WorldWideScience

Sample records for internal carbon sulfur

  1. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.

    Science.gov (United States)

    Khalizov, Alexei F; Xue, Huaxin; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-02-12

    Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing state. Flame-generated soot aerosol is size-selected with a double-differential mobility analyzer (DMA) setup to eliminate multiply charged particle modes and then exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3)) and water vapor (5-80% relative humidity, RH). Light extinction and scattering by fresh and internally mixed soot aerosol are measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively, and the absorption is derived as the difference between extinction and scattering. The optical properties of fresh soot are independent of RH, whereas soot internally mixed with sulfuric acid exhibits significant enhancement in light absorption and scattering, increasing with the mass fraction of sulfuric acid coating and relative humidity. For soot particles with an initial mobility diameter of 320 nm and a 40% H(2)SO(4) mass coating fraction, absorption and scattering are increased by 1.4- and 13-fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1 to 0.5 after coating and humidification. Additional measurements with soot particles that are first coated with sulfuric acid and then heated to remove the coating show that both scattering and absorption are enhanced by irreversible restructuring of soot aggregates to more compact globules. Depending on the initial size and density of soot aggregates, restructuring acts to increase or decrease the absorption cross-section, but the combination of restructuring and encapsulation always results in an increased absorption for

  2. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery

    International Nuclear Information System (INIS)

    Chen Shuru; Zhai Yunpu; Xu Guiliang; Jiang Yanxia; Zhao Dongyuan; Li Juntao; Huang Ling; Sun Shigang

    2011-01-01

    Ordered mesoporous carbon/sulfur (OMC/S) nanocomposites with hierarchically structured sulfur loading, ranging from 50 to 75 wt%, were synthesized via a simple melt-diffusion strategy. The OMC with a BET surface area of 2102 m 2 g -1 , a pore volume of 2.0 cm 3 g -1 and unique bimodal mesoporous (5.6/2.3 nm) structure, was prepared from a triconstituent co-assembly method. The resulting OMC/S nanocomposite material served as cathode of rechargeable lithium-sulfur (Li-S) battery. It has been tested that the novel OMC/S cathode can deliver a superior reversible capacity and cyclability. In particular, the nanocomposite with a loading of 60 wt% sulfur (OMC/S-60) presents the highest sulfur utilization ca. 70%, an excellent high rate capability ca. 6 C and a good cycling stability for up to 400 full charge-discharge cycles. The exceptional electrochemical performances are exclusively attributed to the large internal surface area and high porosity of the ordered mesoporous carbon, which favorites both electron and Li-ion transportations.

  3. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  4. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  5. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohui; Kim, Dul-Sun [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Hyo-Jun; Kim, Ki-Won [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Cho, Kwon-Koo, E-mail: kkcho66@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{sup 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.

  6. Microporous Carbon Polyhedrons Encapsulated Polyacrylonitrile Nanofibers as Sulfur Immobilizer for Lithium-Sulfur Battery.

    Science.gov (United States)

    Zhang, Ye-Zheng; Wu, Zhen-Zhen; Pan, Gui-Ling; Liu, Sheng; Gao, Xue-Ping

    2017-04-12

    Microporous carbon polyhedrons (MCPs) are encapsulated into polyacrylonitrile (PAN) nanofibers by electrospinning the mixture of MCPs and PAN. Subsequently, the as-prepared MCPs-PAN nanofibers are employed as sulfur immobilizer for lithium-sulfur battery. Here, the S/MCPs-PAN multicomposites integrate the advantage of sulfur/microporous carbon and sulfurized PAN. Specifically, with large pore volume, MCPs inside PAN nanofibers provide a sufficient sulfur loading. While PAN-based nanofibers offer a conductive path and matrix. Therefore, the electrochemical performance is significantly improved for the S/MCPs-PAN multicomposite with a suitable sulfur content in carbonate-based electrolyte. At the current density of 160 mA g -1 sulfur , the S/MPCPs-PAN composite delivers a large discharge capacity of 789.7 mAh g -1 composite , high Coulombic efficiency of about 100% except in the first cycle, and good capacity retention after 200 cycles. In particular, even at 4 C rate, the S/MCPs-PAN composite can still release the discharge capacity of 370 mAh g -1 composite . On the contrary, the formation of the thick SEI layer on the surface of nanofibers with a high sulfur content are observed, which is responsible for the quick capacity deterioration of the sulfur-based composite in carbonate-based electrolyte. This design of the S/MCPs-PAN multicomposite is helpful for the fabrication of stable Li-S battery.

  7. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  8. A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Su Yusheng; Manthiram, Arumugam

    2012-01-01

    Highlights: ► Carbon-wrapped sulfur composite was obtained via an in situ sulfur deposition route. ► Sulfur–carbon composite suppresses the shuttle effect during charging. ► Sulfur–carbon composite shows enhanced cyclability and rate capability. ► Sulfur–carbon composite retains structural integrity and low impedance during cycling. - Abstract: An in situ sulfur deposition route has been developed for synthesizing sulfur–carbon composites as cathode materials for lithium–sulfur batteries. This facile synthesis method involves the precipitation of elemental sulfur at the interspaces between carbon nanoparticles in aqueous solution at room temperature. The product has been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge–discharge measurements, and electrochemical impedance spectroscopy. The sulfur–carbon composite cathode with 75 wt.% active material thus obtained exhibits a remarkably high first discharge capacity of 1116 mAh g −1 with good cycle performance, maintaining 777 mAh g −1 after 50 cycles. The significantly improved electrochemical performance of the sulfur–carbon composite cathode is attributed to the carbon-wrapped sulfur network structure, which suppresses the loss of active material during charging/discharging and the migration of the polysulfide ions to the anode (i.e., shuttling effect). The integrity of the cathode structure during cycling is reflected in low impedance values observed after cycling. This facile in situ sulfur deposition route represents a low-cost approach to obtain high-performance sulfur–carbon composite cathodes for rechargeable Li–S batteries.

  9. Carbon and sulfur distributions and abundances in lunar fines

    Science.gov (United States)

    Gibson, E. K., Jr.; Moore, G. W.

    1973-01-01

    Total sulfur abundances have been determined for 20 Apollo 14, 15, and 16 soil samples and one Apollo 14 breccia. Sulfur concentrations range from 474 to 844 microg S/g. Volatilization experiments on selected samples have been carried out using step-wise heating. Sample residues have been analyzed for their total carbon and sulfur abundances to establish the material balance in lunar fines for these two elements. Volatilization experiments have established that between 31 to 54 microg C/g remains in soils which have been heated at 1100 C for 24 hours under vacuum. The residual carbon is believed to be indigenous lunar carbon whereas all forms of carbon lost from samples below 1100 C is extralunar carbon. Total carbon and sulfur abundances taken from the literature have been used to show the depletion of volatile elements with increasing grade for the Apollo 14 breccias.

  10. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  11. Global geochemical cycles of carbon, sulfur and oxygen

    Science.gov (United States)

    Walker, J. C.

    1986-01-01

    Time resolved data on the carbon isotopic composition of carbonate minerals and the sulfur isotopic composition or sulfate minerals show a strong negative correlation during the Cretaceous. Carbonate minerals are isotopically heavy during this period while sulfate minerals are isotopically light. The implication is that carbon is being transferred from the oxidized, carbonate reservoir to the reservoir of isotopically light reduced organic carbon in sedimentary rocks while sulfur is being transferred from the reservoir of isotopically light sedimentary sulfide to the oxidized, sulfate reservoir. These apparently oppositely directed changes in the oxidation state of average sedimentary carbon and sulfur are surprising because of a well-established and easy to understand correlation between the concentrations of reduced organic carbon and sulfide minerals in sedimentary rocks. Rocks rich in reduced carbon are also rich in reduced sulfur. The isotopic and concentration data can be reconciled by a model which invokes a significant flux of hydrothermal sulfide to the deep sea, at least during the Cretaceous.

  12. Enhanced electrochemical performance of sulfur/polyacrylonitrile composite by carbon coating for lithium/sulfur batteries

    Science.gov (United States)

    Peng, Huifen; Wang, Xiaoran; Zhao, Yan; Tan, Taizhe; Mentbayeva, Almagul; Bakenov, Zhumabay; Zhang, Yongguang

    2017-10-01

    A carbon-coated sulfur/polyacrylonitrile (C@S/PAN) core-shell structured composite is successfully prepared via a novel solution processing method. The sulfur/polyacrylonitrile (S/PAN) core particle has a diameter of 100 nm, whereas the carbon shell is about 2 nm thick. The as-prepared C@S/PAN composite shows outstanding electrochemical performance in lithium/sulfur (Li/S) batteries delivering a high initial discharge capacity of 1416 mAh g-1. Furthermore, it exhibits 89% retention of the initial reversible capacity over 200 cycles at a constant current rate of 0.1 C. The improved performance contributed by the unique composition and the core-shell structure, wherein carbon matrix can also withstand the volume change of sulfur during the process of charging and discharging as well as provide channels for electron transport. In addition, polyacrylonitrile (PAN) matrix suppresses the shuttle effect by the covalent bonding between sulfur (S) and carbon (C) in the PAN matrix. [Figure not available: see fulltext.

  13. Nitrogen--sulfur--carbon nanocomposites and their application as cathode materials in lithium--sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Sun, Xiao-Guang; Guo, Bingkun; Wang, Xiqing; Mayes, Richard T.; Ben, Teng; Qiu, Shilun

    2016-09-27

    The invention is directed in a first aspect to electron-conducting porous compositions comprising an organic polymer matrix doped with nitrogen atoms and having elemental sulfur dispersed therein, particularly such compositions having an ordered framework structure. The invention is also directed to composites of such S/N-doped electron-conducting porous aromatic framework (PAF) compositions, or composites of an S/N-doped mesoporous carbon composition, which includes the S/N-doped composition in admixture with a binder, and optionally, conductive carbon. The invention is further directed to cathodes for a lithium-sulfur battery in which such composites are incorporated.

  14. Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte.

    Science.gov (United States)

    Hu, Lei; Lu, Yue; Li, Xiaona; Liang, Jianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-03-01

    Developing appropriate sulfur cathode materials in carbonate-based electrolyte is an important research subject for lithium-sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate-based electrolyte for lithium-sulfur batteries by tuning different micropore size(0-2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self-activation strategy, which can produce microporous carbon for a sulfur host from alkali-complexes. Besides, by changing different alkali-ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate-based electrolyte for Li-S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Binding of dinitrogen to an iron-sulfur-carbon site

    Science.gov (United States)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  16. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries

    Science.gov (United States)

    Zeng, Shao-Zhong; Yao, Yuechao; Zeng, Xierong; He, Qianjun; Zheng, Xianfeng; Chen, Shuangshuang; Tu, Wenxuan; Zou, Jizhao

    2017-07-01

    Lithium-sulfur batteries are the most promising candidates for future high-energy applications because of the unparalleled capacity of sulfur (1675 mAh g-1). However, lithium-sulfur batteries have limited cycle life and rate capability due to the dissolution of polysulfides and the extremely low electronic conductivity of sulfur. To solve these issues, various porous carbons including hollow carbon nanospheres (HCNs) have been used for improving the conductivity. However, these methods still suffer from polysulfides dissolution/loss owing to their weak physical adsorption to polysulfides. Herein, we introduced a covalent grafting route to composite the HCNs and the vulcanized trithiocyanuric acid (TTCA). The composite exhibits a high loading of the vulcanized TTCA by the HCNs with high surface area and large pore volume, and covalent bonds to sulfur, effectively depressing the dissolution of polysulfides. The first discharge capacity of the composite reaches 1430 mAh g-1 at 0.1 C and 1227 mAh g-1 at 0.2 C.

  17. Multiwalled carbon nanotubes-sulfur composites with enhanced electrochemical performance for lithium/sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xin Zhou; Jin, Bo, E-mail: jinbo@jlu.edu.cn; Xin, Pei Ming; Wang, Huan Huan

    2014-07-01

    Multiwalled carbon nanotubes-sulfur (MWCNTs-S) composites were synthesized by chemical activation of MWCNTs and capillarity between sulfur and MWCNTs. The MWCNTs activated by potassium hydroxide (denoted as K-MWCNTs) were used as conductive additive. The as-prepared K-MWCNTs-S composites can display excellent cycle stability and rate capability with the initial discharge capacity of 741 mAh g⁻¹ and capacity retention of 80% after 50 cycles compared to pure S. The improvement in the electrochemical performance for K-MWCNTs-S composites is attributed to the interstitial structure of the MWCNTs resulted from the strong chemical etching, which can facilitate the insertion and extraction of Li ions and more better percolation of the electrolyte, and also ascribed to enhanced electronic conductivity of K-MWCNTs-S composites. It is indicated that the K-MWCNTs-S composites can be used as the cathode materials for lithium–sulfur batteries.

  18. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    Science.gov (United States)

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  19. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  20. A nitrogen-doped 3D hierarchical carbon/sulfur composite for advanced lithium sulfur batteries

    Science.gov (United States)

    Liu, Xiaoyan; Huang, Wenlong; Wang, Dongdong; Tian, Jianhua; Shan, Zhongqiang

    2017-07-01

    Hybrid nanostructures containing one-dimensional (1D) carbon nanotubes (CNTs) and three-dimensional (3D) mesoporous carbon sphere have many promising applications due to their unique physical chemical properties. In this study, a novel 3D hierarchical carbon material (MCCNT) composed of mesoporous carbon sphere core and nitrogen rich CNTs shell is successfully prepared via an aerosol spray and subsequent chemical vapor deposition (CVD) processes. Owning to its well defined porous structure and favorable conductive framework, MCCNT is used as a potential sulfur host in lithium sulfur batteries through a classic melt-diffusion method. When cycled at a current density of 0.2 C (1 C = 1675 mA h g-1), it delivers an initial capacity as high as 1438.7 mAh g-1. Even if the current density increase to 1 C, the specific capacity still remain up to 534.6 mAh g-1 after 300 cycles. The enhanced electrochemical performance can be attributed to the hybrid structure of MCCNT, in which, the porous core works as a host to confine sulfur and accommodate volume expansion and the external CNTs provide excellent electron and ion conductive frame work. Furthermore, the in-situ doped nitrogen on the surface of CNTs enables effective trapping of lithium polysulfides, leading to a much-improved cycling performance.

  1. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  2. Selective adsorption of refractory sulfur species on active carbons and carbon based CoMo catalyst.

    Science.gov (United States)

    Farag, Hamdy

    2007-03-01

    Adsorption technique could be a reliable alternative in removing to a certain remarkable extent the sulfur species from the feedstock of petroleum oil. The performance of various carbons on adsorption of model sulfur compounds in a simulated feed solution and the sulfur containing compounds in the real gas oil was evaluated. The adsorption experiments have been carried out in a batch scale at ambient temperature and under the atmospheric pressure. In general, the most refractory sulfur compounds in the hydrotreatment reactions were selectively removed and adsorbed. It was found that the adsorbents affinities to dibenzothiophene and 4,6-dimethyldibenzothiophene were much more favored and pronounced than the aromatic matrices like fluorene, 1-methylnaphthalene and 9-methylanthracene. Among the sulfur species, 4,6-dimethyldibenzothiophene was the highest to be removed in terms of both selectivity and capacity over all the present adsorbents. The studied adsorbents showed significant capacities for the polyaromatic thiophenes. The electronic characteristics seem to play a certain role in such behavior. Regeneration of the used adsorbent was successfully attained either by washing it with toluene or by the release of the adsorbates through heat treatment. A suggested adsorptive removal process of sulfur compounds from petroleum distillate over carbon supported CoMo catalyst was discussed.

  3. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis

    OpenAIRE

    Boldrin, P; Ruiz Trejo, E; Mermelstein, J; Bermudez Menendez, J; Ramirez Reina, T; Brandon, N

    2016-01-01

    Solid oxide fuel cells (SOFCs) are a rapidly emerging energy technology for a low carbon world, providing high efficiency, potential to use carbonaceous fuels and compatibility with carbon capture and storage. However, current state-of-the-art materials have low tolerance to sulfur, a common contaminant of many fuels, and are vulnerable to deactivation due to carbon deposition when using carbon-containing compounds. In this review we first study the theoretical basis behind carbon and sulfur ...

  4. Sulfur and carbon isotopes in scapolite-bearing granulites of the São José do Rio Pardo area, Brazil

    Science.gov (United States)

    Iyer, S. S.; de Oliveira, M. A. F.; Hoefs, J.; Krouse, H. R.

    1992-08-01

    Sulfur and carbon isotope compositions of ten scapolites from granulite-facies rocks of the São José do Rio Pardo area, Guaxupé Complex, Brazil, were measured. Scapolite is the primary and major rock-forming mineral in these rocks (up to 40 volume %). The isotopic composition of the sulfate and carbonate group in the scapolite structure has δ 34S values of +1.0‰ to +6.7‰, and δ 13C values of -14.3‰ to -6.3‰, respectively. The sulfur isotope data may be related to an upper mantle (external) or lower crustal (internal) source for the sulfur, whereas the carbon appears to have been derived from an internal source. Thus, the carbon and sulfur isotope data can be explained without invoking an external (mantle) source.

  5. Characteristics of activated carbon remove sulfur particles against smog.

    Science.gov (United States)

    Ge, Shengbo; Liu, Zhenling; Furuta, Yuzo; Peng, Wanxi

    2017-09-01

    Sulfur particles, which could cause diseases, were the main powder of smog. And activated carbon had the very adsorption characteristics. Therefore, five sulfur particles were adsorbed by activated carbon and were analyzed by FT-IR. The optimal adsorption time were 120 min of Na 2 SO 3 , 120 min of Na 2 S 2 O 8 , 120 min of Na 2 SO 4 , 120 min of Fe 2 (SO 4 ) 3 and 120 min of S. FT-IR spectra showed that activated carbon had the eight characteristic absorption of S-S stretch, H 2 O stretch, O-H stretch, -C-H stretch, conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 O stretch or CC stretch, CH 2 bend, C-O stretch and acetylenic C-H bend vibrations at 3850 cm -1 , 3740 cm -1 , 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 , respectively. For Na 2 SO 3 , the peaks at 2920 cm -1 , 1630 cm -1 , 1390 cm -1 and 1110 cm -1 achieved the maximum at 20 min. For Na 2 S 2 O 8 , the peaks at 3850 cm -1 , 3740 cm -1 and 2920 cm -1 achieved the maximum at 60 min. The peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 40 min. For Na 2 SO 4 , the peaks at 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 60 min. For Fe 2 (SO 4 ) 3 , the peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 20 min. For S, the peaks at 1630 cm -1 , 1390 cm -1 and 600 cm -1 achieved the maximum at 120 min. It provided that activated carbon could remove sulfur particles from smog air to restrain many anaphylactic diseases.

  6. Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries

    International Nuclear Information System (INIS)

    Wang Li; He Xiangming; Li Jianjun; Chen Min; Gao Jian; Jiang Changyin

    2012-01-01

    Highlights: ► The sulfurized polyacrylonitrile composite shows good performance. ► Stable cycling capacity over 700 mAh g −1 of the composite. ► Close to 100% utilization of elemental sulfur. ► Capacity retention over 97% after 80 cycles. ► Average capacity degradation rate less than 0.03% per cycle. - Abstract: The charge/discharge characteristics of sulfurized polyacrylonitrile composite (SPAN) cathodes with different sulfur content in conventional carbonate based electrolyte for rechargeable lithium batteries have been investigated. The good performance of SPAN in the carbonate based electrolyte indicates a material difference between SPAN and elemental sulfur/carbon composite materials. The SPAN with sulfur contents of 33.7%, 42.0% and 46.3% are prepared by control of heating time. The SPAN with sulfur content of 42.0% shows the best electrochemical performance, it can deliver stable cycling capacity over 700 mAh g −1 , and keep capacity retention over 97% after 80 cycles in the electrolyte of 1 M LiPF 6 /EC + DEC. The average capacity degradation rate is less than 0.03% per cycle excluding the first discharge capacity. Prototype 100 mAh Li/SPAN cell is assembled, showing energy density of 437 Wh kg −1 excluding the weight of package and capacity retention of 90.4% after 30 cycles at 100% depth of discharge. This study demonstrates that the sulfurized polyacrylonitrile composite in the electrolyte of 1 M LiPF 6 /EC + DEC is a promising battery chemistry, which materials are abundant, of low cost and easily available, to fabricate Li/SPAN batteries, paving an alternative avenue to develop high performance lithium batteries for energy storage and vehicular application.

  7. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Directory of Open Access Journals (Sweden)

    Renjie Chen

    2014-12-01

    Full Text Available A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D composite for use in a cathode for a lithium sulfur (Li-S battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8, a typical zinc-containing metal organic framework (MOF, which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  8. Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium-sulfur battery with improved cyclic stability

    Science.gov (United States)

    Li, Zihao; Li, Xiaogang; Liao, Youhao; Li, Xiaoping; Li, Weishan

    2016-12-01

    We report a novel composite of sulfur loaded in micropore-rich carbon aerogel (CA-S), as cathode of lithium-sulfur battery. Carbon aerogel (CA) is synthesized through phenol-formaldehyde reaction with a low catalyst concentration and carbonization under high temperature, and loaded with sulfur via chemical deposition and heat treatment. The physical properties of the resulting CA and the electrochemical performances of the resulting CA-S are investigated by scanning electron microscopy, thermal gravimetric analysis, Brunauer-Emmett-Teller characterization, electrochemical impedance spectroscopy, and galvanostatic discharge/charge test, with a comparison of a common carbon material, acetylene black (AB), and sulfur loaded in AB (AB-S). It is found that the CA is micropore-rich with micropore volume over 66% of total pore volume, and the CA-S exhibits significantly improved cyclic stability compared with AB-S. The improved performance of CA-S is attributed to the confinement of the micropores in CA to small sulfur allotropes and corresponding lithium sulfides.

  9. Effect of Carbon and Binder on High Sulfur Loading Electrode for Li-S Battery Technology

    International Nuclear Information System (INIS)

    Sun, Ke; Cama, Christina A.; Huang, Jian; Zhang, Qing; Hwang, Sooyeon; Su, Dong; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2017-01-01

    For the Lithium-Sulfur (Li-S) battery to be competitive in commercialization, it is requested that the sulfur electrode must have deliverable areal capacity > 8 mAh cm −2 , which corresponds to a sulfur loading > 6 mg cm −2 . At this relatively high sulfur loading, we evaluated the impact of binder and carbon type on the mechanical integrity and the electrochemical properties of sulfur electrodes. We identified hydroxypropyl cellulose (HPC) as a new binder for the sulfur electrode because it offers better adhesion between the electrode and the aluminum current collector than the commonly used polyvinylidene fluoride (PVDF) binder. In combination with the binder study, multiple types of carbon with high specific surface area were evaluated as sulfur hosts for high loading sulfur electrodes. A commercial microporous carbon derived from wood with high pore volume showed the best performance. An electrode with sulfur loading up to 10 mg cm −2 was achieved with the optimized recipe. Based on systematic electrochemical studies, the soluble polysulfide to insoluble Li 2 S 2 /Li 2 S conversion was identified to be the major barrier for high loading sulfur electrodes to achieve high sulfur utilization.

  10. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis.

    Science.gov (United States)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Mermelstein, Joshua; Bermúdez Menéndez, José Miguel; Ramı Rez Reina, Tomás; Brandon, Nigel P

    2016-11-23

    Solid oxide fuel cells (SOFCs) are a rapidly emerging energy technology for a low carbon world, providing high efficiency, potential to use carbonaceous fuels, and compatibility with carbon capture and storage. However, current state-of-the-art materials have low tolerance to sulfur, a common contaminant of many fuels, and are vulnerable to deactivation due to carbon deposition when using carbon-containing compounds. In this review, we first study the theoretical basis behind carbon and sulfur poisoning, before examining the strategies toward carbon and sulfur tolerance used so far in the SOFC literature. We then study the more extensive relevant heterogeneous catalysis literature for strategies and materials which could be incorporated into carbon and sulfur tolerant fuel cells.

  12. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  13. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  14. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Iyer, S.D.; Chauhan, O.S.; PrakashBabu, C.

    Pleistocene has been inferred. The higher contents of organic carbon and sulfide sulfur and their negative relationship clearly establish the existence of a reducing environment below 65 cm subbottom depth. The occurrence of pyrite framboids and crystals...

  15. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    Science.gov (United States)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  16. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  17. Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic–early Cambrian Bilara Group (Nagaur-Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Strauss, H.

    Sulfur and strontium isotope ratios are presented for carbonate and evaporite rocks from the late Neoproterozoic and early Cambrian Bilara and Hanseran Evaporite Groups, NW India. The sulfur isotopic compositions of trace sulfate in carbonate rocks...

  18. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  19. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    International Nuclear Information System (INIS)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-01-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g −1 and enhanced capacity retention of 862 mAh g −1 at 0.1 C after 100 cycles.

  20. Carbon/Carbon Pistons for Internal Combustion Engines

    Science.gov (United States)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  1. Emissions of carbon, nitrogen, and sulfur from biomass burning in Nigeria

    International Nuclear Information System (INIS)

    Akeredolu, F.; Isichei, A.O.

    1991-01-01

    The atmospheric implications of the effects of burning of vegetation in Nigeria are discussed. The following topics are explored: the extent of biomass burning by geographical area; estimates of emission rates of carbon, nitrogen and sulfur; and the impact on biogeochemical cycling of elements. The results suggest that biomass burning generates a measurable impact on the cycling of carbon and nitrogen

  2. Effect of Sulfur Concentration on the Morphology of Carbon Nanofibers Produced from a Botanical Hydrocarbon

    Directory of Open Access Journals (Sweden)

    Ghosh Kaushik

    2008-01-01

    Full Text Available AbstractCarbon nanofibers (CNF with diameters of 20–130 nm with different morphologies were obtained from a botanical hydrocarbon: Turpentine oil, using ferrocene as catalyst source and sulfur as a promoter by simple spray pyrolysis method at 1,000 °C. The influence of sulfur concentration on the morphology of the carbon nanofibers was investigated. SEM, TEM, Raman, TGA/DTA, and BET surface area were employed to characterize the as-prepared samples. TEM analysis confirms that as-prepared CNFs have a very sharp tip, bamboo shape, open end, hemispherical cap, pipe like morphology, and metal particle trapped inside the wide hollow core. It is observed that sulfur plays an important role to promote or inhibit the CNF growth. Addition of sulfur to the solution of ferrocene and turpentine oil mixture was found to be very effective in promoting the growth of CNF. Without addition of sulfur, carbonaceous product was very less and mainly soot was formed. At high concentration of sulfur inhibit the growth of CNFs. Hence the yield of CNFs was optimized for a given sulfur concentration.

  3. The Carbon and Sulfur Cycles through the Cenozoic: Insight from Oxygen Isotopes in Marine Sulfate

    Science.gov (United States)

    Turchyn, A. V.; Schrag, D. P.

    2004-12-01

    Marine sulfate plays an important role in the cycling of biochemicals in organic rich sediments, serving as the terminal electron acceptor in the remineralization of organic matter and responsible for nearly all anaerobic methane oxidation. Because sulfur isotopes are largely conserved during sulfur cycling in organic rich sediments, they reflect mostly changes in net sulfur burial, and have been used to study fluctuations in sulfur mineral burial over Earth history. Recently, we have shown that temporal variability in oxygen isotopes measured in marine sulfate (d18O-SO4) highlight changes the pathways of sulfur cycling on continental margins because the d18O-SO4 is reset during sulfate reduction and sulfide reoxidation. The fluxes associated with sulfur cycling, predominantly in shallow sediments, are nearly three times larger than riverine input. We present a continuous record of d18O-SO4 in marine barite over the Cenozoic. There is considerable variability in the d18OSO4, with major peaks 55, 15, and 3 million years ago. There is little correlation between sulfur isotopes in marine sulfate and d18O-SO4, illustrating the fact that different processes control the sulfur and oxygen isotopic composition of sulfate. The peaks in the d18O-SO4 at 55 and 15 Ma coincide with peaks in the d13C of benthic foraminifera, highlighting the connection between the carbon and sulfur cycles in organic rich sediments. In addition, the increase in the d18O of the ocean (measured in benthic foraminifera) between 34 and 28 Ma coincides with a slight increase in the d18O-SO4. We have modeled the sulfur cycle for both sulfur and oxygen isotopes and will show model results and interpretation over several key intervals over the Cenozoic, including the Mid-Miocene Climate Optimum, the Eocene-Oligocene boundary, and the Paleocene productivity high.

  4. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    Science.gov (United States)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  5. A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Ji-Yoon Song

    2018-02-01

    Full Text Available For practical application of lithium–sulfur batteries (LSBs, it is crucial to develop sulfur cathodes with high areal capacity and cycle stability in a simple and inexpensive manner. In this study, a carbon cloth infiltrated with a sulfur-containing electrolyte solution (CC-S was utilized as an additive-free, flexible, high-sulfur-loading cathode. A freestanding carbon cloth performed double duty as a current collector and a sulfur-supporting/trapping material. The active material in the form of Li2S6 dissolved in a 1 M LiTFSI-DOL/DME solution was simply infiltrated into the carbon cloth (CC during cell fabrication, and its optimal loading amount was found to be in a range between 2 and 10 mg/cm2 via electrochemical characterization. It was found that the interwoven carbon microfibers retained structural integrity against volume expansion/contraction and that the embedded uniform micropores enabled a high loading and an efficient trapping of sulfur species during cycling. The LSB coin cell employing the CC-S electrode with an areal sulfur loading of 6 mg/cm2 exhibited a high areal capacity of 4.3 and 3.2 mAh/cm2 at C/10 for 145 cycles and C/3 for 200 cycles, respectively, with minor capacity loss (<0.03%/cycle. More importantly, such high performance could also be realized in flexible pouch cells with dimensions of 2 cm × 6 cm before and after 300 bending cycles. Simple and inexpensive preparation of sulfur cathodes using CC-S electrodes, therefore, has great potential for the manufacture of high-performance flexible LSBs.

  6. Systemic swings in end-Permian environments from Siberian Traps carbon and sulfur outgassing

    Science.gov (United States)

    Black, B. A.; Neely, R.; Lamarque, J. F.; Elkins-Tanton, L. T.; Kiehl, J. T.; Shields, C. A.; Mills, M. J.; Bardeen, C.

    2017-12-01

    U-Pb geochronology has revealed that Siberian Traps flood basalt magmatism coincided with the 252 Ma end-Permian mass extinction. Most environmental consequences of magmatism follow directly or indirectly from the release of sulfur and some combination of magmatic and metamorphic carbon to the atmosphere (exceptions include ozone depletion from halogen emissions, release of toxic metals, and enhanced weathering of fresh volcanic rocks). However, the critical combinations of forcing and stress that trigger global mass extinction remain unknown. In particular, the combined and competing effects of sulfur and carbon outgassing on Earth systems remain to be quantified. Here we present results from global climate model simulations of flood basalt outgassing that account for sulfur chemistry and aerosol microphysics. We consider the effects of sulfur and carbon in isolation and in tandem, and find that carbon and sulfur emissions combine to generate swings in climate, ocean circulation, and hydrology. Our simulations provide a self-consistent framework to quantitatively explain observed features of the end-Permian including surface warming, fluctuating ocean oxygenation, intense weathering, and carbon cycle perturbation, unifying observed changes in climate and geochemical cycles with feedbacks initiated by Siberian Traps magmatism.

  7. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    in combination with (15)N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min(-1) mg of protein(-1). Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min(-1......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol...

  8. Steam-etched spherical carbon/sulfur composite with high sulfur capacity and long cycle life for Li/S battery application.

    Science.gov (United States)

    Wang, Meiri; Zhang, Hongzhang; Wang, Qian; Qu, Chao; Li, Xianfeng; Zhang, Huamin

    2015-02-18

    Spherical carbon material with large pore volume and specific area was designed for lithium/sulfur (Li/S) soft package battery cathode with sulfur loading over 75%, exhibiting good capacity output (about 1300 mAh g(-1)-S) and excellent capacity retention (70% after 600 cycles) at 0.1 C. The spherical carbon is prepared via in situ steam etching method, which has the advantages of low cost and easy scale up.

  9. Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery

    Science.gov (United States)

    Tang, Zhiwei; Jiang, Jinglin; Liu, Shaohong; Chen, Luyi; Liu, Ruliang; Zheng, Bingna; Fu, Ruowen; Wu, Dingcai

    2017-12-01

    An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g-1), pore volume (2.04 cm3 g-1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is prepared via a simple two-step procedure, including melt-infiltration of sublimed sulfur into ACA-500, followed by an in situ polymerization of aniline on the surface of ACA-500-S composite. The obtained ACA-500-S@PANi composite delivers a high reversible capacity up to 1208 mAh g-1 at 0.2C and maintains 542 mAh g-1 even at a high rate (3C). Furthermore, this composite exhibits a discharge capacity of 926 mAh g-1 at the initial cycle and 615 mAh g-1 after 700 cycles at 1C rate, revealing an extremely low capacity decay rate (0.48‰ per cycle). The excellent electrochemical performance of ACA-500-S@PANi can be attributed to the synergistic effect of hierarchical porous nanonetwork structure and PANi coating. Activated carbon aerogels with high surface area and unique three-dimensional (3D) interconnected hierarchical porous structure offer an efficient conductive network for sulfur, and a highly conductive PANi-coating layer further enhances conductivity of the electrode and prevents the dissolution of polysulfide species.

  10. Laboratory Measurements of the Effect of Sulfuric and Organic Acid Coatings on the Optical Properties of Carbon Soot Aerosols

    Science.gov (United States)

    Xue, H.; Khalizov, A.; Zhang, R.

    2008-12-01

    Aerosol particles perturb the Earth-atmosphere radiative balance through scattering and absorption of the solar energy. Soot or black carbon, produced during combustion of fossil fuels and biofuels, is the major component responsible for light absorption by aerosol particles. The variation in the reported mass-specific absorption cross-sections (MAC) of fresh soot and increased light absorption by aged soot aerosols internally mixed with non-absorbing materials are the major factors leading to large uncertainties in the evaluation of the aerosol optical effects. We have investigated the optical properties of submicron carbon soot aerosols during simulated atmospheric processing with sulfuric acid and dicarboxylic organic acids. Internally mixed soot particles with known size, morphology, and the mixing state were produced by exposing the size-classified, flame-generated soot to sulfuric acid and organic acid vapor. Light extinction and scattering by fresh and internally mixed soot were measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively; light absorption was derived as the difference between extinction and scattering. Mass-specific absorption cross-sections for fresh and internally mixed soot aggregates were calculated using the measured effective densities of soot cores. The optical properties of fresh soot were independent of the relative humidity (RH). Internally mixed soot exhibited significant enhancement in light absorption and scattering, increasing with the mass fraction of the coating material and RH. Sulfuric acid was found to cause greater enhancement in soot optical properties than organic acids. The higher absorption and scattering resulted in the increased single scattering albedo of coated soot aerosol. The measurements indicate that the irreversible restructuring of soot aggregates to more compact globules is a major contributor to the enhanced optical properties of internally mixed soot.

  11. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries

    OpenAIRE

    Zhao, Yan; Wang, Li; Huang, Lanyan; Maximov, Maxim. Yu.; Jin, Mingliang; Zhang, Yongguang; Wang, Xin; Zhou, Guofu

    2017-01-01

    In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC) is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries’ appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen co-doped porous carbon (S/ONPC) composite materials reveal a high initial capacity of 1150 mAh·g−1 as...

  12. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State

    Science.gov (United States)

    Fry, B.; Hayes, J. M. (Principal Investigator)

    1986-01-01

    The trophic importance of bacterioplankton as a source of carbon and sulfur nutrition for consumers in meromictic lakes was tested using stable carbon (delta 13C) and sulfur (delta 34S) isotopic measurements. Studies in three lakes near Syracuse, New York, showed that most consumers ultimately derive their C and S nutrition from a mixture of terrestrial detritus, phytoplankton, and littoral vegetation, rather than from bacterioplankton. Food webs in these meromictic lakes are thus similar to those in other lakes that lack dense populations of bacterioplankton.

  13. Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Fan, Lei; Zhuang, Houlong L; Zhang, Kaihang; Cooper, Valentino R; Li, Qi; Lu, Yingying

    2016-12-01

    Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified cathode through both chemical and physical confinements, these chloride-coated cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. From adsorption experiments and theoretical calculations, it is shown that not only the sulfide-adsorption effect but also the diffusivity in the vicinity of these chlorides materials plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Balancing the adsorption and diffusion effects of these nonconductive materials could lead to the enhanced cycling performance of an Li-S cell. Electrochemical analyses over hundreds of cycles indicate that cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salts, delivering an average specific capacity of above 1200 mAh g -1 at 0.2 C.

  14. Macroporous Activated Carbon Derived from Rapeseed Shell for Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Mingbo Zheng

    2017-10-01

    Full Text Available Lithium–sulfur batteries have drawn considerable attention because of their extremely high energy density. Activated carbon (AC is an ideal matrix for sulfur because of its high specific surface area, large pore volume, small-size nanopores, and simple preparation. In this work, through KOH activation, AC materials with different porous structure parameters were prepared using waste rapeseed shells as precursors. Effects of KOH amount, activated temperature, and activated time on pore structure parameters of ACs were studied. AC sample with optimal pore structure parameters was investigated as sulfur host materials. Applied in lithium–sulfur batteries, the AC/S composite (60 wt % sulfur exhibited a high specific capacity of 1065 mAh g−1 at 200 mA g−1 and a good capacity retention of 49% after 1000 cycles at 1600 mA g−1. The key factor for good cycling stability involves the restraining effect of small-sized nanopores of the AC framework on the diffusion of polysulfides to bulk electrolyte and the loss of the active material sulfur. Results demonstrated that AC materials derived from rapeseed shells are promising materials for sulfur loading.

  15. Sulfur (VI) modified graphite carbon nitride nanosheets with chrysanthemum-like structure and enhanced photocatalytic activity

    Science.gov (United States)

    Xie, Lili; Dai, Yunrong; Zhou, Yijing; Chang, Xin; Yin, Lifeng

    2018-02-01

    Chrysanthemum-like sulfur (VI) modified graphite carbon nitride (s/g-C3N4) was synthesized by sulfuring and sonicating bulk g-C3N4 at 800 kHz. The sulfuring relaxed the interlayer force of g-C3N4, and the sonication constructed its chrysanthemum-like structure which enhances the separation of photo-generated carriers and photochemical response. Density functional calculation and diffusion reflection spectra (DRS) verified that sulfur (VI) modification shifted down the valence band edge of g-C3N4 and improved the redox potentials of g-C3N4. The photocatalytic degradation efficiency of 4-nitrophenol (10 mg L-1) by s/g-C3N4 was 49.3 times higher than that by bulk g-C3N4 under visible light irradiation (>400 nm).

  16. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    Science.gov (United States)

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-01

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g-1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g-1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g-1 at 8 C for 30 cycles, which is among the best reported rate capabilities.Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior

  17. Carbon monoxide poisoning and pulmonary injury from the mixture of formic and sulfuric acids.

    Science.gov (United States)

    Schneir, Aaron; Rentmeester, Landen

    2016-06-01

    The inhalation of carbon monoxide produced by the incomplete combustion of carbon remains a popular method of suicide. A much less common method of producing carbon monoxide for suicide is by mixing formic and sulfuric acids. We describe a patient who attempted suicide by mixing formic and sulfuric acids. He presented with a depressed level of consciousness, chemical burns of his airway and skin, and respiratory distress. He was found to have a metabolic acidosis, a carboxyhemoglobin of 36.8%, hyperkalemia, and rhabdomyolysis. His hospital course was notable for copious pulmonary secretions and hypoxia, but he ultimately recovered with supportive care. The case highlights the potential toxicity, particularly from inhaled carbon monoxide and formic acid, with this method of suicide.

  18. Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium-sulfur cells.

    Science.gov (United States)

    Moreno, Noelia; Caballero, Alvaro; Hernán, Lourdes; Morales, Julián; Canales-Vázquez, Jesús

    2014-08-28

    Carbon materials with ordered mesoporous structures were synthesized using soft template methods and then activated by CO2 treatment. Sulfur was incorporated in these carbons via a simple chemical deposition method in aqueous solutions and the resulting composites were tested as electrodes in Li-S cells. The electrochemical results showed that well-ordered mesoporous carbons perform better than those with a random mesopore arrangement (wormhole-like mesoporous structure). The mesopore ordering yields a framework of well-connected empty sites that results in an enhancement of both the charge carrier mobility and the reversibility of the electrochemical reaction. Although the activation with CO2 partially destroys the mesopore arrangement, which adversely affects the electrode performance, it notably increases the surface area and the micropore content which improves the connectivity between the mesopores. The final observation was an irrelevant effect of the activation process at low current densities. However, at higher rates the activated carbon composite delivered higher capacities. The hierarchical pore structure formed by micro- and mesopores should guarantee the required fast mobility of the Li(+).

  19. Characterization of carbon, sulfur and volatile compounds in nuclear fuel U3SI2-AL

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Coelho, Felipe P.; Bustillos, Jose O.V.

    2013-01-01

    The scope of this work is to describe the characterization of Carbon, Sulfur and Volatile Compounds in nuclear fuel U 3 Si 2 -Al used in a research pool type reactor with 5 KW power capacities, located in Sao Paulo, Brazil. This reactor produces a large range of radioisotopes for radiopharmaceutical needed in Brazil nuclear medicine. The fabrication of the fuel U 3 Si 2 -Al plate is the key of the whole assembly production and its quality directly affects the safety and reliability of the fuel assembly performance. For this reason, it is very necessary to analyze the Carbon, Sulfur and Volatile Compounds to avoid damage in the fuel plate. The Carbon and Sulfur are characterized by the method of radio frequency furnace gas extraction system coupled with infrared cell detector. The Volatile Compounds are characterized by the method of heat gas extraction coupled with gravimetric technique. These methods are recommended by American Society for Testing Materials ASTM for nuclear materials. The average carbon and sulfur analyzed are 30 μg/g and 3 μg/g, respectively. The average for Volatile Compounds is 40 μg/g. These results represent satisfactory performance of the fuel inside the nuclear reactor. A statistical laboratory program has been set to validate the data generated in the nuclear fuel material to specify any agreement with the recommended ASTM methods. (author)

  20. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    Science.gov (United States)

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  1. Processes for preparing carbon fibers using gaseous sulfur trioxide

    Science.gov (United States)

    Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.

    2016-01-05

    Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.

  2. Health effects of long-term inhalation of sulfuric acid mist-carbon particle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fenters, J.D. (IIT Research Inst., Chicago, IL); Bradof, J.N.; Aranyi, C.; Ketels, K.; Ehrlich, R.; Gardner, D.E.

    1979-08-01

    The effects of exposures of mice 3 hr/day, 5 days/week for up to 20 weeks to 1.4 mg/m/sup 3/ sulfuric acid mist and 1.5 mg/m/sup 3/ carbon particle mixtures as well as 1.5 mg/m/sup 3/ carbon only were investigated. The immunologic state of the animals was examined directly by the primary response of spleen cells after specific antigen stimulation, and indirectly by infectivity studies. A quantitative measure of the effects on the immune system without the antigenic stimulation was obtained by determination of serum immunoglobulin concentrations. Significant alterations of immunoglobulin titer, depression of primary antibody response in spleen cell antigenic stimulation, and decreased resistance to respiratory infection as measured by mortality, survival time, and pulmonary consolidation after 20 weeks of exposure to acid mist and carbon particle mixtures were noted. In addition, bactericidal capacity of lungs was reduced in mice exposed to either sulfuric acid and carbon mixtures or to carbon alone, and subtle morphological changes in the respiratory tract were detected by scanning electron microscopy. Thus the alterations of the defense system suggest that prolonged exposure to low concentrations of sulfuric acid and carbon particle mixtures reduces the ability of mice to resist the secondary stress of respiratory infection.

  3. Reconstructing Sulfur Cycling at Cretaceous Methane Seeps: Novel Perspectives from Carbonate-Associated Sulfate

    Science.gov (United States)

    Hancock, L. G.; Lyons, T. W.; Gill, B. C.; Formolo, M.; Shapiro, R. S.; Tripati, A.; Loyd, S. J.; Bates, S. M.

    2013-12-01

    The mechanisms of methane cycling have been studied extensively, but its full role in the chemical and organismal evolution of the ocean through time, including its closely coupled relationship to the sulfur cycle, is still largely unresolved. Modern and ancient seeps are ideal natural labs for studying coupled methane-sulfur cycles and their geochemical fingerprints as a function of the flux of methane through these systems and its availability in the ocean and marine sediments more generally. Many seep studies examine sulfur in pyrite, but pyrite formation in these settings is typically limited by the availability of reactive iron, thus only capturing the earliest diagenetic processes. In such cases, a better way to track sulfur and its role in modulating methane production and consumption is by following the pathways of dissolved sulfate, using carbonate-associated sulfate or CAS. While commonly used to track evolving seawater composition, CAS can also constrain conditions of diagenetic carbonate precipitation. This study focuses on a Cretaceous system of methane seeps, the Tepee Buttes in Colorado--which is marked by complex carbonate paragenesis--and traces sulfur, carbon, and oxygen isotopes to unravel ancient methane cycling, its relationship to sulfur metabolic pathways, and the preservational history of proxies such as CAS during burial. Burial history of this system is further unraveled through use of carbon and oxygen isotopes of various carbonate fabrics, including clumped isotope analysis. Additional geochemical measurements from the surrounding shales, such as data for redox sensitive metals, provide a context for the host setting in the Western Interior Seaway. Preliminary data suggest that paired isotopic and concentration measurements of CAS could be used to closely track spatiotemporal variation in rates of microbial sulfate reduction as coupled to anaerobic methane oxidation. These rates in both ancient and modern settings vary spatially and

  4. Scalable Approach To Construct Free-Standing and Flexible Carbon Networks for Lithium–Sulfur Battery

    KAUST Repository

    Li, Mengliu

    2017-02-21

    Reconstructing carbon nanomaterials (e.g., fullerene, carbon nanotubes (CNTs), and graphene) to multidimensional networks with hierarchical structure is a critical step in exploring their applications. Herein, a sacrificial template method by casting strategy is developed to prepare highly flexible and free-standing carbon film consisting of CNTs, graphene, or both. The scalable size, ultralight and binder-free characteristics, as well as the tunable process/property are promising for their large-scale applications, such as utilizing as interlayers in lithium-sulfur battery. The capability of holding polysulfides (i.e., suppressing the sulfur diffusion) for the networks made from CNTs, graphene, or their mixture is pronounced, among which CNTs are the best. The diffusion process of polysulfides can be visualized in a specially designed glass tube battery. X-ray photoelectron spectroscopy analysis of discharged electrodes was performed to characterize the species in electrodes. A detailed analysis of lithium diffusion constant, electrochemical impedance, and elementary distribution of sulfur in electrodes has been performed to further illustrate the differences of different carbon interlayers for Li-S batteries. The proposed simple and enlargeable production of carbon-based networks may facilitate their applications in battery industry even as a flexible cathode directly. The versatile and reconstructive strategy is extendable to prepare other flexible films and/or membranes for wider applications.

  5. Contributions of Dissolved DMSP to Bacterial Carbon and Sulfur Assimilation Fluxes: Uncertainties and New Dimensions

    Science.gov (United States)

    Kiene, R. P.; Motard-Coté, J.

    2016-02-01

    Dimethylsulfoniopropionate (DMSP) is an organosulfur compound produced in large amounts by marine phytoplankton. Release of algal DMSP into the extracellular dissolved pool (DMSPd) makes it available for uptake by the microbial community. DMSPd concentrations are typically only 1-3 nM, but this pool is very dynamic with 1-5 turnovers per day in oligotrophic ocean waters and 10-100 turnovers per day in productive waters. Data from many different ocean regimes suggest that DMSPd contributes 3 to 15% of bacterial carbon requirements and from 50 to >100% of bacterial sulfur requirements in the euphotic zone, making DMSPd a globally-important substrate in the C & S cycles. Recent developments in DMSPd cycling research, however, raise some uncertainties about these estimates. Quantification of DMSPd cycling fluxes requires accurate measurements of the bioavailable DMSPd concentrations but these have proven difficult to obtain because conventional measurements include non-bioavailable DMSPd, and seawater processing can artificially elevate DMSPd concentrations. The conversion factors for estimating bacterial carbon and sulfur productions are also poorly constrained in DMSPd cycling studies leading to additional uncertainties. Typical low bacterial growth efficiencies used in calculating bacterial carbon demands may not apply to DMSP since DMSP-carbon use efficiency is high (50-60%) even in oligotrophic waters. Most of the estimates of DMSPd contributions to bacterial C and S fluxes have assumed that only heterotrophic bacteria participate in DMSP uptake and assimilation. We now know that prokaryotic and eukaryotic phytoplankton participate in DMSP uptake and sulfur assimilation and that light stimulates these activities, further complicating assessments of DMSPd contributions to heterotrophic metabolisms. DMSP-sulfur assimilation by diverse microbial players may help to explain why estimates of DMSPd contribution to bacterial sulfur production often exceed 100%.

  6. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Zhang, Yun, E-mail: y_zhang@scu.edu.cn [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Wu, Hao [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Li, Xiaodong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Bin, E-mail: edward.bwang@gmail.com [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2017-08-15

    Graphical abstract: Flexible three-dimensional electrode comprised of stringed N-doped hollow carbon spheres shows a synergistic sulfur confinement mechanism and a higher energy/power density for the promising lithium-sulfur batteries compared with traditional electrodes. - Highlights: • Hollow carbon beads on string structure was first prepared. • Flexible 3D electrodes as graded reservoirs for polysulfides were conducted. • Synergistic effect for enhanced polysulfides storage was claimed. - Abstract: Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li–S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li{sup +} ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g{sup −1} at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg{sup −1} and power density of 1901 Wh kg{sup −1}, which greatly improve the energy/power density of traditional lithium–sulfur batteries and will be promising for further commercial applications.

  7. Screen-Printed Carbon Electrodes Modified with Cobalt Phthalocyanine for Selective Sulfur Detection in Cosmetic Products

    Directory of Open Access Journals (Sweden)

    Ying Shih

    2011-06-01

    Full Text Available Cobalt phthalocyanine (CoPc films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE prepared under optimum conditions shows a well-behaved redox couple due to the (CoI/CoII system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L−1 NaOH. A linear calibration curve with the detection limit (DL, S/N = 3 of 0.325 mg·L−1 was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L−1. The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections, in the range of 64 and 480 mg·L−1 sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost.

  8. Screen-Printed Carbon Electrodes Modified with Cobalt Phthalocyanine for Selective Sulfur Detection in Cosmetic Products

    Science.gov (United States)

    Chen, Pei-Yen; Luo, Chin-Hsiang; Chen, Mei-Chin; Tsai, Feng-Jie; Chang, Nai-Fang; Shih, Ying

    2011-01-01

    Cobalt phthalocyanine (CoPc) films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE) prepared under optimum conditions shows a well-behaved redox couple due to the (CoI/CoII) system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L−1 NaOH. A linear calibration curve with the detection limit (DL, S/N = 3) of 0.325 mg·L−1 was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L−1. The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections), in the range of 64 and 480 mg·L−1 sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost. PMID:21747708

  9. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction

    International Nuclear Information System (INIS)

    Wang, Huan; Bo, Xiangjie; Zhang, Yufan; Guo, Liping

    2013-01-01

    Highlights: • Synthesis of novel sulfur-doped ordered mesoporous carbon (OMC-S). • OMC-S as metal-free electrocatalyst for ORR. • High electrocatalytic activity and excellent tolerance to crossover effect. • Sulfide groups (-C-S-C-) playing an important role in promoting ORR. -- Abstract: Sulfur-doped ordered mesoporous carbons (OMC-S-X) (X = 1, 2 and 3) with different sulfur contents were synthesized as metal-free electrocatalyst for oxygen reduction reaction (ORR). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectra (EDX), nitrogen adsorption–desorption, X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed to confirm the characterizations of OMC and OMC-S. The prepared OMC-S-3 exhibits high electrocatalytic activity, good stability and excellent tolerance to crossover effect for ORR. The high electrocatalytic activity of OMC-S-3 for ORR can be mainly ascribed to the doping of sulfur especially the existence of sulfide groups (-C-S-C-) which play an important role in promoting the ORR

  10. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States); Dong, Zhihua [Hangzhou Dianzi University, No. 1158, 2nd Street, Xiasha Higher Education District, Hangzhou City, Zhejiang Province (China); Warzywoda, Juliusz [Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Fan, Zhaoyang, E-mail: zhaoyang.fan@ttu.edu [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States)

    2017-02-28

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li{sub 2}S{sub 8}–Li{sub 2}S{sub 6}). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  11. Carbon, nitrogen and sulfur in lunar fines 15012 and 15013 - Abundances, distributions and isotopic compositions

    Science.gov (United States)

    Chang, S.; Lawless, J.; Romiez, M.; Kaplan, I. R.; Petrowski, C.; Sakai, H.; Smith, J. W.

    1974-01-01

    Lunar fines 15012,16 and 15013,3 were analyzed by stepwise pyrolysis and acid hydrolysis as well as complete combustion in oxygen to determine carbon, nitrogen and sulfur. In addition, hydrogen was analysed during pyrolysis as well as during hydrolysis. By comparison of the distribution frequencies of C, N, S, H2 and Fe with He-4, considered to have arisen from solar wind contribution, it is concluded that nitrogen and hydrogen have largely a solar origin. Carbon has a significant solar contribution, and metallic iron may have resulted from solar wind interaction with ferrous minerals on the lunar surface. Sulfur probably has a predominantly lunar origin. There is no direct evidence for meteorotic contribution to these samples. Solar wind interaction also has a marked effect on the stable isotope distribution of C-13/C-12, N-15/N-14, and S-34/S-32. In all cases, the heavy isotope was most enriched in the smallest grain-size fraction.

  12. Energy generation and the sulfur-carbon cycles: Final technical report for period March 1981 thru February 1985

    International Nuclear Information System (INIS)

    Zeikus, J.G.

    1987-05-01

    The aim of this research was to understand the role of anaerobic bacteria in natural and man-influenced carbon cycles in nature. The major goal was to elucidate how sulfur metabolism influenced organic decomposition in aquatic sediments. The research compared these processes in two different anaerobic ecosystems: the sulfate-depleted sediments of Lake Mendota, Wisconsin and the sulfate-saturated sediments of Great Salt Lake, Utah. The approach was both ecological and physiological, and employed both in situ characterization of carbon and sulfur metabolism with radiotracers and laboratory species isolation-characterization studies with pure and defined mixed cultures to demonstrate the prevalent environmental paths of carbon electrons, and sulfur during the anaerobic decomposition of organic matter. The significance of this research encompassed fundamental knowledge of the carbon sulfur cycles, applied knowledge on the microbial genesis of flammable gas and oil and extended knowledge on the diversity and metabolic activity of obligately anaerobic bacteria in nature. 13 refs

  13. Sulfur and nitrogen co-doped carbon dots sensors for nitric oxide fluorescence quantification.

    Science.gov (United States)

    Simões, Eliana F C; Leitão, João M M; Esteves da Silva, Joaquim C G

    2017-04-01

    Microwave synthetized sulfur and nitrogen co-doped carbon dots responded selectively to nitric oxide (NO) at pH 7. Citric acid, urea and sodium thiosulfate in the proportion of 1:1:3 were used respectively as carbon, nitrogen and sulfur sources in the carbon dots microwave synthesis. For this synthesis, the three compounds were diluted in 15 mL of water and exposed for 5 min to a microwave radiation of 700 W. It is observed that the main factor contributing to the increased sensitivity and selectivity response to NO at pH 7 is the sodium thiosulfate used as sulfur source. A linear response range from 1 to 25 μM with a sensitivity of 16 μM -1 and a detection limit of 0.3 μM were obtained. The NO quantification capability was assessed in standard and in fortified serum solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sulfur and nitrogen co-doped carbon dots sensors for nitric oxide fluorescence quantification

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Eliana F.C. [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Leitão, João M.M., E-mail: jleitao@ff.uc.pt [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); Esteves da Silva, Joaquim C.G. [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal)

    2017-04-01

    Microwave synthetized sulfur and nitrogen co-doped carbon dots responded selectively to nitric oxide (NO) at pH 7. Citric acid, urea and sodium thiosulfate in the proportion of 1:1:3 were used respectively as carbon, nitrogen and sulfur sources in the carbon dots microwave synthesis. For this synthesis, the three compounds were diluted in 15 mL of water and exposed for 5 min to a microwave radiation of 700 W. It is observed that the main factor contributing to the increased sensitivity and selectivity response to NO at pH 7 is the sodium thiosulfate used as sulfur source. A linear response range from 1 to 25 μM with a sensitivity of 16 μM{sup −1} and a detection limit of 0.3 μM were obtained. The NO quantification capability was assessed in standard and in fortified serum solutions. - Highlights: • S,N co-doped CDs were microwave synthetized from citric acid, urea and sodium thiosulfate. • The NO fluorescence sensing was evaluated at pH 7. • The selective and sensitive detection of NO at pH 7 was achieved. • Good NO quantification results in serum samples were obtained.

  15. Suicidal carbon monoxide poisoning by combining formic acid and sulfuric acid within a confined space.

    Science.gov (United States)

    Lin, Peter T; Dunn, William A

    2014-01-01

    Suicide by inhalation of carbon monoxide produced by mixing formic acid and sulfuric acid within a confined space is a rare method of suicide. This method is similar to the so-called "detergent suicide" method where an acid-based detergent is mixed with a sulfur source to produce hydrogen sulfide. Both methods produce a toxic gas that poses significant hazards for death investigators, first responders and bystanders. Carbon monoxide is an odorless gas, while hydrogen sulfide has a characteristic rotten eggs odor, so the risks associated with carbon monoxide are potentially greater due to lack of an important warning signal. While detergent suicides have become increasingly common in the USA, suicide with formic acid and sulfuric acid is rare with only three prior cases being reported. Greater awareness of this method among death investigators is warranted because of the special risks of accidental intoxication by toxic gas and the possibility that this method of suicide will become more common in the future. © 2013 American Academy of Forensic Sciences.

  16. Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles

    Science.gov (United States)

    Ivanov, S.; Barylyak, A.; Besaha, K.; Bund, A.; Bobitski, Y.; Wojnarowska-Nowak, R.; Yaremchuk, I.; Kus-Liśkiewicz, M.

    2016-03-01

    One-step TiO2 nanoparticle synthesis based on the interaction between thiourea and metatitanic acid is applied for sulfur and carbon anatase codoping. The synthesis of the doped TiO2 has been monitored by means of differential thermal analysis and thermogravimetric analysis (DTA-TG), which allows determining the optimal thermal conditions for the process. Electron microscopy showed micrometer-sized (5-15 μm) randomly distributed crystal aggregates, consisting of many 15-40-nm TiO2 nanoparticles. The obtained phase composition and chemical states of the doping elements are analyzed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR) and Raman spectroscopies, and electron paramagnetic resonance (EPR). XRD displays in both samples (doped and pristine) the existence of only one crystalline phase—the tetragonal modification of TiO2—anatase. Further data assessment by means of Rietveld refinement allowed detection of a slight c lattice parameter and volume increase related to incorporation of the doping elements. XPS demonstrated the presence of carbon and sulfur as doping elements in the material. It was confirmed that carbon is in elemental form and also present in oxygen-containing compounds, which are adsorbed on the particle surface. The binding energy for sulfur electron core shell corresponds to the established data for sulfate compounds, where sulfur is in 6+ oxidation state. The synthesized S- and C-codoped TiO2 showed excellent photocatalytic performance during the degradation of organic dyes (rhodamine B, methylene blue), gas-phase oxidation of ethanol under visible light, and photocatalytic hydrogen generation from ethanol under ultraviolet light.

  17. K-edge XANES analysis of sulfur compounds: an investigation of the relative intensities using internal calibration.

    Science.gov (United States)

    Almkvist, Gunnar; Boye, Kristin; Persson, Ingmar

    2010-09-01

    Sulfur K-edge XANES (X-ray absorption near-edge structure) spectroscopy is an excellent tool for determining the speciation of sulfur compounds in complex matrices. This paper presents a method to quantitatively determine the kinds of sulfur species in natural samples using internally calibrated reference spectra of model compounds. Owing to significant self-absorption of formed fluorescence radiation in the sample itself the fluorescence signal displays a non-linear correlation with the sulfur content over a wide concentration range. Self-absorption is also a problem at low total absorption of the sample when the sulfur compounds are present as particles. The post-edge intensity patterns of the sulfur K-edge XANES spectra vary with the type of sulfur compound, with reducing sulfur compounds often having a higher post-edge intensity than the oxidized forms. In dilute solutions (less than 0.3-0.5%) it is possible to use sulfur K-edge XANES reference data for quantitative analysis of the contribution from different species. The results show that it is essential to use an internal calibration system when performing quantitative XANES analysis. Preparation of unknown samples must take both the total absorption and possible presence of self-absorbing particles into consideration.

  18. CO2 Adsorption by para-Nitroaniline Sulfuric Acid-Derived Porous Carbon Foam

    Directory of Open Access Journals (Sweden)

    Enrico Andreoli

    2016-12-01

    Full Text Available The expansion product from the sulfuric acid dehydration of para-nitroaniline has been characterized and studied for CO2 adsorption. The X-ray photoelectron spectroscopy (XPS characterization of the foam indicates that both N and S contents (15 and 9 wt%, respectively are comparable to those separately reported for nitrogen- or sulfur-containing porous carbon materials. The analysis of the XPS signals of C1s, O1s, N1s, and S2p reveals the presence of a large number of functional groups and chemical species. The CO2 adsorption capacity of the foam is 7.9 wt% (1.79 mmol/g at 24.5 °C and 1 atm in 30 min, while the integral molar heat of adsorption is 113.6 kJ/mol, indicative of the fact that chemical reactions characteristic of amine sorbents are observed for this type of carbon foam. The kinetics of adsorption is of pseudo-first-order with an extrapolated activation energy of 18.3 kJ/mol comparable to that of amine-modified nanocarbons. The richness in functionalities of H2SO4-expanded foams represents a valuable and further pursuable approach to porous carbons alternative to KOH-derived activated carbons.

  19. A MnO2/Graphene Oxide/Multi-Walled Carbon Nanotubes-Sulfur Composite with Dual-Efficient Polysulfide Adsorption for Improving Lithium-Sulfur Batteries.

    Science.gov (United States)

    Li, Yong; Ye, Daixin; Liu, Wen; Shi, Bin; Guo, Rui; Zhao, Hongbin; Pei, Haijuan; Xu, Jiaqiang; Xie, Jingying

    2016-10-26

    Lithium-sulfur batteries can potentially be used as a chemical power source because of their high energy density. However, the sulfur cathode has several shortcomings, including fast capacity attenuation, poor electrochemical activity, and low Coulombic efficiency. Herein, multi-walled carbon nanotubes (CNTs), graphene oxide (GO), and manganese dioxide are introduced to the sulfur cathode. A MnO 2 /GO/CNTs-S composite with a unique three-dimensional (3D) architecture was synthesized by a one-pot chemical method and heat treatment approach. In this structure, the innermost CNTs work as a conducting additive and backbone to form a conducting network. The MnO 2 /GO nanosheets anchored on the sidewalls of CNTs have a dual-efficient absorption capability for polysulfide intermediates as well as afford adequate space for sulfur loading. The outmost nanosized sulfur particles are well-distributed on the surface of the MnO 2 /GO nanosheets and provide a short transmission path for Li + and the electrons. The sulfur content in the MnO 2 /GO/CNTs-S composite is as high as 80 wt %, and the as-designed MnO 2 /GO/CNTs-S cathode displays excellent comprehensive performance. The initial specific capacities are up to 1500, 1300, 1150, 1048, and 960 mAh g -1 at discharging rates of 0.05, 0.1, 0.2, 0.5, and 1 C, respectively. Moreover, the composite cathode shows a good cycle performance: the specific capacity remains at 963.5 mAh g -1 at 0.2 C after 100 cycles when the area density of sulfur is 2.8 mg cm -2 .

  20. International carbon trade with constrained allowance choices

    NARCIS (Netherlands)

    Yu, S.; Weikard, H.P.; Zhu, X.; Ierland, van E.C.

    2017-01-01

    International carbon markets are advocated in order to involve more countries in an agreement for the mitigation of greenhouse gas emissions and to reduce the costs of mitigation. In this paper we develop a model where allowances are endogenously determined by each member of a carbon trade

  1. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  2. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  3. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries.

    Science.gov (United States)

    Zhao, Yan; Wang, Li; Huang, Lanyan; Maximov, Maxim Yu; Jin, Mingliang; Zhang, Yongguang; Wang, Xin; Zhou, Guofu

    2017-11-21

    In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC) is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries' appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen co-doped porous carbon (S/ONPC) composite materials reveal a high initial capacity of 1150 mAh·g -1 as well as a reversible capacity of 613 mAh·g -1 after the 100th cycle at 0.2 C. Furthermore, when current density increases to 1 C, a discharge capacity of 331 mAh·g -1 is still attainable. Due to the hierarchical porous framework and oxygen/nitrogen co-doping, the S/ONPC composite exhibits a high utilization of sulfur and good electrochemical performance via the immobilization of the polysulfides through strong chemical binding.

  4. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2017-11-01

    Full Text Available In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries’ appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen co-doped porous carbon (S/ONPC composite materials reveal a high initial capacity of 1150 mAh·g−1 as well as a reversible capacity of 613 mAh·g−1 after the 100th cycle at 0.2 C. Furthermore, when current density increases to 1 C, a discharge capacity of 331 mAh·g−1 is still attainable. Due to the hierarchical porous framework and oxygen/nitrogen co-doping, the S/ONPC composite exhibits a high utilization of sulfur and good electrochemical performance via the immobilization of the polysulfides through strong chemical binding.

  5. A Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride (SF6)

    Science.gov (United States)

    2014-07-01

    A Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur...Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride (SF6) Samuel G...Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride

  6. Boreal mire carbon exchange: sensitivity to climate change and anthropogenic nitrogen and sulfur deposition

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Tobias

    2010-07-01

    Boreal peatlands are important long-term sinks of atmospheric carbon and in the same time the largest natural source of methane to the atmosphere. A changing climate as well as deposition of anthropogenically derived pollutants, such as nitrogen and sulfur, has the potential to affect the processes that control the carbon exchange in peatlands. Many of the biogeochemical responses to changed environmental conditions, such as changed plant community composition, are slow and therefore long-term studies are required. In this thesis I have investigated the long-term effects of nitrogen addition, sulfur addition and greenhouse enclosures on carbon exchange by using a field manipulation experiment in a boreal minerogenic, oligotrophic mire after 10-12 years of treatment. Treatment effects on CH{sub 4} emissions, gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE) were estimated from 1-2 seasons of chamber flux measurements. Treatment effects on potential CH{sub 4} production and oxidation were estimated in incubations of peat from different depth intervals. The effect of nitrogen deposition on carbon accumulation was evaluated in peat cores at different depth intervals. The long-term nitrogen additions have: shifted plant community composition from being dominated by Sphagnum to being dominated by sedges and dwarf shrubs; changed mire surface microtopography so that mean water table is closer to the surface in plots with high nitrogen; increased CH{sub 4} production and emission; increased Reco slightly but have not affected GPP or NEE; reduced the peat height increment, but increased both peat bulk density and carbon content, leading to an unchanged carbon accumulation. The long-term sulfur additions have not reduced CH{sub 4} emissions, only slightly reduced CH{sub 4} production and did not have any effect on the CO{sub 2} carbon exchange. The greenhouse treatment, manifested in increased air and soil temperatures, reduced

  7. Effects of Electrospun Carbon Nanofibers’ Interlayers on High-Performance Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Tianji Gao

    2017-03-01

    Full Text Available Two different interlayers were introduced in lithium–sulfur batteries to improve the cycling stability with sulfur loading as high as 80% of total mass of cathode. Melamine was recommended as a nitrogen-rich (N-rich amine component to synthesize a modified polyacrylic acid (MPAA. The electrospun MPAA was carbonized into N-rich carbon nanofibers, which were used as cathode interlayers, while carbon nanofibers from PAA without melamine was used as an anode interlayer. At the rate of 0.1 C, the initial discharge capacity with two interlayers was 983 mAh g−1, and faded down to 651 mAh g−1 after 100 cycles with the coulombic efficiency of 95.4%. At the rate of 1 C, the discharge capacity was kept to 380 mAh g−1 after 600 cycles with a coulombic efficiency of 98.8%. It apparently demonstrated that the cathode interlayer is extremely effective at shutting down the migration of polysulfide ions. The anode interlayer induced the lithium ions to form uniform lithium metal deposits confined on the fiber surface and in the bulk to strengthen the cycling stability of the lithium metal anode.

  8. Synthesis of canrenone and related steroids labelled with tritium, carbon-14, and sulfur-35

    International Nuclear Information System (INIS)

    Markos, C.S.; Dorn, C.R.; Zitzwitz, D.J.

    1988-01-01

    The syntheses of [1- 3 H]canrenone, [1- 3 H]spironolactone, [1- 3 H] potassium canrenoate, [22- 14 C]canrenone, [22- 14 C]spironolactone, [22- 14 C]potassium canrenoate, and [ 35 S]spironolactone are reported. Tritium labelled compounds were obtained by catalytic reduction of a 3-keto-1, 4-diene precursor followed by exchange of enolizable label. Carbon-14 compounds were obtained by reaction of a 17-ethynyl steroid with 14 CO 2 . Sulfur-35 spironolactone was synthesized by the in-situ generation of [ 35 S]thiolacetic acid from [ 35 S]sodium sulfide. (author)

  9. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    Science.gov (United States)

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  10. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    Science.gov (United States)

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  11. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    Science.gov (United States)

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water Oxidation.

    Science.gov (United States)

    Kale, Vinayak S; Sim, Uk; Yang, Jiwoong; Jin, Kyoungsuk; Chae, Sue In; Chang, Woo Je; Sinha, Arun Kumar; Ha, Heonjin; Hwang, Chan-Cuk; An, Junghyun; Hong, Hyo-Ki; Lee, Zonghoon; Nam, Ki Tae; Hyeon, Taeghwan

    2017-05-01

    There is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN x ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur. The sulfur modification in the g-CN x structure leads to excellent oxygen evolution reaction activity by lowering the overpotential. Compared with the previously reported nonmetallic systems and well-established metallic catalysts, the S-modified g-CN x nanostructures show superior performance, requiring a lower overpotential (290 mV) to achieve a current density of 10 mA cm -2 and a Tafel slope of 120 mV dec -1 with long-term durability of 91.2% retention for 18 h. These inexpensive, environmentally friendly, and easy-to-synthesize catalysts with extraordinary performance will have a high impact in the field of oxygen evolution reaction electrocatalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2018-03-01

    Full Text Available Lithium-sulfur (Li-S batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg−1. However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m2 g−1, high pore volume (1.78 cm3 g−1, good conductivity, and in situ nitrogen (1.86 at % and sulfur (5.26 at % co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li+ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g−1 at 0.2 C, excellent rate capability (596.6 mAh g−1 at 5 C, and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle. Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm−2 (70 wt. % sulfur, the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g−1, which is quite beneficial to commercialized applications.

  14. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda [Pall Corporation, Port Washington, NY (United States); Zhao, Hongbin [Pall Corporation, Port Washington, NY (United States); Hopkins, Scott [Pall Corporation, Port Washington, NY (United States)

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  15. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  16. Carbon and Sulfur Isotopic Signatures of Ancient Life and Environment at the Microbial Scale: Neoarchean Shales and Carbonates

    Science.gov (United States)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Hallmann, C.; Spicuzza, M. J.; Kozdon, R.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.

    2015-01-01

    An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of delta(sup 13)C, delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS delta(sup 13)C measurement of organic matter is identified. Small (2-3 microns) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-micron domains of kerogen in a single approx. 0.5 cu cm sample of the approx. 2.7 Ga Tumbiana Formation have delta(sup 13)C = -52.3 +/- 0.1per mille and -34.4 +/- 0.1per mille, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the approx. 2.6 Ga Jeerinah Formation and the approx. 2.5 Ga Mount McRae Shale is systematically 13C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Delta(sup 33)S and more extreme spatial gradients in Delta(sup 33)S and Delta(sup 36)S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation

  17. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.

    Science.gov (United States)

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Ni, Bing-Jie; Guo, Wan-Qian; Yuan, Ye; Huang, Cong; Zhou, Xu; Wu, Dong-Hai; Lee, Duu-Jong; Ren, Nan-Qi

    2017-01-05

    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO 3 - →NO 2 - →N 2 ), and that of C-S by SRB (SO 4 2- →S 2- ) and SOB (S 2- →S 0 ) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium sulfur batteries

    Science.gov (United States)

    Carter, Rachel; Ejorh, Dennis; Share, Keith; Cohn, Adam P.; Douglas, Anna; Muralidharan, Nitin; Tovar, Trenton M.; Pint, Cary L.

    2016-10-01

    Despite widespread focus on porous carbons for lithium-sulfur battery cathode materials, electrode design to preserve mass-specific performance and sustained extended cycling stability remains a challenge. Here, we demonstrate electrochemically etched porous silicon as a sacrificial template to produce a new class of functional mesoporous carbons optimized for dual chemical and physical confinement of soluble polysulfides in lithium-sulfur battery cathodes. Melt infiltration loading of sulfur at 60 wt% enables initial discharge capacity of 1350 mAh/gsulfur at rates of 0.1 C - approaching theoretical capacity of 1675 mAh/gsulfur. Cycling performance measured at 0.2 C indicates 81% capacity retention measured over 100 cycles with 830 mAh/gsulfur capacity. Unlike other carbons, this template combines structural properties necessary for sulfur containment and polysulfide confinement to achieve high specific capacity, but also boasts surface-bound oxygen-containing functional groups that are able to chemically anchor the soluble Li2Sn species on the interior of the mesoporous carbon to sustain cycling performance. In turn, this elucidates a scalable and competitive material framework that is capable, without the addition of additional membranes or inactive anchoring materials, of providing the simultaneous anchoring and confinement effects necessary to overcome performance limitations in lithium sulfur batteries.

  19. Self-Assembly of Polyethylene Glycol-Grafted Carbon Nanotube/Sulfur Composite with Nest-like Structure for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Li, Han; Sun, Liping; Wang, Gengchao

    2016-03-09

    The novel polyethylene glycol-grafted multiwalled carbon nanotube/sulfur (PEG-CNT/S) composite cathodes with nest-like structure are fabricated through a facile combination process of liquid phase deposition and self-assembly, which consist of the active material core of sulfur particle and the conductive shell of PEG-CNT network. The unique architecture not only provides a short and rapid charge transfer pathway to improve the reaction kinetics but also alleviates the volume expansion of sulfur during lithiation and minimizes the diffusion of intermediate polysulfides. Such an encouraging electrochemical environment ensures the excellent rate capability and high cycle stability. As a result, the as-prepared PEG-CNT/S composite with sulfur content of 75.9 wt % delivers an initial discharge capacity of 1191 and 897 mAh g(-1) after 200 cycles at 0.2 C with an average Coulombic efficiency of 99.5%. Even at a high rate of 2 C, an appreciable capacity of 723 mAh g(-1) can still be obtained.

  20. Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications

    Directory of Open Access Journals (Sweden)

    Hua Bing Tao

    2014-06-01

    Full Text Available A biomolecule-assisted pyrolysis method has been developed to synthesize sulfur-doped graphitic carbon nitride (CNS nanosheets. During the synthesis, sulfur could be introduced as a dopant into the lattice of carbon nitride (CN. Sulfur doping changed the texture as well as relative band positions of CN. By growing CN on preformed sulfur-doped CN nanosheets, composite CN/CNS heterojunction nanosheets were constructed, which significantly enhanced the photoelectrochemical performance as compared with various control counterparts including CN, CNS and physically mixed CN and CNS (CN+CNS. The enhanced photoelectrochemical performance of CN/CNS heterojunction nanosheets could be ascribed to the efficient separation of photoexcited charge carriers across the heterojunction interface. The strategy of designing and preparing CN/CNS heterojunction photocatalysts in this work can open up new directions for the construction of all CN-based heterojunction photocatalysts.

  1. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  2. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries.

    Science.gov (United States)

    Brun, Nicolas; Sakaushi, Ken; Yu, Linghui; Giebeler, Lars; Eckert, Jürgen; Titirici, Magdalena M

    2013-04-28

    Carbon hollow spheres were produced using a sustainable approach, i.e. hydrothermal carbonization, using monosaccharides as carbon precursors and silica nanoparticles as hard-templates. Hydrothermal carbonization is an eco-efficient and cost-effective route to synthesize nanostructured carbonaceous materials from abundant biomass-derived molecules. After further thermal treatment under an inert atmosphere and removal of the silica-based core by chemical etching, porous hollow spheres depicting 5-8 nm thin shells were obtained. Subsequently, carbon-sulfur composites were synthesized via a melt diffusion method and used as nanostructured composites for cathodes in lithium-sulfur (Li-S) cells. The morphology of the hollow spheres was controlled and optimized to achieve improved electrochemical properties. Both high specific energies and high specific powers were obtained, due to the unique nanostructure of the hollow spheres. These results revealed that using optimized carbonaceous materials, it is possible to design sustainable Li-S cells showing promising electrochemical properties.

  3. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain

    Science.gov (United States)

    Alt, Jeffrey C.; Garrido, Carlos J.; Shanks, Wayne C.; Turchyn, Alexandra; Padrón-Navarta, José Alberto; López Sánchez-Vizcaíno, Vicente; Gómez Pugnaire, María Teresa; Marchesi, Claudio

    2012-01-01

    We use the concentrations and isotope compositions of water, carbon, and sulfur in serpentinites and their dehydration products to trace the cycling of volatiles during subduction. Antigorite serpentinites from the Cerro del Almirez complex, Spain, contain 9–12 wt.% H2O and 910 ± 730 ppm sulfur, and have bulk δ18O values of 8.6 ± 0.4‰, δD = − 54 ± 5‰, and δ34S = 5.0‰, consistent with serpentinization at temperatures of ~ 200 °C by seawater hydrothermal fluids in a seafloor setting. The serpentinites were dehydrated to chlorite–harzburgite (olivine + orthopyroxene + chlorite) at 700 °C and 1.6–1.9 GPa during subduction metamorphism, resulting in loss of water, and sulfur. The chlorite–harzburgites contain 5.7 ± 1.9 wt.% H2O, and have bulk δ18O = 8.0 ± 0.9‰, and δD = − 77 ± 11‰. The rocks contain 650 ± 620 ppm sulfur having δ34S = 1.2‰. Dehydration of serpentinite resulted in loss of 5 wt.% H2O having δ18O = 8–10‰ and δD = − 27 to − 65‰, and loss of 260 ppm sulfur as sulfate, having δ34S = 14.5‰. The contents and δ13C of total carbon in the two rock types overlap, with a broad trend of decreasing carbon contents and δ13C from ~ 1300 to 200 ppm and − 9.6 to − 20.2‰. This reflects mixing between reduced carbon in the rocks (210 ppm, δ13C ≈ − 26‰) and seawater-derived carbonate (δ13C ≈ − 1‰). Our results indicate: 1) Serpentinized oceanic peridotites carry significant amounts of isotopically fractionated water, carbon and sulfur into subduction zones; 2) Subduction of serpentinites to high P and T results in loss of water, and sulfur, which can induce melting and contribute to 18O, D, and 34S enrichments and oxidation of the sub-arc mantle wedge; and 3) Isotopically fractionated water, carbon, and sulfur in serpentinite dehydration products are recycled deeper into the mantle where they can contribute to isotope heterogeneities and may be significant for volatile budgets of the deep Earth.

  4. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  5. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Wu, Yuanhe; Gao, Mingxia; Li, Xiang; Liu, Yongfeng; Pan, Hongge

    2014-01-01

    Highlights: • Mesohollow and microporous carbon fibers were prepared via electrospinning and carbonization. • Sulfur (S) incorporated into the porous fibers by thermal heating in 60 wt.%, forming composite. • S fills fully in the micropores and partially in the mesohollows of the carbon fibers. • The composite shows high capacity and capacity retention as cathode material for Li–S batteries. • Mesohollow and microporous structure is effective in improving the property of S cathode. - Abstract: Mesohollow and microporous carbon nanofibers (MhMpCFs) were prepared by a coaxial electrospinning with polyacrylonitrile (PAN) and polymethylmethacrylate (PMMA) as outer and inner spinning solutions followed by a carbonization. The carbon fibers were thermal treated with sublimed sulfur to form S/MhMpCFs composite, which was used as cathode material for lithium–sulfur batteries. Electrochemical study shows that the S/MhMpCFs cathode material provides a maximum capacity of 815 mA h/g after several cycles of activation, and the capacity retains 715 mA h/g after 70 cycles, corresponding to a retention of 88%. The electrochemical property of the S/MhMpCFs composite is much superior than the S-incorporated solid carbon fibers prepared from electrospinning of single PAN. The mechanism of the enhanced electrochemical property of the S/MhMpCFs composite is discussed

  6. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    Science.gov (United States)

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony W.; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-01-01

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg−1 dry soil, 0.1 mmol N Kg−1 dry soil, 0.1 mmol P Kg−1 dry soil, and 0.1 mmol S Kg−1 dry soil, respectively. These findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models. PMID:26612423

  7. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.

    Science.gov (United States)

    Zhang, Linlin; Wan, Fang; Wang, Xinyu; Cao, Hongmei; Dai, Xi; Niu, Zhiqiang; Wang, Yijing; Chen, Jun

    2018-02-14

    The lithium sulfur (Li-S) battery has attracted much attention due to its high theoretical capacity and energy density. However, its cycling stability and rate performance urgently need to improve because of its shuttle effect. Herein, oxygen-doped carbon on the surface of reduced graphene oxide (labeled as ODC/rGO) was fabricated to modify the separators of Li-S batteries to limit the dissolution of the lithium polysulfides. The mesoporous structure in ODC/rGO can not only serve as the physical trapper, but also provide abundant channels for fast ion transfer, which is beneficial for effective confinement of the dissoluble intermediates and superior rate performance. Moreover, the oxygen-containing groups in ODC/rGO are able to act as chemical adsorption sites to immobilize the lithium polysulfides, suppressing their dissolution in electrolyte to enhance the utilization of sulfur cathode in Li-S batteries. As a result, because of the synergetic effects of physical adsorption and chemical interaction to immobilize the soluble polysulfides, the Li-S batteries with the ODC/rGO-coated separator exhibit excellent rate performance and good long-term cycling stability with 0.057% capacity decay per cycle at 1.0 C after 600 cycles.

  8. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems.

    Science.gov (United States)

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony W; Song, Xia; Thornton, Peter E; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg(-1) dry soil, 0.1 mmol N Kg(-1) dry soil, 0.1 mmol P Kg(-1) dry soil, and 0.1 mmol S Kg(-1) dry soil, respectively. These findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.

  9. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  10. Preparation of Activated Carbon from Maize Stems by Sulfuric Acids Activation and Their Application in Copper (II Ion Sorption

    Directory of Open Access Journals (Sweden)

    Erin Ryantin Gunawan

    2010-04-01

    Full Text Available Activated carbons were prepared from maize (Zea mays L. stems by sulfuric acids activation or chemical methods. The dry maize stems are usually used as low-value energy resources in many countries, burned in the field, or discarded, which are unfavorable to environment. This motivates the investigation of producing value-added products from the dry maize stems, such as activated carbons, as well as solving some environmental problems. The preparation process consisted of sulfuric acid impregnation at different impregnation ratio followed by carbonization at 250-400 oC for 1-4 h. The results show that the impregnation ratio was 1.25, the optimum activation temperature was 300 oC and the activation time was 1 h. The sorption capacity of the activated carbon was 25.1 mg/g.

  11. Internal friction in martensitic carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2009-01-01

    This paper proposes relationships between the internal friction and the microstructure of two steels containing 0.626 and 0.71 wt.% carbon. The steels were annealed at 1093 K for 5 min, quenched into water and tempered for 10 min at 423, 573 and 723 K. Internal friction was measured by using a forced vibration pendulum, in a temperature range from 100 to 450 K. The internal friction spectrum is decomposed into four peaks: P1 at 215 K, P2 at 235 K, P3 at 260 K and P4 at 380 K for 3 Hz. Peak P1 is attributed to the interactions between dislocations and carbon atoms. Peak P2 is related to the interaction between dislocations and carbide. Peak P3 is related to the generations of kink - pairs along edge dislocations. Peak P4 is attributed to epsilon carbide precipitation.

  12. Organic carbon-sulfur relationships in sediment cores from the western and eastern continental margins of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Mascarenhas, A.; Paropkari, A.L.; Rao, Ch.M.

    deposition and terrigenous influx on organic carbon-sulfur relationship. The results indicate that the cores consist of two stratigraphic units: an upper unit of Holocene age and a lower unit of Late Pleistocene age. The upper unit of WM1 and WM2 has C...

  13. Effect of sulfur on enhancing nitrogen-doping and magnetic properties of carbon nanotubes

    Science.gov (United States)

    Cui, Tongxiang; Lv, Ruitao; Huang, Zheng-Hong; Kang, Feiyu; Wang, Kunlin; Wu, Dehai

    2011-12-01

    Sulfur (S) is introduced as an additive in the growth atmosphere of carbon nanotubes (CNTs) in the range of 940-1020°C. CNT products with distorted sidewalls can be obtained by S-assisted growth. Moreover, many fascinating CNT structures can also be found in samples grown with S addition, such as bamboo-like CNTs, twisted CNTs, arborization-like CNTs, and bead-like CNTs. Compared with CNTs grown without S, more nitrogen-doping content is achieved in CNTs with S addition, which is beneficial for the properties and applications of nitrogen-doped CNTs. In addition, S can also enhance the encapsulation of ferromagnetic materials and thus improve the soft magnetic properties of CNTs, which is favorable to the applications of CNTs in the electromagnetic wave-absorbing and magnetic data storage areas.

  14. Hydrophilicity-controlled ordered mesoporous carbon for lithium-sulfur batteries.

    Science.gov (United States)

    Bae, Suyeon; Jin, Xing; Park, Gwi Ok; Kim, Ji Man

    2014-12-01

    Ordered mesoporous carbon (OMC) materials were synthesized from a mesoporous silica KIT-6 (3-D cubic la3d meso-structure) as the hard-template via a nano-replication method. Hydrophilic and hydrophobic OMC materials were prepared using different carbon precursors including sucrose (suc-OMC) and phenanthrene (phe-OMC) at different carbonization temperatures of 700 degrees C and 1100 degrees C, respectively. The OMC materials thus obtained exhibit high surface areas, uniform mesopore sizes and highly ordered meso-structure. To investigate the hydrophilicity effect of OMC materials on the performance of lithium-sulfur battery, we prepared the samples having different ratios of the suc-OMC to phe-OMC, which were 100:0, 75:25, 50:50, 25:75 and 0:100. As a result, the mixed OMC materials (with ratios of 75:25, 50:50 and 25:75) exhibited better cycle performances, compared to those of the suc-OMC and phe-OMC.

  15. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M; Liu, Hung-wen

    2013-05-21

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.

  16. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.

    Science.gov (United States)

    Wu, Xiao; Yao, Shanshan; Hou, Jinli; Jing, Maoxiang; Qian, Xinye; Shen, Xiangqian; Xiang, Jun; Xi, Xiaoming

    2017-04-01

    Conventional lithium-sulfur batteries suffer from severe capacity fade, which is induced by low electron conductivity and high dissolution of intermediated polysulfides. Recent studies have shown the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and improved the performance for lithium sulfur batteries. In this work, we present the nickel coated multi-walled carbon nanotubes (Ni-MWNTs) as additive materials for elemental sulfur positive electrodes for lithium-sulfur rechargeable batteries. Compared with MWNTs, the obtained Ni-MWNTs/sulfur composite cathode demonstrate a reversible specific capacity approaching 545 mAh after 200 cycles at a rate of 0.5C as well as improved cycling stability and excellent rate capacity. The improved electrochemical performance can be attributed to the fact the MWNTs shows a vital role on polysulfides adsorption and nickel has a catalytic effect on the redox reactions during charge–discharge process. Meanwhile, the Ni-MWNTs is a good electric conductor for sulfur cathode.

  17. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat

    Science.gov (United States)

    Canfield, Donald E.; Des Marais, David J.

    1993-01-01

    Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works. We infer from the data the various sinks for O2 as well as the sources of carbon for primary production. Although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Oxygenic photosynthesis was the most important process of carbon fixation. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount.

  18. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    Science.gov (United States)

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  19. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    Science.gov (United States)

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  20. Hypogenic origin of Provalata Cave, Republic of Macedonia: a distinct case of successive thermal carbonic and sulfuric acid speleogenesis

    Directory of Open Access Journals (Sweden)

    Marjan Temovski

    2013-09-01

    Full Text Available Provalata Cave (Republic of Macedonia is a small but remarkable hypogenic cave, developed in Cambrian marbles by successive thermal carbonic and sulfuric acid speleogenesis. The cave has a thick partly corroded calcite crust, abundant gypsum deposits, with cupolas, ceiling and wall channels, feeders and replacement pockets as some of the most characteristic morphological features. Distribution of morphology and deposits suggest a hypogenic origin in two distinct speleogenetic phases: the first by thermal CO2 rich waters, the second by sulfuric acid dissolution, which were separated by complete infilling of cave passages with pyroclastic-derived clays. In the first phase of speleogenesis, cave passages were formed by dissolution along fractures due to cooling of rising carbonated thermal waters. These phreatic morphologies were later covered with a thick calcite crust deposited in a shallow phreatic environment. In Early Pleistocene the cave was completely filled with clays due to deposition of pyroclastic rocks in a lacustrine environment in the nearby Mariovo Basin. Mariovo Lake sediments were later incised by the Buturica River, which cut down into Cambrian marbles, creating its superimposed valley. Incision lowered the water table and allowed removal of the clay deposits in Provalata Cave. The second phase of speleogenesis started after introduction of H2S associated with rising thermal waters. Oxidation produced sulfuric acid, which rapidly dissolved first calcite crust, then marble host rock. Condensation-corrosion by sulfuric vapors replaced carbonate rock with gypsum producing replacement pockets as well as second generation of pockets and cupolas. The contact of sulfuric acid with the clay deposits formed alunite, jarosite, and natroalunite. 40Ar/39Ar dating gave maximum ages of 1.6 Ma (alunite and 1.46 Ma (jarosite for this last stage of speleogenesis, thus making it the second 40Ar/39Ar dating of a sulfuric cave in Europe (after Kraush

  1. Synthesis of Cobalt Sulfide/Sulfur Doped Carbon Nanocomposites with Efficient Catalytic Activity in the Oxygen Evolution Reaction.

    Science.gov (United States)

    Qian, Huayu; Tang, Jing; Wang, Zhongli; Kim, Jeonghun; Kim, Jung Ho; Alshehri, Saad M; Yanmaz, Ekrem; Wang, Xin; Yamauchi, Yusuke

    2016-12-12

    Cobalt sulfide/sulfur doped carbon composites (Co 9 S 8 /S-C) were synthesized by calcining a rationally designed sulfur-containing cobalt coordination complex in an inert atmosphere. From the detailed transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses, the electrocatalytically active Co 9 S 8 nanoparticles were clearly obtained and combined with the thin sulfur doped carbon layers. Electrochemical data showed that Co 9 S 8 /S-C had a good activity and long-term stability in catalyzing oxygen evolution reaction in alkaline electrolyte, even better than the traditional RuO 2 electrocatalyst. The excellent electrocatalytic activity of Co 9 S 8 /S-C was mainly attributed to the synergistic effect between the Co 9 S 8 catalyst which contributed to the oxygen evolution reaction and the sulfur doped carbon layer which facilitated the adsorption of reactants, prevented the Co 9 S 8 particles from aggregating and served as the electrically conductive binder between each component. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI).

    Science.gov (United States)

    Zheng, Yun; Yu, Zihao; Lin, Feng; Guo, Fangsong; Alamry, Khalid A; Taib, Layla A; Asiri, Abdullah M; Wang, Xinchen

    2017-04-01

    As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation.

  3. Nonmetals in the argon-inductively coupled plasma-optical emission spectrometry: I. Phosphorus, sulfur and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Knauthe, B.; Otto, M. [Inst. of Analytical Chemistry, University of Mining and Technology Freiberg (Germany)

    2001-12-01

    The behavior of phosphorus, sulfur and carbon in the argon-ICP-OES was systematically investigated for a wide range of nebulizer gas flows and observation heights. Five lines of phosphorus, four lines of sulfur and three lines of carbon, which have analytical usable detection limits, were taken into consideration. The further parameter set was inspired by the needs of every-day-analysis in the laboratory, especially the low integration time that is necessary for analysis of large amounts of samples. For each element line a signal-to-noise plot was obtained with a method described earlier. The optimum conditions for the combined analysis were determined from signal-to-noise plots of those element lines with the lowest detection limits. The lowest detection limits for phosphorus (0.13 mg/L) and carbon (0.01 mg/L) are useful for solving many analytical problems. However, even the best detection limit for sulfur (2.97 mg/L) is only of limited use without further preconcentration. A major problem was the background of carbon, most probably from carbon dioxide, which increased the available detection limit to about 0.04 mg/L. Surprisingly, the best detection limits were obtained at very low observation heights, which were only a couple of millimeters above the load coil. Fortunately, all elements showed a similar behavior and so the detection limits at compromise conditions were only slightly higher compared with the single-element detection limits. (orig.)

  4. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered “rare” due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains. PMID:23348524

  5. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat

    Science.gov (United States)

    Canfield, Donald E.; Des Marais, David J.

    1993-08-01

    Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works located in Guerrero Negro, Baja California Sur, Mexico. Included in the budget are measured rates of O 2 production, sulfate reduction, and elemental exchange across the mat/brine interface, day and night, at various temperatures and times of the year. We infer from this data the various sinks for O 2, as well as the sources of carbon for primary production. To summarize, although seasonal variability exists, a major percentage of the O 2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O 2 that diffused into the mat was used to oxidize sulfide, with O 2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O 2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Also, oxygenic photosynthesis was the most important process of carbon fixation, although anoxygenic photosynthesis may have been important at low light levels during some times of the year. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount. These mats are thus closely coupled systems where rapid rates of photosynthesis both require and fuel rapid rates of heterotrophic carbon oxidation.

  6. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries

    Science.gov (United States)

    Cai, Junjie; Wu, Chun; Zhu, Ying; Zhang, Kaili; Shen, Pei Kang

    2017-02-01

    A nitrogen and phosphorus co-doped hierarchical porous carbon (N, P-HPC) were fabricated by simply pyrolysis of polyaniline aerogels in the presence of phytic acid and subsequently activation treatment by KOH. The as-prepared N, P-HPC with a highly interconnected network structure and possesses a large surface area and pore volume is very favor in the impregnation of sulfur. Moreover, simultaneously introduced nitrogen and phosphorous into the carbon could create more active sites than the mono-doped carbons, the synergistic effects of dual activation of carbon atoms induced stronger chemical adsorption ability. Benefiting from the advantages of suitable hierarchical porosity, high conductivity, fast ion transportation, physical and chemical adsorption of the N, P-HPC, the Sulfur/N, P-HPC composite exhibits high initial discharge capacity of 1116 mAh g-1 at 0.1 C (1 C = 1675 mA g-1, based on sulfur content) and high rate capability of 550 mAh g-1 at 2C, as well as excellent long term cycling stability at a current rate of 1 C with only 0.058% capacity decay per cycle for over 500 cycles. Such a high capacity and stability suggests that the novel cathode have alluring prospect for Li-S batteries.

  7. Performance of nitrogen- and sulfur-containing carbon material derived from thiourea and formaldehyde as electrochemical capacitor

    Science.gov (United States)

    Tsubota, Toshiki; Takenaka, Kaori; Murakami, Naoya; Ohno, Teruhisa

    In order to investigate the performance of an electrochemical capacitor consisting of a nitrogen- and sulfur-containing carbon material, the carbon material derived from thiourea and urea was synthesized by a polymerization process of the urea resin. No solid appeared after the polymerization process. When the dried sample after the polymerization process was heated in flowing N2 gas, we obtained carbon material. However, there was no product when only thiourea was heated under the same conditions. The percentages of nitrogen and sulfur in all the samples synthesized from thiourea were roughly 5-20 wt.% and 3-8 wt.% even after washing with hot water, respectively. No specific peak derived from the redox reaction appeared in the CV graphs for the samples. The capacitance value of T-urea800W, which was synthesized by the heat treatment at 800 °C and then wash with hot water, was 138.8 F g -1 at the current density of 50 mA g -1 in a 1 M H 2SO 4 water solution whereas that value of a commercial activated carbon was 107.1 F g -1 under the same conditions. It was presumed from the XPS measurements that the status of the nitrogen and sulfur in the materials are a pyridine-like nitrogen at the edge part of the graphitic structure, a quaternary nitrogen in the graphitic-layered structure, and S 0, S 4+, and S 2-, respectively.

  8. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.

    Science.gov (United States)

    Chung, Sheng-Heng; Manthiram, Arumugam

    2014-06-01

    Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320 mA h g(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98 %, low capacity fade of 0.18 % per cycle, and good long-term cyclability over 150 cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of sulfur forms in wine including free and total sulfur dioxide based on molecular absorption of carbon monosulfide in the air-acetylene flame.

    Science.gov (United States)

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael; Patz, Claus-Dieter

    2008-01-01

    A new method for the determination of sulfur forms in wine, i.e., free SO(2), total SO(2), bound SO(2), total S, and sulfate, is presented. The method is based on the measurement of the carbon monosulfide (CS) molecular absorption produced in a conventional air-acetylene flame using high-resolution continuum source absorption spectrometry. Individual sulfur forms can be distinguished because of the different sensitivities of the corresponding CS molecular absorption. The sensitivity of free SO(2) is about three times higher than the value for bound SO(2) and sulfate. The method makes use of procedures similar to those used in classic reference methods. Its performance is verified by analyzing six wine samples. Relative standard deviations are between 5 and 13% for free SO(2) and between 1 and 3% for total SO(2). For the validation of the accuracy of the new method, the results are compared with those of reference methods. The agreement of the values for total SO(2) with values of the classic method is satisfactory: five out of six samples show deviations less than 16%. Due to the instability of free SO(2) in wine and the known problems of the used reference method, serious deviations of the free SO(2) results are found for three samples. The evaluation of the limits of detection focuses on the value for free SO(2), which is the sulfur form having by far the lowest concentration in wine. Here, the achievable limit of detection is 1.8 mg L(-1). [figure: see text] Detection of non-metal elements using continuum source flame absorption spectrometry.

  10. Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Yu, Qiuhong; Lu, Yang; Peng, Tao; Hou, Xiaoyi; Luo, Rongjie; Wang, Yange; Yan, Hailong; Luo, Yongsong; Liu, Xianming; Kim, Jang-Kyo

    2017-01-01

    A promising hybrid material composed of tubular polypyrrole (T-PPy)-wrapped monodisperse biomass-derived carbon nanospheres (BCSs) was first synthesized successfully via a simple hydrothermal approach by using watermelon juice as the carbon source, and further used as an anchoring object for sulfur (S) of lithium–sulfur (Li–S) batteries. The use of BCSs with hydrophilic nature as a framework could provide large interface areas between the active materials and electrolyte, and improve the dispersion of T-PPy, which could help in the active material utilization. As a result, BCS@T-PPy/S as a cathode material exhibited a high capacity of 1143.6 mA h g −1 and delivered a stable capacity up to 685.8 mA h g −1 after 500 cycles at 0.5 C, demonstrating its promising application for rechargeable Li–S batteries. (paper)

  11. Interaction of sulfur dioxide and carbon dioxide with clean silver in ultrahigh vacuum.

    Science.gov (United States)

    Lassiter, W. S.

    1972-01-01

    It is shown that when a clean polycrystalline silver surface is subjected to sulfur dioxide at a pressure of 1 nanotorr, sulfur is chemisorbed to the silver. Heating the contaminated silver leads to an estimation of the minimum heat of desorption of 59 kcal/mol. Sulfur Auger peak height and relative function measurements of the surface during exposure show that adsorption occurs during 6 microtorr/sec exposure at 1 nanotorr.

  12. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR).

    Science.gov (United States)

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-17

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10-50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.

  13. The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y-junctions to Sea Urchin?like Structures

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Romo Herrera, Jose M [ORNL; Cruz Silva, Eduardo [ORNL; Meunier, Vincent [ORNL; Terrones Maldonado, Humberto [ORNL; Smith, David J [Arizona State University; Cullen, David A [Arizona State University; Terrones Maldonado, Mauricio [ORNL

    2009-01-01

    In this paper we show how sulfur-assisted CVD synthesis of carbon nanostructures is very sensitive to local conditions (such as the local amount of S or the feeding rate) during chemical reaction. Sulfur not only acts on the catalyst but also on its diffusion and incorporation into the resulting carbon nanostructure. A detailed synthesis study with extensive analytical and microscopy evidence for a wide range of morphologies reveals the presence of sulfur in the metallic catalyst and even in the carbon body of nanostructures obtained under the same CVD conditions. These drastic changes can be correlated to carrier gas flux, sulfur content, temperature and catalyst composition. Five different types of covalent Y-junctions ranging from Y-junctions with arms of micrometers in diameter, Y-junctions of cone-stacked carbon cylinders to concentric cylinders multi-walled CNTs Y-junctions can be obtained. In addition, unique sea urchin shaped nanostructures are observed under specific synthesis conditions.

  14. Natural sulfurization of carbohydrates in marine sediments : consequences for the chemical and carbon isotopic composition of sedimentary organic matter

    OpenAIRE

    Dongen, B.E. van

    2003-01-01

    Carbohydrates make up the largest part of the organic matter in the biosphere and are used by living organism for many different reasons. They serve, among others, as carbon and energy source as well as metabolic intermediates. Carbohydrates are generally thought to be remineralized during early diagenesis in the water column and in the sediment and thus not preserved in substantial amounts. However, earlier studies have suggested that preservation of carbohydrates through sulfurization could...

  15. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  16. Dynamic rheological studies of poly(p-phenyleneterephthalamide) and carbon nanotube blends in sulfuric acid.

    Science.gov (United States)

    Cao, Yutong; Liu, Zhaofeng; Gao, Xianghua; Yu, Junrong; Hu, Zuming; Liang, Ziqi

    2010-03-31

    We have studied the dynamic scanning of liquid-crystalline (LC) poly(p-phenyleneterephthalamide) sulfuric acid (PPTA-H(2)SO(4)) solution, and its blend with single-walled carbon nanotubes (SWNTs), by using a flat plate rotational rheometer. The effects of weight concentration and molecular weight of PPTA, as well as operating temperature, on dynamic viscoelasticity of the PPTA-H(2)SO(4) LC solution system are discussed. The transition from a biphasic system to a single-phase LC occurs in the weight concentration range of SWNTs from 0.1% to 0.2%, in which complex viscosity reaches the maximum at 0.2 wt% and the minimum at 0.1 wt%, respectively, of SWNTs. With increasing SWNT weight concentration, the endothermic peak temperature increases from 73.6 to 79.9 degrees C. The PPTA/SWNT/H(2)SO(4) solution is in its plateau zone and storage modulus (G') is a dominant factor within the frequency (omega) range of 0.1-10 rad/s. As omega increases, the G' rises slightly, in direct proportion to the omega. The loss modulus (G'') does not rise as a function of omega when omega 1 s(-1) G'' increases faster than G', yet not in any proportion to the omega.

  17. Dynamic Rheological Studies of Poly(p-phenyleneterephthalamide) and Carbon Nanotube Blends in Sulfuric Acid

    Science.gov (United States)

    Cao, Yutong; Liu, Zhaofeng; Gao, Xianghua; Yu, Junrong; Hu, Zuming; Liang, Ziqi

    2010-01-01

    We have studied the dynamic scanning of liquid-crystalline (LC) poly(p-phenyleneterephthalamide) sulfuric acid (PPTA-H2SO4) solution, and its blend with single-walled carbon nanotubes (SWNTs), by using a flat plate rotational rheometer. The effects of weight concentration and molecular weight of PPTA, as well as operating temperature, on dynamic viscoelasticity of the PPTA-H2SO4 LC solution system are discussed. The transition from a biphasic system to a single-phase LC occurs in the weight concentration range of SWNTs from 0.1% to 0.2%, in which complex viscosity reaches the maximum at 0.2 wt% and the minimum at 0.1 wt%, respectively, of SWNTs. With increasing SWNT weight concentration, the endothermic peak temperature increases from 73.6 to 79.9 °C. The PPTA/SWNT/H2SO4 solution is in its plateau zone and storage modulus (G′) is a dominant factor within the frequency (ω) range of 0.1–10 rad/s. As ω increases, the G′ rises slightly, in direct proportion to the ω. The loss modulus (G″) does not rise as a function of ω when ω 1 s−1 G″ increases faster than G′, yet not in any proportion to the ω. PMID:20480024

  18. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  19. A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage

    Science.gov (United States)

    Wei, Tongye; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Gao, Yong; Li, Huaming

    2016-11-01

    A one-step moderate-explosion assisted carbonization strategy is demonstrated for the synthesis of sulfur and nitrogen dual-doped porous carbon nanosheets (CNSs) using the mixture of camellia petals and ammonium persulfate. The ammonium persulfate acts as both explosive and dopant precursor. The prepared porous carbon nanosheets have high BET surface than 1122 m2 g-1 with sulfur and nitrogen contents of 1.34% and 4.89%, respectively, which benefit the improvement of conductivity, wettability and active sites for electrochemical reaction. The electrochemical tests as electrodes materials for supercapacitor, lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) indicate that the prepared sulfur and nitrogen dual-doped porous carbon nanosheets possess superior energy-storage performance. The specific capacitances of the CNS-800 symmetric two-electrode supercapacitors using 6 M KOH liquid and KOH/PVA solid-state electrolytes for high current density of 20 A g-1 are up to 176.2 F g-1 and 136.0 F g-1, respectively. The CNS-800 anodes exhibit high capacities as well as good cycle performance with capacitance of 310 mA h g-1 and 129 mA h g-1 after 1000 cycles at 0.2 A g-1 for LIBs and SIBs, respectively. The results provide a novel route for low-cost and large-scale production of CNSs electrode materials for high-performance electrochemical energy storage devices.

  20. Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Rui-Hua [State Key Laboratory of Coal Science and Technology, Co-founded by Shanxi Province and the Ministry of Science and Technology, Institute for Chemical Engineering of Coal, Taiyuan University of Technology, West Yingze Street Number 79, Taiyuan 030024 (China); Zhang, Zhen-Rong [Institute of Applied Chemical, Shanxi (China); Fan, Hui-Ling, E-mail: fanhuiling@tyut.edu.cn [State Key Laboratory of Coal Science and Technology, Co-founded by Shanxi Province and the Ministry of Science and Technology, Institute for Chemical Engineering of Coal, Taiyuan University of Technology, West Yingze Street Number 79, Taiyuan 030024 (China); Zhen, Tian [Deparment of Analysis and Service Center Micromertics instrumental Ltd, Shanghai (China); Shangguan, Ju; Mi, Jie [State Key Laboratory of Coal Science and Technology, Co-founded by Shanxi Province and the Ministry of Science and Technology, Institute for Chemical Engineering of Coal, Taiyuan University of Technology, West Yingze Street Number 79, Taiyuan 030024 (China)

    2017-02-01

    Highlights: • Incorporation of AC less than 2% in MOF-199 can increase micropores and BET surface area, as evidenced by N{sub 2} adsorption. • Lewis acid (unsaturated copper) sites could also be increased in the modified MOF-199, as revealed by Py-IR characterization. • Composite with 2% AC showed highest sulfur capacity with 8.46 and 8.53% for H{sub 2}S and CH{sub 3}SCH{sub 3}, respectively. • The adsorption of CH{sub 3}SCH{sub 3} on composite is reversible, physic-adsorption and weak chemisorption were involved. - Abstract: MOF-199 was modified by incorporating activated carbon (AC) during its synthesis under hydrothermal conditions to improve its performance in the removal of hydrogen sulfide (H{sub 2}S) and dimethyl sulfide (CH{sub 3}SCH{sub 3}). A variety of different characterization techniques including X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), pyridine adsorption infrared spectroscopy (Py-IR), thermogravimetric- mass spectroscopy (TG-MS) and X-ray photoelectron spectroscopy (XPS) were used to analyze the fresh and exhausted composites. It was found that the composites, which have an amount of AC of less than 2%, had the same morphology as those of pristine MOF-199, but exhibited a more ordered crystallinity structure as well as higher surface area. The composite with 2% AC incorporation showed highest sulfur capacity of 8.46 and 8.53% for H{sub 2}S and CH{sub 3}SCH{sub 3}, respectively, which increased by 51 and 41% compared to that of MOF-199. This improvement was attributed to the formation of more micropores and especially the increased number of unsaturated copper metal sites, as revealed by Py-IR. It is suggested the chemical reaction was apparent during adsorption of H{sub 2}S, which resulted in the formation of CuS and the collapse of the MOF structure. Whereas reversible chemisorption was found for CH{sub 3}SCH{sub 3} adsorption, as

  1. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    Science.gov (United States)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher

    2018-01-01

    Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.

  2. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan

    2017-01-01

    is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration...... outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate......Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters...

  3. International Space Station Carbon Dioxide Removal Assembly Testing

    Science.gov (United States)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  4. Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li-S batteries

    Science.gov (United States)

    Xia, Yang; Zhong, Haoyue; Fang, Ruyi; Liang, Chu; Xiao, Zhen; Huang, Hui; Gan, Yongping; Zhang, Jun; Tao, Xinyong; Zhang, Wenkui

    2018-02-01

    The rational design and controllable synthesis of sulfur cathode with high sulfur content, superior structural stability and fascinating electrochemical properties is a vital step to realize the large-scale application of rechargeable lithium-sulfur (Li-S) batteries. However, the electric insulation of elemental sulfur and the high solubility of lithium polysulfides are two intractable obstacles to hinder the success of Li-S batteries. In order to overcome aforementioned issues, a novel strategy combined supercritical CO2 fluid technology and biotemplating method is developed to fabricate Ni(OH)2 modified porous carbon microspheres as sulfur hosts to ameliorate the electronic conductive of sulfur and enhance simultaneously the physical and chemical absorptions of polysulfides. This elaborately designed Ni(OH)2@PYC/S composite cathode exhibits high reversible discharge capacity (1335 mAh g-1 at 0.1 C), remarkable cyclic stability (602 mAh g-1 after 200 cycles at 0.2 C) and superior rate capability, which is much better than its PYC/S counterpart. These results clearly demonstrate that the advanced porous carbon with good conductivity and the polar Ni(OH)2 coating layer with strong trapping ability of polysulfides are responsible for the enhanced electrochemical performance.

  5. A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries

    Science.gov (United States)

    Zhao, Qian; Zhu, Qizhen; An, Yabin; Chen, Renjie; Sun, Ning; Wu, Feng; Xu, Bin

    2018-05-01

    To improve the cycling performance of the Li-S batteries, a 3D interwoven hollow interlayer with extremely high electrolyte adsorption capability up to 9.64 g g-1 was simply prepared by carbonization of cotton fabric (CCF). For comparison, an interlayer coated on separator was obtained by the slurry-coating method of powdery CCF. The key role of the adsorption capability is confirmed by comparing the electrochemical performance of Li-S batteries with these two interlayers. In the Li-S batteries with 3D CCF interlayer, massive dissolved polysulfides, together with the electrolyte, can be adsorbed and confined in the 3D CCF interlayer, providing substantial extra active sites and alleviating the shuttle effect effectively. As a result, the Li-S batteries with 3D CCF interlayer show much enhanced utilization of active materials (1346.9 mAh g-1 at 0.1C), prolonged cycle life (capacity retention of 80% after 100 cycles), and improved rate performance (553.2 mAh g-1 at 4C). Even for cathodes with high sulfur loading of 5 mg cm-2, the cells with 3D CCF interlayer perform a high capacity of 1085 mAh g-1 and retain 870.6 mAh g-1 after 75 cycles at 0.5 mA cm-2. These results not only provide a sustainable, low cost and easy-prepared 3D CCF interlayer, but also offer a promising strategy based on interlayer with high adsorption capability in designing high-performance Li-S batteries.

  6. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  7. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode

    Science.gov (United States)

    Gao, Jing; Sun, Chunshui; Xu, Lei; Chen, Jian; Wang, Chong; Guo, Decai; Chen, Hao

    2018-04-01

    Due to flexible property and light weight, the lithiated Nafion membrane swollen with PC (PC-Li-Nafion) has been employed as both solid-state electrolyte and separator to fabricate solid-state Li-S cells. The electrochemical measurements of PC-Li-Nafion membrane show that its Li-ion transference number is 0.928, ionic conductivity of 2.1 × 10-4 S cm-1 can be achieved at 70 °C and its electrochemical window is 0 ∼ +4.1 V vs. Li+/Li. It is observed that the Li dendrites are suppressed by using PC-Li-Nafion membrane due to its single-ion conducting property. The amounts of Li-Nafion resin binder and conductive carbon in the cathode are optimized as 40% and 10% respectively to make a balance of ionic and electronic conductivities. A thin-layer Li-Nafion resin with a thickness of around 2 μm is fabricated between the cathode and PC-Li-Nafion membrane to improve the interfacial contact and further enhance the specific capacity of the cell. When measured at 70 °C, the Li-S cell delivers a reversible specific capacity of 1072.8 mAh g-1 (S) at 0.05 C and 895 mAh g-1 (S) at 1 C. The capacity retention at 1 C is 89% after 100 cycles. These results suggest that high-performance solid-state Li-S cells can be fabricated with the Li-Nafion polymer electrolyte.

  8. Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor.

    Science.gov (United States)

    Borisova, Tatiana; Dekaliuk, Mariia; Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Vari, Sandor G; Demchenko, Alexander P

    2017-07-01

    Carbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups. Recently, we demonstrated neurotoxic properties of CDs synthesized from the amino acid β-alanine, and it is of importance to analyze whether CDs obtained from different precursors and particularly those exposing sulfur atoms induce similar neurotoxic effects. This study focused on synthesis of CDs from the sulfur-containing precursor thiourea-CDs (TU-CDs) with a size less than 10 nm, their characterization, and neuroactivity assessment. Neuroactive properties of TU-CDs were analyzed based on their effects on the key characteristics of glutamatergic and γ-aminobutyric acid (GABA) neurotransmission in isolated rat brain nerve terminals. It was observed that TU-CDs (0.5-1.0 mg/ml) attenuated the initial velocity of Na + -dependent transporter-mediated uptake and accumulation of L-[ 14 C]glutamate and [ 3 H]GABA by nerve terminals in a dose-dependent manner and increased the ambient level of the neurotransmitters. Starting from the concentration of 0.2 mg/ml, TU-CDs evoked a gradual dose-dependent depolarization of the plasma membrane of nerve terminals measured with the cationic potentiometric dye rhodamine 6G. Within the concentration range of 0.1-0.5 mg/ml, TU-CDs caused an "unphysiological" step-like increase in fluorescence intensity of the рН-sensitive fluorescent dye acridine orange accumulated by synaptic vesicles. Therefore, despite different surface properties and fluorescent features of CDs prepared from different starting materials

  9. The impact of a carbon tax on international tourism

    NARCIS (Netherlands)

    Tol, R.S.J.

    2007-01-01

    A simulation model of international tourist flows is used to estimate the impact of a carbon tax on aviation fuel. The effect of the tax on travel behaviour is small: A global tax of $1000/t C would change travel behaviour and reduce carbon dioxide emissions from international aviation by 0.8%. A

  10. Spatial distributions of carbon, nitrogen and sulfur isotope ratios in human hair across the central United States.

    Science.gov (United States)

    Valenzuela, Luciano O; Chesson, Lesley A; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2011-04-15

    We present data on the carbon (δ(13)C), nitrogen (δ(15)N) and sulfur (δ(34)S) isotope ratios of human hair collected in the central portions of the USA. These elements are incorporated into hair from the diet and thus provide a record of dietary inputs that may also document geospatial patterns. We detected regional differences in hair δ(34)S values across the USA, with the lowest values in the northern Great Plains and increasing values towards the east, west and south. In contrast, no statistically significant patterns were detected in the spatial variation of human hair δ(13)C and δ(15)N values. Using δ(34)S values and a Geographic Information System approach, we created a map ('sulfur isoscape'). The accuracy of the map was tested using hair samples not included in its generation. We conclude that sulfur isotope analysis may represent a new tool to investigate the movements and/or region-of-origin of humans. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  12. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids.

    Science.gov (United States)

    Shuba, M V; Paddubskaya, A G; Kuzhir, P P; Maksimenko, S A; Ksenevich, V K; Niaura, G; Seliuta, D; Kasalynas, I; Valusis, G

    2012-12-14

    To decrease single-wall carbon nanotube (SWCNT) lengths to a value of 100-200 nm, aggressive cutting methods, accompanied by a high loss of starting material, are frequently used. We propose a cutting approach based on low temperature intensive ultrasonication in a mixture of sulfuric and nitric acids. The method is nondestructive with a yield close to 100%. It was applied to cut nanotubes produced in three different ways: gas-phase catalysis, chemical vapor deposition, and electric-arc-discharge methods. Raman and Fourier transform infrared spectroscopy were used to demonstrate that the cut carbon nanotubes have a low extent of sidewall degradation and their electronic properties are close to those of the untreated tubes. It was proposed to use the spectral position of the far-infrared absorption peak as a simple criterion for the estimation of SWCNT length distribution in the samples.

  13. Hierarchical N-Rich Carbon Sponge with Excellent Cycling Performance for Lithium-Sulfur Battery at High Rates.

    Science.gov (United States)

    Zhen, Mengmeng; Wang, Juan; Wang, Xin; Wang, Cheng

    2018-04-17

    Lithium-sulfur batteries (LSBs) are receiving extensive attention because of their high theoretical energy density. However, practical applications of LSBs are still hindered by their rapid capacity decay and short cycle life, especially at high rates. Herein, a highly N-doped (≈13.42 at %) hierarchical carbon sponge (HNCS) with strong chemical adsorption for lithium polysulfide is fabricated through a simple sol-gel route followed by carbonization. Upon using the HNCS as the sulfur host material in the cathode and an HNCS-coated separator, the battery delivers an excellent cycling stability with high specific capacities of 424 and 326 mA h g -1 and low capacity fading rates of 0.033 % and 0.030 % per cycle after 1000 cycles under high rates of 5 and 10 C, respectively, which are superior to those of other reported carbonaceous materials. These impressive cycling performances indicate that such a battery could promote the practical application prospects of LSBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.

    Science.gov (United States)

    Schneider, Artur; Janek, Jürgen; Brezesinski, Torsten

    2017-03-22

    The use of monolithic carbons with structural hierarchy and varying amounts of nitrogen and oxygen functionalities as sulfur host materials in high-loading lithium-sulfur cells is reported. The primary focus is on the strength of the polysulfide/carbon interaction with the goal of assessing the effect of (surface) dopant concentration on cathode performance. The adsorption capacity - which is a measure of the interaction strength between the intermediate lithium polysulfide species and the carbon - was found to scale almost linearly with the nitrogen level. Likewise, the discharge capacity of lithium-sulfur cells increased linearly. This positive correlation can be explained by the favorable effect of nitrogen on both the chemical and electronic properties of the carbon host. The incorporation of additional oxygen-containing surface groups into highly nitrogen-functionalized carbon helped to further enhance the polysulfide adsorption efficiency, and therefore the reversible cell capacity. Overall, the areal capacity could be increased by almost 70% to around 3 mA h cm -2 . We believe that the design parameters described here provide a blueprint for future carbon-based nanocomposites for high-performance lithium-sulfur cells.

  15. Sulfur Mustard

    Science.gov (United States)

    ... Poisoning Methyl isocyanate Case Definition: Methyl Isocyanate Poisoning Mustard gas (H) (sulfur mustard) Facts About Sulfur Mustard Case ... About Strychnine Case Definition: Strychnine Sulfur mustard (H) (mustard gas) Facts About Sulfur Mustard Case Definition: Vesicant (Mustards, ...

  16. Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa

    Science.gov (United States)

    Watanabe, Yumiko; Naraoka, Hiroshi; Wronkiewicz, David J.; Condie, Kent C.; Ohmoto, Hiroshi

    1997-08-01

    increase are much less than those estimated by Hayes et al. (1983) and Des Marais et al. (1992), and only about 2 to 3%‰ for the kerogens that decreased their H/C ratios from 1.5 to less than 0.3. Based on the relationships among sulfide-S contents, organic-C contents, and δ 13C org values, four different types of depositional environments are identified for the Archean and early Proterozoic shales in the Kaapvaal Craton: (I) euxinic marine basins, characterized by normal marine organisms with δ 13C org= -33 ± 3%‰ (II) near-shore, oxic marine environment, characterized by normal marine organisms with δ 13C org = -31 ± 3%‰; (III) hypersaline, low-sulfate lakes, characterized by organisms with δ 13C org= -2 ± 3%‰; and (IV) euxinic, marine basins which supported the activity of methanogenic and methanotrophic bacteria and accumulated organic matter with δ 13C org= -43 ± 3%‰. In contrast to the currently popular model positing a global anoxic ocean prior to ˜2.2 Ga (e.g., Des Marais et al, 1992; Hayes, 1994; Logan et al., 1995), this study suggests that the development of anoxic basins, which accumulated Group II and IV sediments, occurred only regionally and episodically during the period between 3.0 Ga and 2.1 Ga. This further suggests that the normal ocean has been oxic since at least ˜3.0 Ga. Diversifications of environments, as well as of biological species, had already occurred ˜3.0 Ga. The carbon isotope mass balance calculation suggests that the removal rates of organic C and carbonate C from the ocean and the weathering rates of organic C and carbonate C on the continents during the 3.0-2.1 Ga period were basically the same as those in the Phanerozoic era. This would have been possible only if the atmospheric P O 2 level had been basically constant since at least 3.0 Ga. The results of this study, therefore, add to a growing list of evidence that the atmosphere has been oxic (i.e., P O 2 > 1%PAL) since at least 3.0 Ga. The list of evidence

  17. Internal carbon pricing - An increasingly widespread corporate practice

    International Nuclear Information System (INIS)

    2016-01-01

    For the Global Climate Chance Summit, I4CE and EpE - Entreprises pour l'environnement, have come together to release a guidebook on internal carbon pricing. The publication outlines the concept of an internal carbon price, describes its various forms and also identifies benefits of adopting this policy. The publication is based on the experiences of companies that are members of EpE and aims to respond to the questions which may arise for companies seeking to put a price on carbon internally

  18. Sulfur enriched carbon nanotubols with a Poly(3,4-ethylenedioxypyrrole) coating as cathodes for long-lasting Li-S batteries

    Science.gov (United States)

    Mukkabla, Radha; Meduri, Praveen; Deepa, Melepurath; Shivaprasad, S. M.; Ghosal, Partha

    2017-02-01

    Lithium-sulfur (Li-S) batteries are technologically significant for sulfur is cheap, and offers high gravimetric capacity and a large energy density. But achieving long term cyclability with moderate capacity loss, and scalability pose formidable challenges. A solution phase approach for the preparation of a composite of sulfur with hydroxyl groups functionalized multiwalled carbon nanotubes (MWCNTols) and coated with poly(3,4-ethylenedioxypyrrole) (PEDOP) is presented for the first time. Comparison of the Li-S performances at 0.1 C current-rate show that the S based cell with a S-loading of 80% retains a low capacity of 122 mAh gsulfur-1 after 100 cycles, whereas cells with S/MWCNTols and S/MWCNTols/PEDOP composites with sulfur loadings of 73 and 70% respectively, retain capacities of 384 and 624 mAh gsulfur-1 after 200 charge-discharge cycles, with Coulombic efficiencies of 96 and 98.7% respectively. This performance differential illustrates the role of PEDOP in inhibiting sulfur loss and in maximizing cell response. The polymer provides electrical interconnects between the insulating sulfur clusters and facilitates Li+ transfer at the interface. The ease of the synthesis, coupled with the remarkable cycling performance delivered by this composite at a high sulfur-loading, demonstrate the promise that this S/CNT/conducting polymer composite has for practical Li-S batteries.

  19. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    Science.gov (United States)

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes

    Science.gov (United States)

    Ou, Junke; Yang, Lin; Zhang, Zhen; Xi, Xianghui

    2016-11-01

    Nowadays, developing functional carbon materials from cheap natural materials is a highly compelling topic. Different from most explored biomass, honeysuckle is inherently rich in nitrogen and sulfur heteroatoms, and it has many advantages for production on a large scale. Here, hierarchical porous carbon (HPC), derived from waste honeysuckle via an environmentally friendly and economically viable method, has been reported as an anode for rechargeable lithium ion batteries. The as-fabricated HPC exhibits favorable features for electrochemical energy storage performance such as high specific surface area (830 m2 g-1), hierarchical three-dimensional (3D) pore network and heteroatoms (N and S) doping effects. HPC, when evaluated as an anode material for lithium ion batteries, shows superior cycling stability (maintaining a reversible capacity of 1215 mAh g-1 at the current density of 100 mA g-1 after 100 cycles) and excellent rate capability (370 mAh g-1 at the current density of 20 A g-1). Furthermore, owing to the appropriate heteroatoms doping, a high initial coulombic efficiency of 64.7% can be achieved. A widespread comparison with the literature also showed that the honeysuckle derived porous carbon was one of the most promising carbon-based anodes for high-rate lithium ion batteries.

  1. Contributions for the 6th London international conference on carbon and graphite CARBON 82

    International Nuclear Information System (INIS)

    Delle, W.

    1982-09-01

    This report is the compilation of a number of papers prepared by KFA Juelich GmbH for the Sixth London International Conference on Carbon and Graphite CARBON '82 which will be held at London in the Imperial College, 20-24 September, 1982. The presentations deal with objectives of manufacture, nuclear application and reactivity of carboneous materials. (orig./GSCH) [de

  2. Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent

    Science.gov (United States)

    Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon

    2015-12-29

    Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.

  3. Perturbations to the Carbon and Sulfur Cycle During the Permian-Triassic Boundary Event in Southern China

    Science.gov (United States)

    Riccardi, A. L.; Arthur, M. A.; Kump, L. R.; D'Hondt, S.

    2004-12-01

    The Permian-Triassic boundary (251 Ma) is a time of major change in the chemistry of the oceans, as well as the period of the greatest mass extinction of the Phanerozoic. The cause of these changes remains a subject of intense research. Many of the current theories rely on changes to the oceanic sulfur cycle. Carbonate associated sulfate has the potential to provide a high resolution record of variations in the concentration and stable isotopic composition of seawater sulfate. This is of interest because the majority of the current data in this area is from evaporites or pyrites both of which are relatively rare in the stratigraphic record. The isotopic value of seawater sulfate is known to shift from approximately 13‰ in the late Permian to 35‰ during the early Triassic. Our research focuses on CAS found in marine carbonates, and we have obtained samples from two sections that span the Permian-Triassic boundary (PTB) of the Meishan and Changxi sections located in Southern China. The carbonates were powdered and the CAS was extracted as barite. Sulfate content peaks at the event horizon at Meishan, indicating perhaps either substantial changes in local (or global) surface ocean chemistry, pH changes, or changes in rates of mineral precipitation. Isotopic analysis of the CAS provides a detailed record of the isotopic shift is δ 34S across the PTB in two temporally constrained sections, and δ 18O of sulfate also aids in our evaluation of the timing and extent of ocean anoxic events. The δ 13C of kerogen at Meishan reaches a minimum just before the event horizon and the point of lowest δ 13C for carbonate. This differs from many other PTB sections where both sets of carbon isotopes reach a minimum simultaneously. This is not as clear in the Changxi section where the event horizon is not as well resolved. The possibility of primary or secondary diagenetic alteration is also being examined for both sections. The combination of these two data sets provides a

  4. Ultrasound assisted in-situ formation of carbon/sulfur cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Vilas G.; Weng, Wei; Amine, Khalil

    2017-08-29

    A process of preparing an E-carbon nanocomposite includes contacting a porous carbon substrate with an E-containing material to form a mixture; and sonicating the mixture to form the E-carbon nanocomposite; where E is S, Se, Se.sub.xS.sub.y, or Te, x is greater than 0; and y is greater than 0.

  5. Development of large scale internal reforming molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Shinoki, T.; Matsumura, M. [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  6. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.

    Science.gov (United States)

    Saha, Arindom; Abram, David N; Kuhl, Kendra P; Paradis, Jennifer; Crawford, Jenni L; Sasmaz, Erdem; Chang, Ramsay; Jaramillo, Thomas F; Wilcox, Jennifer

    2013-12-03

    This work explores surface changes and the Hg capture performance of brominated activated carbon (AC) pellets, sulfur-treated AC pellets, and sulfur-treated AC fibers upon exposure to simulated Powder River Basin-fired flue gas. Hg breakthrough curves yielded specific Hg capture amounts by means of the breakthrough shapes and times for the three samples. The brominated AC pellets showed a sharp breakthrough after 170-180 h and a capacity of 585 μg of Hg/g, the sulfur-treated AC pellets exhibited a gradual breakthrough after 80-90 h and a capacity of 661 μg of Hg/g, and the sulfur-treated AC fibers showed no breakthrough even after 1400 h, exhibiting a capacity of >9700 μg of Hg/g. X-ray photoelectron spectroscopy was used to analyze sorbent surfaces before and after testing to show important changes in quantification and oxidation states of surface Br, N, and S after exposure to the simulated flue gas. For the brominated and sulfur-treated AC pellet samples, the amount of surface-bound Br and reduced sulfur groups decreased upon Hg capture testing, while the level of weaker Hg-binding surface S(VI) and N species (perhaps as NH4(+)) increased significantly. A high initial concentration of strong Hg-binding reduced sulfur groups on the surface of the sulfur-treated AC fiber is likely responsible for this sorbent's minimal accumulation of S(VI) species during exposure to the simulated flue gas and is linked to its superior Hg capture performance compared to that of the brominated and sulfur-treated AC pellet samples.

  7. Preparation, characterization and application of modified macroporous carbon with Cosbnd N site for long-life lithium-sulfur battery

    Science.gov (United States)

    Jin, L. M.; He, F.; Cai, W. L.; Huang, J. X.; Liu, B. H.; Li, Z. P.

    2016-10-01

    A modified macroporous carbon (mMPC) containing Cosbnd Nx site is developed for sulfur retention to enhance cycleability of lithium-sulfur battery. Various nitrogen sites such as graphitic-N, pyrrolic-N, pyridinic-N, pyridinic-N oxide, and Cosbnd Nx are created during macropore formation. The sites without Co show limited polysulfide (PS) adsorption capability because nucleophilic N absorbs PS species via the weak interaction between N and Li in Nsbnd Lisbnd S bondage. The electrophilic Co(II) in Cosbnd Nx absorbs PS species via a strong interaction between S and Co in Ssbnd Co bond. The dual interaction of Cosbnd Nx site with Ssbnd Co and Nsbnd Lisbnd S bondages significantly enhances the PS adsorption. The resultant Li-S battery with the mMPC shows excellent cycleability, exhibiting a very low capacity degradation rate of 0.25 mAh g-1 per cycle after initial 20 cycles. A rate capacity as high as 660 mAh g-1 has been achieved after 300 cycles at 1 C charge-discharge rate.

  8. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    Science.gov (United States)

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  9. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20.

    Science.gov (United States)

    Zha, Musu; Sun, Baoguo; Yin, Sheng; Mehmood, Arshad; Cheng, Lei; Wang, Chengtao

    2018-03-07

    2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.

  10. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    Science.gov (United States)

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.

  11. Micro-Scale Sulfur and Carbon Isotope Analysis of a Neoarchean Stromatolite: Evidence for a Profound Redox Transition in Shelf Margins prior to the Great Oxidation Event

    Science.gov (United States)

    Ilhardt, P.; House, C. H.; Altermann, W.

    2016-12-01

    Neoarchean shelf margin environments such as the Campbellrand-Malmani platform are believed to have been sites of substantial O2 accumulation and nutrient cycling prior to the Great Oxidation Event (GOE). Stromatolites in particular serve as biogeochemical "hotspots" where evidence of various metabolic pathways and bacterial lineages can be traced through geochemical fingerprints. We identified morphologically-unique, organic-rimmed pyrite grains embedded in the dolomitic lamina of a Campbellrand Subgroup stromatolite (2.6 Ga). Carbon and sulfur isotopes measured in situ revealed a multi-layered microbial community employing photoautotrophic carbon fixation, organic matter respiration, sulfate reduction, and potentially assimilation of methane. In particular, unusually high kerogen δ13Corg and pyrite δ34S compositions are consistent with a semi-aerobic ecosystem recycling photosynthetic biomass and sulfate reduction in sulfate-limited porewaters, respectively. In addition, an array of positive Δ33S values suggests incorporation of atmospherically-derived sulfur formed from volcanic SO2 photochemistry and isolated in particulate form. We argue the Δ33S-δ34S trend is best explained by mixing between a δ34S-enriched coastal marine sulfate reservoir and stratospheric Δ33S-positive sulfate or elemental sulfur aerosols. The hypothesized buildup of sulfur gases at higher altitudes agrees with prior arguments for increased subaerial felsic volcanism and intense plume activity coinciding with oxidation of the upper mantle. We suggest explosive subaerial eruptions sustained a stratospheric SO2 reservoir that underwent photochemistry via long-wavelength (250-330 nm) UV radiation to produce positive MIF-carrying aerosol particles (sulfate or sulfur) in the Neoarchean. This contrasts with Paleoarchean sulfur chemistry dominated by SO2 photolysis in the 190-220 nm excitation band and points to an evolving Archean atmosphere, culminating in a coupled biogeochemical

  12. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.

    Science.gov (United States)

    Song, Jiangxuan; Gordin, Mikhail L; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  14. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  15. A novel three-dimensional sulfur/graphene/carbon nanotube composite prepared by a hydrothermal co-assembling route as binder-free cathode for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guanghui; Wang, Gang [Northwest University, National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Physics Department, Institute of Photonics & Photon-Technology (China); Wang, Hui, E-mail: huiwang@nwu.edu.cn [Northwest University, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science (China); Bai, Jintao, E-mail: jintaobai@sina.cn, E-mail: baijt@nwu.edu.cn [Northwest University, National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Physics Department, Institute of Photonics & Photon-Technology (China)

    2015-01-15

    A novel sulfur/graphene/carbon nanotube (S/GN/CNT) composite was successfully prepared by a facile hydrothermal co-assembling route. When used as cathode for lithium–sulfur battery, the S/GN/CNT composite can be pressed directly onto nickel foam without binder and conductive additive, thereby simplifying the manufacturing process. The resulting S/GN/CNT composite exhibited high and stable-specific discharge capacities of 670 mAh g{sup −1} after 80 cycles at 0.2 C and good rate capability. This enhanced electrochemical performance could be attributed to the combinative effects of GN and CNT, which not only function as a flexible conductive matrix, favoring the ion transport and electrolyte diffusion, but also for provide a porous three-dimensional architecture with open channels to effectively confine the soluble polysulfides.

  16. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2uptake in the upper-middle reaches of the Wujiang River, China.

    Science.gov (United States)

    Huang, Qi-Bo; Qin, Xiao-Qun; Liu, Peng-Yu; Zhang, Lian-Kai; Su, Chun-Tian

    2017-08-01

    Carbonate weathering and the CO 2 consumption in karstic area are extensive affected by anthropogenic activities, especially sulfuric and nitric acids usage in the upper-middle reaches of Wujiang River, China. The carbonic acid would be substituted by protons from sulfuric and nitric acids which can be reduce CO 2 absorption. Therefore, The goal of this study was to highlight the impacts of sulfuric and nitric acids on carbonate dissolution and the associated deficit of CO 2 uptaking during carbonate weathering. The hydrochemistries and carbon isotopic signatures of dissolved inorganic carbon from groundwater were measured during the rainy season (July; 41 samples) and post-rainy season (October; 26 samples). Our results show that Ca 2+ and Mg 2+ were the dominant cations (55.87-98.52%), and HCO 3 - was the dominant anion (63.63-92.87%). The combined concentrations of Ca 2+ and Mg 2+ commonly exceeded the equivalent concentration of HCO 3 - , with calculated [Ca 2+ +Mg 2+ ]/[HCO 3 - ] equivalent ratios of 1.09-2.12. The mean measured groundwater δ 13 C DIC value (-11.38‰) was higher than that expected for carbonate dissolution mediated solely by carbonic acid (-11.5‰), and the strong positive correlation of these values with [SO 4 2- +NO 3 - ]/HCO 3 - showed that additional SO 4 2- and NO 3 - were required to compensate for this cation excess. Nitric and sulfuric acids are, therefore, suggested to have acted as the additional proton-promoted weathering agents of carbonate in the region, alongside carbonic acid. The mean contribution of atmospheric/pedospheric CO 2 to the total aquatic HCO 3 - decreased by 15.67% (rainy season) and 14.17% (post-rainy season) due to the contributions made by these acids. The annual mean deficit of soil CO 2 uptake by carbonate weathering across the study area was 14.92%, which suggests that previous workers may have overestimated the absorption of CO 2 by carbonate weathering in other karstic areas worldwide. Copyright © 2017

  17. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    Science.gov (United States)

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  18. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chuan; Ren Nanqi; Wang Aijie; Yu Zhenguo [School of Municipal and Environmental Engineering, Harbin Inst. of Tech. (China); Lee Duu-Jong [School of Municipal and Environmental Engineering, Harbin Inst. of Tech. (China); Dept. of Chemical Engineering, National Taiwan Univ., Taipei (China)

    2008-04-15

    High-rate biological conversion of sulfide and nitrate in synthetic wastewater to, respectively, elemental sulfur (S{sup 0}) and nitrogen-containing gas (such as N{sub 2}) was achieved in an expanded granular sludge bed (EGSB) reactor. A novel strategy was adopted to first cultivate mature granules using anaerobic sludge as seed sludge in sulfate-laden medium. The cultivated granules were then incubated in sulfide-laden medium to acclimate autotrophic denitrifiers. The incubated granules converted sulfide, nitrate, and acetate simultaneously in the same EGSB reactor to S{sup 0}, N-containing gases and CO{sub 2} at loading rates of 3,0 kg S m{sup -3} d{sup -1}, 1.45 kg N m{sup -3} d{sup -1}, and 2.77 kg Ac m{sup -1} d{sup -1}, respectively, and was not inhibited by sulfide concentrations up to 800 mg l{sup -1}. Effects of the C/N ratio on granule performance were identified. The granules cultivated in the sulfide-laden medium have Pseudomonas spp. and Azoarcus sp. presenting the heterotrophs and autotrophs that co-work in the high-rate EGSB-SDD (simultaneous desulfurization and denitrification) reactor. (orig.)

  19. Effects of tempering on internal friction of carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2011-01-01

    Research highlights: → Time tempering dependent microstructure of two steels is studied by internal friction. → Internal friction indicates the interactions of dislocations with carbon and carbides. → Internal friction detects the first stage of tempering. → Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  20. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    Science.gov (United States)

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  1. International mobility in carbon dioxide emissions

    International Nuclear Information System (INIS)

    Duro, Juan Antonio

    2013-01-01

    In this paper, we analyse the evolution of international mobility in per capita CO 2 emissions for the period 1971–2007. This concept reveals the distribution's degree of entrenchment which is fundamentally different from other distribution concepts. In particular, we use several different synthetic mobility measures in order to capture the various perceptions of mobility proposed in the literature. This approach can be seen as complementary to the dynamics of distribution approach. The empirical analysis yields the following main results. First, the evolution observed varies according to the mobility index used. Second, when broader mobility indices are used, the most recent years analysed (i.e. 2000–2007) and the 1970s appear to be the most dynamic periods. Third, their decomposition reveals the major role played by the non-high income countries group. Fourth, the calculation of fictitious indices associated with the three major decomposition components of general mobility indicates that exchange (i.e. changes in position) and dispersion (i.e. distribution effects) have typically been the most important mobility factors. Finally, there does not seem to be a clear, convincing relationship between mobility and the evolution of inequality, which to a certain extent underscores the need to carry out a differential analysis for mobility. The results obtained have some implications in terms of analysis and environmental policy. - Highlights: ► The evolution of international mobility in per capita CO 2 emissions for the period 1971–2007 is analysed. ► Several different synthetic mobility measures are used for capturing the various perceptions of mobility. ► The mobility is high and, in a significant way, without impact on distribution. ► There does not seem to be a clear, convincing relationship between mobility and the evolution of inequality. ► The results obtained have some implications in terms of analysis and environmental policy

  2. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Berger, R.J.; Doesburg, E.B.M.; Doesburg, E.B.M.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In

  3. A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium-sulfur batteries

    Science.gov (United States)

    He, Feng; Li, Kai; Yin, Cong; Ding, Yingchun; Tang, Hao; Wang, Ying; Wu, Zhijian

    2018-01-01

    To effectively restrain the dissolution of soluble polysulfides and fully utilize the active sulfur materials in lithium-sulfur (Li-S) batteries, host materials with unique compositions and porous structures have been pursued. Herein, we have investigated the mechanism of the excellent activity of oxygenated g-C3N4 for Li-S batteries from theoretical perspective, and the further experiment confirms that our O-g-C3N4-S cathode exhibits much better electrochemical performance compared with those in previous reports. Our DFT calculations reveal that the oxygenated material has better electrical conductivity and stronger adsorption ability with the Li2Sx species compared with the pristine g-C3N4 and other two-dimensional (2D) materials. Furthermore, we have confirmed experimentally that the O-g-C3N4-S composite cathode exhibits excellent electrochemical performance in Li-S batteries with high reversible discharge capacity of 1030 mAh g-1 after 100 cycles at 0.2 C, great rate capability with the discharge capacity of 364 mAh g-1 even at 5.0 C, and outstanding long-term cyclic stability with the discharge capacity of 465 mAh g-1 after 1000 cycles at 1.0 C (capacity decay was only 0.046% per cycle). Our results also suggest that theoretical study will play a significant role in predicting and screening novel materials with better performance.

  4. Low-temperature formation and stabilization of rare allotropes of cyclooctasulfur (β-S8 and γ-S8) in the presence of organic carbon at a sulfur-rich glacial site in the Canadian High Arctic

    Science.gov (United States)

    Lau, Graham E.; Cosmidis, Julie; Grasby, Stephen E.; Trivedi, Christopher B.; Spear, John R.; Templeton, Alexis S.

    2017-03-01

    Large-scale deposits of elemental sulfur form annually on a glacier's surface at Borup Fiord Pass in the Canadian High Arctic. However, the mechanisms of mineralization and stabilization of elemental sulfur at this site are currently unknown. Here we show that X-ray diffraction (XRD) data for fresh sulfur precipitates collected from the surface of a melt pool over sulfide-rich ice reveal the presence of three sulfur allotropes, α-S8, β-S8, and γ-S8 (the three solid forms of cyclooctasulfur (S8)). The detection of the β-S8 allotrope of elemental sulfur is notable, since β-S8 typically only forms in high temperature environments (>96 °C). The γ-S8 allotrope is also rare in natural settings and has previously been implicated as a signature of microbial sulfur cycling. Using combustion and infrared spectroscopy approaches, organic carbon is also detected within the sample bearing the three allotropes of elemental sulfur. Electron microscopy and scanning transmission X-ray microscopy (STXM) at the C K-edge show that the sulfur precipitates are intimately associated with the organic carbon at the submicron scale. The occurrence of β-S8 and γ-S8 in this low-temperature setting indicates that there are unknown pathways for the formation and stabilization of these rare allotropes of elemental sulfur. In particular, we infer that the occurrence of these allotropes is related to their association with organic carbon. The formation of carbon-associated sulfur globules may not be a direct by-product of microbial activity; however, a potential role of direct or indirect microbial mediation in the formation and stabilization of β-S8 and γ-S8 remains to be assessed.

  5. Effect of elemental sulfur in precursors on the pore structure and surface chemical characteristics of high-surface area activated carbon

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-09-01

    Full Text Available Analog sulfur-containing precursors (ASCPs have been prepared by adding a certain amount of elemental sulfur (ES into petroleum coke (PC for synthesis of high-surface area activated carbon (HAC. ASCPs make it feasible to control the speciation and content of sulfur in ASCPs, so as to accurately investigate the influence of ES on the pore structure and surface chemical characteristics of the resultant HAC. The results indicate that ES in ASCPs can react with activator KOH and consume a part of KOH amount, thus leading to the deficiency of actual KOH amount for PC activation, eventually making a decrease in the specific surface area and pore volume of HAC. Interestingly, some of ES in ASCPs is transformed into organic sulfur thioether (C–S–C and sulfate (C–SO4–C or sulfonate (C–SO3–C on HAC surface during the activation process. Therefore, the surface chemical characteristics of HAC are modified correspondingly.

  6. Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur nutrition.

    Science.gov (United States)

    Dietz, K J; Heilos, L

    1990-07-01

    Spinach (Spinacea oleracea) plants were grown either continuously on complete nutrient solutions or for 2 weeks on media deficient in phosphate or sulfate. To characterize leaf carbohydrate metabolism, levels of phosphorylated intermediates, activities of enzymes involved in photosynthetic carbon metabolism, contents of soluble and acid hydrolyzable sugars were measured in leaves differing in age and mineral status and related to leaf rates of photosynthesis and assimilate partitioning. Concentrations of metabolites-particularly those which are preferentially compartmented in the cytosol-decreased from young to old leaves and were lowest in old phosphate starved leaves. Nutrient deficiency showed comparable effects on stromal and cytosolic intermediates. Whole leaf ATP to ADP ratios were dependent on the growth regime, but did not much change with leaf age. The assimilatory force increased in all leaves suffering from mineral deficiency; the assimilatory force was low when photosynthesis was high and vice versa. Sugars accumulated although enzyme activities were decreased under deficiency. The results show that growth of P- and S-starved plants is not limited by photosynthetic reactions.

  7. Carbon Metabolism in Spinach Leaves as Affected by Leaf Age and Phosphorus and Sulfur Nutrition 1

    Science.gov (United States)

    Dietz, Karl-Josef; Heilos, Ludger

    1990-01-01

    Spinach (Spinacea oleracea) plants were grown either continuously on complete nutrient solutions or for 2 weeks on media deficient in phosphate or sulfate. To characterize leaf carbohydrate metabolism, levels of phosphorylated intermediates, activities of enzymes involved in photosynthetic carbon metabolism, contents of soluble and acid hydrolyzable sugars were measured in leaves differing in age and mineral status and related to leaf rates of photosynthesis and assimilate partitioning. Concentrations of metabolites—particularly those which are preferentially compartmented in the cytosol—decreased from young to old leaves and were lowest in old phosphate starved leaves. Nutrient deficiency showed comparable effects on stromal and cytosolic intermediates. Whole leaf ATP to ADP ratios were dependent on the growth regime, but did not much change with leaf age. The assimilatory force increased in all leaves suffering from mineral deficiency; the assimilatory force was low when photosynthesis was high and vice versa. Sugars accumulated although enzyme activities were decreased under deficiency. The results show that growth of P- and S-starved plants is not limited by photosynthetic reactions. PMID:16667581

  8. Carbon microtubes: tuning internal diameters and conical angles.

    Science.gov (United States)

    Bhimarasetti, Gopinath; Cowley, John M; Sunkara, Mahendra K

    2005-07-01

    In this paper, we report a synthesis strategy for a new class of hollow, curved carbon morphologies, 'carbon microtubes' (CMTs), with absolute control over their conical angles and internal diameters. Our synthesis methodology employs nitrogen or oxygen dosing to change the wetting behaviour of gallium metal with the growing carbon walls to tune the conical angles. Increasing N(2) concentrations in the gas phase during growth increases the conical angles of CMTs from +25° to about -20°. A methodology using the timing of oxygen or nitrogen dosing during CMT growth is shown to tune the internal diameters anywhere from a few nanometres to a few microns. The walls of the carbon microtubes are characterized using transmission electron microscopy (TEM) and Raman spectroscopy and are found to consist of aligned graphite nanocrystals (2-5 nm in size). Furthermore, dark field images of CMTs showed that the graphite nanocrystals are aligned with their c-axes perpendicular to the wall surface and that the crystals themselves are oriented with respect to the wall surface depending upon the conical angle of the CMT.

  9. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  10. A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana Shelf

    Science.gov (United States)

    Rosenbauer, R.J.; Swarzenski, P.W.; Kendall, C.; Orem, W.H.; Hostettler, F.D.; Rollog, M.E.

    2009-01-01

    Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of ??13C and ??15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and ??34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and ??34S down-core are likely caused by changes in the rate of

  11. A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana Shelf

    Science.gov (United States)

    Rosenbauer, Robert J.; Swarzenski, Peter W.; Kendall, Carol; Orem, William H.; Hostettler, Frances D.; Rollog, Mark E.

    2009-12-01

    Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of δ13C and δ15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and δ34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and δ34S down-core are likely caused by changes in the rate of

  12. Nitrogen and sulfur co-doped porous carbon – is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Ramaprabhu, S.

    2017-01-01

    Non-precious, heteroatom doped carbon is reported to replace commercial Pt/C in both alkaline and acidic half-cell rotating disc electrode study; however the real world full cell measurements with the metal-free electrocatalysts overcoming the practical troubles in acidic environment proton exchange membrane fuel cell (PEMFC) are almost negligible to confirm the claim. Nitrogen and sulfur co-doped porous carbon (DPC) was synthesized in a one step, high yield process from single source ionic liquid precursor using eutectic salt as porogens to achieve porosity. Structural characterization confirms 7.03% nitrogen and 1.68% sulfur doping into the high surface area, porous carbon structure. As the cathode oxygen reduction reaction (ORR) catalyst, metal-free DPC and Pt nanoparticles decorated DPC (Pt/DPC) shows stable and high exchange current density by four electron transfer pathway in acidic half–cell liquid environment due to the synergistic effect of nitrogen and sulfur doping and porous nature of DPC. In an actual solid state full cell measurement, Pt/DPC shows higher performance comparable to commercial Pt/C; however DPC failed to reciprocate the half-cell performance due to blockage of active sites in the membrane electrode assembly fabrication process. - Highlights: • Synthesis of N and S co-doped porous carbon (DPC) in simple one-pot technique. • High surface area DPC shows comparable activity for ORR in half-cell acidic PEMFC study. • Real-world performance of DPC gives 20 mW/cm 2 peak power density at 60 °C. • Homogeneous Pt nanoparticles decorated DPC (Pt/DPC) outperforms commercial Pt/C. • Pt/DPC shows maximum power density of 718 mW/cm 2 with lower 0.3 mg/cm 2 total Pt loading.

  13. The effects of sulfur on carbon partitioning and solubility in high pressure-temperature alloy-silicate systems: Implications for fractionation of carbon and sulfur during accretion and core formation of Earth and Mars

    Science.gov (United States)

    Tsuno, K.; Dasgupta, R.; Grewal, D. S.

    2017-12-01

    Constraining the carbon (C) fractionation between the silicate magma ocean (MO) and core-forming alloy liquid is required to determine the origin and evolution of C between reservoirs such as atmosphere, crust, mantle, and core of terrestrial planets. [1]. Alloy-silicate partitioning experiments of C have shown that preferential fractionation of C into the alloy liquid would have left the bulk silicate Earth (BSE) devoid of C [2-4]. Merger of a sulfur (S)-rich differentiated planetary embryo into the proto-Earth could have supplied almost the entire C budget of the present-day BSE [5], however, experimental data on the systematic effect of S on C solubility in Fe-Ni alloy liquid and its partitioning between the alloy liquid and silicate melt are lacking. We have performed multi anvil experiments with alloy-silicate±glassy carbon mixtures at 6-13 GPa and 1800-2000 °C, fO2 of ΔIW of -0.4 to -2.3, using graphite or MgO capsules and varying alloy S content from 10 to 36 wt.%. We find that C content of the alloy liquid decreases from 4.6 to 0.2 wt.% with increasing alloy S content of 10 to 36 wt.%. Temperature has a small positive effect and pressure has little effect on alloy C solubility. Alloy-silicate partition coefficient of C also decreases with increasing alloy S content at a given P-T-fO2. We used the data to quantify the distribution of C between the silicate MO and core-forming alloy liquid of an S-rich planetary embryo. The model calculations using our data suggest that the addition of a relatively oxidized, C-poor ( 0.3 wt.%) and S-rich ( 3 wt.%) large embryo (6-20% of the present-day Earth mass) to a volatile-poor growing Earth can establish the C and S contents [6, 7] and C/S ratio [8] in BSE. The resulting core composition after the accretion and core formation process is estimated to be C- and S-poor ( 0.05 wt.% and 0.6 wt.%, respectively). On the other hand, a single stage core formation on Mars that results in a core with 8-10 wt.% S can yield a

  14. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Jazi

    2015-10-01

    Full Text Available Introduction The Baqoroq Cu-Zn-As deposit is located northeast of the town ofAnarak in Isfahan province, in theeast central areaof Iran. Copper mineralization occursin upper cretaceous carbonate rocks.Studyof thegeologyof the Nakhlak area, the location ofa carbonate-hosted base metaldeposit, indicatesthe importance of stratigraphic, lithological and structural controls in the placement of this ore deposit. (Jazi et al., 2015.Some of the most world’s most important epigenetic, stratabound and discordant copperdeposits are the carbonate hosted Tsumeb and Kipushi type deposits,located in Africa. The Baqoroq deposit is believed to be of this type. Materials and methods In the current study, fifty rock samples were collected from old tunnels and surface mineralization. Twenty-two thin sections, ten polished sections and four thin-polished sections were prepared for microscopic study. Ten samples were selected for elemental analysis by ICP-OES (Inductively coupled plasma optical emission spectrometry by the Zar Azma Company (Tehran and AAS (Atomic absorption spectrometry at the Ferdowsi University of Mashhad. Seven doubly polished sections of barite mineralization were prepared for microthermometric analysis. Homogenization and last ice-melting temperatures were measured using a Linkam THMSG 600 combined heating and freezing stage at Ferdowsi University of Mashhad. Sulfur isotopes of five barite samples were determined by the Iso-Analytical Ltd. Company of the UK. The isotopic ratios are presented in per mil (‰notation relative to the Canyon Diablo Troilite. Results The upper Cretaceoushost rocks of the Baqoroq deposit include limestone, sandstone, and conglomerate units. Mineralization is controlled by two main factors: lithostratigraphy and structure. Epigenetic Cu-Zn mineralizationoccurs in ore zones as stratabound barite and barite-calcite veins and minor disseminated mineralization. Open space filling occurred as breccia matrix

  15. Panorama 2014 - Overview of new carbon markets at international level

    International Nuclear Information System (INIS)

    Coussy, Paula

    2013-12-01

    Although carbon prices on the European Emissions Trading Scheme (ETS) are at their lowest since 2008 and international negotiations in relation to the United Nations Framework Convention on Climate Change have been stagnating since the 2009 Copenhagen Agreement, nearly seventeen emissions trading markets have been identified at international level. Without counting the European ETS which has existed since 2005, eleven new markets have emerged since 2008 and a further five are set to commence trading in 2014. Of these eleven active markets, five are in Asia, three are in North America, one is in Oceania, one is in Central Asia and one is in Europe. It should be pointed out that to date, no markets are scheduled to begin trading in Africa. Although four markets have announced their intention to work together between now and 2020, the creation of an international emissions trading scheme is not on the immediate horizon. (author)

  16. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries.

    Science.gov (United States)

    Balach, Juan; Singh, Harish K; Gomoll, Selina; Jaumann, Tony; Klose, Markus; Oswald, Steffen; Richter, Manuel; Eckert, Jürgen; Giebeler, Lars

    2016-06-15

    Because of the outstanding high theoretical specific energy density of 2600 Wh kg(-1), the lithium-sulfur (Li-S) battery is regarded as a promising candidate for post lithium-ion battery systems eligible to meet the forthcoming market requirements. However, its commercialization on large scale is thwarted by fast capacity fading caused by the Achilles' heel of Li-S systems: the polysulfide shuttle. Here, we merge the physical features of carbon-coated separators and the unique chemical properties of N and S codoped mesoporous carbon to create a functional hybrid separator with superior polysulfide affinity and electrochemical benefits. DFT calculations revealed that carbon materials with N and S codoping possess a strong binding energy to high-order polysulfide species, which is essential to keep the active material in the cathode side. As a result of the synergistic effect of N, S dual-doping, an advanced Li-S cell with high specific capacity and ultralow capacity degradation of 0.041% per cycle is achieved. Pushing our simple-designed and scalable cathode to a highly increased sulfur loading of 5.4 mg cm(-2), the Li-S cell with the functional hybrid separator can deliver a remarkable areal capacity of 5.9 mAh cm(-2), which is highly favorable for practical applications.

  17. Route to sustainable lithium-sulfur batteries with high practical capacity through a fluorine free polysulfide catholyte and self-standing Carbon Nanofiber membranes

    OpenAIRE

    Lim, Du-Hyun; Agostini, Marco; Nitze, Florian; Manuel, James; Ahn, Jou-Hyeon; Matic, Aleksandar

    2017-01-01

    We report on a new strategy to improve the capacity, reduce the manufacturing costs and increase the sustainability of Lithium-Sulfur (LiS) batteries. It is based on a semi-liquid cathode composed of a Li2S8 polysulphide catholyte and a binder-free carbon nanofiber membrane with tailored morphology. The polysulphides in the catholyte have the dual role of active material and providing Li+-conduction, i.e. no traditional Li-salt is used in this cell. The cell is able to deliver an areal capaci...

  18. Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type.

    Science.gov (United States)

    Chung, Ill-Min; Lee, Taek-Jun; Oh, Yong-Taek; Ghimire, Bimal Kumar; Jang, In-Bae; Kim, Seung-Hyun

    2017-04-01

    The natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer. C, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry. The type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng ( p  authenticity depending on cultivation conditions.

  19. Authigenic minerals related to carbon and sulfur biogeochemical cycling from deep-sea active methane seeps offshore South-West Africa

    Science.gov (United States)

    Pierre, C.; Blanc-Valleron, M.; Demange, J.; Boudouma, O.; Pape, T.; Himmler, T.; Fekete, N.; Spiess, V.

    2011-12-01

    The South-West African continental margin is well known for occurrences of active methane-rich fluid seeps that are associated with seafloor pockmarks in a broad range of water depths, from the shelf to the deep basins. High gas flares in the water column, luxurious oases of benthic fauna, gas hydrate accumulations and diagenetic carbonate crusts have been observed at these seeps. During the M76/3a expedition of R/V METEOR (summer 2008) gravity cores recovered abundant authigenic carbonate concretions from five pockmarks of the South-West African margin including previously studied sites (Hydrate Hole, Worm Hole, Regab Pockmark) and two sites (Deep Hole, Baboon Cluster) newly discovered during the cruise. Carbonate concretions were mostly associated to sediments settled by seep-associated benthic macrofauna and bearing shallow gas hydrates. We present new results of the comprehensive analysis of the mineralogy and isotope geochemistry of the diagenetic carbonates sampled in the five pockmarks. The mineralogy of authigenic carbonates is dominated by magnesian calcite and aragonite, associated occasionally with dolomite. The oxygen and carbon isotopic compositions of authigenic carbonates (+2.4 < δ18O % V-PDB < +6.2 ; -61.0 < δ13C % V-PDB < -40.1) indicate that microbial anaerobic oxidation of methane (AOM) was the main process controling carbonate precipitation within sub-seafloor sediments deposited from the glacial-time up to the present. The frequent occurrence of diagenetic gypsum crystals within the sediments demonstrates that bio-irrigation with oxygenated bottom water by the burrowing activity of benthic fauna caused the secondary oxidation of reduced sulfur (hydrogen sulfide and pyrite) that was produced by sulfate reducting bacteria as a by-product of AOM; during the sulfide oxidation process, the released acidity induced the partial dissolution of carbonates. Our results demonstrate also the strong link that existed between the carbon and sulfur cycles

  20. Genome sequencing of Sulfolobus sp. A20 from Costa Rica and comparative analyses of the putative pathways of carbon, nitrogen and sulfur metabolism in various Sulfolobus strains

    Directory of Open Access Journals (Sweden)

    Xin Dai

    2016-11-01

    Full Text Available The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2,591 open reading frames (ORFs. Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and less than 30% DNA-DNA hybridization (DDH values with the most closely related known Sulfolobus species (i.e., S. islandicus and S. solfataricus, suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, S. acidocaldarius, S. islandicus and S. tokodaii, which were isolated from geographically separated areas, identified 1,801 genes conserved among all Sulfolobus species analyzed (core genes. Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e. S. islandicus strain REY15A, LAL14/1, M14.25 and M16.27 or urea (i.e. S. islandicus HEV10/4, S. tokodaii strain7 and S. metallicus DSM 6482. The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR, whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE. However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a specific

  1. Energy and Carbon Embodied in the International Trade of Brazil

    International Nuclear Information System (INIS)

    Tolmasquim, M.T.; Machado, G.

    2003-01-01

    Shifting the economic structure of a country towards energy-intensive industries may lead to significant effect on the environment. One of the major environmental impacts associated to such changes is the increase of the Carbon Dioxide emissions - the main factor behind the greenhouse effect. In the last decades, structural changes in the Brazilian economy were close related to changes in the country's trade specialization. This paper analyzes to what extent energy use and its associated CO2 emissions of Brazil in the 90's may be overloaded by changes in the country's trade specialization towards a more energy-intensive mix. This study finds that Brazil exported, in net terms, significant amounts of energy and carbon (C) embodied in goods traded with the rest of the world in the 90's. In fact, some 6.6% of the final energy used by the industrial sector and around 7.1% of its C emissions are prompted by international trade. By overloading the country's energy use and its associated environmental damage (both local and global), this situation seems to contribute to increase not only local but also global environmental damage, since C leakage from non-Annex I countries due to international trade may lead to higher C concentration in the atmosphere

  2. Recent observations of carbon and sulfur gas emissions from Tavurvur, Bagana and Ulawun (Papua New Guinea) with a combination of ground- and air-borne direct and remote sensing techniques

    Science.gov (United States)

    Arellano, Santiago; Galle, Bo; Mulina, Kila; Wallius, Julia; McCormick, Brendan; Salem, Lois; D'aleo, Roberto; Itikarai, Ima; Tirpitz, Lukas; Bobrowski, Nicole; Aiuppa, Alessandro

    2017-04-01

    Satellite observations reveal that volcanoes from Papua New Guinea contributed with ca. 15{%} of the global emission of volcanic sulfur dioxide (SO2) during the period 2005-2014. Relatively little is known about their carbon dioxide (CO2) outputs and more recent levels and dynamics of degassing activity. During September 2016 we conducted measurements of the CO2/SO2 ratio and the SO2 flux from Tavurvur, Bagana and Ulawun volcanoes using a combination of remote sensing and direct sampling techniques. Tavurvur exhibits low-level passive degassing from a modestly active vent and few other intra-crater fumaroles, which made access possible for direct measurements of the CO2/SO2 ratio with a compact Multi-GAS instrument. A wide-field of view pointing DOAS monitor was deployed for longer term monitoring of the SO2 flux from a distance of about 2 km. Bagana degasses continuously with occasional emissions of ash, and its SO2 flux, plume velocity and height was constrained by simultaneous scanning and dual-beam DOAS measurements. Molar ratios in the plume of Bagana were measured by the compact Multi-GAS aboard a multi-rotor UAV, up to a height of 1.6 km above ground. Ulawun showed continuous passive degassing and measurements with the UAV, up to an altitude of ca. 1.8 km, and mobile-DOAS traverses from a car were used to constrain its gas emission. Here we present an overview of the challenging conditions, measurement strategies and results of this campaign that forms part of the ongoing international effort DECADE aiming to better quantify the global gas emission of carbon- and sulfur containing species from volcanoes.

  3. Route to sustainable lithium-sulfur batteries with high practical capacity through a fluorine free polysulfide catholyte and self-standing Carbon Nanofiber membranes.

    Science.gov (United States)

    Lim, Du-Hyun; Agostini, Marco; Nitze, Florian; Manuel, James; Ahn, Jou-Hyeon; Matic, Aleksandar

    2017-07-24

    We report on a new strategy to improve the capacity, reduce the manufacturing costs and increase the sustainability of Lithium-Sulfur (LiS) batteries. It is based on a semi-liquid cathode composed of a Li 2 S 8 polysulphide catholyte and a binder-free carbon nanofiber membrane with tailored morphology. The polysulphides in the catholyte have the dual role of active material and providing Li + -conduction, i.e. no traditional Li-salt is used in this cell. The cell is able to deliver an areal capacity as high as 7 mAh cm -2 , twice than that of commercial Lithium-ion batteries (LiBs) and 2-4 times higher than that of state-of-the-art LiS cells. In addition, the battery concept has an improved sustainability from a material point of view by being mainly based on sulfur and carbon and being completely fluorine-free, no fluorinated salt or binders are used, and has potential for upscaling and competitive price. The combination of these properties makes the semi-liquid LiS cell here reported a very promising new concept for practical large-scale energy storage applications.

  4. Simultaneous alloy-silicate fractionation of carbon, nitrogen, and sulfur at high pressures and temperatures: Implications for establishing the volatile budget of the Earth

    Science.gov (United States)

    Grewal, D. S.; Dasgupta, R.; Sun, C.; Tsuno, K.

    2017-12-01

    Constraining the origin, distribution and evolution of volatiles such as carbon (C), nitrogen (N) and sulfur (S) in terrestrial planets is essential to understand planetary differentiation, habitability and comparative planetology [1]. C/N ratio of Bulk Silicate Earth (BSE) is superchondritic (40 ± 8), while C/S ratio is nearly chondritic (0.49 ± 0.14) [2]. Accretion, core formation, and magma ocean (MO) crystallization are the key processes that could have set the relative budgets of C, N and S in different planetary reservoirs [3]. However, experiments using either C-N or C-S-bearing systems have shown that C is more siderophile than N and S, consequently core formation would have left behind subchondritic C/N and C/S ratios in BSE [4-6]. Accretion of extremely C-rich bodies during core formation or/and as a late veneer along with an early atmospheric blow-off are amongst the scenarios that have been suggested to explain C/N ratio while the addition of a differentiated body with a C-rich mantle has been suggested to explain C/S ratio in BSE [4-6]. However, no internally consistent explanations exist on the origin of all the volatile elements. We performed piston cylinder and multi-anvil experiments, using Fe-Ni-N-C±S alloy with variable amounts of S and mafic-ultramafic silicate mixtures in graphite saturated conditions at 1-7 GPa, 1600-1800 °C, and fO2 ranging from ΔIW of -1.1 to -0.3. EPMA and SIMS were used to determine major elements and volatile abundances in the coexisting alloy and silicate melt phases, while the speciation of the volatiles was determined using Raman spectroscopy. Our experimental data reveals that C becomes less siderophile in the presence of N and S during core-mantle differentiation involving an S-rich alloy. Using a set of inverse Monte-Carlo simulations, we propose that a disequilibrium merger of a Mars-sized planetary embryo with a C-saturated, S-rich core to a volatile-depleted proto-Earth during the main stage of accretion

  5. Prospects for international trade in environmental services: An analysis of international carbon emission off-sets

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1991-01-01

    This dissertation presents a case study analysis in which the costs to a US electric utility of reducing its carbon dioxide (CO 2 ) emissions are compared with the costs of carbon-saving forestry projects in Costa Rica and Guatemala. The results show that a large electric utility in the south-central US would find it relatively inexpensive, even profitable given a conducive regulatory treatment, to reduce its CO 2 emissions by a few percent over the next ten years, through direct investment in energy end-use efficiency improvements. In comparison, the costs of the forestry projects studied in Central America range from $1/TC to a worst-case value of about $55/TC, with most project costs between $5 and $13/TC, depending on the type of project, the climate, and the opportunity cost of land. The total amount of CO 2 storage potential is significant, about 100 million tons per country, but not enough to suggest that forestry can offset more than a few percent of global CO 2 emissions from fossil fuel use. These case studies suggest that international trade in the environmental service of reducing global CO 2 accumulation could have significant economic and ecological benefits. A transaction in which a utility pays for forestry projects in exchange for credit against an emission reduction policy is an example of an international carbon emission offset (ICEO). ICEO's could provide a currency for funding carbon-saving services as a way to comply with national policies to reduce CO 2 emissions, as long as compliance is allowed through investments in other countries. This type of North-South transfer is necessary to reconcile economic efficiency and international equity, because of the disparity between the national allocations of responsibility for greenhouse gas emissions and opportunities for emission reductions

  6. The Carbon Impact of International Tourists to an Island Country

    Directory of Open Access Journals (Sweden)

    Kang-Ting Tsai

    2018-05-01

    Full Text Available Taiwan, located in the East Asia, is an island country with limited natural resources. To increase economic growth and reduce CO2 emission levels, the Taiwanese government is promoting a sustainable low-carbon tourism industry. This study investigated the CO2 emission coefficient of tourist activities and identified the CO2 emissions (CE patterns of international visitors to Taiwan. The total CO2 emission per visitor without considering international transportation was estimated using a questionnaire. The total CO2 emission comprises the CO2 emission of transportation, the CO2 emission of accommodation, and the CO2 emission of tourist activities. The results suggest that more convenient public transportation might help to reduce the total CO2 emission. Without considering CO2 emission from international air travel, in contrast to many non-island countries where CO2 emission of transportation is the main contributor to total CO2 emission, the CO2 emission of accommodation was the main contributor to total CO2 emission in Taiwan. To reduce the CO2 emission of accommodation, the Taiwanese government should improve the energy-use efficiency of devices in tourist hotels and promote bed-and-breakfast accommodations with low CO2 emission coefficients. Visitors enjoyed culinary journeys and shopping, both of which are activities that contribute highly to the CO2 emission of tourist activities because of their high CO2 emission coefficients.

  7. Energy use and carbon emissions: Some international comparisons

    International Nuclear Information System (INIS)

    1994-03-01

    This report examines international energy use patterns, trends, and energy-related carbon emissions since 1970. The main focus of this study is on the developed countries, represented by the members of the organization for Economic Cooperation and Development (OECD). The study is organized as follows: (1) the OECD is placed in a world context; (2) aggregate-level information is then presented for an important part of the OECD, namely the Group of Seven (G-7) major industrialized countries (the US, Canada, Japan, the United Kingdom, France, Italy, and Germany -- defined in this report as western Germany only, except where indicated); and (3) individual economic sectors within the G-7 countries are broken out for detailed review

  8. Evaluating carbon dioxide emissions in international trade of China

    International Nuclear Information System (INIS)

    Lin Boqiang; Sun Chuanwang

    2010-01-01

    China is the world's largest emitter of carbon dioxide (CO 2 ). As exports account for about one-third of China's GDP, the CO 2 emissions are related to not only China's own consumption but also external demand. Using the input-output analysis (IOA), we analyze the embodied CO 2 emissions of China's import and export. Our results show that about 3357 million tons CO 2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO 2 abatement.

  9. Methodological review of UK and international low carbon scenarios

    International Nuclear Information System (INIS)

    Hughes, Nick; Strachan, Neil

    2010-01-01

    Scenarios have a long history in business, politics and military planning, as a tool for strategic planning to inform protective, proactive or consensus-based decision making in the face of uncertain futures. Recent years have seen a growth in scenarios for assessing the implications of low carbon futures, but relatively little work has linked these energy scenarios to the broader literature on scenario development. This paper undertakes a methodological review of a selection of UK and international low carbon scenario studies, using a typology of 'trend based', 'technical feasibility' and 'modelling' studies. Dominant methodologies in such studies have been the 2x2 axis and the 'back-casting' approach. Strengths of the studies reviewed include technological detail, and identification of key economic and social constraints. Weaknesses include the over-reliance on constructs such as exogenous emissions constraints, and high level trends, which diminish the ability to understand how the various future scenarios could be brought about or avoided. This is compounded by the lack of depiction of specific system actors; the tendency to abstract policy from the scenarios; and the resulting failure to consider policy, technology and behaviour in an iterative, 'co-evolving' fashion.

  10. Photo-oxidative doping in π-conjugated zig-zag chain of carbon atoms with sulfur-functional group

    Science.gov (United States)

    Ikeura-Sekiguchi, Hiromi; Sekiguchi, Tetsuhiro

    2017-12-01

    Photo-oxidative doping processes were studied for the trans-polyacetylene backbone with the -SCH3 side group as a chemically representative of the precisely controlled S-functionalized zig-zag graphene nanoribbon edge. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy indicates that photochemical reaction of S-CH3 with atmospheric O2 forms selectively oxidized products such as -S(O)CH3 and -SO3- bound to the polyacetylene (PA) backbone. Using the correlation between the oxidation states of sulfur and the XANES peak positions, the partial charge distribution of CH3Sδ+-PAδ- has been estimated. Such positively charged sulfur atoms can attract higher electronegative oxygen atoms and expect to enhance the photooxidization capabilities. The formation of the -SO3- side group is evidently responsible for hole doping into the PA backbone. The results can provide some strategy for area-selective and controllable doping processes of atomic-scale molecular systems with the assistance of UV light.

  11. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems.

    Science.gov (United States)

    Bühring, S I; Sievert, S M; Jonkers, H M; Ertefai, T; Elshahed, M S; Krumholz, L R; Hinrichs, K-U

    2011-03-01

    Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to

  12. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    Science.gov (United States)

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Liang, Hui; Li, Chenwei; Chen, Tao; Cui, Liang; Han, Jingrui; Peng, Zhi; Liu, Jingquan

    2018-02-01

    Because of the urgent need for renewable resources, oxygen reduction reaction (ORR) has been widely studied. Finding efficient and low cost non-precious metal catalyst is increasingly critical. In this study, melamine foam is used as template to obtain porous sulfur and nitrogen-codoped graphene/carbon foam with uniformly distributed cobalt sulfide nanoparticles (Co1-xS/SNG/CF) which is prepared by a simple infiltration-drying-sulfuration method. It is noteworthy that melamine foam not only works as a three-dimensional support skeleton, but also provides a nitrogen source without any environmental pollution. Such Co1-xS/SNG/CF catalyst shows excellent oxygen reduction catalytic performance with an onset potential of only 0.99 V, which is the same as that of Pt/C catalyst (Eonset = 0.99 V). Furthermore, the stability and methanol tolerance of Co1-xS/SNG/CF are more outstanding than those of Pt/C catalyst. Our work manifests a facile method to prepare S and N-codoped 3D graphene network decorated with Co1-xS nanoparticles, which may be utilized as potential alternative to the expensive Pt/C catalysts toward ORR.

  14. Emission rates of sulfur dioxide and carbon dioxide from Redoubt Volcano, Alaska during the 1989-1990 eruptions

    Science.gov (United States)

    Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A.

    1994-01-01

    Airborne measurements of sulfur dioxide emission rates in the gas plume emitted from fumaroles in the summit crater of Redoubt Volcano were started on March 20, 1990 using the COSPEC method. During the latter half of the period of intermittent dome growth and destruction, between March 20 and mid-June 1990, sulfur dioxide emission rates ranged from approximately 1250 to 5850 t/d, rates notably higher than for other convergent-plate boundary volcanoes during periods of active dome growth. Emission rates following the end of dome growth from late June 1990 through May 1991 decreased steadily to less than 75 t/d. The largest mass of sulfur dioxide was released during the period of explosive vent clearing when explosive degassing on December 14-15 injected at least 175,000 ?? 50,000 tonnes of SO2 into the atmosphere. Following the explosive eruptions of December 1989, Redoubt Volcano entered a period of intermittent dome growth from late December 1989 to mid-June 1990 during which Redoubt emitted a total mass of SO2 ranging from 572,000 ?? 90,000 tonnes to 680,000 ?? 90,000 tonnes. From mid-June 1990 through May 1991, the volcano was in a state of posteruption degassing into the troposphere, producing approximately 183,000 ?? 50,000 tonnes of SO2. We estimate that Redoubt Volcano released a minimum mass of sulfur dioxide of approximately 930,000 tonnes. While COSPEC data were not obtained frequently enough to enable their use in eruption prediction, SO2 emission rates clearly indicated a consistent decline in emission rates between March through October 1990 and a continued low level of emission rates through the first half of 1991. Values from consecutive daily measurements of sulfur dioxide emission rates spanning the March 23, 1990 eruption decreased in the three days prior to eruption. That decrease was coincident with a several-fold increase in the frequency of shallow seismic events, suggesting partial sealing of the magma conduit to gas loss that resulted in

  15. Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions

    Science.gov (United States)

    Liu, Zheng; Nie, Huagui; Yang, Zhi; Zhang, Jing; Jin, Zhiping; Lu, Yanqi; Xiao, Zhubing; Huang, Shaoming

    2013-03-01

    Despite the good progress in developing doped carbon catalysts for oxygen-reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing new metal free doped carbon materials with abundance active sites as well as excellent electron transfer and reactant transport rate towards ORR may be a potential solution. Herein, we develop a novel three-dimensional (3D) sulfur-nitrogen co-doped carbon foams (S-N-CF) with hierarchical pore structures, using a convenient, economical, and scalable method. The experimental results have demonstrated that the obtained 3D S-N-CF exhibited better catalytic activity, longer-term stability and higher methanol tolerance than a commercial Pt/C catalyst. Such excellent performances may be attributed to the synergistic effect, which includes high catalytic sites for ORR provided by high S-N heteroatom loading, excellent reactant transport caused by hierarchical pore structures and high electron transfer rate provided by 3D continuous networks. Our results not only develop a new type of catalysts with excellent electrocatalytic performance by a commercially valid route, but also provide useful information for further clarification of the relationship between the microstructures of metal-free carbon materials and catalyst properties for ORR. More importantly, the idea to design hierarchical pore structures could be applied to other catalytic materials and serve as a general strategy for improving the activity of various ORR catalysts.Despite the good progress in developing doped carbon catalysts for oxygen-reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing new metal free doped carbon materials with abundance active sites as well as excellent electron transfer and reactant transport rate towards ORR may be a potential solution. Herein, we develop a novel

  16. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery

    Science.gov (United States)

    Shao, Hongyuan; Wang, Weikun; Zhang, Hao; Wang, Anbang; Chen, Xiaonong; Huang, Yaqin

    2018-02-01

    Despite recent progress in designing modified separators for lithium-sulfur (Li-S) batteries, detail in optimizing the synergistic effect between chemical and physical immobilization for lithium polysulfides (LiPS) in modified separator hasn't been investigated totally. Here, a nano-TiO2 decorated carbon layer (T-DCL) has been successfully applied to modify separator for the Li-S battery. The results indicate that appropriate weight percentage of nano-TiO2 uniformly distributed in conductive carbon layer is effective to chemically and physically immobilize for LiPS, and promote the electron transfer during discharge/charge process. The performance of the modified Li-S battery with T-DCL separator are significantly enhanced, with a specific capacity of 883 mAh g-1 retained after 180 cycles at 0.1 C and 762 mAh g-1 retained after 200 cycles at 0.5C, which are much higher than that of separators only coated with TiO2 layer or conductive carbon layer. Besides, the separator coated with T-DCL also shows low electrochemical impedance and good lithium anode protection. These results indicate that separator with T-DCL is promising to balance the physical and chemical LiPS trapping effect, and optimize the electrochemical performance for Li-S battery.

  17. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    Science.gov (United States)

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  18. Conflicts over carbon capture and storage in international climate governance

    International Nuclear Information System (INIS)

    Krüger, Timmo

    2017-01-01

    In the Paris Agreement, ambitious emission targets are accompanied by insufficient mitigation measures. It lacks, in particular, strategies on how to reduce the use of fossil fuels. In this context the distinctive prospect of carbon capture and storage (CCS) – reducing emissions, albeit using fossil fuels on a large scale – is of particular interest. CCS technologies promise to solve the climate problem independent of drawn-out political disputes and without changing production and consumption patterns. Conflicts about CCS put the fundamental debate on the agenda, whether a comprehensive transformation of social structures is (un-)necessary and (un-)desired in order to solve the ecological crisis. Therefore, in this paper CCS-conflicts are analyzed with a broader perspective including their effects on general struggles about international climate governance. The key research question is to what extent established social practices and structures become politicized – i.e. challenged. Based on the presented empirical findings, I discuss two theses: First, that the future of climate governance is contingent on decisions about the continued use of fossil fuels. Second, that CCS-conflicts have an explosive force that could lead to massive cracks within the paradigm of ecological modernization and thus could politicize international climate policy. - Highlights: • The negotiations about whether CCS should be included in the CDM are analyzed. • The characteristics of the paradigm of ecological modernization are elaborated. • CCS-conflicts are discussed in relation to the paradigm of ecological modernization. • The status quo of CCS’s political significance is assessed. • Possible re- and/or depoliticizing impacts of conflicts over CCS are considered.

  19. Determination of halogens, silicon, phosphorus, carbon, sulfur, tributyl phosphate and of free acid in uranyl nitrate solutions

    International Nuclear Information System (INIS)

    Chu Van Vinh

    2003-01-01

    High-purity uranium compounds are widely used in nuclear field in the form of uranyl nitrate or uranium oxides. In production of uranium material the estimation and the control of products quality is necessary and very important. Halogens was separated from uranium compounds by steam distillation and they were later determined by high performance liquid chromatography (HPLC) for Cl - , Br - , I - ions. Br - was also determined by spectrophotometric and iodide by the individual pulse polarography. Silicon and phosphorus in uranyl nitrate solutions were determined by the photometric method. Sulfur was determined as sulfate form by the measurement of turbidity by the titrimetry. TBP in kerosene and free acid in aqueous solution were determined by the titration. (author)

  20. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  1. Occurrence Forms of Carbon, Sulfur, and Noble Metals in Deposits of the Black-Shale Formation by the Example of the Degdekan Gold-Ore Deposit (Northeastern Russia)

    Science.gov (United States)

    Tauson, V. L.; Kravtsova, R. G.; Akimov, V. V.; Lipko, S. V.; Spiridonov, A. M.; Budyak, A. E.; Voronova, I. Yu.; Belozerova, O. Yu.; Arsentev, K. Yu.

    2018-01-01

    Pyrite crystals and ore-bearing shales of the Degdekan deposit were studied by means of XPS, SEM-EDX, EPMA, and AAS. Five peaks of carbon organic forms were identified, conforming to polymer compounds containing either double bonds of carbon or alkyne groups and compounds containing C-OH and C=O bonds, as well as, probably, small amounts of S-containing compounds and those with functional groups of carboxylic acids. Sulfate prevails over sulfite in pyrites; among the surface sulfide forms, disulfide prevails over monosulfide; the presence of polysulfide is registered. The occurrence of various chemical forms of sulfur on the surface might provide for concentrating of microelements including the noble metals (NMs) in their surface-bound forms. The regular behavior of NMs (Au, Pt, Pd, and Ru) depending on the grain sizes (specific surfaces) of pyrite crystals along with the narrow range of the ratios of structural and surface components of the concentrations of different NMs points to NM coprecipitation with pyrite during the same productive stage. No capture of NM-containing carbonaceous phases took place, which should violate the regularity of Au distribution in pyrites of the Sukhoi Log deposit.

  2. A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid.

    Science.gov (United States)

    Duarte, Eduardo Henrique; dos Santos, William Pereira; Hudari, Felipe Fantinato; Bott Neto, José Luiz; Sartori, Elen Romão; Dall'Antonia, Luiz Henrique; Pereira, Arnaldo César; Tarley, César Ricardo Teixeira

    2014-09-01

    The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Sulfur containing nanoporous materials, nanoparticles, methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Lynden A.; Navaneedhakrishnan, Jayaprakash

    2018-01-30

    Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or "bulk" shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.

  4. Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation.

    Science.gov (United States)

    Siikamäki, Juha; Newbold, Stephen C

    2012-01-01

    Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.

  5. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    energy. At the end of the anaerobic food chain in bacteria they serve to purify the system of sulfide and other metabolic end products. In the process sulfur is returned to the system as sulfate. In transition zones from anaerobic to aerobic...

  6. International Oil Price’s Impacts on Carbon Emission in China’s Transportation Industry

    Directory of Open Access Journals (Sweden)

    Guoxing Zhang

    2014-09-01

    Full Text Available Purpose: This paper analyses the impact mechanism of international oil price on the industrial carbon emission, and uses the partial least squares regression model to study international oil price’s impact on carbon emissions in China’s transportation industry.Design/methodology/approach: This paper chooses five independent variables of GDP, international oil price, private car population, passenger and freight transportation volume as impact factors to investigate industrial carbon emissions, the paper also analyses the impact mechanism of international oil price on the industrial carbon emission, and finally the paper uses the partial least squares regression model to study international oil price’s impact on carbon emissions in China’s transportation industry. With the independent variables’ historical data from 1994 to 2009 as a sample, the fitting of the industry carbon emissions is satisfying. And based on the data of 2011, the paper maintains the private car owning, passenger and freight transportation volume to study international oil prices’ impact on the industry carbon emissions at different levels of GDP.Findings: The results show that: with the same GDP growth, the industry carbon emissions increase with the rise in international oil prices, and vice versa, the industry carbon emissions decrease; and lastly when GDP increases to a certain extent, in both cases of international oil prices’ rise or fall, the industry carbon emissions will go up, and the industry carbon emissions increase even faster while the energy prices are rising.Practical implications: Limit the growth in private-vehicle ownership, change China's transport sector within the next short-term in the structure of energy consumption and put forward China's new energy, alternative energy sources and renewable energy application so as to weaken the dependence on international oil, and indirectly slowdown China's GDP growth rate, which are all possible

  7. The internal consistency of the North Sea carbonate system

    NARCIS (Netherlands)

    Salt, S.; Thomas, H.; Bozec, Y.; Borges, A.V.; de Baar, H.J.W

    2016-01-01

    In 2002 (February) and 2005 (August), the full suite of carbonate system parameters (total alkalinity (AT), dissolved inorganic carbon (DIC), pH, and partial pressure of CO2 (pCO2) were measured on two re-occupations of the entire North Sea basin, with three

  8. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  9. Natural sulfurization of carbohydrates in marine sediments : consequences for the chemical and carbon isotopic composition of sedimentary organic matter

    NARCIS (Netherlands)

    Dongen, B.E. van

    2003-01-01

    Carbohydrates make up the largest part of the organic matter in the biosphere and are used by living organism for many different reasons. They serve, among others, as carbon and energy source as well as metabolic intermediates. Carbohydrates are generally thought to be remineralized during early

  10. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  11. Granulation of susceptible sludge under carbon deficient conditions: A case of denitrifying sulfur conversion-associated EBPR process.

    Science.gov (United States)

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Lu, Hui; Chen, Guanghao

    2016-10-15

    Sludge granulation has been recognized as a promising biotechnology in wastewater treatment. Whereas the granulation of susceptible sludge in particular with a very low organic loading rate (OLR) (≤0.6 kg COD/m(3)/day or ≤ 120 mg COD/g VSS/day) is a difficult task that has not been achieved in activated sludge systems yet. This study was aimed at exploring an effective strategy for sludge granulation in the recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process using a sequencing batch pump-lift reactor. Four strategies were studied by manipulating the factors of organic loading rate (OLR), superficial upflow velocity and sludge settling time individually or collectively. Increasing both the OLR and the superficial upflow velocity effectively promoted granule formation but at the same time led to unstable and even deteriorated reactor performance. The development of granules proceeded via several stages: formation, dispersion, reformation and stabilization. Gradually increasing the superficial upflow velocity from 5.1 to 6.8 m/h and keeping the OLR at 112.4 mg COD/g VSS/day proved to be most effective strategy for accelerating granulation while simultaneously achieving stable reactor performance. Under these conditions, the granules became stable with a diameter of 375-400 μm and displayed excellent settleability. The two major microbial groups, sulfate-reducing bacteria and sulfide-oxidizing bacteria, in the microbial community of the DS-EBPR granular sludge were enriched to 17.7% and 15.8% respectively. The newly developed DS-EBPR granular system was able to achieve an almost threefold improvement in phosphorus removal efficiency and 25% reduction in the operating cycle time compared with a flocculent DS-EBPR system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Effect of Oxidation on the Surface Chemistry of Sulfur-Containing Carbons and their Arsine Adsorption Capacity

    Science.gov (United States)

    2010-01-01

    semiconductor industry and also for catalytic processes, which utilize syngas. Arsine in the synthetic gas is considered as a catalyst poison for such...1] on either alumina or acti- vated carbons supports [1–3]. It was found that copper oxide, CuO , distributed on a support surface leads to the...deposition of arsine as Cu3As or elemental arsenic. In addition to CuO , oxides of silver, manganese, nickel and zinc have been used on alumina supports [3

  13. International Assessment of Carbon Nanotube Manufacturing and Applications

    National Research Council Canada - National Science Library

    Eklund, Peter; Ajayan, Pulickel; Blackmon, Robert; Hart, A. J; Kong, Jing; Pradhan, Bhabendra; Rao, Apparao; Rinzler, Andrew

    2007-01-01

    This WTEC study focuses on the manufacturing and applications of carbon nanotubes "CNTs" to identify recent progress in understanding the commercial potential of CNTs as viewed by academic, industrial...

  14. Drivers of Global Carbon Dioxide Emissions: International Evidence

    OpenAIRE

    Bosupeng, Mpho

    2015-01-01

    Studies pertaining to the effects of economic growth on the environment generally focused on diverse relationships between carbon dioxide, economic growth and energy consumption.This paper contributes to the literature by determining the effects of the US and China’s emissions on several economies carbon dioxide discharges from 1960 to 2010. The analysis uses a cointegration procedure proposed by Saikkonen and Lütkepohl. The study further applies the Granger causality test to test for causal...

  15. Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

    Directory of Open Access Journals (Sweden)

    M. Oftadeh

    2011-07-01

    Full Text Available The effective parameters of (5, 0 and (5, 5 single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide  molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0 is stronger than on the external wall of (5, 5; the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5 is lower than that for (5, 0 in all rotations, therefore in these interactions (5, 5 is more active. The energy gap significantly changes in the presence of  carbon  dioxide molecules on the inside surface of (5, 0 and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5.

  16. SULFUR POLYMER ENCAPSULATION.

    Energy Technology Data Exchange (ETDEWEB)

    KALB, P.

    2001-08-22

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  17. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  18. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  19. Coupled carbon, sulfur and nitrogen cycles of mixotrophic growth of Pseudomonas sp. C27 under denitrifying sulfide removal conditions.

    Science.gov (United States)

    Guo, Hongliang; Chen, Chuan; Lee, Duu-Jong; Wang, Aijie; Gao, Dawen; Ren, Nanqi

    2014-11-01

    Pseudomonas sp. C27 is a facultative autotrophic bacterium (FAB) that can effectively conduct mixotrophic denitrifying sulfide removal (DSR) reactions using organic matters and sulfide as electron donors. Quantitative proteomics analysis of C27 using isobaric tag for relative and absolute quantitation (iTRAQ) and bioinformatics techniques identified 1916 unique proteins, based on which a novel pathway utilizing couple carbon, sulfide and nitrogen cycles for mixotrophic growth of C27. DSR experiments at different C/N ratios confirmed the presence of the new pathway. This novel pathway may be of great significance for C27-alike strains to conduct sulfide and nitrate removals in biological treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+

    Science.gov (United States)

    Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W.

    2016-02-01

    Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe3+ ion made these CDs a luminescent probe for selective detection of Fe3+ ion.

  1. Embodied carbon dioxide flow in international trade: A comparative analysis based on China and Japan.

    Science.gov (United States)

    Long, Ruyin; Li, Jinqiu; Chen, Hong; Zhang, Linling; Li, Qianwen

    2018-03-01

    Carbon dioxide embodied flow in international trade has become an important factor in defining global carbon emission responsibility and climate policy. We conducted an empirical analysis for China and Japan for the years 2000-2014, using a multi-region input-output model and considering the rest of the world as a comparison group. We compared the two countries' direct and complete carbon dioxide emissions intensity and bilateral economic activities such as imports and exports, production and consumption to analyze the difference between China and Japan. The results showed that the intensities of carbon emissions in all sectors of China were higher than that in Japan and that China's annual production-based emissions were greater than consumption-based emissions, the opposite of these relationships in Japan. China was a typical net carbon export country, and carbon embodied in its imports and exports continued to increase throughout the study period. In contrast, Japan's volume and growth rate of embodied carbon emissions were far less than China's and Japan was a typical net carbon import country. Finally, the conclusions of this study support recommendations for the formulation of international carbon emission responsibility allocation, domestic abatement policy as well as China's trade policy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. International trade in carbon emission rights and basic materials: General equilibrium calculations for 2020

    International Nuclear Information System (INIS)

    Perroni, C.; Rutherford, T.F.

    1993-01-01

    Restrictions on CO 2 emissions affect international trade and the pattern of comparative advantage. This paper, based on calculations with a static general equilibrium model, suggests that international trade in carbon rights is a substitute for trade in energy-intensive goods, and thus international trading in carbon rights reduces sectoral effects of emission reductions. In our model, we surprisingly find that free riding by non-signatory countries may not render unilateral action ineffective. If the OECD unilaterally cuts global emissions by 5 per cent from 1990 levels by the year 2020, emission by non-OECD regions increase but offset less than 15 per cent of this cutback. Moreover, carbon taxes depress international oil prices and create incentives for increased trade in natural gas. 14 refs, 7 figs

  3. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Hu, Wen; Hirota, Yuichiro; Zhu, Yexin; Yoshida, Nao; Miyamoto, Manabu; Zheng, Tao; Nishiyama, Norikazu

    2017-09-22

    A macro-/mesoporous Co-N-C-decorated separator is proposed to confine and reutilize migrating polysulfides. Endowed with a desirable structure and synchronous lithio- and sulfiphilic chemistry, the macro-/mesoporous Co-N-C interface manipulates large polysulfide adsorption uptake, enabling good polysulfide adsorption kinetics, reversible electrocatalysis toward redox of anchored polysulfides, and facile charge transport. It significantly boosts the performance of a simple 70 wt % S/MWCNTs (MWCNTs=multi-walled carbon nanotubes) cathode, achieving high initial capacities (e.g., 1406 mAh g -1 at 0.2C, 1203 mAh g -1 at 1C), nearly 100 % Coulombic efficiencies, and high reversible capacities after cycle tests (e.g., 828.4 mAh g -1 at 1C after 100 cycles) at both low and high current rates. These results demonstrate that decorating separator with macro-/mesoporous Co-N-C paves a feasible way for developing advanced Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. International Assessment of Carbon Nanotube Manufacturing and Applications

    Science.gov (United States)

    2007-06-01

    past few years as CNT supplies have become more abundant, more efforts to successfully process CNTs using extrusion (Sennett et al. 2003), ultrasonic...peak of the S-band reflectivity was observed to shift with the nanotube loading so that with a multilayer design, in which each layer possesses a...fabricated a nanocomposite-based microcatheter through-melt extrusion using high-purity carbon nanotubes as filler and nylon as matrix. Homogeneously

  6. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade

    Science.gov (United States)

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-06-01

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1-3.9 ppm or 3-9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990-2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.

  7. Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand)

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Haeckel, M.; Wallmann, K.; Linke, P.; Wegener, G.; Pfannkuche, O.

    2010-10-01

    This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr -1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m -2 d -1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m -2 d -1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m -2 d -1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m -2 d -1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m -2 d -1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm -3 d -1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m -2 d -1 or 96 mW m -2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide

  8. Evaluation of carbon aerogel-based solid-phase extraction sorbent for the analysis of sulfur mustard degradation products in environmental water samples.

    Science.gov (United States)

    Jõul, Piia; Vaher, Merike; Kuhtinskaja, Maria

    2018-05-01

    In this study, SPE method using a carbon aerogel(CA)-based sorbent was developed and evaluated for the simultaneous extraction of sulfur mustard (HD) degradation products from environmental water samples. Applied CAs proved to be very promising materials for use as SPE sorbents, due to their high porosity, very low density and a large specific surface area. 10 degradation products of HD, both aliphatic and cyclic (thiodiglycol (TDG), TDG sulfoxide, TDG sulfone, 3,5-dithia-1,7-heptanediol, 3,6-dithia-1,8-octanediol, 1,4-thioxane, 1,3-dithiolane, 1,4-dithiane, 1,2,5-trithiepane, and 1,4,5-oxadithiepane) were extracted on a CA-based SPE cartridge. The concentrations of target analytes in the eluate were determined by HPLC-DAD and CE-DAD. Several parameters affecting the extraction efficiency, including the kind and volume of the eluting solvent, sample loading flow rate, volume and ionic strength as well as the reusability of the cartridge, were investigated and optimized to achieve the best performance for the analytes. A series of quantitative parameters such as linear range, coefficient of determination, LOD, LOQ and precision were examined under the optimized conditions. High sensitivity (LODs 0.17-0.50 μM) and high precision (intraday RSD = 2.0-7.7% and interday RSD = 2.7-9.9%) for all the analytes were achieved. The performance of the CA-based sorbent was compared with that of commonly used SPE sorbents. Applied for the analysis of spiked pore water samples collected from the Bornholm Basin, one of the largest chemical warfare dumping sites in the Baltic Sea, the proposed method allowed high SPE recoveries of all the analytes ranging from 83.5 to 99.7% to be obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material.

    Science.gov (United States)

    Sieper, Hans-Peter; Kupka, Hans-Joachim; Williams, Tony; Rossmann, Andreas; Rummel, Susanne; Tanz, Nicole; Schmidt, Hanns-Ludwig

    2006-01-01

    The isotope ratio of each of the light elements preserves individual information on the origin and history of organic natural compounds. Therefore, a multi-element isotope ratio analysis is the most efficient means for the origin and authenticity assignment of food, and also for the solution of various problems in ecology, archaeology and criminology. Due to the extraordinary relative abundances of the elements hydrogen, carbon, nitrogen and sulfur in some biological material and to the need for individual sample preparations for H and S, their isotope ratio determination currently requires at least three independent procedures and approximately 1 h of work. We present here a system for the integrated elemental and isotope ratio analysis of all four elements in one sample within 20 min. The system consists of an elemental analyser coupled to an isotope ratio mass spectrometer with an inlet system for four reference gases (N(2), CO(2), H(2) and SO(2)). The combustion gases are separated by reversible adsorption and determined by a thermoconductivity detector; H(2)O is reduced to H(2). The analyser is able to combust samples with up to 100 mg of organic material, sufficient to analyse samples with even unusual elemental ratios, in one run. A comparison of the isotope ratios of samples of water, fruit juices, cheese and ethanol from wine, analysed by the four-element analyser and by classical methods and systems, respectively, yielded excellent agreements. The sensitivity of the device for the isotope ratio measurement of C and N corresponds to that of other systems. It is less by a factor of four for H and by a factor of two for S, and the error ranges are identical to those of other systems. Copyright (c) 2006 John Wiley & Sons, Ltd.

  10. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available Acidithiobacillus caldus (A. caldus is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox system (omitting SoxCD, non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR. The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor was created and its growth abilities were measured in media using elemental sulfur (S(0 and tetrathionate (K(2S(4O(6 as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR of the wild type and the Δsor mutant in S(0 and K(2S(4O(6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO and heterodisulfide reductase (HDR, the truncated Sox pathway, and the S(4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  11. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Science.gov (United States)

    Chen, Linxu; Ren, Yilin; Lin, Jianqun; Liu, Xiangmei; Pang, Xin; Lin, Jianqiang

    2012-01-01

    Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system. An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S(0)) and tetrathionate (K(2)S(4)O(6)) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S(0) and K(2)S(4)O(6) media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S(4)I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media. An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  12. Contrasting Effects of Carbon and Sulfur on Fe-Isotope Fractionation between Metal and Silicate Melt during Planetary Core Formation

    Science.gov (United States)

    Elardo, S. M.; Shahar, A.

    2015-12-01

    There are numerous studies that show well-resolved Fe isotope fractionations in igneous materials from different planetary bodies. Potential explanations for these fractionations include a non-chondritic bulk planetary Fe isotopic composition, and equilibrium fractionation between Fe-alloys or minerals and silicate melts during planetary differentiation, mantle melting, or fractional crystallization. This is further complicated by the fact that these processes are not mutually exclusive, making the interpretation of Fe isotope data a complex task. Here we present new experimental results investigating the effect of C on Fe isotope fractionation between molten peridotite and an Fe-alloy. Experiments were conducted at 1 GPa and 1850° C for 0.5 - 3 hours on a mixture of an 54Fe-spiked peridotite and Fe-metal with and without Ni metal in an end-loaded piston cylinder at the Geophysical Laboratory. Carbon saturation was achieved with a graphite capsule, and resulted in C contents of the Fe-alloy in our experiments ranging from 3.8 - 4.9 wt. %. The metal and silicate phases from half of each experiment were separated manually and dissolved in concentrated acids. Iron was separated from matrix elements by anion exchange chromatagraphy. Iron-isotopic compositions were determined with the Nu Plasma II MC-ICP-MS at GL. The other half of each experiment was used for quantitative microbeam analysis. Equilibrium was assessed with a time series and the three-isotope exchange method. The Ni-free experiments resulted in no resolvable Fe isotope fractionation between the Fe-C-alloy and molten silicate. This is in contrast to the results of Shahar et al. (2015) which showed a fractionation for Δ57Fe of ~0.18 ‰ between a peridotite and an Fe-alloy with a similar S abundance to C in these experiments. The one experiment thus far that contained Ni (~4 wt. % in the alloy) showed a resolvable fractionation between the Fe-Ni-C alloy and silicate of ~0.10 ‰. Shahar et al. found a

  13. Sulfuric acid-sulfur heat storage cycle

    Science.gov (United States)

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  14. Norway's experience of carbon dioxide storage: a basis for pursuing international commitments?

    International Nuclear Information System (INIS)

    Saeverud, I.A.

    2007-01-01

    Does the Norwegian political landscape indicate advocacy of binding international carbon storage commitments in the foreseeable future? Norway's unique geology has understandably prompted a particular interest in the subject. This article analyses the interests and relative influence of the key domestic actors (the oil industry, environmental organizations, political parties and government bureaucracy) who wield influence in policy-making processes concerning carbon dioxide storage. Despite the level of interest aroused by the issue in Norway, the evidence suggests that policy will not move in the direction of an international carbon storage agreement. This is mainly because Norwegian policy-making in the field is dominated by the Ministry of Petroleum and Energy, whose current interests do not seem compatible with such a position. The fact that carbon storage can be developed in accordance with Norway's interests as a petroleum producer may, however, be a decisive factor for the political parties, government bureaucracy and the oil industry in the future. (author)

  15. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  16. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  17. COCARDE: new view on old mounds - an international network of carbonate mound research

    Science.gov (United States)

    Rüggeberg, A.; Foubert, A.; Vertino, A.; van Rooij, D.; Spezzaferri, S.; Henriet, J.-P.; Dullo, W.-C.; Cocarde Science Community

    2012-04-01

    Carbonate mounds are important contributors of life in different settings, from warm-water to cold-water environments, and throughout geological history. Research on modern cold-water coral carbonate mounds over the last decades made a major contribution to our overall understanding of these particular sedimentary systems. By looking to the modern carbonate mound community with cold-water corals as main framework builders, some fundamental questions could be addressed, until now not yet explored in fossil mound settings. The international network COCARDE (http://www.cocarde.eu) is a platform for exploring new insights in carbonate mound research of recent and ancient mound systems. The aim of the COCARDE network is to bring together scientific communities, studying Recent carbonate mounds in midslope environments in the present ocean and investigating fossil mounds spanning the whole Phanerozoic time, respectively. Scientific challenges in modern and ancient carbonate mound research got well defined during the ESF Magellan Workshop COCARDE in Fribourg, Switzerland (21.-24.01.2009). The Special Volume Cold-water Carbonate Reservoir systems in Deep Environments - COCARDE (Marine Geology, Vol. 282) was the major outcome of this meeting and highlights the diversity of Recent carbonate mound studies. The following first joint Workshop and Field Seminar held in Oviedo, Spain (16.-20.09.2009) highlighted ongoing research from both Recent and fossil academic groups integrating the message from the industry. The field seminar focused on mounds from the Carboniferous platform of Asturias and Cantabria, already intensively visited by industrial and academic researchers. However, by comparing ancient, mixed carbonate-siliciclastic mound systems of Cantabria with the Recent ones in the Porcupine Seabight, striking similarities in their genesis and processes in mound development asked for an integrated drilling campaign to understand better the 3D internal mound build-up. The

  18. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    NARCIS (Netherlands)

    Klatt, Judith M.; Polerecky, Lubos

    2015-01-01

    Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a

  19. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ . Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis.

  20. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  1. A Sulfur-Rich Copolymer@CNT Hybrid Cathode with Dual-Confinement of Polysulfides for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Hu, Guangjian; Sun, Zhenhua; Shi, Chao; Fang, Ruopian; Chen, Jing; Hou, Pengxiang; Liu, Chang; Cheng, Hui-Ming; Li, Feng

    2017-03-01

    A sulfur-rich copolymer@carbon nanotubes hybrid cathode is introduced for lithium-sulfur batteries produced by combining the physical and chemical confinement of polysulfides. The binderfree and metal-current-collector-free cathode of dual confinement enables an efficient pathway for the fabrication of high-performance sulfur copolymer carbon matrix electrodes for lithium-sulfur batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Technical benefit and risk analysis on cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    Chen, Hanmin

    2015-01-01

    This article demonstrates the potential technical benefit and risk for cement clinkering process with compact internal burning of carbon, a laboratory-phase developing technique, from 9 aspects, including the heat consumption of clinkering and exhaust heat utilization, clinker quality, adaptability to alternative fuels, the disposal ability of industrial offal and civil garbage, adaptability to the raw materials and fuels with high content of chlorine, sulphur and alkali, the feasibility of process scale up, the briquetting process of the coal-containing cement raw meal pellet, NO x emission and the capital cost and benefit of conversion project. It is concluded that it will be able to replace the modern precalciner rotary kiln process and to become the main stream technique of cement clinkering process in low carbon economy times. - Highlights: • Compact internal burning of carbon enables cement shaft kiln to run stably. • Compact internal burning of carbon enables cement shaft kiln to scale up. • New process triples energy efficiency with excellent environmental performance. • It will be able to compete with and replace the existing precalciner kiln process. • It will become the mainstream clinkering process in low carbon economy

  3. Spatial and Temporal Trends in the Carbon, Nitrogen, and Sulfur Isotopes of Stream DOM From 10 Watersheds at the HJ Andrews Experimental Forest.

    Science.gov (United States)

    Frentress, J.; Kendall, C.; Lajtha, K.; Jones, J.

    2008-12-01

    In order to better understand sources of dissolved organic matter (DOM) in streams from the small to large watershed scales, we initiated a one-year investigation of the chemical and isotopic characteristics of DOM at the HJ Andrews Experimental Forest (HJA) in Blue River, OR. DOM is a biologically significant loss from these watersheds, but its sources (forest floor, mineral soil, riparian zones, stream biota) are debated. Traditional chemical characterizations of DOM like SUVA and FI have been useful in conceptualizing and modeling streamflow sources, however, an improved method for assessing DOM quality is needed to adequately differentiate DOM from sources within the watershed. The isotopic characterization of inorganic molecules like nitrate has provided insight to the role of subsurface and surface processes governing the production and transport of critical nutrients, and yet to date, little work has been done to examine the usefulness of isotopic characterization of organically bound nutrients. We apply the isotopic characterization approach to DOM in order to better understand DOM production, transformation, and transport to streams in a range of watershed sizes. Major questions addressed in this research are: 1) Where in the watershed does stream DOM come from? 2) How do DOM sources vary temporally? 3) How do physical attributes of the watershed mediate DOM quality? A relatively new solid-phase extraction technique using C-18 resin was used to isolate DOM in water samples from 10 watersheds, ranging in size from 10 to 6200 hectares, on 3-week intervals from May 2007 to June 2008. The modified technique allowed for small (1 Liter) sample sizes and short processing times to reduce the costs of analysis. The capacity of carbon, nitrogen and sulfur isotopic characterizations of DOM, as well as traditional methods like SUVA and C:N, to predict physical watershed attributes (i.e. mean residence time, soil depth, elevation, gradient) and land use history (timber

  4. Demonstration of highly efficient lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; Li, James C. M.; Lu, Jun; Amine, Khalil; Belharouak, Ilias

    2015-01-01

    Lithium–sulfur coin cells were tested with the aim of mitigating the issue of polysulfide dissolution. Five approaches were investigated: optimization of the amount of sulfur that can be contained in the sulfur/carbon electrodes, introduction of different forms of carbon additives into the sulfur electrodes, impregnation of sulfur into the pores of high-surface-area carbon via a melting process, addition of high-surface-area TiO2 as a polysulfide-adsorbing agent in the sulfur electrodes, and use of lithium nitrate as an additive in the electrolyte. Among all these approaches, the most effective way to inhibit the shuttle phenomenon and improve the coulombic efficiency of the Li–S battery was the addition of LiNO3 into the electrolyte.

  5. Sulfur Poisoning of Ni/stabilized-zirconia Anodes – Effect on Long-Term Durability

    DEFF Research Database (Denmark)

    Hauch, Anne; Hagen, Anke; Hjelm, Johan

    2013-01-01

    -term galvanostatic operation in internal reforming gas mixture (CH4/H2O/H2:30/60/10), with 2 ppm H2S exposure to the anode, at different current densities. The aim was not only to investigate the well-known initial performance drop associated with adsorbed sulfur in the Ni/stabilized-zirconia anodes, but also......Sulfur impurities in carbon containing fuels for solid oxide fuel cells (SOFC), e.g. natural gas and biogas, can lead to significant losses in performance due to the sulfur sensitivity of Ni/YSZ SOFC anodes. Full cells having Ni/YSZ and Ni/ScYSZ anodes have been characterized during long...

  6. The missing link in an international framework for carbon pricing: border adjustment with taxes or allowances

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2017-01-01

    The Paris agreement signifies a watershed in climate mitigation efforts, but is based on a bottom-up approach leaving decisions on targets, measures and policy instruments to its signatories. Yet, in tandem with the Paris Agreement a new international coalition on carbon pricing among the willing...... was created at the initiative of the World Bank and the International Monetary Fund. Over the past five years the share of global CO2 emissions subject to carbon pricing via either taxes or allowances have tripled, from four to twelve per cent. In anticipation of a widening gap between countries the scope...... for border adjustments relative to carbon pricing deserves more scrutiny. Border adjustments would involve imports being priced for their associated emissions to the same level as domestic goods, while exports to non-price countries may become eligible to refunds. Trade agreements under WTO could presumably...

  7. Volatile earliest Triassic sulfur cycle

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Algeo, Thomas J.

    2017-01-01

    Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during...... is based on the S isotope fractionation between sulfate and sulfide associated with MSR in natural aquatic environments. This fractionation is proxied by the difference in S isotope compositions between chromium-reducible sulfur (CRS) and carbonate-associated sulfate (CAS), i.e., δ34SCAS-CRS. We show that......, despite region-specific redox conditions, δ34SCAS-CRS exhibits a nearly invariant value of 15-16‰ in both study sections. By comparing our record with a δ34Ssulfate-sulfide density distribution for modern marine sediments, we deduce that porewater Rayleigh distillation, carbonate diagenesis, and other...

  8. Denitrification on internal carbon sources in RAS is limited by fibers in fecal waste of rainbow trout

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Kamstra, A.; Busscher, J.P.; Schrama, J.W.; Verreth, J.A.J.

    2014-01-01

    Denitrification on internal carbon sources offers the advantage to control nitrate levels in recirculating aquaculture systems (RAS) by using the fecal carbon produced within the husbandry system. However, it is not clear to which extent fecal carbon can be utilized by the microbial community within

  9. Solubility of Sulfur Dioxide in Sulfuric Acid

    Science.gov (United States)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  10. Carbon dioxide emission and economic growth of China-the role of international trade.

    Science.gov (United States)

    Boamah, Kofi Baah; Du, Jianguo; Bediako, Isaac Asare; Boamah, Angela Jacinta; Abdul-Rasheed, Alhassan Alolo; Owusu, Samuel Mensah

    2017-05-01

    This study investigates the role of international trade in mitigating carbon dioxide emission as a nation economically advances. This study disaggregated the international trade into total exports and total imports. A multivariate model framework was estimated for the time series data for the period of 1970-2014. The quantile regression detected all the essential relationship, which hitherto, the traditional ordinary least squares could not capture. A cointegration relationship was confirmed using the Johansen cointegration model. The findings of the Granger causality revealed the presence of a uni-directional Granger causality running from energy consumption to economic growth; from import to economic growth; from imports to exports; and from urbanisation to economic growth, exports and imports. Our study established the presence of long-run relationships amongst carbon dioxide emission, economic growth, energy consumption, imports, exports and urbanisation. A bootstrap method was further utilised to reassess the evidence of the Granger causality, of which the results affirmed the Granger causality in the long run. This study confirmed a long-run N-shaped relationship between economic growth and carbon emission, under the estimated cubic environmental Kuznet curve framework, from the perspective of China. The recommendation therefore is that China as export leader should transform its trade growth mode by reducing the level of carbon dioxide emission and strengthening its international cooperation as it embraces more environmental protectionisms.

  11. Energy and carbon embodied in the international trade of Brazil. An input-output approach

    International Nuclear Information System (INIS)

    Machado, G; Schaeffer, R.; Worrell, E.

    2001-01-01

    All goods and services produced in an economy are directly and/or indirectly associated with energy use and, according to the type of fuel utilized, with CO2 emissions as well. International trade is an important factor in shaping the industrial structure of a country and, consequently, in affecting a country's energy use and CO2 emissions. This study applies input-output techniques to the Brazilian economy to evaluate the total impacts of international trade on its energy use and CO2 emissions. A commodity-by-industry IO model in hybrid units (energy commodities in physical units and non-energy commodities in monetary units) is applied to the Brazilian economy in 1995. Results show that total energy embodied in the exports of non-energy goods of Brazil equals 831 PJ, while total carbon embodied is 13.5 MtC. These amounts are larger than the relevant amounts embodied in the imports of non-energy goods, respectively 679 PJ and 9.9 MtC. These figures are better understood by contrasting them with the total energy use and the corresponding total carbon emissions of the Brazilian economy in 1995 estimated by this work: 6781 PJ and 99.4 MtC, respectively. This means that international inflows and outflows of energy embodied in non-energy goods are in the order of 10 and 12% of the total energy use, while inflows and outflows of carbon embodied in non-energy goods are approximately 10 and 14% of the corresponding total carbon emissions of the Brazilian economy in 1995. The general picture is that Brazil is not only a net exporter of energy (153 PJ) and of carbon (3.6 MtC) embodied in the non-energy goods internationally traded by the country in 1995, but also that each dollar earned with exports embodied 40% more energy and 56% more carbon than each dollar spent on imports. These findings suggest that Brazilian policy-makers should be concerned about the extra impacts international trade policy may have on energy use and carbon emissions of the country. 71 refs

  12. Sulfuric acid poisoning

    Science.gov (United States)

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  13. Scoping Study. Linking RE Promotion Policies with International Carbon Trade (LINK)

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Paula; Hayashi, Daisuke; Kristiansen, Kjell Olav; Michaelowa, Axel; Stadelmann, Martin

    2011-06-15

    Implementing national policies may threaten the eligibility of renewable energy projects for Clean Development Mechanism/Joint Implementation (CDM/JI), thus reducing international development financing. Countries hence need to be very careful when crafting their national promotion policies. The objectives of the Renewable Energy Technology Deployment (IEA-RETD) project were to perform a scoping study on the interplay between national Renewable Energy (RE) promotion policies and international carbon trade. The study summarizes the ongoing discussion, describes the main barriers that may hinder -- or at least not sufficiently support -- the implementation of national RE promotion policies, and provides suggestions for removing these barriers.

  14. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    International Nuclear Information System (INIS)

    Coninck, Heleen de; Stephens, Jennie C.; Metz, Bert

    2009-01-01

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability of CCS, and would strengthen global trust, awareness and public confidence in the technology.

  15. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  16. Laboratory simulated slipstream testing of novel sulfur removal processes for gasification application

    International Nuclear Information System (INIS)

    Schmidt, Roland; Tsang, Albert; Cross, Joe; Summers, Clinton; Kornosky, Bob

    2008-01-01

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is investigating an Early Entrance Coproduction Plant (EECP) concept to evaluate integrated electrical power generation and methanol production from coal and other carbonaceous feedstocks. Research, development and testing (RD and T) that is currently being conducted under the project is evaluating cost effective process systems for removing contaminants, particularly sulfur species, from the generated gas which contains mainly synthesis gas (syngas), CO 2 and steam at concentrations acceptable for the methanol synthesis catalyst. The RD and T includes laboratory testing followed by bench-scale and field testing at the SG Solutions Gasification Plant located in West Terre Haute, Indiana. Actual synthesis gas produced by the plant was utilized at system pressure and temperature for bench-scale field testing. ConocoPhillips Company (COP) developed a sulfur removal technology based on a novel, regenerable sorbent - S Zorb trademark - to remove sulfur contaminants from gasoline at high temperatures. The sorbent was evaluated for its sulfur removal performance from the generated syngas especially in the presence of other components such as water and CO 2 which often cause sorbent performance to decline over time. This publication also evaluates the performance of a regenerable activated carbon system developed by Nucon International, Inc. in polishing industrial gas stream by removing sulfur species to parts-per-billion (ppb) levels. (author)

  17. Carbon dioxide emissions embodied in international trade in Central Europe between 1995 and 2008

    Directory of Open Access Journals (Sweden)

    Vlčková Jana

    2015-12-01

    Full Text Available Climate change and environmental policies are widely discussed, but much less is known about emissions embodied in goods traded internationally, and the distinction between emission producers and consumers. The carbon dioxide emissions embodied in international trade in Central European countries are subject to examination in this paper. As a result of industrial restructuring and environmental legislation, air pollution has improved significantly in Central European countries since the 1989 transition. On the other hand, economic growth has been accompanied by a rise in consumerism. Despite the increasing role of exports, the Visegrad group countries have become net importers of carbon dioxide emissions between 1995 and 2008. This seems to be the ‘standard trajectory’ of a country’s transition toward a more developed and consumption-oriented economy. The global patterns of carbon dioxide emissions embodied in manufacturing exports are also mapped, using network analysis and constructing ‘product space’. The analysis confirms that industrial re-structuring played an important role in lowering the production of carbon dioxide emissions in the Visegrad countries.

  18. CARBON TRADING ACCORDING TO INTERNATIONAL LAW AND ITS IMPLEMENTATION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sinta Wahyu Purnama Sari

    2016-04-01

    Full Text Available This research aims to describe the carbon trading according to international law and its implementation in Indonesia. It uses juridical-normative research methods. Climate change is one of the major environmental issues in the world, it causes an adverse effect to human life. Basically it comes from human activities. To follow up the issue, then countries try to solve it by taking an action to reduce the emissions. Through the first Earth Summit in Rio De Janeiro-Brazil in 1992, which produces the Convention on Climate Change (UNFCCC; one of the achievements of the UNFCCC is the Kyoto Protocol, wherein the Protocol contains two important things, namely the commitment of developed countries to reduce the rate of emissions compared to 1990, and the possibility of carbon trading mechanisms. Indonesia is one of the countries that have ratified both the UNFCCC through Law No. 6 of 1994, and the Kyoto Protocol through Law No. 17 of 2004. There are also some related regulations. However, of all existing laws, the government has not put out implementing regulations or instructions about carbon trading specifically. Keywords: Carbon Trading, International Law, Indonesia.

  19. Sulfuric acid on Europa and the radiolytic sulfur cycle

    Science.gov (United States)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  20. Experimental fracture studies on carbon steel elbows with and without internal pressure

    International Nuclear Information System (INIS)

    Gandhi, P.; Saravanan, M.; Vishnuvardhan, S.; Pukazhendhi, D.M.; Raghava, G.; Sahu, M.K.; Chattopadhyay, J.; Dutta, B.K.; Vaze, K.K.

    2013-01-01

    Pipe bends or elbows are commonly used components for nuclear power plant piping system. In service, these piping components are subjected to internal pressure in addition to bending loads and the internal pressure is known to have a significant effect on the load carrying capacity of these components. Hence, a systematic study was carried out to investigate and quantify the effect of internal pressure on the fracture behaviour of elbows used in nuclear power plant piping system. Fracture studies were conducted on five 219 mm diameter carbon steel elbows with and without internal pressure under in-plane opening moment. The investigations have shown that the presence of a circumferential notch at the intrados has a more detrimental effect on the fracture behaviour of the elbow, when compared with the presence of an axial notch at the intrados. It is also found that internal pressure plays a significant role in reducing the ovalization. -- Highlights: • Fracture studies were conducted on elbows with and without internal pressure. • Effect of internal pressure on load carrying capacity of the elbows was studied. • Various data acquired during the study include load, LLD, CMOD, ovality of the elbow. • Circumferential notch at intrados significantly affects elbow load carrying capacity

  1. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  2. An International Relations perspective on the global politics of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, H. [Energy research Centre of the Netherlands ECN, Unit Policy Studies, Radarweg 60, 1043 NT Amsterdam (Netherlands); Baeckstrand, K. [Department of Political Science, Lund University, P.O. Box 52, 221 00 Lund (Sweden)

    2011-05-15

    With the publication of the IPCC Special Report on Carbon dioxide Capture and Storage (CCS), CCS has emerged as a focal issue in international climate diplomacy and energy collaboration. This paper has two goals. The first goal is to map CCS activities in and among various types of intergovernmental organisations; the second goal is to apply International Relations (IR) theories to explain the growing diversity, overlap and fragmentation of international organisations dealing with CCS. Which international organisations embrace CCS, and which refrain from discussing it at all? What role do these institutions play in bringing CCS forward? Why is international collaboration on CCS so fragmented and weak? We utilise realism, liberal institutionalism and constructivism to provide three different interpretations of the complex global landscape of CCS governance in the context of the similarly complicated architecture of global climate policy. A realist account of CCS's fragmented international politics is power driven. International fossil fuel and energy organisations, dominated by major emitter states, take an active role in CCS. An interest-based approach, such as liberal institutionalism, claims that CCS is part of a 'regime complex' rather than an integrated, hierarchical, comprehensive and international regime. Such a regime complex is exemplified by the plethora of international organisations with a role in CCS. Finally, constructivism moves beyond material and interest-based interpretations of the evolution of the institutionally fragmented architecture of global CCS governance. The 2005 IPCC Special Report on CCS demonstrates the pivotal role that ideas, norms and scientific knowledge have played in transforming the preferences of the international climate-change policy community.

  3. Carbon geopolitics. International climate action and the problem of tropical deforestation

    International Nuclear Information System (INIS)

    Ehrenstein, Vera

    2014-01-01

    The thesis explores the components of concerted action at an international scale by focusing on how the problem of CO 2 emissions attributed to tropical deforestation is handled in climate change negotiations. The constraint faced by actors is as follows: interventions led by a diversity of actors across the world need to be coordinated, in the pursuit of an objective agreed by all states represented at the United Nations whose sovereignty must be respected. Such process builds on operations that can be analyzed from the viewpoint of carbon geopolitics. Some of these operations are related to the spatial extension and the liberal and quantified dimensions of the enterprise. Decision-making at an international level must be organized, comparable carbon measurement methods must be created and incentive-based redistribution systems must be designed. Other operations are specific to the entities concerned by the treated phenomenon, so-called developing countries. The weakness of their technical equipment must be acknowledged, so-called bad governance in their administrations must be dealt with and their civil society must be listened to. The approach developed here is grounded in science and technology studies, a domain that has recently focused on the construction of markets and decision-making. Based on a multi-site investigation, the thesis examines a set of problems characteristic of concerted action at an international scale: international decision-making, project-based action, countries' preparation, the valuation of correct measures, trust-making in economic relationships and the production of consensus. It proposes to call international adjustment the tentative and fragile process through which the interest for climate protection of an international collective is maintained. (author) [fr

  4. Internal wave deposits in Jurassic Kermanshah pelagic carbonates and radiolarites (Kermanshah area, West Iran)

    Science.gov (United States)

    Abdi, Asad; Gharaie, Mohamad Hosein Mahmudy; Bádenas, Beatriz

    2014-12-01

    We report eventites generated by turbulence events triggered by breaking internal waves in Jurassic pelagic muds deposited in a graben area located between the Arabian and Bisotoun carbonate platforms, at the Kermanshah basin (West Iran). The 43 m-thick studied Pliensbachian-Aalenian succession at Kermanshah includes sponge spicule-radiolarian limestones and cherts with cm- to dm-thick intercalations of pyroclastic beds and coarse-grained deposits formed by neritic-derived grains and reworked pelagic material. Breaking of internal waves in localized areas reworked the available sediment on sea floor, including the erosion of cohesive pelagic muds and the resuspension of neritic-derived grains, which were resedimented from the Bisotoun platform most probably by storms or turbidity currents. The generated internal wave deposits include: flat- and round pebble limestone conglomerates, formed by deposition of pelagic clasts and neritic-derived grains near the breaker zone; laminated packstone-grainstones deposited by high-energy, upslope (swash) and downslope (backswash) flows; cm-thick packstone-grainstones with asymmetrical starved ripples and hummocy crossstratification, generated downdip by waning of backwash flows and internal wave oscillatory flows. These internal wave deposits predominate in the Pliensbachian-early Toarcian, and were related to internal waves developed along a thermocline linked to climate warming and excited by submarine volcanic eruptions, storms or tectonic shaking.

  5. International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements

    Science.gov (United States)

    ElSherif, Dina; Knox, James C.

    2005-01-01

    An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use in spacecraft life support. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past four years, the CDRA system has operated with varying degrees of success. There have been several approaches to troubleshooting the CDRA system aimed at developing work-around solutions that would minimize the impact on astronaut time required to implement interim solutions. The paper discusses some of the short-term fixes applied to promote hardware life and restore functionality, as well as long-term plans and solutions for improving operability and reliability. The CDRA is a critical piece of life support equipment in the air revitalization system of the ISS, and is demonstrated technology that may ultimately prove well-suited for use in lunar or Mars base, and Mars transit life support applications.

  6. Mechanisms for International Low-Carbon Technology Cooperation. Roles and Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Bazilian, M. [United Nations Industrial Development Organization UNIDO, Vienna (Austria); De Coninck, H.C. [ECN Policy Studies, Petten (Netherlands); Cosbey, A. [International Institute for Sustainable Development IISD, Winnipeg (Canada); Neuhoff, K. [EPRG, University of Cambridge, Cambridge (United Kingdom)

    2009-08-15

    International technology cooperation under the UNFCCC aims to provide the basis for large-scale and efficient mitigation action in developing countries. This paper characterises technology and enabling environment needs in developing countries and connects them to possible international mechanisms in order to arrive at appropriate and efficient international technology cooperation. This allows for a structured discussion of mechanisms for technology cooperation, and for a connection with nationally-focused technology mechanisms under discussion, such as low-carbon development strategies (LCDSs), Technology Needs Assessments (TNAs), technology action plans (TAPs), and nationally appropriate mitigation actions (NAMAs). Technology innovation is the process of technology development from its discovery or adoption to its wide-spread commercial use. Its success is dependent on many actors and on institutions that facilitate their effective interactions. The core reasons why domestic mitigation action does not occur in developing countries can often be found in the lack of this enabling environment. IPCC, IIASA, UNFCCC define 'enabling environment' as encompassing all the dimensions that are required to foster the uptake of a product or service. This includes well-trained operators and users, appropriate regulatory and institutional frameworks, markets, and robust physical infrastructure and maintenance capabilities. The challenge for the UNFCCC is the formulation of frameworks that connect domestic action with international mechanisms. Through NAMAs, developing countries would define domestic policies and actions required to create a conducive environment for the deployment of low-carbon technologies. These actions could be assisted, on demand, by international support mechanisms that enable technology cooperation, capacity building, strengthening of domestic institutions and financial transfers. To facilitate effective implementation, this paper suggests that

  7. Tendances Carbone no. 81 'The EU ETS as bellwether of a flawed European Internal Energy Market'

    International Nuclear Information System (INIS)

    Bressand, Albert

    2013-01-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. This issue addresses the following points: - The EU ETS verified emissions: 1,950 MtCO 2 in 2012, i.e. a 2% fall compared with 2011 and a 13.5% fall compared with 2008. Phase 2 compliance: an excess amount of 1,425 Mt including the use of 1,059 million international credits. - Back-loading: the European Parliament's ENVI Commission will vote again on 19 June. - Competitiveness: the European Commission is launching a consultation process regarding a review of the list of sectors exposed to carbon leakage for the period between 2015 and 2019

  8. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    Science.gov (United States)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  9. Carbon Dioxide Removal Troubleshooting aboard the International Space Station (ISS) during Space Shuttle (STS) Docked Operations

    Science.gov (United States)

    Matty, Christopher M.; Cover, John M.

    2009-01-01

    The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.

  10. Amorphous Carbon: State of the Art - Proceedings of the 1st International Specialist Meeting on Amorphous Carbon (smac '97)

    Science.gov (United States)

    Silva, S. R. P.; Robertson, J.; Milne, W. I.; Amaratunga, G. A. J.

    1998-05-01

    The Table of Contents for the full book PDF is as follows: * Preface * GROWTH AND STRUCTURE * The Structure of Tetrahedral Amorphous Carbon * Growth of DLC Films and Related Structure and Properties * Deposition Mechanism of Diamond-Like Carbon * Relaxation of sp3 Bonds in Hydrogen Free Carbon Films During Growth * MODELLING * Correlations Between Microstructure and Electronic Properties in Amorphous Carbon Based Materials * Review of Monte Carlo Simulations of Diamondlike Amorphous Carbon: Bulk, Surface, and Interface Structural Properties * DEPOSITION * Preparation of Disordered Amorphous and Partially Ordered Nano Clustered Carbon Films by Arc Deposition: A Critical Review * Plasma Deposition of Diamond-Like Carbon in an ECR-RF Discharge * Deposition of Amorphous Hydrogenated Carbon-Nitrogen Films by PECVD Using Several Hydrocarbon / Nitrogen Containing Gas Mixtures * ELECTRONIC STRUCTURE * 'Defects' and Their Detection in a-C and a-C:H * Valence Band and Gap State Spectroscopy of Amorphous Carbon by Photoelectron Emission Techniques * Photoluminescence Spectroscopy: A Probe for Inhomogeneous Structure in Polymer-Like Amorphous Carbon * Raman Characterization of Amorphous and Nanocrystalline sp3 Bonded Structures * Ultraviolet Raman Spectroscopy of Tetrahedral Amorphous Carbon Thin Films * Excitation Energy Dependent Raman and Photoluminescence Spectra of Hydrogenated Amorphous Carbon * MECHANICAL PROPERTIES * Pulsed Laser Deposited a-C: Growth, Structure and Mechanical Properties * Mechanical Properties of Laser-Assisted Deposited Amorphous Carbon Films * Mechanical and Morphology Study on Tetrahedral Amorphous Carbon Films * Time-Dependent Changes in the Mechanical Properties of Diamond-Like Carbon Films * ELECTRONIC PROPERTIES * Electronic Transport in Amorphous Carbon * Electronic Properties of Undoped/Doped Tetrahedral Amorphous Carbon * The Inclusion of Graphitic Nanoparticles in Semiconducting Amorphous Carbon to Enhance Electronic Transport Properties

  11. Evaluation and Certification of Ambersorb 4652 for use in Activated Carbon Ion Exchange Filters for the International Space Station

    Science.gov (United States)

    Adam, Niklas; Cox, Trey; Larner, Katherine; Carter, Donald; Kouba, Coy

    2017-01-01

    In order to reduce the infiltration of dimethylsilanediol (DMSD) and other organosilicon containing species through the Multifiltration Beds (MF Beds), an alternate activated carbon was found to replace the obsolete Barnabey Cheney 580-26 activated carbon. The carbon that removed the most organosilicon compounds in testing1 was a synthetic activated carbon named Schunk 4652 which later became Ambersorb 4652. Since activated carbon has a large capacity for iodine (I2), and is used in the Activated Carbon Ion Exchange (ACTEX) filters on the International Space Station (ISS), testing was performed on the Ambersorb 4652 carbon to determine the effectiveness of the material for use in ACTEX filters to remove iodine. This work summarizes the testing and the certification of Ambersorb 4652 for use in the ACTEX filters for the ISS.

  12. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  13. Accumulation of atmospheric sulfur in some Costa Rican soils

    Science.gov (United States)

    Bern, Carleton R.; Townsend, Alan R.

    2013-01-01

    Sulfur is one of the macronutrient elements whose sources to terrestrial ecosystems should shift from dominance by rock-weathering to atmospheric deposition as soils and underlying substrate undergo progressive weathering and leaching. However, the nature and timing of this transition is not well known. We investigated sources of sulfur to tropical rain forests growing on basalt-derived soils in the Osa Peninsula region of Costa Rica. Sulfur sources were examined using stable isotope ratios (δ34S) and compared to chemical indices of soil development. The most weathered soils, and the forests they supported, are dominated by atmospheric sulfur, while a less weathered soil type contains both rock-derived and atmospheric sulfur. Patterns of increasing δ34S with increasing soil sulfur concentration across the landscape suggest atmospheric sulfur is accumulating, and little rock-derived sulfur has been retained. Soil sulfur, minus adsorbed sulfate, is correlated with carbon and nitrogen, implying that sulfur accumulation occurs as plants and microbes incorporate sulfur into organic matter. Only the lower depth increments of the more weathered soils contained significant adsorbed sulfate. The evidence suggests a pattern of soil development in which sulfur-bearing minerals in rock, such as sulfides, weather early relative to other minerals, and the released sulfate is leached away. Sulfur added via atmospheric deposition is retained as organic matter accumulates in the soil profile. Adsorbed sulfate accumulates later, driven by changes in soil chemistry and mineralogy. These aspects of sulfur behavior during pedogenesis in this environment may hasten the transition to dominance by atmospheric sources.

  14. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  15. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    Science.gov (United States)

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-02

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength.

  16. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  17. High mass-loading of sulfur-based cathode composites and polysulfides stabilization for rechargeable lithium/sulfur batteries.

    Directory of Open Access Journals (Sweden)

    Toru eHara

    2015-05-01

    Full Text Available Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur, and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm2 was achieved at a sulfur mass loading of 4.1 mg/cm2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nano-sized carbon materials such as carbon nanotubes, graphene, or graphene-derivatives, and competitive enough with the conventional LiCoO2-based cathodes (e.g., LiCoO2, <20 mg/cm2 corresponding to <2.8 mAh/cm2. Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface..

  18. High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Toru, E-mail: hara.toru@nu.edu.kz [Institute of Batteries, Astana (Kazakhstan); Nazarbayev University Research and Innovation System, Astana (Kazakhstan); Konarov, Aishuak [Institute of Batteries, Astana (Kazakhstan); Mentbayeva, Almagul [Institute of Batteries, Astana (Kazakhstan); Nazarbayev University, Astana (Kazakhstan); Kurmanbayeva, Indira [Institute of Batteries, Astana (Kazakhstan); Bakenov, Zhumabay [Institute of Batteries, Astana (Kazakhstan); Nazarbayev University Research and Innovation System, Astana (Kazakhstan); Nazarbayev University, Astana (Kazakhstan)

    2015-05-07

    Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm{sup 2} was achieved at sulfur mass loading of 4.1 mg/cm{sup 2} by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO{sub 2}-based cathodes (e.g., LiCoO{sub 2}, <20 mg/cm{sup 2} corresponding to <2.8 mAh/cm{sup 2}). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).

  19. A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode.

    Science.gov (United States)

    Agostini, Marco; Hassoun, Jusef; Liu, Jun; Jeong, Moongook; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya; Sun, Yang-Kook; Scrosati, Bruno

    2014-07-23

    In this paper, we report a lithium-ion battery employing a lithium sulfide cathode and a silicon-based anode. The high capacity of the silicon anode and the high efficiency and cycling rate of the lithium sulfide cathode allowed optimal full cell balance. We show in fact that the battery operates with a very stable capacity of about 280 mAh g(-1) at an average voltage of 1.4 V. To the best of our knowledge, this battery is one of the rare examples of lithium-metal-free sulfur battery. Considering the high theoretical capacity of the employed electrodes, we believe that the battery here reported may be of potential interest as high-energy, safe, and low-cost power source for electric vehicles.

  20. Carbon emissions from international cruise ship passengers' travel to and from New Zealand

    International Nuclear Information System (INIS)

    Howitt, Oliver J.A.; Revol, Vincent G.N.; Smith, Inga J.; Rodger, Craig J.

    2010-01-01

    Greenhouse gas emissions from international transport contribute to anthropogenic global warming, yet these emissions are not liable under the Kyoto Protocol. International attention is being given to quantifying such emissions. This paper presents the results of research into international cruise ship journeys to and from New Zealand. CO 2 emissions from such journeys were calculated using an activity based, or 'bottom-up', model. Emissions factors for individual journeys by cruise ships to or from New Zealand in 2007 ranged between 250 and 2200 g of CO 2 per passenger-kilometre (g CO 2 per p-km), with a weighted mean of 390 g CO 2 per p-km. The weighted mean energy use per passenger night for the 'hotel' function of these cruise vessels was estimated as 1600 MJ per visitor night, 12 times larger than the value for a land-based hotel. Using a simple price elasticities calculation, international cruise journeys for transport purposes were found to have a greater relative decrease in demand than plane journeys when the impact of carbon pricing was analysed. The potential to decrease the CO 2 emissions per p-km was examined, and if passenger accommodation was compacted and some luxury amenities dispensed with values similar to those of economy-class air travel were obtained.

  1. Carbon emissions from international cruise ship passengers' travel to and from New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Howitt, Oliver J.A.; Revol, Vincent G.N.; Smith, Inga J.; Rodger, Craig J. [Department of Physics, University of Otago, PO Box 56, Dunedin (New Zealand)

    2010-05-15

    Greenhouse gas emissions from international transport contribute to anthropogenic global warming, yet these emissions are not liable under the Kyoto Protocol. International attention is being given to quantifying such emissions. This paper presents the results of research into international cruise ship journeys to and from New Zealand. CO{sub 2} emissions from such journeys were calculated using an activity based, or 'bottom-up', model. Emissions factors for individual journeys by cruise ships to or from New Zealand in 2007 ranged between 250 and 2200 g of CO{sub 2} per passenger-kilometre (g CO{sub 2} per p-km), with a weighted mean of 390 g CO{sub 2} per p-km. The weighted mean energy use per passenger night for the 'hotel' function of these cruise vessels was estimated as 1600 MJ per visitor night, 12 times larger than the value for a land-based hotel. Using a simple price elasticities calculation, international cruise journeys for transport purposes were found to have a greater relative decrease in demand than plane journeys when the impact of carbon pricing was analysed. The potential to decrease the CO{sub 2} emissions per p-km was examined, and if passenger accommodation was compacted and some luxury amenities dispensed with values similar to those of economy-class air travel were obtained. (author)

  2. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    Science.gov (United States)

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  3. Effect Three Functions of Carbon Sequestration International Project on Empowering Local Communities of South Khorasan

    Directory of Open Access Journals (Sweden)

    Seyed Saeedreza Ahmadizadeh

    2016-11-01

    Full Text Available This study aims to study and prioritize the most important services of carbon Sequestration International Project on Empowering Local Communities in the scope of study. Three functions or services of project were studied and evaluated. Services or functions of granting the productions loans for employment and etc., the functions of Desertification and restoring the rangelands, and finally the function of facilities available to local people including solar and desalination bathroom were chosen as the studied options. The results showed that the most distance from solving Fuzzy Topsis is related to facilities with 1.63 and the option or function of Livestock production with 1.18 has the minimum solution of Fuzzy Topsis. On the other hand, the results showed that the solution of anti-Fuzzy Topsis for Livestock production with 1.52 has the most distance and criteria of facilities has the least distance with 0.95. Since the amount of Similarity index is closer to 1 for the criteria of Livestock Production. This criteria is selected as the most important and the first function of Carbon Sequestration International Project and desertification and restoring grasslands is selected as the second function and facilities is selected as the third function of project.

  4. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft 2 ) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft 2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft 2 ) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  5. Toxicokinetics of sulfur mustard

    NARCIS (Netherlands)

    Langenberg, J.P.; Schans, M.J. van der; Noort, D.

    2016-01-01

    In this chapter an overview is presented on the state of knowledge concerning the toxicokinetics of sulfur mustard. The procedures to analyze intact sulfur mustard in the blood and tissues of laboratory animals at toxicologically relevant levels are discussed. In view of the fact that the reviewed

  6. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids.

    Science.gov (United States)

    Rudolf, Christiane; Grammel, Hartmut

    2012-04-05

    During fermentative metabolism, carbon dioxide fixation plays a key role in many bacteria regarding growth and production of organic acids. The present contribution, dealing with the facultative photosynthetic bacterium Rhodospirillum rubrum, reveals not only the strong influence of ambient carbon dioxide on the fermentative break-down of fructose but also a high impact on aerobic growth with fructose as sole carbon source. Both growth rates and biomass yield increased with increasing carbon dioxide supply in chemoheterotrophic aerobic cultures. Furthermore, intracellular metabolite concentration measurements showed almost negligible concentrations of the tricarboxylic acid cycle intermediates succinate, fumarate and malate under aerobic growth, in contrast to several metabolites of the glycolysis. In addition, we present a dual phase fed-batch process, where an aerobic growth phase is followed by an anaerobic production phase. The biosynthesis of bacteriochlorophyll and the secretion of organic acids were both affected by the carbon dioxide supply, the pH value and by the cell density at the time of switching from aerobic to anaerobic conditions. The formation of pigmented photosynthetic membranes and the amount of bacteriochlorophyll were inversely correlated to the secretion of succinate. Accounting the high biotechnological potential of R. rubrum, optimization of carbon dioxide supply is important because of the favored application of fructose-containing fermentable feedstock solutions in bio-industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  8. Carbon and prospective: international colloquium jointly organized by the prospective modeling chair and ETSAP

    International Nuclear Information System (INIS)

    Maizi, N.; Hourcade, J.Ch.; Selosse, S.

    2009-01-01

    The inauguration of the prospective modeling chair in favour of sustainable development is the result of the joint effort of several schools, organizations and companies, in particular: Mines ParisTech, Ponts ParisTech, Agro ParisTech, the higher education and research pole of ParisTech, the Ecole des Ponts foundation, the mineral, mining and metallurgic industries foundation (FI3M), with the partnership of Ademe, EdF, Renault, Schneider Electric and Total. The main goal of this chair is to perpetuate modeling tools with sustainable development stakes. The scientific program and the expertise of this chair are based on the joint and complementary experience of its two co-founder research teams in the domain of long-term prospective of energy, economy and environment-related questions: the applied mathematics centre (CMA - Mines ParisTech) and the international centre of environment and sustainable development research (CIRED). An inaugural colloquium was organized at the occasion of the launching of this chair. During round tables, representatives of the different intervening parties explained the stakes of this huge project and their expectations, in particular from the scientific, economical and societal point of view. A workshop on the topic 'carbon and prospective' followed the round tables. Six presentations were given about the following topics: energy policy scenarios for 2050 (Moncomble, J.E.), the shadow price of carbon (Chambolle T.), mitigation targets and carbon values: insights from TIMES-FR (Assoumou E.), climate protection and infrastructures (Sassi O.), China's energy and carbon options (Wenying C.), EU 20-20 policy implications on the energy system of Germany - an analysis with TIMES PanEU (Blesl M.). This book gathers the proceedings of both parts of this colloquium, the debates during the round tables (in French) and the presentations given during the workshop (in English). (J.S.)

  9. CarboNA: International Studies of the North American Carbon Cycle

    Science.gov (United States)

    Denning, S.; Cavallaro, N.; Ste-Marie, C.; Muhlia-Melo, A.

    2009-05-01

    A Science Steering Committee has been formed consisting of carbon cycle scientists from Canada, Mexico, and the United States and government agency contacts from each country, to draft a Science Plan for CarboNA. Science questions that we will address include: 1. What's the current carbon budget of NA and adjacent oceans, including spatial structure and seasonal-to- interannual variations? 2. What mechanisms are involved? What processes control the time mean vs the interannual variability? 3. When will sinks saturate? Will they become sources? Are there surprises in store? What roles will be played by melting permafrost, boreal warming, and subtropical desertification, and tropical development? 4. What are the likely responses of terrestrial ecosystems and coastal oceans to climate change and enhanced CO2? 5. What roles will economic development, energy technology, and trade play in mitigating increases in fossil fuel emissions? In addition to the national research programs already underway in the three countries, we anticipate special collaborative projects of international scope. For example: 1. Studies of the response of terrestrial ecosystems to climate change along an ecological gradient from the Arctic to the Tropics; 2. Truly continental budgets for atmospheric greenhouse gases using data from land-based, airborne, marine, and spaceborne platforms; 3. An aggressively interdisciplinary intensive experiment to understand and quantify carbon cycle processes and budgets in the Gulf of Mexico Basin; 4. Investigation of the turrent state and likely future changes in carbon cycling in coastal ocean environments, including river inputs of POC, DOC, DIC, and nutrients; impacts on fisheries and coastal economies; exchange between coastal oceans and deep ocean basins; and air-sea gas exchange; 5. Government-level agreements on data sharing and harmonization, including but not limited to forest inventories, agricultural data, fossil fuel emissions data, land-use data

  10. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  11. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  12. Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation.

    Science.gov (United States)

    Jourshabani, Milad; Shariatinia, Zahra; Badiei, Alireza

    2017-12-01

    Porous CeO 2 /sulfur-doped g-C 3 N 4 (CeO 2 /CNS) composites were synthesized by one-pot thermal condensation of thiourea and cerium nitrate as starting materials. The obtained CeO 2 (x)/CNS composites (x=8.4, 9.5 and 10.4wt%) with different CeO 2 contents were characterized by the XRD, FT-IR, XPS, TEM, BET, DRS and PL analyses. The TEM images displayed a nonporous and platelet-like morphology for pure CNS but a nanoporous structure with numerous uniform pore sizes of ∼40nm for the CeO 2 (9.5)/CNS composite. The XRD phase structures and TEM morphologies confirmed that structural evolution trend and stacking degree of CNS were disrupted in precense of the CeO 2 nanoparticles. The optimized photocatalyst, i.e. CeO 2 (9.5)/CNS nanocomposite, exhibited the highest visible light photocatalytic activity (91.4% after 150min) with a reaction rate constant of 0.0152min -1 toward methylene blue (MB) degradation which was greater compared with the individual CNS (0.0044min -1 ) and CeO 2 (0.0031min -1 ) photocatalysts. This enhanced photocatalytic performance was originated from heterojunctions formed between CeO 2 and CNS that improved the effective charge transfer through interfacial interactions between both components. The heterojunction prepared displayed excellent stability for the photocatalytic activity under the optimized conditions including catalyst dosage 0.08g, initial dye concentration 7mg/L and irradiation time 150min which was obtained using response surface methodology (RSM). The trapping experiments using isopropanol, benzoquinone and ethylenediaminetetraacetic as the OH, O 2 - and h + scavengers, respectively, verified that the OH and O 2 - as major species directly attacked onto the MB molecules while h + showed a negligible role. Finally, it could be stated that simultaneous doping of both sulfur and CeO 2 within the g-C 3 N 4 structure using a simple one-pot synthetic process produced very active photocatalysts illustrating their potential for

  13. A Dual-Function Na2SO4Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Luo, Chong; Lv, Wei; Deng, Yaqian; Zhou, Guangmin; Pan, Zheng-Ze; Niu, Shuzhang; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2017-07-01

    The sulfur content in carbon-sulfur hybrid using the melt-diffusion method is normally lower than 70 wt%, which greatly decreases the energy density of the cathode in lithium-sulfur (Li-S) batteries. Here, a scalable method inspired by the commercialized production of Na 2 S is used to prepare a hierarchical porous carbon-sulfur hybrid (denoted HPC-S) with high sulfur content (≈85 wt%). The HPC-S is characterized by the structure of sulfur nanodots naturally embedded in a 3D carbon network. The strategy uses Na 2 SO 4 as the starting material, which serves not only as the sulfur precursor but also as a salt template for the formation of the 3D carbon network. The HPC-S cathode with such a high sulfur content shows excellent rate performance and cycling stability in Li-S batteries because of the sulfur nanoparticles, the unique carbon framework, and the strong interaction between them. The production method can also be readily scaled up and used in practical Li-S battery applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  15. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion. An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage

    International Nuclear Information System (INIS)

    Dominique, Katheen

    2010-01-01

    International collaboration can be leveraged to accelerate the innovation and diffusion of low carbon technologies required to realize the shift to a low carbon trajectory. A collaborative approach to innovation has the potential to capture several benefits, including: pooling risks and achieving scale; knowledge sharing that accommodates competition and cooperation; the creation of a global market; facilitation of policy learning and exchange; and the alignment of technology, finance and policy. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage A range of obstacles to the diffusion of low carbon technologies provides ample opportunity for international collaboration in global market creation and capacity building, expanding beyond conventional modes of technology transfer. Current collaborative efforts for carbon capture and storage, solar photovoltaic and concentrating solar power technologies are active in all stages of innovation and diffusion and involve a wide range of actors. Yet, current efforts are not sufficient to achieve the necessary level of emission mitigation at the pace required to avoid catastrophic levels of atmospheric destabilization. This analysis sets forth recommendation to scale up current endeavors and create new ones. The analysis begins by describing the fundamental characteristics of innovation and diffusion processes that create opportunities for international collaboration. It then illustrates a broad array of on-going collaborative activities, depicting how these efforts contribute to innovation and diffusion. Finally, highlighting the gap between the current level of collaborative activities and technology targets deemed critical for emission mitigation, the report sets forth several recommendations to build on current efforts and construct new endeavors

  16. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    Science.gov (United States)

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  17. Concentrations and Fractionation of Carbon, Iron, Sulfur, Nitrogen and Phosphorus in Mangrove Sediments Along an Intertidal Gradient (Semi-Arid Climate, New Caledonia

    Directory of Open Access Journals (Sweden)

    Jonathan Deborde

    2015-02-01

    Full Text Available In mangrove ecosystems, strong reciprocal interactions exist between plant and substrate. Under semi-arid climate, Rhizophora spp. are usually predominant, colonizing the seashore, and Avicennia marina develops at the edge of salt-flats, which is the highest zone in the intertidal range. Along this zonation, distribution and speciation of C, Fe, S, N, and P in sediments and pore-waters were investigated. From the land-side to the sea-side of the mangrove, sediments were characterized by I/ increase in: (i water content; (ii TOC; (iii mangrove-derived OM; II/ and decrease in: (i salinity; (ii redox; (iii pH; (iv solid Fe and solid P. Beneath Avicennia and Rhizophora, TS accumulated at depth, probably as a result of reduction of iron oxides and sulfate. The loss of total Fe observed towards the sea-side may be related to sulfur oxidation and to more intense tidal flushing of dissolved components. Except the organic forms, dissolved N and P concentrations were very low beneath Avicennia and Rhizophora stands, probably as a result of their uptake by the root systems. However, in the unvegetated salt-flat, NH4+ can accumulate in organic rich and anoxic layers. This study shows: (i the evolution of mangrove sediment biogeochemistry along the intertidal zone as a result of the different duration of tidal inundation and organic enrichment; and (ii the strong links between the distribution and speciation of the different elements.

  18. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  19. Electronic sensitivity of a single-walled carbon nanotube to internal electrolyte composition

    International Nuclear Information System (INIS)

    Cao, D; Pang, P; Lindsay, S M; Liu, H; He, J

    2012-01-01

    Carbon nanotubes (CNTs) are well known as materials for nanoelectronics and show great potential to be used as the sensing elements in chemical and biological sensors. Recently, CNTs have been shown to be effective nanofluidic channels and the transport of substances through small diameter CNTs is intrinsically fast, selective, and operates at the single molecule level. It has been shown that the transport characteristics of semiconducting single-walled CNT (SWCNT) field effect transistors (FETs) are sensitive to internal water wetting. We report here that the characteristics of semiconducting SWCNT FETs are also sensitive to the concentration, pH and ion type of the ionic solution when the electrolyte is inside the CNT. Such sensitivity is not observed at the outside surface of a semiconducting SWCNT. This opens a new avenue for building new types of CNT sensor devices in which the SWCNT concurrently functions as a nanochannel and an electronic detector. (paper)

  20. Electronic sensitivity of single-walled carbon nanotube to internal electrolyte composition

    Science.gov (United States)

    Cao, D; Pang, P; Liu, H; He, J; Lindsay, SM

    2012-01-01

    Carbon nanotubes (CNTs) are well-known as materials for nanoelectronics and show great potential to be used as the sensing element in chemical and biological sensors. Recently, CNTs have been shown to be effective nanofluidic channels and the transport of substances through small diameter CNTs is intrinsically fast, selective, and operates at the single molecule level. It has been shown that the transport characteristics of semiconducting single-walled CNT (SWCNT) field effect transistor (FET) are sensitive to internal water wetting. We report here that the characteristics of semiconducting SWCNT FETs are also sensitive to the concentration, pH and ion type of ionic solution when the electrolytes are inside the CNT. Such sensitivity is not observed at the outside surface of a semiconducting SWCNT. This opens a new avenue for building new types of CNT sensor devices in which the SWCNT concurrently functions as a nanochannel and an electronic detector. PMID:22293518

  1. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  2. Stable carbon isotope ratio profiling of illicit testosterone preparations--domestic and international seizures.

    Science.gov (United States)

    Brooker, Lance; Cawley, Adam; Drury, Jason; Edey, Claire; Hasick, Nicole; Goebel, Catrin

    2014-10-01

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is now established as a robust and mature analytical technique for the doping control of endogenous anabolic androgenic steroids in human sport. It relies on the assumption that the carbon isotope ratios of naturally produced steroids are significantly different to synthetically manufactured testosterone or testosterone prohormones used in commercial medical or dietary supplement products. Recent publications in this journal have highlighted the existence of black market testosterone preparations with carbon isotope ratios within the range reported for endogenous steroids (i.e. δ(13) C ≥ -25.8 ‰). In this study, we set out to profile domestic and international law enforcement seizures of illicit testosterone products to monitor the prevalence of 'enriched' substrates--which if administered to human subjects would be considered problematic for the use of current GC-C-IRMS methodologies for the doping control of testosterone in sport. The distribution of δ(13) C values for this illicit testosterone sample population (n = 283) ranged from -23.4 ‰ to -32.9 ‰ with mean and median of -28.6 ‰--comparable to previous work. However, only 13 out of 283 testosterone samples (4.6 %) were found to display δ(13) C values ≥ -25.8 ‰, confirming that in the vast majority of cases of illicit testosterone administration, current GC-C-IRMS doping control procedures would be capable of confirming misuse. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Grain-scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA-603.

    Science.gov (United States)

    Nishida, Kozue; Ishimura, Toyoho

    2017-11-30

    The new international reference material IAEA-603 (calcite) for stable carbon and oxygen isotopes (δ 13 C and δ 18 O values) was released in 2016 to replace the previous reference material, NBS19 (exhausted). We examined the grain-scale isotopic variations in IAEA-603 for application to microscale isotopic analysis of carbonate samples. Individual grains of IAEA-603 were analyzed with an IsoPrime100 isotope ratio mass spectrometer with a customized continuous-flow gas preparation system (MICAL3c). The individual grains of IAEA-603 were observed by optical and scanning electron microscopy, and their observational characteristics (grain color and size) were compared with their stable isotope compositions. Translucent grains (main component of IAEA-603; grain weight, 4-132 μg) had homogeneous isotopic ratios, comparable with the grain-scale isotopic homogeneity of NBS 19. Their average δ 13 C and δ 18 O values were the same as the recommended values determined by the IAEA. Opaque (whitish) grains (1-2 per 100 grains; grain weight, 8-63 μg) were significantly more depleted in 13 C and 18 O than the translucent grains. Low-abundance opaque grains (1-2 grains out of 100 grains) have lower δ 13 C and δ 18 O values, suggesting that these grains should be eliminated when using IAEA-603 for single-grain (microscale) isotope analysis. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Lithium-sulfur batteries: progress and prospects.

    Science.gov (United States)

    Manthiram, Arumugam; Chung, Sheng-Heng; Zu, Chenxi

    2015-03-25

    Development of advanced energy-storage systems for portable devices, electric vehicles, and grid storage must fulfill several requirements: low-cost, long life, acceptable safety, high energy, high power, and environmental benignity. With these requirements, lithium-sulfur (Li-S) batteries promise great potential to be the next-generation high-energy system. However, the practicality of Li-S technology is hindered by technical obstacles, such as short shelf and cycle life and low sulfur content/loading, arising from the shuttling of polysulfide intermediates between the cathode and anode and the poor electronic conductivity of S and the discharge product Li2 S. Much progress has been made during the past five years to circumvent these problems by employing sulfur-carbon or sulfur-polymer composite cathodes, novel cell configurations, and lithium-metal anode stabilization. This Progress Report highlights recent developments with special attention toward innovation in sulfur-encapsulation techniques, development of novel materials, and cell-component design. The scientific understanding and engineering concerns are discussed at the end in every developmental stage. The critical research directions needed and the remaining challenges to be addressed are summarized in the Conclusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sulfurization of carbohydrates results in a sulfur-rich, unresolved complex mixture in kerogen pyrolysates

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Dongen, B.E. van; Schouten, S.

    2003-01-01

    Pyrolysates of the organic carbon-rich and oil-prone rocks of the Kimmeridge Clay Formation (KCF) are dominated by a sulfur-rich unresolved complex mixture (UCM). Structural characterization of this UCM by preparative capillary gas chromatography, gas chromatography (GC), gas chromatography/mass

  6. The sulfur depot in the rhizosphere of a common wetland plant, Juncus effusus, can support long-term dynamics of inorganic sulfur transformations.

    Science.gov (United States)

    Wiessner, Arndt; Kuschk, Peter; Nguyen, Phuong Minh; Müller, Jochen A

    2017-10-01

    The sulfur cycle in the rhizosphere of constructed wetlands is frequently interlaced with transformations of carbon and nitrogen. Knowledge about the manifold sulfur transformations may thus aid in improving treatment performance of constructed wetlands. In this study, two laboratory-scale constructed wetland models (planted fixed bed reactors; PFR1 and PFR2) were used to investigate inorganic sulfur transformations at various total loads of sulfate and organic carbon. Sulfate, sulfide and elemental sulfur were the most abundant sulfur compounds detected, thus providing evidence for the simultaneous occurrence of dissimilatory sulfate reduction and sulfide oxidation. This co-occurrence was likely enabled by oxygen micro-gradients in the root-near environment, i.e. aerobic sulfide and elemental sulfur oxidation took place mostly at the roots while sulfate and elemental sulfur reduction occurred in the pore water under reduced redox conditions. The rhizosphere was found to be first sink, then source for sulfur during the course of the experiment. Immobilization of reduced sulfur was triggered by catabolism of organic matter coupled to dissimilatory sulfate reduction and the subsequent partial oxidation of generated sulfide. Good plant status was critical for sulfur deposition in the systems. Without externally provided sulfate the sulfur depot of the rhizosphere was a prolonged source for sulfur, which was remobilized into the pore water. Oscillations between sulfide and sulfur (PFR1) or sulfide and sulfate (PFR2) suggested a dynamic interplay between plants and various microbial guilds, i.e. dissimilatory sulfate and sulfur reducers on one side and sulfide and sulfur oxidizers on the other. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nitrogen and sulfur dual-doped chitin-derived carbon/graphene composites as effective metal-free electrocatalysts for dye sensitized solar cells

    Science.gov (United States)

    Di, Yi; Xiao, Zhanhai; Yan, Xiaoshuang; Ru, Geying; Chen, Bing; Feng, Jiwen

    2018-05-01

    The photovoltaic performance of dye-sensitized solar cell (DSSC) is strongly influenced by the electrocatalytic ability of its counter electrode (CE) materials. To obtain the affordable and high-performance electrocatalysts, the N/S dual-doped chitin-derived carbon materials SCCh were manufactured via in-situ S-doped method in the annealing process, where richer active sites are created compared to the pristine chitin-derived carbon matrix CCh, thus enhancing the intrinsic catalytic activity of carbon materials. When SCCh is incorporated with graphene, the yielded composites hold a further boosted catalytic activity due to facilitating the electronic fast transfer. The DSSC assembled with the optimizing rGO-SCCh-3 composite CE shows a favourable power conversion efficiency of 6.36%, which is comparable with that of the Pt-sputtering electrode (6.30%), indicate of the outstanding I3- reduction ability of the composite material. The electrochemical characterizations demonstrate that the low charge transfer resistance and excellent electrocatalytic activity all contribute to the superior photovoltaic performance. More importantly, the composite CE exhibits good electrochemical stability in the practical operation. In consideration of the low cost and the simple preparation procedure, the present metal-free carbonaceous composites could be used as a promising counter electrode material in future large scale production of DSSCs.

  8. Sulfur Speciation of Different Kerogens using XANES Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wiltfong,R.; Mitra-Kirtley, S.; Mullins, O.; Andrews, B.; Fujisawa, G.; Larsen, J.

    2005-01-01

    X-ray absorption near-edge structure (XANES) methodology has been employed to quantify the different sulfur structures present in three Type I and three Type II kerogens. Kerogens from the Green River (3), Bakken (1), Woodford (1), and Indiana limestone (1) formations were studied. Both aliphatic (sulfide) and aromatic (thiophene) forms of sulfur exist in all these kerogen samples. Except for Woodford, all of the kerogens contain oxidized functional groups. Sulfur in Types I and II kerogens mimics the carbon chemistry in that the sulfur structures are more aromatic in Type II than in Type I. It was impossible to differentiate elemental sulfur from pyrite in these samples by using K-edge XANES.

  9. Method of making a sodium sulfur battery

    Science.gov (United States)

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  10. Photocatalytic splitting of CS2 to S8 and a carbon-sulfur polymer catalyzed by a bimetallic ruthenium(II) compound with a tertiary amine binding site: toward photocatalytic splitting of CO2?

    Science.gov (United States)

    Livanov, Konstantin; Madhu, Vedichi; Balaraman, Ekambaram; Shimon, Linda J W; Diskin-Posner, Yael; Neumann, Ronny

    2011-11-21

    The catalytic photocleavage of CS(2) to S(8) and a (C(x)S(y))(n) polymer with visible light using a dinuclear ruthenium(II) compound with a bipyridine units for photoactivity and a vicinal tertiary amine binding site for CS(2) activation was studied. The catalyst was characterized by X-ray diffraction, (1)H NMR, and (13)C NMR, ESI-MS and elemental analysis. CS(2) photocleavage was significant (240 turnovers, 20 h) to yield isolable S(8) and a (C(x)S(y))(n) polymer. A mononuclear catalyst or one without an amine binding site showed significantly less activity. XPS of the (C(x)S(y))(n) polymer showed a carbon/sulfur ratio ∼1.5-1.6 indicating that in part both C-S bonds of CS(2) had been cleaved. Catalyst was also included within the polymer. The absence of peaks in the (1)H NMR verified the (C(x)S(y))(n) nature of the polymer, while (13)C NMR and IR indicated that the polymer had multiple types of C-S and C-C bonds.

  11. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 1,4,7-triazycyclononane and 1,4-diaza-7-thiacyclodecane

    DEFF Research Database (Denmark)

    Song, Y.S.; Becker, J.; Kofod, Pauli

    1996-01-01

    The new cyclic thioether 1,4-diaza-7-thiacyclodecane, dathicd, has been synthesized and used for the prepn. of the sulfur- and carbon-bonded cobalt(III) complexes: [Co(tacn)(S-dathicd)]Cl3.5H2O and [Co(tacn)(C-dathicd)](ClO4)2 (tacn, 1,4,7-triazacyclononane; C-dathicd, 1,4-diamino-7-thiacyclodecan......-8-ide anion). A thermodn. and kinetic study of the equilibration between these coordination compds. has been performed using UV-VIS absorption spectroscopy, IE-HPLC and 13C NMR ([OH-]=10-5-1.0 M, T=25.0 DegC, I=1.0 M). In basic soln. Co(tacn)(S-dathicd)3+ deprotonates at one of the coordinated amine...... groups and the base dissocn. const. has been detd. to Kb(NH)=0.311(32) M. The equil. const. for the reaction of Co(tacn)(S-dathicd)3+ with hydroxide ions to give Co(tacn)(C-dathicd)2+ has been detd. to Kf=1.8x105 M-1 at 25 DegC. The kinetic data have been interpreted in terms of the intermediate...

  12. Solid-State Lithium-Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer.

    Science.gov (United States)

    Tao, Xinyong; Liu, Yayuan; Liu, Wei; Zhou, Guangmin; Zhao, Jie; Lin, Dingchang; Zu, Chenxi; Sheng, Ouwei; Zhang, Wenkui; Lee, Hyun-Wook; Cui, Yi

    2017-05-10

    An all solid-state lithium-ion battery with high energy density and high safety is a promising solution for a next-generation energy storage system. High interface resistance of the electrodes and poor ion conductivity of solid-state electrolytes are two main challenges for solid-state batteries, which require operation at elevated temperatures of 60-90 °C. Herein, we report the facile synthesis of Al 3+ /Nb 5+ codoped cubic Li 7 La 3 Zr 2 O 12 (LLZO) nanoparticles and LLZO nanoparticle-decorated porous carbon foam (LLZO@C) by the one-step Pechini sol-gel method. The LLZO nanoparticle-filled poly(ethylene oxide) electrolyte shows improved conductivity compared with filler-free samples. The sulfur composite cathode based on LLZO@C can deliver an attractive specific capacity of >900 mAh g -1 at the human body temperature 37 °C and a high capacity of 1210 and 1556 mAh g -1 at 50 and 70 °C, respectively. In addition, the solid-state Li-S batteries exhibit high Coulombic efficiency and show remarkably stable cycling performance.

  13. Coordinated motility of cyanobacteria favor mat formation, photosynthesis and carbon burial in low-oxygen, high-sulfur shallow sinkholes of Lake Huron; whereas deep-water aphotic sinkholes are analogs of deep-sea seep and vent ecosystems

    Science.gov (United States)

    Biddanda, B. A.; McMillan, A. C.; Long, S. A.; Snider, M. J.; Weinke, A. D.; Dick, G.; Ruberg, S. A.

    2016-02-01

    Microbial life in submerged sinkhole ecosystems of the Laurentian Great Lakes is relatively understudied in comparison to seeps and vents of the deep-sea. We studied the filamentous benthic mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes. Measured speed of individual filaments ranged from 50 µm minute-1 or 15 body lengths minute-1 to 215 µm minute-1 or 70 body lengths minute-1 - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis towards pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Pebbles and pieces of broken shells placed upon the mat in intact sediemnt cores were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling plankton debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats where life operates across sharp redox gradients. Analogous cyanobacterial motility in the shallow seas during Earth's early history, may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring carbon burial. We are now eagerly mapping and exploring life in deep-water aphotic sinkholes of

  14. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    Science.gov (United States)

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  15. Some thoughts on GAIA and the sulfur cycle

    Science.gov (United States)

    Lovelock, J. E.

    1985-01-01

    The data hypothesis states that the composition, oxidation reduction state, and temperature of the troposphere are actively regulated by the biota for the biota. One of the early predictions of the Gaia hypothesis was that there should be a sulfur compound made by the biota in the oceans. It would need to be stable enough against oxidation in water to allow its transfer to the air. Either the sulfur compound itself or its atmospheric oxidation product would have to return sulfur from the sea to the land surfaces. The most likely candidate for this role was dimethyl sulfide. Another sulfur compound of interest from a Gaian viewpoint CS2 (carbon disulfide) is discussed. Theories on the production of dimethyl sulfide and carbon disulfide related to the Gaian hypothesis are examined.

  16. Efficiency Limits of Solar Energy Harvesting via Internal Photoemission in Carbon Materials

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2018-02-01

    Full Text Available We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, including visible and near-infrared light. The energy of photo-generated non-equilibrium or ‘hot’ charge carriers can be harvested before they thermalize with the crystal lattice via the process of their internal photo-emission (IPE through the rectifying Schottky junction with a semiconductor. However, the low efficiency and the high cost of noble metals necessitates the search for cheaper abundant alternative materials, and we show here that carbon can serve as a promising IPE material candidate. We compare the upper limits of performance of IPE photon energy-harvesting platforms, which incorporate either gold or carbon as the photoactive material where hot electrons are generated. Through a combination of density functional theory, joint electron density of states calculations, and Schottky diode efficiency modeling, we show that the material electron band structure imposes a strict upper limit on the achievable efficiency of the IPE devices. Our calculations reveal that graphite is a good material candidate for the IPE absorber for harvesting visible and near-infrared photons. Graphite electron density of states yields a sizeable population of hot electrons with energies high enough to be collected across the potential barrier. We also discuss the mechanisms that prevent the IPE device efficiency from reaching the upper limits imposed by their material electron band structures. The proposed approach is general and allows for efficient pre-screening of materials for their potential use in IPE energy converters and photodetectors within application-specific spectral windows.

  17. International Workshop on Carbon Cycling and Coral Reef Metabolism; Sangosho no tanso junkan ni kansuru kokusai workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-16

    The paper described the International Workshop on Carbon Cycling and Coral Reef Metabolism which was held at Miyako-jima, Okinawa Pref. on October 17-24, 1995. In the workshop, researchers got together which are involved in marine chemistry, marine biology, coral ecology, and environmental science, and discussed the carbon cycling and metabolism of coral reef. Discussions were made on what the coral reef ecosystem is, and what the definition of a sink or a source for CO2 is. Also discussed were scales of how much time and space should be considered to make these issues clear. Further, it was proposed that it was necessary to investigate carbon balance of both the whole system and the components of the system and to keep track of mass transfer among neighboring components of the system. Seventeen presentations were given. The workshop obtained a definite consensus on carbon balance of the coral reef system. 123 refs., 39 figs., 9 tabs.

  18. Enhanced solar energy absorption by internally-mixed black carbon in snow grains

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2012-05-01

    Full Text Available Here we explore light absorption by snowpack containing black carbon (BC particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0.05–109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA (Chýlek and Srivastava, 1983 is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8–2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only ~2% of the atmospheric BC burden is cloud-borne, 71–83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32–73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43–86%, relative to scenarios that apply external optical properties to all BC. We

  19. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    Energy Technology Data Exchange (ETDEWEB)

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  20. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  1. Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate

    OpenAIRE

    Weissgerber, Thomas; Watanabe, Mutsumi; Hoefgen, Rainer; Dahl, Christiane

    2014-01-01

    Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to ...

  2. Study of carbon dioxide emission inventory from transportation sector at Kualanamu International Airport

    Science.gov (United States)

    Suryati, I.; Indrawan, I.; Alihta, K. N.

    2018-02-01

    Transportation includes sources of greenhouse gas emission contributor in the form of carbon dioxide (CO2). CO2 is one of the air pollutant gases that cause climate change. The source of CO2 emissions at airports comes from road and air transportation. Kualanamu International Airport is one of the public service airports in North Sumatera Province. The purpose of this study is to inventory the emission loads generated by motor vehicles and aircraft and to forecast contributions of CO2 emissions from motor vehicles and aircraft. The research method used is quantitative and qualitative methods. The quantitative method used is to estimate emission loads of motor vehicles based on vehicle volume and emission factors derived from the literature and using the Tier-2 method to calculate the aircraft emission loads. The results for the maximum CO2 concentration were 6,206,789.37 μg/m3 and the minimal CO2 concentration was 4,070,674.84 μg/Nm3. The highest aircraft CO2 emission load is 200,164,424.5 kg/hr (1.75 x 109 ton/year) and the lowest is 38,884,064.5 kg/hr (3.40 x 108 ton/year). Meanwhile, the highest CO2 emission load from motor vehicles was 51,299.25 gr/hr (449,38 ton/year) and the lowest was 38,990.42 gr/hr (341,55 ton/year). CO2 contribution from a motor vehicle is 65% and 5% from aircraft in Kualanamu International Airport.

  3. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  4. [Transformation of sulfur forms during coal pyrolysis and partial gasification in a fixed bed reactor].

    Science.gov (United States)

    Li, Bin; Cao, Yan; Zhang, Jianmin; Huang, Jiejie; Wang, Yang; Chen, Fuyan

    2003-03-01

    The development of various process to the pre-desulfurization of coal was drawn more attention. In present study, the transformation of sulfur forms of three different ranks high sulfur coals during coal pyrolysis and partial gasification were investigated in a fixed bed reactor. The sulfur and carbon content analysis of original coal and coal char produced were determined by LECO SC-444 and wet chemical analysis according to Sugawara's method. The results showed that half of inorganic sulfur and partial of organic sulfur were removed during coal pyrolysis. And the sulfur removal was much more than carbon during pyrolysis process; and the sulfur in the coal char, especially the sulfide sulfur was removed completely during partial gasification process for both Datong coal and Xishan coal, the degree of sulfide sulfur removal could be increased with increasing temperature. At the same time, the results of Yima coal showed that the effect of fixed-sulfur by alkaline metals increased when the temperature was higher than 700 degrees C, which attribute to the increase of the fixed sulfur reaction rate and the decrease of mass-transfer limitation.

  5. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  6. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution.

    Science.gov (United States)

    Wang, W; Guan, C; Zhou, C; Peng, Y; Pratt, L M; Chen, X; Chen, L; Chen, Z; Yuan, X; Xiao, S

    2017-07-01

    The Ediacaran Doushantuo Formation in South China is a prime target for geobiological investigation because it offers opportunities to integrate chemostratigraphic and paleobiological data. Previous studies were mostly focused on successions in shallow-water shelf facies, but data from deep-water successions are needed to fully understand basinal redox structures. Here, we report δ 13 C carb , δ 13 C org , δ 34 S pyr , δ 34 S CAS , and δ 15 N sed data from a drill core of the fossiliferous Lantian Formation, which is a deep-water equivalent of the Doushantuo Formation. Our data confirm a large (>10‰) spatial gradient in δ 13 C carb in the lower Doushantuo/Lantian formations, but this gradient is probably due to the greater sensitivity of carbonate-poor deep-water sediments to isotopic mixing with 13 C-depleted carbonate cements. A pronounced negative δ 13 C carb excursion (EN3) in the upper Doushantuo/Lantian formations, however, is spatially consistent and may be an equivalent of the Shuram excursion. δ 34 S pyr is more negative in deeper-water facies than in shallow-water facies, particularly in the lower Doushantuo/Lantian formations, and this spatial pattern is interpreted as evidence for ocean redox stratification: Pyrite precipitated in euxinic deep waters has lower δ 34 S pyr than that formed within shallow-water sediments. The Lantian Formation was probably deposited in oscillating oxic and euxinic conditions. Euxinic black shales have higher TOC and TN contents, but lower δ 34 S pyr and δ 15 N sed values. In euxinic environments, pyrite was predominantly formed in the water column and organic nitrogen was predominantly derived from nitrogen fixation or NH 4 + assimilation because of quantitative denitrification, resulting in lower δ 34 S pyr and δ 15 N sed values. Benthic macroalgae and putative animals occur exclusively in euxinic black shales. If preserved in situ, these organisms must have lived in brief oxic episodes punctuating largely

  7. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-01-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging. PMID:27319783

  8. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  9. Dose rate effect on internal friction and structural transformations in electron-irradiated carbon-armored composites

    Energy Technology Data Exchange (ETDEWEB)

    Zaikin, Yu.A. [Al Farabi Kazakh National University, 96a Tole bi, 480012 Almaty (Kazakhstan)]. E-mail: DrZaykin@mail.ru; Aimuratov, D.B. [Al Farabi Kazakh National University, 96a Tole bi, 480012 Almaty (Kazakhstan); Al-Sheikhly, M. [University of Maryland, College Park (United States)

    2007-08-15

    Temperature dependence of internal friction and specific electric resistance of multi-layer carbon-armored epoxy-based composites is experimentally studied in the temperature range of 20-300 deg. C before and after irradiation with 2 MeV electrons. It is shown that carbon penetration into the polymer matrix causes intense polymer cross-linking in the basic layers of the composite even at low irradiation doses. The strong effect of dose rate on radiation-induced structural transformations was observed.

  10. Selective determination of volatile sulfur compounds in wine by gas chromatography with sulfur chemiluminescence detection.

    Science.gov (United States)

    Siebert, Tracey E; Solomon, Mark R; Pollnitz, Alan P; Jeffery, David W

    2010-09-08

    Volatile sulfur compounds can be formed at various stages during wine production and storage, and some may impart unpleasant "reduced" aromas to wine when present at sensorially significant concentrations. Quantitative data are necessary to understand factors that influence the formation of volatile sulfur compounds, but their analysis is not a trivial undertaking. A rapid and selective method for determining 10 volatile sulfur-containing aroma compounds in wine that have been linked to "off-odors" has been developed. The method utilizes static headspace injection and cool-on-column gas chromatography coupled with sulfur chemiluminescence detection (GC-SCD). Validation demonstrated that the method is accurate, precise, robust, and sensitive, with limits of quantitation around 1 microg/L or better, which is below the aroma detection thresholds for the analytes. Importantly, the method does not form artifacts, such as disulfides, during sample preparation or analysis. To study the contribution of volatile sulfur compounds, the GC-SCD method was applied to 68 commercial wines that had reductive sensory evaluations. The analytes implicated as contributors to reductive characters were hydrogen sulfide, methanethiol, and dimethyl sulfide, whereas carbon disulfide played an uncertain role.

  11. Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus

    Directory of Open Access Journals (Sweden)

    Xiaolei Hao

    2003-01-01

    Full Text Available Staphylothermus marinus is an anaerobic hyperthermophilic archaeon that uses peptides as carbon and energy sources. Elemental sulfur (S° is obligately required for its growth and is reduced to H2S. The metabolic functions and mechanisms of S° reduction were explored by examining S°-dependent growth and activities of key enzymes present in this organism. All three forms of S° tested—sublimed S°, colloidal S° and polysulfide—were used by S. marinus, and no other sulfur-containing compounds could replace S°. Elemental sulfur did not serve as physical support but appeared to function as an electron acceptor. The minimal S° concentration required for optimal growth was 0.05% (w/v. At this concentration, there appeared to be a metabolic transition from H2 production to S° reduction. Some enzymatic activities related to S°-dependent metabolism, including sulfur reductase, hydrogenase, glutamate dehydrogenase and electron transfer activities, were detected in cell-free extracts of S. marinus. These results indicate that S° plays an essential role in the heterotrophic metabolism of S. marinus. Reducing equivalents generated by the oxidation of amino acids from peptidolysis may be transferred to sulfur reductase and hydrogenase, which then catalyze the production of H2S and H2, respectively.

  12. Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement

    Science.gov (United States)

    Thamban, Navaneeth M.; Tripathi, S. N.; Moosakutty, Shamjad P.; Kuntamukkala, Pavan; Kanawade, V. P.

    2017-11-01

    We present the systematic analysis of individual black carbon (BC) mixing state and its impact on radiative forcing from an urban Indian city, Kanpur, located in Indo-Gangetic Plain (IGP). Simultaneous measurements using Single Particle Soot Photometer (SP2), Photo-Acoustic Soot Spectrometer (PASS-3) and High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) were conducted from 8 January 2015 to 28 February 2015 at Kanpur. BC mass and number concentrations varied between 0.7 and 17 μg/m3 and 277-5866 #/cm3 with a mean of 4.06 μg/m3 and 1314 #/cm3, respectively. The diurnal variation of BC mass concentration showed a traffic hour peak during both the morning and late night. The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6%, indicating that a large fraction of BC particles was internally mixed. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. High-resolution positive matrix factorization (HR-PMF) factors showed distinct characteristics with fTCBC. While primary organic aerosols like cooking organic aerosols (COA) and biomass burning organic aerosols (BBOA) were negatively correlated with fTCBC (r = - 0.78 and - 0.51, respectively), aged low volatile oxygenated organic aerosol (LVOOA) was forming a coating over BC (r = 0.6). Similar positive correlation of fTCBC with inorganic species like ammonium (r = 0.58) and nitrate (r = 0.47) further suggested that BC appears to be largely coated with LVOOA, ammonium, and nitrate. A positive correlation between the fTCBC and the mass absorption cross-section at 781 nm (MAC781) was also observed (r = 0.58). Our results suggest that the observed fTCBC could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing in the IGP.

  13. Process for forming sulfuric acid

    Science.gov (United States)

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  14. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  15. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling

    DEFF Research Database (Denmark)

    Pellerin, André; Bui, Thi Hao; Rough, Mikaella

    2015-01-01

    The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits the disti......The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits......, informed by the chemistry of sulfur intermediate compounds in Mangrove Lake, reveals that sulfate reduction produces a relatively small intrinsic fractionation and that an active reoxidative sulfur cycle increases the fractionation of the measured values. Based on the model results, the reoxidative cycle...... of Mangrove Lake appears to include sulfide oxidation to elemental sulfur followed by the disproportionation of the elemental sulfur to sulfate and sulfide. This model also indicates that the reoxidative sulfur cycle of Mangrove Lake turns over from 50 to 80% of the sulfide produced by microbial sulfate...

  16. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  17. A Li+-conductive microporous carbon–sulfur composite for Li-S batteries

    International Nuclear Information System (INIS)

    Zhang, Wenhua; Qiao, Dan; Pan, Jiaxin; Cao, Yuliang; Yang, Hanxi; Ai, Xinping

    2013-01-01

    Highlights: ► A carbon–sulfur composite was prepared by vaporizing sulfur into the nanopores of Li + -conductive carbon microspheres. ► The redox reaction of S 8 molecules embedded in the nanopores of carbon microspheres proceeds through a solid–solid mechanism at the S/C interfaces. ► The carbon–sulfur composite exhibits a stable cycling performance and a superior high coulombic efficiency of 100%. - Abstract: In this paper, we propose a new strategy to develop high performance sulfur electrode by impregnating sulfur into the micropores of a Li + -insertable carbon matrix with the simultaneous use of a carbonate electrolyte, which does not dissolve polysulfides, to restrain the solution of the reaction intermediates of sulfur. To proof this concept, we prepared a Li + -insertable microporous carbon–sulfur composite by vaporizing sulfur into the micropores of the nanofiber-wired carbon microspheres. The experimental results demonstrate that, in the carbonate electrolyte of 1 M LiPF 6 /PC-EC-DEC, such S/C composite electrode exhibits not only stable cycling performance with a reversible capacity of 720 mAh g −1 after 100 cycles, but also superior high coulombic efficiency of ∼100% upon extended cycling (except the first three cycles). The structural and electrochemical analysis indicates that the improved electrochemical behaviors of the S/C composite arise from a new reaction mechanism, in which Li + ions and electrons transport through the carbon matrix into the interior of the cathode and then react with the embedded sulfur in the S/C solid–solid interfaces, avoiding the solution of the intermediates into the bulk electrolyte. More significantly, the structural design and working mechanism of such a sulfur cathode could be extended to a variety of poorly conductive and easily soluble redox-active materials for battery applications.

  18. Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge.

    Science.gov (United States)

    Moffet, Ryan C; Henn, Tobias; Laskin, Alexander; Gilles, Mary K

    2010-10-01

    We have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicrometer particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278 to 320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and noncarbonaceous elements in particles of mixed composition. This energy range encompasses the carbon K-edge and potassium L2 and L3 edges. STXM/NEXAFS maps of different chemical components were complemented with a subsequent analysis using elemental maps obtained by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX). We demonstrate the application of the automated mapping algorithms for data analysis and the statistical classification of particles.

  19. International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

    Science.gov (United States)

    Reysa, Richard P.; Lumpkin, John P.; Sherif, Dian El; Kay, Robert; Williams, David E.

    2007-01-01

    The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two desiccant/adsorbent beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.

  20. Catalysts for the reduction of SO{sub 2} to elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.; Yu, Q.Q.; Chang, S.G. [Lawrence Berkeley Lab., Berkeley, CA (United States)

    1995-11-01

    Catalysts have been prepared for the reduction of SO{sub 2} to elemental sulfur by synthesis gas. A catalyst allows to obtain more than 97% yield of elemental sulfur with a single-stage reactor at 540{degrees}C. A lifetime test has been successfully performed. The mass balance of sulfur and carbon has been checked. The effect of H{sub 2}S, COS, and H{sub 2}O has been studied.

  1. Reduced sulfur in euxinic sediments of the Cariaco Basin : Sulfur isotope contraints on organic sulfur formation

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Werne, J.; Lyons, T.W.; Hollander, D.J.; Formolo, M.

    2003-01-01

    Reduced sulfur accumulation in Holocene and latest Pleistocene euxinic marine sediments from the Cariaco Basin, Venezuela, was investigated to constrain the timing and possible pathways of organic matter (OM) sulfurization. Data were collected for a diverse suite of sulfur species, including

  2. Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite.

    Science.gov (United States)

    Hu, Sihai; Wu, Yaoguo; Yao, Hairui; Lu, Cong; Zhang, Chengjun

    2016-01-01

    The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron-carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron-carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption-reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model (R2=0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron-carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.

  3. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.

    Science.gov (United States)

    Kletzin, Arnulf; Urich, Tim; Müller, Fabian; Bandeiras, Tiago M; Gomes, Cláudio M

    2004-02-01

    The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.

  4. Effects of sulfur oxides on eicosanoids

    International Nuclear Information System (INIS)

    Chen, L.C.; Miller, P.D.; Amdur, M.O.

    1989-01-01

    Ultrafine metal oxides and SO2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SOx layer. Ongoing work in this laboratory has examined the effects of sulfur oxides on pulmonary functions of guinea pigs. We have previously reported that 20 micrograms/m3 acidic sulfur oxide as a surface layer on ultrafine ZnO particles decreases lung volumes, decreases carbon monoxide diffusing capacity, and causes lung inflammation in guinea pigs after 4 daily 3-h exposures. It also produces bronchial hypersensitivity following a single 1-h exposure. The importance of this surface layer is demonstrated by our observation that 200 micrograms/m3 of sulfuric acid droplets of equivalent size are needed to produce the same degree of hypersensitivity. This study characterized the concentration-dependent effects of in vivo exposures to sulfur oxides on arachidonic acid metabolism in the guinea pig lung, and investigated the time course and the relation between eicosanoid composition and pulmonary functions. We focused specifically on four cyclooxygenase metabolites of arachidonic acid, that is, prostaglandins (PG) E1, F2 alpha, 6-keto prostaglandin F1 alpha, and thromboxane (Tx) B2, and two groups of sulfidopeptide leukotrienes (C4, D4, E4, and F4). Guinea pigs were exposed to ultrafine ZnO aerosol (count median diameter = 0.05 microns, sigma g = 1.80) with a layer of acidic sulfur oxide on the surface of the particles. Lung lavage was collected after exposures, and the levels of arachidonic acid metabolites were determined using radioimmunoassay (RIA). Concentration-dependent promotion of PGF2 alpha and concentration-dependent suppression of LtB4 were observed. The increased PGF2 alpha was associated with depressed vital capacity and diffusing capacity of the lungs measured in guinea pigs exposed to the same atmosphere described in a previous study

  5. Effects of sulfur oxides on eicosanoids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.C.; Miller, P.D.; Amdur, M.O. (New York Univ. Medical Center, Tuxedo (USA))

    1989-01-01

    Ultrafine metal oxides and SO2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SOx layer. Ongoing work in this laboratory has examined the effects of sulfur oxides on pulmonary functions of guinea pigs. We have previously reported that 20 micrograms/m3 acidic sulfur oxide as a surface layer on ultrafine ZnO particles decreases lung volumes, decreases carbon monoxide diffusing capacity, and causes lung inflammation in guinea pigs after 4 daily 3-h exposures. It also produces bronchial hypersensitivity following a single 1-h exposure. The importance of this surface layer is demonstrated by our observation that 200 micrograms/m3 of sulfuric acid droplets of equivalent size are needed to produce the same degree of hypersensitivity. This study characterized the concentration-dependent effects of in vivo exposures to sulfur oxides on arachidonic acid metabolism in the guinea pig lung, and investigated the time course and the relation between eicosanoid composition and pulmonary functions. We focused specifically on four cyclooxygenase metabolites of arachidonic acid, that is, prostaglandins (PG) E1, F2 alpha, 6-keto prostaglandin F1 alpha, and thromboxane (Tx) B2, and two groups of sulfidopeptide leukotrienes (C4, D4, E4, and F4). Guinea pigs were exposed to ultrafine ZnO aerosol (count median diameter = 0.05 microns, sigma g = 1.80) with a layer of acidic sulfur oxide on the surface of the particles. Lung lavage was collected after exposures, and the levels of arachidonic acid metabolites were determined using radioimmunoassay (RIA). Concentration-dependent promotion of PGF2 alpha and concentration-dependent suppression of LtB4 were observed. The increased PGF2 alpha was associated with depressed vital capacity and diffusing capacity of the lungs measured in guinea pigs exposed to the same atmosphere described in a previous study.

  6. Analyses élémentaires (carbone,hydrogène,oxygène,azote,soufre des fractions lourdes du pétrole. Elemental Analysis (Carbon,Hydrogen,Oxygen,Nitrogen,Sulfur of Heavy Oil Fractions Bibliographic Study

    Directory of Open Access Journals (Sweden)

    Barbelet M.

    2006-11-01

    Full Text Available La détermination des éléments carbone, hydrogène, oxygène, azote, soufre est essentielle pour la connaissance des fractions lourdes du pétrole. Cette étude bibliographique présente les principales méthodes d'analyse élémentaire utilisées dans ce domaine. On décrit les méthodes de minéralisation, de détection, et l'évolution suivie depuis plusieurs années dans l'automatisation des dosages. Determining, carbon, hydrogen, oxygen, nitrogen and sulfer elements is essential for understanding heavy oil fractions. This bibliographic study describes the leading elemental analysis methods used in this field. Mineralization and detection methods are described, and the development of titra-tion automation in recent years is reviewed.

  7. Carbon emission offsets for aviation-generated emissions due to international travel to and from New Zealand

    International Nuclear Information System (INIS)

    Smith, Inga J.; Rodger, Craig J.

    2009-01-01

    International air transport emissions are not subject to liability under the Kyoto Protocol. However, pressure is mounting globally for international aviation to be included in post-Kyoto arrangements. In the absence of international collective action, a number of so-called carbon offsetting schemes have emerged that allow individual travellers and companies to compensate for their international air travel emissions. These schemes offer technological solutions, such as planting sink forests to sequester emissions. To consider the implications of future collective action, this paper presents a case study assessment of the physical feasibility of five schemes for all short duration journeys to and from New Zealand. This is the first comprehensive national-level case study assessment of competing offsetting options for international aviation emissions in the peer-reviewed literature. The CO 2 -e emissions produced by the air travel of international visitors to New Zealand, and for New Zealand residents travelling overseas, is calculated in this paper to be 7893 and 3948 Gg, respectively, in 2005. It is then shown that no single offsetting scheme targeted inside the country appears physically and/or politically realistic. This indicates the sheer size of these emissions, and the challenge that the international community faces for collective action on this matter. (author)

  8. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. [Temple Univ., Philadelphia, PA (United States)

    1996-01-01

    Cage carbon atoms of fullerenes were substituted by sulfur in sulfur-doped fullerenes synthesized by the authors. The synthesis method was based on the arc evaporation of graphite in the presence of thiophene or 3-methylthiophene. Structural characterization was accomplished through mass spectrometry and fluorescence spectroscopy and crude purification regimens using column chromatography were established. 24 refs., 4 figs., 1 tab.

  9. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    International Nuclear Information System (INIS)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models. The internal mixing model is modeled with a two-layered sphere (water cloud droplets containing black carbon (BC) inclusions), and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz—Mie theory. The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally. The multiple scattering characteristics are computed by using the Monte Carlo method. The results show that when the size of the BC aerosol is small, the reflection intensity of the internal mixing model is bigger than that of the external mixing model. However, if the size of the BC aerosol is big, the absorption of the internal mixing model will be larger than that of the external mixing model. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  11. Well materials durability in case of carbon dioxide and hydrogen sulphide geological sequestration; Durabilite des materiaux de puits petroliers dans le cadre d'une sequestration geologique de dioxyde de carbone et d'hydrogene sulfure

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemet, N

    2006-01-15

    The geological sequestration of carbon dioxide (CO{sub 2}) and hydrogen sulphide (H{sub 2}S) is a promising solution for the long-term storage of these undesirable gases. It consists in injecting them via wells into deep geological reservoirs. The steel and cement employed in the well casing can be altered and provide pathways for leakage with subsequent human and environmental consequences. The materials ageing was investigated by laboratory experiments in geologically relevant P-T conditions. A new experimental and analysis procedure was designed for this purpose. A numerical approach was also done. The cement and steel were altered in various fluid phases at 500 bar-120 C and 500 bar-200 C: a brine, a brine saturated with H{sub 2}S-CO{sub 2}, a mixture of brine saturated with H{sub 2}S-CO{sub 2} and of supercritical H{sub 2}S-CO{sub 2} phase, a dry supercritical H{sub 2}S-CO{sub 2} phase without liquid water. In all cases, two distinct reactions are observed: the cement carbonation by the CO{sub 2} and the steel sulfidation by the H{sub 2}S. The carbonation and sulfidation are respectively maximal and minimal when they occur within the dry supercritical phase without liquid water. The textural and porosity properties of the cement are weakly affected by all the treatments at 120 C. The porosity even decreases in presence of H{sub 2}S-CO{sub 2}. But these properties are affected at 200 C when liquid water is present in the system. At this temperature, the initial properties are only preserved or improved by the treatments within the dry supercritical phase. The steel is corroded in all cases and thus is the vulnerable material of the wells. (author)

  12. Sulfur availability regulates plant growth via glucose-TOR signaling.

    Science.gov (United States)

    Dong, Yihan; Silbermann, Marleen; Speiser, Anna; Forieri, Ilaria; Linster, Eric; Poschet, Gernot; Allboje Samami, Arman; Wanatabe, Mutsumi; Sticht, Carsten; Teleman, Aurelio A; Deragon, Jean-Marc; Saito, Kazuki; Hell, Rüdiger; Wirtz, Markus

    2017-10-27

    Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply.

  13. Carbon Emission Mitigation Potentials of Different Policy Scenarios and Their Effects on International Aviation in the Korean Context

    Directory of Open Access Journals (Sweden)

    Sungwook Yoon

    2016-11-01

    Full Text Available The objective of this study is to seek better policy options for greenhouse gas (GHG emission reduction in Korea’s international aviation industry by analyzing economic efficiency and environmental effectiveness with a system dynamics (SD model. Accordingly, we measured airlines sales and CO2 emission reductions to evaluate economic efficiency and environmental effectiveness, respectively, for various policies. The results show that the average carbon emission reduction rates of four policies compared to the business-as-usual (BAU scenario between 2015 and 2030 are 4.00% (Voluntary Agreement, 7.25% (Emission Trading System or ETS-30,000, 8.33% (Carbon Tax or CT-37,500, and 8.48% (Emission Charge System or EC-30,000. The average rate of decrease in airline sales compared to BAU for the ETS policy is 0.1% at 2030. Our results show that the ETS approach is the most efficient of all the analyzed CO2 reduction policies in economic terms, while the EC approach is the best policy to reduce GHG emissions. This study provides a foundation for devising effective response measures pertaining to GHG reduction and supports decision making on carbon tax and carbon credit pricing.

  14. Benthic metabolism and sulfur cycling along an inundation gradient in a tidal Spartina anglica salt marsh

    NARCIS (Netherlands)

    Gribsholt, B.; Kristensen, E.

    2003-01-01

    Central aspects of carbon and sulfur biogeochemistry were studied along a transect extending from an unvegetated mudflat into a Spartina anglica salt marsh. Conditions along the transect differed with respect to tidal elevation, sediment characteristics, vegetation coverage, and benthic macrofauna

  15. Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Fitnat Saba

    2018-03-01

    Full Text Available We have investigated a two-dimensional radiative flow of a boundary layer nature. The fluid under consideration is carbon nanotube (CNT-based nanofluid and it flows over a curved surface. The heat transfer through the flow is analyzed under the influence of internal heat generation. Water (base fluid along with single or multi-walled carbon nanotubes is taken to compose the nanofluid. After introducing the suitable similarity variables, the consequent equations are reduced to a system of nonlinear ordinary differential equations. The solution to the system is computed by using the shooting method accompanied by Runge–Kutta–Fehlberg algorithm. Various parameters, emerging in the governing equations, influences the flow and heat transfer distribution. These changes are captured and portrayed in the form of graphs. The changes in local rate of heat transfer and skin friction coefficient are also enlisted. To ensure the correctness of applied numerical scheme, the results are compared with some already existing studies.

  16. Biogeochemical Cycling of Sulfur in Soil

    Science.gov (United States)

    Lehmann, J.; Solomon, D.; Janzen, H.; Amelung, W.; Lobe, I.; Martinez, C. E.; Dupreez, C.; Machado, S.

    2002-12-01

    Sulfur is an important element of the global biogeochemical cycle, since it is highly reactive and moves freely among the lithosphere, atmosphere and hydrosphere. Climatic and environmental changes affecting sulfur in the pedosphere will inevitably change the rate and forms of global sulfur cycling which are intertwined with that of carbon, nitrogen and phosphorus. In soil, inorganic sulfur derived from atmospheric deposition or fertilization is largely immobilized and incorporated into soil organic matter (>95%). During the last decades, however, these emissions have been significantly reduced in North America and Europe, and S deficiency can increasingly be observed in crops. This process was accelerated by a change to low-S-containing fertilizers. Therefore, we studied the long-term dynamics of S forms in relation to organic C to evaluate its impact on the soil cycle. Synchrotron-based sulfur K-edge X-ray Absorption Near-Edge Structure spectroscopy (XANES) was used to speciate and quantify the different oxidation states of soil sulfur (organic and inorganic forms of S). Direct measurement of S species in bulk soil indicated the presence of large background on the spectra, which could not easily be corrected without affecting the results. However, humic acid extractions using 0.1 M NaOH/0.4 M NaF mixtures produced better signals, which can even be improved by additional filtration using a 0.2mm membrane filter under pressure. Traditional wet chemical analyses of soil S using hydriodic acid (HI) reduction showed that the major proportion (98%) of total S was present in organic forms, out of which 77-84% were C-bonded S, whereas ester SO4 -S constituted merely 16-23% of the organic S pool in bulk soils. These values were constant regardless of major soil disturbances by landuse and did not change between different particle size fractions. S-XANES spectroscopy, however, showed clear differences of S oxidation states after environmental disturbance of soil and

  17. By-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1979-01-01

    A mathematical model has been developed to calculate by-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone rings. The equations of conservation of mass and momentum are solved for a piping system to obtain axial and radial by-pass velocities. The energy equation is solved next by a marching method to obtain the radial temperature distribution along the duct. The results, although qualitative due to simplifications in the model, are useful to study the effects of duct geometry on its performance. (Author) [pt

  18. Greenhouse gas emission management in the US - current regional initiatives compared with international carbon trading programs

    International Nuclear Information System (INIS)

    Rink, A.G.; Law, S.

    2009-01-01

    In the United States (US) there are currently voluntary reporting programs (EPA Climate Leaders, Carbon Disclosure Project and The Climate Registry), organized market-based trading platforms (Chicago Climate Exchange and The Green Exchange) and proposed regional mandatory cap and trade programs in California, the Northeast, the West and the Midwest. The past success of the US Acid Rain 'cap-and-trade' system market-based format together with the availability of the European Union Emission Trading Scheme to serve as a template for future greenhouse gas regulations is promising as the US can participate in the world wide carbon markets already established. (author)

  19. Forest gardening on abandoned terraces links local biomass carbon accumulation to international carbon markets, reverses land degradation, improves food diversity, and increases farmer income

    Science.gov (United States)

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Kammann, Claudia

    2017-04-01

    project to a carbon capture financing system. All planted trees are GIS inventoried and their yearly biomass carbon up-take is calculated on the base of the average ten-year carbon accumulation. The 25,000 mixed trees accumulate the equivalent of 350 t CO2 per year. At 35 US per t of CO2eq paid in advance by the international community in form of private carbon compensation subscriptions, all costs for the set-up of the forest gardens, their maintenance for three years plus a yearly prime could be paid. After this initial period of three years, the income from tree crops (fruits, nuts, medicine, essential oil, silk, perfume, honey, timber, animal fodder) exceeds by far the (catalyzer) carbon credits providing average crop incomes for the 25,000 trees including secondary mixed cropping of more than 150,000 USD per year. With new processed tree crop products, better-paid jobs are created, the local economy is fostered and the "lost generation" can start to return to their home villages. The objective of this pilot forest garden project was to establish a robust socio-agronomic system that can be multiplied from village to village, increasing soil fertility, protecting abandoned terraces from erosion, replenishing water resources, and generating stable incomes with climate-smart agriculture. The essential catalyst of the project was to link the global need to capture atmospheric carbon and to create negative emissions to slow down climate change with the local capacity to increase biomass growth and to sequester biomass carbon with new low-tech technology (biochar). The financial exchange between global CO2-emmitting communities with local CO2 capturing farmer communities could become a new motor to reverse land degradation, to reestablish ecosystem services, and to develop the rural socio-economy.

  20. Efficiency, equity or disagreement? The economics of international carbon abatement negotiations

    International Nuclear Information System (INIS)

    Mabey, N.; Smith, C.

    1995-01-01

    The current international effort to reduce greenhouse gas emissions, as embodied in the Framework Convention on Climate Change, is often criticized as inefficient by economists because it uses uniform targets instead of more theoretically efficient instruments such as international taxes. However, the effectiveness of any international treaty in producing environmental benefits is not wholly dependent on its economic efficiency but also on its political stability and the ability to accurately monitor and enforce its conditions. Stability depends on the magnitude and distribution of costs and benefits between countries which have heterogeneous economies, environmental damages, trading partners and abatement costs. The distribution of costs between countries will also depend on the type of policy instrument used to coordinate international abatement efforts. This paper analyses trade-offs that must be made when negotiating international agreements in order to balance the need for administrative convenience and economic efficiency with the realization that any agreement is better than no agreement

  1. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  2. Sulfur cycling in plays an important role in the development of Ocean Anoxic Events

    Science.gov (United States)

    Gomes, M. L.; Raven, M. R.; Fike, D. A.; Gill, B. C.; Johnston, D. T.

    2017-12-01

    Ocean Anoxic Events (OAEs) are major carbon cycle perturbations marked by enhanced organic carbon deposition in the marine realm and carbon isotope excursions in organic and inorganic carbon. Although not as severe as the "big five" mass extinctions, OAEs had dire consequences for marine ecosystems and thus influenced Mesozoic evolutionary patterns. Sulfur cycle reconstructions provide insight into the biogeochemical processes that played a role in the development of OAEs because the sulfur cycle is linked with the carbon and oxygen cycles. We present sulfur and oxygen isotope records from carbonate-associated sulfate from the Toarcian OAE that documents a positive sulfate-oxygen isotope excursion of +6‰, which is similar to the magnitude of the positive sulfur isotope excursion documented at the same site and other globally distributed sites. This high-resolution record allows us to explore temporal variability in the onset of the isotopic excursions: the onset of the positive sulfate-oxygen isotope excursion occurs at the same stratigraphic interval as the onset of the positive carbon isotope excursion and both precede the onset of the positive sulfate-sulfur isotope excursion. Because oxygen is rapidly recycled during oxidative sulfur cycling, changes in oxidative sulfur cycling affect oxygen isotope values of sulfate without impacting sulfur isotope values. Thus, the early onset of the sulfate-oxygen isotope excursion implies a change in oxidative sulfur cycling, which is likely due to a shoaling of the zone of sulfate reduction. We explore the consequences of sulfate reduction zone shoaling for organic carbon preservation. Specifically, the sulfurization of organic matter, which makes organic matter less susceptible to degradation, occurs more rapidly when the top of the zone of sulfate reduction is near or above the sediment water interface. Therefore, we suggest that the shoaling of the sulfate reduction zone locally changed pathways of oxidative sulfur

  3. Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for use on International Space Station

    Science.gov (United States)

    Murdoch, Karen; Smith, Fred; Perry, Jay; Green, Steve

    2004-01-01

    When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of Technology Readiness Level (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.

  4. Lithium-Sulfur Capacitors.

    Science.gov (United States)

    Kim, Mok-Hwa; Kim, Hyun-Kyung; Xi, Kai; Kumar, R Vasant; Jung, Dae Soo; Kim, Kwang-Bum; Roh, Kwang Chul

    2018-02-21

    Although many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors. The resulting asymmetric systems exhibited energy densities of 23.9-236.4 Wh kg -1 and power densities of 72.2-4097.3 W kg -1 , which are the highest reported values for an asymmetric system to date. This approach involved the use of a prelithiated anode and a hybrid cathode material exhibiting anion adsorption-desorption in addition to the electrochemical reduction and oxidation of sulfur at almost identical rates. This novel strategy yielded both high energy and power densities, and therefore establishes a new benchmark for hybrid systems.

  5. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Haipeng Li

    2018-01-01

    Full Text Available A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide aerogel (S/AC/GA cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V.

  6. Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method

    International Nuclear Information System (INIS)

    Li, Shaohong; Min, Na; Li, Junwan; Wu, Xiaochun; Li, Chenhui; Tang, Leilei

    2013-01-01

    This work presents an internal frictional behavior of cold work tool steel subjected to different heat treatment schedules to get insight related to segregation of carbon and refinement of carbide particles due to deep cryogenic treatment. The temperature dependence of internal friction was used to describe the variation of carbon concentration in solid solution of the martensite matrix in successive tempering steps. The results indicate that the carbon atoms segregated to nearby defects forming atomic clusters producing strong interactions, including interstitial carbon atoms themselves and between the interstitial carbon atoms with time-dependent strain field of dislocations because of lattice shrinking and thermodynamic instability of martensite during the deep cryogenic treatment. The clusters act as and grow into nuclei for the formation of fine carbide particle on subsequent tempering that was verified by analyses of TEM micrographs

  7. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

    Science.gov (United States)

    Jung, Il-Chan; Kang, Deok-Gu; De Cooman, Bruno C.

    2014-04-01

    The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek-Kê-Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

  8. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries

    Science.gov (United States)

    Li, Zhen; Yuan, Lixia; Yi, Ziqi; Liu, Yang; Xin, Ying; Zhang, Zhaoliang; Huang, Yunhui

    2014-01-01

    Lithium-sulfur batteries have great potential for some high energy applications such as in electric vehicles and smart grids due to their high capacity, natural abundance, low cost and environmental friendliness. But they suffer from rapid capacity decay and poor rate capability. The problems are mainly related to the dissolution of the intermediate polysulfides in the electrolyte, and to the poor conductivity of sulfur and the discharge products. In this work, we propose a novel dual coaxial nanocable sulfur composite fabricated with multi-walled nanotubes (MWCNT), nitrogen-doped porous carbon (NPC) and polyethylene glycol (PEG), i.e. MWCNTs@S/NPC@PEG nanocable, as a cathode material for Li-S batteries. In such a coaxial structure, the middle N-doped carbon with hierarchical porous structure provides a nanosized capsule to contain and hold the sulfur particles; the inner MWCNTs and the outer PEG layer can further ensure the fast electronic transport and prevent the dissolution of the polysulfides into the electrolyte, respectively. The as-designed MWCNT@S/NPC@PEG composite shows good cycling stability and excellent rate capability. The capacity is retained at 527 mA h g-1 at 1 C after 100 cycles, and 791 mA h g-1 at 0.5 C and 551 mA h g-1 at 2 C after 50 cycles. Especially, the high-rate capability is outstanding with 400 mA h g-1 at 5 C.Lithium-sulfur batteries have great potential for some high energy applications such as in electric vehicles and smart grids due to their high capacity, natural abundance, low cost and environmental friendliness. But they suffer from rapid capacity decay and poor rate capability. The problems are mainly related to the dissolution of the intermediate polysulfides in the electrolyte, and to the poor conductivity of sulfur and the discharge products. In this work, we propose a novel dual coaxial nanocable sulfur composite fabricated with multi-walled nanotubes (MWCNT), nitrogen-doped porous carbon (NPC) and polyethylene glycol (PEG

  9. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds...... are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...

  10. Effect of Different Carbon Sources on Relative Growth Rate, Internal Carbohydrates, and Mannitol 1-Oxidoreductase Activity in Celery Suspension Cultures.

    Science.gov (United States)

    Stoop, JMH.; Pharr, D. M.

    1993-11-01

    Little information exists concerning the biochemical route of mannitol catabolism in higher plant cells. In this study, the role of a recently discovered mannitol 1-oxidoreductase (MDH) in mannitol catabolism was investigated. Suspension cultures of celery (Apium graveolens L. var dulce [Mill.] Pers.) were successfully grown on nutrient media with either mannitol, mannose, or sucrose as the sole carbon source. Cell cultures grown on any of the three carbon sources did not differ in relative growth rate, as measured by packed cell volume, but differed drastically in internal carbohydrate concentration. Mannitol-grown cells contained high concentrations of mannitol and extremely low concentrations of sucrose, fructose, glucose, and mannose. Sucrose-grown cells had high concentrations of sucrose early in the growth cycle and contained a substantial hexose pool. Mannose-grown cells had a high mannose concentration early in the cycle, which decreased during the growth cycle, whereas their internal sucrose concentrations remained relatively constant during the entire growth cycle. Celery suspension cultures on all three carbon substrates contained an NAD-dependent MDH. Throughout the growth cycle, MDH activity was 2- to 4-fold higher in mannitol-grown cells compared with sucrose- or mannose-grown cells, which did not contain detectable levels of mannitol, indicating that MDH functions pre-dominantly in an oxidative capacity in situ. The MDH activity observed in celery cells was 3-fold higher than the minimum amount required to account for the observed rate of mannitol utilization from the media. Cultures transferred from mannitol to mannose underwent a decrease in MDH activity over a period of days, and transfer from mannose to mannitol resulted in an increase in MDH activity. These data provide strong evidence that MDH plays an important role in mannitol utilization in celery suspension cultures.

  11. Transient Studies of a Sodium Sulfur Cell

    Science.gov (United States)

    Caprio, Sarah

    Modern grids will include input from fossil-fueled power generation facilities as well as renewable energy sources, and these are expected to work together actively. One major problem with this integrated power production is that most renewable energy sources are intermittent and variable, and thus introduce a very challenging situation with regard to grid stability and reliability. Also, fossil-fueled power generation facilities have load cycles based on expected usage. A non-reliable power source cannot feasibly be used to supply the grid with proper amounts of energy needed in peak times. A solution to this dilemma is power storage. The sodium-sulfur battery has high potential for electrical storage at the grid level due to its high energy density, low cost of the reactants, and high open-circuit voltage. However, the use of sodium-sulfur batteries at the grid level requires high current density operation that can cause cell deterioration, leading to lower sulfur utilization and lower energy efficiency. In addition, it can result in undesired thermal runaway leading to potentially hazardous situations. A rigorous, dynamic model of a sodium-sulfur battery can be used to study these phenomena, design the battery for optimal transient performance, and develop mitigation strategies. Most literature on sodium-sulfur batteries is concerned the dynamics of the sulfur electrode (a sodium-polysulfide melt). There is limited data in the open literature for dynamics of an entire cell. With this motivation, a first-principles dynamic model of a sodium-sulfur cell (with beta"-alumina electrolyte) has been developed. The state of discharge (SOD) of a sodium-sulfur cell significantly affects the heat generation rate, rates of electrochemical reactions, and internal resistance. To capture these phenomena correctly, a fully coupled thermal-electrochemical model has been developed. The thermal model considers heat generation due to Ohmic loss, Peltier heat, and heat due to the

  12. A Foldable Lithium-Sulfur Battery.

    Science.gov (United States)

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.

  13. Efficiency of different forest types in carbon storage depends on their internal structure

    Directory of Open Access Journals (Sweden)

    Iuliana F. Gheorghe

    2011-01-01

    Full Text Available Forest vegetation is a key factor in the maintenance of global carbon cycle balance under the present climate change conditions. Forest ecosystems are both buffers against extreme climatic events accompanying climate change and carbon sinks diminishing the environmental impact of anthropogenic greenhouse gas emissions. We investigated the influence of stand structure and site characteristics on the productivity and carbon storage capacity of temperate forest types. Predictors of species productivity were parameters such as stand density, age, height, average diameter and wood density. Morus alba (L. was more productive than average both in terms of annual volume increment and annual biomass gain, while Quercus sessiliflora (Matt. Lieb. and Quercus frainetto (Ten. were significantly less productive than average. Differences in stand productivity were explained by stand density, age, height, altitude, type of regeneration and species composition. Statistically significant differences were measured between the productivity of stands dominated by different woody species, with low productive stands dominated by slow growing species with high wood density like Quercus or Fagus, and highly productive stands rich in fast growing species with low wood density like Populus or Salix. Stands with different plant communities in the underlying herbaceous layer also tended to have different levels of productivity.

  14. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties.

    Science.gov (United States)

    Caoduro, Cécile; Hervouet, Eric; Girard-Thernier, Corine; Gharbi, Tijani; Boulahdour, Hatem; Delage-Mourroux, Régis; Pudlo, Marc

    2017-02-01

    Carbon nanotubes represent promising transporters for delivery of DNA and other biomolecules into living cells. Various methods of CNTs surface functionalization have been developed. These are essential to improve CNTs dispersibility and permit their interactions with biological structures that broaden their use in advanced biomedical applications. The present review discusses the different single walled carbon nanotubes and multiwalled carbon nanotubes functionalization methods, leading to the formation of optimized and functionalized-CNT complexes with DNA. F-CNTs are recognized as efficient and promising gene carriers. Emphasis is then placed on the processes used by f-CNTs/DNA complexes to cross cell membranes. Energy independent pathways and uptake mechanisms dependent on energy, such as endocytosis or phagocytosis, are reported by many studies, and if these mechanisms seem contradictory at first sight, a detailed review of the literature illustrates that they are rather complementary. Preferential use of one or the other depends on the DNA and CNTs chemical nature and physical parameters, experimental procedures and cell types. Efficient non-viral gene delivery is desirable, yet challenging. CNTs appear as a promising solution to penetrate into cells and successfully deliver DNA. Moreover, the field of use of CNTs as gene carrier is large and is currently growing. This critical review summarizes the development and evaluation of CNTs as intracellular gene delivery system and provides an overview of functionalized CNTs/DNA cellular uptake mechanisms, depending on several parameters of CNTs/DNA complexes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Panorama 2018 - Reducing sulfur emissions in shipping: an economic and technological challenge

    International Nuclear Information System (INIS)

    Dumas, Cecile; Marion, Pierre; Saint Antonin, Valerie; Weiss, Wilfried

    2018-01-01

    Sulfur oxides emissions from maritime traffic are constantly rising, unlike those generated by all land-based sources, which are subject to numerous regulations on both fuels and emission caps on equipment that uses them. Accordingly, the International Maritime Organization (IMO) adopted a resolution to reduce the sulfur content of marine fuels, but its implementation, set for 2020, could prove complicated. (authors)

  16. Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case

    International Nuclear Information System (INIS)

    Mongelli, I.; Tassielli, G.; Notarnicola, B.

    2006-01-01

    In the Kyoto Protocol the absence of Green House Gases (GHGs) commitments of developing countries (non-Annex I) and the more flexible terms of implementation which are allowed to countries shifting toward a market economy (transition economies) naturally lead to the absence or to less constraining national measures and policies of reduction of the GHGs emissions which, in turn, may determine a comparative advantage in the production of the highest energy/carbon intensive commodities for these countries. These arguments are valid also considering the future implementation of the European Emission Allowance Trading Scheme (EATS). Thus, developing countries may become a haven for the production of not environmental-friendly commodities; in this case, the so-called Pollution Haven Hypothesis, stating that due to freer international trade the comparative advantage may change the economic structure and consequently the trade patterns of the countries linked by trade relationships, could occur. This would lead to the increase of the transfers of energy and carbon embodied in traded commodities from developing countries and transition economies toward Kyoto or EATS constrained countries. The aim of this paper is to verify if for Italy, as a Kyoto and EATS complying country, evidence of a change in the trade patterns, occurred on the basis of the Pollution Haven Hypothesis, does exist and to estimate the magnitude of the under-estimation of the carbon actually emitted: the carbon leakage. The Input-Output model has been used to calculate the intensities of energy consumption and the related Green House Gases emission, for each Italian economic sector

  17. Numerical investigations of internal stresses on carbon steel based on ultrasonic LCR waves

    Science.gov (United States)

    Ramasamy, R.; Ibrahim, Z.; Chai, H. K.

    2017-10-01

    Internal stresses or residual stresses in the structural elements are very crucial in carrying out in-service evaluations and fitness-for-purpose assessments. The generation of these internal stresses can occur as result of the fabrication of the steel members, installation sequence or other ad-hoc events such as accidents or impact. The accurate prediction of the internal stresses will contribute towards estimating the integrity state of the structural elements, with respect to their material allowable stresses. This paper investigates the explicit FE based numerical modelling of the ultrasonic based non-destructive technique, utilising the measurable longitudinal critical refracted wave (LCR) and relating these to the internal stresses within the structural elements by the evaluation of the material dependent acoustoelastic factors. The subsurface travel path of the LCR wave inside the structural elements makes it a sub-surface stress measurement technique and the linearised relationship with corresponding internal stresses can be systematically applied repeatedly. The numerical results are compared against laboratory tests data to correlate the findings and to establish modelling feasibility for future proof-of-concepts. It can be concluded from this numerical investigation, that the subsurface ultrasonic LCR wave has great potential to be implemented for in-situ structural residual stress measurements, as compared to other available surface measurements such as strain gauges or x-ray diffraction.

  18. Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them

    International Nuclear Information System (INIS)

    Cooper, H.B.H.

    1984-01-01

    A cyclic process for removing lower valence nitrogen oxides from gaseous mixtures includes treating the mixtures with an aqueous media including alkali metal carbonate and alkali metal bicarbonate and a preoxygen oxidant to form higher valence nitrogen oxides and to capture these oxides as alkali metal salts, expecially nitrites and nitrates, in a carbonate/bicarbonate-containing product aqueous media. Highly selective recovery of nitrates in high purity and yield may then follow, as by crystallization, with the carbonate and bicarbonate alkali metal salts strongly increasing the selectivity and yield of nitrates. The product nitrites are converted to nitrates by oxidation after lowering the product aqueous media pH to below about 9. A cyclic process for removing sulfur oxides from gas mixtures includes treating these mixtures includes treating these mixtures with aqueous media including alkali metal carbonate and alkali metal bicarbonate where the ratio of alkali metal to sulfur dioxide is not less than 2. The sulfur values may be recovered from the resulting carbonate/bicarbonate/-sulfite containing product aqueous media as alkali metal sulfate or sulfite salts which are removed by crystallization from the carbonate-containing product aqueous media. As with the nitrates, the carbonate/bicarbonate system strongly increases yield of sulfate or sulfite during crystallization. Where the gas mixtures include both sulfur dioxide and lower valence nitrogen oxides, the processes for removing lower valence nitrogen oxides and sulfur dioxide may be combined into a single removal/recovery system, or may be effected in sequence

  19. Fossilization of melanosomes via sulfurization.

    Science.gov (United States)

    McNamara, Maria E; van Dongen, Bart E; Lockyer, Nick P; Bull, Ian D; Orr, Patrick J

    2016-05-01

    Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur-bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur-rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py-GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF-SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non-sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur-rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.

  20. International trade and carbon emissions: The role of Chinese institutional and policy reforms.

    Science.gov (United States)

    Andersson, Fredrik N G

    2018-01-01

    The carbon dioxide embodied in Chinese exports to developed countries increased rapidly from 1995 to 2008. We test the extent to which institutional reforms in China can explain this increase. We focus on five areas of reforms: trade liberalization, environmental institutions, legal and property rights, institutional risk and exchange rate policy. Our results show that trade liberalization, weak environmental institutions, exchange rate policy, and legal and property rights affect emissions. Our results also indicate that the lack of reform in the utilities sector is an important factor in the rapid increase in embodied emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface.We ...... Beggiatoa accumulate high nitrate concentrations in internal vacuoles as an alternative electron acceptor to oxygen....

  2. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  3. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  4. An international multi-laboratory investigation of carbon-based hydrogen sorbent materials

    Science.gov (United States)

    Hurst, Katherine E.; Parilla, Philip A.; O'Neill, Kevin J.; Gennett, Thomas

    2016-01-01

    New materials are needed to achieve the hydrogen storage targets set out by the US Department of Energy for fuel cell vehicular applications. In order to enable the pathway toward this discovery, precise and accurate characterization of the hydrogen storage performance of these materials is needed. Determining the precise and accurate hydrogen storage capacity of materials requires rigorous attention to detailed experimental parameters and methodology. Slight errors in even small experimental details can result in a large deviation in the determination of the material's true characteristics. Here, we compare measurements of the gravimetric excess hydrogen uptake capacities for two different carbon sorbent materials measured by different laboratories at ambient and liquid N2 temperatures. The participants for this study consist of research laboratories led by experienced scientists in the hydrogen storage field. This collaborative evaluation of standard sorbents illustrated considerable reproducibility over a broad range of materials' hydrogen sorption gravimetric capacities.

  5. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2013-01-01

    reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly......Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent...

  6. Vulcanization Kinetics of Natural Rubber Based On Free Sulfur Determination

    Directory of Open Access Journals (Sweden)

    Abu Hasan

    2013-05-01

    Full Text Available The determination of free sulfur in the rubber vulcanizates provided significant representation of vulcanization reaction. In this research, the effects of vulcanization temperature, the mixing method of carbon black into rubber, the ingredients mixing sequence and the type of carbon black were studied on masticated and milled natural rubber in which the reaction was observed by un-reacted sulfur determination. The results showed that higher vulcanization temperature provided faster vulcanization reaction and greater reaction rate constant. Similarly, the mixing sequence of ingredient and carbon black into rubber influenced the rate of vulcanization reaction. The subsequent ingredients mixing sequence, in this case, resulted in higher vulcanization rate compared to that of the simultaneous one. However, the mixing method of carbon black into rubber brought small effect on the rate of vulcanization reaction. The type of carbon black applied was observed to influence the reaction rate of vulcanization. Smaller particle sizes of carbon black gave larger reaction rate constant. In this case, the type of carbon black N 330 gave faster vulcanization rate than that of N 660.

  7. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    Heiderscheit, J.

    1992-01-01

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO 2 ) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  8. TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Wang, Hongqiang; Li, Sha; Li, Dan; Chen, Zhixin; Liu, Hua Kun; Guo, Zaiping

    2014-01-01

    A three-dimensional (3D) hierarchically ordered mesoporous carbon–sulfur composite slice coated with a thin TiO 2 layer has been synthesized by a low-cost process and investigated as a cathode for the lithium–sulfur batteries. The TiO 2 coated carbon sulfur composite thin slice works as a binder-free cathode without any current collectors for lithium–sulfur batteries. The hierarchical architecture provides a 3D conductive network for electron transfer, open channels for ion diffusion and strong confinement of soluble polysulfides. Meanwhile, TiO 2 (titanium dioxide) coating layer could further effectively prevent the dissolution of polysulfides and also improve the strength of the entire electrode, thereby enhancing the electrochemical performance. As a result, after TiO 2 coating, the electrode demonstrates excellent cycling performance, with a discharge capacity of 608 mAh/g at 0.2 C current rate and 500 mAh/g at 1 C current rate after 120 cycles, respectively. - Highlights: • 3D hierarchically porous carbon–sulfur composite thin slices were mass produced. • The TiO 2 coated as-prepared thin slice works as a binder-free cathode. • TiO 2 coating layer enhances the cycling stability and rate performance

  9. Non-linear model reduction and control of molten carbonate fuel cell systems with internal reforming

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Min

    2007-10-12

    Currently, the process design of fuel cells and the development of control strategies is mainly based on heuristic methods. Fuel cell models are often too complex for control purposes, or they are developed for a specific type of fuel cell and valid only in a small range of operation conditions. The application of fuel cell models to controller design is still limited. Furthermore, suitable and simple-to-implement design strategies for fuel cell control remain an open area. There is thus a motivation for simplifying dynamic models for process control applications and for designing suitable control strategies for fuel cells. This is the main objective of this work. As an application example, the 250 kW industrial molten carbonate fuel cell (MCFC) system HotModule by MTU CFC Solutions, Germany is considered. A detailed dynamic two-dimensional spatially distributed cross-flow model of a MCFC from literature is taken as a starting point for the investigation. In Chapter 2, two simplified model versions are derived by incorporating additional physical assumptions. One of the simplified models is extended to a three-dimensional stack model to deal with physical and chemical phenomena in the stack. Simulations of the stack model are performed in Chapter 3 in order to calculate the mass and temperature distributions in the direction perpendicular to the electrode area. The other simplified model forms the basis for a low order reduced model that is derived in Chapter 4. The reduced-order model is constructed by application of the Karhunen-Loeve Galerkin method. The spatial temperature, concentration and potential profiles are approximated by a set of orthogonal time independent spatial basis functions. Problem specific basis functions are generated numerically from simulation data of the detailed reference model. The advantage of this approach is that a small number of basis functions suffices in order to approximate the solution of the detailed model very well. The

  10. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    Science.gov (United States)

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  11. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium

  12. Effect of cathode component on the energy density of lithium-sulfur battery

    International Nuclear Information System (INIS)

    Choi, Yun Seok; Kim, Seok; Choi, Soo Seok; Han, Ji Sung; Kim, Jan Dee; Jeon, Sang Eun; Jung, Bok Hwan

    2004-01-01

    The effect of the carbon black types and the sulfur particle size on the discharge capacity or the utilization of sulfur was investigated for the cathode having high loading of sulfur. The DBP (dibutyl phthalate) absorption number of the used carbon black has a strong effect on the utilization while the specific surface area is not so critical to it. It was also found that the sulfur particle size is a factor having an effect on the utilization. We have improved the cathode component and achieved the utilization of about 50%. By using that cathode, the volumetric energy density of about 330 Wh/l was obtained for the full size Li-S battery (3.8 mm thickness, 35 mm width and 62 mm height)

  13. Isotope evidence for the microbially mediated formation of elemental sulfur: A case study from Lake Peten Itza, Guatemala

    Science.gov (United States)

    Turchyn, A. V.; Bennett, V. A.; Hodell, D. A.

    2013-12-01

    Elemental, or native, sulfur nodules or veins can be formed during aqueous diagenesis and have been found in a range of natural environments, including lake sediments. What governs the formation of elemental sulfur remains enigmatic, although it is widely thought to be microbially-mediated. While most of the literature suggests elemental sulfur is formed by partial re-oxidation of hydrogen sulphide, elemental sulfur can also form during incomplete bacterial sulfate reduction or during aborted sulfur disproportionation. Lake Peten Itza, in Northern Guatemala, which was cored during the International Continental Drilling program in 2006, is one of the few places where elemental sulfur nodules are forming during microbial diagenesis today. Sulfur isotopes are strongly partitioned during bacterial sulfate reduction and the magnitude of the partitioning yields insight into the microbial reactions and environmental conditions. For example, sulfate reduction that terminates at elemental sulfur likely requires the use of the intracellular trithonite pathway, which may drive larger overall sulfur isotope fractionation between the precursor sulfate and the elemental sulfur product. Sulfur isotopes combined with oxygen isotopes in the precursor sulfate may provide even more information about microbial mechanisms. We present coupled pore fluid sulfate concentrations and sulfur and oxygen isotope measurements, as well as co-existing nodule sulfur isotopes from the Lake Peten Itza sediments. The δ34S of the nodules in the lake sediments ranges from +12 to -13‰, often within a single nodule. This suggests formation from an open system where sulfate is replenished by diffusion, as might be expected during pore fluid diagenesis. The δ34S of the pore fluid sulfate at the depth of nodule formation is between 50 and 60‰ (versus the precursor gypsum which is 17 to 18‰) suggesting a large sulfur isotope fractionation between sulfate and elemental sulfur (38 to 73‰). Pyrite was

  14. International

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)

  15. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  16. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  17. Internalizing carbon costs in electricity markets: Using certificates in a load-based emissions trading scheme

    International Nuclear Information System (INIS)

    Gillenwater, Michael; Breidenich, Clare

    2009-01-01

    Several western states have considered developing a regulatory approach to reduce greenhouse gas (GHG) emissions from the electric power industry, referred to as a load-based (LB) cap-and-trade scheme. A LB approach differs from the traditional source-based (SB) cap-and-trade approach in that the emission reduction obligation is placed upon Load Serving Entities (LSEs), rather than electric generators. The LB approach can potentially reduce the problem of emissions leakage, relative to a SB system. For any of these proposed LB schemes to be effective, they must be compatible with modern, and increasingly competitive, wholesale electricity markets. LSE's are unlikely to know the emissions associated with their power purchases. Therefore, a key challenge for a LB scheme is how to assign emissions to each LSE. This paper discusses the problems with one model for assigning emissions under a LB scheme and proposes an alternative, using unbundled Generation Emission Attribute Certificates. By providing a mechanism to internalize an emissions price signal at the generator dispatch level, the tradable certificate model addresses both these problems and provides incentives identical to a SB scheme

  18. Degradation of sulfur dioxide using plasma technology

    International Nuclear Information System (INIS)

    Estrada M, N.; Garcia E, R.; Pacheco P, M.; Valdivia B, R.; Pacheco S, J.

    2013-01-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO 2 ) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  19. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    Science.gov (United States)

    Klatt, Judith M.; Polerecky, Lubos

    2015-01-01

    Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches. PMID:26052315

  20. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    Directory of Open Access Journals (Sweden)

    Judith M Klatt

    2015-05-01

    Full Text Available Chemolithoautotrophic sulfur oxidizing bacteria (SOB couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate versus elemental sulfur. Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-elemental-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches.

  1. Biogeochemical conversion of sulfur species in saline lakes of Steppe Altai

    Science.gov (United States)

    Borzenko, Svetlana V.; Kolpakova, Marina N.; Shvartsev, Stepan L.; Isupov, Vitaly P.

    2017-08-01

    The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods (atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013-2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate- and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S2- prevail in the bottom sediments; its derivative—elemental S0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S2-, and in chloride lakes is thiosulfate sulfur S2O3 2- . The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.

  2. Diagenetic sulfurization of reactive compounds in late Paleozoic sediments

    Science.gov (United States)

    Westphal, E. A.; Strauss, H.

    2003-04-01

    New sulfur isotope data for pairs of organic (OBS: organically bound sulfur from kerogen) and inorganic sulfur (CRS: chromium reducible sulfur, mostly pyrite) compounds of late Palaeozoic sediments (n=145) facilitate an improved insight into diagenetic reactions between bacterially formed hydrogen sulfide and reactive phases in the sediment (i.e. iron and organic matter). Most informative is a very strong correlation between the sulfur isotopic compositions of CRS and OBS (r=0.95), that indicates their mutual origin via bacterial sulfate reduction. Isotopic differences between OBS and CRS (begin{math}Δ34S = begin{math}δ34Sbegin{math}OBS - δ34Sbegin{math}CRS) range between -11 and +21 per mil. The abundance of more negative begin{math}δ34Sbegin{math}OBS values compared to begin{math}δ34Sbegin{math}CRS is relatively high (20% in our dataset). 30% of all samples show similar isotopic compositions. The remaining half displays the expected positive isotopic difference. Iron availability appears to be the key factor for preferential reaction with hydrogen sulfide an expected feature. Although a surprisingly high number of samples (20%) with sulfur isotope values of OBS more negative than CRS, we cannot necessarily state a higher reactivity of organic compounds towards hydrogen sulfide in comparison to iron. Instead we suggest a more likely reaction of organic compounds with hydrogen sulfide derived from further disproportionation reactions. This implies that highly reactive iron has already been exhausted during the earliest stages of diagenesis. Our data further suggest a causal relation between high TOCbegin{math}BSR (i.e. organic carbon used for bacterial sulfate reduction) values and high apparent isotope fractionation between sulfate and sulfide. This indicates a very efficient and fast turnover of metabolizable organic matter during early diagenesis.

  3. Sedimentary pyrite δ^(34)S differs from porewater sulfide in Santa Barbara Basin: proposed role of organic sulfur

    OpenAIRE

    Raven, Morgan Reed; Sessions, Alex L.; Fischer, Woodward W.; Adkins, Jess F.

    2016-01-01

    Santa Barbara Basin sediments host a complex network of abiotic and metabolic chemical reactions that knit together the carbon, sulfur, and iron cycles. From a 2.1-m sediment core collected in the center of the basin, we present high-resolution profiles of the concentrations and isotopic compositions of all the major species in this system: sulfate, sulfide (∑H_2S), elemental sulfur (S^0), pyrite, extractable organic sulfur (OS), proto-kerogen S, total organic and dissolved inorganic carbon, ...

  4. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    Science.gov (United States)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-01

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam-laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam-particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.

  5. Relationship Between Carbon Dioxide Levels and Reported Congestion and Headaches on the International Space Station

    Science.gov (United States)

    Cole, Robert; Wear, Mary; Young, Millennia; Cobel, Christopher; Mason, Sara

    2017-01-01

    Congestion is commonly reported during spaceflight, and most crewmembers have reported using medications for congestion during International Space Station (ISS) missions. Although congestion has been attributed to fluid shifts during spaceflight, fluid status reaches equilibrium during the first week after launch while congestion continues to be reported throughout long duration missions. Congestion complaints have anecdotally been reported in relation to ISS CO2 levels; this evaluation was undertaken to determine whether or not an association exists. METHODS: Reported headaches, congestion symptoms, and CO2 levels were obtained for ISS expeditions 2-31, and time-weighted means and single-point maxima were determined for 24-hour (24hr) and 7-day (7d) periods prior to each weekly private medical conference. Multiple imputation addressed missing data, and logistic regression modeled the relationship between probability of reported event of congestion or headache and CO2 levels, adjusted for possible confounding covariates. The first seven days of spaceflight were not included to control for fluid shifts. Data were evaluated to determine the concentration of CO2 required to maintain the risk of congestion below 1% to allow for direct comparison with a previously published evaluation of CO2 concentrations and headache. RESULTS: This study confirmed a previously identified significant association between CO2 and headache and also found a significant association between CO2 and congestion. For each 1-mm Hg increase in CO2, the odds of a crew member reporting congestion doubled. The average 7-day CO2 would need to be maintained below 1.5 mmHg to keep the risk of congestion below 1%. The predicted probability curves of ISS headache and congestion curves appear parallel when plotted against ppCO2 levels with congestion occurring at approximately 1mmHg lower than a headache would be reported. DISCUSSION: While the cause of congestion is multifactorial, this study showed

  6. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    Science.gov (United States)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  7. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade.

    Science.gov (United States)

    Steen-Olsen, Kjartan; Weinzettel, Jan; Cranston, Gemma; Ercin, A Ertug; Hertwich, Edgar G

    2012-10-16

    A nation's consumption of goods and services causes various environmental pressures all over the world due to international trade. We use a multiregional input-output model to assess three kinds of environmental footprints for the member states of the European Union. Footprints are indicators that take the consumer responsibility approach to account for the total direct and indirect effects of a product or consumption activity. We quantify the total environmental pressures (greenhouse gas emissions: carbon footprint; appropriation of biologically productive land and water area: land footprint; and freshwater consumption: water footprint) caused by consumption in the EU. We find that the consumption activities by an average EU citizen in 2004 led to 13.3 tCO(2)e of induced greenhouse gas emissions, appropriation of 2.53 gha (hectares of land with global-average biological productivity), and consumption of 179 m(3) of blue water (ground and surface water). By comparison, the global averages were 5.7 tCO(2)e, 1.23 gha, and 163 m(3) blue water, respectively. Overall, the EU displaced all three types of environmental pressures to the rest of the world, through imports of products with embodied pressures. Looking at intra-EU displacements only, the UK was the most important displacer overall, while the largest net exporters of embodied environmental pressures were Poland (greenhouse gases), France (land), and Spain (freshwater).

  8. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  9. Alkali resistant Ni-loaded yolk-shell catalysts for direct internal reforming in molten carbonate fuel cells

    Science.gov (United States)

    Jang, Won-Jun; Hong, Young Jun; Kim, Hak-Min; Shim, Jae-Oh; Roh, Hyun-Seog; Kang, Yun Chan

    2017-06-01

    A facile and scalable spray pyrolysis process is applied to synthesize multi-shelled Ni-loaded yolk-shell catalysts on various supports (Al2O3, CeO2, ZrO2, and La(OH)3). The prepared catalysts are applied to direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC). Even on exposure to alkali hydroxide vapors, the Ni-loaded yolk-shell catalysts remain highly active for DIR-MCFCs. The Ni@Al2O3 microspheres show the highest conversion (92%) of CH4 and the best stability among the prepared Ni-loaded yolk-shell catalysts. Although the initial CH4 conversion of the Ni@ZrO2 microspheres is higher than that of the Ni@CeO2 microspheres, the Ni@CeO2 microspheres are more stable. The catalytic performance is strongly dependent on the surface area and acidity and also partly dependent on the reducibility. The acidic nature of Al2O3 combined with its high surface area and yolk-shell structure enhances the adsorption of CH4 and resistance against alkali poisoning, resulting in efficient DIR-MCFC reactions.

  10. Lunar Sulfur Capture System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  11. Advanced Lithium Sulfur Battery, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG proposes to develop an Advanced Lithium Sulfur Battery (LSB) based on combining a novel super ion conducting ceramic electrolyte, entrapped sulfur cathode, and a...

  12. Advanced Lithium Sulfur Battery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG proposes to develop an Advanced Lithium Sulfur Battery (LSB) based on combining a novel super ion conducting ceramic electrolyte, entrapped sulfur cathode, and a...

  13. Lunar Sulfur Capture System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  14. Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: Reevaluation of sulfur reactions during early diagenesis in marine environments

    Science.gov (United States)

    Zaback, Doreen A.; Pratt, Lisa M.

    1992-02-01

    The timing and pathways of early diagenetic sulfur transfer from dissolved species in pore waters to solid inorganic and organic compounds in sediments have been studied in the Miocene Monterey Formation, Santa Maria Basin (onshore), California. Correlation between concentrations of total organic carbon (TOC) and total sulfur (TS), in addition to concentrations of titanium, aluminum, total iron, and reactive iron, have been used to infer organic matter reactivity, redox conditions, and relative rates of clastic and biogenic input for each lithofacies. Isotopic compositions of six sulfur species (acid-volatile, disulfide, kerogen, bitumen, sulfate and elemental) have provided information regarding relative timing of sulfur incorporation, sulfate diffusivity in the upper centimeters of the sediments, and the sources of sulfur for individual species. Isotopically, the disulfide species expresses the greatest fractionation relative to estimated values of Miocene seawater sulfate (~ +22‰ CDT). On average, disulfide is depleted in 34S by 10.4%. relative to kerogen and by 9.9‰ relative to acid-volatile sulfide. The δ 34S of bitumen shows no systematic change relative to δ 34S keregon, suggesting the presence of migrated bitumen. Isotopic similarity of sulfate and elemental sulfur to sulfides and bitumen indicates that sulfate and elemental sulfur are chemical and/or biological oxidation products derived from sulfides and bitumen. Consistent ordering of isotopic values for sulfur species (disulfide kerogen) indicates that pyrite precipitated nearest to the sediment-water interface under mildly reducing conditions and with little or no decrease in sulfate concentration relative to seawater. Enrichment of 34S in acid-volatile sulfide and kerogen sulfur resulted from formation of these species at greater depths or in restricted micro-environments under more reducing conditions and with low concentrations of porewater sulfate. The formation of acid-volatile sulfide after

  15. Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland).

    Science.gov (United States)

    Likus-Cieślik, Justyna; Pietrzykowski, Marcin; Szostak, Marta; Szulczewski, Melanie

    2017-02-01

    This work aims to assess the spatial distribution and concentration of sulfur in the topsoil layer and to determine the relationships between sulfur concentration, soil pH, soil electrical conductivity, and plant cover at the reforested site of the former sulfur mine (Southern Poland). Soil samples were collected from 0 to 20 cm (topsoil) from a total of 86 sampling points in a regular square grid with sides of 150 m. Plant cover was assayed in circular plots with an area of 100 m 2 , divided into a woody plant layer and herbaceous plant layer. Soil properties such as particle size distribution, pH in KCl and H 2 O, soil electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (N T ), and total sulfur (S T ) were determined. The degree of soil contamination with sulfur was assessed based on the guidelines of the Institute of Soil Science and Plant Cultivation (IUNG), Poland. The results indicate that remediation and application of lime were not fully effective in spatial variation, because 33 points with sulfur contamination above 500 mg kg -1 were observed. These spots occurred irregularly in the topsoil horizons. This high sulfur concentration in the soil did not result in severe acidification (below 4.5) in all cases, most likely due to neutralization from the application of high doses of flotation lime. High vegetative cover occurred at some points with high soil sulfur concentrations, with two points having S concentration above 40,000 mg kg -1 and tree cover about 60%. Numerous points with high soil EC above 1500 μS cm -1 as well as limited vegetation and high soil sulfur concentrations, however, indicate that the reclamation to forest is still not completely successful.

  16. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    Science.gov (United States)

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  17. Behavior of sulfur during coal pyrolysis

    Science.gov (United States)

    Shao, D.; Hutchinson, E.J.; Heidbrink, J.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of sulfur in Illinois coals during pyrolysis was evaluated by thermogravimetry/ Fourier transform-infrared spectroscopy (TG/FT-IR) techniques. SO2, COS, and H2S were major gaseous sulfur-containing products observed during coal pyrolysis. The release rates of the gaseous sulfur species showed several peaks within the temperature ranges, which were due to the emission of different forms of sulfur in coal. ?? 1994.

  18. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries.

    Science.gov (United States)

    Chen, Jia-jia; Zhang, Qian; Shi, Yi-ning; Qin, Lin-lin; Cao, Yong; Zheng, Ming-sen; Dong, Quan-feng

    2012-04-28

    A hierarchical S/MWCNT nanomicrosphere for lithium/sulfur batteries with a high power and energy density as well as an excellent cycle life is introduced. Sulfur was uniformly coated on the surface of functional MWCNTs, which serves as a carbon matrix, to form a typical nanoscale core-shell structure with a sulfur layer of thickness 10-20 nm. Then the nanoscale sulfur intermediate composite was ball-milled to form interwoven and porous sphere architecture with large pores (around 1 μm to 5 μm). Different from most sulfur/carbon materials with micropore and mesopore structure, the micrometre scale S/MWCNT nanomicrosphere with a large pore structure could also exhibit high sulfur utilization and cycle retention. It could maintain a reversible capacity of 1000 mA h g(-1) after 100 cycles at 0.3 A g(-1) current density. And it even remained 780 mA h g(-1) after 200 cycles at 0.5 A g(-1) and 650 mA h g(-1) after 200 cycles at 1 A g(-1), showing a significant cyclability enhancement. It is believed that under the collective effect of hierarchical architecture, as well as the existence of carboxyl functional groups, sulfur/carbon materials with large pores could also exhibit an excellent electrochemical performance. The synthesis process introduced here is simple and broadly applicable, which would not only be beneficial to design new materials for lithium sulfur batteries but can also be extended to many different electrode materials for lithium ion batteries. This journal is © the Owner Societies 2012

  19. Reflections on the international climate change negotiations: A synthesis of a working group on carbon emission policy and regulation in Brazil

    International Nuclear Information System (INIS)

    Lucon, Oswaldo; Romeiro, Viviane; Pacca, Sergio

    2013-01-01

    This short communication presents a synthesis of a Working Group on Carbon Emission Policy and Regulation held at the University of Sao Paulo, in Brazil. The document looked at the problems with the international negotiations, the options for Brazil as it attempts to control emissions, and ways to leverage the mitigation process. Several options are currently being proposed, but these are neither clear in order to support a solid polycentric approach with adequate metrics, nor a robust international coordination and a sound scientific communication. Brazil has a central role in this process, for having successful initiatives on renewable energy and deforestation control. Its leadership can demonstrate how such policies might take shape. However, the country´s future is uncertain in terms of low carbon development. Although the country is still well positioned among BRICS to find practical solutions to the stalemate in international cooperation, several internal challenges need to be harmonized. - Highlights: • The work presents results of a recent climate change mitigation policies workshop. • It assesses Brazil's potential role in shaping future policies and negotiations. • Policies are evaluated based on domestic and international effects. • Suggests how Brazil's national effort could leverage the international processes

  20. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar

  1. Genetic engineering of sulfur-degrading Sulfolobus

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N.W.Y.

    1991-01-01

    The objectives of the proposed research is to first establish a plasmid-mediated genetic transformation system for the sulfur degrading Sulfolobus, and then to clone and overexpress the genes encoding the organic-sulfur-degrading enzymes from Sulfolobus- as well as from other microorganisms, to develop a Sulfolobus-based microbial process for the removal of both organic and inorganic sulfur from coal.

  2. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  3. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is generally...

  4. Air Quality Criteria for Sulfur Oxides.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  5. Eagle-Picher Industries Sodium Sulfur Program

    Science.gov (United States)

    Silvey, Ronald L.

    1993-02-01

    Viewgraphs of the sodium sulfur program are presented. Sodium sulfur low earth orbit (LEO) cells are described. Topics covered include cell sizes, areas of improvement, and NaS cell testing. Sodium sulfur cell and battery designs continue to evolve with significant improvement demonstrated in resistance, rechargeability, cycle life, energy density, and electrolyte characterization.

  6. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-27

    This report compared the composition of samples from Wesseling and Leuna. In each case the sample was a residue from carbonization of the residues from hydrogenation of the brown coal processed at the plant. The composition was given in terms of volatile components, fixed carbon, ash, water, carbon, hydrogen, oxygen, nitrogen, volatile sulfur, and total sulfur. The result of carbonization was given in terms of (ash and) coke, tar, water, gas and losses, and bitumen. The composition of the ash was given in terms of silicon dioxide, ferric oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium and sodium oxides, sulfur trioxide, phosphorus pentoxide, chlorine, and titanium oxide. The most important difference between the properties of the two samples was that the residue from Wesseling only contained 4% oil, whereas that from Leuna had about 26% oil. Taking into account the total amount of residue processed yearly, the report noted that better carbonization at Leuna could save 20,000 metric tons/year of oil. Some other comparisons of data included about 33% volatiles at Leuna vs. about 22% at Wesseling, about 5 1/2% sulfur at Leuna vs. about 6 1/2% at Leuna, but about 57% ash for both. Composition of the ash differed quite a bit between the two. 1 table.

  7. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  8. Determination of total sulfur content via sulfur-specific chemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Kubala, S.W.; Campbell, D.N. [Fluid Data, Inc., Angleton, TX (United States); DiSanzo, F.P. [Paulsboro Research Lab., NJ (United States)

    1995-12-31

    A specially designed system, based upon sulfur-specific chemiluminescence detection (SSCD), was developed to permit the determination of total sulfur content in a variety of samples. This type of detection system possesses several advantages such as excellent linearity and selectivity, low minimum detectable levels, and an equimolar response to various sulfur compounds. This paper will focus on the design and application of a sulfur-specific chemiluminescence detection system for use in determining total sulfur content in gasoline.

  9. A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium/sulfur batteries

    Science.gov (United States)

    Li, Hongfei; Yang, Xiaowei; Wang, Xiaomin; He, Yu-Shi; Ye, Fangmin; Liu, Meinan; Zhang, Yuegang

    2016-01-01

    In lithium/sulfur batteries, micropores could bring about strong interactions with polysulfides, but could not alleviate the partial polysulfide overflowing outside because of the volume expansion of the lithiated sulfur. A dual-spatially-confined reservoir for sulfur by wrapping microporous carbon with dense graphene, micro@meso-porous DSC (dual-spatial carbon), is synthesized to solve this issue. Such a structure is prepared through two distinctive methods: graphene promoted in situ hydrothermal carbonization of organics to grow micropores on itself, and liquid mediated drying of graphene hydrogel to form mesoporous graphene frameworks. In contrast to previously reported hierarchical carbon/S, the inner micropores are mainly responsible for loading sulfur, which could help confine its particle size, thus increasing the electrical/ionic conductivity and the utilization of sulfur, and restrain lithium polysulfide dissolution because of strong interaction with pore walls; while the outer mesopores act as another reservoir to stabilize the overflowed polysulfide and to enhance the Li+ transport. The S-micro@meso-porous DSC cathode exhibits better discharge capacity and cycling performance than S-microporous AC and S-micro@macro-porous DSC, i.e., 59% and 37% higher capacity remaining at 0.5 C than the latter two, respectively.In lithium/sulfur batteries, micropores could bring about strong interactions with polysulfides, but could not alleviate the partial polysulfide overflowing outside because of the volume expansion of the lithiated sulfur. A dual-spatially-confined reservoir for sulfur by wrapping microporous carbon with dense graphene, micro@meso-porous DSC (dual-spatial carbon), is synthesized to solve this issue. Such a structure is prepared through two distinctive methods: graphene promoted in situ hydrothermal carbonization of organics to grow micropores on itself, and liquid mediated drying of graphene hydrogel to form mesoporous graphene frameworks. In

  10. Rhodanese functions as sulfur supplier for key enzymes in sulfur energy metabolism.

    Science.gov (United States)

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-06-08

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus.

  11. Delayed biological effects of incorporated sulfur-35 in combination with IOS-4876

    International Nuclear Information System (INIS)

    Rusanova, O.V.

    1990-01-01

    Comparative evaluation of some delayed effects of sulfur-35 single administration to mongree white rats males is carried out; modifying effect of IOS-4876 preparation on biological efficiency of incorporated sulfur-35 is also evaluated. Different radionuclide doses demonstrated identical tumor effect exceeding by 2.2-3 times the level of spontaneous tumors. Sulfur-35 incorporated in quantities of 185 and 925 kBq/g causes proved increase in rats death level during the first two years of observation. IOS-4876 preparation leads to certain decrease in the level of delayed biological effects due to internal irradiation. 11 refs

  12. In situ wrapping of the cathode material in lithium-sulfur batteries.

    Science.gov (United States)

    Hu, Chenji; Chen, Hongwei; Shen, Yanbin; Lu, Di; Zhao, Yanfei; Lu, An-Hui; Wu, Xiaodong; Lu, Wei; Chen, Liwei

    2017-09-07

    While lithium-sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium-sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g -1 .To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability.

  13. Reaction kinetics of waste sulfuric acid using H2O2catalytic oxidation.

    Science.gov (United States)

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H 2 O 2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H 2 O 2 , and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H 2 O 2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H 2 O 2 feeding rate of 50 g (kg waste acid) -1 per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H 2 O 2 was 88.57%. Waste sulfuric acid is a big environmental problem in China. The amount of waste sulfuric acid is huge every year. Many small and medium-sized businesses produced lots of waste acids, but they don't have an appropriate method to treat and recover them. H 2 O 2 catalytic oxidation has been used to treat and recover waste sulfuric acid and activated carbon is the catalyst here. Main parameters, such as temperature, feed rate of H 2 O 2 , and catalyst dosage, have been investigated. The reaction kinetics are discussed. This method can be economical and feasible for most small and medium-sized businesses.

  14. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  15. Determination of low-level (sub-microgram) sulfur concentrations by isotope dilution multi-collector inductively couple plasma mass spectrometry using a 33S spike and internal normalization for mass bias correction.

    Science.gov (United States)

    Mann, Jacqueline L; Vocke, Robert D; Kelly, W Robert

    2012-05-30

    The certification of sulfur (S) in Standard Reference Materials™ by the National Institute of Standards and Technology (NIST) has been exclusively performed using isotope dilution thermal ionization mass spectrometry (ID-TIMS). The ID-TIMS measurement method is limited in its capability for low concentration measurements (biofuels made from soy and nanomedicine, pose a challenge to the ID-TIMS technique because of their very low concentrations (gravimetric determination, deviating less than 0.35% and suggesting the technique can yield unbiased and accurate results. The blanks averaged 13 ± 0.0017 ng S (1s). The data results provide a clear indication that the ID-MC-ICP-MS method for the determination of low-level S concentrations is feasible. The more than one order of magnitude reduction of the blanks suggests that it is a better alternative to the ID-TIMS method for very low S materials such as are encountered in biofuels and some biochemical species. Published 2012. This article is a US Government work and is in the public domain in the USA. Published 2012. This article is a US Government work and is in the public domain in the USA.

  16. The effect of selective internal radiation therapy with yttrium-90 resin microspheres on lung carbon monoxide diffusion capacity.

    Science.gov (United States)

    Ones, Tunc; Eryuksel, Emel; Baltacioglu, Feyyaz; Ceyhan, Berrin; Erdil, Tanju Yusuf

    2017-12-29

    Selective internal radiation therapy (SIRT) with embolization of branches of the hepatic artery is a valuable therapeutic tool for patients with hepatic malignancies; however, it is also associated with lung injury risk due to shunting. Diffusion capacity of the lungs for carbon monoxide (DLCO) is a clinically significant lung function test, and worsening in DLCO is suggested to reflect a limited gas exchange reserve caused by the potential toxicity of chemoradiotherapy or it may be a marker of related lung injury. This study aimed to examine the changes in DLCO during SIRT with resin microspheres in newly treated and retreated patients. Forty consecutive patients who received SIRT for a variety of malignant conditions were included. All subjects were treated with Yttrium-90 labelled resin microspheres. DLCO tests were performed after the procedures. In addition, patients were specifically followed for radiation pneumonitis. The mean DLCO did not significantly change after the first (82.8 ± 19.4 vs. 83.1 ± 20.9, p = 0.921) and the second treatments (87.4 ± 19.7 vs. 88.6 ± 23.2, p = 0.256). Proportion of patients with impaired DLCO at baseline was not altered significantly after the first (37.5 vs. 45.0%, p = 0.581) and the second treatments (27.3 vs. 27.3%, p = 1.000). Also, percent change in DLCO values did not correlate with radiation dose, lung shunt fraction, or lung exposure dose (p > 0.05 for all comparisons). None of the patients developed radiation pneumonitis. Our results suggest that no significant change in DLCO in association with SIRT occurs, both after the first or the second treatment sessions. Further larger studies possibly with different protocols are warranted to better delineate DLCO changes after SIRT in a larger spectrum of patients.

  17. Long-Life Lithium-Sulfur Battery Derived from Nori-Based Nitrogen and Oxygen Dual-Doped 3D Hierarchical Biochar.

    Science.gov (United States)

    Wu, Xian; Fan, Lishuang; Wang, Maoxu; Cheng, Junhan; Wu, Hexian; Guan, Bin; Zhang, Naiqing; Sun, Kening

    2017-06-07

    Due to restrictions on the low conductivity of sulfur and soluble polysulfides during discharge, lithium sulfur batteries are unsuitable for further large scale applications. The current carbon based cathodes suffer from poor cycle stability and high cost. Recently, heteroatom doped carbons have been considered as a settlement to enhance the performance of lithium sulfur batteries. With this strategy, we report the low cost activated nori based N,O-doped 3D hierarchical carbon material (ANC) as a sulfur host. The N,O dual-doped ANC reveals an elevated electrochemical performance, which exhibits not only a good rate performance over 5 C, but also a high sulfur content of 81.2%. Further importantly, the ANC represents an excellent cycling stability, the cathode reserves a capacity of 618 mAh/g at 2 C after 1000 cycles, which shows a 0.022% capacity decay per cycle.

  18. Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine

    OpenAIRE

    Shunsen Wang; Kunlun Bai; Yonghui Xie; Juan Di; Shangfang Cheng

    2014-01-01

    A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE) by integrating the transcritical carbon dioxide (CO2) refrigeration cycle with the supercritical CO2 power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output (Wnet). The results indicate that replacin...

  19. The interaction of sulfuric acid with graphene and formation of adsorbed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Nicolas A [Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104 (United States); Alonso, Julio A [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, C/ Prado de la Magdalena s/n, E-47011 Valladolid (Spain)

    2007-12-05

    Density functional theory has been used to analyse the interaction between sulfuric acid and graphene. Four different coverages, ranging from a nearly isolated sulfuric acid molecule (one H{sub 2}SO{sub 4} molecule per 32 C atoms) to a bilayer (one H{sub 2}SO{sub 4} molecule per 4 C atoms) have been studied calculating geometries, binding energies, charge transfers and band structures. The results show that there is protonation of the graphene sheet by the acid, in accordance with experimental results for H{sub 2}SO{sub 4} adsorbed onto highly oriented pyrolytic graphite and for single-wall carbon nanotubes in concentrated sulfuric acid. Nevertheless the electronic structure of graphene is not heavily affected and its zero-band-gap semiconducting behaviour is preserved. As the coverage increases, the acid molecules rotate approaching their orientation in the pure crystal, showing that graphene can template the growth of a sulfuric acid crystal.

  20. Development of a tunable Fabry-Perot interferometer UV camera for monitoring sulfur dioxide emissions

    Science.gov (United States)

    Tamminen, J.; Kujanpää, J.; Ojanen, H.; Saari, H.; Näkki, I.; Tukiainen, S.; Kyrölä, E.

    2017-12-01

    We present a novel UV camera for sulfur dioxide emission monitoring.The camera is equipped with a piezo-actuated Fabry-Perot interferometer allowing thefilter transmission to be tuned to match the differential absorption features ofsulfur dioxide in the wavelength region 305-320 nm. The differential absorption structuresare exploited to reduce the interfering effects of weakly wavelength dependent absorbers, suchas aerosols and black carbon, present in the exhaust gas. A data processing algorithm basedon two air gaps of the filter is presented allowing collection of a sufficient signal-to-noise ratio fordetecting sulfur dioxide in the ship plumes even in the designated emission control areas, such as the Baltic Seawhere the sulfur content limit of fuel oil is 0.1 %. First field tests performed inLänsisatama harbour, Helsinki Finland, indicate that sulfur dioxide can be detectedin ship plumes. The camera is light-weight and can be mounted to a drone.

  1. Increased accumulation of sulfur in lake sediments of the high Arctic

    DEFF Research Database (Denmark)

    Drevnick, Paul E.; Muir, Derek C.G.; Lamborg, Carl H.

    2010-01-01

    stimulates dissimilatory sulfate reduction. The sulfide produced is stored in sediment (as acid volatile sulfide), converted to other forms of sulfur, or reoxidized to sulfate and lost to the water column. An acceleration of the sulfur cycle in Arctic lakes could have profound effects on important......We report a synchronous increase in accumulation of reduced inorganic sulfur since c. 1980 in sediment cores from eight of nine lakes studied in the Canadian Arctic and Svalbard (Norway). Sediment incubations and detailed analyses of sediment profiles from two of the lakes indicate that increases...... in sulfur accumulation may be due ultimately to a changing climate. Warming-induced lengthening of the ice-free season is resulting in well-documented increases in algal production and sedimentation of the resulting detrital matter. Algal detritus is a rich source of labile carbon, which in these sediments...

  2. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

    KAUST Repository

    Yang, Yuan

    2011-11-22

    Rechargeable lithium-sulfur (Li-S) batteries hold great potential for next-generation high-performance energy storage systems because of their high theoretical specific energy, low materials cost, and environmental safety. One of the major obstacles for its commercialization is the rapid capacity fading due to polysulfide dissolution and uncontrolled redeposition. Various porous carbon structures have been used to improve the performance of Li-S batteries, as polysulfides could be trapped inside the carbon matrix. However, polysulfides still diffuse out for a prolonged time if there is no effective capping layer surrounding the carbon/sulfur particles. Here we explore the application of conducting polymer to minimize the diffusion of polysulfides out of the mesoporous carbon matrix by coating poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) onto mesoporous carbon/sulfur particles. After surface coating, coulomb efficiency of the sulfur electrode was improved from 93% to 97%, and capacity decay was reduced from 40%/100 cycles to 15%/100 cycles. Moreover, the discharge capacity with the polymer coating was ∼10% higher than the bare counterpart, with an initial discharge capacity of 1140 mAh/g and a stable discharge capacity of >600 mAh/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries. © 2011 American Chemical Society.

  3. The Paris Agreement: a new international framework to facilitate the uptake of carbon pricing. Climate Brief No. 39

    International Nuclear Information System (INIS)

    Dahan, Lara; Vaidyula, Manasvini; Afriat, Marion; Alberola, Emilie

    2016-01-01

    Over the past few years, the implementation of domestic carbon pricing has been expanding at the national and sub-national level. This trend can be attributed to stakeholders and sectors at various levels recognising the benefits of carbon pricing and the ability of these policies to achieve cost-effective reductions. In contrast to the Kyoto Protocol, the Paris Agreement has adopted a hybrid approach calling on all Parties to determine their own contributions to mitigate climate change affording flexibility to countries in their choice of policy tools. This new format of action gives the responsibility to Parties and sub-governments to implement domestic carbon pricing policies without recommending a specific tool. Article 6 of the Paris Agreement promotes the use of voluntary cooperative approaches by introducing the prospect for Parties to use: ITMOs, SDM and non-market approaches. This provision could create a suitable framework to support the development of trans-national carbon pricing policies by recognising the value of mitigation actions which could directly or indirectly put a price on carbon. Overall expansion of domestic carbon pricing policies will depend on whether it can enable a cost-effective transition to a low-carbon economy with subsequent benefits and co-benefits. Additionally, it will depend on how the rules and modalities of the Paris Agreement, defined in the coming months and years, can be applied to the development of effective carbon pricing policies

  4. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2018-02-01

    Full Text Available The structure evolution characteristics of high-organic-sulfur (HOS coals with a wide range of ranks from typical Chinese areas were investigated using 13C-CP/MAS NMR. The results indicate that the structure parameters that are relevant to coal rank include CH3 carbon (fal*, quaternary carbon, CH/CH2 carbon + quaternary carbon (falH, aliphatic carbon (falC, protonated aromatic carbon (faH, protonated aromatic carbon + aromatic bridgehead carbon (faH+B, aromaticity (faCP, and aromatic carbon (farC. The coal structure changed dramatically in the first two coalification jumps, especially the first one. A large number of aromatic structures condensed, and aliphatic structures rapidly developed at the initial stage of bituminous coal accompanied by remarkable decarboxylation. Compared to ordinary coals, the structure evolution characteristics of HOS coals manifest in three ways: First, the aromatic CH3 carbon, alkylated aromatic carbon (faS, aromatic bridgehead carbon (faB, and phenolic ether (faP are barely relevant to rank, and abundant organic sulfur has an impact on the normal evolution process of coal. Second, the average aromatic cluster sizes of some super-high-organic-sulfur (SHOS coals are not large, and the extensive development of cross bonds and/or bridged bonds form closer connections among the aromatic fringes. Moreover, sulfur-containing functional groups are probably significant components in these linkages. Third, a considerable portion of “oxygen-containing functional groups” in SHOS coals determined by 13C-NMR are actually sulfur-containing groups, which results in the anomaly that the oxygen-containing structures increase with coal rank.

  5. Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles.

    Science.gov (United States)

    Tan, Piqiang; Li, Yuan; Shen, Hanyan

    2017-05-01

    This work investigates the effects of lubricant sulfur contents on the morphology, nanostructure, size distribution and elemental composition of diesel exhaust particle on a light-duty diesel engine. Three kinds of lubricant (LS-oil, MS-oil and HS-oil, all of which have different sulfur contents: 0.182%, 0.583% and 1.06%, respectively) were used in this study. The morphologies and nanostructures of exhaust particles were analyzed using high-resolution transmission electron microscopy (TEM). Size distributions of primary particles were determined through advanced image-processing software. Elemental compositions of exhaust particles were obtained through X-ray energy dispersive spectroscopy (EDS). Results show that as lubricant sulfur contents increase, the macroscopic structure of diesel exhaust particles turn from chain-like to a more complex agglomerate. The inner cores of the core-shell structure belonging to these primary particles change little; the shell thickness decreases, and the spacing of carbon layer gradually descends, and amorphous materials that attached onto outer carbon layer of primary particles increase. Size distributions of primary particles present a unimodal and normal distribution, and higher sulfur contents lead to larger size primary particles. The sulfur content in lubricants directly affects the chemical composition in the particles. The content of C (carbon) decreases as sulfur increases in the lubricants, while the contents of O (oxygen), S (sulfur) and trace elements (including S, Si (silicon), Fe (ferrum), P (phosphorus), Ca (calcium), Zn (zinc), Mg (magnesium), Cl (chlorine) and Ni (nickel)) all increase in particles. Copyright © 2017. Published by Elsevier B.V.

  6. A review of sweet taste potentiation brought about by divalent oxygen and sulfur incorporation.

    Science.gov (United States)

    Roy, G

    1992-01-01

    The plethora of high-potency sweetener research has allowed the construction of important structure-taste relationships. In light of new structure-taste relationships, it is instructive to review sweet taste potentiation brought about by divalent oxygen and sulfur incorporation. The taste of sulfur-containing organic compounds was reviewed in Japanese by Yasuo Ariyoshi in 1977. Several new representative examples of sweet taste potentiation and taste dichotomy (sweet and bitter) found within similar classes of oxygen- and sulfur-containing organic compound: amides, dipeptides, ureas, sulfamates, sulfonamides, oximes, sugars, dihydroisocoumarins, and others are reviewed. Special attention is given to the thioethers and thioureas in sulfamates, dipeptides, aryl ureas, and hybrid dipeptide ureas. The most notable contributions have arisen from the work of Nofre and Tinti at Université Claude Bernard in Lyons, France. A common trend emerges with certain sweeteners when a carbon atom is strategically replaced by sulfur or oxygen atoms. The net result is an increase in the sweetness two- to tenfold. With saccharins, the usual bitter, metallic taste is removed. Sweet taste receptor models that have been published are mainly based on the original Shallenberger and Acree model of the glucophores AH-B with contributions from Kier (AH-B-X). AH is a proton donor group, B is a proton acceptor group, and X is some hydrophobic group. All of the models have overlooked the contributions of divalent sulfur (often in place of oxygen) in bringing about sweetness potentiation. There is no precedence for localizing the energy-minimized structures of sulfur-containing sweeteners in a binding mode that includes sulfur. These sulfur potentiation loci are analyzed and illustrated in a computer-generated sweetener model to show the specific region in which sulfur is being "recognized" as a potentiating feature.

  7. Ab initio simulations of bond breaking in sulfur crosslinked isoprene oligomer units

    Science.gov (United States)

    Gehrke, Sascha; Alznauer, Hans Tobias; Karimi-Varzaneh, Hossein Ali; Becker, Jörg August

    2017-12-01

    Sulfur crosslinked polyisoprene (rubber) is used in important material components for a number of technical tasks (e.g., in tires and sealings). If mechanical stress, like tension or shear, is applied on these material components, the sulfur crosslinks suffer from homolytic bond breaking. In this work, we have simulated the bond breaking mechanism of sulfur crosslinks between polyisoprene chains using Car-Parrinello molecular dynamic simulations and investigated the maximum forces which can be resisted by the crosslinks. Small model systems with crosslinks formed by chains of N = 1 to N = 6 sulfur atoms have been simulated with the slow growth-technique, known from the literature. The maximum force can be thereby determined from the calculated energies as a function of strain (elongation). The stability of the crosslink under strain is quantified in terms of the maximum force that can be resisted by the system before the crosslink breaks. As shown by our simulations, this maximum force decreases with the sulfur crosslink length N in a step like manner. Our findings indicate that in bridges with N = 1, 2, and 3 sulfur atoms predominantly, carbon-sulfur bonds break, while in crosslinks with N > 3, the breaking of a sulfur-sulfur bond is the dominant failure mechanism. The results are explained within a simple chemical bond model, which describes how the delocalization of the electrons in the generated radicals can lower their electronic energy and decrease the activation barriers. It is described which of the double bonds in the isoprene units are involved in the mechanochemistry of crosslinked rubber.

  8. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs

    Directory of Open Access Journals (Sweden)

    Liming Huang

    2015-10-01

    Full Text Available In China, there are a lot of high-sulfur gas reservoirs with total proved reserves of over 1 trillion m3, most of which were discovered in the Sichuan Basin. Most high-sulfur gas reservoirs in China, distributed in marine carbonate zones, are characterized by great buried depths, complex geologic conditions, high temperatures, high pressures, high H2S and CO2 content, presenting various challenges in gas field development engineering and production safety. Since the development of Sinian high-sulfur gas reservoirs in the Weiyuan area of the Sichuan Basin started in the 1960s, Wolonghe, Zhongba and other medium to small-scale gas reservoirs with medium to low sulfur content have been developed. Ever since 2009, successful production of Longgang and Puguang in the Sichuan Basin, together with some other high-sulfur gas reservoirs highlighted the breakthroughs in development technologies for high-sulfur gas reservoirs in China. This paper reviews the progress made in gas reservoir engineering, drilling and completion engineering, gas production, pipeline transportation, corrosion control, natural gas purification, HSE and other aspects with consideration of specific requirements related to safe, clean and high-efficient development of high-sulfur gas reservoirs since the “12th Five-Year Plan” period. Finally, considering the challenges in the development of high-sulfur gas reservoirs in China, we summarized the trend in future technological development with the following goals of reducing risks, minimizing environmental damages, and enhancing the efficiency of high-sulfur gas reservoir development.

  9. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    Science.gov (United States)

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

  10. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system

    DEFF Research Database (Denmark)

    Holkenbrink, Carina; Ocón Barbas, Santiago; Mellerup, Anders

    2011-01-01

    Green sulfur bacteria oxidize sulfide and thiosulfate to sulfate with extracellular globules of elemental sulfur as intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show...... that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245 or the two dsrCABL clusters (CT0851-CT0854, CT2247-2250) abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsr...

  11. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    Science.gov (United States)

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction.

  12. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  13. Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa

    Science.gov (United States)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.; Carlson, R. W.

    2011-01-01

    We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4 H2O), and sulfuric acid tetrahydrate (H2SO4 4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, HSO4(exp -), and SO4(exp 2-). At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4 H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4 H2O, the loss of H2SO4 4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.

  14. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G.

    2012-01-01

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  15. Regulation of dsr genes encoding proteins responsible for the oxidation of stored sulfur in Allochromatium vinosum.

    Science.gov (United States)

    Grimm, Frauke; Dobler, Nadine; Dahl, Christiane

    2010-03-01

    Sulfur globules are formed as obligatory intermediates during the oxidation of reduced sulfur compounds in many environmentally important photo- and chemolithoautotrophic bacteria. It is well established that the so-called Dsr proteins are essential for the oxidation of zero-valent sulfur accumulated in the globules; however, hardly anything is known about the regulation of dsr gene expression. Here, we present a closer look at the regulation of the dsr genes in the phototrophic sulfur bacterium Allochromatium vinosum. The dsr genes are expressed in a reduced sulfur compound-dependent manner and neither sulfite, the product of the reverse-acting dissimilatory sulfite reductase DsrAB, nor the alternative electron donor malate inhibit the gene expression. Moreover, we show the oxidation of sulfur to sulfite to be the rate-limiting step in the oxidation of sulfur to sulfate as sulfate production starts concomitantly with the upregulation of the expression of the dsr genes. Real-time RT-PCR experiments suggest that the genes dsrC and dsrS are additionally expressed from secondary internal promoters, pointing to a special function of the encoded proteins. Earlier structural analyses indicated the presence of a helix-turn-helix (HTH)-like motif in DsrC. We therefore assessed the DNA-binding capability of the protein and provide evidence for a possible regulatory function of DsrC.

  16. Highly effective removal of toxic Cr(VI) from wastewater using sulfuric acid-modified avocado seed

    CSIR Research Space (South Africa)

    Bhaumik, M

    2014-01-01

    Full Text Available Sulfuric acid modified avocado seed (ASSA), as a low-cost carbonized adsorbent, was investigated for the removal of toxic Cr(VI) from water/wastewater in batch experiments. A low temperature (100 °C) chemical carbonization treatment was employed...

  17. AUSTA - a self-sufficient environmental analysis station for the analysis of nitrogen, sulfur and carbon compounds. Sub-project: development and construction of the central processing unit for the self-sufficient environmental analysis station. Final report; AUSTA - Autarke Umweltmessstation zur Analyse von Stickstoff-, Schwefel- und Kohlenstoffverbindungen. Teilvorhaben: Entwicklung und Konstruktion der Zentraleinheit fuer die autarke Umweltmessstation. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, N.; Ehrling, C.

    2002-07-01

    The aim of the common research project was the development of basics as well as the construction and the testing of a functional model for an environmental analysis system. This system should be able not only to analyze independently environmental toxicologically interesting Carbon, Nitrogen and Sulfur species from watery samples, but also to evaluate and document the results of the analysis. A functional model for the determination of TC/TN and the species TIC, Nitrate, Nitrite, Ammonium, Sulfite and Sulfide from an aqueous matrix, was built and tested successfully in the laboratory. The functional model was realized in a modular construction. Micro system technical components were integrated into the system. The dosage of samples and standards as well as the sample preparation for the determination of Nitrate is carried out via a special own-developed control module. The construction of the combustion unit with reactors and the appendant technique for joining parts was carried out in a miniaturization, not realized up to now. (orig.)

  18. Need total sulfur content? Use chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Kubala, S.W.; Campbell, D.N. [Fluid Data, Inc., Angleton, TX (United States); DiSanzo, F.P. [Mobil Technology Co., Paulsboro, NJ (United States)

    1996-09-01

    Regulations issued by the United States Environmental Protection Agency require petroleum refineries to reduce or control the amount of total sulfur present in their refined products. These legislative requirements have led many refineries to search for online instrumentation that can produce accurate and repeatable total sulfur measurements within allowed levels. Several analytical methods currently exist to measure total sulfur content. They include X-ray fluorescence (XRF), microcoulometry, lead acetate tape, and pyrofluorescence techniques. Sulfur-specific chemiluminescence detection (SSCD) has recently received much attention due to its linearity, selectivity, sensitivity, and equimolar response. However, its use has been largely confined to the area of gas chromatography. This article focuses on the special design considerations and analytical utility of an SSCD system developed to determine total sulfur content in gasoline. The system exhibits excellent linearity and selectivity, the ability to detect low minimum levels, and an equimolar response to various sulfur compound