to cyanobacteria. The composition of the 14 CO 2 fixation pattern is hardly affected by changes in temperature or light intensity, but it is severely affected by changes in the water potential of the medium. (author)

  4. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  5. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.

    Science.gov (United States)

    Burkart, S; Manderscheid, R; Wittich, K-P; Löpmeier, F J; Weigel, H-J

    2011-03-01

    An arable crop rotation (winter barley-sugar beet-winter wheat) was exposed to elevated atmospheric CO(2) concentrations ([CO(2) ]) using a FACE facility (Free-Air CO(2) Enrichment) during two rotation periods. The atmospheric [CO(2) ] of the treatment plots was elevated to 550 ppm during daylight hours (T>5°C). Canopy transpiration (E(C) ) and conductance (G(C) ) were measured at selected intervals (>10% of total growing season) using a dynamic CO(2) /H(2) O chamber measuring system. Plant available soil water content (gravimetry and TDR probes) and canopy microclimate conditions were recorded in parallel. Averaged across both growing seasons, elevated [CO(2) ] reduced E(C) by 9%, 18% and 12%, and G(C) by 9%, 17% and 12% in barley, sugar beet and wheat, respectively. Both global radiation (Rg) and vapour pressure deficit (VPD) were the main driving forces of E(C) , whereas G(C) was mostly related to Rg. The responses of E(C) and especially G(C) to [CO(2) ] enrichment were insensitive to weather conditions and leaf area index. However, differences in LAI between plots counteracted the [CO(2) ] impact on E(C) and thus, at least in part, explained the variability of seasonal [CO(2) ] responses between crops and years. As a consequence of lower transpirational canopy water loss, [CO(2) ] enrichment increased plant available soil water content in the course of the season by ca. 15 mm. This was true for all crops and years. Lower transpirational cooling due to a [CO(2) ]-induced reduction of E(C) increased canopy surface and air temperature by up to 2 °C and 0.5 °C, respectively. This is the first study to address effects of FACE on both water fluxes at canopy scale and water status of a European crop rotation. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors

    Science.gov (United States)

    Xu, Zhenzhu; Jiang, Yanling; Jia, Bingrui; Zhou, Guangsheng

    2016-01-01

    Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change. PMID:27242858

  7. Current Travertines Precipitation from CO2-rich Groundwaters as an alert of CO2 Leakages from a Natural CO2 Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-01-01

    Carbon capture and storage technologies represent the most suitable solutions related to the high anthropogenic CO 2 emissions to the atmosphere. As a consequence, monitoring of the possible CO 2 leakages from an artificial deep geological CO 2 storage is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO 2 leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO 2 DGS, natural CO 2 storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO 2 storage. In this context, a natural CO 2 reservoir affected by artificial CO 2 escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO 2 -rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO 2 ; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a combination of several factors, such as: i) a fast decrease of the

  8. CO2 fluxes from a tropical neighborhood: sources and sinks

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.

    2011-12-01

    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  9. Computational study on oxynitride perovskites for CO_2 photoreduction

    International Nuclear Information System (INIS)

    Hafez, Ahmed M.; Zedan, Abdallah F.; AlQaradawi, Siham Y.; Salem, Noha M.; Allam, Nageh K.

    2016-01-01

    Highlights: • Oxynitride perovskites are investigated for photoelectrochemical CO_2 reduction. • They have small electron and hole effective masses, rendering higher mobility. • The effect of cation size on the band gap is investigated and discussed. • W-doping allowed the selection of specific CO_2 reduction products. - Abstract: The photocatalytic conversion of CO_2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO_2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO_2N, SrTaO_2N, CaTaO_2N, LaTiO_2N, BaNbO_2N, and SrNbO_2N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO_2N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO_2 photoreduction.

  10. INTERACTIVE EFFECTS OF ELEVATED CO2 AND 03 ON RICE AND FLACCA TOMATO

    Science.gov (United States)

    All atmospheric concentrations of both carbon dioxide (CO2) and ozone (03) are increasing, with potentially dramatic effects on plants. This study was conducted to determine interactive effects of CO2 and 03 on rice (Oryza sativa L. cv. IR 74) and a 'wilty' mutant of tomato (Lyco...

  11. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2016-01-01

    MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2

  12. Phloem function: A key to understanding and manipulating plant responses to rising atmospheric [CO2]?

    Science.gov (United States)

    Increasing atmospheric carbon dioxide concentration ([CO2]) directly stimulates photosynthesis and reduces stomatal conductance in C3 plants. Both of these physiological effects have the potential to alter phloem function at elevated [CO2]. Recent research has clearly established that photosynthetic...

  13. Summary of the Fourth International Nuclear Emergency Exercise (INEX-4). Exercise Conduct and Evaluation Questionnaires

    International Nuclear Information System (INIS)

    Auclair, Jean Patrice; Duchesne, David; Caamano, Delphine; Cessac, Bruno; Mehl-auget, Isabelle; Gering, Florian; Macsuga, Geza; Fukumoto, Masahiro; Holo, Eldri Naadland; Ugletveit, Finn; Griffiths, Mike; Breitinger, Mark; Heinrich, Ann; Mcclelland, Vincent; Ahier, Brian; Lazo, Ted; Mcinturff, Sandi; Kawabata, Masanori; Lazo, Ted; Okyar, Halil Burcin

    2013-01-01

    The INEX-4 consequence management exercise, part of the OECD Nuclear Energy Agency's ongoing series of International Nuclear Emergency Exercises (INEX), was developed under the auspices of the NEA/CRPPH Working Party on Nuclear Emergency Matters (WPNEM) in response to members desire to better prepare for the longer-term response to a nuclear or radiological emergency. The INEX-4 exercise was designed to allow participants to investigate the national and, in some cases, international arrangements for responding to widespread radiological contamination of the urban environment from a radiological dispersal devise (or dirty bomb) and the consequence management issues likely to be raised in the medium to longer term after such an event. The experiences of participating countries were gathered through an evaluation questionnaire and are summarised in this report. The INEX-4 series was developed in 2008, and conducted throughout 2010 and 2011 with 17 participating countries using the INEX-4 scenario for an event involving a radiological dispersal device. An INEX-4 evaluation questionnaire was developed to document the process and results of the exercise, which was designed mainly to test emergency responses/actions related to consequence management and transition to recovery. The conclusions drawn from the INEX-4 experiences varied greatly, but this was to be expected given the nature of the scenario and the involvement of organisations outside of the nuclear community. The evaluation questionnaires completed by each participating country provided detailed information on the national approaches taken with respect to each of the exercise objectives and on issues relating to the international interfaces between countries. In collaboration with the NEA Secretariat, staff from the United States Department of Energy (DOE) reviewed each completed questionnaire to identify and summarise the essential information derived from the exercise for consideration by WPNEM members

  14. Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore

    Science.gov (United States)

    Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni

    2018-03-01

    Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.

  15. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  16. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  17. Detection of 14CO2 in radiotoxicology

    International Nuclear Information System (INIS)

    Simonnet, Francoise; Bocquet, Colette.

    1980-12-01

    14 CO 2 is detected in exhaled air by conversion to Ba 14 CO 3 which is then filtered, dried and weighed. The radioactivity is measured by liquid scintillation counting. The radioactivity is expressed in μCi per litre of exhaled air according to the ICRP recommendations. The detection threshold is well below the values indicated by the ICRP [fr

  18. Stereotactic CO2 laser therapy for hydrocephalus

    Science.gov (United States)

    Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.

    1994-05-01

    A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.

  19. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M

    2009-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...

  20. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van

    2010-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...

  1. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    -effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...

  2. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.

    2007-04-01

    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  3. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  4. CO2 effect on porous concrete

    Directory of Open Access Journals (Sweden)

    Sauman, Zdenek

    1974-09-01

    Full Text Available Not availableDebido a la acción del CO2 y de la humedad sobre un hormigón poroso, la tobermorita 11 A se descompone en vaterita, calcita y SÍO2 gel. A causa de la pseudomorfosis, la morfología de los cristales de la fase cementante no sufre cambios notables. La menor resistencia a la compresión se obtuvo después de 30 días de conservación en atmósferas de un 10 y un 30% de CO2. Después de un año de conservación, las resistencias no bajaron más de un 10%. En lo que respecta a la retracción de un hormigón poroso, la principal influencia fue la ejercida por la acción del CO2 y solamente en segundo lugar figura la acción ejercida por la humedad ambiente. Los hormigones porosos expuestos al aire (con su 0,03% de CO2 a h. r. de 50, 70 y 100% sufrieron al cabo de un año una expansión muy ligera.

  5. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  6. CO2 contain of the electric heating

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-02-01

    A recent announcement of the RTE and the ADEME on the CO 2 contain of the electric kW, refuting a 2005 study of EDF and ADEME, perturbed the public opinion and was presented as the proof that the nuclear has no part in the fight against the climatic change. The author aims to set things straight. (A.L.B.)

  7. Towards Verifying National CO2 Emissions

    Science.gov (United States)

    Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.

    2017-12-01

    With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.

  8. Ocean acidification: the other CO2 problem.

    Science.gov (United States)

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  9. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1999-01-01

    -effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  10. Literatuuronderzoek CAM-fotosynthese en CO2-bemesting en CO2-bemesting bij bromelia's

    NARCIS (Netherlands)

    Marissen, A.; Warmenhoven, M.G.

    2004-01-01

    De ‘normale’ wijze van CO2-opname gebeurt bij de meeste planten overdag, wanneer er licht is om de opgenomen CO2 door middel van fotosynthese direct om te zetten in suikers. Hiervoor is het nodig dat de huidmondjes overdag open staan, ‘s nachts zijn huidmondjes meestal dicht. Via de huidmondjes gaat

  11. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao; Das, Shyamal K.; Archer, Lynden A.

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than

  12. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 2 ↔ 2Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  14. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.

    2007-01-01

    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  15. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  16. Surface Ocean CO2 Atlas Database Version 5 (SOCATv5) (NCEI Accession 0163180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Ocean CO2 Atlas (SOCAT, www.socat.info) is a synthesis activity by the international marine carbon research community and has more than 100 contributors...

  17. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  18. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  19. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  20. ATTRIBUTION OF CONDUCT TO A STATE-THE SUBJECTIVE ELEMENT OF THE INTERNATIONAL RESPONSIBILITY OT THE STATE FOR INTERNATIONALLY WRONGFUL ACTS

    Directory of Open Access Journals (Sweden)

    FELICIA MAXIM

    2012-05-01

    Full Text Available In order to establish responsibility of states for internationally wrongful act, two elements are identified. First, the conduct in question must be attributable to the State under international law. Secondly, for responsibility to attach to the act of the State, the conduct must constitute a breach of an international legal obligation in force for that State at that time. For particular conduct to be characterized as an internationally wrongful act, it must first be attributable to the State. The State is a real organized entity, a legal person with full authority to act under international law. But to recognize this is not to deny the elementary fact that the State cannot act of itself. States can act only by and through their agents and representatives. In determining what constitutes an organ of a State for the purposes of responsibility, the internal law and practice of each State are of prime importance. The structure of the State and the functions of its organs are not, in general, governed by international law. It is a matter for each State to decide how its administration is to be structured and which functions are to be assumed by government. But while the State remains free to determine its internal structure and functions through its own law and practice, international law has a distinct role. Conduct is thereby attributed to the State as a subject of international law and not as a subject of internal law. The State as a subject of international law is held responsible for the conduct of all the organs, instrumentalities and officials which form part of its organization and act in that capacity, whether or not they have separate legal personality under its internal law.

  1. City density and CO_2 efficiency

    International Nuclear Information System (INIS)

    Gudipudi, Ramana; Fluschnik, Till; Ros, Anselmo García Cantú; Walther, Carsten; Kropp, Jürgen P.

    2016-01-01

    Cities play a vital role in the global climate change mitigation agenda. City population density is one of the key factors that influence urban energy consumption and the subsequent GHG emissions. However, previous research on the relationship between population density and GHG emissions led to contradictory results due to urban/rural definition conundrum and the varying methodologies for estimating GHG emissions. This work addresses these ambiguities by employing the City Clustering Algorithm (CCA) and utilizing the gridded CO_2 emissions data. Our results, derived from the analysis of all inhabited areas in the US, show a sub-linear relationship between population density and the total emissions (i.e. the sum of on-road and building emissions) on a per capita basis. Accordingly, we find that doubling the population density would entail a reduction in the total CO_2 emissions in buildings and on-road sectors typically by at least 42%. Moreover, we find that population density exerts a higher influence on on-road emissions than buildings emissions. From an energy consumption point of view, our results suggest that on-going urban sprawl will lead to an increase in on-road energy consumption in cities and therefore stresses the importance of developing adequate local policy measures to limit urban sprawl. - Highlights: •We use gridded population, land use and CO_2 emissions data. •We attribute building and on-road sectoral emissions to populated settlements. •We apply CCA to identify unique city extents and population densities. •Doubling the population density increases CO_2 efficiency typically by 42%. •Population density has more influence on-road CO_2 efficiency than buildings sector.

  2. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  3. CO2 Orbital Trends in Comets

    Science.gov (United States)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  4. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  5. The role of metabolism in modulating CO2 fluxes in boreal lakes

    Science.gov (United States)

    Bogard, Matthew J.; del Giorgio, Paul A.

    2016-10-01

    Lake CO2 emissions are increasingly recognized as an important component of the global CO2 cycle, yet the origin of these emissions is not clear, as specific contributions from metabolism and in-lake cycling, versus external inputs, are not well defined. To assess the coupling of lake metabolism with CO2 concentrations and fluxes, we estimated steady state ratios of gross primary production to respiration (GPP:R) and rates of net ecosystem production (NEP = GPP-R) from surface water O2 dynamics (concentration and stable isotopes) in 187 boreal lakes spanning long environmental gradients. Our findings suggest that internal metabolism plays a dominant role in regulating CO2 fluxes in most lakes, but this pattern only emerges when examined at a resolution that accounts for the vastly differing relationships between lake metabolism and CO2 fluxes. Fluxes of CO2 exceeded those from NEP in over half the lakes, but unexpectedly, these effects were most common and typically largest in a subset ( 30% of total) of net autotrophic lakes that nevertheless emitted CO2. Equally surprising, we found no environmental characteristics that distinguished this category from the more common net heterotrophic, CO2 outgassing lakes. Excess CO2 fluxes relative to NEP were best predicted by catchment structure and hydrologic properties, and we infer from a combination of methods that both catchment inputs and internal anaerobic processes may have contributed this excess CO2. Together, our findings show that the link between lake metabolism and CO2 fluxes is often strong but can vary widely across the boreal biome, having important implications for catchment-wide C budgets.

  6. Essays on the Determinants of Energy Related CO2 Emissions =

    Science.gov (United States)

    Moutinho, Victor Manuel Ferreira

    Overall, amongst the most mentioned factors for Greenhouse Gases (GHG) growth are the economic growth and the energy demand growth. To assess the determinants GHG emissions, this thesis proposed and developed a new analysis which links the emissions intensity to its main driving factors. In the first essay, we used the 'complete decomposition' technique to examine CO2 emissions intensity and its components, considering 36 economic sectors and the 1996-2009 periods in Portugal. The industry (in particular 5 industrial sectors) is contributing largely to the effects of variation of CO2 emissions intensity. We concluded, among others, the emissions intensity reacts more significantly to shocks in the weight of fossil fuels in total energy consumption compared to shocks in other variables. In the second essay, we conducted an analysis for 16 industrial sectors (Group A) and for the group of the 5 most polluting manufacturing sectors (Group B) based on the convergence examination for emissions intensity and its main drivers, as well as on an econometric analysis. We concluded that there is sigma convergence for all the effects with exception to the fossil fuel intensity, while gamma convergence was verified for all the effects, with exception of CO2 emissions by fossil fuel and fossil fuel intensity in Group B. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity. In the third essay, the Tourism Industry in Portugal over 1996-2009 period was examined, specifically two groups of subsectors that affect the impacts on CO2 emissions intensity. The generalized variance decomposition and the impulse response functions pointed to sectors that affect tourism more directly, i. e. a bidirectional causality between the intensity of emissions and energy intensity. The effect of intensity of emissions is positive on energy intensity, and the effect of energy intensity on

  7. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  8. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  9. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    Coal ashes are normally considered as a waste obtained by the coal combustion in thermal power plants. Their utilization inside the site where are produced represents an important example of sustainable process integration. The present study was performed to evaluate the application of a gas......-solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  10. Procedure for conducting probabilistic safety assessment: level 1 full power internal event analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dae; Lee, Y. H.; Hwang, M. J. [and others

    2003-07-01

    This report provides guidance on conducting a Level I PSA for internal events in NPPs, which is based on the method and procedure that was used in the PSA for the design of Korea Standard Nuclear Plants (KSNPs). Level I PSA is to delineate the accident sequences leading to core damage and to estimate their frequencies. It has been directly used for assessing and modifying the system safety and reliability as a key and base part of PSA. Also, Level I PSA provides insights into design weakness and into ways of preventing core damage, which in most cases is the precursor to accidents leading to major accidents. So Level I PSA has been used as the essential technical bases for risk-informed application in NPPs. The report consists six major procedural steps for Level I PSA; familiarization of plant, initiating event analysis, event tree analysis, system fault tree analysis, reliability data analysis, and accident sequence quantification. The report is intended to assist technical persons performing Level I PSA for NPPs. A particular aim is to promote a standardized framework, terminology and form of documentation for PSAs. On the other hand, this report would be useful for the managers or regulatory persons related to risk-informed regulation, and also for conducting PSA for other industries.

  11. Changes in plants and soil microorganisms in an artificial CO2 leakage experiment

    Science.gov (United States)

    Ko, D.; Kim, Y.; Yoo, G.; Chung, H.

    2017-12-01

    Carbon capture and storage (CCS) technology is considered to be a promising technology that can mitigate global climate change by greatly reducing anthropogenic CO2 emissions. Despite the advantage, potential risks of leakage of CO2 from CO2 storage site exists, which may negatively affect organisms in the soil ecosystems. To investigate the short- term impacts of geological CO2 leakage on soil ecosystem, we conducted an artificial CO2 leakage experiment in a greenhouse where plants and soils were exposed to high levels of CO2. Corn was grown in a 1:1 (v/v) mixture of potting and field soil, and 99.99% CO2 gas was injected at a flow rate of 0.1l min-1 for 30 days whereas no gas was injected to control pots. Changes in plant growth, soil characteristics, and bacterial community composition were determined. Mean soil CO2 and O2 concentrations were 31.6% and 15.6%, respectively, in CO2-injected pots, while they were at ambient levels in control pots. The shoot and root length, and chlorophyll contents decreased in CO2-injected pots by 19.4%, 9.7%, and 11.9%, respectively. In addition, the concentration of available N such as NH4+-N and NO3-N was 83.3 to 90.8% higher in CO2-injected pots than in control pots likely due to inhibited plant growth. The results of bacterial 16S rRNA gene pyrosequencing showed that the major phyla in the soils were Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Saccharibacteria_TM7. Among these, the relative abundance of Proteobacteria was lower in CO2-injected than in control pots (28.8% vs. 34.1%) likely due to decreased C availability. On the other hand, the abundance of Saccharibacteria_TM7 was significantly higher in CO2-injected than in control pots (6.0% vs. 1.3%). The changes in soil mineral N and microorganisms in response to injected CO2 was likely due to inhibited plant growth under high soil CO2 conditions, and further studies are needed to determine if belowground CO2 leakage from CO2 storage sites can directly

  12. Long-Term CO2 Exposure Experiments - Geochemical Effects on Brine-Saturated Reservoir Sandstone

    Science.gov (United States)

    Fischer, Sebastian; Zemke, Kornelia; Liebscher, Axel; Wandrey, Maren

    2010-05-01

    The injection of CO2 into deep saline aquifers is the most promising strategy for the reduction of CO2 emissions to the atmosphere via long-term geological storage. The study is part of the CO2SINK project conducted at Ketzin, situated 40 km west of Berlin. There, food grade CO2 has been pumped into the Upper Triassic Stuttgart Formation since June 2008. The main objective of the experimental program is to investigate the effects of long-term CO2 exposure on the physico-chemical properties of the reservoir rock. To achieve this goal, core samples from observation well Ktzi 202 have been saturated with synthetic brine and exposed to CO2 in high quality steel autoclaves at simulated reservoir P-T-conditions of 5.5 MPa and 40 ° C. The synthetic brine had a composition representative of the formation fluid (Förster et al., 2006) of 172.8 g/l NaCl, 8.0 g/l MgCl2×2H2O, 4.8 g/l CaCl2×2H2O and 0.6 g/l KCl. After 15 months, the first set of CO2-exposed samples was removed from the pressure vessels. Thin sections, XRD, SEM as well as EMP data were used to determine the mineralogical features of the reservoir rocks before and after the experiments. Additionally, NMR relaxation and MP was performed to measure poroperm and pore size distribution values of the twin samples. The analyzed samples are fine- to medium grained, moderately well- to well sorted and weakly consolidated sandstones. Quartz and plagioclase are the major components, while K-feldspar, hematite, white & dark mica, chlorite and illite are present in minor and varying amounts. Cements are composed of analcime, dolomite and anhydrite. Some samples show mm- to cm-scale cross-beddings. The laminae comprise lighter, quartz- and feldspar-dominated layers and dark-brownish layers with notably less quartz and feldspars. The results are consistent with those of Blaschke et al. (2008). The plagioclase composition indicates preferred dissolution of the Ca-component and a trend toward albite-rich phases or even pure

  13. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  14. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  15. Reducing CO2 emissions in Sierra Leone and Ghana

    International Nuclear Information System (INIS)

    Davidson, O.

    1991-01-01

    With soring population growth rates and minimal economic growth, the nations of Africa are afflicted with innumerable problems. Why then should Africa's developing countries worry about CO 2 emissions? First, because agricultural activities form the backbone of most African economies; thus, these nations may be particularly vulnerable to the negative impacts of climate change. Second, acting to reduce carbon emissions will bring about more efficient energy use. All of Africa could benefit from the improved use of energy. Finally, the accumulation of CO 2 in the atmosphere is a global problem with individual solutions; in order to reduce international emissions, all countries, including those in Africa, must contribute. Typical of many African countries, Ghana and Sierra Leone have among the lowest levels of energy demand per capita across the globe. primary energy demand per capita in these two West African nations equals about one quarter of the world's average and about one twentieth of the US average. This work summarizes the results of two long-term energy use and carbon emissions scenarios for Sierra Leone and Ghana. In the high emissions (HE) scenario for 2025, policy changes focused on galvanizing economic growth lead to significant increases in energy use and carbon emissions in Ghana and Sierra Leone between 1985 and 2025. In the low emissions (LE) scenario, the implementation of policies aimed specifically at curtailing CO 2 emissions significantly limits the increase in carbon in both nations by 2025

  16. Monitoring Exchange of CO2 - A KISS Workshop Report 2009

    Science.gov (United States)

    Miller, Charles; Wennberg, Paul

    2009-01-01

    The problem and context: Can top-down estimates of carbon dioxide (CO2) fluxes resolve the anthropogenic emissions of China, India, the United States, and the European Union with an accuracy of +/-10% or better?The workshop "Monitoring Exchange of Carbon Dioxide" was convened at the Keck Institute for Space Studies in Pasadena, California in February 2010 to address this question. The Workshop brought together an international, interdisciplinary group of 24 experts in carbon cycle science, remote sensing, emissions inventory estimation, and inverse modeling. The participants reviewed the potential of space-based and sub-orbital observational and modeling approaches to monitor anthropogenic CO2 emissions in the presence of much larger natural fluxes from the exchange of CO2 between the land, atmosphere, and ocean. This particular challenge was motivated in part by the NRC Report "Verifying Greenhouse Gas Emissions" [Pacala et al., 2010]. This workshop report includes several recommendations for improvements to observing strategies and modeling frameworks for optimal and cost-effective monitoring of carbon exchange

  17. Mastering the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2004-05-01

    On January 1, 2005, a system of trade of carbon dioxide emission quotas, also called 'market of tradable emission permits', will be implemented in the European Union. This system is one of the 3 flexibility mechanisms foreseen by the Kyoto protocol in order to reduce the global economic cost of the fight against climatic change. The aim of this seminar is to clarify the process of transfer of the European directive into French law. It comprises 8 presentations dealing with: the objectives of tradable emission quotas (greenhouse effect, Kyoto commitments, short and long term stakes); presentation of the European directive about the trade system of greenhouse gas emissions; transposition of the directive into French law (fields of application, sectors and facilities concerned, possible exemptions, first national plan of quotas allocation); voluntary emission abatement commitments by industrial companies member of the AERES; quotas recording and management, control of trades; companies strategy (investment for CO 2 abatement or purchase of quotas, impact on industries and competitiveness); experience feedback of emission quotas trading in foreign countries (international CO 2 market development); CO 2 emission quotas linked with cogeneration (emissions from cogeneration facilities, possible allocation, impact for cogeneration companies, approaches in other European countries in this domain); perspectives and conclusions. (J.S.)

  18. Economics of reducing CO2 emissions from China

    International Nuclear Information System (INIS)

    Wu Zhongxin

    1991-01-01

    Relative to the nations of the industrialized world, developing countries emit far lower levels of CO 2 per capita. In coming years, however, as the developing world experiences more rapid rates of economic and population growth, their carbon emissions per capita inevitably will rise. Therefore, developing countries should be encouraged both to adopt more advanced energy technologies in order to improve the efficiency of energy exploration, transportation, generation and end-use and to replace carbon-intensive fuels sources with less carbon-intensive sources (non-fossil fuels and renewable energy). By incorporating methods aimed at curtailing carbon emissions into their energy development strategies, developing nations can reduce the risks posed by higher CO 2 emissions. However, adopting more advanced energy technologies generally entails high costs. These higher prices serve as a particularly large obstacle for developing nations. In order to serve the common interest of protecting the global environment, international funds should be devoted to cover the high costs of reducing developing world CO 2 emissions

  19. Input-output analysis of CO2 emissions embodied in trade. The effects of spatial aggregation

    International Nuclear Information System (INIS)

    Su, Bin; Ang, B.W.

    2010-01-01

    Energy-related CO 2 emissions embodied in international trade have been widely studied by researchers using the environmental input-output analysis framework. It is well known that both sector aggregation and spatial aggregation affect the results obtained in such studies. With regard to the latter, past studies are often conducted at the national level irrespective of country or economy size. For a large economy with the needed data, studies may be conducted at different levels of spatial aggregation. We examine this problem analytically by extending the work of Su et al. ([Su, B., Huang, H.C., Ang, B.W., Zhou, P., 2010. Input-output analysis of CO 2 emissions embodied in trade: The effects of sector aggregation. Energy Economics 32 (1), 166-175.]) on sector aggregation. We present a numerical example using the data of China and by dividing the country into eight regions. It is found that the results are highly dependent on spatial aggregation. Our study shows that for a large country like China it is meaningful to look into the effect of spatial aggregation. (author)

  20. National CO2 emissions trading in European perspective; Nationale CO2-emissiehandel in Europees perspectief

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report is the reaction of the Social and economic council (SER) in the Netherlands to the request of the Dutch Ministry of Housing, Spatial Planning en Environment (VROM) to formulate an advice on the final report of the Committee CO2 Trade (a.k.a the Vogtlander Committee). This Committee has drafted a proposal for a CO2 emission trade system in the Netherlands. The SER has also taken into account the proposal of the European Committee on a guideline for CO2 emission trade in the European Union (EU)

  1. Solubility of krypton in liquid CO2

    International Nuclear Information System (INIS)

    Notz, K.J.; Meservey, A.B.

    1976-06-01

    The solubility of krypton in liquid CO 2 was measured experimentally over essentially the entire liquid range of CO 2 , from -53 to 29 0 C. A tracer technique using 85 Kr was employed, and equilibrated gas-liquid samples were analyzed in situ with a collimated counter. Dilute concentrations of krypton were used, and the data are expressed as a distribution ratio, Y/sub Kr//X/sub Kr/, the log of which is nearly linear with respect to temperature from the lowest temperature to about 20 0 C, above which the values fall off rapidly toward a value of unity at the critical temperature. The numerical values obtained for the distribution ratio increase from 1.44 at 29 0 C to 29.4 at -53 0 C

  2. Toxic emissions and devalued CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    With reference to the paradigme shift regarding the formation of dioxins in municiplan solid waste incinerators experimental results are taken into account which lead to the suspicion that the same mechanism of de-novo-synthesis also applies to fireplace chimneys. This can explain the dioxin...... friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  3. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  4. Molecular simulations of CO2 at interfaces

    DEFF Research Database (Denmark)

    Silvestri, Alessandro

    trapping mechanisms that act over dierent time scales, where eectiveness is determined by phenomena that occur at the interfaces between CO2, pore uids and the pore surfaces. Solid theoretical understanding of the nanoscale interactions that result from the interplay of intermolecular and surface forces...... variety of conditions: pressure, temperature, pore solution salinity and various mineral surfaces. However, achieving representative subsurface conditions in experiments is challenging and reported data are aected by experimental uncertainties and sometimes are contradictory. Molecular modelling...... rock record and the formations are generally porous so their probable response to CO2 sequestration needs to be investigated. However, despite the large number of geologic sequestration publications on water{rock interactions over the last decade, studies on carbonate reservoirs remain scarce...

  5. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Environmental, energy and climate policies need fresh reflections. In order to evaluate toxics reduction policies the Stockholm Convention on Persistent Organic Pollutants is mandatory. Denmark's function as lead country for dioxin research in the context of the OSPAR Convention is contrasted...... with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter......-productive effect of dioxin formation in the cooling phase of wood burning appliances has been registered akin to de-novo-synthesis in municipal solid waste incinerators. Researchers, regulators and the public are, however, still preoccupied by notions of oven design and operation parameters, assuming that dioxin...

  6. Sustainable Process Networks for CO2 Conversion

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, P.; Pavarajam, V.

    According to various organizations, especially the Intergovernmental Panel on Climate Change, global warming is an ever-increasing threat to the environment and poses a problem if not addressed. As a result, efforts are being made across academic and industrial fields to find methods of reducing...... drawbacks to this geologic storage system: the CO2 is not eliminated, the implementation is limited due to natural phenomena, and the capturing methods are often expensive. Thus, it is desirable to develop an alternative strategy for reducing the CO2 emissions [2]. An additional process that reduces...... that are thermodynamically feasible, including the co-reactants, catalysts, operating conditions and reactions. Research has revealed that there are a variety of reactions that fulfill the aforementioned criteria. The products that are formed fall into categories: fuels, bulk chemicals and specialty chemicals. While fuels...

  7. CO2 dynamics on three habitats of mangrove ecosystem in Bintan Island, Indonesia

    Science.gov (United States)

    Dharmawan, I. W. E.

    2018-02-01

    Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.

  8. Photosynthesis and metabolite responses of Isatis indigotica Fortune to elevated [CO2

    Institute of Scientific and Technical Information of China (English)

    Ping Li; Hongying Li; Yuzheng Zong; Frank Yonghong Li; Yuanhuai Han; Xingyu Hao

    2017-01-01

    Climate change is affecting global crop productivity, food quality, and security. However, few studies have addressed the mechanism by which elevated CO2 may affect the growth of medicinal plants. Isatis indigotica Fortune is a widely used Chinese medicinal herb with multiple pharmacological properties. To investigate the physiological mechanism of I. indigotica response to elevated [CO2], plants were grown at either ambient [CO2] (385μmol mol?1) or elevated [CO2] (590μmol mol?1) in an open-top chamber (OTC) experimental facility in North China. A significant reduction in transpiration rate (Tr) and stomatal conductance (gs) and a large increase in water-use efficiency contributed to an increase in net photosynthetic rate (Pn) under elevated [CO2] 76 days after sowing. Leaf non-photochemical quenching (NPQ) was decreased, so that more energy was used in effective quantum yield of PSII photochemistry (ΦPSI ) under elevated [CO2]. High ΦPSI , meaning high electron transfer efficiency, also increased Pn. The [CO2]-induced increase in photosynthesis significantly increased biomass by 36.8%. Amounts of metabolic compounds involved in sucrose metabolism, pyrimidine metabolism, flavonoid biosynthesis, and other processes in leaves were reduced under elevated [CO2]. These results showed that the fertilization effect of elevated [CO2] is conducive to increasing dry weight but not secondary metabolism in I. indigotica.

  9. CO2 emissions, energy consumption and economic growth in China: A panel data analysis

    International Nuclear Information System (INIS)

    Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W.

    2011-01-01

    This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic output using panel cointegration and panel vector error correction modeling techniques based on the panel data for 28 provinces in China over the period 1995-2007. Our empirical results show that CO 2 emissions, energy consumption and economic growth have appeared to be cointegrated. Moreover, there exists bidirectional causality between CO 2 emissions and energy consumption, and also between energy consumption and economic growth. It has also been found that energy consumption and economic growth are the long-run causes for CO 2 emissions and CO 2 emissions and economic growth are the long-run causes for energy consumption. The results indicate that China's CO 2 emissions will not decrease in a long period of time and reducing CO 2 emissions may handicap China's economic growth to some degree. Some policy implications of the empirical results have finally been proposed. - Highlights: → We conduct a panel data analysis of the energy-CO 2 -economy nexus in China. → CO 2 emissions, energy use and economic growth appear to be cointegrated. → There exists bidirectional causality between energy consumption and economic growth. → Energy consumption and economic growth are the long-run causes for CO 2 emissions.

  10. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.

    Science.gov (United States)

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J

    2009-07-01

    Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.

  11. Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities.

    Science.gov (United States)

    Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang

    2018-02-01

    Ever-increasing fossil-fuel combustion along with massive CO 2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO 2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO 2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO 2 conversion with an oxidative half reaction, e.g., H 2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO 2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO 2 reduction and H 2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO 2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO 2 -reduction cocatalysts for semiconductor-based photocatalytic CO 2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    Science.gov (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  13. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem.

    Science.gov (United States)

    Bracken, Matthew E S; Silbiger, Nyssa J; Bernatchez, Genevieve; Sorte, Cascade J B

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO 2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, p CO 2 , net ecosystem calcification ( NEC ), and O 2 concentrations were strongly related to rates of net community production ( NCP ). CO 2 was added to pools during daytime low tides, which should have reduced pH and enhanced p CO 2 . However, photosynthesis rapidly reduced p CO 2 and increased pH, so effects of CO 2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO 2 addition caused pH to decline by ∼0.6 units and p CO 2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO 2 addition declined because more CO 2 was absorbed due to photosynthesis. Effects of CO 2 addition were, therefore, modified by feedbacks between NCP , pH, p CO 2 , and NEC . Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

  14. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  15. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  16. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Vivak

    2014-06-30

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and

  17. Continuous CO2 extractor and methods

    Energy Technology Data Exchange (ETDEWEB)

    None listed

    2010-06-15

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  18. Continuous CO2 extractor and methods

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  19. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  20. Panorama 2016 - Chemical recycling of CO2

    International Nuclear Information System (INIS)

    Forti, Laurent; Fosse, Florian

    2015-12-01

    The ongoing rise of atmospheric carbon dioxide concentration is a major environmental and societal concern. Among the potential solutions for reducing carbon emissions in the energy sector, the chemical recycling of CO 2 has received considerable attention. Conversion of carbon dioxide into other recoverable substances offers the benefit of reducing the carbon footprint of newly developed products and of shifting away from the use of fossil resources. Various methods to create a wide range of products are currently being studied. (authors)

  1. Influence of CO2 on the climate

    International Nuclear Information System (INIS)

    Junod, A.

    1989-01-01

    The earth's climate is subject to long and short term fluctuations. The recent ones are being caused by mankind. The most important result is the increase in the CO 2 -content of the atmosphere, caused by burning of fossil fuels. This leads to the so-called greenhouse effect. It is judged that the average temperature of the earth's surface will rise by 2 o C between the years 2030 and 2050

  2. CO2 capture takes its industrial turn

    International Nuclear Information System (INIS)

    Remoue, A.; Lutzky, A.

    2009-01-01

    The CO 2 capture and sequestration is entering the industrial era. The technologies are ready, the regulation is progressively put into action, the financing of demonstration facilities is unfreezing and companies are on the starting line from Canada to China, including the USA and Europe. The market takeoff is expected for 2015 but the competition is already hard between equipment manufacturers who wish to develop proprietary technologies. (J.S.)

  3. Aridity under conditions of increased CO2

    Science.gov (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  4. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  5. Towards Overhauser DNP in supercritical CO(2).

    Science.gov (United States)

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Development of longitudinally excited CO2 laser

    Science.gov (United States)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  7. Martian Gullies: Formation by CO2 Fluidification

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2006-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried explain its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We propose that the mechanism of formation of the gullies is as follows: In winter CO2 snow mixed with sand falls in the terrain. In spring the CO2 snow sublimate and gaseous CO2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies. By experimental work with dry granular material, we simulated the development of the Martian gullies injecting air in the granular material. We present the characteristics of some terrestrial gullies forms at cold environment, sited at Nevado de Toluca Volcano near Toluca City, México. We compare them with Martian gullies choose from four different areas, to target goal recognize or to distinguish, (to identify) possible processes evolved in its formation. Also, we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters. Finally, we present results of our experimental work at laboratory with dry granular material.

  8. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  9. Abatement of CO2 emissions in the European Union

    International Nuclear Information System (INIS)

    Lesourne, J.; Keppler, J.H.; Jaureguy-Naudin, Maite; Smeers, Yves; Bouttes, Jean-Paul; Trochet, Jean-Michel; Dassa, Francois; Neuhoff, Karsten

    2008-01-01

    This first monograph of the Ifri program on European Governance and Geopolitics of Energy is devoted to the control of carbon dioxide emissions within the European Union. Since it is almost unanimously accepted that Greenhouse Gas emissions constitute the main cause of the observed increase of the world average temperature, the system implemented by the European Union to limit and decrease the CO 2 emissions is a significant pillar of the EU energy policy, the two others being the acceptance by the Member States of long-term commitments (for instance on the future share of renewable energy sources in their energy balance sheet) and the establishment of an internal market for electricity and gas. Though simple in principle, the European Union Greenhouse Gas Emission Trading Scheme (EU ETS) is in fact rather complex, and only experts really understand its merits and its deficiencies. These deficiencies are real and will have to be corrected in the future for the system to be effective. At this moment, when the 2005-2007 trial phase of the EU ETS is ending, the monograph has the purpose to stimulate the discussion between experts and to enable all those interested in the topic to understand the issues and to take part in the public debates on the subject. The monograph contains five papers: - 'An Overview of the CO 2 Emission Control System in the European Union' by Jacques Lesourne and Maite Jaureguy-Naudin. - 'Description and Assessment of EU CO 2 Regulations' by Yves Smeers. - 'Assessment of EU CO 2 Regulations' by Jean-Paul Bouttes, Jean-Michel Trochet and Francois Dassa. - 'Investment in Low Carbon Technologies, Policies for the Power Sector' by Karsten Neuhoff. - 'Lessons Learned from the 2005-2007 Trial Phase of the EU Emission Trading System' by Jan Horst Keppler

  10. 2007 CO2 emissions due to energy combustion in the world

    International Nuclear Information System (INIS)

    2010-01-01

    Worldwide energy combustion contributes to more than 95% of the global CO 2 emissions. According to the last International Energy Agency (IEA) results, these emissions have raised by 3.3% with respect to 2006 and by 38% with respect to 1990 with a total of about 29 Gt of CO 2 . After a new 8% boom in 2007, China's emissions have tripled since 1990 with a total exceeding 6 Gt of CO 2 . China has become the first CO 2 emitter in front of the USA. When compared to the number of inhabitants, China's emissions are comparable to the world average (4.4 t CO 2 /hab) but remain four times lower than the ones of the USA. (J.S.)

  11. The influence of using LPG device on the CO2 emissions from personal passenger cars

    Directory of Open Access Journals (Sweden)

    Viliam Carach

    2007-12-01

    Full Text Available Traffic, mostly the air and car traffic is the biggest producer of CO2 (51% at present. CO2 is one of the most important greenhouse gases with more than 50 % of emissions contributing to this major global ecological problem. A rising concetration of CO2 in the atmosphere leads to higher global temperatures. The main problem is the rise of CO2 emissions in most developed countries despite international undertakings accepted in 80´s. This is the main reason for finding solutions to reduce the amount of CO2 emissions in the traffic. One of many solutions is the use of LPG fuel. The purpose of this article is to quantify the efficiency of using LPG in personal passenger cars.

  12. CO2 uptake potential due to concrete carbonation: A case study

    Directory of Open Access Journals (Sweden)

    Edna Possan

    2017-06-01

    Full Text Available The cement manufacturing process accounts for about 5% CO2 (carbon dioxide released into the atmosphere. However, during its life cycle, concrete may capture CO2 through carbonation, in order to, partially, offset the impact of its production. Thus, this paper aims at studying the CO2 uptake potential of the Itaipu Dam due to concrete carbonation of such material. So, 155 cores were extracted from the concrete dam in different points to measure carbonation depth. In order to evaluate its influence on carbonation, the measurement of internal moisture distribution in concrete was also carried out. The results have shown that carbonation takes part of the whole dam area, indicating CO2 uptake potential. Up to the present moment, 13,384 tons of CO2 have been absorbed by concrete carbonation of the Itaipu Dam.

  13. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species

    DEFF Research Database (Denmark)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz

    2016-01-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential...... responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 -. Net photosynthesis of all species except Zostera polychlamys were limited...... at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 - users through acidification of diffusive boundary layers, production of extracellular carbonic...

  14. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis.

    Science.gov (United States)

    Warren, Charles R; Adams, Mark A

    2006-02-01

    Central paradigms of ecophysiology are that there are recognizable and even explicit and predictable patterns among species, genera, and life forms in the economics of water and nitrogen use in photosynthesis and in carbon isotope discrimination (delta). However most previous examinations have implicitly assumed an infinite internal conductance (gi) and/or that internal conductance scales with the biochemical capacity for photosynthesis. Examination of published data for 54 species and a detailed examination for three well-characterized species--Eucalyptus globulus, Pseudotsuga menziesii and Phaseolus vulgaris--show these assumptions to be incorrect. The reduction in concentration of CO2 between the substomatal cavity (Ci) and the site of carbon fixation (Cc) varies greatly among species. Photosynthesis does not scale perfectly with gi and there is a general trend for plants with low gi to have a larger draw-down from Ci to Cc, further confounding efforts to scale photosynthesis and other attributes with gi. Variation in the gi-photosynthesis relationship contributes to variation in photosynthetic 'use' efficiency of N (PNUE) and water (WUE). Delta is an information-rich signal, but for many species only about two-thirds of