WorldWideScience

Sample records for internal cellular damage

  1. Programmed cellular response to ionizing radiation damage

    International Nuclear Information System (INIS)

    Crompton, N.E.A.

    1998-01-01

    Three forms of radiation response were investigated to evaluate the hypothesis that cellular radiation response is the result of active molecular signaling and not simply a passive physicochemical process. The decision whether or not a cell should respond to radiation-induced damage either by induction of rescue systems, e.g. mobilization of repair proteins, or induction of suicide mechanisms, e.g. programmed cell death, appears to be the expression of intricate cellular biochemistry. A cell must recognize damage in its genetic material and then activate the appropriate responses. Cell type is important; the response of a fibroblast to radiation damage is both quantitatively and qualitatively different form that of a lymphocyte. The programmed component of radiation response is significant in radiation oncology and predicted to create unique opportunities for enhanced treatment success. (orig.)

  2. Cellular Internalization of Fibroblast Growth Factor-12 Exerts Radioprotective Effects on Intestinal Radiation Damage Independently of FGFR Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan); Umeda, Sachiko [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan); Yasuda, Takeshi [Radiation Emergency Medicine Research Program, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan); Fujita, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan); Asada, Masahiro [Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Meineke, Viktor [Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich (Germany); Imamura, Toru [Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Imai, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan)

    2014-02-01

    Purpose: Several fibroblast growth factors (FGFs) were shown to inhibit radiation-induced tissue damage through FGF receptor (FGFR) signaling; however, this signaling was also found to be involved in the pathogenesis of several malignant tumors. In contrast, FGF12 cannot activate any FGFRs. Instead, FGF12 can be internalized readily into cells using 2 cell-penetrating peptide domains (CPP-M, CPP-C). Therefore, this study focused on clarifying the role of FGF12 internalization in protection against radiation-induced intestinal injury. Methods and Materials: Each FGF or peptide was administered intraperitoneally to BALB/c mice in the absence of heparin 24 hours before or after total body irradiation with γ rays at 9 to 12 Gy. Several radioprotective effects were examined in the jejunum. Results: Administration of FGF12 after radiation exposure was as effective as pretreatment in significantly promoting intestinal regeneration, proliferation of crypt cells, and epithelial differentiation. Two domains, comprising amino acid residues 80 to 109 and 140 to 169 of FGF12B, were identified as being responsible for the radioprotective activity, so that deletion of both domains from FGF12B resulted in a reduction in activity. Interestingly, these regions included the CPP-M and CPP-C domains, respectively; however, CPP-C by itself did not show an antiapoptotic effect. In addition, FGF1, prototypic FGF, possesses a domain corresponding to CPP-M, whereas it lacks CPP-C, so the fusion of FGF1 with CPP-C (FGF1/CPP-C) enhanced cellular internalization and increased radioprotective activity. However, FGF1/CPP-C reduced in vitro mitogenic activity through FGFRs compared with FGF1, implying that FGFR signaling might not be essential for promoting the radioprotective effect of FGF1/CPP-C. In addition, internalized FGF12 suppressed the activation of p38α after irradiation, resulting in reduced radiation-induced apoptosis. Conclusions: These findings indicate that FGF12 can protect the

  3. Cellular characterization of compression induced-damage in live biological samples

    Science.gov (United States)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.

    2011-06-01

    Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.

  4. Asymmetric segregation of damaged cellular components in spatially structured multicellular organisms.

    Directory of Open Access Journals (Sweden)

    Charlotte Strandkvist

    Full Text Available The asymmetric distribution of damaged cellular components has been observed in species ranging from fission yeast to humans. To study the potential advantages of damage segregation, we have developed a mathematical model describing ageing mammalian tissue, that is, a multicellular system of somatic cells that do not rejuvenate at cell division. To illustrate the applicability of the model, we specifically consider damage incurred by mutations to mitochondrial DNA, which are thought to be implicated in the mammalian ageing process. We show analytically that the asymmetric distribution of damaged cellular components reduces the overall damage level and increases the longevity of the cell population. Motivated by the experimental reports of damage segregation in human embryonic stem cells, dividing symmetrically with respect to cell-fate, we extend the model to consider spatially structured systems of cells. Imposing spatial structure reduces, but does not eliminate, the advantage of asymmetric division over symmetric division. The results suggest that damage partitioning could be a common strategy for reducing the accumulation of damage in a wider range of cell types than previously thought.

  5. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  6. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Slininger Patricia J

    2010-01-01

    Full Text Available Abstract Background Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP, and the PPP is associated with reactive oxygen species (ROS tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. Results We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM that prevents growth. Conclusion These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural

  7. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  8. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    International Nuclear Information System (INIS)

    Roper, Katherine; Coverley, Dawn

    2012-01-01

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: ► A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. ► Damage-activated extracts impose the cellular response to DNA damage on naïve nuclei. ► PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. ► Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. ► LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening approach.

  9. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    Science.gov (United States)

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  10. DNA damage and decrease of cellular oxidase activity in piglet ...

    African Journals Online (AJOL)

    DNA damage and decrease of cellular oxidase activity in piglet sertoli cells exposed to gossypol. Ming Zhang, Hui Yuan, Zuping He, Liyun Yuan, Jine Yi, Sijun Deng, Li Zhu, Chengzhi Guo, Yin Lu, Jing Wu, Lixin Wen, Qiang Wei, Liqun Xue ...

  11. Cellular responses of Saccharomyces cerevisiae to DNA damage

    International Nuclear Information System (INIS)

    Ciesla, Z.; Sledziewska-Gojska, E.; Nowicka, A.; Mieczkowski, P.; Fikus, M.U.; Koprowski, P.

    1998-01-01

    Full text. Several experimental strategies have been used to study responses of S. cerevisiae cells to DNA damage. One approach was based on the isolation of novel genes, the expression of which is induced by lesions in DNA. One of these genes, DIN7, was cloned and partially characterized previously. The product of DIN7 belongs to a large family of proteins involved in DNA repair and mutagenesis. This family includes Rad2, Rad27 and ExoI proteins of S. cerevisiae and their respective human homologues, all of which are endowed with DNA nuclease activity. To study cellular function of Din7 we constructed the pPK3 plasmid carrying DIN7 fused to the GAL1 promoter. Effects of DIN7 overproduction on the phenotypes of wild-type cells and of rad27 and exoI mutants were examined. Overproduction of Din7 does not seem to affect the proficiency of wild-type S. cerevisiae cells in recombination and mutagenesis. Also, overexpression of DIN7 does not suppress the deficiency of the EXOI gene product, the closest homologue of Din7, both in recombination and in controlling the fidelity of DNA replication. Unexpectedly, we found that elevated levels of Din7 result in a very high frequency of mitochondrial rho - mutants. A high frequency of production of rho - mutants wa s also observed in strains defective in the functioning of the Dun1 protein kinase involved in signal transmission in cells exposed to DNA damaging agents. Interestingly, deficiency of Dun1 results also in a significant derepression of the DIN7 gene. Experiments are under way to distinguish whether a high cellular level of Din7 specifically decreases stability of mitochondrial DNA or affects stability of chromosomal DNA as well. Analysis of previously constructed S. cerevisiae strains carrying random geno mic fusions with reporter lacZ gene, allowed us to identify the reading frame YBR173c, on chromosome II as a novel damage inducible gene - DIN8. We have shown that DIN8-lacZ fusion is induced in yeast cells treated

  12. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  13. Ozone effects on radish (Raphanus sativus L. cv. Cherry Belle): morphological and cellular damage

    Energy Technology Data Exchange (ETDEWEB)

    Athanassious, R.; Klyne, M.A.; Phan, C.T.

    1978-01-01

    Morphological symptoms of ozone damage were related to cellular alterations. The different degrees of damage reflected by the severity of plasmolysis, membrane destruction and coagulation were shown at different levels of microscopy.

  14. Fungicidal Drugs Induce a Common Oxidative-Damage Cellular Death Pathway

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2013-02-01

    Full Text Available Amphotericin, miconazole, and ciclopirox are antifungal agents from three different drug classes that can effectively kill planktonic yeast, yet their complete fungicidal mechanisms are not fully understood. Here, we employ a systems biology approach to identify a common oxidative-damage cellular death pathway triggered by these representative fungicides in Candida albicans and Saccharomyces cerevisiae. This mechanism utilizes a signaling cascade involving the GTPases Ras1 and Ras2 and protein kinase A, and it culminates in death through the production of toxic reactive oxygen species in a tricarboxylic-acid-cycle- and respiratory-chain-dependent manner. We also show that the metabolome of C. albicans is altered by antifungal drug treatment, exhibiting a shift from fermentation to respiration, a jump in the AMP/ATP ratio, and elevated production of sugars; this coincides with elevated mitochondrial activity. Lastly, we demonstrate that DNA damage plays a critical role in antifungal-induced cellular death and that blocking DNA-repair mechanisms potentiates fungicidal activity.

  15. Sub-cellular damage by copper in the cnidarian Zoanthus robustus.

    Science.gov (United States)

    Grant, A; Trompf, K; Seung, D; Nivison-Smith, L; Bowcock, H; Kresse, H; Holmes, S; Radford, J; Morrow, P

    2010-09-01

    Sessile organisms may experience chronic exposure to copper that is released into the marine environment from antifoulants and stormwater runoff. We have identified the site of damage caused by copper to the symbiotic cnidarian, Zoanthus robustus (Anthozoa, Hexacorallia). External changes to the zoanthids were apparent when compared with controls. The normally flexible bodies contracted and became rigid. Histological examination of the zoanthid tissue revealed that copper had caused sub-cellular changes to proteins within the extracellular matrix (ECM) of the tubular body. Collagen in the ECM and the internal septa increased in thickness to five and seven times that of controls respectively. The epithelium, which stained for elastin, was also twice as thick and tough to cut, but exposure to copper did not change the total amount of desmosine which is found only in elastin. We conclude that copper stimulated collagen synthesis in the ECM and also caused cross-linking of existing proteins. However, there was no expulsion of the symbiotic algae (Symbiodinium sp.) and no effect on algal pigments or respiration (44, 66 and 110 microg Cu L(-1)). A decrease in net photosynthesis was observed only at the highest copper concentration (156 microg Cu L(-1)). These results show that cnidarians may be more susceptible to damage by copper than their symbiotic algae. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Cellular radiosensitivity and DNA damage in primary human fibroblasts

    International Nuclear Information System (INIS)

    Wurm, R.; Burnet, N.G.; Duggal, N.

    1994-01-01

    To evaluate the relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts to decide whether the initial or residual DNA damage levels are more predictive of normal tissue cellular radiosensitivity. Five primary human nonsyndromic and two primary ataxia telangiectasia fibroblast strains grown in monolayer were studied. Cell survival was assessed by clonogenic assay. Irradiation was given at high dose rate (HDR) 1-2 Gy/min. DNA damage was measured in stationary phase cells and expressed as fraction released from the well by pulsed-field gel electrophoresis (PFGE). For initial damage, cells were embedded in agarose and irradiated at HDR on ice. Residual DNA damage was measured in monolayer by allowing a 4-h repair period after HDR irradiation. Following HDR irradiation, cell survival varied between SF 2 0.025 to 0.23. Measurement of initial DNA damage demonstrated linear induction up to 30 Gy, with small differences in the slope of the dose-response curve between strains. No correlation between cell survival and initial damage was found. Residual damage increased linearly up to 80 Gy with a variation in slope by a factor of 3.2. Cell survival correlated with the slope of the dose-response curves for residual damage of the different strains (p = 0.003). The relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts of differing radiosensitivity is closest with the amount of DNA damage remaining after repair. If assays of DNA damage are to be used as predictors of normal tissue response to radiation, residual DNA damage provides the most likely correlation with cell survival. 52 refs., 5 figs., 2 tabs

  17. Ultraviolet radiation-mediated damage to cellular DNA

    International Nuclear Information System (INIS)

    Cadet, Jean; Sage, Evelyne; Douki, Thierry

    2005-01-01

    Emphasis is placed in this review article on recent aspects of the photochemistry of cellular DNA in which both the UVB and UVA components of solar radiation are implicated individually or synergistically. Interestingly, further mechanistic insights into the UV-induced formation of DNA photoproducts were gained from the application of new accurate and sensitive chromatographic and enzymic assays aimed at measuring base damage. Thus, each of the twelve possible dimeric photoproducts that are produced at the four main bipyrimidine sites can now be singled out as dinucleoside monophosphates that are enzymatically released from UV-irradiated DNA. This was achieved using a recently developed high-performance liquid chromatography-tandem mass spectrometry assay (HPLC-MS/MS) assay after DNA extraction and appropriate enzymic digestion. Interestingly, a similar photoproduct distribution pattern is observed in both isolated and cellular DNA upon exposure to low doses of either UVC or UVB radiation. This applies more specifically to the DNA of rodent and human cells, the cis-syn cyclobutadithymine being predominant over the two other main photolesions, namely thymine-cytosine pyrimidine (6-4) pyrimidone adduct and the related cyclobutyl dimer. UVA-irradiation was found to generate cyclobutane dimers at TT and to a lower extent at TC sites as a likely result of energy transfer mechanism involving still unknown photoexcited chromophore(s). Oxidative damage to DNA is also induced although less efficiently by UVA-mediated photosensitization processes that mostly involved 1 O 2 together with a smaller contribution of hydroxyl radical-mediated reactions through initially generated superoxide radicals

  18. HSV-I and the cellular DNA damage response.

    Science.gov (United States)

    Smith, Samantha; Weller, Sandra K

    2015-04-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al . that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome.

  19. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su; Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk

    2016-01-01

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats

  20. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk [Research and Development Center, VENTEX Co. Ltd., Seoul (Korea, Republic of)

    2016-09-15

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats.

  1. Selected materials of the international workshop on radiation risk and its origin at molecular and cellular level

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2003-11-01

    The workshop ''International Workshop on Radiation Risk and its Origin at Molecular and Cellular Level'' was held at The Tokai Research Establishment, Japan Atomic Energy Research Institute, on the 6th and 7th of February 2003. The Laboratory of Radiation Risk Analysis of JAERI organized it. This international workshop attracted scientists from several different scientific areas, including radiation physics, radiation biology, molecular biology, crystallography of biomolecules, modeling and bio-informatics. Several foreign and domestic keynote speakers addresses the very fundamental areas of radiation risk and tried to establish a link between the fundamental studies at the molecular and cellular level and radiation damages at the organism. The symposium consisted of 13 oral lectures, 10 poster presentations and panel discussion. The 108 participants attended the workshop. This publication comprises of proceedings of oral and poster presentations where available. For the rest of contributions the abstracts or/and selections of presentation materials are shown instead. The 5 papers are indexed individually. (J.P.N.)

  2. Symposium cellular response to DNA damage the role of poly(ADP-ribose) poly(ADP-ribose) in the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Berger, N.A.

    1985-01-01

    Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Inhibitors of Poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of Poly(ADP-ribose) persists and the activated enzyme is capable of totaly consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of Poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest

  3. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  4. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  5. Scavenging capacity of medicinal plants against free radical-induced cellular damage by radiation and photoactivation

    Energy Technology Data Exchange (ETDEWEB)

    Gadkar, Shalaka [Ruia College, Mumbai (India); Mohan, H [Chemistry Group, Bhabha Atomic Research Centre, Mumbai (India); Kamat, J P [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai (India)

    2004-01-01

    The scavenging capacity of medicinal plants. Andrographis paniculata (Ap) and Swertia chirata (Sc) was examined against cellular damage, induced by radiation and photo-activation in sub-cellular membranes. The results demonstrated significant radical scavenging capacity of the extracts. The rate constants as evaluated by deoxyribose degradation studies and the pulse radiolysis studies carried in presence of ABTS radical well supported the antioxidant properties of the extracts. (author)

  6. Coupling mechanisms between nucleosome assembly and the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Lautrette, Aurelie

    2006-01-01

    Cells are continuously exposed to genotoxic stresses that induce a variety of DNA lesions. To protect their genome, cells have specific pathways that orchestrate the detection, signaling and repair of DNA damages. This work is dedicated to the characterization of such pathways that couple the DNA damage response to the assembly of chromatin, a complex that protects and regulates DNA accessibility. We have focused our study on two multifunctional proteins: Rad53, a central checkpoint kinase in the cellular response to DNA damage and Asf1, a histone chaperone involved in chromatin assembly. We have characterized in vitro the binding mode of Asf1 with Rad53 and Asfl with histones. This study is associated with the functional analysis of the role of these interactions in vivo in yeast cells. (author) [fr

  7. Participation of ATM in cellular response to DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Meng Xiangbing; Song Yi; Mao Jianping; Gong Bo; Dong Yan; Liu Bin; Sun Zhixian

    2000-01-01

    Objective: To clone ATM full length cDNA and cDNA fragments containing some functional domains and to identify proteins that interact with ATM and mediate DNA damage signal transduction in cellular response to DNA damage. Methods: ATM cDNA was amplified from MarthomTM-Ready cDNA kit of human leukocytes by LD-PCR. ATM-interacting proteins were screened by yeast two hybrid system. Results: ATM full-length cDNA and cDNA fragments containing PI3K kinase domain, leucine zipper and proline rich region were amplified from human cDNAs. Several candidate clones that interacted with ATM PI3K domain were identified. Conclusion: ATM mediates DNA damage signal transduction by interacting with many proteins

  8. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Cui Fengmei; Zhao Jingyong; Hong Chengjiao; Lao Qinhua; Wang Liuyi; Yang Shuqin

    2004-01-01

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  9. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling

    Czech Academy of Sciences Publication Activity Database

    Blažková, Hana; Krejčíková, Kateřina; Moudrý, Pavel; Frisan, T.; Hodný, Zdeněk; Bartek, Jiří

    2009-01-01

    Roč. 14, 1-2 (2009), s. 357-367 ISSN 1582-1838 R&D Projects: GA AV ČR IAA500390501; GA ČR GA204/08/1418; GA ČR GA301/08/0353 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * DNA damage response * bacterial toxins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2009

  10. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    Science.gov (United States)

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  11. The usefulness of the nuclear cardiology in the cellular implant in patients with severe myocardial damage

    International Nuclear Information System (INIS)

    Omelas A, M.; Arguero S, R.; Garrido G, M.H.; Rodriguez C, A.; Careaga, G.; Castano G, R.; Nambo, M.J.; Pascual P, J.; Ortega R, A.; Gaxiola A, A.; Magana S, J.A.; Estrada A, H.; Equipo de Tecnicos en Medicina Nuclear

    2005-01-01

    The recent therapeutic advances as the cellular implant as well as those different protocols of image acquisition in the field of the Nuclear Cardiology its have allowed that the patient with severe myocardial damage and without some possibility of revascularization is benefited with these advances. Doubtless the Tl-201 par excellence has an important paper for standardize the more appropriate therapeutic behavior for the heart attack patient; reason by this investigation protocol was developed. The objective of the study was to identify the heart attack regions without viable tissue with SPECT in patient with important myocardial damage without some possibility of traditional revascularization; for the 'Stem cell' cellular implantation therapy. The methodology it was carried out by a study of myocardial perfusion in 10 patients with important myocardial damage previous cellular implants, with PICANUC/ SPECT methodology and using a software (Emory Tool Box) for the image processing validated by the University of Emory Atlanta GA; and using as tracer the Tl - 201 to identify the heart attack regions without presence of viable tissue with an analysis model of 17 segments standardized for the left ventricle; qualifying this way the myocardial perfusion in: 0 (normal), 1 (light), 2 (moderate), 3 (severe), 4 (absent) and x (bad technique). The conclusions were that the SPECT study with PICANUC methodology with Tl-201 is safe and effective for the precise localization for the cellular implantation via direct intra myocardial. (Author)

  12. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair

    International Nuclear Information System (INIS)

    Stapleton, A.E.; Thornber, C.S.; Walbot, V.

    1997-01-01

    Ultraviolet radiation has diverse morphogenetic and damaging effects on plants. The end point of damage is reduced plant growth, but in the short term UV radiation damages specific cellular components. We measured cyclobutane pyrimidine dimers in maize DNA from plants grown in natural solar radiation. Green maize tissues had detectable DNA damage, roots had less damage, and anthers had much more damage than green leaves. This heterogeneity in damage levels may reflect differences in dose received or in damage repair. The architecture of green tissues had no measurable effects on DNA damage levels, as leaf sheath and leaf blade were equivalent. We observed a slight increase in damage levels in plants sampled at the end of the day, but there was no accumulation of damage over the growing season. We measured photoreactivation, and found substantial levels of this light-dependent repair in both the epidermis and inner cell layers of leaves, and in all organelles that contain DNA – the nucleus, chloroplasts and mitochondria. We conclude that maize has efficient mechanisms for photo repair of daily UV-induced DNA damage that prevent accumulation

  13. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    Science.gov (United States)

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  15. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Waker, A.J.; Prestwich, W.V.

    1998-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in a cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3 x 10 9 dm 3 mol -1 s -1 . Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (orig.)

  16. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Hamm, R.N.; Waker, A.J.; Prestwich, W.V.

    1988-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3x10 9 dm 3 mol -1 s-1. Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (author)

  17. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kitanovic, Ana; Woelfl, Stefan

    2006-01-01

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism

  18. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovic, Ana [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Woelfl, Stefan [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany)]. E-mail: wolfl@uni-hd.de

    2006-02-22

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism.0.

  19. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao

    2017-06-01

    Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.

  20. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  1. In vitro studies of cellular response to DNA damage induced by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Perona, M.; Pontiggia, O.; Carpano, M.; Thomasz, L.; Thorp, S.; Pozzi, E.; Simian, M.; Kahl, S.; Juvenal, G.; Pisarev, M.; Dagrosa, A.

    2011-01-01

    The aim of these studies was to evaluate the mechanisms of cellular response to DNA damage induced by BNCT. Thyroid carcinoma cells were incubated with 10 BPA or 10 BOPP and irradiated with thermal neutrons. The surviving fraction, the cell cycle distribution and the expression of p53 and Ku70 were analyzed. Different cellular responses were observed for each irradiated group. The decrease of Ku70 in the neutrons +BOPP group could play a role in the increase of sensitization to radiation.

  2. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  3. TRANSBOUNDARY DAMAGE IN THE LIGHT OF INTERNATIONAL ENVIRONMENTAL LAW

    Directory of Open Access Journals (Sweden)

    Oana Maria HANCIU

    2014-05-01

    Full Text Available Some activities that are useful for economic and social development of a State even if are not prohibited by national or international law can cause transboundary damages to other countries. This kind of transboundary damages have given rise to theories of State responsibility and a worldwide demand for increased environmental protection. "Under the principles of international law...no State has the right to use or permit the use of its territory in such a manner as to cause [environmental] injury ... in or to the territory of another or the properties of persons therein, when the case is of serious consequence and the injury is established by clear and convincing evidence." (Stockholm Principle 21 The paper analyses the impact of transboundary damage in the light of international environmental law and the increasing concern among States for environmental protection.

  4. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Prasana, E-mail: prasanasahoo@gmail.com [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India); Murthy, P. Sriyutha [Bhabha Atomic Research Centre, Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division (India); Dhara, S., E-mail: dhara@igcar.gov.in [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India); Venugopalan, V. P. [Bhabha Atomic Research Centre, Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division (India); Das, A.; Tyagi, A. K. [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India)

    2013-08-15

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga{sup 3+} (ionic radius {approx}0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe{sup 2+} (ionic radius {approx}0.077 nm), which is essential for energy metabolism.

  5. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    International Nuclear Information System (INIS)

    Sahoo, Prasana; Murthy, P. Sriyutha; Dhara, S.; Venugopalan, V. P.; Das, A.; Tyagi, A. K.

    2013-01-01

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga 3+ (ionic radius ∼0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe 2+ (ionic radius ∼0.077 nm), which is essential for energy metabolism

  6. Public international law and civil law liability for compensation for damages by virtue of international environmental law

    International Nuclear Information System (INIS)

    Rest, A.

    1982-01-01

    The author analyses the current provisions in international law and international private law for their suitability to establish liability for damages due to transfrontier pollution, also taking into account damage occurred through the operation of nuclear power plants. As a result the author suggests that the national goverments should jointly set up standards and catalogues of environmentally detrimental effects and impacts, and of the seriousness thereof, and to make these form part of international conventions and agreements which also should unambigiously state liability for compensation for damages. For activities involving special hazards, liability for risks should be introduced in such a body of international regulations. (CB) [de

  7. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1994-01-01

    Ionizing radiations produce many hundreds of different simple chemical products in DNA and also multitudes of possible clustered combinations. The simple products, including single-strand breaks, tend to correlate poorly with biological effectiveness. Even for initial double-strand breaks, as a broad class, there is apparently little or no increase in yield with increasing ionization density, in contrast with the large rise in relative biological effectiveness for cellular effects. Track structure analysis has revealed that clustered DNA damage of severity greater than simple double-strand breaks is likely to occur at biologically relevant frequencies with all ionizing radiations. Studies are in progress to describe in more detail the chemical nature of these clustered lesions and to consider the implications for cellular repair. (author)

  8. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage.

    Science.gov (United States)

    Liu, Ying; Wu, Xiaohua; Hu, Xiaoqing; Chen, Ziyuan; Liu, Hao; Takeda, Shunichi; Qing, Yong

    2017-08-01

    Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1 -/- , base excision repair (BER) deficient cell lines of Polβ -/- , homologous recombination (HR) mutants of Brca1 -/- and Brca2 -/- and translesion DNA synthesis (TLS) mutants of Rev3 -/- and Rad18 -/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  9. Adhesion and internalization differences of COM nanocrystals on Vero cells before and after cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Ouyang, Jian-Ming, E-mail: toyjm@jnu.edu.cn

    2016-02-01

    The adhesion and internalization between African green monkey kidney epithelial (Vero) cells (before and after oxidative damage by hydrogen peroxide) and calcium oxalate monohydrate (COM) nanocrystals (97 ± 35 nm) were investigated so as to discuss the molecular and cellular mechanism of kidney stone formation. Scanning electron microscope (SEM) was used to observe the Vero–COM nanocrystal adhesion; the nanocrystal-cell adhesion was evaluated by measuring the content of malonaldehyde (MDA), the activity of superoxide dismutase (SOD), the expression level of cell surface osteopontin (OPN) and the change of Zeta potential. Confocal microscopy and flow cytometry were used for the observation and quantitative analysis of crystal internalization. In the process of adhesion, the cell viability and the SOD activity declined, the MDA content, Zeta potential, and the OPN expression level increased. The adhesive capacity of injured Vero was obviously stronger than normal cells; in addition the injured cells promoted the aggregation of COM nanocrystals. The capacity of normal cells to internalize crystals was obviously stronger than that of injured cells. Cell injury increased adhesive sites on cell surface, thereby facilitating the aggregation of COM nanocrystals and their attachment, which results in enhanced risk of calcium oxalate stone formation. - Graphical abstract: The adhesion and internalization differences between Vero cells before and after oxidative damage and calcium oxalate monohydrate nanocrystals were comparatively studied. - Highlights: • Adhesion capacity of injured Vero cells was stronger than normal cells. • Internalization capacity of injured Vero cells was weaker than normal cells. • Injured cells promoted the aggregation of COM nanocrystals. • COM adhesion could aggravate cell injury in both normal and injured cells.

  10. Liability for nuclear damage. An international perspective

    International Nuclear Information System (INIS)

    Lopuski, J.

    1993-01-01

    The book deals with some of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on this experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may be fully intelligible for those who have not participated in or closely followed in Committee's work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world's public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states the engage their liability; conflict of interests between nuclear and non-nuclear states has been manifested. After three years of discussion no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structures of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issues, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author)

  11. Toxicity evaluation of e-juice and its soluble aerosols generated by electronic cigarettes using recombinant bioluminescent bacteria responsive to specific cellular damages.

    Science.gov (United States)

    Bharadwaj, Shiv; Mitchell, Robert J; Qureshi, Anjum; Niazi, Javed H

    2017-04-15

    Electronic-cigarettes (e-cigarette) are widely used as an alternative to traditional cigarettes but their safety is not well established. Herein, we demonstrate and validate an analytical method to discriminate the deleterious effects of e-cigarette refills (e-juice) and soluble e-juice aerosol (SEA) by employing stress-specific bioluminescent recombinant bacterial cells (RBCs) as whole-cell biosensors. These RBCs carry luxCDABE-operon tightly controlled by promoters that specifically induced to DNA damage (recA), superoxide radicals (sodA), heavy metals (copA) and membrane damage (oprF). The responses of the RBCs following exposure to various concentrations of e-juice/SEA was recorded in real-time that showed dose-dependent stress specific-responses against both the e-juice and vaporized e-juice aerosols produced by the e-cigarette. We also established that high doses of e-juice (4-folds diluted) lead to cell death by repressing the cellular machinery responsible for repairing DNA-damage, superoxide toxicity, ion homeostasis and membrane damage. SEA also caused the cellular damages but the cells showed enhanced bioluminescence expression without significant growth inhibition, indicating that the cells activated their global defense system to repair these damages. DNA fragmentation assay also revealed the disintegration of total cellular DNA at sub-toxic doses of e-juice. Despite their state of matter, the e-juice and its aerosols induce cytotoxicity and alter normal cellular functions, respectively that raises concerns on use of e-cigarettes as alternative to traditional cigarette. The ability of RBCs in detecting both harmful effects and toxicity mechanisms provided a fundamental understanding of biological response to e-juice and aerosols. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Lycopene: An antioxidant and radioprotector against γ-radiation-induced cellular damages in cultured human lymphocytes

    International Nuclear Information System (INIS)

    Srinivasan, M.; Devipriya, N.; Kalpana, K.B.; Menon, Venugopal P.

    2009-01-01

    The present study aimed to evaluate the radioprotective effect of lycopene, a naturally occurring dietary carotenoid on γ-radiation-induced toxicity. The cellular changes were estimated by using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), hydroperoxides (HP), the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH). The DNA damage was analyzed by cytokinesis blocked micronucleus assay (CBMN), dicentric aberration (DC) and translocation frequency. The γ-radiation at different doses (1, 2 and 4 Gy) resulted in a significant increase in the number of micronuclei (MN), DC, translocation frequency, TBARS and HP level, whereas the levels of GSH and antioxidant enzymes were significantly decreased when compared with normal control. The maximum damage to lymphocytes was observed at 4 Gy irradiation. Lycopene pretreatment (1, 5 and 10 μg/ml) significantly decreased the frequency of MN, DC and translocation when compared with γ-radiation control. The levels of TBARS, HP were also decreased and activities of SOD, CAT and GPx were significantly increased along with GSH levels when compared with γ-radiation control. The dose of 5 μg/ml of lycopene was found to be more effective than the other two doses. Thus, our result shows that pretreatment with lycopene offers protection to normal lymphocytes against γ-radiation-induced cellular damage.

  13. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    International Nuclear Information System (INIS)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-01-01

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  14. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Renis, M.; Malfa, G.; Tomasello, B. [Drug Sciences Department, University of Catania, Catania (Italy); Borghesi, M.; Schettino, G. [Queen' s University Belfast, Northern Ireland (United Kingdom); Favetta, M.; Romano, F.; Cirrone, G. A. P. [National Institute for Nuclear Physics (INFN-LNS), Catania (Italy); Manti, L. [Physics Science Department, University of Naples Federico II, Naples, and National Institute for Nuclear Physics (INFN), Naples (Italy)

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  15. Chemical radiosensitization and quality of cellular damage in bacteria exposed to gamma rays

    International Nuclear Information System (INIS)

    Nair, C.K.K.; Pradhan, D.S.; Sreenivasan, A.

    1976-01-01

    Iodoacetic acid (IAA) and N-ethylmaleimide (NEM) when present during exposure of Streptococcus faecalis cells to gamma radiation enhance radiation-induced lethality under both anoxic and aerated conditions. The changes brought about by this radiosensitization in cellular functions have been studied with a view to elucidating the mechanism responsible for the increased loss of viability. The quality of cellular damage in chemical radiosensitization was investigated by correlating survival and the biosynthetic capacity of an irradiated cell population. The relationship between surviving fraction and extent of incorporation of 3 H-thymidine into DNA was found to be unaffected regardless of whether the sensitizers (IAA or NEM) were present or absent during irradiation under anoxia. However, under the oxic condition of irradiation the survival--DNA-labeling relationship was completely different in the presence and in the absence of the sensitizers

  16. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  17. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    International Nuclear Information System (INIS)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-01-01

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor - a sensor that can continuously monitor a material's damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks

  18. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  19. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures

    Directory of Open Access Journals (Sweden)

    Murugan K

    2015-03-01

    Full Text Available Karmani Murugan, Yahya E Choonara, Pradeep Kumar, Divya Bijukumar, Lisa C du Toit, Viness Pillay Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa Abstract: Cellular internalization and trans-barrier transport of nanoparticles can be manipulated on the basis of the physicochemical and mechanical characteristics of nanoparticles. Research has shown that these factors significantly influence the uptake of nanoparticles. Dictating these characteristics allows for the control of the rate and extent of cellular uptake, as well as delivering the drug-loaded nanosystem intra-cellularly, which is imperative for drugs that require a specific cellular level to exert their effects. Additionally, physicochemical characteristics of the nanoparticles should be optimal for the nanosystem to bypass the natural restricting phenomena of the body and act therapeutically at the targeted site. The factors at the focal point of emerging smart nanomedicines include nanoparticle size, surface charge, shape, hydrophobicity, surface chemistry, and even protein and ligand conjugates. Hence, this review discusses the mechanism of internalization of nanoparticles and ideal nanoparticle characteristics that allow them to evade the biological barriers in order to achieve optimal cellular uptake in different organ systems. Identifying these parameters assists with the progression of nanomedicine as an outstanding vector of pharmaceuticals. Keywords: nanoparticles, transport mechanisms, cellular uptake, size, shape, charge

  20. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage.

    Science.gov (United States)

    Karayazi Atici, Ödül; Urbanska, Anna; Gopinathan, Sesha Gopal; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S

    2018-02-01

    Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents. Copyright © 2018 Endocrine Society.

  1. Cellular and molecular repair of X-ray-induced damage: dependence on oxygen tension and nutritional status

    International Nuclear Information System (INIS)

    Spiro, I.J.; Kennedy, K.A.; Stickler, R.; Ling, C.C.

    1985-01-01

    Cellular and molecular repair was studied at 23 0 C using split-dose recovery and alkaline elution techniques, respectively, as a function of cellular oxygen and nutrient conditions. Hypoxic cells in full medium showed a partial reduction in the level of sublethal damage (SLD) repair relative to aerated cells; the respective repair kinetics were similar with a common repair half-time of 30 min. Similarly, hypoxic cells showed a slight reduction in strand break rejoining capacity compared to aerated cells. Under nutrient deprivation, anoxic cells displayed no SLD repair or strand break repair, while aerated cells exhibited the same level of SLD and strand break repair as for well-fed cells. In addition, nutrient deprived cells at low O 2 levels displayed normal SLD and strand break repair capability. These results indicate that both nutrient and O 2 deprivation are necessary for complete inhibition of cellular and molecular repair, and low levels of O 2 can effectively reverse this inhibition

  2. Use of X - Rays for the evaluation of internal damages provoked by corn seed drying and the effect of those damages upon the seeds quality

    International Nuclear Information System (INIS)

    Obando Flor, Ebert Pepe; Moreira de Carvalho, Maria Laene

    2002-01-01

    The work was conducted in the seed analysis laboratory of the department of agriculture and forest sciences of the Universidade Federal de Lavras (Federal University of Lavras. MG), over the period 1999 - 2000. Aiming to evaluate the efficiency of utilization of X - rays in the identification of the several types of internal damages provoked by corn seed drying to high temperatures as well as the effect of those damages upon the physiological quality of stored seeds, lots of the cultivars AG1143 and BR 106 were submitted to drying at the temperature of 50 degrades Celsius. The lots were divided into two categories according to the presence or not of internal damages visible with the naked eye submitted to the X - ray test (for 45 at 25 Kvp of radiation intensity) afterwards. They were separated into three sub lots. CDVCDRX (with visual damages and detected by X - ray) SDVSDRX (without visual damages and with damages detected by X ray). The sub lots were evaluated in their physiological quality by viability and vigor tests. The results showed the efficiency of X ray in detecting internal damages of drying not observed by visual analysis. The vigor of corn seeds with internal drying damages is affected in several manners, depending on the cultivars, evaluation time and sort of damage internal damages of drying detected by the radiographical analysis in spite of not affecting early viability, when they occurs in the two directions horizontal and vertical (Double damage) decrease the vigor of seeds after storage

  3. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    International Nuclear Information System (INIS)

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki; Kondoh, Masuo; Yagi, Kiyohito; Gao, Jian-Qing; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticles were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.

  4. MECHANISMS OF DAMAGING EFFECT OF MANGENESE IN TOXIC CONCENTRATIONS ON CELLULAR AND SUBCELLULAR LEVELS

    Directory of Open Access Journals (Sweden)

    Goncharenko A. V.

    2012-11-01

    Full Text Available Influence of subtoxic concentration of manganese chloride in dose equal to LD 50 on condition of plasmatic membranes (model: erythrocytes and functional activity of cell power (model: the isolated liver mitochondrion of rats was studied. It was established that manganese chloride in fixed concentration caused authentic augmentation of sorption capacity of erythrocytes towards alcian blue, influenced increasing of their spontaneous haemolysis and activation of peroxide oxidation of lipids. In experiment on the isolated mitochondrion it was proved that manganese chloride caused dissociation of an oxidizing phosphorusling and complete inhibition of respiration in concentrations of 3 and 4,5mM. These dependences testify that subtoxic concentration of manganese can damage the cell energy. Thus, this pilot research indicated damaging effect of manganese on cellular (erythrocytes and subcellular (mitochondrion levels which are realized through external functioning of membrane structures and deprived them from restoration.

  5. Various irrigation fluids affect postoperative brain edema and cellular damage during experimental neurosurgery in rats.

    Science.gov (United States)

    Doi, Kazuhisa; Kawano, Takeshi; Morioka, Yujiro; Fujita, Yasutaka; Nishimura, Masuhiro

    2006-12-01

    This study was conducted to investigate how various irrigation fluids used during neurosurgical procedures affect the degree of postoperative brain edema and cellular damage during experimental neurosurgery in rats. The cerebral cortex was exposed and incised crosswise with a surgical knife under irrigation with an artificial CSF, lactated Ringer's solution, or normal saline. Four hours after injury, irrigation was stopped and brain tissue samples were obtained from injured and uninjured sites. Specific gravity, cerebrovascular permeability, and TTC staining of the samples were evaluated. Incision and irrigation of the brain were not performed on the control group. At the injured site, specific gravities of the samples in the normal saline group and the lactated Ringer's solution group were significantly lower than the specific gravity in the artificial CSF group. The EB concentration was significantly higher in the lactated Ringer's solution group and relatively high in the normal saline group as compared with the artificial CSF group. TTC staining did not differ significantly between the artificial CSF group and the control group. It was significantly lower in the lactated Ringer's solution group and the normal saline group than in the control group and the artificial CSF group. As compared with normal saline and lactated Ringer's solution, artificial CSF reduced postoperative brain edema, cerebrovascular permeability, and cellular damage in sites injured by experimental neurosurgery in rats.

  6. Influence of radiation damage on internal friction background

    International Nuclear Information System (INIS)

    Burbelo, R.M.; Grinik, Eh.U.; Paliokha, M.I.; Orlinskij, A.B.

    1984-01-01

    Influence of radiation damage on internal friction background in samples of polycrystalline nickel and iron irradiated by a fast neutron flux approximately 10 14 neutr/(cm 2 xs) at 350 deg C has been studied using the low-frequency unit of the reverse torsion pendulum type. It has been established experimentally that a high-temperature background of internal friction of iron and nickel samples decreases as accumulating radiation defects occurring under neutron irradiation. Assumptions on a possible mechanism of the effect have been proposed. Simple expression for the background magnitude evaluation has been suggested

  7. Gymnemagenin-a triterpene saponin prevents γ-radiation induced cellular DNA damage

    International Nuclear Information System (INIS)

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2014-01-01

    Gymnema sylvestre an ethno-medicinally important plant was investigated for its protecting activity against radiation induced DNA damage. The major bioactive component present in Gymnema sylvestre such as gymnemic acid and gymnemagenin a triterpene saponin, were tested for its radioprotective effects against 60 Co irradiation induced DNA damage in fish model using fresh water fish Pangasius sutchi. Fishes subjected to a dose of 133 Gy of gamma radiation and observed for eight days. The genotoxic assessment by micronucleus assay showed us that that the plant extract helped in reducing the frequency of micronucleated and binucleated erythrocytes compared to the irradiated control group. The genotoxic assessment by alkaline comet assay by single gel electrophoresis shows that pretreatment with the plant extract appreciably decreased the percentage of tail DNA towards the levels close to those of normal control group. The gradual increase in the level of the antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) during the course of the experiment indicates that the antioxidant enzyme activities play an important role in protecting organisms against gamma radiation-induced cellular oxidative stress. In conclusion the leaf extracts of Gymnema sylvstre exerts its radio protective potential by suppressing the toxic assault of ROS generated by the ionizing radiation through its ability to boost the levels of antioxidant enzymes (CAT and SOD) due to the presence of its phytochemicals like gymnemgenenin- a Triterpene Saponin. (author)

  8. Characterization of non-dimer DNA lesions and cellular damages caused by ultraviolet light

    International Nuclear Information System (INIS)

    Nakao, Kumi

    1989-01-01

    To understand the mechanisms of carcinogenicity and cytotoxicity induced by ultraviolet (UV) light, non-dimer DNA damages produced by near UV light (wave-length: 290∼320 nm) were examined by alkaline elution using Chinese hamster V-79 cells. UV exposure produced a dose-dependent induction of DNA single strand breaks and DNA-protein crosslinks. However, neither of these DNA lesions were repaired within a 24 hr incubation of the cells following UV exposure. Rather the number of these lesions increased. Also, UV exposure inhibited DNA and RNA synthesis. In addition, UV induced both cytotoxicity and chromosomal aberration. Electron spin resornance (ESR) studies showed that the exposure of cells to UV light resulted in the appearance of an ESR signal at -120degC. The roles of glutathione, vitamin E and vitamin B 2 , which were celluar antioxidant, on the induction of cytotoxicity by UV exposure were also examined. Pretreatment with vitamin E reduced the cytotoxicty caused by UV, whereas neither preteatment with vitamin B 2 nor the alteration of cellular gluthaione content affected the cytotoxicity. These results suggest that non-dimer DNA damages, such as DNA single strand breaks and DNA-protein crosslinks play an important role in inducing UV-carcinogenicity and UV-cytotoxicity, and that the mechanisms of these damages may be associated with the generation of free radicals. (author)

  9. Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization

    Directory of Open Access Journals (Sweden)

    Carla Ribeiro

    2018-03-01

    Full Text Available Hollow multilayered capsules have shown massive potential for being used in the biomedical and biotechnology fields, in applications such as cellular internalization, intracellular trafficking, drug delivery, or tissue engineering. In particular, hollow microcapsules, developed by resorting to porous calcium carbonate sacrificial templates, natural-origin building blocks and the prominent Layer-by-Layer (LbL technology, have attracted increasing attention owing to their key features. However, these microcapsules revealed a great tendency to aggregate, which represents a major hurdle when aiming for cellular internalization and intracellular therapeutics delivery. Herein, we report the preparation of well-dispersed polysaccharide-based hollow multilayered microcapsules by combining the LbL technique with an optimized purification process. Cationic chitosan (CHT and anionic alginate (ALG were chosen as the marine origin polysaccharides due to their biocompatibility and structural similarity to the extracellular matrices of living tissues. Moreover, the inexpensive and highly versatile LbL technology was used to fabricate core-shell microparticles and hollow multilayered microcapsules, with precise control over their composition and physicochemical properties, by repeating the alternate deposition of both materials. The microcapsules’ synthesis procedure was optimized to extensively reduce their natural aggregation tendency, as shown by the morphological analysis monitored by advanced microscopy techniques. The well-dispersed microcapsules showed an enhanced uptake by fibroblasts, opening new perspectives for cellular internalization.

  10. An overview of the international regime governing liability for nuclear damage

    International Nuclear Information System (INIS)

    Sturms, W.; Reye, S.

    1995-01-01

    Since 1986, the IAEA has been seized with considerations of all aspects of international nuclear liability, with a view to establishing a comprehensive international regime that would obtain widest adherence. The practical work is currently being done in the IAEA Standing Committee on Liability for Nuclear Damage. The efforts, which were first concentrated on the improvement of the existing civil liability regime, resulted in adoption, in 1988, of the Joint Protocol to the Vienna Convention and the Paris Convention, combining them into one expanded regime. At present, the work is focused on the following questions: (a) Revision of the Vienna Convention: In this context, specific draft amendments are considered relating to some key issues where need for improvement has been recognized, such as geographical scope, application to military installations, expansion of the definition of damage to cover environmental damage, preventative measures and consequential losses, increase of liability limits, provision of funds by the Installation State, extension of time limits for submission of claims, restriction of exonerations, etc. (b) International State liability and its relationship with the civil liability regime: Emphasis is placed on proposals for Installation State involvement in the provision of public funds in addition to compensation paid by the operator. (c) Elaboration of a supplementary funding system to cover damage exceeding compensation available under the Vienna and Paris Conventions

  11. Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.

    Science.gov (United States)

    Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A

    2012-02-01

    Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, Pmelanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (Pmelanin. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  13. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  14. HTLV-1 Tax Oncoprotein Subverts the Cellular DNA Damage Response via Binding to DNA-dependent Protein Kinase*S⃞

    Science.gov (United States)

    Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John

    2008-01-01

    Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425

  15. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Angelieri, Fernanda; Oliveira, Gabriela R. de [Sao Paulo Metodista University (UMESP), Department of Orthodontics, Sao Bernardo do Campo, Sao Paulo (Brazil); Sannomiya, Eduardo K. [Sao Paulo Metodista University (UMESP), Department of Dento-Maxillofacial Radiology, Sao Bernardo do Campo, Sao Paulo (Brazil); Ribeiro, Daniel A. [Federal University of Sao Paulo (UNIFESP), Department of Health Sciences, Santos, Sao Paulo (Brazil); Universidade Federal de Sao Paulo (UNIFESP), Departamento de Ciencias da Saude, Santos, Sao Paulo (Brazil)

    2007-06-15

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  16. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    International Nuclear Information System (INIS)

    Angelieri, Fernanda; Oliveira, Gabriela R. de; Sannomiya, Eduardo K.; Ribeiro, Daniel A.

    2007-01-01

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  17. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West

    2015-06-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  18. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Lars-Oliver Klotz

    2014-09-01

    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  19. International conventions on civil liability for nuclear damage. Revised 1976 ed.

    International Nuclear Information System (INIS)

    1976-01-01

    This revised edition contains the texts of the following multilateral conventions and instruments concerning civil liability for nuclear damage: The Vienna Convention of 21 May 1963 on Civil Liability for Nuclear Damage; The Paris Convention of 29 July 1960 on Third Party Liability in the Field of Nuclear Energy (incorporating the provisions of the Additional Protocol of 28 January 1964); The Brussels Convention of 31 January 1963; Supplementary to the Paris Convention of 29 July 1960 (and incorporating the provisions of the Additional Protocol signed in Paris on 28 January 1964); and the Brussels Convention of 25 May 1962 on the Liability of Operators of Nuclear Ships. Final Act and Resolutions of the International Conference on Civil Liability for Nuclear Damage, held in Vienna from 29 April to 19 May 1963; Final Act of the International Legal Conference on Maritime Carriage of Nuclear Substances, held in Brussels from 29 November to 2 December 1971; and Convention Relating to Civil Liability in the Field of Maritime Carriage of Nuclear Material, adopted at Brussels on 17 December 1971

  20. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  1. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  2. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  3. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  4. HPLC-MS/MS measurement of radiation and photo-induced damage in cellular DNA and human skin

    International Nuclear Information System (INIS)

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2010-01-01

    Full text: The measurement of damage induced in cellular DNA by ionizing and solar radiations is of major importance to assess the molecular mode of action and the biological role (mutagenesis, DNA repair) of these genotoxic agents. For this purpose several analytical approaches including immunodetection, post-labeling and chromatographic assays have been designed. However most of them have been shown to suffer from a lack of specificity, sensitivity or quantitative response. It may be noted that the gas-chromatography method in its basal version has been found to lead to overestimated yields of oxidatively generated base lesions by two to three order of magnitude due to the occurrence of artifactual oxidation of the overwhelming purine and pyrimidine bases during the derivatization step of the assay. The advent of HPLC coupled to tandem mass spectrometry operating in the electrospray ionization mode has allowed overcoming most of these drawbacks. Thus, accurate determination of 11 oxidized bases and nucleosides has been achieved in cellular DNA upon exposure to radiation-induced hydroxyl radical and one-electron oxidation agents. This has involved quantitative enzymatic release of lesions from extracted DNA and their accurate detection at the output of the HPLC column using the highly quantitative isotopic dilution technique. Evidence was also provided for the generation of five clustered lesions that all involve a base modification and an altered 2-deoxyribose residue as the result of only one initial radical oxidation hit. These consist of (5'R)-5',8-cyclo-2'-deoxyadenosine and cytosinealdehyde adducts that arise from .OH-mediated hydrogen abstraction at C5 and C4 of the sugar moiety of cellular DNA respectively. The damaging effects of UVA radiation on cellular DNA and human skin were rationalized in terms of predominant 1 O 2 -mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine. Other relevant types of DNA modifications consist in bipyrimidine

  5. Cellular and molecular mechanisms of cigarette smoke-induced lung damage and prevention by vitamin C

    Directory of Open Access Journals (Sweden)

    Roy Siddhartha

    2008-11-01

    Full Text Available Abstract Background Cigarette smoke-induced cellular and molecular mechanisms of lung injury are not clear. Cigarette smoke is a complex mixture containing long-lived radicals, including p-benzosemiquinone that causes oxidative damage. Earlier we had reported that oxidative protein damage is an initial event in smoke-induced lung injury. Considering that p-benzosemiquinone may be a causative factor of lung injury, we have isolated p-benzosemiquinone and compared its pathophysiological effects with cigarette smoke. Since vitamin C is a strong antioxidant, we have also determined the modulatory effect of vitamin C for preventing the pathophysiological events. Methods Vitamin C-restricted guinea pigs were exposed to cigarette smoke (5 cigarettes/day; 2 puffs/cigarette for 21 days with and without supplementation of 15 mg vitamin C/guinea pig/day. Oxidative damage, apoptosis and lung injury were assessed in vitro, ex vivo in A549 cells as well as in vivo in guinea pigs. Inflammation was measured by neutrophilia in BALF. p-Benzosemiquinone was isolated from freshly prepared aqueous extract of cigarette smoke and characterized by various physico-chemical methods, including mass, NMR and ESR spectroscopy. p-Benzosemiquinone-induced lung damage was examined by intratracheal instillation in guinea pigs. Lung damage was measured by increased air spaces, as evidenced by histology and morphometric analysis. Oxidative protein damage, MMPs, VEGF and VEGFR2 were measured by western blot analysis, and formation of Michael adducts using MALDI-TOF-MS. Apoptosis was evidenced by TUNEL assay, activation of caspase 3, degradation of PARP and increased Bax/Bcl-2 ratio using immunoblot analysis and confocal microscopy. Results Exposure of guinea pigs to cigarette smoke resulted in progressive protein damage, inflammation, apoptosis and lung injury up to 21 days of the experimental period. Administration of 15 mg of vitamin C/guinea pig/day prevented all these

  6. The law applicable to environmental damage in European private international law

    Directory of Open Access Journals (Sweden)

    Đundić Petar

    2013-01-01

    Full Text Available The paper contains an analysis of choice of law rules in the field of non-contractual liability for damage caused to environment in national legislations of European countries as well as in Private International Law of the European Union. Before the adoption of Regulation of the European Parliament and of the Council on the law applicable to non-contractual obligations (Rome II, special choice of law rules for environmental torts existed in a small number of European national legal orders. This is the fact that gives the rule contained in Article 7 of the Rome II Regulation a particular importance. From the Serbian Private International Law perspective, the significance of that provision is highlighted by the fact that the working draft of the new Serbian Private International Law Act has strictly followed the choice of law rule envisaged by the European legislator for environmental damage. For that reason, a significant part of the paper is dedicated to analysis of said rule, to its interpretation and potential problems which its application could create.

  7. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage.

    Science.gov (United States)

    Das, Asmita; Majumder, Debashis; Saha, Chabita

    2017-05-01

    Flavonoids are dietary intakes which are bestowed with several health benefits. The most studied property of flavonoids is their antioxidant efficacy. Among the chosen flavonoids Quercetin, Kaempferol and Myricetin is catagorized as flavonols whereas Apigenin and Luteolin belong to the flavone group. In the present study anti-cancer properties of flavonoids are investigated on the basis of their binding efficacy to ct-DNA and their ability to induce cytotoxicity in K562 leukaemic cells. The binding affinities of the flavonoids with calf thymus DNA (ct-DNA) are in the order Quercetin>Myricetin>Luteolin>Kaempferol>Apigenin. Quercetin with fewer OH than myricetin has higher affinity towards DNA suggesting that the number and position of OH influence the binding efficacies of flavonoids to ct-DNA. CD spectra and EtBr displacement studies evidence myricetin and apigenin to be stronger intercalators of DNA compared to quercetin. From comet assay results it is observed that quercetin and myricetin when used in combination induce higher DNA damage in K562 leukemic cells than when tested individually. Higher binding efficacy has been recorded for quercetin to DNA at lower pH, which is the micro environment of cancerous cells, and hence quercetin can act as a potential anti-cancer agent. Presence of Cu also increases cellular damage as recorded by comet assay. Copyright © 2017. Published by Elsevier B.V.

  8. LET dependence of linear and quadratic terms in dose-response relationships for cellular damage: correlations with the dimensions and structures of biological targets

    International Nuclear Information System (INIS)

    Barendsen, G.W.; Amsterdam Univ.

    1990-01-01

    To apply information from microdosimetric studies and from cellular responses to the development and testing of hypotheses about mechanisms of radiation action, it is necessary to correlate these data with insights concerning dimensions and structures of cellular constituents and macromolecules. This approach is illustrated by the correlation of cross sections for inactivation with dimensions of the cell nucleus in dependence on the culture conditions and by the comparison of the derived dimensions of critical targets with DNA packing and chromatin structure in cells. A model is suggested in which lethal and potentially lethal damage induced in mammalian cells by single ionising particles involves the induction of two DNA double strand breaks in close proximity in a chromatin fibre, while accumulation of damage causing the contribution, which increases with the square of the dose, might be associated with interaction of single DSBs produced at larger distances. (author)

  9. Purine receptor P2Y_6 mediates cellular response to γ-ray-induced DNA damage

    International Nuclear Information System (INIS)

    Ide, Shunta; Nishimaki, Naoko; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-01-01

    We previously showed that nucleotide P2 receptor agonists such as ATP and UTP amplify γ-ray-induced focus formation of phosphorylated histone H2A variant H2AX (γH2AX), which is considered to be an indicator of DNA damage so far, by activating purine P2Y_6 and P2Y_1_2 receptors. Therefore, we hypothesized that these P2 receptors play a role in inducing the repair response to γ-ray-induced DNA damage. In the present study, we tested this idea by using human lung cancer A549 cells. First, reverse-transcription polymerase chain reaction (RT-PCR) showed that P2Y_6 receptor is highly expressed in A549 cells, but P2Y_1_2 receptor is only weakly expressed. Next, colony formation assay revealed that P2Y_6 receptor antagonist MRS2578 markedly reduced the survival rate of γ-ray-exposed A549 cells. The survival rate was also significantly reduced in P2Y_6-knock-down cells, compared with scramble siRNA-transfected cells. Since it has reported that phosphorylation of ERK1/2 after activation of EGFR via P2Y_6 and P2Y_1_2 receptors is involved in the repair response to γ-ray-induced DNA damage, we next examined whether γ-ray-induced phosphorylation of ERK1/2 was also inhibited by MRS2578 in A549 cells. We found that it was. Taken together, these findings indicate that purinergic signaling through P2Y_6 receptor, followed by ERK1/2 activation, promotes the cellular repair response to γ-ray-induced DNA damage. (author)

  10. Organizing irresponsibility? The (inter)national management of a nuclear accident damages as discursive regime

    International Nuclear Information System (INIS)

    Topcu, Sezin

    2014-01-01

    This article analyzes the historical process related to the international organization of responsibilities and the management of the damages in case of a nuclear disaster. The author shows that the political and legal settings on which the discourse of an 'international regime of civil responsibility' (that emerged in the 1960's) relies, have globally aimed at maintaining a 'historical and spectacular gap' between the damages the nuclear operators are taking responsibility for, and the real and extensive damages engendered by a major accident. She argues that the existence of such a 'gap' is inherent to the nuclear sector, that it is a form of government (both of economic affairs and of the public space) which was historically constructed, and that the existence of such a gap is crucial for the survival of the nuclear industry itself. Thus the notion of 'responsibility' in the nuclear sector appears to serve mainly as a discursive regime, as a means to organize not only responsibilities but also irresponsibilities, whatever the geographic scale (national or international) at which they should be managed

  11. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  12. Acid Sphingomyelinase Promotes Cellular Internalization of Clostridium perfringens Iota-Toxin.

    Science.gov (United States)

    Nagahama, Masahiro; Takehara, Masaya; Miyamoto, Kazuaki; Ishidoh, Kazumi; Kobayashi, Keiko

    2018-05-20

    Clostridium perfringens iota-toxin is a binary actin-ADP-ribosylating toxin composed of the enzymatic component Ia and receptor binding component Ib. Ib binds to a cell surface receptor, forms Ib oligomer in lipid rafts, and associates with Ia. The Ia-Ib complex then internalizes by endocytosis. Here, we showed that acid sphingomyelinase (ASMase) facilitates the cellular uptake of iota-toxin. Inhibitions of ASMase and lysosomal exocytosis by respective blockers depressed cell rounding induced by iota-toxin. The cytotoxicity of the toxin increased in the presence of Ca 2+ in extracellular fluids. Ib entered target cells in the presence but not the absence of Ca 2+ . Ib induced the extracellular release of ASMase in the presence of Ca 2+ . ASMase siRNA prevented the cell rounding induced by iota-toxin. Furthermore, treatment of the cells with Ib resulted in the production of ceramide in cytoplasmic vesicles. These observations showed that ASMase promotes the internalization of iota-toxin into target cells.

  13. Effects of tritiated water ingestion on mice: II. Damage at cellular vis-a-vis subcellular level monitored up to four generations

    International Nuclear Information System (INIS)

    Srivastava, P.N.; Sharan, R.N.; Pozzi, L.

    1983-01-01

    Damage at cellular level is measured using colony forming units in spleen (CFU-S) technique while that at subcellular level by DNA unwinding technique. The damage is monitored up to four generations in Swiss albino mice. The results show drastically reduced colony forming ability in mice bone marrow cells (BMC). On plotting survival fractions (percent of control) for BMC against generations of mice, the plateau is found around 50% survival. The role of DNA in colony forming ability of BMC is tested. The results indicate that, at least, initial impairment of colony ability is not DNA dependent but related to some other factor(s)

  14. Sulphonated hypocrellin B sensitized photo damage to ascetic hepatoma cells

    International Nuclear Information System (INIS)

    Yue Jiachang; Wang Tiandun; Pang Suzhen; An Jingyi; Jiang Lijing

    1994-01-01

    The cellular uptake of sulphonated hypocrellin (S-HB), as well as photo damage on cellular viability, lipid peroxidation and intrinsic fluorescence quenching of membrane protein was studied. It was found that S-HB suitable dissolved in aqueous solution, its cellular uptake is slower than HB. The photo damage on cellular viability both photo sensitizers was close to each other, however the photo sensitizers were different in physical and chemical properties. The HB photo damage target of cells was membrane, but the sulphonated HB photo damage target of cells may be part of organelles, besides the membrane. the experiments showed the sulphonated HB would be suggested as a potential advantage for photodynamic therapy of tumor in clinical application

  15. IRESPred: Web Server for Prediction of Cellular and Viral Internal Ribosome Entry Site (IRES)

    Science.gov (United States)

    Kolekar, Pandurang; Pataskar, Abhijeet; Kulkarni-Kale, Urmila; Pal, Jayanta; Kulkarni, Abhijeet

    2016-01-01

    Cellular mRNAs are predominantly translated in a cap-dependent manner. However, some viral and a subset of cellular mRNAs initiate their translation in a cap-independent manner. This requires presence of a structured RNA element, known as, Internal Ribosome Entry Site (IRES) in their 5′ untranslated regions (UTRs). Experimental demonstration of IRES in UTR remains a challenging task. Computational prediction of IRES merely based on sequence and structure conservation is also difficult, particularly for cellular IRES. A web server, IRESPred is developed for prediction of both viral and cellular IRES using Support Vector Machine (SVM). The predictive model was built using 35 features that are based on sequence and structural properties of UTRs and the probabilities of interactions between UTR and small subunit ribosomal proteins (SSRPs). The model was found to have 75.51% accuracy, 75.75% sensitivity, 75.25% specificity, 75.75% precision and Matthews Correlation Coefficient (MCC) of 0.51 in blind testing. IRESPred was found to perform better than the only available viral IRES prediction server, VIPS. The IRESPred server is freely available at http://bioinfo.net.in/IRESPred/. PMID:27264539

  16. [Damage to cranial and peripheral nerves following patency restoration of the internal carotid artery].

    Science.gov (United States)

    Myrcha, P; Ciostek, P; Szopiński, P; Noszczyk, W

    2001-01-01

    The aim of the study was an assessment of the incidence of injury to cranial and peripheral nerves as complication of patency restoration of the internal carotid artery, and analysis of the effect of peripheral nerve injury on the results of carotid patency restoration. From Oct 1987 to Sept 1999 543 procedures were carried out for restoration of patency of the internal carotid artery. After the operation hypoglossus nerve injury was found in 7 cases (1.4%), vagus injury in 9 (1.8%). Signs of exclusively recurrent laryngeal nerve damage were found in 6 cases (1.2%). Glossopharyngeus nerve was damaged in 2 cases (0.4%), transient phrenic nerve palsy as a result of conduction anaesthesia was noted in 2 cases (0.4%). Damage to the transverse cervical nerve was found in 96 cases (60%). In 2 patients (1.2%) lower position of mouth angle was due to section of the mandibular ramus of the facial nerve. In another 2 cases skin sensation disturbances were a consequence of lesion of the auricularis magnus nerve and always they coexisted with signs of transverse cervical nerve damage. damage to the cranial nerves during operation for carotid patency restoration are frequent but mostly they are not connected with any health risks and often they regress spontaneously.

  17. 3D cellular automata finite element (CAFE) modelling and experimental observation of damage in quasi-brittle nuclear materials: Indentation of a SiC-SiC-fibre ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo Mora, Luis; Mostafavi, Mahmoud; Marrow, T. James; Khoshkhou, Danial; Connolly, Brian; Reinhard, Christina; Atwood, Robert; Zhao, Shuang

    2015-01-01

    Cellular automata integrated with finite elements (CAFE) have been used to develop a method to account for the effect of microstructure on quasi-brittle damage development. The microstructure is simulated explicitly by subdividing a finite element into smaller cells. A heterogeneous structure is created from key cells (seeds) using defined characteristics; the influence of the initial finite element mesh is effectively removed during the development of the microstructure. Graded microstructures, textures, particle anisotropy and multiple phases can be readily simulated, such as those in composites and porous materials. A mesh-free framework has been developed to compute the damage development through the microstructure, using cellular automata. With this method, we can study the development of discontinuous cracking and damage coalescence, and its sensitivity to microstructure. Experiments have been carried out to observe the three-dimensional development of damage, using high-resolution synchrotron X-ray computed tomography and digital volume correlation to observe Hertzian indentation of a SiC-SiC fibre composite, quantifying damage by measurement of the displacement fields within the material. The results demonstrate the applicability of the modelling strategy to damage development, and show how model input data may be obtained from small specimen tests, which could be performed at elevated temperatures with irradiated materials. (authors)

  18. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.

    1991-02-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space

  19. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  20. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J F; Milligan, J R [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  1. Cellular and genetic effects and recovery of heat-damaged cells of Saccharomyces cerevisiae by low intensity electromagnetic radiation at 915 MHz

    International Nuclear Information System (INIS)

    Sheikh, I.H.

    1984-01-01

    Studies were conducted on two genetically well known strains of Saccharomyces cerevisiae (Wild Type) and repair deficient mutant (UVS). Results obtained showed clear genetic difference between normal and mutants based on UV sensitivity, percent survival at elevated temperatures and high intensity electromagnetic radiation. At the cellular level, both strains showed a consistent increase in the recovery rate of heat damaged cells when exposed to low intensity FMR as compared to sham (non irradiated cells) at 915 MHz. The percent recovery of wild type was higher than mutant. At the molecular level, the uptake of tritiated uridine into thermally damaged cells which were recovered by low level EMR was significantly higher than sham. Total RNA isolated from irradiated cells and sham showed visible differences in the intensity of RNA bands. Gross quantitative analyses suggest more RNA production in radiation recovered cells as compared to sham. Results presented in this dissertation provide conclusive evidence that low level microwave radiation can be used in the recovery of heat damaged cells

  2. Health effects of radiation damage

    International Nuclear Information System (INIS)

    Gasimova, K; Azizova, F; Mehdieva, K.

    2012-01-01

    Full text : A summary of the nature of radiactive contamination would be incomplete without some mention of the human health effects relatied to radioactivity and radioactive materials. Several excellent reviews at the variety of levels of detail have been written and should be consulted by the reader. Internal exposures of alpha and beta particles are important for ingested and inhaled radionuclides. Dosimetry models are used to estimate the dose from internally deposited radioactive particles. As mentioned above weighting parameters that take into account the radiation type, the biological half-life and the tissue or organ at risk are used to convert the physically absorbed dose in units of gray (or red) to the biologically significant committed equivalent dose and effective dose, measured in units of Sv (or rem). There is considerable controversy over the shape of the dose-response curve at the chronic low dose levels important for enviromental contamination. Proposed models include linear models, non-linear models and threshold models. Because risks at low dose must be extrapolated from available date at high doses, the shape of the dose-response curve has important implications for the environmental regulations used to protect the general public. The health effect of radiation damage depends on a combination of events of on the cellular, tissue and systemic levels. These lead to mutations and cellular of the irradiated parent cell. The dose level at which significant damage occurs depends on the cell type. Cells that reproduce rapidily, such as those found in bone marrow or the gastrointestinal tract, will be more sensitive to radiation than those that are longer lived, such as striated muscle or nerve cells. The effects of high radiation doses on an organ depends on the various cell types it contains

  3. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions.

    Directory of Open Access Journals (Sweden)

    Shanshan Xu

    Full Text Available BACKGROUND: Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. OBJECTIVES: To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. METHODS: Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. RESULTS: Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs, but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. CONCLUSIONS: RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.

  4. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    Science.gov (United States)

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  5. The Fifth International Ural seminar. Radiation damage physics of metals and alloys. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Presented are the abstracts of The Fifth International Ural seminar Damage physics of metals and alloys. General problems of radiation damage physics, radiation effect on change of microstucture and the properties of metals and alloys, as well as materials for nuclear and thermonuclear energetics are considered. The themes of reports are the following: correlation effects in cascades of atom-atomic collisions; radiation-induced strengthening critical current density in YBa 2 Cu 3 O 7-x superconductors; conditions of forming and hydrides growth in irradiated zirconium alloys [ru

  6. Exposure to environmental polycyclic aromatic hydrocarbons: Influences on cellular susceptibility to DNA damage (sampling Kosice and Sofia)

    Energy Technology Data Exchange (ETDEWEB)

    Cebulska-Wasilewska, Antonina [Department of Radiation and Environmental Biology, Henryk Niewodniczanski Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Cracow (Poland) and Chair of the Epidemiology and Preventive Medicine, CM UJ, Cracow (Poland)]. E-mail: b7wasile@cyf-kr.edu.pl; Pawlyk, Igor [Department of Radiation and Environmental Biology, Henryk Niewodniczanski Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Cracow (Poland); Panek, Agnieszka [Department of Radiation and Environmental Biology, Henryk Niewodniczanski Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Cracow (Poland); Wiechec, Anna [Department of Radiation and Environmental Biology, Henryk Niewodniczanski Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Cracow (Poland); Kalina, Ivan [Department of Molecular Biology of the P.J.Safarik University, Kosice (Slovakia); Popov, Todor [Department of Toxicology, National Centre of Public Health Protection, Sofia (Bulgaria); Georgieva, Tzveta [Department of Toxicology, National Centre of Public Health Protection, Sofia (Bulgaria); Farmer, Peter B. [Cancer Biomarkers and Prevention Group, University of Leicester (United Kingdom)

    2007-07-01

    The aim of this study was to investigate a possible influence of occupational exposure to carcinogenic environmental polycyclic aromatic hydrocarbons (c-PAHs) on cellular susceptibility to the induction of the DNA damage. Monitoring was performed and blood samples were collected from two groups of male subjects: occupationally exposed and matched controls. The group exposed to c-PAHs (average age of 35.1 years) consisted of 52 policemen from Kosice and 26 policemen and 25 bus drivers (51 altogether) from Sofia. The control group (average age of 36.4 years) consisted of 54 unexposed subjects from Kosice and 24 from Sofia. In the investigated groups 52.5% of exposed subjects and 45.3% of control were current smokers. A challenging dose of X-rays (3 Gy) and an alkaline version of the single cell gel electrophoresis (SCGE) assay, known as Comet assay, were used to evaluate levels of induced DNA damage and repair kinetics in isolated human blood lymphocytes. DNA damage detected in lymphocytes prior to or after irradiation did not differ significantly between exposed and unexposed subjects. A significant decrease in repair efficiency due to exposure to PAHs was observed in the exposed individuals from Kosice and Sofia, when analysed separately or together. A negative influence of tobacco smoking on the efficiency of DNA repair was observed. Statistically significant differences were found between subgroups stratified according to education level in Sofia: the half times for DNA repair declined with the increasing level of education. These results confirm that environmental exposure to c-PAHs can alter the ability of blood lymphocytes to repair DNA damage and, as a result could potentially lead to effects that are hazardous to human health.

  7. The complexity of DNA damage: relevance to biological consequences

    International Nuclear Information System (INIS)

    Ward, J.F.

    1994-01-01

    Ionizing radiation causes both singly and multiply damaged sites in DNA when the range of radical migration is limited by the presence of hydroxyl radical scavengers (e.g. within cells). Multiply damaged sites are considered to be more biologically relevant because of the challenges they present to cellular repair mechanisms. These sites occur in the form of DNA double-strand breaks (dsb) but also as other multiple damages that can be converted to dsb during attempted repair. The presence of a dsb can lead to loss of base sequence information and/or can permit the two ends of a break to separate and rejoin with the wrong partner. (Multiply damaged sites may also be the biologically relevant type of damage caused by other agents, such as UVA, B and/or C light, and some antitumour antibiotics). The quantitative data available from radiation studies of DNA are shown to support the proposed mechanisms for the production of complex damage in cellular DNA, i.e. via scavengable and non-scavengable mechanisms. The yields of complex damages can in turn be used to support the conclusion that cellular mutations are a consequence of the presence of these damages within a gene. (Author)

  8. Analysis of core damage frequency: Surry, Unit 1 internal events

    International Nuclear Information System (INIS)

    Bertucio, R.C.; Julius, J.A.; Cramond, W.R.

    1990-04-01

    This document contains the accident sequence analysis of internally initiated events for the Surry Nuclear Station, Unit 1. This is one of the five plant analyses conducted as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 documents the risk of a selected group of nuclear power plants. The work performed and described here is an extensive of that published in November 1986 as NUREG/CR-4450, Volume 3. It addresses comments form numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved. The context and detail of this report are directed toward PRA practitioners who need to know how the work was performed and the details for use in further studies. The mean core damage frequency at Surry was calculated to be 4.05-E-5 per year, with a 95% upper bound of 1.34E-4 and 5% lower bound of 6.8E-6 per year. Station blackout type accidents (loss of all AC power) were the largest contributors to the core damage frequency, accounting for approximately 68% of the total. The next type of dominant contributors were Loss of Coolant Accidents (LOCAs). These sequences account for 15% of core damage frequency. No other type of sequence accounts for more than 10% of core damage frequency. 49 refs., 52 figs., 70 tabs

  9. Genetic effects from internally deposited radionuclides

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    It was learned in the late 1920's that ionizing radiation could produce genetic effects such as gene mutations and chromosome aberrations. However, at least until 1945, the focus on interest in radiation protection was primarily on somatic effects manifested in the individual exposed. Studies of the genetic effects of radiation using drosophila, however, refocused attention on effects transmitted to the exposed individuals offspring and concern over fallout in the 1950's resulted in efforts to estimate the genetic effects from exposure of human populations to internally deposited radionuclides. No human populations have been identified with burdens of internally deposited radioactive materials which have been shown to produce evidence of transmissible genetic damage. As a result, the research approach has been one in which macromolecular, cellular, and whole animal genetic studies have been combined to estimate genetic effects on humans following the deposition of radioactive materials in the body. The purpose of this report is to update the information available from animal and cellular experiments that relates genetic effects to deposited activity and dose from internally deposited radioactive materials

  10. The cellular basis of skin injury after cytotoxic insult

    International Nuclear Information System (INIS)

    Potten, C.S.

    1986-01-01

    It is concluded that although the major target in terms of radiation damage is undoubtedly the epidermis, the skin is a complex tissue made up of many inter-dependent components each of which may constitute an important secondary target. Damage to each component has been considered at the cellular level. The precise inter-relationships and interdependencies remain somewhat obscure. Even within one site, the epidermis, a comprehensive cellular explanation of the various post-irradiation changes is difficult. Substantial bibliography. (UK)

  11. The usefulness of the nuclear cardiology in the cellular implant in patients with severe myocardial damage; La utilidad de la cardiologia nuclear en el implante celular en pacientes con dano miocardico severo

    Energy Technology Data Exchange (ETDEWEB)

    Omelas A, M.; Arguero S, R.; Garrido G, M.H.; Rodriguez C, A.; Careaga, G.; Castano G, R.; Nambo, M.J.; Pascual P, J.; Ortega R, A.; Gaxiola A, A.; Magana S, J.A.; Estrada A, H.; Equipo de Tecnicos en Medicina Nuclear [Centro Medico Nacional Siglo XXI IMSS Hospital de Cardiologia-Servicio de Medicina Nuclear Mexico DF (Mexico)

    2005-07-01

    The recent therapeutic advances as the cellular implant as well as those different protocols of image acquisition in the field of the Nuclear Cardiology its have allowed that the patient with severe myocardial damage and without some possibility of revascularization is benefited with these advances. Doubtless the Tl-201 par excellence has an important paper for standardize the more appropriate therapeutic behavior for the heart attack patient; reason by this investigation protocol was developed. The objective of the study was to identify the heart attack regions without viable tissue with SPECT in patient with important myocardial damage without some possibility of traditional revascularization; for the 'Stem cell' cellular implantation therapy. The methodology it was carried out by a study of myocardial perfusion in 10 patients with important myocardial damage previous cellular implants, with PICANUC/ SPECT methodology and using a software (Emory Tool Box) for the image processing validated by the University of Emory Atlanta GA; and using as tracer the Tl - 201 to identify the heart attack regions without presence of viable tissue with an analysis model of 17 segments standardized for the left ventricle; qualifying this way the myocardial perfusion in: 0 (normal), 1 (light), 2 (moderate), 3 (severe), 4 (absent) and x (bad technique). The conclusions were that the SPECT study with PICANUC methodology with Tl-201 is safe and effective for the precise localization for the cellular implantation via direct intra myocardial. (Author)

  12. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-03-01

    Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Proceedings of 6th International Microbeam Workshop/12th L.H. Gray Workshop Microbeam Probes of Cellular Radiation Response

    International Nuclear Information System (INIS)

    Prise, Kevin M.

    2004-01-01

    The extended abstracts which are submitted here present a summary of the proceedings of the 6th International Workshop/12th LH Gray Workshop: Microbeam Probes of Cellular Radiation Response, held at St. Catherine's College, University of Oxford, UK on March, 29th-31st, 2003. In 1993 the 4th LH Gray Workshop entitled ''Microbeam Probes of Cellular Radiation Response'' was held at the Gray Cancer Institute in Northwood. This was organized by Prof BD Michael, Dr M. Folkard and Dr KM Prise and brought together 40 participants interested in developing and applying new microbeam technology to problems in radiation biology (1). The workshop was an undoubted success and has spawned a series of subsequent workshops every two years. In the past, these workshops have been highly successful in bringing together groups interested in developing and applying micro-irradiation techniques to the study of cell and tissue damage by ionizing radiations. Following the first microbeam workshop, there has been a rapid growth in the number of centres developing radiobiology microbeams, or planning to do so and there are currently 15-20 worldwide. Much of the recent research using microbeams has used them to study low-dose effects and ''non-targeted'' responses such bystander effects, genomic instability and adaptive responses. The goal of the 6th workshop was to build on our knowledge of the development of microbeam approaches and the application to radiation biology in the future with the meeting stretching over a 3 day period. Over 80 participants reviewed the current state of radiobiology microbeam research worldwide and reported on new technological developments both in the fields of physics and biology

  14. Translational Cellular Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The emerging field of Translational Research aims to coalesce interdisciplinary findings from basic science for biomedical applications. To complement spaceflight research using human subjects, translational studies can be designed to address aspects of space-related human health risks and help develop countermeasures to prevent or mitigate them, with therapeutical benefits for analogous conditions experienced on Earth. Translational research with cells and model organisms is being conducted onboard the International Space Station (ISS) in connection with various human systems impacted by spaceflight, such as the cardiovascular, musculoskeletal, and immune systems. Examples of recent cell-based translational investigations on the ISS include the following. The JAXA investigation Cell Mechanosensing seeks to identify gravity sensors in skeletal muscle cells to develop muscle atrophy countermeasures by analyzing tension fluctuations in the plasma membrane, which changes the expression of key proteins and genes. Earth applications of this study include therapeutic approaches for some forms of muscular dystrophy, which appear to parallel aspects of muscle wasting in space. Spheroids is an ESA investigation examining the system of endothelial cells lining the inner surface of all blood vessels in terms of vessel formation, cellular proliferation, and programmed cell death, because injury to the endothelium has been implicated as underpinning various cardiovascular and musculoskeletal problems arising during spaceflight. Since endothelial cells are involved in the functional integrity of the vascular wall, this research has applications to Earth diseases such as atherosclerosis, diabetes, and hypertension. The goal of the T-Cell Activation in Aging NASA investigation is to understand human immune system depression in microgravity by identifying gene expression patterns of candidate molecular regulators, which will provide further insight into factors that may play a

  15. Damage invariant and high security acquisition of the internal fingerprint using optical coherence tomography

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-11-01

    Full Text Available representation they offer. Using an emerging fingerprint acquisition technology – optical coherence tomography – to access an internal fingerprint under the skin surface, this paper serves to address two limitations of conventional scanners: fingertip skin damage...

  16. Dancing on damaged chromatin. Functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage

    International Nuclear Information System (INIS)

    Iijima, Kenta; Ohara, Maki; Seki, Ryota; Tauchi, Hiroshi

    2008-01-01

    In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling. (author)

  17. Liability for nuclear damage: an international perspective. Reflections on the revision of the Vienna Convention

    Energy Technology Data Exchange (ETDEWEB)

    Lopuski, J

    1994-12-31

    This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee`s work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world`s public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author).

  18. Liability for nuclear damage: an international perspective. Reflections on the revision of the Vienna Convention

    Energy Technology Data Exchange (ETDEWEB)

    Lopuski, J.

    1993-12-31

    This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee`s work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world`s public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author).

  19. Liability for nuclear damage: an international perspective. Reflections on the revision of the Vienna Convention

    International Nuclear Information System (INIS)

    Lopuski, J.

    1993-01-01

    This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee's work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world's public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author)

  20. Studies of cellular damage induced by X-rays and visible light

    International Nuclear Information System (INIS)

    Christensen, T.; Kinn, G.; Reitan, J.B.

    1989-01-01

    DNA-damage in cells has been studied by use of spectrophotometry and fluorometry. The method is based on the differential fluorescence quantum yield of the fluorochrome Hoechst 33258 when bound to single and double stranded DNA, respectively. DNA-damage by doses of X-rays below 2 Gy was clearly detectable. Blue light from phototherapy lamps induced DNA-damage in human TMG-1 glioblastoma, but no significant effect could be observed after irradiation with green lamps. In the presence of bilirubin the amount of DNA-damage was increased, notably at high bilirubin concentration and by blue light. 9 refs; 12 figs

  1. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Science.gov (United States)

    Vassallo, Christopher N; Wall, Daniel

    2016-04-01

    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  2. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  3. Damage to cellular DNA from particulate radiations, the efficacy of its processing and the radiosensitivity of mammalian cells. Emphasis on DNA double strand breaks and chromatin breaks

    Science.gov (United States)

    Lett, J. T.

    1992-01-01

    For several years, it has been evident that cellular radiation biology is in a necessary period of consolidation and transition (Lett 1987, 1990; Lett et al. 1986, 1987). Both changes are moving apace, and have been stimulated by studies with heavy charged particles. From the standpoint of radiation chemistry, there is now a consensus of opinion that the DNA hydration shell must be distinguished from bulk water in the cell nucleus and treated as an integral part of DNA (chromatin) (Lett 1987). Concomitantly, sentiment is strengthening for the abandonment of the classical notions of "direct" and "indirect" action (Fielden and O'Neill 1991; O'Neill 1991; O'Neill et al. 1991; Schulte-Frohlinde and Bothe 1991 and references therein). A layer of water molecules outside, or in the outer edge of, the DNA (chromatin) hydration shell influences cellular radiosensitivity in ways not fully understood. Charge and energy transfer processes facilitated by, or involving, DNA hydration must be considered in rigorous theories of radiation action on cells. The induction and processing of double stand breaks (DSBs) in DNA (chromatin) seem to be the predominant determinants of the radiotoxicity of normally radioresistant mammalian cells, the survival curves of which reflect the patterns of damage induced and the damage present after processing ceases, and can be modelled in formal terms by the use of reaction (enzyme) kinetics. Incongruities such as sublethal damage are neither scientifically sound nor relevant to cellular radiation biology (Calkins 1991; Lett 1990; Lett et al. 1987a). Increases in linear energy transfer (LET infinity) up to 100-200 keV micron-1 cause increases in the extents of neighboring chemical and physical damage in DNA denoted by the general term DSB. Those changes are accompanied by decreasing abilities of cells normally radioresistant to sparsely ionizing radiations to process DSBs in DNA and chromatin and to recover from radiation exposure, so they make

  4. Analysis of core damage frequency from internal events: Peach Bottom, Unit 2

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Lambright, J.A.; Ferrell, W.L.; Cathey, N.G.; Najafi, B.; Harper, F.T.

    1986-10-01

    This document contains the internal event initiated accident sequence analyses for Peach Bottom, Unit 2; one of the reference plants being examined as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 will document the risk of a selected group of nuclear power plants. As part of that work, this report contains the overall core damage frequency estimate for Peach Bottom, Unit 2, and the accompanying plant damage state frequencies. Sensitivity and uncertainty analyses provided additional insights regarding the dominant contributors to the Peach Bottom core damage frequency estimate. The mean core damage frequency at Peach Bottom was calculated to be 8.2E-6. Station blackout type accidents (loss of all ac power) were found to dominate the overall results. Anticipated Transient Without Scram accidents were also found to be non-negligible contributors. The numerical results are largely driven by common mode failure probability estimates and to some extent, human error. Because of significant data and analysis uncertainties in these two areas (important, for instance, to the most dominant scenario in this study), it is recommended that the results of the uncertainty and sensitivity analyses be considered before any actions are taken based on this analysis

  5. Analysis of core damage frequency, Surry, Unit 1 internal events appendices

    International Nuclear Information System (INIS)

    Bertucio, R.C.; Julius, J.A.; Cramond, W.R.

    1990-04-01

    This document contains the appendices for the accident sequence analyses of internally initiated events for the Surry Nuclear Station, Unit 1. This is one of the five plant analyses conducted as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 documents the risk of a selected group of nuclear power plants. The work performed is an extensive reanalysis of that published in November 1986 as NUREG/CR-4450, Volume 3. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved. The context and detail of this report are directed toward PRA practitioners who need to know how the work was performed and the details for use in further studies. The mean core damage frequency at Surry was calculated to be 4.0E-5 per year, with a 95% upper bound of 1.3E-4 and 5% lower bound of 6.8E-6 per year. Station blackout type accidents (loss of all AC power) were the largest contributors to the core damage frequency, accounting for approximately 68% of the total. The next type of dominant contributors were Loss of Coolant Accidents (LOCAs). These sequences account for 15% of core damage frequency. No other type of sequence accounts for more than 10% of core damage frequency

  6. A preventive maintenance model for leased equipment subject to internal degradation and external shock damage

    International Nuclear Information System (INIS)

    Zhou, Xiaojun; Wu, Changjie; Li, Yanting; Xi, Lifeng

    2016-01-01

    A periodic preventive maintenance modeling method is proposed for leased equipment with continuous internal degradation and stochastic external shock damage considered simultaneously, which can facilitate the equipment lessor to optimize the maintenance schedule for the same kind of equipment rented by different lessees. A novel interactive mechanism between the continuous internal degradation and the stochastic external shock damage is established on the hazard rate of the equipment with integrating the imperfect effect of maintenance. Two improvement factors are defined for the modeling of imperfect maintenance. The number of failures resulting from internal degradation and from external shocks are both mathematically deduced based on this interactive mechanism. The optimal preventive maintenance scheme is obtained by minimizing the cumulative maintenance cost throughout the lease period. Numerical example shows that the proposed preventive maintenance model not only can reflect the reliability status of the equipment but also can clearly distinguish between the impact from internal degradation and that from external shocks. - Highlights: • We propose an imperfect periodic preventive maintenance model for leased equipment. • It can distinguish between the impact from internal degradation and that from external shocks. • An internal–external interactive mechanism is proposed. • Two improvement factors are introduced into the modeling of imperfect maintenance. • The model is helpful for the PM scheduling of the same equipment rented by different lessees.

  7. PREFACE: 11th International Conference on Damage Assessment of Structures (DAMAS 2015)

    Science.gov (United States)

    Wahab, M. A.

    2015-07-01

    This volume contains the proceedings of the 11th International Conference on Damage Assessment of Structures (DAMAS) 2015. DAMAS has a long history of almost 20 years. The first DAMAS conference took place in 1995 (Pescara, Italy), followed by a biannual meeting in 1997 (Sheffield, UK), 1999 (Dublin, Ireland), 2001 (Cardiff, UK), 2003 (Southampton, UK), 2005 (Gdansk, Poland), 2007 (Torino, Italy), 2009 (Beijing, China), 2011 (Oxford, UK) and 2013 (Dublin, Ireland). The eleventh edition of DAMAS conference series, DAMAS 2015, is hosted by Ghent University, Belgium, and is held at the congress center Het Pand in Ghent city. Ghent is the capital and the largest city of the East Flanders province of the Flemish region of Belgium. Het Pand is the culture and congress center of Ghent University and is a historical monument. The conference is established as a major international forum for research topics relevant to damage assessment of engineering structures and systems including numerical simulations, signal processing of sensor measurements and theoretical techniques as well as experimental case studies. The presentations of DAMAS 2015 are divided into 6 main sessions, namely 1) Structural Health and Condition Monitoring, 2) Damage in Civil Engineering, 3) Damage in Machineries, 4) Damage in Composite Materials, 5) Sensing and Sensors and 6) Signal Processing. The organising committee is grateful to keynote speakers; Professor Guido De Roeck, Head of Structural Mechanics Division, KULeuven, Belgium, for his keynote lecture entitled 'Structural Health Monitoring: highlights and challenges', Professor Weidong Zhu, Department of Mechanical Engineering, University of Maryland, USA, for his keynote lecture entitled 'Vibration-based Structural Damage Detection: Theory and Applications' and Professor Wieslaw Ostachowicz, Head of the Laboratory of Active Materials and Smart Structures, Polish Academy of Sciences, Poland, for his keynote lecture entitled 'Damage Assessment and

  8. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    Energy Technology Data Exchange (ETDEWEB)

    Edelbrock, Michael A., E-mail: Edelbrock@findlay.edu [The University of Findlay, 1000 North Main Street, Findlay, OH 45840 (United States); Kaliyaperumal, Saravanan, E-mail: Saravanan.Kaliyaperumal@hms.harvard.edu [Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772 (United States); Williams, Kandace J., E-mail: Kandace.williams@utoledo.edu [University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614 (United States)

    2013-03-15

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O{sup 6}meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.

  9. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    International Nuclear Information System (INIS)

    Edelbrock, Michael A.; Kaliyaperumal, Saravanan; Williams, Kandace J.

    2013-01-01

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O 6 meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6

  10. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    Science.gov (United States)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  11. Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017.

    Science.gov (United States)

    Ciccocioppo, Rachele; Dos Santos, Claudia C; Baumgart, Daniel C; Cangemi, Giuseppina C; Cardinale, Vincenzo; Ciacci, Carolina; De Coppi, Paolo; Haldar, Debashis; Klersy, Catherine; Nostro, M Cristina; Ott, Michael; Piemonti, Lorenzo; Tomei, Alice A; Uygun, Basak; Vetrano, Stefania; Orlando, Giuseppe

    2018-03-01

    A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

    Science.gov (United States)

    Wang, Sheng; Zhang, Lei; Dong, Chunhong; Su, Lin; Wang, Hanjie; Chang, Jin

    2015-01-01

    A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

  13. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    Science.gov (United States)

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2017-09-01

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  14. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  15. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses

    International Nuclear Information System (INIS)

    Nan, Changlong; Li, Yuejin; Jean-Charles, Pierre-Yves; Chen, Guozhen; Kreymerman, Alexander; Prentice, Howard; Weissbach, Herbert; Huang, Xupei

    2010-01-01

    Research highlights: → Deficiency of MsrA in the heart renders myocardial cells more sensitive to oxidative stress. → Mitochondrial damage happens in the heart lacking MsrA. → More protein oxidation in myocardial cells lacking MsrA. → MsrA protects the heart against oxidative stress. -- Abstract: Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA -/- ) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA -/- mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA -/- cardiac myocytes. MsrA -/- cardiac myocytes also show a significant decrease in contractility after oxidative stress using H 2 O 2 . Corresponding changes in Ca 2+ transients are observed in MsrA -/- cardiomyocytes treated with 2 Hz stimulation or with H 2 O 2 . Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA -/- mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA -/- mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

  16. Study on the damage effect of 131I-iodinated oil internal radiation in SMMC-7721 hepatoma model in rat

    International Nuclear Information System (INIS)

    Wu Shuyan; Zhang Xuguang; Wang Xiangying; Li Su'an; Mao Dihua

    2004-01-01

    Objective: To investigate the damage effect of 131 I-iodinated oil internal radiation in hepatoma. Methods: SMMC-7721 rat hepatoma model was used to evaluate the damage of 131 I-iodinated oil internal radiation in carcinoma. 131 I-iodinated oil was injected sector-shapely into tumor model of SMMC-7721 hepatoma with arc-needle, matched with routine straight-needle injection. Tumor damage induced by 131 I-iodinated oil intralesion radiation in the carcinoma models are recorded through survival time, weight of rat, local carcinoma, pathology, electron microscopy. Results: Arc-needle injection 131 I-iodinated oil in SMMC-7721 hepatoma at subcutis could increase rat's survival time, the body weight kept less descent, the lumps necrosed wholly. Pathology and ultrastructure detection revealed cell necrosis and collapse, sever nuclear damage was observed in the death cells. The early characteristics of necrosis such as margination of heterochromatin was also found in some tumor cells. Besides, well differentiated tumor cells, degenerative tumor cells and some lymphocytes were seen. Conclusion: Arc-needle injection 131 I-iodinated oil step-by step sector-shapely into tumor is a better method and necrosis is the major effect of 131 I-iodinated oil internal radiation in carcinoma at the level of treated dosage

  17. National Assembly report on the bill authorizing joining the 2001 International Convention on Civil Liability for Bunker Oil Pollution Damage

    International Nuclear Information System (INIS)

    2010-01-01

    This report first gives an overview of the progressive implementation of measures and international convention to prevent pollution by ships: the Oilpol convention (Convention for the Prevention of Pollution of the Sea by Oil), the Marpol convention (Marine Pollution), and the different international conventions on liability and compensation (International Convention on Civil Liability for Oil Pollution, International Convention on Liability and Compensation for Damage in Connection with the Carriage of Hazardous and Noxious Substances by Sea, convention on other damages). It also describes the French system to struggle against marine pollution. Then, it presents the main arrangements of the 2001 Convention (liability, mandatory insurance and certificate, and so on), expresses some reserves on the chosen arrangement, and comments the impact of this convention

  18. Detection, characterization and measure of a new radiation-induced damage in isolated and cellular DNA

    International Nuclear Information System (INIS)

    Regulus, P.

    2006-10-01

    Deoxyribonucleic acid (DNA) contains the genetic information and chemical injury to this macromolecule may have severe biological consequences. We report here the detection of 4 new radiation-induced DNA lesions by using a high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) approach. For that purpose, the characteristic fragmentation of most 2'-deoxy-ribo nucleosides, the loss of 116 Da corresponding to the loss of the 2-deoxyribose moiety, was used in the so-called neutral loss mode of the HPLC-MS/MS. One of the newly detected lesions, named dCyd341 because it is a 2'-deoxycytidine modification exhibiting a molecular weight of 341 Da, was also detected in cellular DNA. Characterization of this modified nucleoside was performed using NMR and exact mass determination of the product obtained by chemical synthesis. A mechanism of formation was then proposed, in which the first event is the H-abstraction at the C4 position of a 2-deoxyribose moiety. Then, the sugar modification produced exhibits a reactive aldehyde that, through reaction with a vicinal cytosine base, gives rise to dCyd341. dCyd341 could be considered as a complex damage since its formation involves a DNA strand break and a cross-link between a damaged sugar residue and a vicinal cytosine base located most probably on the complementary DNA strand. In addition to its characterization, preliminary biological studies revealed that cells are able to remove the lesion from DNA. Repair studies have revealed the ability of cells to excise the lesion. Identification of the repair systems involved could represent an interesting challenge. (author)

  19. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  20. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  1. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Science.gov (United States)

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  2. The right choice of antihypertensives protects primary human hepatocytes from ethanol- and recombinant human TGF-β1-induced cellular damage

    Directory of Open Access Journals (Sweden)

    Ehnert S

    2013-03-01

    Full Text Available Sabrina Ehnert,1 Teresa Lukoschek,2 Anastasia Bachmann,2 Juan J Martínez Sánchez,1 Georg Damm,3 Natascha C Nussler,4 Stefan Pscherer,5 Ulrich Stöckle,1 Steven Dooley,2 Sebastian Mueller,6 Andreas K Nussler11Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany; 2Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany; 3Department of General, Visceral, and Transplantation Surgery, Charité University Medicine, Berlin, Germany; 4Clinic for General, Visceral, Endocrine Surgery and Coloproctology, Clinic Neuperlach, Städtisches Klinikum München GmbH, Munich, Germany; 5Department of Diabetology, Klinikum Traunstein, Kliniken Südostbayern AG, Traunstein, Germany; 6Department of Medicine, Salem Medical Center, Ruprecht-Karls-Universität, Heidelberg, GermanyBackground: Patients with alcoholic liver disease (ALD often suffer from high blood pressure and rely on antihypertensive treatment. Certain antihypertensives may influence progression of chronic liver disease. Therefore, the aim of this study is to investigate the impact of the commonly used antihypertensives amlodipine, captopril, furosemide, metoprolol, propranolol, and spironolactone on alcohol-induced damage toward human hepatocytes (hHeps.Methods: hHeps were isolated by collagenase perfusion. Reactive oxygen species (ROS were measured by fluorescence-based assays. Cellular damage was determined by lactate-dehydrogenase (LDH-leakage. Expression analysis was performed by reverse-transcription polymerase chain reaction and Western blot. Transforming growth factor (TGF-β signaling was investigated by a Smad3/4-responsive luciferase-reporter assay.Results: Ethanol and TGF-β1 rapidly increased ROS in hHeps, causing a release of 40%–60% of total LDH after 72 hours. All antihypertensives dose dependently reduced ethanol-mediated oxidative stress and cellular damage. Similar results were observed for TGF-β1-dependent

  3. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginin...... indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore....

  4. Executive order no. 433 of 24th May 1996. Executive order on the international fund for compensation for damages caused by oil pollution, 1992

    International Nuclear Information System (INIS)

    1996-05-01

    The Danish executive order on the international fund for the compensation for damages caused by oil pollution, 1992 is related to the Danish law no. 205 of March 29th 1996, and is based on the International Convention on the Establishment of an International Fund for Compensation for Oil Damage, 1992. The document includes the convention's protocol presented in French, Danish and English. (AB)

  5. Patients with HBV-related acute-on-chronic liver failure have increased concentrations of extracellular histones aggravating cellular damage and systemic inflammation.

    Science.gov (United States)

    Li, X; Gou, C; Yao, L; Lei, Z; Gu, T; Ren, F; Wen, T

    2017-01-01

    Acute-on-chronic liver failure (ACLF) is the most common type of liver failure and associated with grave consequences. Systemic inflammation has been linked to its pathogenesis and outcome, but the identifiable triggers are absent. Recently, extracellular histones, especially H4, have been recognized as important mediators of cell damage in various inflammatory conditions. This study aimed to investigate whether extracellular histones have clinical implications in patients with hepatitis B virus (HBV)-related ACLF. One hundred and twelve patients with HBV-related ACLF, 90 patients with chronic hepatitis B, 88 patients with HBV-related liver cirrhosis and 40 healthy volunteers were entered into this study. Plasma histone H4 levels, cytokine profile and clinical data were obtained. Besides, patient's sera were incubated overnight with human L02 hepatocytes or monocytic U937 cells in the presence or absence of antihistone H4 antibody, and cellular damage and cytokine production were evaluated. We found that plasma histone H4 levels were greatly increased in patients with ACLF as compared with chronic hepatitis B, liver cirrhosis and healthy control subjects and were significantly associated with disease severity, systemic inflammation and outcome. Notably, ACLF patients' sera incubation decreased cultured L02 cell integrity and induced profound cytokine production in the supernatant of U937 cells. Antihistone H4 antibody treatment abrogated these adverse effects, thus confirming a cause-effect relationship between extracellular histones and organ injury/dysfunction. The data support the hypothesis that the increased extracellular histone levels in ACLF patients may aggravate disease severity by inducing cellular injury and systemic inflammation. Histone-targeted therapies may have potentially interventional value in clinical practice. © 2016 John Wiley & Sons Ltd.

  6. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment.

    Science.gov (United States)

    Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Gómez, Jordi; Gastaminza, Pablo; Domingo, Esteban; Perales, Celia

    2017-05-15

    Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can

  7. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    Directory of Open Access Journals (Sweden)

    Luna C

    2016-02-01

    Full Text Available Carlos Luna,1,* Matilde Alique,2,* Estefanía Navalmoral,2 Maria-Victoria Noci,3 Lourdes Bohorquez-Magro,2 Julia Carracedo,1 Rafael Ramírez2 1Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC, Reina Sofía University Hospital, Córdoba, Spain; 2Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain; 3Anesthesia Unit, Reina sofía University Hospital, Córdoba, Spain*These authors contributed equally to this work Abstract: Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.Keywords: elderly, oxidative stress, microparticles, vascular damage

  8. Fractal dimension at the phase transition of inhomogeneous cellular automata

    International Nuclear Information System (INIS)

    da Silva, L.R.

    1988-01-01

    For random binary mixtures of cellular automata in the square lattice, calculations are made of the fractal dimensions associated with the damage spreading and the propagation time of damage at the transition to chaos. Two rules are mixed and universalities of these quantities are sought with respect to change of the rules

  9. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan)], E-mail: s-oikawa@doc.medic.mie-u.ac.jp; Kobayashi, Hatasu; Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); JSPS Research Fellow (Japan); Isono, Yoshiaki [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Kawanishi, Shosuke [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2009-02-10

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H{sub 2}O{sub 2})-resistant clone HP100 cells, suggesting the involvement of H{sub 2}O{sub 2}. In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using {sup 32}P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H{sub 2}O{sub 2} with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis.

  10. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    International Nuclear Information System (INIS)

    Oikawa, Shinji; Kobayashi, Hatasu; Tada-Oikawa, Saeko; Isono, Yoshiaki; Kawanishi, Shosuke

    2009-01-01

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H 2 O 2 )-resistant clone HP100 cells, suggesting the involvement of H 2 O 2 . In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using 32 P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H 2 O 2 with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis

  11. Influence of corona charging in cellular polyethylene film

    International Nuclear Information System (INIS)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo; Llovera Segovia, Pedro

    2011-01-01

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  12. Influence of corona charging in cellular polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo [Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, Parque Tecnologico de Valencia, 46980 Paterna-Valencia (Spain); Llovera Segovia, Pedro, E-mail: gustavo.ortega@ite.es [Instituto de TecnologIa Electrica - Universitat Politecnica de Valencia, Camino de Vera s/n 46022-Valencia (Spain)

    2011-06-23

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  13. Bacterial Intoxication Evokes Cellular Senescence with Persistent DNA Damage and Cytokine Signaling

    DEFF Research Database (Denmark)

    Blazkova, Hana; Krejcikova, Katerina; Moudry, Pavel

    2009-01-01

    to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR-90 and WI-38 fibroblasts, HeLa and U2-OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic...... mechanistically underlie the 'distended' morphology evoked by CDTs. Finally, the activation of the two anti-cancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects...

  14. Cellular response to DNA damage. Link between p53 and DNA-PK

    International Nuclear Information System (INIS)

    Salles-Passador, I.; Fotedar, R.; Fotedar, A.

    1999-01-01

    Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double-strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with Pl-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation. (author)

  15. Antibody-dependent cellular cytotoxicity and skin disease

    International Nuclear Information System (INIS)

    Norris, D.A.; Lee, L.A.

    1985-01-01

    Antibody dependent cellular cytotoxicity (ADCC) is a recently described mechanism of immunologic lysis in which cellular targets sensitized by specific antibodies are efficiently and selectively lysed by Fc receptor (FcR) bearing nonspecific effectors. Immunoglobulins of various classes (IgG, IgM, IgA, IgE) and various cellular effectors (large granular lymphocytes, monocyte/macrophages, T lymphocytes, neutrophils, and eosinophils) can induce ADCC in vitro, and the importance of ADCC in vivo is being tested experimentally in resistance to viral, bacterial, and parasitic infection, in tumor surveillance, in allograft rejection, and in inflammatory diseases. There is much indirect evidence that ADCC may be the mechanism of damage of different cellular targets in skin diseases, but the best direct evidence concerns immunologic keratinocyte damage, especially in cutaneous lupus erythematosus (LE). The authors have shown that keratinocytes of several species are highly susceptible to lymphocyte and monocyte-mediated ADCC, but not to neutrophil or eosinophil ADCC in vitro using two different cytotoxicity assays. In contrast, complement was a relatively ineffective mediator of lysis of metabolically intact keratinocyte targets. Patients with certain cutaneous lupus syndromes have serum antibodies capable of inducing monocyte and lymphocyte ADCC of targets coated with extractable nuclear antigens. The authors have shown that these antigens apparently move to the cell membrane of keratinocytes in vitro following ultraviolet irradiation. In an animal model, they have shown that antibodies to SSA/Ro bind to human keratinocytes in vivo, especially after ultraviolet irradiation

  16. Dynamic maps of UV damage formation and repair for the human genome.

    Science.gov (United States)

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-06-27

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.

  17. Reducing the Risk of Damage to Power Transformers of 110 kV and Above Accompanying Internal Short Circuits

    Energy Technology Data Exchange (ETDEWEB)

    L’vova, M. M. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation); L’vov, S. Yu. [Presselektro LLC (Russian Federation); Komarov, V. B. [IPCE RAS (Russian Federation); Lyut’ko, E. O. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation); Vdoviko, V. P. [EMA Ltd. (Russian Federation); Demchenko, V. V. [JSC “Boguchanskaya HPP” (Russian Federation); Belyaev, S. G. [PKF Konif Ltd. (Russian Federation); Savel’ev, V. A. [Ivanovo State Power University (Russian Federation); L’vov, M. Yu., E-mail: timashova@nte-power.ru; L’vov, Yu. N. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation)

    2015-03-15

    Methods of increasing the operating reliability of power transformers, autotransformers and shunting reactors in order to reduce the risk of damage, which accompany internal short circuits and equipment fires and explosions, are considered.

  18. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest.

    Science.gov (United States)

    Sapieha, Przemyslaw; Mallette, Frédérick A

    2018-04-25

    In mitotic cells, cellular senescence is a permanent state of G1 arrest, that may have evolved in parallel to apoptosis, to limit proliferation of damaged cells and oncogenesis. Recent studies have suggested that postmitotic cells are also capable of entering a state of senescence, although the repercussions of postmitotic cellular senescence (PoMiCS) on tissue health and function are currently ill-defined. In tissues made largely of post-mitotic cells, it is evolutionary advantageous to preserve cellular integrity and cellular senescence of post-mitotic cells may prevent stressor-induced tissue degeneration and promote tissue repair. Paradoxically, PoMiCS may also contribute to disease progression through the generation of inflammatory mediators, termed the senescence-associated secretory phenotype. Here, we discuss the potential roles of PoMiCS and propose to enlarge the current definition of cellular senescence to postmitotic terminally differentiated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. In Vivo Bystander Effect: Cranial X-Irradiation Leads to Elevated DNA Damage, Altered Cellular Proliferation and Apoptosis, and Increased p53 Levels in Shielded Spleen

    International Nuclear Information System (INIS)

    Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga

    2008-01-01

    Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis

  20. Chromatin structure and cellular radiosensitivity : A comparison of two human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Roesink, JM; Rosemann, M; Brunsting, JF; Driessen, C; Orta, T; Konings, AWT; Peacock, JH; Kampinga, HH

    1996-01-01

    The role of variation in susceptibility to DNA damage induction was studied as a determinant for cellular radiosensitivity. Comparison of the radiosensitive HX142 and radioresistant RT112 cell lines previously revealed higher susceptibility to X-ray-induced DNA damage in the sensitive cell line

  1. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  2. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein; Nunes, Maria Eugenia S.

    2011-01-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  3. Removal of radiation damage by subpopulations of plateau-phase Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Nelson, J.M.; Metting, N.F.; Braby, L.A.; Roesch, W.C.

    1987-01-01

    Specific cellular radiobiology studies are often required to test aspects of the mathematical models developed in the Radiation Dosimetry program. These studies are designed to determine whether specific mathematical expressions, which characterize the expected effect of biochemical mechanisms on observable biological responses, are consistent with the behavior of selected cell lines. Since these tests place stringent requirements on the cellular system, special techniques and culture conditions are required to minimize biological variability. The use of specialized cell populations is providing data on the extent of repair following low doses, and on the changes in the types of damage that can be repaired as the cell progresses toward mitosis. The stationary-phase Chinese hamster ovary (CHO) cells are composed primarily of G(1)-phase cells (83%), with the remainder comprising both G(2) and S phases. Removal of radiation damage by cells was studied in split-dose experiments. To date, we have observed no significant differences in cellular repair rate. This suggests, therefore, that each of the repair processes found in stationary-phase cells is cell-age independent. However, cellular radiation sensitivity does change rapidly and considerably as the cells progress from one phase to the next through the cell cycle. Since the rate of damage removal appears invariant, the change in survival must reflect the efficiency of producing that damage. The experimental data suggest that production of one or another sort of damage probably dominates during specific phases of the cell cycle, while the capacity for removal of all types of damage remains relatively constant

  4. Cellular mechanisms of noise-induced hearing loss.

    Science.gov (United States)

    Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y

    2017-06-01

    Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.

  5. Damage spreading for one-dimensional, non-equilibrium models with parity conserving phase transitions

    CERN Document Server

    Ódor, G; Odor, Geza; Menyhard, Nora

    1998-01-01

    The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated on the level of kinks and spins. On the level of spins the parity conservation is not satisfied and therefore studying these models provides a convenient tool to understand the dependence of DS properties on symmetries. For the model B the critical point and the DS transition point is well separated and directed percolation damage spreading transition universality was found for spin damage as well as for kink damage in spite of the conservation of damage variables modulo 2 in the latter case. For the A stochastic cellular automaton, and the NEKIM model the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition is continuous and shows regular PC class universality, the spin damage exhibits a discontinuous p...

  6. Cell damage by bilirubin and light

    International Nuclear Information System (INIS)

    Granli, T.

    1993-01-01

    Large doses of light are given to newborns during phototherapy for hyperbilirubinemia. Tissues containing concentrations of bilirubin almost in the mM range may be subjected to irradiation. Therefore it is of interest to study cellular effects of light and bilirubin on cells. In order to select the optimal wavelength, possible detrimental effects of light on cells must be taken into consideration among a number of other factors. In this study cellular effects of selected wavelengths of blue-green light are compared. It is not clear whether cullular damage occurs in vivo during phototherapy of newborns. Since a possibility exists that some adverse effects are caused by light, one should choose wavelengths where these effects are minimal without loosing therapeutic efficiency. Todays knowledge of the photochemical mechanisms of phototherapy, indicates that short waved light with wavelengths below 450 nm has a low therapeutic effect. The data in this paper indicate that the cellular damage is most severe at short wavelengths, and these should be reduced to a minimum in the spectra of phototherapy lamps. Further studies of possible side effects of phototherapy should be made. 64 refs., 34 figs., 1 tab

  7. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Sondhaus, C.A.; Altman, K.I.

    1998-01-01

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts

  8. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  9. Chromatin modifications and the DNA damage response to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.

  10. Study on evolution of internal damage in CFRP in fatigue process; Hiro katei ni okeru CFRP no naibu sonsho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K. [Nagoya Univ. (Japan); Murakami, S. [Nagoya Univ. (Japan). Faculty of Engineering

    1998-05-15

    Development of internal damage evolution in plates and thin tubular speciments of CFRP laminates under static and dynamic loadings are discussed by means of Acoustic Emission measurements and micrographical observations. The mechanical behavior of three kinds of speciments, i.e. undamaged laminate plates [+45deg{sub 4}/-45deg{sub 4}]{sub s}, damaged plates [+45deg{sub 4}/-45deg{sub 4}]{sub s} subjected to drop-weight impact and undamaged tubular speciments [ 45deg]{sub 4}, under quasi-static and fatigue loadings is observed first. Then the mechanism of the resulting inelastic behavior and the change in the mechanical properties are discussed in relation to the evolution of internal damage. Finally the distribution and the evolution of matrix crecks and delamination in the sliced section of the speciments are measured quantitatively in several stages of fatigue process. The dependence of damage distribution on the loading condition is elucidated. Namely, in the case of the stress ratio R=-0.25, the growth of damage zone involving the main crack is localized, and the main crack forms large delamination. On the other hand, for the stress ratio R=0, small cracks are distributed sparsely, but the main crack is not observed until the final stage of the fatifue process. 8 refs., 12 figs.

  11. N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation.

    Science.gov (United States)

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2017-11-01

    We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131 I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post- 131 I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.

  12. Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D.

    2012-01-01

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial ...

  13. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer.

    Science.gov (United States)

    Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan

    2017-03-01

    pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pK a was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their

  14. Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires

    KAUST Repository

    Fatieiev, Yevhen

    2017-01-10

    This work describes the sol-gel syntheses of para-substituted phenylene-bridged periodic mesoporous organosilica (PMO) nanoparticles (NPs) with tunable morphologies ranging from nanowires to nanospheres. The findings show the key role of the addition of organic co-solvents in the aqueous templates on the final morphologies of PMO NPs. Other factors such as the temperature, the stirring speed, and the amount of organic solvents also influence the shape of PMO NPs. The tuning of the shape of the PMO nanomaterials made it possible to study the influence of the particle morphology on the cellular internalization and biocompatibility.

  15. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.

    2013-01-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time...

  16. Oxidative DNA damage during sleep periods among nightshift workers.

    Science.gov (United States)

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. The protection against nuclear risks under the international nuclear liability law: the geographical and technical scope of the international conventions on third party liability for nuclear damage

    International Nuclear Information System (INIS)

    Kissich, S.J.

    2001-10-01

    This Ph.D.-research deals with the International Conventions on Third Party Liability for Nuclear Damage. In 1960, the Paris Convention was established with the aim of providing a special uniform nuclear third party liability regime for Western Europe. This Convention was supplemented in 1963 by the Brussels Supplementary Convention. Also in 1963, the Vienna Convention, which aimed to establish a world-wide system based on the same principles as the Paris Convention, was adopted. A further Convention was adopted in 1971 to ensure that nuclear third party liability law and not maritime law would apply to carriage of nuclear materials by sea. In 1988, the Paris and Vienna Conventions have been linked by the adoption of a Joint Protocol. In 1997, the process of amending the 1963 Vienna Convention was successfully concluded and a Convention on Supplementary Compensation was adopted. This Ph.D.-research consists of seven chapters: following an introduction, the second chapter gives a general view of the existing international legal sources. The third chapter describes the international civil nuclear liability law concept and its leading principles. The main element of this work is the question of the technical and geographical scope of the international nuclear liability conventions (chapter IV and V). The conventions are only applicable to nuclear incidents, which occur in a nuclear installation or incidental to the carriage or storage of nuclear material. The nuclear damage must arise out of the radioactive properties of nuclear substances which are also defined by legal terms. In addition, the scope of the conventions is limited by the nature of the installations. The geographical scope of application is established by the provisions on geographical coverage. Only the 1963 Vienna Convention does not contain any specific provision dealing with the territorial scope of its application. The geographical scope determines where the nuclear incident or the nuclear damage

  18. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.

    Science.gov (United States)

    Carney, Randy P; Carney, Tamara M; Mueller, Marie; Stellacci, Francesco

    2012-12-01

    Nanoparticles (NPs) are gaining increasing attention for potential application in medicine; consequently, studying their interaction with cells is of central importance. We found that both ligand arrangement and composition on gold nanoparticles play a crucial role in their cellular internalization. In our previous investigation, we showed that 66-34OT nanoparticles coated with stripe-like domains of hydrophobic (octanethiol, OT, 34%) and hydrophilic (11-mercaptoundecane sulfonate, MUS, 66%) ligands permeated through the cellular lipid bilayer via passive diffusion, in addition to endo-/pino-cytosis. Here, we show an analysis of NP internalization by DC2.4, 3T3, and HeLa cells at two temperatures and multiple time points. We study four NPs that differ in their surface structures and ligand compositions and report on their cellular internalization by intracellular fluorescence quantification. Using confocal laser scanning microscopy we have found that all three cell types internalize the 66-34OT NPs more than particles coated only with MUS, or particles coated with a very similar coating but lacking any detectable ligand shell structure, or 'striped' particles but with a different composition (34-66OT) at multiple data points.

  20. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue. Separate abstracts have been indexed for articles from this report.

  1. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  2. Radio-oxidative membrane damage and its possible role as an indicator of radiation exposure

    International Nuclear Information System (INIS)

    Amit Kumar; Pandey, B.N.; Mishra, K.P.

    2004-01-01

    Cellular membranes have been recognized as a sensitive target in the mechanism of ionizing radiation-induced cell killing. In our laboratory, studies have been devoted to investigations on gamma radiation induced oxidative damage to model and cellular membrane damage by employing fluorescence and electron spin resonance (ESR) methods Considerable evidences has accumulated to suggest that radiation induced oxidative damage was related to apoptotic death of a variety of cells in culture. Radiation induced damage involving lipid peroxidation, altered bilayer fluidity, permeability changes and intracellular generated ROS have been evaluated by chemical and physical methods. Modification of damage by structural modulating agents such as cholesterol and antioxidants such as eugenol, ascorbic acid, ellagic acid, triphala have been extensively investigated. Generation of intracellular ROS in radiation stressed normal cell e.g. mouse thymocytes, tumor cells e.g. Ehrlich ascites cells and human cervical cell line were evaluated after exposure from low to moderate doses of α-radiation. Results suggest that modulation of intracellular ROS level may be an important approach to alter radio-cytotoxicity of cells. This presentation would describe results of our study together with an overview of free radical mediated oxidative damage to cellular membrane as an indicator of radiation exposure. (author)

  3. Modulation of cellular radiation responses by 2-deoxy-D-glucose and other glycolytic inhibitors: Implications for cancer therapy

    OpenAIRE

    Kalia Vijay; Prabhakara S; Narayanan Vidya

    2009-01-01

    Background: 2-Deoxy-D-glucose (2-DG), a glycolytic inhibitor, was observed earlier to increase DNA, chromosomal, and cellular damage in tumor cells, by inhibiting energy-dependent repair processes. Lonidamine (LND) selectively inhibits glycolysis in cancer cells. It damages the condensed mitochondria in these cells, impairing thereby the activity of hexokinase (predominantly attached to the outer mitochondrial membranes). It inhibits repair of radiation-induced potentially lethal cellular da...

  4. Harmonising measurements of 8-oxo-7,8-dihydro-2'-deoxyguanosine in cellular DNA and urine

    DEFF Research Database (Denmark)

    Møller, Peter; Cooke, Marcus S; Collins, Andrew

    2012-01-01

    Levels of oxidatively damaged cellular DNA and urinary excretion of damaged 2'-deoxyribonuclosides are widely measured in biomonitoring studies examining the role of oxidative stress induced by environmental exposures, lifestyle factors and development of disease. This has promoted efforts to har...

  5. Modeling and cellular studies

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  6. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Science.gov (United States)

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  7. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  8. DNA damage, repair and tanning acceleration

    NARCIS (Netherlands)

    Vink, A.A.; Berg, P.T.M. van den; Roza, L.

    1999-01-01

    Exposure of the skin to solar ultraviolet radiation (UV) leads to various adverse effects, such as the induction of cellular damage and mutations, suppression of the skin's immune system, and the induction of skin cancer. These effects are the consequence of various molecular alterations in the skin

  9. Retinal Damage Induced by Internal Limiting Membrane Removal

    Directory of Open Access Journals (Sweden)

    Rachel Gelman

    2015-01-01

    Full Text Available The internal limiting membrane (ILM, the basement membrane of the Müller cells, serves as the interface between the vitreous body and the retinal nerve fiber layer. It has a fundamental role in the development, structure, and function of the retina, although it also is a pathologic component in the various vitreoretinal disorders, most notably in macular holes. It was not until understanding of the evolution of idiopathic macular holes and the advent of idiopathic macular hole surgery that the idea of adjuvant ILM peeling in the treatment of tractional maculopathies was explored. Today intentional ILM peeling is a commonly applied surgical technique among vitreoretinal surgeons as it has been found to increase the rate of successful macular hole closure and improve surgical outcomes in other vitreoretinal diseases. Though ILM peeling has refined surgery for tractional maculopathies, like all surgical procedures it is not immune to perioperative risk. The essential role of the ILM to the integrity of the retina and risk of trauma to retinal tissue spurs suspicion with regard to its routine removal. Several authors have investigated the retinal damage induced by ILM peeling and these complications have been manifested across many different diagnostic studies.

  10. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  11. Chromatin organization and cellular sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Szumiel, I.; Walicka, M.

    1987-01-01

    The paper briefly describes chromatin organization in mammalian cells and reviews experimental work concerning relations between chromatin structure and accesibility of damaged DNA to repair enzymes. The ''contact effect'', the size of super-coiled DNA domains and ADP-ribosylation of chromatin proteins are discussed in relation to cellular radiosensitivity. 88 refs. (author)

  12. DNA damage in internal organs after cutaneous exposure to sulphur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Bérard, Izabel [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Douki, Thierry, E-mail: thierry.douki@cea.fr [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France)

    2014-07-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks.

  13. DNA damage in internal organs after cutaneous exposure to sulphur mustard

    International Nuclear Information System (INIS)

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien; Bérard, Izabel; Douki, Thierry

    2014-01-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks

  14. Validation of self-reported cellular phone use

    DEFF Research Database (Denmark)

    Samkange-Zeeb, Florence; Berg, Gabriele; Blettner, Maria

    2004-01-01

    BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now there is ......BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now...... there is very little information published on this subject. METHODS: We conducted a study to validate the questionnaire used in an ongoing international case-control study on cellular phone use, the "Interphone study". Self-reported cellular phone use from 68 of 104 participants who took part in our study...... was compared with information derived from the network providers over a period of 3 months (taken as the gold standard). RESULTS: Using Spearman's rank correlation, the correlation between self-reported phone use and information from the network providers for cellular phone use in terms of the number of calls...

  15. Influence of physical and biological factors in cellular radiosensitivity

    International Nuclear Information System (INIS)

    García Lima, Omar

    2016-01-01

    The use of therapeutic radiopharmaceuticals is associated with radiation damage, and this at-nuclear physical properties of radionuclides used and the characteristics of the irradiated cells. The work deals with the damage caused by radiation to DNA, factors that condition and tools that can be used to measure it. It presents current concepts of death and cellular radiosensitivity, based on the pioneering work in this field. Enter the neighborhood effect and adaptive response and evaluates the influence of the same in the paradigms of classical radiobiology. (author)

  16. Review of the Shoreham Nuclear Power Station Probabilistic Risk Assessment: internal events and core damage frequency

    International Nuclear Information System (INIS)

    Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.

    1985-11-01

    A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs

  17. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  18. Implication of the apoptotic process in the modulation of chromosomal damages

    International Nuclear Information System (INIS)

    Blaise, Renaud

    2001-01-01

    In this research thesis in the field of biology, the author reports that the study of radio-induced chromosomal reorganizations during cellular proliferation revealed the occurrence of other radio-induced 'de novo' chromosomal anomalies present in the lineage of irradiated cells. Three cellular models have been studied. The obtained results show the role on a short term of the apoptosis in maintaining chromosomal damages, an inhibition of this death process along with an increase of the number of aberration in the first cellular generations following an irradiation or an extended exposure to H 2 O 2 . But the apoptotic process does not seem to influence the appearance of chromosomal damages on a long term. The author concludes that apoptosis as an early response to a stress, and chromosomal unsteadiness as a late response are not directly associated

  19. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal floods during mid-loop operations. Volume 4

    International Nuclear Information System (INIS)

    Kohut, P.

    1994-07-01

    The major objective of the Surry internal flood analysis was to provide an improved understanding of the core damage scenarios arising from internal flood-related events. The mean core damage frequency of the Surry plant due to internal flood events during mid-loop operations is 4.8E-06 per year, and the 5th and 95th percentiles are 2.2E-07 and 1.8E-05 per year, respectively. Some limited sensitivity calculations were performed on three plant improvement options. The most significant result involves modifications of intake-level structure on the canal, which reduced core damage frequency contribution from floods in mid-loop by about 75%

  20. DNA damage by carbonyl stress in human skin cells

    International Nuclear Information System (INIS)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L.

    2003-01-01

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the α-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N ε -(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress

  1. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  2. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  3. VUV spectroscopy of water under cellular conditions

    International Nuclear Information System (INIS)

    Mota, R.; Parafita, R.; Maneira, M. J. P.; Mason, N. J.; Garcia, G.; Ribeiro, P. A.; Raposo, M.; Limao-Vieira, P.

    2006-01-01

    The understanding of radiation damage within cells, and thence mutagenesis, depends upon a detailed knowledge of the spectroscopy and dissociation dynamics of water. Results of a new study of the electronic state spectroscopy of water, using synchrotron radiation are reported. In order to gain some insight into how the spectroscopy and dissociation dynamics of water is influenced by its environment we also report photo-absorption spectra of water within thin films of poly(o-methoxyaniline) which have been suggested as a good mimic for biological membranes in the cellular environment. Comparison of these spectra with those of gaseous water and condensed amorphous water ice suggest that water in such films is similar to gaseous water and does not show the blue shift suggested in some cellular models. The lowest energy of OH production from dissociation of water in the cellular environment may therefore be around 6.7 eV (185 nm). (authors)

  4. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  5. Quantitative measurement of ultraviolet-induced damage in cellular DNA by an enzyme immunodot assay

    International Nuclear Information System (INIS)

    Wakizaka, A.; Nishizawa, Y.; Aiba, N.; Okuhara, E.; Takahashi, S.

    1989-01-01

    A simple enzyme immunoassay procedure was developed for the quantitative determination of 254-nm uv-induced DNA damage in cells. With the use of specific antibodies to uv-irradiated DNA and horseradish peroxidase-conjugated antibody to rabbit IgG, the extent of damaged DNA in uv-irradiated rat spleen mononuclear cells was quantitatively measurable. Through the use of this method, the amount of damaged DNA present in 2 X 10(5) cells irradiated at a dose of 75 J/m2 was estimated to be 7 ng equivalents of the standard uv-irradiated DNA. In addition, when the cells, irradiated at 750 J/m2, were incubated for 1 h, the antigenic activity of DNA decreased by 40%, suggesting that a repair of the damaged sites in DNA had proceeded to some extent in the cells

  6. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    International Nuclear Information System (INIS)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-01-01

    Highlights: • Astrocytes exhibit characteristic changes in [Ca 2+ ] i under OGD. • Astrocytic [Ca 2+ ] i increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca 2+ ] i ) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca 2+ ] i oscillations followed by larger and sustained [Ca 2+ ] i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca 2+ ] i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca 2+ ] i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca 2+ ] i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia

  7. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    Science.gov (United States)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  8. Crosstalk between the nucleolus and the DNA damage response.

    Science.gov (United States)

    Ogawa, L M; Baserga, S J

    2017-02-28

    Nucleolar function and the cellular response to DNA damage have long been studied as distinct disciplines. New research and a new appreciation for proteins holding multiple functional roles, however, is beginning to change the way we think about the crosstalk among distinct cellular processes. Here, we focus on the crosstalk between the DNA damage response and the nucleolus, including a comprehensive review of the literature that reveals a role for conventional DNA repair proteins in ribosome biogenesis, and conversely, ribosome biogenesis proteins in DNA repair. Furthermore, with recent advances in nucleolar proteomics and a growing list of proteins that localize to the nucleolus, it is likely that we will continue to identify new DNA repair proteins with a nucleolar-specific role. Given the importance of ribosome biogenesis and DNA repair in essential cellular processes and the role that they play in diverse pathologies, continued elucidation of the overlap between these two disciplines will be essential to the advancement of both fields and to the development of novel therapeutics.

  9. Functional analysis of molecular mechanisms of radiation induced apoptosis, that are not mediated by DNA damages

    International Nuclear Information System (INIS)

    Angermeier, Marita; Moertl, Simone

    2012-01-01

    The effects of low-dose irradiation pose new challenges on the radiation protection efforts. Enhanced cellular radiation sensitivity is displayed by disturbed cellular reactions and resulting damage like cell cycle arrest, DNA repair and apoptosis. Apoptosis serves as genetically determinate parameter for the individual radiation sensitivity. In the frame of the project the radiation-induced apoptosis was mechanistically investigated. Since ionizing radiation induced direct DNA damage and generates a reactive oxygen species, the main focus of the research was the differentiation and weighting of DNA damage mediated apoptosis and apoptosis caused by the reactive oxygen species (ROS).

  10. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-01-01

    Full Text Available Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD, a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.

  11. Cellular radiobiology of heavy-ion beams

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.; Roots, R.J.; Yang, T.C.

    1981-01-01

    Progress is reported in the following areas of this research program: relative biological effectiveness and oxygen enhancement ratio of silicon ion beams; heavy ion effects on the cell cycle; the potentiation effect (2 doses of high LET heavy-ion radiations separated by 2 to 3 hours); potentially lethal damage in actively growing cells and plateau growth cells; radiation induced macromolecular lesions and cellular radiation chemistry; lethal effects of dual radiation; and the development of a biophysical repair/misrepair model

  12. Overview of the RPV-2 and INTERN-1 packages: From primary damage to microplasticity

    International Nuclear Information System (INIS)

    Adjanor, G.; Bugat, S.; Domain, C.; Barbu, A.

    2010-01-01

    In the framework of the European project PERFECT, four multiscale simulation packages dedicated to the prediction of evolution of material properties were developed. Among them, the RPV-2 and INTERN-1 are two simulation sequences of similar structure dealing with radiation damage in the reactor pressure vessel and the reactor internal structures, respectively. Both start at the atomic scale, where the neutron spectrum of the specified reactor is used to determine the energy distribution of the primary knocked-on atoms (PKA). A database of molecular dynamics results is then used to integrate the instantaneous production of defect clusters resulting from the displacement cascades initiated by each PKA. Depending on the type of calculation chosen to model long-term diffusion and reactions of defect clusters, precipitates and mixed-clusters, this primary damage enters either in rate equations or in Object Kinetic Monte Carlo simulations. The later correspond to a more accurate (but also more computationally demanding) physical model for diffusion as positions of objects on a lattice are explicitly treated. Finally, the increase of critical resolved shear stress is estimated from these cluster distributions either using an analytical model, taking into account the self and mutual dipole interactions of dislocations pinned on randomly dispersed unshearable obstacles, or by simulating the glide of a single dislocation line in its main slip system. Dislocation dynamics simulations were already used to validate some of the assumptions of the latter models, and will be fully integrated in the next versions of the packages.

  13. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  14. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  15. Pre-analytical and post-analytical evaluation in the era of molecular diagnosis of sexually transmitted diseases: cellularity control and internal control

    Directory of Open Access Journals (Sweden)

    Loria Bianchi

    2014-06-01

    Full Text Available Background. Increase of molecular tests performed on DNA extracted from various biological materials should not be carried out without an adequate standardization of the pre-analytical and post-analytical phase. Materials and Methods. Aim of this study was to evaluate the role of internal control (IC to standardize pre-analytical phase and the role of cellularity control (CC in the suitability evaluation of biological matrices, and their influence on false negative results. 120 cervical swabs (CS were pre-treated and extracted following 3 different protocols. Extraction performance was evaluated by amplification of: IC, added in each mix extraction; human gene HPRT1 (CC with RT-PCR to quantify sample cellularity; L1 region of HPV with SPF10 primers. 135 urine, 135 urethral swabs, 553 CS and 332 ThinPrep swabs (TP were tested for C. trachomatis (CT and U. parvum (UP with RT-PCR and for HPV by endpoint-PCR. Samples were also tested for cellularity. Results. Extraction protocol with highest average cellularity (Ac/sample showed lowest number of samples with inhibitors; highest HPV positivity was achieved by protocol with greatest Ac/PCR. CS and TP under 300.000 cells/sample showed a significant decrease of UP (P<0.01 and HPV (P<0.005 positivity. Female urine under 40.000 cells/mL were inadequate to detect UP (P<0.05. Conclusions. Our data show that IC and CC allow optimization of pre-analytical phase, with an increase of analytical quality. Cellularity/sample allows better sample adequacy evaluation, crucial to avoid false negative results, while cellularity/PCR allows better optimization of PCR amplification. Further data are required to define the optimal cut-off for result normalization.

  16. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  17. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  18. Hydrogen damage in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen damage has been studied in a wide variety of stainless steels. Both internal and external hydrogen damage were evaluated by ductility or J-integral under rising tensile loads and by fractography. Analysis of the data has emphasized the potential effects of strain-induced martensite on hydrogen damage. Strain-induced martensite was neither necessary nor sufficient for hydrogen damage in the alloys studied. Neither ductility loss nor fracture-mode change correlated generally with martensite formation. Alloy composition, particularly nickel and nitrogen contents, was the primary factor in resistance to hydrogen damage. Thermomechanical processing, however, could alter the degree of hydrogen damage in an alloy and was critical for optimizing resistance to hydrogen damage. 10 figures, 10 tables

  19. Analysis of core damage frequency: Peach Bottom, Unit 2 internal events appendices

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Cramond, W.R.; Sype, T.T.; Maloney, K.J.; Wheeler, T.A.; Daniel, S.L.

    1989-08-01

    This document contains the appendices for the accident sequence analysis of internally initiated events for the Peach Bottom, Unit 2 Nuclear Power Plant. This is one of the five plant analyses conducted as part of the NUREG-1150 effort for the Nuclear Regulatory Commission. The work performed and described here is an extensive reanalysis of that published in October 1986 as NUREG/CR-4550, Volume 4. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved, and considerable effort was expended on an improved analysis of loss of offsite power. The content and detail of this report is directed toward PRA practitioners who need to know how the work was done and the details for use in further studies. The mean core damage frequency is 4.5E-6 with 5% and 95% uncertainty bounds of 3.5E-7 and 1.3E-5, respectively. Station blackout type accidents (loss of all ac power) contributed about 46% of the core damage frequency with Anticipated Transient Without Scram (ATWS) accidents contributing another 42%. The numerical results are driven by loss of offsite power, transients with the power conversion system initially available operator errors, and mechanical failure to scram. 13 refs., 345 figs., 171 tabs

  20. Radiation-induced DNA damage and cellular lethality

    International Nuclear Information System (INIS)

    Sakai, K.; Okada, S.

    1984-01-01

    Radiation-induced DNA scissions and their repair were investigated in mammalian cells using an alkaline separation method. DNA breaks in mouse L5178Y cells and Chinese hamster V79 cells were grouped into three in terms of their repair profile; fast-reparable breaks (FRBs; T1/2 = 5 min), slow-reparable breaks (SRBs; T1/2 = 70 min) and non-reparable breaks (NRBs). The three types of DNA lesions were studied under conditions where cellular radiosensitivity was modified. The authors obtained the following results: 1. Cell cycle fluctuation: L5178Y showed maximum sensitivity at M and G/sub 1/-S boundary, and minimum sensitivity at G/sub 1/ and late S. Cycle dependency was not found for FRBs or SRBs, but NRBs showed bimodal fluctuation with peaks at M and G/sub 1/-S, and with bottoms at G/sub 1/ and late S. 2. Different sensitivity of L5178Y and V79: L5178Y cells were more sensitive to X-rays (D/sub ο/ = 0.9 Gy) than V79 (D/sub ο/ = 1.8 Gy). The amount of FRBs or SRBs was identical in the two cell lines. However, the amount of NRBs in L5178Y was greater than that in V79. 3. Split dose irradiation: The time interval between two doses resulted in a gradual decrease of NRBs. The time course of the decrease was similar to the split dose recovery in terms of cell death. The parallel relationship between NRBs and cell killing implies that NRBs could play an important role in radiation-induced cell death

  1. Cellular vs. organ approaches to dose estimates

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.; Sastry, K.S.R.

    1986-01-01

    The cellular distribution of tissue-incorporated radionuclides has generally been neglected in the dosimetry of internal emitters. Traditional dosimetry assumes homogeneous distribution of radionuclides in organs of interest, while presuming that the ranges of particulate radiations are large relative to typical cell diameters. The macroscopic distribution of dose thus calculated has generally served as a sufficient approximation for the energy deposited within radiosensitive sites. However, with the increasing utilization of intracellular agents, such as thallium-201, it has become necessary to examine the microscopic distribution of energy at the cellular level. This is particularly important in the instance of radionuclides that decay by electron capture or by internal conversion with the release of Auger and Coster-Kronig electrons. In many instances, these electrons are released as a dense shower of low-energy particles with ranges of subcellular dimensions. The high electron density in the immediate vicinity of the decaying atom produces a focal deposition of energy that far exceeds the average dose taken over several cell diameters. These studies point out the increasing need to take into account the microscopic distribution of dose on the cellular level as radionuclides distributed in cells become more commonplace, especially if the decay involves electron capture or internal conversion. As radiotracers are developed for the measurement of intracellular functions these factors should be given greater consideration. 16 references, 5 figures, 5 tables

  2. Modeling cellular effects of coal pollutants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The goal of this project is to develop and test models for the dose and dose-rate dependence of biological effects of coal pollutants on mammalian cells in tissue culture. Particular attention is given to the interaction of pollutants with the genetic material (deoxyribonucleic acid, or NDA) in the cell. Unlike radiation, which can interact directly with chromatin, chemical pollutants undergo numerous changes before the ultimate carcinogen becomes covalently bound to the DNA. Synthetic vesicles formed from a phospholipid bilayer are being used to investigate chemical transformations that may occur during the transport of pollutants across cellular membranes. The initial damage to DNA is rapidly modified by enzymatic repair systems in most living organisms. A model has been developed for predicting the effects of excision repair on the survival of human cells exposed to chemical carcinogens. In addition to the excision system, normal human cells also have tolerance mechanisms that permit continued growth and division of cells without removal of the damage. We are investigating the biological effect of damage passed to daughter cells by these tolerance mechanisms

  3. Analysis of oxidative DNA damage, Part II: Synthesis of the internal standard 8-[18O]hydroxy-2'-deoxyguanosine

    NARCIS (Netherlands)

    Hermanns RCA; Zomer G; Stavenuiter JFC; Westra G; Visser T; van de Werken G

    1993-01-01

    In the project 'Oxidative DNA Damage' the first aim is to develop a mass spectrometric method for the quantification of 8-hydroxy-2'- deoxyguanosine (oh8dG). The required precision of the method requires the application of a labeled analogue as an internal standard. This report

  4. Lactobacillus plantarum (VR1 isolated from an Ayurvedic medicine (Kutajarista ameliorates in vitro cellular damage caused by Aeromonas veronii

    Directory of Open Access Journals (Sweden)

    Patole Milind S

    2011-06-01

    Full Text Available Abstract Background Lactobacillus plantarum is considered as a safe and effective probiotic microorganism. Among various sources of isolation, traditionally fermented foods are considered to be rich in Lactobacillus spp., which can be exploited for their probiotic attribute. Antibacterial property of L. plantarum has been demonstrated against various enteric pathogens in both in vitro and in vivo systems. This study was aimed at characterizing L. plantarum isolated from Kutajarista, an ayurvedic fermented biomedicine, and assessing its antagonistic property against a common enteropathogen Aeromonas veronii. Results We report the isolation of L. plantarum (VR1 from Kutajarista, and efficacy of its cell free supernatant (CFS in amelioration of cytotoxicity caused by Aeromonas veronii. On the part of probiotic attributes, VR1 was tolerant to pH 2, 0.3% bile salts and simulated gastric juice. Additionally, VR1 also exhibited adhesive property to human intestinal HT-29 cell line. Furthermore, CFS of VR1 was antibacterial to enteric pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Aeromonas veronii and clinical isolates of P. aeruginosa and E. coli. Detailed study regarding the effect of VR1 CFS on A. veronii cytotoxicity showed a significant decrease in vacuole formation and detrimental cellular changes in Vero cells. On the other hand, A. veronii CFS caused disruption of tight junction proteins ZO-1 and actin in MDCK cell line, which was prevented by pre-incubation with CFS of VR1. Conclusions This is the first study to report isolation of L. plantarum (VR1 from Kutajarista and characterisation for its probiotic attributes. Our study demonstrates the antagonistic property of VR1 to A. veronii and effect of VR1 CFS in reduction of cellular damage caused by A. veronii in both Vero and MDCK cell lines.

  5. Ionizing Radiation Induces Cellular Senescence of Articular Chondrocytes via Negative Regulation of SIRT1 by p38 Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Hee; Hwang, Sang Gu [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Senescent cells exhibit irreversible growth arrest, large flat morphology, and up-regulated senescence-associated {beta}-galactosidase activity at pH 6.0. Several conditions, including oncogenic stress, oxidative stress, and DNA damage are associated with cellular senescence. Massive acute DNA double-strand breaks occurring as a result of mechanical and chemical stress can be repaired, but some DNA damage persists, eventually triggering premature senescence. Since ionizing radiation directly induces DBS, it is possible that cellular senescence is activated under these conditions. The biological events in chondrocytes following irradiation are poorly understood, and limited information is available on the molecular signal transduction mechanisms of cellular senescence at present. In this study, we identify SIRT1 as a target molecule of p38 kinase and demonstrate that the interactions between p38 kinase and SIRT1 protein play an important role in the regulation of cellular senescence in response to IR.

  6. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes

    Science.gov (United States)

    Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis

    2011-01-01

    Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692

  7. Perspectives for the treatment of sensorineural hearing loss by cellular regeneration of the inner ear.

    Science.gov (United States)

    Almeida-Branco, Mario S; Cabrera, Sonia; Lopez-Escamez, Jose A

    2015-01-01

    Sensorineural hearing loss is a caused by the loss of the cochlear hair cells with the consequent deafferentation of spiral ganglion neurons. Humans do not show endogenous cellular regeneration in the inner ear and there is no exogenous therapy that allows the replacement of the damaged hair cells. Currently, treatment is based on the use of hearing aids and cochlear implants that present different outcomes, some difficulties in auditory discrimination and a limited useful life. More advanced technology is hindered by the functional capacity of the remaining spiral ganglion neurons. The latest advances with stem cell therapy and cellular reprogramming have developed several possibilities to induce endogenous regeneration or stem cell transplantation to replace damaged inner ear hair cells and restore hearing function. With further knowledge of the cellular and molecular biology of the inner ear and its embryonic development, it will be possible to use induced stem cells as in vitro models of disease and as replacement cellular therapy. Investigation in this area is focused on generating cellular therapy with clinical use for the treatment of profound sensorineural hearing loss. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  8. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo, E-mail: mnuriya@z2.keio.jp

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  9. Epigenetic and genetic factors in the cellular response to radiations and DNA-damaging chemicals

    International Nuclear Information System (INIS)

    Williams, J.R.; D'Arpa, P.

    1981-01-01

    DNA-damaging agents are widely used as therapeutic tools for a variety of disease states. Many such agents are considered to produce detrimental side effects. Thus, it is important to evaluate both therapeutic efficacy and potential risk. DNA-damaging agents can be so evaluated by comparison to agents whose therapeutic benefit and potential hazards are better known. We propose a framework for such comparison, demonstrating that a simple transformation of cytotoxicity-dose response patterns permits a facile comparison of variation between cells exposed to a single DNA-damaging agent or to different cytotoxic agents. Further, by transforming data from experiments which compare responses of 2 cell populations to an effects ratio, different patterns for the changes in cytotoxicity produced by epigenetic and genetic factors were compared. Using these transformations, we found that there is a wide variation (a factor of 4) between laboratories for a single agent (UVC) and only a slightly larger variation (factor of 6) between normal cell response for different types of DNA-damaging agents (x-ray, UVC, alkylating agents, crosslinking agents). Epigenetic factors such as repair and recovery appear to be a factor only at higher dose levels. Comparison in the cytotoxic effect of a spectrum of DNA-damaging agents in xeroderma pigmentosum, ataxia telangiectasia, and Fanconi's anemia cells indicates significantly different patterns, implying that the effect, and perhaps the nature, of these genetic conditions are quite different

  10. International Co-operation in providing insurance cover for nuclear damage to third parties and for damage to nuclear installations

    International Nuclear Information System (INIS)

    Deprimoz, Jacques

    1983-01-01

    This article in three parts analyses cover for damage to third parties by fixed nuclear installations, cover for damage to third parties during transport of nuclear substances and finally, cover for damage to nuclear installations. Part I reviews the principles of nuclear third party liability and describes nuclear insurance pools, the coverage and contracts provided. Part II describes inter alia the role of pools in transport operations as well as the type of contracts available, while Part III discusses material damage, the pools' capacities and the vast sums involved in indemnifying such damage. (NEA) [fr

  11. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  12. Retinal Pigment Epithelial Cell Culture and Cooperation of L-carnitine in Reducing Stress Induced Cellular Damage

    International Nuclear Information System (INIS)

    Shamsi, Farrukh A.; Al-Rajhi, Ali A.; Athmanathan, S.; Boulton, M.; Chaudhry, Imtiaz A.

    2006-01-01

    Purpose was to show that L-carnitine (LC) is capable of reducing non-oxidative stress in the retinal pigment epithelial cells (RPE) of the human eye. The RPE cells were cultured from donor eyes, obtained immediately after post-mortem. The interaction between bovine serum albumin (BSA) and non-oxidative (sodium hydroxide and methyl methane sulphonate) stress-inducers was observed by recording the change in the absorption profiles of the interacting molecules after incubation in light for 5 hours and after treatment with LC. The isolated and cultured RPE cells from the human eyes were treated with sodium hydroxide or methyl methane sulphonate and/or LC for 5 hours under light, and the qualitative effect on cell morphology after treatment was analyzed by staining cells with Giemsa and visualization by light microscopy. The cell morphology was also qualitatively analyzed by scanning electron microscopy (SEM). L-carnitine and stress-inducers interact with BSA and bring about changes in the spectral profile of the interacted molecules. Light microscopy as well as SEM show that the changes in the cellular morphology, induced by 100 uM concentrations of non-oxidative stress-inducers, are considerably reduced in the presence of 100 uM LC. However, L-carnitine alone does not cause any qualitative damage to the cell morphology during incubation under similar conditions. The results give a preliminary indication that LC has ability to reduce the changes brought about by the non-oxidative stress-inducers in the RPF cells in culture. (author)

  13. DNA alkylation damage as a sensor of nitrosative stress in Mycobacterium tuberculosis

    OpenAIRE

    Durbach, S I; Springer, B; Machowski, E E; North, R J; Papavinasasundaram, K G; Colston, M J; Böttger, E C; Mizrahi, V

    2003-01-01

    One of the cellular consequences of nitrosative stress is alkylation damage to DNA. To assess whether nitrosative stress is registered on the genome of Mycobacterium tuberculosis, mutants lacking an alkylation damage repair and reversal operon were constructed. Although hypersensitive to the genotoxic effects of N-methyl-N′-nitro-N-nitrosoguanidine in vitro, the mutants displayed no phenotype in vivo, suggesting that permeation of nitrosative stress to the level of cytotoxic DNA damage is res...

  14. Identification of novel human damage response proteins targeted through yeast orthology.

    Directory of Open Access Journals (Sweden)

    J Peter Svensson

    Full Text Available Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rules were implemented to identify 45 candidates for human toxicity-modulating proteins. The corresponding transcripts were targeted by RNA interference in human cells. The cell lines with depleted target expression were challenged with three DNA damaging agents: the alkylating agents MMS and 4-NQO, and the oxidizing agent t-BuOOH. A comparison of the survival revealed that the majority (74% of proteins conferred either sensitivity or resistance. The identified human toxicity-modulating proteins represent a variety of biological functions: autophagy, chromatin modifications, RNA and protein metabolism, and telomere maintenance. Further studies revealed that MMS-induced autophagy increase the survival of cells treated with DNA damaging agents. In summary, we show that damage recovery proteins in humans can be identified through homology to S. cerevisiae and that many of the same pathways are represented among the toxicity modulators.

  15. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    . As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC......BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes...... and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted...

  16. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    Science.gov (United States)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  17. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  18. Ultrasound-induced cavitation damage to external epithelia of fish skin.

    Science.gov (United States)

    Frenkel, V; Kimmel, E; Iger, Y

    1999-10-01

    Transmission electron microscopy was used to show the effects of therapeutic ultrasound (fish skin. Exposures of up to 90 s produced damage to 5 to 6 of the outermost layers. Negligible temperature elevations and lack of damage observed when using degassed water indicated that the effects were due to cavitation. The minimal intensity was determined for inducing cellular damage, where the extent and depth of damage to the tissues was correlated to the exposure duration. The results may be interpreted as a damage front, advancing slowly from the outer cells inward, presumably in association with the slow replacement of the perforated cell contents with the surrounding water. This study illustrates that a controlled level of microdamage may be induced to the outer layers of the tissues.

  19. Understanding radiation damage on sub-cellular scale using RADAMOL simulation tool

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Václav; Davídková, Marie

    2016-01-01

    Roč. 128, NOV (2016), s. 11-17 ISSN 0969-806X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LD12008 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61389005 Keywords : charged particles * DNA * proteins * radiation damage * radical attack * water radiolysis Subject RIV: BO - Biophysics Impact factor: 1.315, year: 2016

  20. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  1. Compensation for oil pollution damage caused by oil spills from ships and the International Oil Pollution Compensation Fund

    International Nuclear Information System (INIS)

    Jacobsson, M.

    1994-01-01

    Liability and compensation for pollution damage caused by oil spills from laden tankers is governed by two international conventions: the 1969 Civil Liability Convention and the 1971 Fund Convention. The Civil Liability Convention established a system of strict liability for tanker owners and introduced compulsory liability insurance. The Fund Convention created a system of supplementary compensation administered by an intergovernmental organization, the International Oil Pollution Compensation Fund (IOPC Fund), which at present has 56 member states (August 1993). The IOPC Fund pays compensation to victims of oil pollution in member states when the compensation from the ship owner and his insurer is insufficient. (author)

  2. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...

  3. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  4. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance. Separate articles from this report have been indexed into the database.

  5. Role of the blood service in cellular therapy.

    Science.gov (United States)

    Rebulla, Paolo; Giordano, Rosaria

    2012-05-01

    Cellular therapy is a novel form of medical or surgical treatment using cells in place of or in addition to traditional chemical drugs. The preparation of cellular products - called advanced therapy medicinal products - ATMP in Europe, requires compliance with good manufacturing practices (GMP). Based on long-term experience in blood component manufacturing, product traceability and hemovigilance, selected blood services may represent ideal settings for the development and experimental use of ATMP. International harmonization of the protocols and procedures for the preparation of ATMP is of paramount importance to facilitate the development of multicenter clinical trials with adequate sample size, which are urgently needed to determine the clinical efficacy of ATMP. This article describes European regulations on cellular therapy and summarizes the activities of the 'Franco Calori' Cell Factory, a GMP unit belonging to the department of regenerative medicine of a large public university hospital, which acquired a certification for the GMP production of ATMP in 2007 and developed nine experimental clinical protocols during 2003-2011. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  6. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    Science.gov (United States)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  7. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    International Nuclear Information System (INIS)

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-01-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD 50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  8. How much can disaster and climate science contribute to loss and damage mechanisms in international climate policy?

    Science.gov (United States)

    Huggel, Christian; Allen, Simon; Eicken, Hajo; Hansen, Gerrit; Stone, Dáithí

    2015-04-01

    As the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) recently has shown, there is increasing evidence of observed impacts of climate change on natural and human systems. Some of these impacts are negative and result in damage and loss of lives and assets. In international climate policy negotiations under the UNFCCC the discussions on loss and damage have gained significant traction during the past negotiation rounds. At COP 19 the Warsaw International Mechanism for Loss and Damage (WIM) was created as an institutional arrangement to address this issue. Thereby, loss and damage (L&D) are typically defined as the residual damage and loss that occur beyond mitigation and adaptation efforts. This implies that effective mitigation and adaptation policy can substantially reduce L&D. While there is wide agreement that knowledge and understanding needs to be strengthened on how L&D due to climate change affects countries, in particular highly vulnerable countries and populations, there is still substantial disagreement on several aspects. In fact, after COP20 in Lima a number of options are on the table, including whether L&D should be located under the adaptation framework or form a separate institutional arrangement, or whether a compensation regime should be established to support developing countries. Similarly, the scientific framework for a clear L&D concept, its application in real-world cases, and implications for international climate policy, in particular with respect to questions of responsibility, liability, compensation and financing, is still evolving. Earlier proposals, for instance, have included a threshold concept, with payments released upon crossing of certain thresholds of climate (related) parameters, similar to insurance procedures. The threshold would be defined as a departure of the parameter from baseline conditions, for instance a rainfall event that is more intense than a certain baseline based threshold. Further

  9. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  10. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F

    2003-01-01

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10 70 s -1 and E a =4.5x10 5 J mole -1 , were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  11. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    Science.gov (United States)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  12. Radiation-induced normal tissue damage: implications for radiotherapy

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    Radiotherapy is an important treatment modality for many malignancies, either alone or as a part of combined modality treatment. However, despite technological advances in physical treatment delivery, patients suffer adverse effects from radiation therapy due to normal tissue damage. These side effects may be acute, occurring during or within weeks after therapy, or intermediate to late, occurring months to years after therapy. Minimizing normal tissue damage from radiotherapy will allow enhancement of tumor killing and improve tumor control and patients quality of life. Understanding mechanisms through which radiation toxicity develops in normal tissue will facilitate the development of next generation radiation effect modulators. Translation of these agents to the clinic will also require an understanding of the impact of these protectors and mitigators on tumor radiation response. In addition, normal tissues vary in radiobiologically important ways, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response. Therefore, successful development of radiation modulators may require multiple approaches to address organ/site-specific needs. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects. Further, an understanding of mechanisms of normal tissue damage will allow development of predictive biomarkers; however harmonization of such assays is critical. This is a necessary step towards patient-specific treatment customization. Examples of important adverse effects of radiotherapy either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors for improving therapeutic outcome will be highlighted. (author)

  13. Radiation-induced cross-link DNA damages: synthesis, measurement and insertion into oligonucleotides for replication and enzymatic repair studies

    International Nuclear Information System (INIS)

    Bellon, Sophie

    2003-01-01

    This research thesis addresses the synthesis, measurement and study of the biological impact of radio-induced DNA double damages. In the first part, the author reports the study of the reactivity and fate of the 5-(2'-desoxy-uridilyl)methyl radical which is one of the intermediates formed by oxidizing photo-sensitisation of thymine. The next part reports results of the formation and measurement of double damages of isolated and cellular DNA, notably in the case of γ irradiation. The third part reports the study of in vitro replication of one of the double damages. The behaviour of different polymerases with respect to the damage is reported. Finally, the modified oligonucleotide has been used as a substrate to highlight possible activities of enzymatic repair for this type of cross-link damages by purified proteins or proteins present within cellular extracts [fr

  14. Biomolecular condensates: organizers of cellular biochemistry.

    Science.gov (United States)

    Banani, Salman F; Lee, Hyun O; Hyman, Anthony A; Rosen, Michael K

    2017-05-01

    Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid-liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

  15. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    Oxidatively generated damage to nucleic acids is considered to play a significant role in carcinogenesis, and it has been shown that people with hereditary hemochromatosis are at increased risk of cancer. In this study we used a new refined liquid chromatography-tandem mass spectrometry method...... of the iron overload seen in this disease. By this mechanism cellular damage resulting in end organ damage, typically seen in the liver of such patients, may be mediated....

  16. 11th International Conference of Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  17. Research on garlic capsule and selenium-vitamin A, vitamin B, vitamin C applied in therapy of acute hepatocellular damage in a rat model

    Directory of Open Access Journals (Sweden)

    Jacob Kehinde Akintunde

    2015-10-01

    Conclusions: Collectively, the results suggest that therapeutic dose of lisinopril elicits toxicity in male rats through induction of oxidative damage and depletion of cellular adenosine triphosphate. The reversal effects of GAR and SACE during lisinopril treatment suggest that these antioxidants may find clinical application in cellular damage involving ROS and adenosine triphosphate.

  18. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    Science.gov (United States)

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  19. Remedies for moral damage before the European Court of Human Rights: Cyprus v. Turkey case

    Directory of Open Access Journals (Sweden)

    Đajić Sanja

    2014-01-01

    Full Text Available This article provides the overview of the Cyprus v. Turkey judgment, a recently decided case before the Grand Chamber of the European Court for Human Rights. This is the first inter-State case which ended with pecuniary judgment for moral damages. The article begins with the overview of factual and legal issues in the Cyprus v. Turkey case which is followed by contextualizing this judgment within the general legal framework regarding moral damages and remedies available. The second part provides the insight into the case law of the International Court of Justice, European Court for Human Rights and international investment arbitration in order to assess the status of moral damages under general international law. While all international courts and tribunals recognize moral damage as a cause of action, they seem to respond differently to the issue of remedies. International Court of Justice seems to favour declaratory over pecuniary judgments; European Court of Human Rights tend to award both non-pecuniary and pecuniary remedies for moral damages; international investment tribunals seem to favour pecuniary remedies for moral damages. A separate issue is whether international law permits or rather proscribes punitive damages. While the ILC finds that general international law does not allow for punitive damages there are different opinions, at least within the ECHR setting, that moral damages are inherently punitive for fault-based conduct of the responsible state.

  20. The cellular adaptive response the role in life organisms

    International Nuclear Information System (INIS)

    Smith, H.

    1998-01-01

    Exposure of living cells to ionizing radiation may cause DNA damage that are generally harmful to the organism. This paper discuss the cellular adaptive response which may be seen when cells which have already been exposed to low concentration radiation doses are subsequently exposed to high concentration doses. It also discusses evidence of the adaptive response in laboratory animals and from limited epidemiological studies. (Author)

  1. Senate report on the bill authorizing joining the 2001 International Convention on Civil Liability for Bunker Oil Pollution Damage

    International Nuclear Information System (INIS)

    2010-01-01

    This report recalls the different texts concerning the law of the sea: United Nations Convention on the Law of the Sea (UNCLOS) of 1982 which was ratified by France in 1996, the International Convention on Civil Liability for Oil Pollution of 1992, the creation of the International Oil Pollution Compensation Funds, and the International Convention on Liability and Compensation for Damage in Connection with the Carriage of Hazardous and Noxious Substances by sea (HNS) in 1996. While evoking some recent examples of wrecks and pollutions and some already existing French and European initiatives, it describes the implications and consequences of this convention on the French law and for its enforcement, provided that this new treaty is designed to take bunker oil into account as it may induce a significant pollution of the marine environment

  2. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  3. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Markiewicz, Ewa; Bekker-Jensen, Simon

    2015-01-01

    Lamins A/C have been implicated in DNA damage response pathways. We show that the DNA repair protein 53BP1 is a lamin A/C binding protein. In undamaged human dermal fibroblasts (HDF), 53BP1 is a nucleoskeleton protein. 53BP1 binds to lamins A/C via its Tudor domain, and this is abrogated by DNA...... damage. Lamins A/C regulate 53BP1 levels and consequently lamin A/C-null HDF display a 53BP1 null-like phenotype. Our data favour a model in which lamins A/C maintain a nucleoplasmic pool of 53BP1 in order to facilitate its rapid recruitment to sites of DNA damage and could explain why an absence...

  4. Rho GTPases: Novel Players in the Regulation of the DNA Damage Response?

    Directory of Open Access Journals (Sweden)

    Gerhard Fritz

    2015-09-01

    Full Text Available The Ras-related C3 botulinum toxin substrate 1 (Rac1 belongs to the family of Ras-homologous small GTPases. It is well characterized as a membrane-bound signal transducing molecule that is involved in the regulation of cell motility and adhesion as well as cell cycle progression, mitosis, cell death and gene expression. Rac1 also adjusts cellular responses to genotoxic stress by regulating the activity of stress kinases, including c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK and p38 kinases as well as related transcription factors. Apart from being found on the inner side of the outer cell membrane and in the cytosol, Rac1 has also been detected inside the nucleus. Different lines of evidence indicate that genotoxin-induced DNA damage is able to activate nuclear Rac1. The exact mechanisms involved and the biological consequences, however, are unclear. The data available so far indicate that Rac1 might integrate DNA damage independent and DNA damage dependent cellular stress responses following genotoxin treatment, thereby coordinating mechanisms of the DNA damage response (DDR that are related to DNA repair, survival and cell death.

  5. Cellular defense against UVB-induced phototoxicity by cytosolic NADP+-dependent isocitrate dehydrogenase

    International Nuclear Information System (INIS)

    Jo, Seung-Hee; Lee, So-Hyun; Suk Chun, Hang; Min Lee, Su; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-01-01

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury

  6. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  7. Histamine protects bone marrow against cellular damage induced by Ionizing radiation

    International Nuclear Information System (INIS)

    Medina, Vanina; Sambuco, Lorena; Massari, Noelia; Cricco, Graciela; Martin, Gabriela; Bergoc, Rosa; Rivera, Elena S.

    2008-01-01

    After surgery, radiotherapy is arguably one of the most important treatments for cancer, especially for localized disease that has not spread. However, ionizing radiation is toxic not only to tumor cells but also to healthy tissues causing serious adverse effects to patients. We have recently reported that histamine prevents ionizing radiation-induced toxicity on mouse small intestine. The aim of the present work was to determine whether histamine is able to protect bone marrow cells against ionizing radiation damage. For that purpose 56 mice were divided into 4 groups. Histamine and Histamine-10Gy groups received a daily subcutaneous histamine injection (0.1 mg/kg) starting 20 hours before irradiation and continued till the end of experimental period; untreated group received saline. Histamine-10Gy and untreated-10Gy groups were irradiated with a single dose on whole-body using Cesium-137 source (7 Gy/min) and were sacrificed 3 days after irradiation. Bone marrow was removed, fixed and stained with hematoxylin and eosin. The number of megacariocytes per 40x field, bone marrow tropism, edema, vascular damage, and other histological characteristics of bone marrow cells were evaluated. We further determined by immunohistochemistry the expression of proliferating cell nuclear antigen (PCNA) and cells in the S phase of the cell cycle were identified by immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) incorporation. Results indicate that histamine treatment substantially reduced the grade of aplasia, the edema and the vascular damage induced by ionizing radiation on bone marrow. Additionally, histamine preserved medullar components increasing significantly the number of megacariocytes per field (5.4 ± 0.4 vs. 2.8 ± 0.4 in Control-10 Gy, P<0.01). This effect was associated with an increased proliferation rate determined by the augmented PCNA expression and BrdU incorporation of bone marrow cells. On the basis of these results, we conclude that histamine

  8. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2012-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial fo...

  9. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays.

    Science.gov (United States)

    Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L

    2004-09-01

    To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.

  10. UV-B damage amplified by transposons in maize

    International Nuclear Information System (INIS)

    Walbot, V.

    1999-01-01

    While absorbing visible light energy for photosynthesis, plants are unavoidably exposed to ultraviolet radiation, which is particularly harmful at shorter wavelengths (UV-B radiation). Ozone depletion in the atmosphere means that plants receive episodic or steadily increasing doses of UV-B, which damages their photosynthetic reaction centres, crosslinks cellular proteins, and induces mutagenic DNA lesions. Plant adaptive mechanisms of shielding and repair are therefore critical to survival — for example, somatic tissues of maize and Arabidopsis defective in phenolic sunscreen pigments incur increased DNA damage, and mutants defective in DNA repair are killed by UV-B

  11. Measurements of Electromagnetic Fields Emitted from Cellular Base Stations in

    Directory of Open Access Journals (Sweden)

    K. J. Ali

    2013-05-01

    Full Text Available With increasing the usage of mobile communication devices and internet network information, the entry of private telecommunications companies in Iraq has been started since 2003. These companies began to build up cellular towers to accomplish the telecommunication works but they ignore the safety conditions imposed for the health and environment that are considered in random way. These negative health effects which may cause a health risk for life beings and environment pollution. The aim of this work is to determine the safe and unsafe ranges and discuss damage caused by radiation emitted from Asia cell base stations in Shirqat city and discuses the best ways in which can be minimize its exposure level to avoid its negative health effects. Practical measurements of power density around base stations has been accomplished by using a radiation survey meter type (Radio frequency EMF Strength Meter 480846 in two ways. The first way of measurements has been accomplished at a height of 2 meters above ground for different distances from (0-300 meters .The second way is at a distance of 150 meters for different levels from (2-15 meters above ground level. The maximum measured power density is about (3 mW/m2. Results indicate that the levels of power density are far below the RF radiation exposure of USSR safety standards levels. And that means these cellular base station don't cause negative the health effect for life being if the exposure is within the acceptable international standard levels.

  12. Modeling the yield of double-strand breaks due to formation of multiply damaged sites in irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Pogozelski, W.K.

    1996-01-01

    Although double-strand breaks have long been recognized as an important type of DNa lesion, it is well established that this broad class of damage does not correlate well with indicators of the effectiveness of radiation as the cellular level. Assays of double-strand breaks do not distinguish the degree of complexity or clustering of singly damaged sites produced in a single energy deposition event, which is currently hypothesized to be key to understanding cellular end points. As a step toward this understanding, double-strand breaks that are formed proportionally to dose in plasmid DNA are analyzed from the mechanistic aspect to evaluate the yield that arises from multiply damaged sites as hypothesized by Ward (Prog. Nucleic Acid Res. Mol. Biol. 35, 95-125, 1988) and Goodhead (Int. J. Radiat. Biol. 65, 7-17, 1994) as opposed to the yield that arises form single hydroxyl radicals as hypothesized by Siddiqi and Bothe (Radiat. Res. 112, 449-463, 1987). For low-LET radiation such as γ rays, the importance of multiply damaged sites is shown to increase with the solution's hydroxyl radical scavenging capacity. For moderately high-LET radiation such as 100 keV/μm helium ions, a much different behavior is observed. In this case, a large fraction of double-strand breaks are formed as a result of multiply damaged sties over a broad range of scavenging conditions. Results also indicate that the RBE for common cellular end points correlates more closely with the RBE for common cellular end points correlates more closely with the RBE for multiply damaged sites than with the RBE for total double-strand breaks over a range of LET up to at least 100 keV/μm. 22 refs., 3 figs., 2 tabs

  13. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  14. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Czajka

    2016-12-01

    Full Text Available Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN, a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs and proximal tubular cells (HK-2 were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer. In normoglycemia, HK-2 had significantly lower basal, ATP-linked and maximal respiration rates, and lower reserve capacity compared to HMCs. Hyperglycemia caused a down-regulation of all respiratory parameters within 4 days in HK-2 but not in HMCs. After 8 days of hyperglycemia, down-regulation of respiratory parameters persisted in tubular cells with compensatory up-regulated glycolysis. HMCs had reduced maximal respiration and reserve capacity at 8 days, and by 12 days had compromised mitochondrial respiration despite which they did not enhance glycolysis. These data suggest that diabetes is likely to lead to a cellular deficit in ATP production in both cell types, although with different sensitivities, and this mechanism could significantly contribute to the cellular damage seen in the diabetic kidney. Prevention of diabetes induced damage to renal mitochondrial respiration may be a novel therapeutic approach for the prevention/treatment of DN.

  15. Cellular irradiation during phase S: a study of induced chromosomic damage and its transmission

    International Nuclear Information System (INIS)

    Antoine, J.L.

    1986-01-01

    The author examines the effects of ionizing radiation on the chromosomes during phase S (synthesis) in which DNA progressively duplicates itself. He analyses disturbances in the cellular cycle of human lymphocytes caused by the type and number of radiologically induced lesions on the chromosomes [fr

  16. Linking abnormal mitosis to the acquisition of DNA damage

    Science.gov (United States)

    Pellman, David

    2012-01-01

    Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the development of DNA damage, how cells respond to such affronts, and the potential impact on tumorigenesis. PMID:23229895

  17. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J

    2016-01-01

    The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership...... markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age...

  18. The DNA damage response during mitosis

    International Nuclear Information System (INIS)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed

  19. The DNA damage response during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van, E-mail: m.vugt@umcg.nl

    2013-10-15

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  20. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    NARCIS (Netherlands)

    Chornokur, G.; Lin, H.Y.; Tyrer, J.P.; Lawrenson, K.; Dennis, J.; Amankwah, E.K.; Qu, X.; Tsai, Y.Y.; Jim, H.S.; Chen, Z.; Chen, A.Y.; Permuth-Wey, J.; Aben, K.; Anton-Culver, H.; Antonenkova, N.; Bruinsma, F.; Bandera, E.V.; Bean, Y.T.; Beckmann, M.W.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bunker, C.H.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Bois, A. du; Despierre, E.; Dicks, E.; Doherty, J.A.; Dork, T.; Durst, M.; Easton, D.F.; Eccles, D.M.; Edwards, R.P.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goodman, M.T.; Gronwald, J.; Harrington, P.; Harter, P.; Hein, A.; Heitz, F.; Hildebrandt, M.A.T.; Hillemanns, P.; Hogdall, C.K.; Hogdall, E.; Hosono, S.; Jakubowska, A.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kelemen, L.E.; Kellar, M.; Kiemeney, L.A.L.M.; Krakstad, C.; Kjaer, S.K.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lim, B.K.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.A.G.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; McNeish, I.; Menon, U.; Milne, R.L.; Modugno, F.; Moysich, K.B.; Ness, R.B.; Nevanlinna, H.; Eilber, U.; Odunsi, K.; Olson, S.H.; Orlow, I., et al.

    2015-01-01

    BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As

  1. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  2. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  3. Apportioning liability for transborder damage

    International Nuclear Information System (INIS)

    Krause-Ablass, W.D.

    1988-01-01

    The author analyses the different legal systems applicable to transfrontier nuclear damage. Using examples, he describes the mechanisms enabling a victim of such damage to identify the competent court and the relevant law, according to whether the provisions of the Paris or the Vienna Convention come into play or whether the rules of private international law, incorporated in the various national laws are applicable (NEA) [fr

  4. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.

    Science.gov (United States)

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-08-28

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.

  5. Sublethal damages: their nature and repair

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, A.S.; Synzynys, B.I.; Trofimova, S.F. (Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii, Obninsk (USSR)); Gotlib, V.Ya.; Pelevina, I.I. (AN SSSR, Moscow. Inst. Khimicheskoj Fiziki)

    1983-05-12

    The molecular nature of sublethal damage (SLD) arising after ionizing irradiation of cultured mammalian cells was considered on the basis of data on DNA repair and cell recovery after SLD observed in lymphosarcoma cells as well as of literature data. The rate of SLD recovery and that of restoration of the cell's ability to initiate DNA synthesis were shown to be similar in new replicons. These data along with knowledge about the role of exchange type chromosomal aberrations in reproductive death permitted us to propose the hypothesis that conformational changes of chromatine - most probably, relaxation of condensed chromosomal material - are damage registered as SLD at the cellular level. Double-strand breaks and a slowly repaired part of DNA single-strand breaks are candidates for SLD.

  6. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  7. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  8. The DNA damage response in mammalian oocytes

    Directory of Open Access Journals (Sweden)

    John eCarroll

    2013-06-01

    Full Text Available DNA damage is one of the most common insults that challenge all cells. To cope, an elaborate molecular and cellular response has evolved to sense, respond to and correct the damage. This allows the maintenance of DNA fidelity essential for normal cell viability and the prevention of genomic instability that can lead to tumour formation. In the context of oocytes, the impact of DNA damage is not one of tumour formation but of the maintenance of fertility. Mammalian oocytes are particularly vulnerable to DNA damage because physiologically they may lie dormant in the ovary for many years (>40 in humans until they receive the stimulus to grow and acquire the competence to become fertilized. The implication of this is that in some organisms, such as humans, oocytes face the danger of cumulative genetic damage for decades. Thus, the ability to detect and repair DNA damage is essential to maintain the supply of oocytes necessary for reproduction. Therefore, failure to confront DNA damage in oocytes could cause serious anomalies in the embryo that may be propagated in the form of mutations to the next generation allowing the appearance of hereditary disease. Despite the potential impact of DNA damage on reproductive capacity and genetic fidelity of embryos, the mechanisms available to the oocyte for monitoring and repairing such insults have remained largely unexplored until recently. Here, we review the different aspects of the response to DNA damage in mammalian oocytes. Specifically, we address the oocyte DNA damage response from embryonic life to adulthood and throughout oocyte development.

  9. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    Science.gov (United States)

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  10. Metabolic Imbalance Associated with Methylation Dysregulation and Oxidative Damage in Children with Autism

    Science.gov (United States)

    Melnyk, Stepan; Fuchs, George J.; Schulz, Eldon; Lopez, Maya; Kahler, Stephen G.; Fussell, Jill J.; Bellando, Jayne; Pavliv, Oleksandra; Rose, Shannon; Seidel, Lisa; Gaylor, David W.

    2012-01-01

    Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected siblings differed significantly from case siblings but not from controls. Oxidative protein/DNA damage and DNA hypomethylation (epigenetic alteration) were found in autistic children but not paired siblings or controls. These data indicate that the deficit in antioxidant and methylation capacity is specific for autism and may promote cellular damage and altered epigenetic gene expression. Further, these results suggest a plausible mechanism by which pro-oxidant environmental stressors may modulate genetic predisposition to autism. PMID:21519954

  11. Mechanisms of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  12. The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage

    Directory of Open Access Journals (Sweden)

    Eleonora Da Pozzo

    2017-01-01

    Full Text Available In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells.

  13. Shock enhancement of cellular materials subjected to intensive pulse loading

    Science.gov (United States)

    Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.

    2018-03-01

    Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.

  14. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.

    Science.gov (United States)

    Hyldahl, Robert D; Hubal, Monica J

    2014-02-01

    The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders. Copyright © 2013 Wiley Periodicals, Inc.

  15. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  16. Pudendal Nerve and Internal Pudendal Artery Damage May Contribute to Radiation-Induced Erectile Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, Michael W., E-mail: mwnolan@ncsu.edu [Department of Clinical Sciences, and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina (United States); Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Marolf, Angela J. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Ehrhart, E.J. [Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado (United States); Rao, Sangeeta [Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (United States); Kraft, Susan L. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Engel, Stephanie [Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (United States); Yoshikawa, Hiroto; Golden, Anne E. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Wasserman, Todd H. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); LaRue, Susan M. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States)

    2015-03-15

    Purpose/Objectives: Erectile dysfunction is common after radiation therapy for prostate cancer; yet, the etiopathology of radiation-induced erectile dysfunction (RI-ED) remains poorly understood. A novel animal model was developed to study RI-ED, wherein stereotactic body radiation therapy (SBRT) was used to irradiate the prostate, neurovascular bundles (NVB), and penile bulb (PB) of dogs. The purpose was to describe vascular and neurogenic injuries after the irradiation of only the NVB or the PB, and after irradiation of all 3 sites (prostate, NVB, and PB) with varying doses of radiation. Methods and Materials: Dogs were treated with 50, 40, or 30 Gy to the prostate, NVB, and PB, or 50 Gy to either the NVB or the PB, by 5-fraction SBRT. Electrophysiologic studies of the pudendal nerve and bulbospongiosus muscles and ultrasound studies of pelvic perfusion were performed before and after SBRT. The results of these bioassays were correlated with histopathologic changes. Results: SBRT caused slowing of the systolic rise time, which corresponded to decreased arterial patency. Alterations in the response of the internal pudendal artery to vasoactive drugs were observed, wherein SBRT caused a paradoxical response to papaverine, slowing the systolic rise time after 40 and 50 Gy; these changes appeared to have some dose dependency. The neurofilament content of penile nerves was also decreased at high doses and was more profound when the PB was irradiated than when the NVB was irradiated. These findings are coincident with slowing of motor nerve conduction velocities in the pudendal nerve after SBRT. Conclusions: This is the first report in which prostatic irradiation was shown to cause morphologic arterial damage that was coincident with altered internal pudendal arterial tone, and in which decreased motor function in the pudendal nerve was attributed to axonal degeneration and loss. Further investigation of the role played by damage to these structures in RI-ED is

  17. Strategies of business interna-cionalization in digital products. A Brazilian cellular telephony case

    Directory of Open Access Journals (Sweden)

    Paulo Sidney Ferreira

    2007-12-01

    Full Text Available The cellular telephony market crossed expressive changes of late years. The explosion of consumption, the globalization and the technological advances transformed the cellular market into the one of the most competitive in the world.  This scenery promotes the interest of promising nations, like Brazil, today, the sixth biggest cellular market. The more used alternative, of late years, by international companies that intend to go into these countries, has been the strategist alliances. In this article, it is intended to analyze the inter-national  alliance  between  Nokia  and  Gradient and  also  the  obtained  results.  The case shows the appropriation of the use of cooperation strategies for going into an international market.

  18. Studies of cellular radiosensitivity in hereditary disorders of nervous system and muscle

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, S.; Lewis, P.D. (Royal Postgraduate Medical School, London (UK))

    1983-12-01

    Skin fibroblasts from patients with familial dysautonomia, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease show normal sensitivity to ionising radiation, as measured by post-irradiation clonal growth. Previous reports of cellular hypersensitivity to ionising radiation and other DNA-damaging agents in familial dysautonomia and Duchenne muscular dystrophy have not been confirmed.

  19. Studies of cellular radiosensitivity in hereditary disorders of nervous system and muscle

    International Nuclear Information System (INIS)

    Brennan, S.; Lewis, P.D.

    1983-01-01

    Skin fibroblasts from patients with familial dysautonomia, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease show normal sensitivity to ionising radiation, as measured by post-irradiation clonal growth. Previous reports of cellular hypersensitivity to ionising radiation and other DNA-damaging agents in familial dysautonomia and Duchenne muscular dystrophy have not been confirmed. (author)

  20. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  1. Active investigation of material damage under load using micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Navalgund, Megha, E-mail: megha.navalgund@ge.com; Mishra, Debasish; Manoharan, V. [NDE Lab, GE Global Research - Bangalore (India); Zunjarrao, Suraj [Composites Material Behavior Lab, GE Global Research-Bangalore (India)

    2015-03-31

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT’s capability as a gauge to quantitatively estimate the extent of damage and understand the propagation of damage in PMC composites while the component is under stress.

  2. Active investigation of material damage under load using micro-CT

    Science.gov (United States)

    Navalgund, Megha; Zunjarrao, Suraj; Mishra, Debasish; Manoharan, V.

    2015-03-01

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT's capability as a gauge to quantitatively estimate the extent of damage & understand the propagation of damage in PMC composites while the component is under stress.

  3. Active investigation of material damage under load using micro-CT

    International Nuclear Information System (INIS)

    Navalgund, Megha; Mishra, Debasish; Manoharan, V.; Zunjarrao, Suraj

    2015-01-01

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT’s capability as a gauge to quantitatively estimate the extent of damage and understand the propagation of damage in PMC composites while the component is under stress

  4. Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station

    Science.gov (United States)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy

  5. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review.

    Science.gov (United States)

    Arjunan, Krishna Priya; Sharma, Virender K; Ptasinska, Sylwia

    2015-01-29

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  6. The DNA damage response during mitosis.

    Science.gov (United States)

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Uncovering the footprints of malicious traffic in cellular data networks

    OpenAIRE

    Raghuramu, A; Zang, H; Chuah, CN

    2015-01-01

    © Springer International Publishing Switzerland 2015. In this paper, we present a comprehensive characterization of malicious traffic generated by mobile devices using Deep Packet Inspection (DPI) records and security event logs from a large US based cellular provider network. Our analysis reveals that 0.17% of mobile devices in the cellular network are affected by security threats. This proportion, while small, is orders of magnitude higher than the last reported (in 2013) infection rate of ...

  8. Spectroscopic photoacoustics for assessing ischemic kidney damage

    Science.gov (United States)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) are caused by return of blood to a tissue or organ after a period without oxygen or nutrients. Damage in the microvasculature causes an inflammatory response and heterogeneous scarring, which is associated with an increase in collagen in the extracellular matrix. Although most often associated with heart attacks and strokes, IRI also occurs when blood reperfuses a transplanted organ. Currently, monitoring for IRI is limited to biopsies, which are invasive and sample a limited area. In this work, we explored photoacoustic (PA) biomarkers of scarring. IRI events were induced in mice (n=2) by clamping the left renal artery, then re-establishing flow. At 53 days post-surgery, kidneys were saline perfused and cut in half laterally. One half was immediately imaged with a VevoX system (Fujifilm-VisualSonics, Toronto) in two near infrared ranges - 680 to 970 nm (NIR), and 1200 to 1350 nm (NIR II). The other half was decellularized and then imaged at NIR and NIR II. Regions of interest were manually identified and analyzed for each kidney. For both cellularized and decellularized samples, the PA signal ratio based on irradiation wavelengths of 715:930 nm was higher in damaged kidneys than for undamaged kidneys (p collagen in the NIR II range, while healthy kidneys did not. Collagen rich spectra were more apparent in decellularized kidneys, suggesting that in the cellularized samples, other components may be contributing to the signal. PA imaging using spectral ratios associated with collagen signatures may provide a non-invasive tool to determine areas of tissue damage due to IRIs.

  9. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  10. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  11. Adaptive cellular structures and devices with internal features for enhanced structural performance

    Science.gov (United States)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  12. Analysis of core damage frequency from internal events: Methodology guidelines: Volume 1

    International Nuclear Information System (INIS)

    Drouin, M.T.; Harper, F.T.; Camp, A.L.

    1987-09-01

    NUREG-1150 examines the risk to the public from a selected group of nuclear power plants. This report describes the methodology used to estimate the internal event core damage frequencies of four plants in support of NUREG-1150. In principle, this methodology is similar to methods used in past probabilistic risk assessments; however, based on past studies and using analysts that are experienced in these techniques, the analyses can be focused in certain areas. In this approach, only the most important systems and failure modes are modeled in detail. Further, the data and human reliability analyses are simplified, with emphasis on the most important components and human actions. Using these methods, an analysis can be completed in six to nine months using two to three full-time systems analysts and part-time personnel in other areas, such as data analysis and human reliability analysis. This is significantly faster and less costly than previous analyses and provides most of the insights that are obtained by the more costly studies. 82 refs., 35 figs., 27 tabs

  13. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  14. [Fanconi anemia: cellular and molecular features].

    Science.gov (United States)

    Macé, G; Briot, D; Guervilly, J-H; Rosselli, F

    2007-02-01

    Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.

  15. New approaches to detect 8-hydroxyguanine in γ-irradiated cellular DNA

    International Nuclear Information System (INIS)

    Mei, Nan; Tamae, Kazuyoshi; Hirano, Takeshi; Kasai, Hiroshi; Kunugita, Naoki

    2003-01-01

    This report describes an assay to detect 8-hydroxydeoxyguanosine 5'-monophosphate (8-OH-dGMP) in cellular DNA by modification of enzyme treatment after DNA extraction, using a high-performance liquid chromatography system equipped with an electrochemical detector (HPLC-ECD). This modification greatly reduces the measured background level of 8-hydroxyguanine (8-OH-Gua) in DNA, and improves the HPLC-ECD sensitivity to measure oxidative DNA damage. The 8-OH-Gua value in the DNA was expressed by the ratio of 8-OH-dGMP to deoxycytidine 5'-monophosphate (dCMP). Background level of 8-OH-Gua in DNA under our conditions was several times lower than that by a previous method. The human lung carcinoma cells (A549) were exposed to γ-rays of 20-100 Gy. A dose-dependent increase in oxidative DNA damage of 8-OH-Gua was observed. Furthermore, using commercial FITC-kit of an immunohistochemical type procedure, 8-OH-Gua was clearly detected in A549 cells and the fluorescence intensity of cells with oxidative DNA damage increased with the doses of γ-irradiation. Using an 8-OH-Gua repair activity assay, we also found that γ-rays decreased the repair enzyme activity. We conclude that the 8-OH-Gua level in human cellular DNA increases partly by the generation of reactive oxygen species (ROS) and partly by the inhibition of repair activity for 8-OH-Gua. (author)

  16. Multiscale modelling of damage and failure in two-dimensional metallic foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; Onck, P. R.

    The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper

  17. Development of a new cellular solid breeder for enhanced tritium production

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Williams, Brian; Ghoniem, Nasr; Ghoniem, Adam; Shimada, Masashi; Ying, Alice

    2016-01-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  18. Development of a new cellular solid breeder for enhanced tritium production

    Energy Technology Data Exchange (ETDEWEB)

    Sharafat, Shahram, E-mail: sharams@gmail.com [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Williams, Brian [Ultramet, Pacoima, CA 91331-2210 (United States); Ghoniem, Nasr [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Ghoniem, Adam [Digital Materials Solutions, Inc., Westwood, CA 90024 (United States); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ying, Alice [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States)

    2016-11-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  19. Detection of UVR-induced DNA damage in mouse epidermis in vivo using alkaline elution

    International Nuclear Information System (INIS)

    Kinley, J.S.; Moan, J.; Brunborg, G.

    1995-01-01

    Alkaline elution has been used to detect ultraviolet radiation (UVR)-induced DNA damage in the epidermis of C3H/Tif hr/hr mice. This technique detects DNA damage in the form of single-strand breaks and alkali-labile sites (SSB) formed directly by UVA (320-400 nm) or indirectly by UVB (280-320 nm). The latter induces DNA damage such as cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4)-photoproducts, which are then converted into transient SSB by cellular endonucleases, during nucleotide excision repair (NER). (Author)

  20. WE-DE-202-02: Are Track Structure Simulations Truly Needed for Radiobiology at the Cellular and Tissue Levels?

    International Nuclear Information System (INIS)

    Stewart, R.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  1. WE-DE-202-02: Are Track Structure Simulations Truly Needed for Radiobiology at the Cellular and Tissue Levels?

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R. [University of Washington (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  2. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin.

    Directory of Open Access Journals (Sweden)

    Emad A Ahmed

    Full Text Available Exposure to high doses of ionizing radiation (IR can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2 of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of 3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+ were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.

  3. Damage pattern as a function of radiation quality and other factors.

    Science.gov (United States)

    Burkart, W; Jung, T; Frasch, G

    1999-01-01

    An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex

  4. Myocardial perfusion alterations observed months after radiotherapy are related to the cellular damage

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, I.; Sonmez, B. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Nuclear Medicine; Sezen, O.; Zengin, A.Y.; Bahat, Z. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Radiation Oncology; Yenilmez, E.; Yulug, E. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Histology and Embryology; Abidin, I. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Biophysics

    2010-07-01

    Myocardial perfusion scintigraphy (MPS) is one of the widely used tools to follow developing radiation-induced heart disease (RIHD). But the clinical significance of MPS defects has not been fully understood. We have investigated the biodistribution alterations related to perfusion defects following radiotherapy (RT) and showed coexisting morphological changes. Animals, methods: A total of 18 Wistar rats were divided into three groups (1 control and 2 irradiated groups). A single cardiac 20 Gy radiation dose was used to induce long term cardiac defects. Biodistribution studies with technetium ({sup 99m}Tc) sestamibi and histological evaluations were performed 4 and 6 months after irradiation. The percent radioactivity (%ID/g) was calculated for each heart. For determination of the myocardial damage, positive apoptotic cardiomyocytes, myocardial cell degeneration, myocardial fibrosis, vascular damage and ultrastructural structures were evaluated. Results: Six months after treatment, a significant drop of myocardial uptake was observed (p < 0.05). Irradiation-induced apoptosis rose within the first 4 months after radiation treatment and were stayed elevated until the end of the observation period (p < 0.05). Also, the irradiation has induced myocardial degeneration, perivascular and interstitial fibrosis in the heart at the end of six and four months (p < 0.01). The severity and extent of myocardial injury has became more evident at the end of six month (p < 0.05). At ultrastructural level, prominent changes have been observed in the capillary endothelial and myocardial cells. Conclusion: Our findings suggest that the reduced rest myocardial perfusion, occuring months after the radiation, indicates a serious myocard tissue damage which is characterized by myocardial degeneration and fibrosis. (orig.)

  5. Myocardial perfusion alterations observed months after radiotherapy are related to the cellular damage

    International Nuclear Information System (INIS)

    Dogan, I.; Sonmez, B.; Sezen, O.; Zengin, A.Y.; Bahat, Z.; Yenilmez, E.; Yulug, E.; Abidin, I.

    2010-01-01

    Myocardial perfusion scintigraphy (MPS) is one of the widely used tools to follow developing radiation-induced heart disease (RIHD). But the clinical significance of MPS defects has not been fully understood. We have investigated the biodistribution alterations related to perfusion defects following radiotherapy (RT) and showed coexisting morphological changes. Animals, methods: A total of 18 Wistar rats were divided into three groups (1 control and 2 irradiated groups). A single cardiac 20 Gy radiation dose was used to induce long term cardiac defects. Biodistribution studies with technetium ( 99m Tc) sestamibi and histological evaluations were performed 4 and 6 months after irradiation. The percent radioactivity (%ID/g) was calculated for each heart. For determination of the myocardial damage, positive apoptotic cardiomyocytes, myocardial cell degeneration, myocardial fibrosis, vascular damage and ultrastructural structures were evaluated. Results: Six months after treatment, a significant drop of myocardial uptake was observed (p < 0.05). Irradiation-induced apoptosis rose within the first 4 months after radiation treatment and were stayed elevated until the end of the observation period (p < 0.05). Also, the irradiation has induced myocardial degeneration, perivascular and interstitial fibrosis in the heart at the end of six and four months (p < 0.01). The severity and extent of myocardial injury has became more evident at the end of six month (p < 0.05). At ultrastructural level, prominent changes have been observed in the capillary endothelial and myocardial cells. Conclusion: Our findings suggest that the reduced rest myocardial perfusion, occuring months after the radiation, indicates a serious myocard tissue damage which is characterized by myocardial degeneration and fibrosis. (orig.)

  6. DNA Damage Observed in Unaffected Individuals with Family History of T2DM

    Science.gov (United States)

    Ramesh, Nikhila; Abilash, V. G.

    2017-11-01

    Diabetes has been documented to cause high levels of DNA fragmentation in some cases. As diabetes is inheritable and influenced by both genetic and environmental factors, an investigation into the genomic stability of individuals who are strongly at risk of inheriting diabetes was conducted by inducing oxidative stress, as DNA damage in unaffected individuals could be a sign of onset of the disease or the presence of genetic alterations that reduce cellular defences against reactive oxygen species. In this study, alkaline comet assay was performed on isolated human leukocytes to determine whether individuals with a family history of Type 2 Diabetes Mellitus (T2DM) are more prone to DNA damage under oxidative stress. Visual scoring of comets showed that these individuals have higher degree of DNA damage compared to a control individual with no family history of Type 2 Diabetes Mellitus. Further studies with large sample could determine the presence of disabled cellular defences against oxidative stress in unaffected individuals and intervention with antioxidants could prevent or manage Type 2 Diabetes Mellitus and its complications.

  7. Compensation for damage in the case of transfrontier reactor accidents

    International Nuclear Information System (INIS)

    Gornig, G.

    1986-01-01

    The author discusses possibilities to recover in German and Soviet courts claims for the compensation of damage for a German citizen arising from the reactor accident in Chernobyl. Concerning the claims for damage suffered in the Federal Republic of Germany he investigates possible breaches of bilateral or multilateral international agreements and of universal international law by the Soviet Union. (WG) [de

  8. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    International Nuclear Information System (INIS)

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-01-01

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  9. Assessment of beta-emitter radionuclides in biological samples using liquid scintillation counting. Application to the study of internal doses in molecular and cellular biology techniques

    International Nuclear Information System (INIS)

    Sierra, I.; Delgado, A.; Navarro, T.; Macias, M. T.

    2007-01-01

    The radioisotopic techniques used in Molecular and Cellular Biology involve external and internal irradiation risk. It is necessary to control the possible internal contamination associated to the development of these techniques. The internal contamination risk can be due to physical and chemical properties of the labelled compounds, aerosols generated during the performance technique. The aim of this work was to estimate the possible intake of specific beta emitters during the technique development and to propose the required criterions to perform Individual Monitoring. The most representative radioisotopic techniques were selected attending their potential risk of internal contamination. Techniques were analysed applying IAEA methodology according to the used activity in each technique. It was necessary to identify the worker groups that would require individual monitoring on the base of their specific risk. Different measurement procedures were applied to study the possible intake in group risk and more than 160 persons were measured by in vitro bioassay. (Author) 96 refs

  10. DNA damages induced in human lymphocytes by UV or X-rays and repair capacities of healthy donors and skin cancer patients

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Budzanowska, E.

    1999-01-01

    The aim of this study was to compare variation in the individual susceptibility of various donors to the induction of the DNA damage by genotoxic agents and their cellular capabilities to repair induced damage. DNA damages induced by UV or X-rays in lymphocytes and cellular repair capability of healthy donors and persons bearing various categories of skin cancer cells were investigated. Fresh blood was collected by venipuncture from 35 individuals (including nine prior to skin cancer treatment). All cancer patients were nonsmoking males, however 42.3 % of them were former smokers. All healthy donors were also males, an average age was 38.6 y and among them 68% were recent or former smokers. Immediately after collecting samples, lymphocytes were isolated and stored at -70 o C for further studies in vitro. Previously cryopreserved lymphocytes were defrosted and viability of the cells was investigated. The single cell gel electrophoresis assay (SCGE), known as a Comet assay, was performed in defrozen lymphocytes to evaluate individual DNA damage levels presented in lymphocytes at the time of sample's collection. To compare individual susceptibility to the induction of DNA damage by UV and ionizing radiation, lymphocytes were exposed to dose of 6 J/m 2 of UV or 2 Gy of X-rays and DNA damages were detected again with an application of the Comet assay. Additionally, to study variation in the individuals cellular capability to repair damages induced, prior to the DNA damage analysis an incubation of cells exposed was also done in presence or absence of phytohemagglutinin (cell divisions processes starting agent). Results showed in untreated lymphocytes of skin cancer patients significantly higher than in the reference group levels of the DNA damages. Significantly different responses to UV and significantly lower capabilities to repair UV induced damage in skin cancer patients were observed. On the average, no differences between reference group and skin cancer patients

  11. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Science.gov (United States)

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  12. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Directory of Open Access Journals (Sweden)

    Kiminori Sada

    Full Text Available We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs, cellular hypoxia increased after incubation with high glucose (HG. A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1, a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  13. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review

    Directory of Open Access Journals (Sweden)

    Krishna Priya Arjunan

    2015-01-01

    Full Text Available Atmospheric Pressure Plasma (APP is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS/reactive nitrogen species (RNS with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  14. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review

    Science.gov (United States)

    Arjunan, Krishna Priya; Sharma, Virender K.; Ptasinska, Sylwia

    2015-01-01

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes. PMID:25642755

  15. DNA damage caused by UV- and near UV-irradiation

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1986-01-01

    Much work with mutants deficient in DNA repair has been performed concerning UV-induced DNA damage under the condition where there is no artificial stimulation. In an attempt to infer the effects of solar wavelengths, the outcome of the work is discussed in terms of cellular radiation sensitivity, unscheduled DNA synthesis, and mutation induction, leading to the conclusion that some DNA damage occurs even by irradiation of the shorter wavelength light (270 - 315 nm) and is repaired by excision repair. It has been thought to date that pyrimidine dimer (PD) plays the most important role in UV-induced DNA damage, followed by (6 - 4) photoproducts. As for DNA damage induced by near UV irradiation, the yield of DNA single-strand breaks and of DNA-protein crosslinking, other than PD, is considered. The DNA-protein crosslinking has proved to be induced by irradiation at any wavelength of UV ranging from 260 to 425 nm. Near UV irradiation causes the inhibition of cell proliferation to take place. (Namekawa, K.)

  16. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    International Nuclear Information System (INIS)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young

    2016-01-01

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation

  17. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  18. Recent trends in fracture and damage mechanics

    CERN Document Server

    Zybell, Lutz

    2016-01-01

    This book covers a wide range of topics in fracture and damage mechanics. It presents historical perspectives as well as recent innovative developments, presented by peer reviewed contributions from internationally acknowledged authors.  The volume deals with the modeling of fracture and damage in smart materials, current industrial applications of fracture mechanics, and it explores advances in fracture testing methods. In addition, readers will discover trends in the field of local approach to fracture and approaches using analytical mechanics. Scholars in the fields of materials science, engineering and computational science will value this volume which is dedicated to Meinhard Kuna on the occasion of his 65th birthday in 2015. This book incorporates the proceedings of an international symposium that was organized to honor Meinhard Kuna’s contributions to the field of theoretical and applied fracture and damage mechanics.

  19. An examination of adaptive cellular protective mechanisms using a multi-stage carcinogenesis model

    International Nuclear Information System (INIS)

    Schollnberger, H.; Stewart, R. D.; Mitchel, R. E. J.; Hofmann, W.

    2004-01-01

    A multi-stage cancer model that describes the putative rate-limiting steps in carcinogenesis was developed and used to investigate the potential impact on lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In this deterministic cancer model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired our unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model accounts for cell birth and death processes. Ita also includes a rate of malignant transformation and a lag period for tumour formation. Cellular defence mechanisms are incorporated into the model by postulating dose and dose rate dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. Sensitivity studies were conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose rate dependent cellular defence mechanisms are incorporated into a multi-stage cancer model. For lung cancer, both linear no-threshold (LNT) and non-LNT shaped responses can be obtained. The reported studied clearly show that it is critical to know whether or not and to what extent multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years). (Author) 11 refs

  20. WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J. [Massachusetts General Hospital (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  1. WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations

    International Nuclear Information System (INIS)

    Schuemann, J.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  2. Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells.

    Science.gov (United States)

    Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka

    2011-05-01

    Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.

  3. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  4. Parvovirus infection-induced DNA damage response

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  5. Modeling of material properties of piezoelectric ceramics taking into account damage development under static compression

    International Nuclear Information System (INIS)

    Mizuno, M; Nishikata, T; Okayasu, M

    2013-01-01

    We have carried out static compression tests in the poling direction for PZT ceramics and evaluated the material properties by measuring the resonance and anti-resonance frequencies and electrostatic capacity at regular intervals. Then the variation in the material properties up to fracture was clarified. Also, the development of internal damage was also clarified quantitatively by evaluating a damage variable on the basis of the continuum damage mechanics. The damage variable was calculated from the ratio of the elastic coefficient to its initial value. In the present paper, the development of internal damage was formulated as an evolution equation of the damage variable. In the formulation, a threshold stress leading to the onset of damage was considered. Moreover, the variation in material properties was related to the damage variable and formulated as material functions of the damage variable. The development of internal damage and the variation in material properties were simulated by the equations proposed in the present paper and the validity of the equations was verified by comparing the predictions with experimental results. (paper)

  6. Analysis of core damage frequency from internal events: Surry, Unit 1

    International Nuclear Information System (INIS)

    Harper, F.T.

    1986-11-01

    This document contains the accident sequence analyses for Surry, Unit 1; one of the reference plants being examined as part of the NUREG-1150 effort by the Nuclear Regulatory Commission (NRC). NUREG-1150 will document the risk of a selected group of nuclear power plants. As part of that work, this report contains the overall core damage frequency estimate for Surry, Unit 1, and the accompanying plant damage state frequencies. Sensitivity and uncertainty analyses provide additional insights regarding the dominant contributors to the Surry core damage frequency estimate. The numerical results are driven to some degree by modeling assumptions and data selection for issues such as reactor coolant pump seal LOCAs, common cause failure probabilities, and plant response to station blackout and loss of electrical bust initiators. The sensitivity studies explore the impact of alternate theories and data on these issues

  7. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils' oxidative stress in chronic exercise.

    Science.gov (United States)

    Funes, Lorena; Carrera-Quintanar, Lucrecia; Cerdán-Calero, Manuela; Ferrer, Miguel D; Drobnic, Franchek; Pons, Antoni; Roche, Enrique; Micol, Vicente

    2011-04-01

    Intense exercise is directly related to muscular damage and oxidative stress due to excessive reactive oxygen species (ROS) in both, plasma and white blood cells. Nevertheless, exercise-derived ROS are essential to regulate cellular adaptation to exercise. Studies on antioxidant supplements have provided controversial results. The purpose of this study was to determine the effect of moderate antioxidant supplementation (lemon verbena extract) in healthy male volunteers that followed a 90-min running eccentric exercise protocol for 21 days. Antioxidant enzymes activities and oxidative stress markers were measured in neutrophils. Besides, inflammatory cytokines and muscular damage were determined in whole blood and serum samples, respectively. Intense running exercise for 21 days induced antioxidant response in neutrophils of trained male through the increase of the antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Supplementation with moderate levels of an antioxidant lemon verbena extract did not block this cellular adaptive response and also reduced exercise-induced oxidative damage of proteins and lipids in neutrophils and decreased myeloperoxidase activity. Moreover, lemon verbena supplementation maintained or decreased the level of serum transaminases activity indicating a protection of muscular tissue. Exercise induced a decrease of interleukin-6 and interleukin-1β levels after 21 days measured in basal conditions, which was not inhibited by antioxidant supplementation. Therefore, moderate antioxidant supplementation with lemon verbena extract protects neutrophils against oxidative damage, decreases the signs of muscular damage in chronic running exercise without blocking the cellular adaptation to exercise.

  8. The auxetic behavior of an expanded periodic cellular structure

    Science.gov (United States)

    Ciolan, Mihaela A.; Lache, Simona; Velea, Marian N.

    2018-02-01

    Within nowadays research, when it comes to lightweight sandwich panels, periodic cellular structures are considered real trendsetters. One of the most used type of core in producing sandwich panels is the honeycomb. However, due to its relatively high manufacturing cost, this structure has limited applications; therefore, research has been carried out in order to develop alternative solutions. An example in this sense is the ExpaAsym cellular structure, developed at the Transilvania University of Braşov; it represents a periodic cellular structure manufactured through a mechanically expansion process of a previously cut and perforated sheet material. The relative density of the structure was proven to be significantly lower than the one of the honeycomb. This gives a great advantage to the structure, due to the fact that when the internal angle A of the unit cell is 60°, after the mechanical expansion it results a hexagonal structure. The main objective of this paper is to estimate the in-plane Poisson ratios of the structure, in terms of its geometrical parameters. It is therefore analytically shown that for certain values of the geometric parameters, the in-plane Poisson ratios have negative values when the internal angle exceeds 90°, which determines its auxetic behavior.

  9. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    Science.gov (United States)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  10. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina; Gallina, Irene; Eckert-Boulet, Nadine Valerie

    2012-01-01

    live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction...

  11. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  12. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    Science.gov (United States)

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  13. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  14. Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection.

    Science.gov (United States)

    Eiras, J N; Monzó, J; Payá, J; Kundu, T; Popovics, J S

    2014-02-01

    Dynamic non-classical nonlinear analyses show promise for improved damage diagnostics in materials that exhibit such structure at the mesoscale, such as concrete. In this study, nonlinear non-classical dynamic material behavior from standard vibration test data, using pristine and frost damaged cement mortar bar samples, is extracted and quantified. The procedure is robust and easy to apply. The results demonstrate that the extracted nonlinear non-classical parameters show expected sensitivity to internal damage and are more sensitive to changes owing to internal damage levels than standard linear vibration parameters.

  15. Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents.

    Science.gov (United States)

    Saleem, A; Datta, R; Yuan, Z M; Kharbanda, S; Kufe, D

    1995-12-01

    The cellular response to 1-beta-D-arabinofuranosylcytosine (ara-C) includes activation of Jun/AP-1, induction of c-jun transcription, and programmed cell death. The stress-activated protein (SAP) kinases stimulate the transactivation function of c-jun by amino terminal phosphorylation. The present work demonstrates that ara-C activates p54 SAP kinase. The finding that SAP kinase is also activated by alkylating agents (mitomycin C and cisplatinum) and the topoisomerase I inhibitor 9-amino-camptothecin supports DNA damage as an initial signal in this cascade. The results demonstrate that ara-C also induces binding of SAP kinase to the SH2/SH3-containing adapter protein Grb2. SAP kinase binds to the SH3 domains of Grb2, while interaction of the p85 alpha-subunit of phosphatidylinositol 3-kinase complex. The results also demonstrate that ara-C treatment is associated with inhibition of lipid and serine kinase activities of PI 3-kinase. The potential significance of the ara-C-induced interaction between SAP kinase and PI 3-kinase is further supported by the demonstration that Wortmannin, an inhibitor of PI 3-kinase, stimulates SAP kinase activity. The finding that Wortmannin treatment is also associated with internucleosomal DNA fragmentation may support a potential link between PI 3-kinase and regulation of both SAP kinase and programmed cell death.

  16. Damage Stability Assessment of an HSC after Grounding

    DEFF Research Database (Denmark)

    Ravn, Erik Sonne; Simonsen, Bo Cerup; Baatrup, Jan

    2000-01-01

    Currently a substantial effort is done within the International Maritime Organisation (IMO) on revision of the High Speed Craft (HSC) Code. A main issue is the extent of bottom damage and raking damage due to grounding on hard rocks and the corresponding requirements to the damage stability...... of the vessel. It has been found that high-speed craft can experience a damage length up to 100% of the ship length. It has, however, also been argued that the damage stability requirements should reflect the size and probability of the damage with a reduction of the demand for the largest damages.......In the present paper a detailed grounding and damage stability analysis is carried out for two specific HSC, a mono-hull (86 m) and a catamaran (69 m). First various grounding scenarios are considered with different values of the forward speed and ground geometry. The results indicate that 100% bottom damage...

  17. Viewing oxidative stress through the lens of oxidative signalling rather than damage.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Noctor, Graham

    2017-03-07

    Concepts of the roles of reactive oxygen species (ROS) in plants and animals have shifted in recent years from focusing on oxidative damage effects to the current view of ROS as universal signalling metabolites. Rather than having two opposing activities, i.e. damage and signalling, the emerging concept is that all types of oxidative modification/damage are involved in signalling, not least in the induction of repair processes. Examining the multifaceted roles of ROS as crucial cellular signals, we highlight as an example the loss of photosystem II function called photoinhibition, where photoprotection has classically been conflated with oxidative damage. © 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).

  18. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    Science.gov (United States)

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at

  19. Cellular bases of radiation-induced residual insufficiency in the haematopoietic system

    International Nuclear Information System (INIS)

    Wangenheim, K.H. v.; Peterson, H.P.; Feinendegen, L.E.

    1984-01-01

    Following radiation exposure, man's survival and further well-being largely depends on the degree of damage to his heamatopietic system. Stem cells are particualarly sensitive to radiation. Over and beyond acute radiation damge, residual radiation damage is of significance since it reduces the performance of the haematopietic system and enhances the risk of leukaemia. Knowledge concerning cellular bases may be important for preventive and therapeutic measures. The measurement method presented is based on the fact that stem cells from transfused bone marrow will settle in the spleen of highly irradiated mice and be able to reconstruct the haematopietic system. Initally individual colonies can be observed which originate from a single stem cell and the proliferation of its descendants. Counting these colonies will give the number of stem cells. The reduction of the proliferation factor measured in the stem-cell quality test apparently is not due to a shift in the age structure of the stem cell compartment but to a damage which is located within a more or less substantial proportion of the stem cells themselves. This damage is the cause of stem cell descendant growth retarded on an average. It is probable that recovery observed after irradiation is brought about by less-damaged or undamaged stem cells replacing damaged ones. Initial results point to the fact that this replacement can be influenced by treatment after irradiation. (orig./MG) [de

  20. Therapeutic intervention at cellular quality control systems in Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Silva, Diana F F; Martins-Branco, Diogo; Santos, Daniel; Pimentel, Diana F Gomes; Cardoso, Sandra M

    2011-01-01

    Cellular homeostasis relies on quality control systems so that damaged biologic structures are either repaired or degraded and entirely replaced by newly formed proteins or even organelles. The clearance of dysfunctional cellular structures in long-lived postmitotic cells, like neurons, is essential to eliminate, per example, defective mitochondria, lipofuscin-loaded lysosomes and oxidized proteins. Short-lived proteins are degraded mainly by proteases and proteasomes whether most long-lived proteins and all organelles are digested by autophagy in the lysosomes. Recently, it an interplay was established between the ubiquitin-proteasome system and macroautophagy, so that both degradative mechanisms compensate for each other. In this article we describe each of these clearance systems and their contribution to neuronal quality control. We will highlight some of the findings that provide evidence for the dysfunction of these systems in Alzheimer's and Parkinson's diseases. Ultimately, we provide an outline on potential therapeutic interventions based on the modulation of cellular degradative systems.

  1. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Conde-Pérezprina

    2012-01-01

    Full Text Available The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”. The DNA mismatch repair system (MMR is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others.

  2. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  3. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  4. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  5. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  6. Internalization and cellular processing of cholecystokinin in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Izzo, R.S.; Pellecchia, C.; Praissman, M.

    1988-01-01

    To evaluate the internalization of cholecystokinin, monoiodinated imidoester of cholecystokinin octapeptide [ 125 I-(IE)-CCK-8] was bound to dispersed pancreatic acinar cells, and surface-bound and internalized radioligand were differentiated by treating with an acidified glycine buffer. The amount of internalized radioligand was four- and sevenfold greater at 24 and 37 degree C than at 4 degree C between 5 and 60 min of association. Specific binding of radioligand to cell surface receptors was not significantly different at these temperatures. Chloroquine, a lysosomotropic agent that blocks intracellular proteolysis, significantly increased the amount of CCK-8 internalized by 18 and 16% at 30 and 60 min of binding, respectively, compared with control. Dithiothreitol (DTT), a sulfhydryl reducing agent, also augmented the amount of CCK-8 radioligand internalized by 25 and 29% at 30 and 60 min, respectively. The effect of chloroquine and DTT on the processing of internalized radioligand was also considered after an initial 60 min of binding of radioligand to acinar cells. After 180 min of processing, the amount of radioligand internalized was significantly greater in the presence of chloroquine compared with controls, whereas the amount of radioligand declined in acinar cells treated with DTT. Internalized and released radioactivity from acinar cells was rebound to pancreatic membrane homogenates to determine the amount of intact radioligand during intracellular processing. Chloroquine significantly increased the amount of intact 125 I-(IE)-CCK-8 radioligand in released and internalized radioactivity while DTT increased the amount of intact radioligand only in internalized samples. This study shows that pancreatic acinar cells rapidly internalize large amounts of CCK-8 and that chloroquine and DTT inhibit intracellular degradation

  7. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sonja Koopal

    2007-09-01

    Full Text Available Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV-infected tumor cells that express endothelial cell (EC markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers.

  8. Civil Liability for Environmental Damages

    Directory of Open Access Journals (Sweden)

    Daniela Ciochină

    2012-05-01

    Full Text Available We debated in this article the civil liability for environmental damages as stipulated in ourlegislation with reference to Community law. The theory of legal liability in environmental law is basedon the duty of all citizens to respect and protect the environment. Considering the importance ofenvironment in which we live, the liability for environmental damages is treated by the Constitution as aprinciple and a fundamental obligation. Many human activities cause environmental damages and, in linewith the principle of sustainable development, they should be avoided. However, when this is notpossible, they must be regulated (by criminal or administrative law in order to limit their adverse effectsand, according to the polluter pays principle, to internalize in advance their externalities (through taxes,insurances or other forms of financial security products. Communication aims to analyze these issues andlegal regulations dealing with the issue of liability for environmental damage.

  9. Cellular packing, mechanical stress and the evolution of multicellularity

    Science.gov (United States)

    Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.

    2018-03-01

    The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

  10. Cellular Therapies Clinical Research Roadmap: lessons learned on how to move a cellular therapy into a clinical trial.

    Science.gov (United States)

    Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M

    2015-04-01

    A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Influence of TiO{sub 2} nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Petkovic, Jana; Zegura, Bojana; Filipic, Metka, E-mail: metka.filipic@nib.si [Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, SI-1000 Ljubljana (Slovenia)

    2011-07-06

    We investigated the effects of two types of TiO{sub 2} nanoparticles (<25 nm anatase, TiO{sub 2}-An; <100 nm rutile, TiO{sub 2}-Ru) on cellular antioxidant defense in HepG2 cells. We previously showed that in HepG2 cells, TiO{sub 2} nanoparticles are not toxic, although they induce oxidative DNA damage, production of intracellular reactive oxygen species, and up-regulation of mRNA expression of DNA-damage-responsive genes (p53, p21, gadd45{alpha} and mdm2). In the present study, we measured changes in mRNA expression of several antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase, nitric oxide synthase, glutathione reductase and glutamate-cysteine ligase. As reduced glutathione has a central role in cellular antioxidant defense, we determined the effects of TiO{sub 2} nanoparticles on changes in the intracellular glutathione content. To confirm a role for glutathione in protection against TiO{sub 2}-nanoparticle-induced DNA damage, we compared the extent of TiO{sub 2}-nanoparticle-induced DNA damage in HepG2 cells that were glutathione depleted with buthionine-(S,R)-sulfoximine pretreatment and in nonglutathione-depleted cells. Our data show that both types of TiO{sub 2} nanoparticles up-regulate mRNA expression of oxidative-stress-related genes, with TiO{sub 2}-Ru being a stronger inducer than TiO{sub 2}-An. Both types of TiO{sub 2} nanoparticles also induce dose-dependent increases in intracellular glutathione levels, and in glutathione-depleted cells, TiO{sub 2}-nanoparticle-induced DNA damage was significantly greater than in nonglutathione-depleted cells. Interestingly, the glutathione content and the extent of DNA damage were significantly higher in TiO{sub 2}-An- than TiO{sub 2}-Ru-exposed cells. Thus, we show that TiO{sub 2} nanoparticles cause activation of cellular antioxidant processes, and that intracellular glutathione has a critical role in defense against this TiO{sub 2}-nanoparticle-induced DNA damage.

  12. Edaravone protects human peripheral blood lymphocytes from γ-irradiation-induced apoptosis and DNA damage.

    Science.gov (United States)

    Chen, Liming; Liu, Yinghui; Dong, Liangliang; Chu, Xiaoxia

    2015-03-01

    Radiation-induced cellular injury is attributed primarily to the harmful effects of free radicals, which play a key role in irradiation-induced apoptosis. In this study, we investigated the radioprotective efficacy of edaravone, a licensed clinical drug and a powerful free radical scavenger that has been tested against γ-irradiation-induced cellular damage in cultured human peripheral blood lymphocytes in studies of various diseases. Edaravone was pre-incubated with lymphocytes for 2 h prior to γ-irradiation. It was found that pretreatment with edaravone increased cell viability and inhibited generation of γ-radiation-induced reactive oxygen species (ROS) in lymphocytes exposed to 3 Gy γ-radiation. In addition, γ-radiation decreased antioxidant enzymatic activity, such as superoxide dismutase and glutathione peroxidase, as well as the level of reduced glutathione. Conversely, treatment with 100 μM edaravone prior to irradiation improved antioxidant enzyme activity and increased reduced glutathione levels in irradiated lymphocytes. Importantly, we also report that edaravone reduced γ-irradiation-induced apoptosis through downregulation of Bax, upregulation of Bcl-2, and consequent reduction of the Bax:Bcl-2 ratio. The current study shows edaravone to be an effective radioprotector against γ-irradiation-induced cellular damage in lymphocytes in vitro. Finally, edaravone pretreatment significantly reduced DNA damage in γ-irradiated lymphocytes, as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment) (p edaravone offers protection from radiation-induced cytogenetic alterations.

  13. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Coordinate to Guard: Crosstalk of Phosphorylation, Sumoylation, and Ubiquitylation in DNA Damage Response

    International Nuclear Information System (INIS)

    Kuo, Ching-Ying; Shieh, Christine; Cai, Fei; Ann, David Kong

    2012-01-01

    Small ubiquitin-like modifier-1/2/3 (SUMO-1/2/3) and ubiquitin share similar structure and utilize analogous machinery for protein lysine conjugation. Although sumoylation and ubiquitylation have distinct functions, they are often tightly associated with each other to fine-tune protein fate in transducing signals to regulate a wide variety of cellular functions, including DNA damage response, cell proliferation, DNA replication, embryonic development, and cell differentiation. In this Perspective, we specifically highlight the role of sumoylation and ubiquitylation in ataxia-telangiectasia mutated (ATM) signaling in response to DNA double-strand breaks and hypothesize that ATM-induced phosphorylation is a unique node in regulating SUMO-targeted ubiquitylation in mammalian cells to combat DNA damage and to maintain genome integrity. A potential role for the coordination of three types of post-translational modification in dictating the tempo and extent of cellular response to genotoxic stress is speculated.

  15. Coordinate to Guard: Crosstalk of Phosphorylation, Sumoylation, and Ubiquitylation in DNA Damage Response

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Ching-Ying [Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA (United States); Department of Molecular Pharmacology, Beckman Research Institute of City of Hope, Duarte, CA (United States); Shieh, Christine; Cai, Fei [Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA (United States); Ann, David Kong, E-mail: dann@coh.org [Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA (United States); Department of Molecular Pharmacology, Beckman Research Institute of City of Hope, Duarte, CA (United States); Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA (United States)

    2012-01-19

    Small ubiquitin-like modifier-1/2/3 (SUMO-1/2/3) and ubiquitin share similar structure and utilize analogous machinery for protein lysine conjugation. Although sumoylation and ubiquitylation have distinct functions, they are often tightly associated with each other to fine-tune protein fate in transducing signals to regulate a wide variety of cellular functions, including DNA damage response, cell proliferation, DNA replication, embryonic development, and cell differentiation. In this Perspective, we specifically highlight the role of sumoylation and ubiquitylation in ataxia-telangiectasia mutated (ATM) signaling in response to DNA double-strand breaks and hypothesize that ATM-induced phosphorylation is a unique node in regulating SUMO-targeted ubiquitylation in mammalian cells to combat DNA damage and to maintain genome integrity. A potential role for the coordination of three types of post-translational modification in dictating the tempo and extent of cellular response to genotoxic stress is speculated.

  16. Point process models for localization and interdependence of punctate cellular structures.

    Science.gov (United States)

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures.

  17. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station.

    Science.gov (United States)

    Zwart, Sara R; Morgan, Jennifer L L; Smith, Scott M

    2013-07-01

    Increases in stored iron and dietary intake of iron during space flight have raised concern about the risk of excess iron and oxidative damage, particularly in bone. The objectives of this study were to perform a comprehensive assessment of iron status in men and women before, during, and after long-duration space flight and to quantify the association of iron status with oxidative damage and bone loss. Fasting blood and 24-h urine samples were collected from 23 crew members before, during, and after missions lasting 50 to 247 d to the International Space Station. Serum ferritin and body iron increased early in flight, and transferrin and transferrin receptors decreased later, which indicated that early increases in body iron stores occurred through the mobilization of iron to storage tissues. Acute phase proteins indicated no evidence of an inflammatory response during flight. Serum ferritin was positively correlated with the oxidative damage markers 8-hydroxy-2'-deoxyguanosine (r = 0.53, P < 0.001) and prostaglandin F2α (r = 0.26, P < 0.001), and the greater the area under the curve for ferritin during flight, the greater the decrease in bone mineral density in the total hip (P = 0.031), trochanter (P = 0.006), hip neck (P = 0.044), and pelvis (P = 0.049) after flight. Increased iron stores may be a risk factor for oxidative damage and bone resorption.

  18. Liability for damage to the global commons

    International Nuclear Information System (INIS)

    Leigh, K.

    1993-01-01

    The 'global commons' discussed in this paper are the areas beyond the limits of national jurisdiction. Responsibility to prevent environmental damage to these areas is clearly recognized in customary international law. On the other hand, although liability for such damage undoubtedly has a useful role to play in protecting these areas, the precise nature of liability for such damage is unclear. Some issues, such as whether liability for such damage is strict or tied to breaching a standard of care and the definition of environmental damage, equally arise in relation to damage to the environment of States. Others, such as who could take action to enforce the liability and the nature of the remedy, raise special problems in the case of damage to the global commons. The work under way in the IAEA Standing Committee on Liability for Nuclear Damage provides an opportunity for clarifying these issues in relation to nuclear damage to the global commons. Treaties dealing with particular types of damage which have recently been adopted or are currently being developed in other fields provide a starting point in dealing with this matter. More work, however, needs to be done

  19. Mesoscopic analysis of drying shrinkage damage in a cementitious material

    DEFF Research Database (Denmark)

    Moonen, P.; Pedersen, R.R.; Simone, A.

    2008-01-01

    Concrete and cement-based materials exhibit shrinkage when exposed to drying. Structural effects and inhomogeneity of material properties adverse free shrinkage, hereby inducing stress concentrations and possibly damage. In this contribution, the magnitude of shrinkage- induced damage during...... temperatures are considered: 35 °C and 50 °C. Significantly more micro-damage and higher internal stresses are found for the latter, revealing the importance of drying shrinkage damage, even at laboratory scale....

  20. Damaged Self-Esteem is Associated with Internalizing Problems.

    Science.gov (United States)

    Creemers, Daan H M; Scholte, Ron H J; Engels, Rutger C M E; Prinstein, Mitchell J; Wiers, Reinout W

    2013-01-01

    Implicit and explicit self-esteem are assumed to be important factors in understanding the onset and maintenance of psychological problems. The current study aims to examine the association between implicit and explicit self-esteem and their interaction with depressive symptoms, suicidal ideation, and loneliness. Specifically, the relationship between the size and the direction of the discrepancy between implicit and explicit self-esteem with depressive symptoms, suicidal ideation, and loneliness were examined. Participants were 95 young female adults (M = 21.2 years, SD = 1.88) enrolled in higher education. We administered the IAT to assess implicit self-esteem, and the Rosenberg self-esteem scale to measure explicit self-esteem while psychological problems were assessed through self-reports. Results showed that discrepancies between implicit and explicit self-esteem were positively associated with depressive symptoms, suicidal ideation, and loneliness. In addition, the direction of the discrepancy was specifically relevant: damaged self-esteem (i.e., high implicit self-esteem and low explicit self-esteem) was consistently associated with increased levels of depressive symptoms, suicidal ideation, and loneliness. In contrast, defensive or fragile self-esteem (i.e., low implicit and high explicit self-esteem) was solely associated with loneliness. These findings provide further support that specifically damaged self-esteem is an important vulnerability marker for depressive symptoms, suicidal ideation, and loneliness.

  1. Damaged Self-Esteem is Associated with Internalizing Problems

    Science.gov (United States)

    Creemers, Daan H. M.; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Prinstein, Mitchell J.; Wiers, Reinout W.

    2013-01-01

    Implicit and explicit self-esteem are assumed to be important factors in understanding the onset and maintenance of psychological problems. The current study aims to examine the association between implicit and explicit self-esteem and their interaction with depressive symptoms, suicidal ideation, and loneliness. Specifically, the relationship between the size and the direction of the discrepancy between implicit and explicit self-esteem with depressive symptoms, suicidal ideation, and loneliness were examined. Participants were 95 young female adults (M = 21.2 years, SD = 1.88) enrolled in higher education. We administered the IAT to assess implicit self-esteem, and the Rosenberg self-esteem scale to measure explicit self-esteem while psychological problems were assessed through self-reports. Results showed that discrepancies between implicit and explicit self-esteem were positively associated with depressive symptoms, suicidal ideation, and loneliness. In addition, the direction of the discrepancy was specifically relevant: damaged self-esteem (i.e., high implicit self-esteem and low explicit self-esteem) was consistently associated with increased levels of depressive symptoms, suicidal ideation, and loneliness. In contrast, defensive or fragile self-esteem (i.e., low implicit and high explicit self-esteem) was solely associated with loneliness. These findings provide further support that specifically damaged self-esteem is an important vulnerability marker for depressive symptoms, suicidal ideation, and loneliness. PMID:23565101

  2. Damaged Self-Esteem is Associated with Internalizing Problems

    Directory of Open Access Journals (Sweden)

    Daan eCreemers

    2013-04-01

    Full Text Available Implicit and explicit self-esteem are assumed to be important factors in understanding the onset and maintenance of psychological problems. The current study aims to examine the association between implicit and explicit self-esteem and their interaction with depressive symptoms, suicidal ideation and loneliness. Specifically, the relationship between the size and the direction of the discrepancy between implicit and explicit self-esteem with depressive symptoms, suicidal ideation and loneliness were examined. Participants were 95 young female adults (M= 21.2 years, SD = 1.88 enrolled in higher education. We administered the IAT to assess implicit self-esteem, and the Rosenberg self-esteem scale to measure explicit self-esteem while psychological problems were assessed through self-reports. Results showed that discrepancies between implicit and explicit self-esteem were positively associated with depressive symptoms, suicidal ideation, and loneliness. In addition, the direction of the discrepancy was specifically relevant: damaged self-esteem (i.e., high implicit self-esteem and low explicit self-esteem was consistently associated with increased levels of depressive symptoms, suicidal ideation, and loneliness. In contrast, defensive or fragile self-esteem (i.e., low implicit and high explicit self-esteem was solely associated with loneliness. These findings provide further support that specifically damaged self-esteem is an important vulnerability marker for depressive symptoms, suicidal ideation, and loneliness.

  3. Civil liability for nuclear damage

    International Nuclear Information System (INIS)

    1963-01-01

    An international Convention on Civil Liability for Nuclear Damage was adopted in Vienna on 19 May 1963 by a sixty-nation conference convened by the International Atomic Energy Agency. The Convention, which is subject to ratification by the States signing it, will come into force three months after the deposit of the fifth instrument of ratification. The Convention is designee only to establish minimum rules regarding civil liability for nuclear damage; it may thus well be described as a framework convention, the main provisions of which represent the essential common denomination acceptable to as many States as possible. It leaves wide scope for national legislation and regional arrangements with a view to implementing these provisions The Convention does not purport to create a uniform civil law in this field, but it contains the minimal essential for protection of the public and forms the legal basis for uniform world-wide liability rules

  4. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  5. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  6. Experimental verification of a progressive damage model for composite laminates based on continuum damage mechanics. M.S. Thesis Final Report

    Science.gov (United States)

    Coats, Timothy William

    1994-01-01

    Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.

  7. Radiation damage on sub-cellular scales: beyond DNA

    International Nuclear Information System (INIS)

    Byrne, H L; McNamara, A L; Domanova, W; Kuncic, Z; Guatelli, S

    2013-01-01

    This study investigates a model cell as a target for low-dose radiation using Monte Carlo simulations. Mono-energetic electrons and photons are used with initial energies between 10 and 50 keV, relevant to out-of-field radiotherapy scenarios where modern treatment modalities expose relatively large amounts of healthy tissue to low-dose radiation, and also to microbeam cell irradiation studies which show the importance of the cytoplasm as a radiation target. The relative proportions of number of ionizations and total energy deposit in the nucleus and cytoplasm are calculated. We show that for a macroscopic dose of no more than 1 Gy only a few hundred ionizations occur in the nucleus volume whereas the number of ionizations in the cytoplasm is over a magnitude larger. We find that the cell geometry can have an appreciable effect on the energy deposit in the cell and can cause a nonlinear increase in energy deposit with cytoplasm density. We also show that changing the nucleus volume has negligible effect on the total energy deposit but alters the relative proportion deposited in the nucleus and cytoplasm; the nucleus volume must increase to approximately the same volume as the cytoplasm before the energy deposit in the nucleus matches that in the cytoplasm. Additionally we find that energy deposited by electrons is generally insensitive to spatial variations in chemical composition, which can be attributed to negligible differences in electron stopping power for cytoplasm and nucleus materials. On the other hand, we find that chemical composition can affect energy deposited by photons due to non-negligible differences in attenuation coefficients. These results are of relevance in considering radiation effects in healthy cells, which tend to have smaller nuclei. Our results further show that the cytoplasm and organelles residing therein can be important targets for low-dose radiation damage in healthy cells and warrant investigation as much as the conventional focus

  8. Cellular and molecular events leading to the development of skin cancer

    International Nuclear Information System (INIS)

    Melnikova, Vladislava O.; Ananthaswamy, Honnavara N.

    2005-01-01

    The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer

  9. Cellular and molecular events leading to the development of skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Melnikova, Vladislava O. [Department of Immunology, University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit 902, Houston, TX 77030 (United States); Ananthaswamy, Honnavara N. [Department of Immunology, University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit 902, Houston, TX 77030 (United States)]. E-mail: hanantha@mdanderson.org

    2005-04-01

    The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer.

  10. The concept of ''pollution damage'' in the maritime conventions governing liability and compensation for oil spills

    International Nuclear Information System (INIS)

    Jacobsson, M.

    2000-01-01

    Compensation for pollution damage caused by spills from oil tankers is governed by an international regime elaborated under the auspices of the International Maritime Organization (I.M.O.). The framework for the regime was originally by the 1969 International Convention on Civil Liability for Oil Pollution Damage (1969 Civil liability convention) and the 1971 International Convention on the Establishment of an International Fund for Compensation for Oil Pollution Damage (1971 Fund Convention). This old regime was amended in 1992 by two protocols, and the amended Conventions are known as 1992 Civil Liability Convention and the 1992 Fund Convention. The Civil Liability conventions govern the liability of ship-owners for oil pollution damage. The Conventions lay down the principle of strict liability for ship-owners and create a system of compulsory liability insurance. The ship-owner is normally entitled to limit his liability to an amount which is linked to the tonnage of his ship. The regime of liability and the funds created by the 1971 and 1992 Conventions are analyzed in detail. Are studied as following: the concepts of pollution damage and the safeguard measures or preventive measures, the question of receivability for compensation demands (damage to properties, cleansing operations, costs, economic loss). The question of compensation conditions for the only economic loss and the damage to environment are tackled. This expose is concluded by enlightening the contribution brought by the previously named Conventions to the International law about the civil liability. (N.C.)

  11. Differences in the stimulation of repair replication by 3-aminobenzamide in lymphoblastoid cells damaged by methylmethanesulfonate or ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.; Morgan, W.F.

    1987-09-01

    Human lymphoblastoid cells damaged by u.v. light accumulated DNA breaks in the presence of cytosine arabinoside and hydroxyurea at a frequency similar to that of cells damaged by methylmethanesulfonate. 3-Aminobenzamide (1 mM) reduced the net strand-break frequency detected after either kind of damage. Repair replication, however, was stimulated only in methylmethanesulfonate-damaged cells. This stimulation is therefore not related directly to the DNA strand-break frequencies and concomitant poly(ADP-ribose) synthesis, but depends on some other cellular response specific to alkylating agents.

  12. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor

    Science.gov (United States)

    Akiyoshi, Shimada; Naruse, Hiroshi; Uzawa, Kyoshi; Murayama, Hideaki; Kageyama, Kazuro

    2000-06-01

    We constructed a new health monitoring system to detect damage using a fiber optic distributed sensor, namely a Brillouin optical time domain reflectometer (BOTDR), and installed it in International America's Cup Class (IACC) yachts, the Japanese entry in America's Cup 2000. IACC yachts are designed to be as fast as possible, so it is essential that they are lightweight and encounter minimum water resistance. Advanced composite sandwich structures, made with carbon fiber reinforced plastic (CFRP) skins and a honeycomb core, are used to achieve the lightweight structure. Yacht structure designs push the strength of the materials to their limit and so it is important to detect highly stressed or damaged regions that might cause a catastrophic fracture. The BOTDR measures changes in the Brillouin frequency shift caused by distributed strain along one optical fiber. We undertook two experiments: a pulling test and a four point bending test on a composite beam. The former showed that no slippage occurred between the optical fiber glass and its coating. The latter confirmed that a debonding between the skin and the core of 300 mm length could be found with the BOTDR. Next we examined the effectiveness with which this system can assess the structural integrity of IACC yachts. The results show that our system has the potential for use as a damage detection system for smart structures.

  13. Close encounters for the first time: Helicase interactions with DNA damage.

    Science.gov (United States)

    Khan, Irfan; Sommers, Joshua A; Brosh, Robert M

    2015-09-01

    DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism. Published by Elsevier B.V.

  14. Cellular Responses to Beta Blocker Exposures in Marine ...

    Science.gov (United States)

    β blockers are prescription drugs used for medical treatment of hypertension and arrhythmias. They prevent activation of adenylate cyclase and increases in blood pressure by limiting cAMP production and protein kinase A activation. After being taken therapeutically, β blockers may make their way to coastal habitats via discharge from waste water treatment plants, posing a potential risk to aquatic organisms. The aim of our research is to evaluate cellular biomarkers of β blocker exposure using two drugs, propranolol and metoprolol, in three commercially important marine bivalves -Crassostrea virginica, Mytilus edulis and Mercenaria mercenaria. Bivalves were obtained from Narragansett Bay (Rhode Island, USA) and acclimated in the laboratory. Following acclimation, gills and hepatopancreas tissues were harvested and separately exposed to 0, 1, 10, 100 and 1000 ng/l of each drug for 24 hours. Samples were preserved for cellular biomarker assays. Elevated cellular damage and changes in enzymatic activities were noted at environmentally relevant concentrations, and M. mercenaria was found to be the most sensitive bivalve out of the three species tested. These studies enhance our understanding of the potential impacts of commonly used prescription medication on organisms in coastal ecosystems, and demonstrate that filter feeders such as marine bivalves may serve as good model organisms to examine the effects of water soluble drugs. Evaluating a suite of biomarkers

  15. 7 CFR 51.1560 - Damage.

    Science.gov (United States)

    2010-01-01

    ... of defects, which materially detracts from the edible or marketing quality, or the internal or... 7 Agriculture 2 2010-01-01 2010-01-01 false Damage. 51.1560 Section 51.1560 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  16. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage

    Czech Academy of Sciences Publication Activity Database

    Moudrý, Pavel; Lukas, C.; Macůrek, Libor; Hanzlíková, Hana; Hodný, Zdeněk; Lukas, J.; Bartek, Jiří

    2012-01-01

    Roč. 11, č. 8 (2012), s. 1573-1582 ISSN 1538-4101 R&D Projects: GA ČR GA301/08/0353; GA ČR GAP301/10/1525 Grant - others:7.RP EU(XE) CZ.1.05/2.1.00/01.0030 Institutional research plan: CEZ:AV0Z50520514 Keywords : 53BP1 * DNA damage response * UBA1 * UBA6 * ubiquitylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.243, year: 2012

  17. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  18. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    Science.gov (United States)

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  19. Firmness at Harvest Impacts Postharvest Fruit Softening and Internal Browning Development in Mechanically Damaged and Non-damaged Highbush Blueberries (Vaccinium corymbosum L.).

    Science.gov (United States)

    Moggia, Claudia; Graell, Jordi; Lara, Isabel; González, Guillermina; Lobos, Gustavo A

    2017-01-01

    Fresh blueberries are very susceptible to mechanical damage, which limits postharvest life and firmness. Softening and susceptibility of cultivars "Duke" and "Brigitta" to developing internal browning (IB) after mechanical impact and subsequent storage was evaluated during a 2-year study (2011/2012, 2012/2013). On each season fruit were carefully hand-picked, segregated into soft (<1.60 N), medium (1.61-1.80 N), and firm (1.81-2.00 N) categories, and then either were dropped (32 cm) onto a hard plastic surface or remained non-dropped. All fruit were kept under refrigerated storage (0°C and 85-88% relative humidity) to assess firmness loss and IB after 7, 14, 21, 28, and 35 days. In general, regardless of cultivar or season, high variability in fruit firmness was observed within each commercial harvest, and significant differences in IB and softening rates were found. "Duke" exhibited high softening rates, as well as high and significant r 2 between firmness and IB, but little differences for dropped vs. non-dropped fruit. "Brigitta," having lesser firmness rates, exhibited almost no relationships between firmness and IB (especially for non-dropped fruit), but marked differences between dropping treatments. Firmness loss and IB development were related to firmness at harvest, soft and firm fruit being the most and least damaged, respectively. Soft fruit were characterized by greater IB development during storage along with high soluble solids/acid ratio, which could be used together with firmness to estimate harvest date and storage potential of fruit. Results of this work suggest that the differences in fruit quality traits at harvest could be related to the time that fruit stay on the plant after turning blue, soft fruit being more advanced in maturity. Finally, the observed differences between segregated categories reinforce the importance of analyzing fruit condition for each sorted group separately.

  20. The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution.

    Science.gov (United States)

    Bertoli, Filippo; Garry, David; Monopoli, Marco P; Salvati, Anna; Dawson, Kenneth A

    2016-11-22

    It has been well established that the early stages of nanoparticle-cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanoparticles are typically internalized into the cell and trafficked along defined pathways such as, in many cases, the endolysosomal pathway. Indeed, if the original corona is partially retained on the nanoparticle surface, the biomolecules in this layer may play an important role in determining subsequent cellular processing. In this work, using a combination of organelle separation and fluorescence labeling of the initial extracellular corona, we clarify its intracellular evolution as nanoparticles travel within the cell. We show that specific proteins present in the original protein corona are retained on the nanoparticles until they accumulate in lysosomes, and, once there, they are degraded. We also report on how different bare surfaces (amino and carboxyl modified) affect the details of this evolution. One overarching discovery is that the same serum proteins can exhibit different intracellular processing when carried inside cells by nanoparticles, as components of their corona, compared to what is observed when they are transported freely from the extracellular medium.

  1. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  2. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid

    Directory of Open Access Journals (Sweden)

    Hassanin KMA

    2013-05-01

    Full Text Available Kamel MA Hassanin,1 Samraa H Abd El-Kawi,2 Khalid S Hashem1 1Department of Biochemistry, Faculty of Veterinary Medicine, 2Department of Histology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt Background: Nanotechnology has enabled researchers to synthesize nanosize particles that possess increased surface areas. Compared to conventional microparticles, it has resulted in increased interactions with biological targets. Objective: The objective of this study was to determine the protective ability of selenium nanoparticles against hexavalent chromium-induced thyrotoxicity. Design: Twenty male rats were used in the study, and arbitrarily assigned to four groups. Group 1 was the control group, and was given phosphate-buffered saline. Group 2 was the chromium-treated group and was given K2Cr2O7 60 µg/kg body weight intraperitoneally as a single dose on the third day of administration. Group 3 was the nano-selenium-treated group and was given selenium nanoparticles (size 3–20 nm 0.5 mg/kg body weight intraperitoneally daily for 5 consecutive days. Group 4 was the nano-selenium chromium-treated group, which received selenium nanoparticles for 5 days and a single dose of K2Cr2O7 on the third day of administration. Materials and methods: Blood samples were collected from rats for measuring thyroid hormones (free triiodothyronine [T3] and free thyroxine [T4] and oxidative and antioxidant parameters (malondialdehyde [MDA], reduced glutathione [GSH], catalase, and superoxide dismutase [SOD]. Upon dissection, thyroid glands were taken for histopathological examination by using paraffin preparations stained with hematoxylin and eosin (H&E and Masson’s trichrome. Immunohistochemical staining was performed for detecting cellular proliferation using Ki67 antibodies. Results: The present study shows that K2Cr2O7 has a toxic effect on the thyroid gland as a result of inducing a marked oxidative damage and release of reactive oxygen species

  3. Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer

    Directory of Open Access Journals (Sweden)

    João Ramalho-Carvalho

    2017-02-01

    Full Text Available Abstract Background Numerous DNA-damaging cellular stresses, including oncogene activation and DNA-damage response (DDR, may lead to cellular senescence. Previous observations linked microRNA deregulation with altered senescent patterns, prompting us to investigate whether epigenetic repression of microRNAs expression might disrupt senescence in prostate cancer (PCa cells. Methods Differential methylation mapping in prostate tissues was carried using Infinium HumanMethylation450 BeadChip. After validation of methylation and expression analyses in a larger series of prostate tissues, the functional role of the cluster miR-130b~301b was explored using in vitro studies testing cell viability, apoptosis, invasion and DNA damage in prostate cancer cell lines. Western blot and RT-qPCR were performed to support those observations. Results We found that the miR-130b~301b cluster directs epigenetic activation of cell cycle inhibitors required for DDR activation, thus stimulating the senescence-associated secretory phenotype (SASP. Furthermore, overexpression of miR-130b~301b cluster markedly reduced the malignant phenotype of PCa cells. Conclusions Altogether, these data demonstrate that miR-130b~301b cluster overexpression might effectively induce PCa cell growth arrest through epigenetic regulation of proliferation-blocking genes and activation of cellular senescence.

  4. Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants.

    Science.gov (United States)

    Filippou, Panagiota; Antoniou, Chrystalla; Fotopoulos, Vasileios

    2011-02-01

    Effects of water stress on plants have been well-documented. However, the combined responses to drought and rewatering and their underlying mechanisms are relatively unknown. The present study attempts to describe spatiotemporal alterations in the physiology and cellular status of Medicago truncatula tissues that result from and subsequently follow a period of moderate water deficit. Physiological processes and cellular damage levels were monitored in roots and leaves by determining lipid peroxidation levels, as well as nitric oxide and hydrogen peroxide content, further supported by stomatal conductance and chlorophyll fluorescence measurements in leaves. During water stress, cells in both organs displayed increased damage levels and reactive oxygen and nitrogen species content, while leaves showed reduced stomatal conductance. Furthermore, both tissues demonstrated increased proline content. Upon rewatering, plants recovered displaying readings similar to pre-stress control conditions. Furthermore, molecular analysis of antioxidant gene expression by quantitative real-time RT-PCR revealed differential spatiotemporal regulation in a number of genes examined (including catalase, cytosolic ascorbate peroxidase, copper/zinc and iron superoxide dismutase and alternative oxidase). Overall, M. truncatula plants demonstrated increased sensitivity to drought-induced oxidative damage; however, this was reversed following rewatering indicating a great elasticity in the plant's capacity to cope with free oxygen radicals. 

  5. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells.

    Science.gov (United States)

    Santacruz-Gomez, K; Silva-Campa, E; Melendrez-Amavizca, R; Teran Arce, F; Mata-Haro, V; Landon, P B; Zhang, C; Pedroza-Montero, M; Lal, R

    2016-04-07

    Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several morphological phenotypes, including stomatocytes, codocytes and echinocytes. While stomatocytes and codocytes are reversibly damaged RBCs, echinocytes are irreversibly damaged. AFM images show significantly fewer echinocytes among cND-treated γ-irradiated RBCs. The Raman spectra of γ-irradiated RBCs had more oxygenated hemoglobin patterns when cND-treated, resembling those of normal, non-irradiated RBCs, compared to the non-cND-treated RBCs. cND inhibited hemoglobin deoxygenation and morphological damage, possibly by neutralizing the free radicals generated during γ-irradiation. Thus cNDs have the therapeutic potential to preserve the quality of stored blood following γ-irradiation.

  7. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    Science.gov (United States)

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug

  8. Contactless Diagnostics of Turbine Blade Vibration and Damage

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel; Vaněk, František

    2011-01-01

    Roč. 305, č. 1 (2011), s. 1-11 E-ISSN 1742-6596. [International Conference on Damage Assessment of Structures (DAMAS 2011) /9./. Oxford, 11.07.2011-13.07.2011] Institutional research plan: CEZ:AV0Z20760514 Keywords : steam turbine * blade damage assessment * tip-timing method Subject RIV: JL - Materials Fatigue, Friction Mechanics http://iopscience.iop.org/1742-6596/305/1/012116

  9. Lack of correlation between villus and crypt damage in irradiated mouse intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; Hamlet, R.; Nias, A.H.W.; Watt, C.

    1979-01-01

    It has been observed that scanning electron microscopy is a more sensitive indicator of mucosal damage at low radiation dose levels than conventional quantitative crypt counting techniques. Three different fractionation schedules were subjected to investigation by both of these methods to try and elucidate some features of irradiation damage to the whole of the intestinal mucosa, at dose levels commonly used in clinical practice. Despite variations in the qualitative observations, there was a marked difference in two of the schedules between damage expressed as crypt counts and that described by the qualitative techniques. In the first case high crypt numbers were associated with severe mucosal damage, whereas the second schedule produced a reduced crypt count in association with low damage to the surface mucosa. A third schedule produced results in which there was a general agreement between low crypt numbers and considerable surface mucosal damage. However, observations were made of mucosal formations not previously seen on damaged mucosa; surfaces. These resembled the appearance normally associated with the gut of patients suffering from coeliac disease. Variations in the qualitative observations were seen in the schedules so that their interpretation in terms of perturbation of cellular kinetics is difficult. (author)

  10. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    Science.gov (United States)

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  12. IGF-I enhances cellular senescence via the reactive oxygen species–p53 pathway

    International Nuclear Information System (INIS)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-01-01

    Highlights: ► Cellular senescence plays an important role in tumorigenesis and aging process. ► We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. ► IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. ► These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  13. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    Science.gov (United States)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  14. Liability for international nuclear transport: an overview

    International Nuclear Information System (INIS)

    Brown, O.F.; Horbach, N.

    2000-01-01

    Many elements can bear on liability for nuclear damage during transport. For example, liability may depend upon a number of facts that may be categorized as follows: shipment, origin or destination of the shipment, deviation from the planed route, temporary storage incidental to carriage; content of shipment, type of nuclear material involved, whether its origin is civilian or defence-related; sites of accident, number and type of territories damaged (i.e. potential conventions involved), applicable territorial limits, exclusive economic zone, high seas, etc.; nature of damages, personal injury, property damage, damage to the means of carriage, indirect damage, preventive measures, environmental cleanup or retrieval at seas, res communis, transboundary damages etc.; victims involved, nationality and domiciles of victims; jurisdiction, flag (for ships) or national registration (for aircraft) of the transporting vessel, courts of one or more states may have (or assert) jurisdiction to hear claims, and may have to determine what law to apply to a particular accident; applicable law, the applicability laws and/or international nuclear liability conventions; the extent to which any applicable convention has been implemented or modified by domestic legislation, conflicts with the 1982 Law of the Sea Convention or other applicable international agreements, and finally, also written agreements between installation operators and carriers can define applicable law as well as responsibilities. Harmonizing nuclear liability protection and applying it to additional international shipments would be facilitated by more countries being in treaty relations with each other as soon as possible. Adherence to an international convention by more countries (including China, Russia, the United States, etc.) would promote the open flow of services and advanced technology, and better facilitate international transport. The conventions protect the public, harmonize legislation in the

  15. Internalization and localization of basal insulin peglispro in cells.

    Science.gov (United States)

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than

  16. Poly-ADP-ribosylation of proteins responds to cellular perturbations

    International Nuclear Information System (INIS)

    Schneeweiss, F.H.A.; Sharan, R.N.

    1999-01-01

    From the results presented above it is quite obvious that poly-ADP-ribosylation reaction is a sensitive parameter to monitor cellular responses to a wide variety of perturbations. Having developed a monolayer assay system using 32 P-NAD + as a marker, it has become possible to measure levels of cellular ADP-ribosylation more precisely. It has been demonstrated that the trigger of poly-ADP-ribosylation reaction may involve different cellular components for different perturbations. In this, membrane has been found to be important. The study has been particularly informative in the realm of DNA damage and repair following qualitatively different radiation assaults. As poly-ADP-ribosylation in eukaryotic cells primarily affects chromosomal proteins, notably histones, the reaction is strongly triggered in response to single and double strand breaks in DNA. Therefore, level of cellular poly-ADP-ribosylation can potentially be used as a biosensor of radiation induced strand breaks and can be specially useful in clinical monitoring of progress of radiotherapy. The assay of poly-ADP-ribosylation, however, requires use of radiolabelled tracer, e.g. 32 P-NAD + . Due to this, study of poly-ADP-ribosylation can not be extended to monitor effects of incorporated radionuclides. In order to overcome this shortcoming and to make the assay more sensitive and quick, a Western blot immunoassay has been developed. The preliminary indications are that the immunoassay of poly-ADP-ribosylation will fulfil the requirements to use poly-ADP-ribosylation as a sensitive, convenient and clinically applicable biosensor of cell response not only to radiations but also to different perturbations. (orig.)

  17. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    International Nuclear Information System (INIS)

    Dudek, E.J.; Roth, R.M.

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs

  18. Force control for mechanoinduction of impedance variation in cellular organisms

    International Nuclear Information System (INIS)

    Nam, Joo Hoo; Chen, Peter C Y; Lu, Zhe; Luo, Hong; Lin, Wei; Ge, Ruowen

    2010-01-01

    Constantly exposed to various forms of mechanical forces inherent in their physical environment (such as gravity, stress induced by fluid flow or cell–cell interactions, etc), cellular organisms sense such forces and convert them into biochemical signals through the processes of mechanosensing and mechanotransduction that eventually lead to biological changes. The effect of external forces on the internal structures and activities in a cellular organism may manifest in changes its physical properties, such as impedance. Studying variation in the impedance of a cellular organism induced by the application of an external mechanical force represents a meaningful endeavor (from a biosystems perspective) in exploring the complex mechanosensing and mechanotransduction mechanisms that govern the behavior of a cellular organism under the influence of external mechanical stimuli. In this paper we describe the development of an explicit force-feedback control system for exerting an indentation force on a cellular organism while simultaneously measuring its impedance. To demonstrate the effectiveness of this force-control system, we have conducted experiments using zebrafish embryos as a test model of a cellular organism. We report experimental results demonstrating that the application of a properly controlled external force leads to a significant change in the impedance of a zebrafish embryo. These results offer support for a plausible explanation that activities of pore canals in the chorion are responsible for the observed change in impedance.

  19. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II.

    Science.gov (United States)

    Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann

    2011-02-04

    La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.

  20. Systematic Analysis of the Crosstalk between Mitosis and DNA Damage by a Live Cell siRNA Screen

    DEFF Research Database (Denmark)

    Pedersen, Ronni Sølvhøi

    Recent research has shown, that the biological processes of DNA replication, DNA damage, cell cycle and mitosis cannot be considered as isolated cellular functions but are mechanistically linked in many ways. For instance, when cells are exposed to replication stress and enter mitosis...... propose that this strong p53 response, which often occurs without detectable increase in DNA damage, is caused by the acute increase in chromosomal aneuploidy. Finally, our systematic approach to the DNA damage-mitosis crosstalk reveals widespread cell death in response to mitotic pertubations, showing...

  1. Reliability tests for reactor internals rejuvenation technology

    International Nuclear Information System (INIS)

    Fujimaki, Katsumi; Hitoki, Yoichi; Otsubo, Toru; Uchiyama, Junichi

    1998-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for rejuvenating reactor internals which has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995. The project follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the test plans and results which are directed at preventive maintenance before damage and repair after damage for reactor internals aging degradation. The test results for the replacement methods of ICM housing and BWR core shroud have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  2. Radiation induced genetic damage in Aspergillus nidulans

    International Nuclear Information System (INIS)

    Georgiou, J.T.

    1984-01-01

    The mechanism by which ionizing radiation induces genetic damage in haploid and diploid conidia of Aspergillus nidulans was investigated. Although the linear dose-response curves obtained following low LET irradiation implied a 'single-hit' action of radiation, high LET radiations were much more efficient than low LET radiations, which suggests the involvement of a multiple target system. It was found that the RBE values for non-disjunction and mitotic crossing-over were very different. Unlike mitotic crossing-over, the RBE values for non-disjunction were much greater than for cell killing. This suggests that non-disjunction is a particularly sensitive genetical endpoint that is brought about by damage to a small, probably non-DNA target. Radiosensitisers were used to study whether radiation acts at the level of the DNA or some other cellular component. The sensitisation to electrons and/or X-rays by oxygen, and two nitroimidazoles (metronidazole and misonidazole) was examined for radiation induced non-disjunction, mitotic crossing-over, gene conversion, point mutation and cell killing. It was found that these compounds sensitised the cells considerably more to genetic damage than to cell killing. (author)

  3. Ultraviolet induced DNA damage and hereditary skin cancer

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Francis, A.A.

    1984-01-01

    Clearly, cells from normal individuals possess the ability to repair a variety of damage to DNA. Numerous studies indicate that defects in DNA repair may increase an individual's susceptibility to cancer. It is hoped that continued studies of the exact structural changes produced in the DNA by environmental insults, and the correlation of specific DNA changes with particulr cellular events, such as DNA repair, will lead to a better understanding of cell-killing, mutagenesis and carbinogenesis. 1 figure, 2 tables

  4. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

    Science.gov (United States)

    Pellegrino, Stefania; Altmeyer, Matthias

    2016-01-01

    Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359

  5. Characterisation of Growth and Ultrastructural Effects of the Xanthoria elegans Photobiont After 1.5 Years of Space Exposure on the International Space Station

    Science.gov (United States)

    Brandt, Annette; Posthoff, Eva; de Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde

    2016-06-01

    The lichen Xanthoria elegans has been exposed to space and simulated Mars-analogue environment in the Lichen and Fungi Experiment (LIFE) on the EXPOSE-E facility at the International Space Station (ISS). This long-term exposure of 559 days tested the ability of various organisms to cope with either low earth orbit (LEO) or Mars-analogue conditions, such as vacuum, Mars-analogue atmosphere, rapid temperature cycling, cosmic radiation of up to 215 ± 16 mGy, and insolation of accumulated doses up to 4.87 GJm-2, including up to 0.314 GJm-2 of UV irradiation. In a previous study, X. elegans demonstrated considerable resistance towards these conditions by means of photosynthetic activity as well as by post-exposure metabolic activity of 50-80 % in the algal and 60-90 % in the fungal symbiont (Brandt et al. Int J Astrobiol 14(3):411-425, 2015). The two objectives of the present study were complementary: First, to verify the high post-exposure viability by using a qualitative cultivation assay. Second, to characterise the cellular damages by transmission electron microscopy (TEM) which were caused by the space and Mars-analogue exposure conditions of LIFE. Since the algal symbiont of lichens is considered as the more susceptible partner (de Vera and Ott 2010), the analyses focused on the photobiont. The study demonstrated growth and proliferation of the isolated photobiont after all exposure conditions of LIFE. The ultrastructural analysis of the algal cells provided an insight to cellular damages caused by long-term exposure and highlighted that desiccation-induced breakdown of cellular integrity is more pronounced under the more severe space vacuum than under Mars-analogue atmospheric conditions. In conclusion, desiccation-induced damages were identified as a major threat to the photobiont of X. elegans. Nonetheless, a fraction of the photobiont cells remained cultivable after all exposure conditions tested in LIFE.

  6. Convention on supplementary compensation for nuclear damage

    International Nuclear Information System (INIS)

    Chinese Nuclear Society, Beijing; U.S. Nuclear Energy Institute

    2000-01-01

    The Contracting parties recognize the importance of the measures provided in the Vienna Convention on Civil Liability for Nuclear Damage and the Paris Convention on Third party liability in the Field of Nuclear Energy as well as in national legislation on compensation for nuclear damage consistent with the principles of these conventions. The Contracting parties desire to establish a worldwide liability regime to supplement and enhance these measures with a view to increasing the amount of compensation for nuclear damage and encourage regional and global co-operation to promote a higher level of nuclear safety in accordance with the principle of international partnership and solidarity

  7. Alkaline elution of DNA from mammalian cells on cellulose triacetate filters

    International Nuclear Information System (INIS)

    Moss, A.J. Jr.; Nagle, W.A.; Henle, K.J.; Prior, R.M.

    1984-01-01

    The alkaline elution technique is widely used for the estimation of cellular DNA damage because of its sensitivity in the biologically relevant dose range. The authors have extended the original studies and provide additional characterization of the cellulose triacetate alkaline elution method. This filter material permits the elution of approximately 80 percent of cellular DNA from untreated V79 cells. the total radioactivity in the system was compartmentalized with respect to 1) lysing solution, 2) washing solution, 3) elution fractions, and 4) membrane retained activity. In these studies [/sup 3/H]-thymidine labeled untreated internal control cells were co-eluted with X-irradiated [/sup 14/C]-thymidine labeled cells. For the estimation of DNA damage, elution profiles for treated cells were directly compared with untreated internal control cells. The quantity of DNA eluting in excess of the labeled internal control per fraction is directly proportional to the extent of DNA damage in the treated sample. Using the technique the necessity of an irradiated internal control is eliminated

  8. A possible mechanism for transpupillary thermotherapy: nitric-oxide-related cellular damage.

    Science.gov (United States)

    Ozdek, Sengul; Urgancioglu, Berrak; Turkcu, Ummuhani Ozel; Bilgihan, Ayse

    2007-08-01

    To determine the oxidative stress markers on rabbit vitreous following transpupillary thermotherapy (TTT) application. The pigmented rabbit eyes were divided into 3 groups, each containing 6 eyes. Group 1 was used as a control group. Twelve eyes underwent TTT with a power of 250 mW (group 2) and 800 mW (group 3), with a diameter of 3000 microm and duration of 60 s; 24 h after laser application, vitreous samples were collected. Nitric oxide (NO) and malondialdehyde (MDA) levels and superoxide dismutase (SOD) activities were determined in all groups. NO levels were statistically significantly higher in all groups when compared with the control group (p 0.05). Our results support the hypothesis that TTT application induces NO synthesis, which may lead to occlusion at choroidal neovessels. Because of the nonsignificantly increased levels of MDA and decrease of SOD activities there maybe only a weak relation between lipid peroxidation induced by free oxygen radicals and TTT-induced vascular damage.

  9. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage

    OpenAIRE

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-01-01

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly ...

  10. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Science.gov (United States)

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  11. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  12. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  13. REC-2006—A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo

    Science.gov (United States)

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg−1 body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair. PMID:20008078

  14. A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure...

  15. RENAL DAMAGE WITH MALIGNANT NEOPLASMS

    Directory of Open Access Journals (Sweden)

    I. B. Kolina

    2015-01-01

    Full Text Available The relationship between renal damage and malignant neoplasms is one of the most actual problems of the medicine of internal diseases. Very often, exactly availability of renal damage determines the forecast of cancer patients. The range of renal pathologies associated with tumors is unusually wide: from the mechanical effect of the tumor or metastases on the kidneys and/or the urinary tract and paraneoplastic manifestations in the form of nephritis or amyloidosis to nephropathies induced with drugs or tumor lysis, etc. Thrombotic complications that develop as a result of exposure to tumor effects, side effects of certain drugs or irradiation also play an important role in the development of the kidney damage. The most frequent variants of renal damage observed in the practice of medical internists (therapists, urologists, surgeons, etc., as well as methods of diagnosis and treatment approaches are described in the article. Timely and successful prevention and treatment of tumor-associated nephropathies give hope for retaining renal functions, therefore, a higher life standard after completion of anti-tumor therapy. Even a shortterm episode of acute renal damage suffered by a cancer patient must be accompanied with relevant examination and treatment. In the caseof transformation of acute renal damage into the chronic kidney disease, such patients need systematic and weighted renoprotective therapy and correct dosing of nephrotoxic drugs.

  16. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    International Nuclear Information System (INIS)

    Neet, K.E.; Kasaian, M.

    1987-01-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM 125 I-NGF was bound to rat PC12 cells in suspension for 30 min at 37 0 , followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 0 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4 0 . Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations

  17. Quantification and localization of internal pipe damage

    NARCIS (Netherlands)

    Vogelaar, B.B.S.A.; Golombok, M.

    2016-01-01

    Internal pipeline defects are detectable and locatable from guided acoustic wave reflections using sensors mounted on the outer wall of a pipe. We demonstrate pipeline integrity monitoring with only two single acoustic sensors. Multi-mode dispersion imaging of shear displacement shows that the pure

  18. Assessing the damage importance rank in acoustic diagnostics of technical conditions of the internal combustion engine with multi-valued logical decision trees

    Directory of Open Access Journals (Sweden)

    Deptuła Adam

    2017-01-01

    Full Text Available This paper presents possible applications of acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with the common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum may be generated. These results may be helpful in future diagnostics of internal combustion engines. In the paper, we present the results from the scientific works in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology. The broader study has so far allowed us to develop an authoritative method of identifying the type of engine damage using gametree structures. The present works assess the possibility of using multi-valued logic trees.

  19. Reliability tests for reactor internals replacement technology

    International Nuclear Information System (INIS)

    Fujimaki, K.; Uchiyama, J.; Ohtsubo, T.

    2000-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for replacing reactor internals, which was directed at preventive maintenance before damage and repair after damage for the aging degradation. The project has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995, and it follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the whole test plans and the test results for the BWR reactor internals replacement methods; core shroud, ICM housing, and CRD Housing and stub tube. The test results have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  20. Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.

  1. Liability according to civil law regarding border-crossing nuclear damage

    International Nuclear Information System (INIS)

    Baer, Caroline

    1987-12-01

    The problem of the liability in border-crossing damage caused by a nuclear-reactor accident is divided into two different areas: the liability according to international law of the state, and liability according to civil right of the licensee of a nuclear power plant. In this study attention is paid to the question of the liability according to civil right: is it possible that an aggrieved obtains compensation for damage? This is investigated on the basis of three standard questions of international private law: which judge is qualified, which law is to be applied, and is acknowledgement and execution of foreign sentences possible? First a historical survey is given of international agreements and national legislations regarding third-party liability. (author). 112 refs

  2. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  3. Damage on sliding bearings of internal combustion engines. Damage patterns, causes, prevention; Schaeden an Gleitlagern von Verbrennungsmotoren. Erscheinungsbilder, Ursachen, Vermeidung

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, U.G. [Miba Gleitlager GmbH, Laakrichen (Austria)

    2005-07-01

    Bearing failures are consequences of system deficiencies which cause an inadequate function of the hydrodynamic action and, thereby, too high a friction, at least locally. The bearing overheats, what ultimately leads to its destruction and that of adjacent components. These 'consequential damages' are frequently severe. We identify, therefore, early stages of malfunction, already as 'bearing damage'. In this condition, a diagnosis and remedial measures to avoid total destruction are possible. Typical bearing conditions, possible causes and remedies are described herein. (orig.)

  4. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer

    Directory of Open Access Journals (Sweden)

    Denis Velic

    2015-11-01

    Full Text Available For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.

  5. Differential pathway control in nucleotide excision repair

    NARCIS (Netherlands)

    G.J.C. van Belle (Gijsbert)

    2015-01-01

    markdownabstractAbstract The stability and integrity of the genome is crucial for all cellular life on earth. This integrity is continuously challenged by internal and external genotoxic agents. These agents cause DNA damages which interfere with important cellular processes like replication of

  6. Protective Effect of HSP25 on Radiation Induced Tissue Damage

    International Nuclear Information System (INIS)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Bae, Sang-Woo; Lee, Yun-Sil; Kim, Sung Ho

    2007-01-01

    Control of cancer by irradiation therapy alone or in conjunction with combination chemotherapy is often limited by organ specific toxicity. Ionizing irradiation toxicity is initiated by damage to normal tissue near the tumor target and within the transit volume of radiotherapy beams. Irradiation-induced cellular, tissue, and organ damage is mediated by acute effects, which can be dose limiting. A latent period follows recovery from the acute reaction, then chronic irradiation fibrosis (late effects) pose a second cause of organ failure. HSP25/27 has been suggested to protect cells against apoptotic cell death triggered by hyperthermia, ionizing radiation, oxidative stress, Fas ligand, and cytotoxic drugs. And several mechanisms have been proposed to account for HSP27-mediated apoptotic protection. However radioprotective effect of HSP25/27 in vivo system has not yet been evaluated. The aim of this study was to evaluate the potential of exogenous HSP25 expression, as delivered by adenoviral vectors, to protect animal from radiation induced tissue damage

  7. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Ebert, Regina; Ulmer, Matthias; Zeck, Sabine

    2006-01-01

    signaling, cumulative cell damage, senescence, and tumor development. Selenium-dependent (glutathione peroxidases [GPxs] and thioredoxin reductases [TrxRs]) and selenium-independent (superoxide dismutases [SODs] and catalase [CAT]) enzyme systems regulate cellular ROS steady state levels. SODs process...

  8. Enhancing repair of radiation-induced strand breaks in cellular DNA as a radiotherapeutic potential

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2014-01-01

    Protection of mammalian organisms including man from deleterious effects of ionizing radiation is of paramount importance and development of effective approaches to combat radiation damages using non-toxic radioprotectors is of considerable interest for defence, nuclear industries, radiation accidents, space travels, etc., besides the protection of normal tissues during radiotherapy of tumours. Many synthetic as well as natural compounds have been investigated in the recent past for their efficacy to protect the biological systems from radiation induced damages. They include sulfhydryl compounds, antioxidants, plant extracts, immune-modulators, and other agents. However, the inherent toxicity of many of the synthetic agents at the effective radio-protective concentration warranted further search for safer and more effective radio-protectors. In this context, therapeutic radioprotectors which are effective on post irradiation administration are of special relevance. One of the property that can be applied while screening for such radiation protective therapeutics is their ability to enhance repair of radiation-induced lesions in cellular DNA in terms of cellular repair index based on the parameters of the DNA following comet assay. Post irradiation administration of some natural and synthetic agents have shown their potential to enhance repair of radiation-induced strand breaks in cellular DNA in mice. These include phytoceuticals such as gallic acid, sesamol etc., extracts of medicinal plants such as Andrographis panniculata, and a few synthetic compounds such as tocopherol-mono-glucoside. The talk will give an overview of the work on DNA repair enhancement by a few natural and synthetic agents. (author)

  9. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    International Nuclear Information System (INIS)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-01-01

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75±1.55 μm versus after supplementation: 70.25±1.31 μm; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels

  10. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-08-28

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75{+-}1.55 {mu}m versus after supplementation: 70.25{+-}1.31 {mu}m; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.

  11. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Siebenwirth, C. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Greubel, C. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Drexler, S.E. [Department of Radiation Oncology, Ludwig-Maximilians-Universität München, Munich (Germany); Girst, S.; Reindl, J. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Walsh, D.W.M. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Dollinger, G. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Friedl, A.A. [Department of Radiation Oncology, Ludwig-Maximilians-Universität München, Munich (Germany); and others

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  12. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    International Nuclear Information System (INIS)

    Siebenwirth, C.; Greubel, C.; Drexler, S.E.; Girst, S.; Reindl, J.; Walsh, D.W.M.; Dollinger, G.; Friedl, A.A.

    2015-01-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future

  13. Discussing epigenetics in Southern California: a report from the International Symposium on Epigenetic Control and Cellular Plasticity, UCI, December 15-16, 2011.

    Science.gov (United States)

    Rattner, Barbara P

    2012-04-01

    With the goal of discussing how epigenetic control and chromatin remodeling contribute to the various processes that lead to cellular plasticity and disease, this symposium marks the collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM) in France and the University of California, Irvine (UCI). Organized by Paolo Sassone-Corsi (UCI) and held at the Beckman Center of the National Academy of Sciences at the UCI campus December 15-16, 2011, this was the first of a series of international conferences on epigenetics dedicated to the scientific community in Southern California. The meeting also served as the official kick off for the newly formed Center for Epigenetics and Metabolism at the School of Medicine, UCI (http://cem.igb.uci.edu).

  14. Cellular Chaperones As Therapeutic Targets in ALS to Restore Protein Homeostasis and Improve Cellular Function

    Directory of Open Access Journals (Sweden)

    Bernadett Kalmar

    2017-09-01

    Full Text Available Heat shock proteins (Hsps are ubiquitously expressed chaperone proteins that enable cells to cope with environmental stresses that cause misfolding and denaturation of proteins. With aging this protein quality control machinery becomes less effective, reducing the ability of cells to cope with damaging environmental stresses and disease-causing mutations. In neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS, such mutations are known to result in protein misfolding, which in turn results in the formation of intracellular aggregates cellular dysfunction and eventual neuronal death. The exact cellular pathology of ALS and other neurodegenerative diseases has been elusive and thus, hindering the development of effective therapies. However, a common scheme has emerged across these “protein misfolding” disorders, in that the mechanism of disease involves one or more aspects of proteostasis; from DNA transcription, RNA translation, to protein folding, transport and degradation via proteosomal and autophagic pathways. Interestingly, members of the Hsp family are involved in each of these steps facilitating normal protein folding, regulating the rate of protein synthesis and degradation. In this short review we summarize the evidence that suggests that ALS is a disease of protein dyshomeostasis in which Hsps may play a key role. Overwhelming evidence now indicates that enabling protein homeostasis to cope with disease-causing mutations might be a successful therapeutic strategy in ALS, as well as other neurodegenerative diseases. Novel small molecule co-inducers of Hsps appear to be able to achieve this aim. Arimoclomol, a hydroxylamine derivative, has shown promising results in cellular and animal models of ALS, as well as other protein misfolding diseases such as Inclusion Body Myositis (IBM. Initial clinical investigations of Arimoclomol have shown promising results. Therefore, it is possible that the long series of

  15. Vesicular (liposomal and nanoparticulated delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model

    Directory of Open Access Journals (Sweden)

    Choudhury ST

    2016-05-01

    Full Text Available Somsubhra Thakur Choudhury,1 Nirmalendu Das,2 Swarupa Ghosh,2 Debasree Ghosh,2 Somsuta Chakraborty,2 Nahid Ali1 1Infectious Diseases and Immunology, 2Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India Abstract: The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4 causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001 increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4

  16. Crash energy management on the base of Movable cellular automata method

    Science.gov (United States)

    Psakhie, Serguei; Dmitriev, Andrei; Shilko, Evgueni; Tatarintsev, Evgueni; Korostelev, Serguei

    2001-06-01

    One of the main problems of materials science is increasing of structure's viability under dynamic loading. In general, a solution is the management of transformation of the energy of loading to the energy of destroying of the least important parts and details of the structure. It has to be noted that similar problem also exists in materials science, since a majority of modern materials are heterogeneous and have a complex internal structure. To optimize this structure for working under dynamic loading it is necessary to take into account the redistribution of elastic energy including phase transformation, generation and accumulation of micro-damages, etc. As far as real experiments on destroying the complex objects are sufficiently expensive and getting of detailed information is often associates with essential difficulties, the methods of computer modeling are used in solving the similar problems. As a rule, these are the methods of continuum mechanics. Although essential achievements have been obtained on the basis of these methods the continuum approach has several limitations, connected first of all with the possibility of description of generation of damages, formation and development of cracks and mass mixing effects. These problems may be solved on the basis of the Movable Cellular Automata (MCA) method, which has been successfully used for modeling fracture of the different material and structures In the paper behavior and peculiarities of failure of complex structures and materials under dynamic loading are studied on the basis of computer modeling. The results shown that sometimes even small changes of the internal structure leads to the significant increasing of the viability of the complex structures and materials. It is due to the elastic energy flux change over during the dynamical loading. This effect may be explained by the fact that elastic energy fluxes define the current stress concentration. Namely, because the area of inclusions are subjected

  17. Novel types of DNA-sugar damage in neocarzinostatin cytotoxicity and mutagenesis

    International Nuclear Information System (INIS)

    Goldberg, I.H.

    1986-01-01

    Although a number of antitumor antibiotics interact with DNA to form covalent adducts with the bases, relatively few damage DNA by interacting with the deoxyribose moiety. Neocarzinostatin (NCS), a member of a family of macromolecular antibiotics obtained from filtrates of Streptomyces, is such an agent. Many of the biochemical and cellular effects of NCS resemble those of ionizing radiation. Most, possibly all, of the DNA lesions caused by NCS appear to result from the direct attack of an activated form of the drug on the deoxyribose of DNA. This is to be contrasted with ionizing radiation or the antibiotic bleomycin, that damage DNA deoxyribose through the intervention of a reduced form of oxygen. This paper describes the nature of the interaction between the active component of NCS and DNA, on the mechanism of the ensuing deoxyribose damage, and on some of the biological consequences of these actions. 24 refs., 7 figs

  18. A theory of viscoplasticity accounting for internal damage

    Science.gov (United States)

    Freed, A. D.; Robinson, D. N.

    1988-01-01

    A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.

  19. Energetics of cellular repair processes in a respiratory-deficient mutant of yeast

    International Nuclear Information System (INIS)

    Jain, V.K.; Gupta, I.; Lata, K.

    1982-01-01

    Repair of potentially lethal damage induced by cytoxic agents like UV irradiation (254 nm), psorelen-plus-UVA (365 mn), and methyl methanesulfonate has been studied in the presence of a glucose analog, 2-deoxy-D-glucose, in yeast cells. Simultaneously, effects of 2-deoxy-D-glucose were also investigated on parameters of energy metabolism like glucose utilization, rate of ATP production, and ATP content of cells. The following results were obtained. (i) 2-Deoxy-D-glucose is able to inhibit repair of potentially lethal damage induced by all the cytotoxic agents tested. The 2-deoxy-D-glucose-induced inhibition of repair depends upon the type of lesion and the pattern of cellular energy metabolism, the inhibition being greater in respiratory-deficient mutants than in the wild type. (ii) A continuous energy flow is necessary for repair of potentially lethal damage in yeast cells. Energy may be supplied by the glycolytic and/or the respiratory pathway; respiratory metabolism is not essential for this purpose. (iii) The magnitude of repair correlates with the rate of ATP production in a sigmoid manner

  20. Towards mechanism-based simulation of impact damage using exascale computing

    Science.gov (United States)

    Shterenlikht, Anton; Margetts, Lee; McDonald, Samuel; Bourne, Neil K.

    2017-01-01

    Over the past 60 years, the finite element method has been very successful in modelling deformation in engineering structures. However the method requires the definition of constitutive models that represent the response of the material to applied loads. There are two issues. Firstly, the models are often difficult to define. Secondly, there is often no physical connection between the models and the mechanisms that accommodate deformation. In this paper, we present a potentially disruptive two-level strategy which couples the finite element method at the macroscale with cellular automata at the mesoscale. The cellular automata are used to simulate mechanisms, such as crack propagation. The stress-strain relationship emerges as a continuum mechanics scale interpretation of changes at the micro- and meso-scales. Iterative two-way updating between the cellular automata and finite elements drives the simulation forward as the material undergoes progressive damage at high strain rates. The strategy is particularly attractive on large-scale computing platforms as both methods scale well on tens of thousands of CPUs.

  1. Relationship between radiation damage on biomembranes and the cell killing

    International Nuclear Information System (INIS)

    Sato, Chikako

    1978-01-01

    Death of unproliferated mammalian erythrocytes causes an increase of ion permeability as membranous damage after x-ray irradiation and hemolysis, and production of peroxides in membrane and an effect of SH base are thought as the causes. As a mechanism of death of small lymphocytes with high radiosensitivity, the following three assumptions were reported: disorder of ATP synthesis in nucleus and cytoplasms, self-digestion by flowing out of proteinase from lysozyme by membranous disorder, and catalysis of DNA-protein complex. Death of proliferated cells causes loss of colony formation ability, and it was explained by colony method using Escherichia coli and mammalian cells and by dose-survival rate. Changes in membranous structure by cellular electrophoretic degree and the relationship between these changes and inhibition of cellular proliferation were mentioned as problems. (Tsunoda, M.)

  2. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).

    Science.gov (United States)

    Bourin, Philippe; Bunnell, Bruce A; Casteilla, Louis; Dominici, Massimo; Katz, Adam J; March, Keith L; Redl, Heinz; Rubin, J Peter; Yoshimura, Kotaro; Gimble, Jeffrey M

    2013-06-01

    Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. Copyright © 2013 International Society for Cellular Therapy. All rights reserved.

  3. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  4. Chemical determination of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  5. A rigorous treatment of uncertainty quantification for Silicon damage metrics

    International Nuclear Information System (INIS)

    Griffin, P.

    2016-01-01

    These report summaries the contributions made by Sandia National Laboratories in support of the International Atomic Energy Agency (IAEA) Nuclear Data Section (NDS) Technical Meeting (TM) on Nuclear Reaction Data and Uncertainties for Radiation Damage. This work focused on a rigorous treatment of the uncertainties affecting the characterization of the displacement damage seen in silicon semiconductors. (author)

  6. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data

    Directory of Open Access Journals (Sweden)

    Zhaodi Wang

    2018-04-01

    Full Text Available Deep learning has become a widely used powerful tool in many research fields, although not much so yet in agriculture technologies. In this work, two deep convolutional neural networks (CNN, viz. Residual Network (ResNet and its improved version named ResNeXt, are used to detect internal mechanical damage of blueberries using hyperspectral transmittance data. The original structure and size of hypercubes are adapted for the deep CNN training. To ensure that the models are applicable to hypercube, we adjust the number of filters in the convolutional layers. Moreover, a total of 5 traditional machine learning algorithms, viz. Sequential Minimal Optimization (SMO, Linear Regression (LR, Random Forest (RF, Bagging and Multilayer Perceptron (MLP, are performed as the comparison experiments. In terms of model assessment, k-fold cross validation is used to indicate that the model performance does not vary with the different combination of dataset. In real-world application, selling damaged berries will lead to greater interest loss than discarding the sound ones. Thus, precision, recall, and F1-score are also used as the evaluation indicators alongside accuracy to quantify the false positive rate. The first three indicators are seldom used by investigators in the agricultural engineering domain. Furthermore, ROC curves and Precision-Recall curves are plotted to visualize the performance of classifiers. The fine-tuned ResNet/ResNeXt achieve average accuracy and F1-score of 0.8844/0.8784 and 0.8952/0.8905, respectively. Classifiers SMO/ LR/RF/Bagging/MLP obtain average accuracy and F1-score of 0.8082/0.7606/0.7314/0.7113/0.7827 and 0.8268/0.7796/0.7529/0.7339/0.7971, respectively. Two deep learning models achieve better classification performance than the traditional machine learning methods. Classification for each testing sample only takes 5.2 ms and 6.5 ms respectively for ResNet and ResNeXt, indicating that the deep learning framework has great

  7. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data

    Science.gov (United States)

    Hu, Menghan; Zhai, Guangtao

    2018-01-01

    Deep learning has become a widely used powerful tool in many research fields, although not much so yet in agriculture technologies. In this work, two deep convolutional neural networks (CNN), viz. Residual Network (ResNet) and its improved version named ResNeXt, are used to detect internal mechanical damage of blueberries using hyperspectral transmittance data. The original structure and size of hypercubes are adapted for the deep CNN training. To ensure that the models are applicable to hypercube, we adjust the number of filters in the convolutional layers. Moreover, a total of 5 traditional machine learning algorithms, viz. Sequential Minimal Optimization (SMO), Linear Regression (LR), Random Forest (RF), Bagging and Multilayer Perceptron (MLP), are performed as the comparison experiments. In terms of model assessment, k-fold cross validation is used to indicate that the model performance does not vary with the different combination of dataset. In real-world application, selling damaged berries will lead to greater interest loss than discarding the sound ones. Thus, precision, recall, and F1-score are also used as the evaluation indicators alongside accuracy to quantify the false positive rate. The first three indicators are seldom used by investigators in the agricultural engineering domain. Furthermore, ROC curves and Precision-Recall curves are plotted to visualize the performance of classifiers. The fine-tuned ResNet/ResNeXt achieve average accuracy and F1-score of 0.8844/0.8784 and 0.8952/0.8905, respectively. Classifiers SMO/ LR/RF/Bagging/MLP obtain average accuracy and F1-score of 0.8082/0.7606/0.7314/0.7113/0.7827 and 0.8268/0.7796/0.7529/0.7339/0.7971, respectively. Two deep learning models achieve better classification performance than the traditional machine learning methods. Classification for each testing sample only takes 5.2 ms and 6.5 ms respectively for ResNet and ResNeXt, indicating that the deep learning framework has great potential for

  8. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.

    Science.gov (United States)

    Wang, Zhaodi; Hu, Menghan; Zhai, Guangtao

    2018-04-07

    Deep learning has become a widely used powerful tool in many research fields, although not much so yet in agriculture technologies. In this work, two deep convolutional neural networks (CNN), viz. Residual Network (ResNet) and its improved version named ResNeXt, are used to detect internal mechanical damage of blueberries using hyperspectral transmittance data. The original structure and size of hypercubes are adapted for the deep CNN training. To ensure that the models are applicable to hypercube, we adjust the number of filters in the convolutional layers. Moreover, a total of 5 traditional machine learning algorithms, viz. Sequential Minimal Optimization (SMO), Linear Regression (LR), Random Forest (RF), Bagging and Multilayer Perceptron (MLP), are performed as the comparison experiments. In terms of model assessment, k-fold cross validation is used to indicate that the model performance does not vary with the different combination of dataset. In real-world application, selling damaged berries will lead to greater interest loss than discarding the sound ones. Thus, precision, recall, and F1-score are also used as the evaluation indicators alongside accuracy to quantify the false positive rate. The first three indicators are seldom used by investigators in the agricultural engineering domain. Furthermore, ROC curves and Precision-Recall curves are plotted to visualize the performance of classifiers. The fine-tuned ResNet/ResNeXt achieve average accuracy and F1-score of 0.8844/0.8784 and 0.8952/0.8905, respectively. Classifiers SMO/ LR/RF/Bagging/MLP obtain average accuracy and F1-score of 0.8082/0.7606/0.7314/0.7113/0.7827 and 0.8268/0.7796/0.7529/0.7339/0.7971, respectively. Two deep learning models achieve better classification performance than the traditional machine learning methods. Classification for each testing sample only takes 5.2 ms and 6.5 ms respectively for ResNet and ResNeXt, indicating that the deep learning framework has great potential for

  9. Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging.

    Science.gov (United States)

    Wang, Wenjuan; Cai, Guangyan; Chen, Xiangmei

    2017-09-13

    Dietary restriction (DR) has multiple and essential effects in protecting against DNA damage in model organisms. Persistent DNA damage plays a central role in the process of aging. Senescence-associated secretory phenotype (SASP), as a product of cellular aging, can accelerate the process of cellular senescence as a feedback. In this study, we directly observed whether a DR of 30% for 6months in aged rats could retard SASP by delaying the progression of DNA damage and also found the specific mechanism. The results revealed that a 30% DR could significantly improve renal pathology and some metabolic characteristics. The biomarkers and products of DNA damage were decreased in the process of renal aging on a 30% DR. A series of SASP, notably cytokine, chemokine, and growth factor, were obviously reduced by DR during renal aging. The phosphorylation levels of NF-κB and IκBα in aged kidneys of DR group were markedly reduced. These findings suggest that a 30% DR for 6months can delay renal aging and reduce the accumulation of SASP by retarding the progression of DNA damage and decreasing the transcription activity of NF-κB, thus providing a target to delay renal aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  11. Ultrastructural and cellular damage to rat lung with x-rays: a search for target cell in lung tissue

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, I

    1975-03-01

    Radiation effects on the peripheral alveoli of conventional rats were examined by means of electron microscopy. The right hemithorax alone was exposed to various single doses of x rays. The initial cellular lesions selectively involved the cytoplasms of alveolar capillary endothelial (Ed) and type 1 epithelial (Ep 1) cells in a dose-dependent fashion, where the major alterations were multifocal vacuolations and swellings. These lesions became visible as early as 1 hr after 1000 R (the assumed mean lethal dose for Ed cells) and more. However, progenitor Ep 2 cells exhibited no obvious cytoplasmic lesions by the doses below 2000 R, indicating that Ep 2 cells are more resistant to x rays. With time following 1000 R, the capillary Ed blebbing abruptly developed in various forms from the sites presumably other than the Ed junctions. The Ed blebs and interstitial edema progressed until about 2 weeks without recovery, while some signs of cellular recovery were recognized in Ep 1 cells during this period. The observations after a long period of 6 months following 1000 R showed that the typical pulmonary fibrotic changes were initiated in the interstitium perhaps around unrepaired capillaries. Further, inflammatory reaction characterized by massive cellular infiltations was superimposed on developing pulmonary fibrosis. Considering the current knowledge about the cell sensitivity and renewal in stable tissues, the present results imply that capillary Ed cell is the primary target for the radiation lesion leading to the secondary pulmonary alterations.

  12. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  13. A Method for treating Damage Related Criteria in Optimal Topology Design of Continuum Structures

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Diaz, Alejandro

    1997-01-01

    In this paper we present a formulation of the well-known structural topology optimization problem that accounts for the presence of loads capable of causing permanent damage to the structure. Damage is represented in the form of an internal variable model which is standard in continuum damage mec...

  14. A Method for treating Damage Related Criteria in Optimal Topology Design of Continuum Structures

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Diaz, A.R.

    1998-01-01

    In this paper we present a formulation of the well-known structural topology optimization problem that accounts for the presence of loads capable of causing permanent damage to the structure. Damage is represented in the form of an internal variable model which is standard in continuum damage mec...

  15. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, D.M.; Morris, J.W. Jr.; Shaw, T.J.; Lee, Seungkyun; Clarke, John

    2002-01-01

    A 'Holy Grail' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  16. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, David; Morris Jr., J.W.; Shaw, T.J.; McDermott R.; Clarke, John

    2001-01-01

    A ''Holy Grail'' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  17. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    Science.gov (United States)

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  19. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    Science.gov (United States)

    Sun, Zhigang; Wang, Xianqiao

    2014-01-01

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774

  20. DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice

    DEFF Research Database (Denmark)

    Kyjovska, Zdenka O.; Jacobsen, Nicklas R.; Saber, Anne T.

    2015-01-01

    of 0.67, 2, 6, and 162 mu g Printex 90 NPCB and vehicle. Cellular composition and protein concentration was evaluated in BAL fluid as markers of inflammatory response and cell damage. DNA strand breaks in BAL cells, lung, and liver tissue were assessed using the alkaline comet assay. The pulmonary...... the comet assay. We interpret the increased DNA strand breaks occurring following these low exposure doses of NPCB as DNA damage caused by primary genotoxicity in the absence of substantial inflammation, cell damage, and acute phase response. Environ. Mol. Mutagen. 56:41-49, 2015. (c) 2014 The Authors...

  1. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  2. Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Yong Deong; Lee, Hwan Soo

    2014-01-01

    The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux

  3. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ifigeneia V. Mavragani

    2017-07-01

    Full Text Available Cellular effects of ionizing radiation (IR are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs, single strand breaks (SSBs and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1 repair resistant, increasing genomic instability (GI and malignant transformation and (2 can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity. Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  4. DNA damage in Populus tremuloides clones exposed to elevated O3

    International Nuclear Information System (INIS)

    Tai, Helen H.; Percy, Kevin E.; Karnosky, David F.

    2010-01-01

    The effects of elevated concentrations of atmospheric tropospheric ozone (O 3 ) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO 2 ) were examined. Growing season mean hourly O 3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O 3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O 3 concentrations were 79 and 89 ppb, respectively. Elevated CO 2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O 3 and CO 2 in combination with O 3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O 3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O 3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O 3 tolerance or sensitivity. - Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.

  5. Use of transmission electron microscope to assess the damage to Sarcoma 180 ascites tumour cells following in vivo treatment of mitomycin-C and gamma radiation

    International Nuclear Information System (INIS)

    Majumdar, S.K.; Bhattacharya, S.; Mitra, A.; Mukherji, S.

    1991-01-01

    Five day old Sarcoma 180 tumour bearing mice were exposed to different doses of mitomycin-C (4 mg or 7 mg per kg body weight of mouse) and gamma radiation (400 R or 800 R) applied singly or in combination. Surviving populations were collected after 5 days of treatment and processed for transmission electron microscopy. The control Sarcoma 180 tumour cells has the following characteristics: profused microvilli, different sized mitochondria with poorly developed internal structure, distinct endoplasmic reticulum studded with ribosomes, the large nucleus rich in chromatin materials and distinct nucleolus containing closely interwined granular and fibrillar components with associated chromatins. Damage to treated cells were ascertained by the reduction in microvilli, swelling of mitochondria with cloudy appearance, dilation and fragmentation of endoplasmic reticulum, blebbing of nuclear membrane, condensation of heterochromatin, appearance of perichromatin granules, segregation and fragmentation of nucleolus and invagination of plasma memebrane with increased intracellular spaces. With the help of transmission electron microscope it is thus possible to assess the nature of damage to organelles effected by mitomycin C and radiation both singly and in combination. Growth inhibition and damage in the cellular ultrastructure were maximum among tumour cells which survived with concomitant treatment with 7 mg MMC and 800 R. (author). 7 refs., 4 figs., 1 tab

  6. Damage development in 9%Cr steels

    International Nuclear Information System (INIS)

    Rauch, M.; Maile, K.

    2003-01-01

    Modern 9-11% martensitic steels are candidate materials to be used in modern fossil fired power plants with high efficiency rates. The focus of the R and D work is put on the further development and optimisation, the determination of material characteristics but also on the identification and quantification of damage mechanisms and the damage evolution. For this purpose extensive experiments such as long creep tests on specimens under internal pressure, metallurgical examinations and theoretical investigations for determination of stress-strain state which have been conducted. The laboratory tests are completed by examination of real components. As a result an empirical description of the creep cavity density as a function of deformation and multiaxiality of stress state has been carried out which can be used in further FE-calculations determining the damage state. The results of all metallographical examinations on specimens with different heat treatments and service loads are summarised in a structure atlas and are published for further usage. Damage development, martensitic 9 % Cr steels, creep cavity density, creep tests under multiaxial load, metallographical investigations, and measurements on pipe bends. (author)

  7. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  8. Nuclear and cytoplasmic signalling in the cellular response to ionising radiation

    International Nuclear Information System (INIS)

    Szumiel, Irena

    2001-01-01

    DNA is the universal primary target for ionising radiation; however, the cellular response is highly diversified not only by differential DNA repair ability. The monitoring system for the ionising radiation-inflicted DNA damage consists of 3 apparently independently acting enzymes which are activated by DNA breaks: two protein kinases, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase) and a poly(ADP-ribose) polymerase, PARP-1. These 3 enzymes are the source of alarm signals, which affect to various extents DNA repair, progression through the cell cycle and eventually the pathway to cell death. Their functions probably are partly overlapping. On the side of DNA repair their role consists in recruiting and/or activating the repair enzymes, as well as preventing illegitimate recombination of the damaged sites. A large part of the nuclear signalling pathway, including the integrating role of TP53 has been revealed. Two main signalling pathways start at the plasma membrane: the MAPK/ERK (mitogen and extracellular signal regulated protein kinase family) 'survival pathway' and the SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) 'cell death pathway'. The balance between them is likely to determine the cell's fate. An additional important 'survival pathway' starts at the insulin-like growth factor type I receptor (IGF-IR), involves phosphoinositide- 3 kinase and Akt kinase and is targeted at inactivation of the pro-apoptotic BAD protein. Interestingly, over-expression of IGF-IR almost entirely abrogates the extreme radiation sensitivity of ataxia telangiectasia cells. When DNA break rejoining is impaired, the cell is unconditionally radiation sensitive. The fate of a repair-competent cell is determined by the time factor: the cell cycle arrest should be long enough to ensure the completion of repair. Incomplete repair or misrepair may be tolerated, when generation of the death signal is prevented. So, the character and timing

  9. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells

    Directory of Open Access Journals (Sweden)

    Max Koeppel

    2015-06-01

    Full Text Available Infection with the human pathogen Helicobacter pylori (H. pylori is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.

  10. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response

    DEFF Research Database (Denmark)

    Xing, Meichun; Wang, Xiaohui; Palmai-Pallag, Timea

    2015-01-01

    have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81...

  11. Damage analysis of CF/AF hybrid fabric reinforced plastic laminated composites with scanned image microscopy

    Science.gov (United States)

    Miyasaka, Chiaki; Kasano, Hideaki; Shull, Peter J.

    2004-07-01

    The article presents an experimental study that has been conducted to evaluate the impact loading damage within hybrid fabric laminates-carbon and Aramid fibers. The experiments have been undertaken on a series of interply hybrid specimens with different preprags stacking sequences. Impact damage was created using an air-gun like impact device propelling spherical steel balls with diameters of 5.0mm and 10.0mm and having velocities of 113m/s and 40m/s respectively. The resulting specimen surface and internal damage (e.g., micro-cracking and debonding) was visualized nondestructively by a scanning acoustic microscope (SAM) while further interrogation of specific internal damage was visualized using a scanning electron microscope (SEM) on cross-sectioned panels.

  12. Self-organisation in Cellular Automata with Coalescent Particles: Qualitative and Quantitative Approaches

    Science.gov (United States)

    Hellouin de Menibus, Benjamin; Sablik, Mathieu

    2017-06-01

    This article introduces new tools to study self-organisation in a family of simple cellular automata which contain some particle-like objects with good collision properties (coalescence) in their time evolution. We draw an initial configuration at random according to some initial shift-ergodic measure, and use the limit measure to describe the asymptotic behaviour of the automata. We first take a qualitative approach, i.e. we obtain information on the limit measure(s). We prove that only particles moving in one particular direction can persist asymptotically. This provides some previously unknown information on the limit measures of various deterministic and probabilistic cellular automata: 3 and 4-cyclic cellular automata [introduced by Fisch (J Theor Probab 3(2):311-338, 1990; Phys D 45(1-3):19-25, 1990)], one-sided captive cellular automata [introduced by Theyssier (Captive Cellular Automata, 2004)], the majority-traffic cellular automaton, a self stabilisation process towards a discrete line [introduced by Regnault and Rémila (in: Mathematical Foundations of Computer Science 2015—40th International Symposium, MFCS 2015, Milan, Italy, Proceedings, Part I, 2015)]. In a second time we restrict our study to a subclass, the gliders cellular automata. For this class we show quantitative results, consisting in the asymptotic law of some parameters: the entry times [generalising K ůrka et al. (in: Proceedings of AUTOMATA, 2011)], the density of particles and the rate of convergence to the limit measure.

  13. ATM directs DNA damage responses and proteostasis via genetically separable pathways.

    Science.gov (United States)

    Lee, Ji-Hoon; Mand, Michael R; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W; Richards, Alicia L; Coon, Joshua J; Paull, Tanya T

    2018-01-09

    The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Dihydropyridines decrease X-ray-induced DNA base damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojewodzka, M., E-mail: marylaw@ichtj.waw.pl [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Gradzka, I.; Buraczewska, I.; Brzoska, K.; Sochanowicz, B. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Goncharova, R.; Kuzhir, T. [Institute of Genetics and Cytology, Belarussian National Academy of Sciences, Minsk (Belarus); Szumiel, I. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland)

    2009-12-01

    Compounds with the structural motif of 1,4-dihydropyridine display a broad spectrum of biological activities, often defined as bioprotective. Among them are L-type calcium channel blockers, however, also derivatives which do not block calcium channels exert various effects at the cellular and organismal levels. We examined the effect of sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (denoted here as DHP and previously also as AV-153) on X-ray-induced DNA damage and mutation frequency at the HGPRT (hypoxanthine-guanine phosphoribosyl transferase) locus in Chinese hamster ovary CHO-K1 cells. Using formamido-pyrimidine glycosylase (FPG) comet assay, we found that 1-h DHP (10 nM) treatment before X-irradiation considerably reduced the initial level of FPG-recognized DNA base damage, which was consistent with decreased 8-oxo-7,8-dihydro-2'-deoxyguanosine content and mutation frequency lowered by about 40%. No effect on single strand break rejoining or on cell survival was observed. Similar base damage-protective effect was observed for two calcium channel blockers: nifedipine (structurally similar to DHP) or verapamil (structurally unrelated). So far, the specificity of the DHP-caused reduction in DNA damage - practically limited to base damage - has no satisfactory explanation.

  15. Cellular and molecular response to irradiation in ataxia telangiectasia and in Fanconi's anemia

    International Nuclear Information System (INIS)

    Ridet, A.; Guillouf, C.; Duchaud, E.; Moustacchi, E.; Rosselli, F.

    1997-01-01

    Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to γ-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)

  16. Raman study of radiation-damaged zircon under hydrostatic compression

    Science.gov (United States)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  17. Assessment of radiofrequency exposure from cellular telephone daily use in an epidemiological study: German Validation study of the international case-control study of cancers of the brain--INTERPHONE-Study.

    Science.gov (United States)

    Berg, Gabriele; Schüz, Joachim; Samkange-Zeeb, Florence; Blettner, Maria

    2005-05-01

    The objective of the study is to validate self-reported cellular phone use information by comparing it with the cumulative emitted power and duration of calls measured by software-modified cellular phones (SMP). The information was obtained using a questionnaire developed for the international case-control study on the risk of the use of mobile phones in tumours of the brain or salivary gland (INTERPHONE-study). The study was conducted in Bielefeld, Germany. Volunteers were asked to use SMPs instead of their own cellular phones for a period of 1 month. The SMP recorded the power emitted by the mobile phone handset during each base station contact. Information on cellular phone use for the same time period from traffic records of the network providers and from face-to-face interviews with the participants 3 months after the SMP use was assessed. Pearson's correlation coefficients and linear regression models were used to analyse the association between information from the interview and from the SMP. In total, 1757 personal mobile phone calls were recorded for 45 persons by SMP and traffic records. The correlation between the self-reported information about the number and the duration of calls with the cumulative power of calls was 0.50 (P<0.01) and 0.48 (P<0.01), respectively. Almost 23% of the variance of the cumulative power was explained by either the number or the cumulative duration of calls. After inclusion of possible confounding factors in the regression model, the variance increased to 26%. Minor confounding factors were "network provider", "contract form", and "cellular phone model". The number of calls alone is a sufficient parameter to estimate the cumulative power emitted by the handset of a cellular telephone. The cumulative power emitted by these phones is only associated with number of calls but not with possible confounding factors. Using the mobile phone while driving, mainly in cities, or mainly in rural areas is not associated with the recorded

  18. Radiation damage prediction system using damage function

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Mori, Seiji

    1979-01-01

    The irradiation damage analysis system using a damage function was investigated. This irradiation damage analysis system consists of the following three processes, the unfolding of a damage function, the calculation of the neutron flux spectrum of the object of damage analysis and the estimation of irradiation effect of the object of damage analysis. The damage function is calculated by applying the SAND-2 code. The ANISN and DOT3, 5 codes are used to calculate neutron flux. The neutron radiation and the allowable time of reactor operation can be estimated based on these calculations of the damage function and neutron flux. The flow diagram of the process of analyzing irradiation damage by a damage function and the flow diagram of SAND-2 code are presented, and the analytical code for estimating damage, which is determined with a damage function and a neutron spectrum, is explained. The application of the irradiation damage analysis system using a damage function was carried out to the core support structure of a fast breeder reactor for the damage estimation and the uncertainty evaluation. The fundamental analytical conditions and the analytical model for this work are presented, then the irradiation data for SUS304, the initial estimated values of a damage function, the error analysis for a damage function and the analytical results are explained concerning the computation of a damage function for 10% total elongation. Concerning the damage estimation of FBR core support structure, the standard and lower limiting values of damage, the permissible neutron flux and the allowable years of reactor operation are presented and were evaluated. (Nakai, Y.)

  19. Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response.

    Science.gov (United States)

    Ceruti, Julieta M; Scassa, María E; Marazita, Mariela C; Carcagno, Abel C; Sirkin, Pablo F; Cánepa, Eduardo T

    2009-06-01

    p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.

  20. Frost damage of concrete subject to confinement

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2016-01-01

    When internal frost damage is observed in real concrete structures, the usual pattern is cracks with a preferred orientation parallel to the exposed surface. When exposing concrete with poor frost resistance to a standardised freeze/thaw test in the laboratory, the orientations of the resulting...